Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
69 changes: 69 additions & 0 deletions lib/node_modules/@stdlib/stats/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -117,15 +117,38 @@ Other statistical functions included are:
- <span class="signature">[`maxBy( x[, options], clbk[, thisArg] )`][@stdlib/stats/max-by]</span><span class="delimiter">: </span><span class="description">compute the maximum value along one or more ndarray dimensions according to a callback function.</span>
- <span class="signature">[`max( x[, options] )`][@stdlib/stats/max]</span><span class="delimiter">: </span><span class="description">compute the maximum value along one or more ndarray dimensions.</span>
- <span class="signature">[`maxabs( x[, options] )`][@stdlib/stats/maxabs]</span><span class="delimiter">: </span><span class="description">compute the maximum absolute value along one or more ndarray dimensions.</span>
- <span class="signature">[`maxsorted( x[, options] )`][@stdlib/stats/maxsorted]</span><span class="delimiter">: </span><span class="description">compute the maximum value along one or more sorted ndarray dimensions.</span>
- <span class="signature">[`mean( x[, options] )`][@stdlib/stats/mean]</span><span class="delimiter">: </span><span class="description">compute the arithmetic mean along one or more ndarray dimensions.</span>
- <span class="signature">[`meankbn( x[, options] )`][@stdlib/stats/meankbn]</span><span class="delimiter">: </span><span class="description">compute the arithmetic mean along one or more ndarray dimensions using an improved Kahan–Babuška algorithm.</span>
- <span class="signature">[`meankbn2( x[, options] )`][@stdlib/stats/meankbn2]</span><span class="delimiter">: </span><span class="description">compute the arithmetic mean along one or more ndarray dimensions using a second-order iterative Kahan–Babuška algorithm.</span>
- <span class="signature">[`meanors( x[, options] )`][@stdlib/stats/meanors]</span><span class="delimiter">: </span><span class="description">compute the arithmetic mean along one or more ndarray dimensions using ordinary recursive summation.</span>
- <span class="signature">[`meanpn( x[, options] )`][@stdlib/stats/meanpn]</span><span class="delimiter">: </span><span class="description">compute the arithmetic mean along one or more ndarray dimensions using a two-pass error correction algorithm.</span>
- <span class="signature">[`meanpw( x[, options] )`][@stdlib/stats/meanpw]</span><span class="delimiter">: </span><span class="description">compute the arithmetic mean along one or more ndarray dimensions using pairwise summation.</span>
- <span class="signature">[`meanwd( x[, options] )`][@stdlib/stats/meanwd]</span><span class="delimiter">: </span><span class="description">compute the arithmetic mean along one or more ndarray dimensions using Welford's algorithm.</span>
- <span class="signature">[`mediansorted( x[, options] )`][@stdlib/stats/mediansorted]</span><span class="delimiter">: </span><span class="description">compute the median value along one or more sorted ndarray dimensions.</span>
- <span class="signature">[`midrangeBy( x[, options], clbk[, thisArg] )`][@stdlib/stats/midrange-by]</span><span class="delimiter">: </span><span class="description">compute the mid-range along one or more ndarray dimensions according to a callback function.</span>
- <span class="signature">[`midrange( x[, options] )`][@stdlib/stats/midrange]</span><span class="delimiter">: </span><span class="description">compute the mid-range along one or more ndarray dimensions.</span>
- <span class="signature">[`minBy( x[, options], clbk[, thisArg] )`][@stdlib/stats/min-by]</span><span class="delimiter">: </span><span class="description">compute the minimum value along one or more ndarray dimensions according to a callback function.</span>
- <span class="signature">[`min( x[, options] )`][@stdlib/stats/min]</span><span class="delimiter">: </span><span class="description">compute the minimum value along one or more ndarray dimensions.</span>
- <span class="signature">[`minabs( x[, options] )`][@stdlib/stats/minabs]</span><span class="delimiter">: </span><span class="description">compute the minimum absolute value along one or more ndarray dimensions.</span>
- <span class="signature">[`minsorted( x[, options] )`][@stdlib/stats/minsorted]</span><span class="delimiter">: </span><span class="description">compute the minimum value along one or more sorted ndarray dimensions.</span>
