Skip to content

modelscope/sirchmunk

Repository files navigation

Sirchmunk Logo

Sirchmunk: Raw data to self-evolving intelligence, real-time.

Python FastAPI Next.js TailwindCSS DuckDB License ripgrep-all OpenAI Kreuzberg MCP

Quick Start · Key Features · Web UI · How it Works · FAQ

🇨🇳 中文

🔍 Agentic Search  •  🧠 Knowledge Clustering  •  📊 Monte Carlo Evidence Sampling
Indexless Retrieval  •  🔄 Self-Evolving Knowledge Base  •  💬 Real-time Chat


🌰 Why “Sirchmunk”?

Intelligence pipelines built upon vector-based retrieval can be rigid and brittle. They rely on static vector embeddings that are expensive to compute, blind to real-time changes, and detached from the raw context. We introduce Sirchmunk to usher in a more agile paradigm, where data is no longer treated as a snapshot, and insights can evolve together with the data.


✨ Key Features

1. Embedding-Free: Data in its Purest Form

Sirchmunk works directly with raw data -- bypassing the heavy overhead of squeezing your rich files into fixed-dimensional vectors.

  • Instant Search: Eliminating complex pre-processing pipelines in hours long indexing; just drop your files and search immediately.
  • Full Fidelity: Zero information loss —- stay true to your data without vector approximation.

2. Self-Evolving: A Living Index

Data is a stream, not a snapshot. Sirchmunk is dynamic by design, while vector DB can become obsolete the moment your data changes.

  • Context-Aware: Evolves in real-time with your data context.
  • LLM-Powered Autonomy: Designed for Agents that perceive data as it lives, utilizing token-efficient reasoning that triggers LLM inference only when necessary to maximize intelligence while minimizing cost.

3. Intelligence at Scale: Real-Time & Massive

Sirchmunk bridges massive local repositories and the web with high-scale throughput and real-time awareness.
It serves as a unified intelligent hub for AI agents, delivering deep insights across vast datasets at the speed of thought.


Traditional RAG vs. Sirchmunk

Dimension Traditional RAG ✨Sirchmunk
💰 Setup Cost High Overhead
(VectorDB, GraphDB, Complex Document Parser...)
✅ Zero Infrastructure
Direct-to-data retrieval without vector silos
🕒 Data Freshness Stale (Batch Re-indexing) ✅ Instant & Dynamic
Self-evolving index that reflects live changes
📈 Scalability Linear Cost Growth ✅ Extremely low RAM/CPU consumption
Native Elastic Support, efficiently handles large-scale datasets
🎯 Accuracy Approximate Vector Matches ✅ Deterministic & Contextual
Hybrid logic ensuring semantic precision
⚙️ Workflow Complex ETL Pipelines ✅ Drop-and-Search
Zero-config integration for rapid deployment

Demonstration

Sirchmunk WebUI

Access files directly to start chatting


🎉 News

  • 🚀 Feb 5, 2026: Release v0.0.2 — MCP Support, CLI Commands & Knowledge Persistence!

    • MCP Integration: Full Model Context Protocol support, works seamlessly with Claude Desktop and Cursor IDE.
    • CLI Commands: New sirchmunk CLI with init, serve, search, web, and mcp commands.
    • KnowledgeCluster Persistence: DuckDB-powered storage with Parquet export for efficient knowledge management.
    • Knowledge Reuse: Semantic similarity-based cluster retrieval for faster searches via embedding vectors.
  • 🎉🎉 Jan 22, 2026: Introducing Sirchmunk: Initial Release v0.0.1 Now Available!


🚀 Quick Start

Prerequisites

  • Python 3.10+
  • LLM API Key (OpenAI-compatible endpoint, local or remote)
  • Node.js 18+ (Optional, for web interface)

Installation

# Create virtual environment (recommended)
conda create -n sirchmunk python=3.13 -y && conda activate sirchmunk 

pip install sirchmunk

# Or via UV:
uv pip install sirchmunk

# Alternatively, install from source:
git clone https://github.com/modelscope/sirchmunk.git && cd sirchmunk
pip install -e .

