-
Notifications
You must be signed in to change notification settings - Fork 65
Add lemma le0_expectation_cdf
#1847
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
Yosuke-Ito-345
wants to merge
3
commits into
math-comp:master
Choose a base branch
from
Yosuke-Ito-345:le0_expectation_cdf
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+242
−65
Open
Changes from all commits
Commits
Show all changes
3 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,19 @@ | ||
| # Changelog (unreleased) | ||
|
|
||
| ## [Unreleased] | ||
|
|
||
| ### Added | ||
|
|
||
| - in lebesgue_integral_nonneg.v | ||
| + lemmas `lebesgue_measure_oppr`, `ge0_integral_oppr` | ||
|
|
||
| - in measurable_realfun.v | ||
| + lemma `min_mfun_subproof` | ||
| + definition `min_mfun` | ||
|
|
||
| - in random_variable.v | ||
| + lemmas `lebesgue_integral_pmf`, `cdf_measurable`, `ccdf_measurable`, `ge0_expectation_prob_ge`, `le0_expectation_cdf` | ||
|
|
||
|
|
||
|
|
||
|
|
||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -46,6 +46,7 @@ From mathcomp Require Export lebesgue_stieltjes_measure. | |
| (* indic_mfun mD := mindic mD *) | ||
| (* scale_mfun k f := k \o* f *) | ||
| (* max_mfun f g := f \max g *) | ||
| (* min_mfun f g := f \min g *) | ||
| (* ``` *) | ||
| (******************************************************************************) | ||
|
|
||
|
|
@@ -1182,6 +1183,13 @@ HB.instance Definition _ f g := max_mfun_subproof f g. | |
|
|
||
| Definition max_mfun f g : {mfun aT >-> _} := f \max g. | ||
|
|
||
| Lemma min_mfun_subproof f g : @isMeasurableFun d _ aT rT (f \min g). | ||
| Proof. by split; apply: measurable_minr. Qed. | ||
|
|
||
| HB.instance Definition _ f g := min_mfun_subproof f g. | ||
|
|
||
| Definition min_mfun f g : {mfun aT >-> _} := f \min g. | ||
|
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
|
||
|
|
||
| End ring. | ||
| Arguments indic_mfun {d aT rT} _. | ||
| (* TODO: move earlier?*) | ||
|
|
||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change | ||||||
|---|---|---|---|---|---|---|---|---|
|
|
@@ -136,6 +136,107 @@ Proof. by move=> mf intf; rewrite integral_pushforward. Qed. | |||||||
|
|
||||||||
| End transfer_probability. | ||||||||
|
|
||||||||
| Section pmf_definition. | ||||||||
| Context {d} {T : measurableType d} {R : realType}. | ||||||||
| Variables (P : probability T R). | ||||||||
|
Comment on lines
+140
to
+141
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||||
|
|
||||||||
| Definition pmf (X : {RV P >-> R}) (r : R) : R := fine (P (X @^-1` [set r])). | ||||||||
|
|
||||||||
| Lemma pmf_ge0 (X : {RV P >-> R}) (r : R) : 0 <= pmf X r. | ||||||||
| Proof. by rewrite fine_ge0. Qed. | ||||||||
|
|
||||||||
| End pmf_definition. | ||||||||
|
|
||||||||
| Section pmf_measurable. | ||||||||
| Local Open Scope ereal_scope. | ||||||||
| Context d (T : measurableType d) (R : realType) | ||||||||
| (P : probability T R) (X : {RV P >-> R}). | ||||||||
|
|
||||||||
| Lemma pmf_gt0_countable : countable [set r | 0 < pmf X r]%R. | ||||||||