- <span class="signature">[`nanmaxBy( x[, options], clbk[, thisArg] )`][@stdlib/stats/nanmax-by]</span><span class="delimiter">: </span><span class="description">compute the maximum value along one or more ndarray dimensions according to a callback function, ignoring `NaN` values.</span>
- <span class="signature">[`nanmax( x[, options] )`][@stdlib/stats/nanmax]</span><span class="delimiter">: </span><span class="description">compute the maximum value along one or more ndarray dimensions, ignoring `NaN` values.</span>
- <span class="signature">[`nanmaxabs( x[, options] )`][@stdlib/stats/nanmaxabs]</span><span class="delimiter">: </span><span class="description">compute the maximum absolute value along one or more ndarray dimensions, ignoring `NaN` values.</span>
- <span class="signature">[`nanmean( x[, options] )`][@stdlib/stats/nanmean]</span><span class="delimiter">: </span><span class="description">compute the arithmetic mean along one or more ndarray dimensions, ignoring `NaN` values.</span>
- <span class="signature">[`nanmeanors( x[, options] )`][@stdlib/stats/nanmeanors]</span><span class="delimiter">: </span><span class="description">compute the arithmetic mean along one or more ndarray dimensions, ignoring `NaN` values and using ordinary recursive summation.</span>
- <span class="signature">[`nanmeanpn( x[, options] )`][@stdlib/stats/nanmeanpn]</span><span class="delimiter">: </span><span class="description">compute the arithmetic mean along one or more ndarray dimensions, ignoring `NaN` values and using a two-pass error correction algorithm.</span>
- <span class="signature">[`nanmeanwd( x[, options] )`][@stdlib/stats/nanmeanwd]</span><span class="delimiter">: </span><span class="description">compute the arithmetic mean along one or more ndarray dimensions, ignoring `NaN` values and using Welford's algorithm.</span>
- <span class="signature">[`nanmidrangeBy( x[, options], clbk[, thisArg] )`][@stdlib/stats/nanmidrange-by]</span><span class="delimiter">: </span><span class="description">compute the **mid-range** along one or more ndarray dimensions according to a callback function, ignoring `NaN` values.</span>
- <span class="signature">[`nanminBy( x[, options], clbk[, thisArg] )`][@stdlib/stats/nanmin-by]</span><span class="delimiter">: </span><span class="description">compute the minimum value along one or more ndarray dimensions according to a callback function, ignoring `NaN` values.</span>
- <span class="signature">[`nanmin( x[, options] )`][@stdlib/stats/nanmin]</span><span class="delimiter">: </span><span class="description">compute the minimum value along one or more ndarray dimensions, ignoring `NaN` values.</span>
- <span class="signature">[`nanminabs( x[, options] )`][@stdlib/stats/nanminabs]</span><span class="delimiter">: </span><span class="description">compute the minimum absolute value along one or more ndarray dimensions, ignoring `NaN` values.</span>
- <span class="signature">[`nanrangeBy( x[, options], clbk[, thisArg] )`][@stdlib/stats/nanrange-by]</span><span class="delimiter">: </span><span class="description">compute the **range** along one or more ndarray dimensions according to a callback function, ignoring `NaN` values.</span>
- <span class="signature">[`nanrange( x[, options] )`][@stdlib/stats/nanrange]</span><span class="delimiter">: </span><span class="description">compute the range along one or more ndarray dimensions, ignoring `NaN` values.</span>
- <span class="signature">[`padjust( pvals, method[, comparisons] )`][@stdlib/stats/padjust]</span><span class="delimiter">: </span><span class="description">adjust supplied p-values for multiple comparisons.</span>
- <span class="signature">[`rangeBy( x[, options], clbk[, thisArg] )`][@stdlib/stats/range-by]</span><span class="delimiter">: </span><span class="description">compute the **range** along one or more ndarray dimensions according to a callback function.</span>
- <span class="signature">[`range( x[, options] )`][@stdlib/stats/range]</span><span class="delimiter">: </span><span class="description">compute the range along one or more ndarray dimensions.</span>
- <span class="signature">[`rangeabs( x[, options] )`][@stdlib/stats/rangeabs]</span><span class="delimiter">: </span><span class="description">compute the range of absolute values along one or more ndarray dimensions.</span>
- <span class="signature">[`ranks( arr[, opts] )`][@stdlib/stats/ranks]</span><span class="delimiter">: </span><span class="description">compute ranks for values of an array-like object.</span>