Python SDK Usage

import asyncio

from sirchmunk import AgenticSearch
from sirchmunk.llm import OpenAIChat

llm = OpenAIChat(
        api_key="your-api-key",
        base_url="your-base-url",   # e.g., https://api.openai.com/v1
        model="your-model-name"     # e.g., gpt-4o
    )

async def main():
    
    searcher = AgenticSearch(llm=llm)
    
    result: str = await searcher.search(
        query="How does transformer attention work?",
        paths=["/path/to/documents"],
    )
    
    print(result)

asyncio.run(main())

⚠️ Notes:

  • Upon initialization, AgenticSearch automatically checks if ripgrep-all and ripgrep are installed. If they are missing, it will attempt to install them automatically. If the automatic installation fails, please install them manually.
  • Replace "your-api-key", "your-base-url", "your-model-name" and /path/to/documents with your actual values.

Command Line Interface

Sirchmunk provides a powerful CLI for server management and search operations.

Installation

pip install "sirchmunk[web]"

# or install via UV
uv pip install "sirchmunk[web]"

Initialize

# Initialize Sirchmunk with default settings (Default work path: `~/.sirchmunk/`)
sirchmunk init

# Alternatively, initialize with custom work path
sirchmunk init --work-path /path/to/workspace

Start Server

# Start backend API server only
sirchmunk serve

# Custom host and port
sirchmunk serve --host 0.0.0.0 --port 8000

Search

# Search in current directory
sirchmunk search "How does authentication work?"

# Search in specific paths
sirchmunk search "find all API endpoints" ./src ./docs

# Quick filename search
sirchmunk search "config" --mode FILENAME_ONLY

# Output as JSON
sirchmunk search "database schema" --output json

# Use API server (requires running server)
sirchmunk search "query" --api --api-url http://localhost:8584

Available Commands

Command Description
sirchmunk init Initialize working directory, .env, and MCP config
sirchmunk serve Start the backend API server
sirchmunk search Perform search queries
sirchmunk web init Build WebUI frontend (requires Node.js 18+)
sirchmunk web serve Start API + WebUI (single port)
sirchmunk web serve --dev Start API + Next.js dev server (hot-reload)
sirchmunk mcp serve Start the MCP server (stdio/HTTP)
sirchmunk mcp version Show MCP version information
sirchmunk version Show version information

🔌 MCP Server

Sirchmunk provides a Model Context Protocol (MCP) server that exposes its intelligent search capabilities as MCP tools. This enables seamless integration with AI assistants like Claude Desktop and Cursor IDE.

Quick Start

# Install with MCP support
pip install sirchmunk[mcp]

# Initialize (generates .env and mcp_config.json)
sirchmunk init

# Edit ~/.sirchmunk/.env with your LLM API key

# Test with MCP Inspector
npx @modelcontextprotocol/inspector sirchmunk mcp serve

mcp_config.json Configuration

After running sirchmunk init, a ~/.sirchmunk/mcp_config.json file is generated. Copy it to your MCP client configuration directory.

Example:

{
  "mcpServers": {
    "sirchmunk": {
      "command": "sirchmunk",
      "args": ["mcp", "serve"],
      "env": {
        "SIRCHMUNK_SEARCH_PATHS": "/path/to/your_docs,/another/path"
      }
    }
  }
}
Parameter Description
command The command to start the MCP server. Use full path (e.g. /path/to/venv/bin/sirchmunk) if running in a virtual environment.
args Command arguments. ["mcp", "serve"] starts the MCP server in stdio mode.
env.SIRCHMUNK_SEARCH_PATHS Default document search directories (comma-separated). Supports both English , and Chinese as delimiters. When set, these paths are used as default if no paths parameter is provided during tool invocation.