| Proof. | ||||||||
| rewrite [X in countable X](_ : _ = | ||||||||
| \bigcup_n [set r | n.+1%:R^-1 < pmf X r]%R); last first. | ||||||||
| by apply/seteqP; split=> [r/= /ltr_add_invr[k /[!add0r] kXr]|r/= [k _]]; | ||||||||
| [exists k|exact: lt_trans]. | ||||||||
| apply: bigcup_countable => // n _; apply: finite_set_countable. | ||||||||
| apply: contrapT => /infiniteP/pcard_leP/injfunPex[/= q q_fun q_inj]. | ||||||||
| have /(probability_le1 P) : measurable (\bigcup_k X @^-1` [set q k]). | ||||||||
| by apply: bigcup_measurable => k _; exact: measurable_funPTI. | ||||||||
| rewrite leNgt => /negP; apply. | ||||||||
| rewrite [ltRHS](_ : _ = \sum_(0 <= k <oo) P (X @^-1` [set q k])); last first. | ||||||||
| rewrite measure_bigcup//; first by apply: eq_eseriesl =>// i; rewrite in_setT. | ||||||||
| rewrite (trivIset_comp (fun r => X@^-1` [set r]))//. | ||||||||
| exact: trivIset_preimage1. | ||||||||
| apply: (lt_le_trans _ (nneseries_lim_ge n.+1 _)) => //. | ||||||||
| rewrite -EFin_sum_fine//; last by move=> ? _; rewrite fin_num_measure. | ||||||||
| under eq_bigr do rewrite -/(pmf X (q _)). | ||||||||
| rewrite lte_fin (_ : 1%R = (\sum_(0 <= k < n.+1) n.+1%:R^-1:R)%R); last first. | ||||||||
| by rewrite sumr_const_nat subn0 -[RHS]mulr_natr mulVf. | ||||||||
| by apply: ltr_sum => // k _; exact: q_fun. | ||||||||
| Qed. | ||||||||
|
|
||||||||
| Lemma pmf_measurable : measurable_fun [set: R] (pmf X). | ||||||||
| Proof. | ||||||||
| have /countable_bijP[S] := pmf_gt0_countable. | ||||||||
| rewrite card_eq_sym => /pcard_eqP/bijPex[/= h h_bij]. | ||||||||
| have pmf1_ge0 k s : 0 <= (pmf X (h k) * \1_[set h k] s)%:E. | ||||||||
| by rewrite EFinM mule_ge0// lee_fin pmf_ge0. | ||||||||
| pose sfun r := \sum_(0 <= k <oo | k \in S) (pmf X (h k) * \1_[set h k] r)%:E. | ||||||||
| apply/measurable_EFinP; apply: (eq_measurable_fun sfun) => [r _|]; last first. | ||||||||
| by apply: ge0_emeasurable_sum => // *; exact/measurable_EFinP/measurable_funM. | ||||||||
| have [rS|nrS] := boolP (r \in [set h k | k in S]). | ||||||||
| - pose kr := pinv S h r. | ||||||||
| have neqh k : k \in S /\ k != kr -> r != h k. | ||||||||
| move=> [Sk]; apply: contra_neq. | ||||||||
| by rewrite /kr => ->; rewrite pinvKV//; exact: (set_bij_inj h_bij). | ||||||||
| rewrite /sfun (@nneseriesD1 _ _ kr)//; last by rewrite inE; exact/invS/set_mem. | ||||||||
| by rewrite eseries0 => [| k k_ge0 /andP/neqh]; rewrite indicE in_set1_eq; | ||||||||
| [rewrite pinvK// eqxx mulr1 addr0|move/negPf => ->; rewrite mulr0]. | ||||||||
| - rewrite /sfun eseries0 => [|k k_ge0 Sk]/=. | ||||||||
| apply: le_anti; rewrite !lee_fin pmf_ge0/= leNgt; apply: contraNN nrS. | ||||||||
| by rewrite (surj_image_eq _ (set_bij_surj h_bij)) ?inE//; exact:set_bij_sub. | ||||||||
| rewrite indicE in_set1_eq (_ : (r == h k) = false) ?mulr0//. | ||||||||
| by apply: contraNF nrS => /eqP ->; exact/image_f. | ||||||||
| Qed. | ||||||||
|
|
||||||||
| End pmf_measurable. | ||||||||
|
|
||||||||
| Section lebesgue_integral_pmf. | ||||||||
