Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions MATH.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,10 +43,10 @@ m &= n - log_{\frac{n}{e}}(10) \cdot k \text{ | calculate the exponent for the c
We can bring the [continuation](#float-multifactorial) into a calculable form (the major part) like so:
```math
\begin{aligned}
z!_k &= k^{\frac{z}{k}} \cdot \frac{z}{k}! \cdot T_k(z) \text{ | we already have implementations for z! and T_k(z)} \\
z!_k &= k^{\frac{z}{k}} \cdot \frac{z}{k}! \cdot T_k(z) \text{ | we already have implementations for z! and T\_k(z)} \\
\\
k^{\frac{z}{k}} &= k^m \cdot 10^n \
10^{log_{10}(k) \cdot \frac{z}{k}} &= 10^{log_{10}(k) \cdot m} \cdot 10^n \text{ | log_{10}} \\
10^{log_{10}(k) \cdot \frac{z}{k}} &= 10^{log_{10}(k) \cdot m} \cdot 10^n \text{ | log\_{10}} \\
log_{10}(k) \cdot \frac{z}{k} &= log_{10}(k) \cdot m + n \text{ | n should be as large as possible} \\
\\
n &= \left\lfloor log_{10}(k) \cdot \frac{z}{k} \right\rfloor \\
Expand Down Expand Up @@ -91,7 +91,7 @@ Its log_10 can be roughly approximated like so:
log_{10}(n!) &\approx log_{10}(\sqrt{2 \pi n} \cdot \left(\frac{n}{e})^n\right) \text{ | Stirling's Approximation} \\
&\approx \frac{1}{2} log_{10}(2 \pi n) + n \cdot log_{10}\left(\frac{n}{e}\right) \text{ | splitting up, taking exponents out} \\
&\approx \frac{1}{2} log_{10}(2 \pi) + \frac{1}{2} log_{10}(n) + n \cdot log_{10}(n) - n \cdot log_{10}(e) \text{ | splitting further} \\
\text{digits} &\approx \left\lfloor \left(\frac{1}{2}+n\right) log_{10}(n) + \frac{1}{2} log_{10}(2 \pi) - \frac{n}{ln(10)} \right\rfloor +1 \text{ | combining log_10(n) and turning into number of digits}
\text{digits} &\approx \left\lfloor \left(\frac{1}{2}+n\right) log_{10}(n) + \frac{1}{2} log_{10}(2 \pi) - \frac{n}{ln(10)} \right\rfloor +1 \text{ | combining log\_10(n) and turning into number of digits}
\end{aligned}
```
## Approximate Multifactorial Digits
Expand Down