</div>
Expand Down Expand Up @@ -183,24 +206,70 @@ console.log( objectKeys( statistics ) );

[@stdlib/stats/maxabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/maxabs

[@stdlib/stats/maxsorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/maxsorted

[@stdlib/stats/mean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/mean

[@stdlib/stats/meankbn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/meankbn

[@stdlib/stats/meankbn2]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/meankbn2

[@stdlib/stats/meanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/meanors

[@stdlib/stats/meanpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/meanpn

[@stdlib/stats/meanpw]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/meanpw

[@stdlib/stats/meanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/meanwd

[@stdlib/stats/mediansorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/mediansorted

[@stdlib/stats/midrange-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/midrange-by

[@stdlib/stats/midrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/midrange

[@stdlib/stats/min-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/min-by

[@stdlib/stats/min]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/min

[@stdlib/stats/minabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/minabs

[@stdlib/stats/minsorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/minsorted

[@stdlib/stats/nanmax-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanmax-by

[@stdlib/stats/nanmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanmax

[@stdlib/stats/nanmaxabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanmaxabs

[@stdlib/stats/nanmean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanmean

[@stdlib/stats/nanmeanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanmeanors

[@stdlib/stats/nanmeanpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanmeanpn

[@stdlib/stats/nanmeanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanmeanwd

[@stdlib/stats/nanmidrange-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanmidrange-by

[@stdlib/stats/nanmin-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanmin-by

[@stdlib/stats/nanmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanmin

[@stdlib/stats/nanminabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanminabs

[@stdlib/stats/nanrange-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanrange-by

[@stdlib/stats/nanrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanrange

[@stdlib/stats/padjust]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/padjust

[@stdlib/stats/range-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/range-by

[@stdlib/stats/range]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/range

[@stdlib/stats/rangeabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/rangeabs