| Context d (T : measurableType d) (R : realType) | ||||||||
| (P : probability T R) (X : {RV P >-> R}). | ||||||||
| Local Open Scope ereal_scope. | ||||||||
|
|
||||||||
| Lemma lebesgue_integral_pmf : | ||||||||
| \int[lebesgue_measure]_r (pmf X r)%:E = 0. | ||||||||
| Proof. | ||||||||
| pose mu := @lebesgue_measure R. | ||||||||
| pose pmfP := [set r | (0 < pmf X r)%R]. | ||||||||
| pose pmf0 := [set r | (0 = pmf X r)%R]. | ||||||||
| have Upmf : pmfP `|` pmf0 = setT. | ||||||||
| rewrite -subTset => r /= _. | ||||||||
| by case: (ltrgt0P (pmf X r)); [left | rewrite ltNge fine_ge0 | right]. | ||||||||
| have Ipmf : [disjoint pmfP & pmf0]. | ||||||||
| rewrite disj_set2E; apply/eqP. | ||||||||
| by rewrite -subset0 setIC /pmfP/pmf0 => r /= [] ->; rewrite ltxx. | ||||||||
| have pmf0NP : pmf0 = ~`pmfP. | ||||||||
| rewrite /pmf0 /pmfP seteqP; split=> r /= => [-> | /negP]; rewrite ?ltxx//. | ||||||||
| by rewrite -real_leNgt//= => pmfN; apply: le_anti; rewrite pmfN fine_ge0. | ||||||||
| have cpmfP : countable pmfP by exact: pmf_gt0_countable. | ||||||||
| have mpmfP : measurable pmfP by exact: countable_measurable. | ||||||||
| have mupmfP : mu pmfP = 0 by exact: countable_lebesgue_measure0. | ||||||||
| have mpmf : measurable_fun setT (fun r => (pmf X r)%:E). | ||||||||
| by apply/measurable_EFinP; exact: pmf_measurable. | ||||||||
| transitivity | ||||||||
| (\int[mu]_(r in pmfP) (pmf X r)%:E + \int[mu]_(r in pmf0) (pmf X r)%:E). | ||||||||
| by rewrite -ge0_integral_setU ?Upmf// ?pmf0NP => [| r _]; | ||||||||
| [exact: measurableC | exact: fine_ge0]. | ||||||||
| rewrite (_ : \int[mu]_(r in pmf0) (pmf X r)%:E = 0) ?addr0; | ||||||||
| last by apply: integral0_eq => r <-. | ||||||||
| by apply: null_set_integral; [| exact: (measurable_funS(E:=setT)) |]. | ||||||||
| Qed. | ||||||||
|
|
||||||||
| End lebesgue_integral_pmf. | ||||||||
|
|
||||||||
| Definition cdf d (T : measurableType d) (R : realType) (P : probability T R) | ||||||||
| (X : {RV P >-> R}) (r : R) := distribution P X `]-oo, r]. | ||||||||
|
|
||||||||
|
|
@@ -151,6 +252,15 @@ Lemma cdf_le1 r : cdf X r <= 1. Proof. exact: probability_le1. Qed. | |||||||
| Lemma cdf_nondecreasing : nondecreasing_fun (cdf X). | ||||||||
| Proof. by move=> r s rs; rewrite le_measure ?inE//; exact: subitvPr. Qed. | ||||||||
|
|
||||||||
| Lemma cdf_measurable : measurable_fun setT (cdf X). | ||||||||
| Proof. | ||||||||
| suff : measurable_fun setT (fine \o (cdf X)) => [/measurable_EFinP |]. | ||||||||
| apply: eq_measurable_fun => r _. | ||||||||
| by rewrite /comp fineK; last exact: fin_num_measure. | ||||||||
| apply: nondecreasing_measurable => // r s rs. | ||||||||
| by apply: fine_le; [rewrite fin_num_measure .. | exact: cdf_nondecreasing]. | ||||||||
| Qed. | ||||||||
|
|
||||||||
| Lemma cvg_cdfy1 : cdf X @ +oo%R --> 1. | ||||||||
| Proof. | ||||||||
| pose s : \bar R := ereal_sup (range (cdf X)). | ||||||||
|
|
@@ -341,6 +451,13 @@ Proof. by rewrite -(cdf_ccdf_1 r) addeK ?fin_num_measure. Qed. | |||||||