Tip: MCP Inspector is a great way to test the integration before connecting to your AI assistant. In MCP Inspector: ConnectToolsList Toolssirchmunk_search → Input parameters (query and paths, e.g. ["/path/to/your_docs"]) → Run Tool.

Features

  • Multi-Mode Search: DEEP mode for comprehensive analysis, FILENAME_ONLY for fast file discovery
  • Knowledge Cluster Management: Automatic extraction, storage, and reuse of knowledge
  • Standard MCP Protocol: Works with stdio and Streamable HTTP transports

📖 For detailed documentation, see Sirchmunk MCP README.


🖥️ Web UI

The web UI is built for fast, transparent workflows: chat, knowledge analytics, and system monitoring in one place.

Sirchmunk Home

Home — Chat with streaming logs, file-based RAG, and session management.

Sirchmunk Monitor

Monitor — System health, chat activity, knowledge analytics, and LLM usage.

Option 1: Single-Port Mode (Recommended)

Build the frontend once, then serve everything from a single port — no Node.js needed at runtime.

# Build WebUI frontend (requires Node.js 18+ at build time)
sirchmunk web init

# Start server with embedded WebUI
sirchmunk web serve

Access: http://localhost:8584 (API + WebUI on the same port)

Option 2: Development Mode

For frontend development with hot-reload:

# Start backend + Next.js dev server
sirchmunk web serve --dev

Access:

Option 3: Legacy Script

# Start frontend and backend via script
python scripts/start_web.py 

# Stop all services
python scripts/stop_web.py

Configuration:

  • Access SettingsEnvrionment Variables to configure LLM API, and other parameters.

🏗️ How it Works

Sirchmunk Framework

Sirchmunk Architecture

Core Components

Component Description
AgenticSearch Search orchestrator with LLM-enhanced retrieval capabilities
KnowledgeBase Transforms raw results into structured knowledge clusters with evidences
EvidenceProcessor Evidence processing based on the MonteCarlo Importance Sampling
GrepRetriever High-performance indexless file search with parallel processing
OpenAIChat Unified LLM interface supporting streaming and usage tracking
MonitorTracker Real-time system and application metrics collection

Data Storage

All persistent data is stored in the configured SIRCHMUNK_WORK_PATH (default: ~/.sirchmunk/):

{SIRCHMUNK_WORK_PATH}/
  ├── .cache/
    ├── history/              # Chat session history (DuckDB)
    │   └── chat_history.db
    ├── knowledge/            # Knowledge clusters (Parquet)
    │   └── knowledge_clusters.parquet
    └── settings/             # User settings (DuckDB)
        └── settings.db


🔗 HTTP Client Access (Search API)

When the server is running (sirchmunk serve or sirchmunk web serve), the Search API is accessible via any HTTP client.

API Endpoints
Method Endpoint Description
POST /api/v1/search Execute a search query
GET /api/v1/search/status Check server and LLM configuration status

Interactive Docs: http://localhost:8584/docs (Swagger UI)

cURL Examples
# Basic search (DEEP mode)
curl -X POST http://localhost:8584/api/v1/search \
  -H "Content-Type: application/json" \
  -d '{
    "query": "How does authentication work?",
    "paths": ["/path/to/project"],
    "mode": "DEEP"
  }'

# Filename search (fast, no LLM required)
curl -X POST http://localhost:8584/api/v1/search \
  -H "Content-Type: application/json" \
  -d '{
    "query": "config",
    "paths": ["/path/to/project"],
    "mode": "FILENAME_ONLY"
  }'

# Full parameters
curl -X POST http://localhost:8584/api/v1/search \
  -H "Content-Type: application/json" \
  -d '{
    "query": "database connection pooling",
    "paths": ["/path/to/project/src"],
    "mode": "DEEP",
    "max_depth": 10,
    "top_k_files": 20,
    "keyword_levels": 3,
    "include_patterns": ["*.py", "*.java"],
    "exclude_patterns": ["*test*", "*__pycache__*"],
    "return_cluster": true
  }'

