Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 5 additions & 2 deletions lib/grpmat.gd
Original file line number Diff line number Diff line change
Expand Up @@ -345,7 +345,8 @@ DeclareAttribute( "InvariantBilinearForm", IsMatrixGroup );
## <Description>
## This property tests, whether a matrix group <A>matgrp</A> is the full
## subgroup of GL or SL (the property <Ref Prop="IsSubgroupSL"/> determines
## which it is) respecting the form stored as the value of
## which it is) in the right dimension over the (smallest) ring which
## contains all entries of its elements, respecting the form stored as the value of
## <Ref Attr="InvariantBilinearForm"/> for <A>matgrp</A>.
## </Description>
## </ManSection>
Expand Down Expand Up @@ -462,7 +463,9 @@ DeclareAttribute( "InvariantQuadraticForm", IsMatrixGroup );
## <Description>
## This property tests, whether the matrix group <A>matgrp</A> is the full
## subgroup of GL or SL (the property <Ref Prop="IsSubgroupSL"/> determines
## which it is) respecting the <Ref Attr="InvariantQuadraticForm"/> value
## which it is) in the right dimension over the (smallest) ring which
## contains all entries of its elements,
## respecting the <Ref Attr="InvariantQuadraticForm"/> value
## of <A>matgrp</A>.
## <Example><![CDATA[
## gap> g:= Sp( 2, 3 );;
Expand Down
50 changes: 50 additions & 0 deletions lib/grpmat.gi
Original file line number Diff line number Diff line change
Expand Up @@ -1266,3 +1266,53 @@ InstallMethod( InvariantBilinearForm,
Q:= InvariantQuadraticForm( matgrp ).matrix;
return rec( matrix:= ( Q + TransposedMat( Q ) ) );
end );

#############################################################################
##
#M ConjugateGroup( <G>, <g> ) of a matrix group
##
InstallMethod( ConjugateGroup, "<G>, <g>", IsCollsElms,
[ IsMatrixGroup, IsMultiplicativeElementWithInverse ],
function( G, g )
local H, m, ginv;

H := GroupByGenerators( OnTuples( GeneratorsOfGroup( G ), g ), One(G) );
UseIsomorphismRelation( G, H );
if HasIsGeneralLinearGroup( G ) then
SetIsGeneralLinearGroup( H, IsGeneralLinearGroup( G ) );
fi;
if HasIsSpecialLinearGroup( G ) then
SetIsSpecialLinearGroup( H, IsSpecialLinearGroup( G ) );
fi;
if HasIsSubgroupSL( G ) then
SetIsSubgroupSL( H, IsSubgroupSL( G ) );
fi;
if HasInvariantBilinearForm( G ) or HasInvariantQuadraticForm( G ) then
ginv := g^-1;
fi;
if HasInvariantBilinearForm( G ) then
m := ginv * InvariantBilinearForm(G).matrix * TransposedMat(ginv);
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We should have test cases covering this.

I think the easiest and also most thorough way will be to modify tst/testinstall/grp/classic-forms.tst.

When it does e.g.

gap> grps:=[];;
gap> for d in [3,5,7] do
>   for q in [2,3,4,5,7,8,9,16,17,25,27] do
>     Add(grps, GO(d,q));
>   od;
> od;

the innermost loop could be changed to also add a conjugate copy of the group, i.e.

>     Add(grps, GO(d,q));
>     Add(grps, GO(d,q) ^ RandomInvertibleMat(d,GF(q));

In light of what I write in my other comment, perhaps we should also test conjugation over different fields, e.g.

Add(grps, GO(d,q) ^ RandomInvertibleMat(d,GF(q^2));

and for the unitary case deliberately over fields such as q^3 (instead of q^2)