| Lemma ccdf_nonincreasing : nonincreasing_fun (ccdf X). | ||||||||
| Proof. by move=> r s rs; rewrite le_measure ?inE//; exact: subitvPl. Qed. | ||||||||
|
|
||||||||
| Lemma ccdf_measurable : measurable_fun setT (ccdf X). | ||||||||
| Proof. | ||||||||
| apply: (eq_measurable_fun (fun r => 1 - cdf X r)) => [r _|]. | ||||||||
| by rewrite ccdf_1_cdf. | ||||||||
| by apply: emeasurable_funB; last exact: cdf_measurable. | ||||||||
| Qed. | ||||||||
|
|
||||||||
| Lemma cvg_ccdfy0 : ccdf X @ +oo%R --> 0. | ||||||||
| Proof. | ||||||||
| have : 1 - cdf X r @[r --> +oo%R] --> 1 - 1. | ||||||||
|
|
@@ -519,6 +636,72 @@ rewrite [X in measurable X](_ : _ = fgts @^-1` [set true]). | |||||||
| by apply: eq_set => r; rewrite in_itv/= s_ge0. | ||||||||
| Qed. | ||||||||
|
|
||||||||
| Let ge0_expectation_prob_ge (X : {RV P >-> R}) : (forall x, 0 <= X x)%R -> | ||||||||
| 'E_P[X] = \int[mu]_(r in `[0%R, +oo[) P [set x | (r <= X x)%R]. | ||||||||
| Proof. | ||||||||
| have gtpre r : [set x | (r < X x)%R] = X @^-1` `]r, +oo[. | ||||||||
| by apply: eq_set => x/=; rewrite in_itv andbT. | ||||||||
| have mPeqr : measurable_fun setT (fun r => P [set x | X x = r]). | ||||||||
| apply: (eq_measurable_fun (EFin \o (pmf X))) => [r |]. | ||||||||
| by rewrite /comp fineK ?fin_num_measure. | ||||||||
| by apply/measurable_EFinP; exact: pmf_measurable. | ||||||||
| have mPgtr : measurable_fun setT (fun r:R => P [set x | (r < X x)%R]). | ||||||||
| apply: (eq_measurable_fun (ccdf X)) => [r _|]; rewrite ?gtpre//. | ||||||||
| exact: ccdf_measurable. | ||||||||
| move=> X_ge0; rewrite ge0_expectation_ccdf//. | ||||||||
| transitivity | ||||||||
| (\int[mu]_(r in `[0%R, +oo[) (P [set x | X x = r] + P [set x | (r < X x)%R])). | ||||||||
| rewrite ge0_integralD//=; [| exact: measurable_funTS ..]. | ||||||||
| rewrite (_ : \int[mu]_(r in `[0%R, +oo[) P [set x | X x = r] = 0). | ||||||||
| by rewrite add0e; apply: eq_integral => r; rewrite gtpre. | ||||||||
| rewrite -(lebesgue_integral_pmf X) integral_mkcond; apply: eq_integral => r _. | ||||||||
| rewrite patchE; case/asboolP: (r \in `[0%R, +oo[) => [r_ge0 | r_lt0]. | ||||||||
| - by rewrite ifT ?inE// fineK ?fin_num_measure. | ||||||||
| - rewrite ifF; [rewrite fineK ?fin_num_measure// | exact: asboolF]. | ||||||||
| suff ->: X @^-1` [set r] = set0; first by rewrite measure0. | ||||||||
| rewrite -nonemptyPn; apply: contra_not r_lt0. | ||||||||
| by case=> x <-; rewrite in_itv/= andbT. | ||||||||
| apply: eq_integral =>/= r _; rewrite -measureU. | ||||||||
| - congr (P _); rewrite seteqP; split=> x/=; first by case=> [->//|]; exact: ltW. | ||||||||
| by rewrite le_eqVlt; case/orP => [/eqP|]; [left | right]. | ||||||||
| - by rewrite (_ : [set x | X x = r] = X @^-1` [set r]). | ||||||||
| - by rewrite gtpre; exact: (measurable_funPTI X). | ||||||||
| - by rewrite -subset0 => x []/= ->; rewrite ltxx. | ||||||||
| Qed. | ||||||||
|
|
||||||||
| Lemma le0_expectation_cdf (X : {RV P >-> R}) : (forall x, X x <= 0)%R -> | ||||||||
| 'E_P[X] = - \int[mu]_(r in `]-oo, 0%R[) cdf X r. | ||||||||