[@stdlib/stats/ranks]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/ranks

[@stdlib/stats/base]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base
Expand Down
12 changes: 12 additions & 0 deletions lib/node_modules/@stdlib/stats/base/ndarray/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,9 @@ The namespace exposes the following APIs:
- <span class="signature">[`dstdev( arrays )`][@stdlib/stats/base/ndarray/dstdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a one-dimensional double-precision floating-point ndarray.</span>
- <span class="signature">[`dstdevch( arrays )`][@stdlib/stats/base/ndarray/dstdevch]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a one-dimensional double-precision floating-point ndarray using a one-pass trial mean algorithm.</span>
- <span class="signature">[`dstdevpn( arrays )`][@stdlib/stats/base/ndarray/dstdevpn]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a one-dimensional double-precision floating-point ndarray using a two-pass algorithm.</span>
- <span class="signature">[`dstdevtk( arrays )`][@stdlib/stats/base/ndarray/dstdevtk]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a one-dimensional double-precision floating-point ndarray using a one-pass textbook algorithm.</span>
- <span class="signature">[`dstdevwd( arrays )`][@stdlib/stats/base/ndarray/dstdevwd]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a one-dimensional double-precision floating-point ndarray using Welford's algorithm.</span>
- <span class="signature">[`dstdevyc( arrays )`][@stdlib/stats/base/ndarray/dstdevyc]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a one-dimensional double-precision floating-point ndarray using a one-pass algorithm proposed by Youngs and Cramer.</span>
- <span class="signature">[`dztest( arrays )`][@stdlib/stats/base/ndarray/dztest]</span><span class="delimiter">: </span><span class="description">compute a one-sample Z-test for a one-dimensional double-precision floating-point ndarray.</span>
- <span class="signature">[`dztest2( arrays )`][@stdlib/stats/base/ndarray/dztest2]</span><span class="delimiter">: </span><span class="description">compute a two-sample Z-test for two one-dimensional double-precision floating-point ndarrays.</span>
- <span class="signature">[`maxBy( arrays, clbk[, thisArg ] )`][@stdlib/stats/base/ndarray/max-by]</span><span class="delimiter">: </span><span class="description">compute the maximum value of a one-dimensional ndarray via a callback function.</span>
Expand Down Expand Up @@ -189,7 +191,9 @@ The namespace exposes the following APIs:
- <span class="signature">[`sstdev( arrays )`][@stdlib/stats/base/ndarray/sstdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a one-dimensional single-precision floating-point ndarray.</span>
- <span class="signature">[`sstdevch( arrays )`][@stdlib/stats/base/ndarray/sstdevch]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a one-dimensional single-precision floating-point ndarray using a one-pass trial mean algorithm.</span>
- <span class="signature">[`sstdevpn( arrays )`][@stdlib/stats/base/ndarray/sstdevpn]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a one-dimensional single-precision floating-point ndarray using a two-pass algorithm.</span>
- <span class="signature">[`sstdevtk( arrays )`][@stdlib/stats/base/ndarray/sstdevtk]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a one-dimensional single-precision floating-point ndarray using a one-pass textbook algorithm.</span>
- <span class="signature">[`sstdevwd( arrays )`][@stdlib/stats/base/ndarray/sstdevwd]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a one-dimensional single-precision floating-point ndarray using Welford's algorithm.</span>
- <span class="signature">[`sstdevyc( arrays )`][@stdlib/stats/base/ndarray/sstdevyc]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a one-dimensional single-precision floating-point ndarray using a one-pass algorithm proposed by Youngs and Cramer.</span>
- <span class="signature">[`stdev( arrays )`][@stdlib/stats/base/ndarray/stdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a one-dimensional ndarray.</span>
- <span class="signature">[`stdevch( arrays )`][@stdlib/stats/base/ndarray/stdevch]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a one-dimensional ndarray using a one-pass trial mean algorithm.</span>
- <span class="signature">[`stdevpn( arrays )`][@stdlib/stats/base/ndarray/stdevpn]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a one-dimensional ndarray using a two-pass algorithm.</span>
Expand Down Expand Up @@ -343,8 +347,12 @@ console.log( objectKeys( ns ) );

[@stdlib/stats/base/ndarray/dstdevpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dstdevpn

[@stdlib/stats/base/ndarray/dstdevtk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dstdevtk

[@stdlib/stats/base/ndarray/dstdevwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dstdevwd

[@stdlib/stats/base/ndarray/dstdevyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dstdevyc

[@stdlib/stats/base/ndarray/dztest]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dztest

[@stdlib/stats/base/ndarray/dztest2]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dztest2
Expand Down Expand Up @@ -533,8 +541,12 @@ console.log( objectKeys( ns ) );

[@stdlib/stats/base/ndarray/sstdevpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/sstdevpn

[@stdlib/stats/base/ndarray/sstdevtk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/sstdevtk

[@stdlib/stats/base/ndarray/sstdevwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/sstdevwd

[@stdlib/stats/base/ndarray/sstdevyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/sstdevyc

[@stdlib/stats/base/ndarray/stdev]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/stdev

[@stdlib/stats/base/ndarray/stdevch]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/stdevch
Expand Down