SetInvariantBilinearForm( H, rec( matrix := m ) );
fi;
if HasInvariantQuadraticForm( G ) then
m := ginv * InvariantQuadraticForm(G).matrix * TransposedMat(ginv);
SetInvariantQuadraticForm( H, rec( matrix := m ) );
fi;
if IsSubset( FieldOfMatrixGroup( G ), FieldOfMatrixList( [ g ] ) ) then
if HasIsNaturalGL( G ) then
SetIsNaturalGL( H, IsNaturalGL( G ) );
fi;
if HasIsNaturalSL( G ) then
SetIsNaturalSL( H, IsNaturalSL( G ) );
fi;
if HasIsFullSubgroupGLorSLRespectingBilinearForm( G )
and IsFullSubgroupGLorSLRespectingBilinearForm( G ) then
SetIsFullSubgroupGLorSLRespectingBilinearForm( H, true );
fi;
if HasIsFullSubgroupGLorSLRespectingQuadraticForm( G )
and IsFullSubgroupGLorSLRespectingQuadraticForm( G ) then
SetIsFullSubgroupGLorSLRespectingQuadraticForm( H, true );
fi;
fi;
return H;
end );
20 changes: 20 additions & 0 deletions tst/testinstall/grp/classic-forms.tst
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,8 @@ gap> grps:=[];;
gap> for d in [3,5,7] do
> for q in [2,3,4,5,7,8,9,16,17,25,27] do
> Add(grps, GO(d,q));
> Add(grps, GO(d,q) ^ RandomInvertibleMat(d,GF(q)));
> Add(grps, GO(d,q) ^ RandomInvertibleMat(d,GF(q^2)));
> od;
> od;
gap> ForAll(grps, CheckGeneratorsInvertible);
Expand All @@ -71,6 +73,10 @@ gap> for d in [2,4,6,8] do
> for q in [2,3,4,5,7,8,9,16,17,25,27] do
> Add(grps, GO(+1,d,q));
> Add(grps, GO(-1,d,q));
> Add(grps, GO(+1,d,q) ^ RandomInvertibleMat(d,GF(q)));
> Add(grps, GO(-1,d,q) ^ RandomInvertibleMat(d,GF(q)));
> Add(grps, GO(+1,d,q) ^ RandomInvertibleMat(d,GF(q^2)));
> Add(grps, GO(-1,d,q) ^ RandomInvertibleMat(d,GF(q^2)));
> od;
> od;
gap> ForAll(grps, CheckGeneratorsInvertible);
Expand All @@ -87,6 +93,8 @@ gap> grps:=[];;
gap> for d in [3,5,7] do
> for q in [2,3,4,5,7,8,9,16,17,25,27] do
> Add(grps, SO(d,q));
> Add(grps, SO(d,q) ^ RandomInvertibleMat(d,GF(q)));
> Add(grps, SO(d,q) ^ RandomInvertibleMat(d,GF(q^2)));
> od;
> od;
gap> ForAll(grps, CheckGeneratorsSpecial);
Expand All @@ -104,6 +112,10 @@ gap> for d in [2,4,6,8] do
> for q in [2,3,4,5,7,8,9,16,17,25,27] do
> Add(grps, SO(+1,d,q));
> Add(grps, SO(-1,d,q));
> Add(grps, SO(+1,d,q) ^ RandomInvertibleMat(d,GF(q)));
> Add(grps, SO(-1,d,q) ^ RandomInvertibleMat(d,GF(q)));
> Add(grps, SO(+1,d,q) ^ RandomInvertibleMat(d,GF(q^2)));
> Add(grps, SO(-1,d,q) ^ RandomInvertibleMat(d,GF(q^2)));
> od;
> od;
gap> ForAll(grps, CheckGeneratorsSpecial);
Expand All @@ -124,6 +136,8 @@ gap> grps:=[];;
gap> for d in [3,5,7] do
> for q in [2,3,4,5,7,8,9,16,17,25,27] do
> Add(grps, Omega(d,q));
> Add(grps, Omega(d,q) ^ RandomInvertibleMat(d,GF(q)));
> Add(grps, Omega(d,q) ^ RandomInvertibleMat(d,GF(q^2)));
> od;
> od;
gap> ForAll(grps, CheckGeneratorsSpecial);
Expand All @@ -141,6 +155,10 @@ gap> for d in [2,4,6,8] do
> for q in [2,3,4,5,7,8,9,16,17,25,27] do
> Add(grps, Omega(+1,d,q));
> Add(grps, Omega(-1,d,q));
> Add(grps, Omega(+1,d,q) ^ RandomInvertibleMat(d,GF(q)));
> Add(grps, Omega(-1,d,q) ^ RandomInvertibleMat(d,GF(q)));
> Add(grps, Omega(+1,d,q) ^ RandomInvertibleMat(d,GF(q^2)));
> Add(grps, Omega(-1,d,q) ^ RandomInvertibleMat(d,GF(q^2)));
> od;
> od;
gap> ForAll(grps, CheckGeneratorsSpecial);
Expand Down Expand Up @@ -191,6 +209,8 @@ gap> grps:=[];;
gap> for d in [2,4,6,8] do
> for q in [2,3,4,5,7,8,9,16,17,25,27] do
> Add(grps, Sp(d,q));
> Add(grps, Sp(d,q) ^ RandomInvertibleMat(d,GF(q)));
> Add(grps, Sp(d,q) ^ RandomInvertibleMat(d,GF(q^2)));
> od;
> od;
gap> ForAll(grps, CheckGeneratorsSpecial);
Expand Down
Loading