| Proof. | ||||||||
| pose Y : {RV P >-> R} := (- X)%R. | ||||||||
| pose fPleY r := fine (P [set x | (r <= Y x)%R]). | ||||||||
| have mgeY r : d.-measurable [set x | (r <= Y x)%R]. | ||||||||
| by rewrite -(setTI (mkset _)); exact: measurable_fun_le. | ||||||||
| have mfPleY : measurable_fun setT fPleY. | ||||||||
| apply: nonincreasing_measurable => // r s rs. | ||||||||
| apply: fine_le; rewrite ?fin_num_measure//. | ||||||||
| by apply: le_measure; rewrite ?inE// => x /=; exact: (le_trans rs). | ||||||||
| move=> X_le0. | ||||||||
| have Y_ge0 x : (0 <= Y x)%R by rewrite oppr_ge0/=. | ||||||||
| transitivity (- 'E_P[Y]). | ||||||||
| rewrite !expectation_def -integral_ge0N/= => [| x]. | ||||||||
| by apply: eq_integral => x _; rewrite opprK. | ||||||||
| by rewrite lee_tofin//; exact: Y_ge0. | ||||||||
| transitivity (- \int[mu]_(s in `]-oo, 0%R]) P [set x | (- s <= Y x)%R]). | ||||||||
| rewrite ge0_expectation_prob_ge ?ge0_integral_pushforwardN//. | ||||||||
| by apply: (eq_measurable_fun (fun r:R => (fine (P [set x | (r <= Y x)%R]))%:E)) | ||||||||
| => [r _|]; [rewrite fineK ?fin_num_measure | apply/measurable_EFinP]. | ||||||||
| transitivity (- \int[mu]_(s in `]-oo, 0%R] `\ 0%R) P [set x | (- s <= Y x)%R]). | ||||||||
| congr oppe. | ||||||||
| under[LHS] eq_integral => s _ do | ||||||||
| rewrite -(@fineK _ (P [set x | (- s <= Y x)%R])) ?fin_num_measure//. | ||||||||
| under[RHS] eq_integral => s _ do | ||||||||
| rewrite -(@fineK _ (P [set x | (- s <= Y x)%R])) ?fin_num_measure//. | ||||||||
| rewrite integral_setD1_EFin//; first exact: measurableD. | ||||||||
| by apply: measurable_funTS; exact: (measurableT_comp mfPleY). | ||||||||
| rewrite setDitv1r; congr oppe; apply: eq_integral => r _. | ||||||||
| by congr (P _); apply: eq_set => x; rewrite lerN2. | ||||||||
| Qed. | ||||||||
|
|
||||||||
| End tail_expectation_formula. | ||||||||
|
|
||||||||
| HB.lock Definition covariance {d} {T : measurableType d} {R : realType} | ||||||||
|
|
@@ -1039,71 +1222,6 @@ Qed. | |||||||
|
|
||||||||
| End distribution_dRV. | ||||||||
|
|
||||||||
| Section pmf_definition. | ||||||||
| Context {d} {T : measurableType d} {R : realType}. | ||||||||
| Variables (P : probability T R). | ||||||||
|
|
||||||||
| Definition pmf (X : {RV P >-> R}) (r : R) : R := fine (P (X @^-1` [set r])). | ||||||||
|
|
||||||||
| Lemma pmf_ge0 (X : {RV P >-> R}) (r : R) : 0 <= pmf X r. | ||||||||
| Proof. by rewrite fine_ge0. Qed. | ||||||||
|
|
||||||||
| End pmf_definition. | ||||||||
|
|
||||||||
| Section pmf_measurable. | ||||||||
| Local Open Scope ereal_scope. | ||||||||
| Context d (T : measurableType d) (R : realType) | ||||||||
| (P : probability T R) (X : {RV P >-> R}). | ||||||||
|
|
||||||||
| Lemma pmf_gt0_countable : countable [set r | 0 < pmf X r]%R. | ||||||||
| Proof. | ||||||||
| rewrite [X in countable X](_ : _ = | ||||||||
| \bigcup_n [set r | n.+1%:R^-1 < pmf X r]%R); last first. | ||||||||
| by apply/seteqP; split=> [r/= /ltr_add_invr[k /[!add0r] kXr]|r/= [k _]]; | ||||||||
| [exists k|exact: lt_trans]. | ||||||||
| apply: bigcup_countable => // n _; apply: finite_set_countable. | ||||||||
| apply: contrapT => /infiniteP/pcard_leP/injfunPex[/= q q_fun q_inj]. | ||||||||
| have /(probability_le1 P) : measurable (\bigcup_k X @^-1` [set q k]). | ||||||||
| by apply: bigcup_measurable => k _; exact: measurable_funPTI. | ||||||||
| rewrite leNgt => /negP; apply. | ||||||||
| rewrite [ltRHS](_ : _ = \sum_(0 <= k <oo) P (X @^-1` [set q k])); last first. | ||||||||
| rewrite measure_bigcup//; first by apply: eq_eseriesl =>// i; rewrite in_setT. | ||||||||
| rewrite (trivIset_comp (fun r => X@^-1` [set r]))//. | ||||||||
| exact: trivIset_preimage1. | ||||||||
| apply: (lt_le_trans _ (nneseries_lim_ge n.+1 _)) => //. | ||||||||
| rewrite -EFin_sum_fine//; last by move=> ? _; rewrite fin_num_measure. | ||||||||
| under eq_bigr do rewrite -/(pmf X (q _)). | ||||||||
| rewrite lte_fin (_ : 1%R = (\sum_(0 <= k < n.+1) n.+1%:R^-1:R)%R); last first. | ||||||||
| by rewrite sumr_const_nat subn0 -[RHS]mulr_natr mulVf. | ||||||||
| by apply: ltr_sum => // k _; exact: q_fun. | ||||||||
| Qed. | ||||||||
|
|
||||||||
| Lemma pmf_measurable : measurable_fun [set: R] (pmf X). | ||||||||
| Proof. | ||||||||
| have /countable_bijP[S] := pmf_gt0_countable. | ||||||||
| rewrite card_eq_sym => /pcard_eqP/bijPex[/= h h_bij]. | ||||||||
| have pmf1_ge0 k s : 0 <= (pmf X (h k) * \1_[set h k] s)%:E. | ||||||||
| by rewrite EFinM mule_ge0// lee_fin pmf_ge0. | ||||||||
| pose sfun r := \sum_(0 <= k <oo | k \in S) (pmf X (h k) * \1_[set h k] r)%:E. | ||||||||
| apply/measurable_EFinP; apply: (eq_measurable_fun sfun) => [r _|]; last first. | ||||||||
| by apply: ge0_emeasurable_sum => // *; exact/measurable_EFinP/measurable_funM. | ||||||||
| have [rS|nrS] := boolP (r \in [set h k | k in S]). | ||||||||
| - pose kr := pinv S h r. | ||||||||
| have neqh k : k \in S /\ k != kr -> r != h k. | ||||||||
| move=> [Sk]; apply: contra_neq. | ||||||||
| by rewrite /kr => ->; rewrite pinvKV//; exact: (set_bij_inj h_bij). | ||||||||
| rewrite /sfun (@nneseriesD1 _ _ kr)//; last by rewrite inE; exact/invS/set_mem. | ||||||||
| by rewrite eseries0 => [| k k_ge0 /andP/neqh]; rewrite indicE in_set1_eq; | ||||||||
| [rewrite pinvK// eqxx mulr1 addr0|move/negPf => ->; rewrite mulr0]. | ||||||||
| - rewrite /sfun eseries0 => [|k k_ge0 Sk]/=. | ||||||||
| apply: le_anti; rewrite !lee_fin pmf_ge0/= leNgt; apply: contraNN nrS. | ||||||||
| by rewrite (surj_image_eq _ (set_bij_surj h_bij)) ?inE//; exact:set_bij_sub. | ||||||||
| rewrite indicE in_set1_eq (_ : (r == h k) = false) ?mulr0//. | ||||||||
| by apply: contraNF nrS => /eqP ->; exact/image_f. | ||||||||
| Qed. | ||||||||
|
|
||||||||
| End pmf_measurable. | ||||||||
|
|
||||||||
| Section discrete_distribution. | ||||||||
| Local Open Scope ereal_scope. | ||||||||
| Context d (T : measurableType d) (R : realType) (P : probability T R). | ||||||||
|
|
||||||||
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.