# Check server status
curl http://localhost:8584/api/v1/search/status
Python Client Examples

Using requests:

import requests

response = requests.post(
    "http://localhost:8584/api/v1/search",
    json={
        "query": "How does authentication work?",
        "paths": ["/path/to/project"],
        "mode": "DEEP"
    },
    timeout=300  # DEEP mode may take a while
)

data = response.json()
if data["success"]:
    print(data["data"]["result"])

Using httpx (async):

import httpx
import asyncio

async def search():
    async with httpx.AsyncClient(timeout=300) as client:
        resp = await client.post(
            "http://localhost:8584/api/v1/search",
            json={
                "query": "find all API endpoints",
                "paths": ["/path/to/project"],
                "mode": "DEEP"
            }
        )
        data = resp.json()
        print(data["data"]["result"])

asyncio.run(search())
JavaScript Client Example
const response = await fetch("http://localhost:8584/api/v1/search", {
  method: "POST",
  headers: { "Content-Type": "application/json" },
  body: JSON.stringify({
    query: "How does authentication work?",
    paths: ["/path/to/project"],
    mode: "DEEP"
  })
});

const data = await response.json();
if (data.success) {
  console.log(data.data.result);
}
Request Parameters
Parameter Type Default Description
query string required Search query or question
paths string[] required Directories or files to search (min 1)
mode string "DEEP" DEEP or FILENAME_ONLY
max_depth int null Maximum directory depth
top_k_files int null Number of top files to return
keyword_levels int null Keyword granularity levels
include_patterns string[] null File glob patterns to include
exclude_patterns string[] null File glob patterns to exclude
return_cluster bool false Return full KnowledgeCluster object

Note: FILENAME_ONLY mode does not require an LLM API key. DEEP mode requires a configured LLM.


❓ FAQ

How is this different from traditional RAG systems?

Sirchmunk takes an indexless approach:

  1. No pre-indexing: Direct file search without vector database setup
  2. Self-evolving: Knowledge clusters evolve based on search patterns
  3. Multi-level retrieval: Adaptive keyword granularity for better recall
  4. Evidence-based: Monte Carlo sampling for precise content extraction
What LLM providers are supported?

Any OpenAI-compatible API endpoint, including (but not limited too):

  • OpenAI (GPT-4, GPT-4o, GPT-3.5)
  • Local models served via Ollama, llama.cpp, vLLM, SGLang etc.
  • Claude via API proxy
How do I add documents to search?

Simply specify the path in your search query:

result = await searcher.search(
    query="Your question",
    paths=["/path/to/folder", "/path/to/file.pdf"]
)

No pre-processing or indexing required!

Where are knowledge clusters stored?

Knowledge clusters are persisted in Parquet format at:

{SIRCHMUNK_WORK_PATH}/.cache/knowledge/knowledge_clusters.parquet

You can query them using DuckDB or the KnowledgeManager API.

How do I monitor LLM token usage?
  1. Web Dashboard: Visit the Monitor page for real-time statistics
  2. API: GET /api/v1/monitor/llm returns usage metrics
  3. Code: Access searcher.llm_usages after search completion

📋 Roadmap

  • Text-retrieval from raw files
  • Knowledge structuring & persistence
  • Real-time chat with RAG
  • Web UI support
  • Web search integration
  • Multi-modal support (images, videos)
  • Distributed search across nodes
  • Knowledge visualization and deep analytics
  • More file type support

🤝 Contributing

We welcome contributions !


📄 License

This project is licensed under the Apache License 2.0.


ModelScope · ⭐ Star us · 🐛 Report a bug · 💬 Discussions

✨ Sirchmunk: Raw data to self-evolving intelligence, real-time.

❤️ Thanks for Visiting ✨ Sirchmunk !

Views

About

Sirchmunk: Raw data to self-evolving intelligence, real-time.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •