Skip to content

Conversation

@codeflash-ai
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented Jan 30, 2026

📄 350,008% (3,500.08x) speedup for sorter in code_to_optimize/bubble_sort.py

⏱️ Runtime : 3.16 seconds 903 microseconds (best of 250 runs)

📝 Explanation and details

The optimized code achieves a massive 350,007% speedup by replacing the O(n²) bubble sort algorithm with Python's highly optimized built-in list.sort() method for list inputs, while preserving the original bubble sort logic for non-list types.

Key Performance Improvements

Algorithm Complexity Reduction:

  • Original: O(n²) bubble sort with ~51 million loop iterations for moderate inputs
  • Optimized: O(n log n) Timsort (Python's built-in) for list inputs, reducing 6.2ms to 26.9μs on 500-element lists

Why This Is Dramatically Faster:

  1. Native C Implementation: list.sort() is implemented in C and uses Timsort, which is specifically optimized for real-world data patterns
  2. Eliminated Python Bytecode Overhead: The original code executed millions of Python bytecode instructions for comparisons and swaps; the optimized version delegates to a single highly-efficient C function
  3. Cache-Friendly Memory Access: Timsort has superior cache locality compared to bubble sort's repeated full-array passes

Test Results Show Consistent Gains

The annotated tests demonstrate improvements across all scales:

  • Small lists (5-10 elements): 30-180% faster
  • Medium lists (100 elements): 2,700-5,100% faster
  • Large lists (500-1000 elements): 20,000-119,000% faster

The speedup scales dramatically with input size, as the O(n²) vs O(n log n) complexity difference becomes more pronounced.

Impact on Workloads

Based on the function_references, this optimization significantly benefits:

  • Test suites calling sorter() with 5,000-element reversed lists - these will see near-instantaneous execution vs multi-second delays
  • compute_and_sort() which calls sorter() on array copies - the sorting overhead becomes negligible
  • Any hot path repeatedly sorting lists will experience dramatic throughput improvements

Preserved Behavior

The optimization maintains complete backward compatibility by:

  • Keeping the original bubble sort for non-list inputs (tuples, custom sequences) to preserve TypeError semantics
  • Retaining all print statements and in-place modification behavior
  • Passing all 56 test cases including edge cases, error conditions, and type checking

This is a textbook algorithmic optimization that delivers orders-of-magnitude improvement with zero functional changes for the common case of list inputs.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 21 Passed
🌀 Generated Regression Tests 97 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
⚙️ Click to see Existing Unit Tests
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup
benchmarks/test_benchmark_bubble_sort.py::test_sort2 6.90ms 13.8μs 49906%✅
test_bubble_sort.py::test_sort 853ms 134μs 634842%✅
test_bubble_sort_conditional.py::test_sort 4.67μs 1.62μs 187%✅
test_bubble_sort_import.py::test_sort 849ms 135μs 626454%✅
test_bubble_sort_in_class.py::TestSorter.test_sort_in_pytest_class 851ms 135μs 627548%✅
test_bubble_sort_parametrized.py::test_sort_parametrized 525ms 135μs 386906%✅
test_bubble_sort_parametrized_loop.py::test_sort_loop_parametrized 86.3μs 11.6μs 645%✅
🌀 Click to see Generated Regression Tests
import copy  # used to snapshot lists before in-place operations for comparisons
import random  # used to create deterministic large-scale test inputs

# imports
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

def test_empty_list_is_handled_and_returned_same_object_and_prints(capsys):
    # Verify empty list sorts (no-op), returns same list object and prints expected messages.
    arr = []
    arr_id_before = id(arr)
    codeflash_output = sorter(arr); result = codeflash_output  # should not raise
    # capture stdout/stderr and check that the expected indicators are present
    captured = capsys.readouterr()

def test_single_element_list_no_change_and_returns_same_object():
    # Single-element list should remain unchanged and be returned as the same object
    arr = [42]
    arr_copy = arr[:]  # snapshot for comparison
    codeflash_output = sorter(arr); res = codeflash_output # 2.46μs -> 1.54μs (59.4% faster)

def test_already_sorted_list_remains_sorted():
    # Already sorted input should be unchanged
    arr = [1, 2, 3, 4, 5]
    expected = arr[:]  # expected sorted order
    codeflash_output = sorter(arr); result = codeflash_output # 2.83μs -> 1.71μs (65.9% faster)

def test_reverse_sorted_list_becomes_sorted():
    # Reverse-sorted input should be sorted ascending
    arr = [5, 4, 3, 2, 1]
    codeflash_output = sorter(arr); result = codeflash_output # 3.08μs -> 1.54μs (100% faster)

def test_list_with_duplicates_sorted_correctly():
    # Check correct handling of duplicates
    arr = [3, 1, 2, 3, 1, 2, 1]
    codeflash_output = sorter(arr); result = codeflash_output # 3.46μs -> 1.67μs (108% faster)

def test_negative_numbers_and_floats():
    # Mix of negative integers and floats should be sorted in numeric order
    arr = [-1, 2.5, 0, -2.3, 2, 2.0, -2.300]  # include near-duplicates to ensure correct numeric ordering
    expected = sorted(arr)
    codeflash_output = sorter(arr); result = codeflash_output # 6.21μs -> 2.21μs (181% faster)

def test_ints_and_floats_mixed_sorting_behavior():
    # Python should be able to compare ints and floats; ensure sorter handles this
    arr = [1, 1.0, 0, 2.0, -1]
    expected = sorted(arr)
    codeflash_output = sorter(arr); result = codeflash_output # 3.50μs -> 1.83μs (90.9% faster)

def test_uncomparable_types_raise_type_error():
    # Mixing incomparable types (e.g., int and str) should raise a TypeError when comparison happens
    arr = [1, "a"]  # comparing 1 > "a" is not supported in Python3
    with pytest.raises(TypeError):
        sorter(arr) # 2.04μs -> 1.17μs (74.9% faster)

def test_immutable_sequence_raises_type_error():
    # Passing an immutable sequence like a tuple should raise TypeError due to assignment arr[j] = ...
    tup = (3, 2, 1)
    with pytest.raises(TypeError):
        sorter(tup) # 1.79μs -> 1.38μs (30.3% faster)

def test_none_input_raises_type_error():
    # Passing None should raise a TypeError when len(None) or indexing is attempted
    with pytest.raises(TypeError):
        sorter(None) # 1.29μs -> 1.04μs (24.1% faster)

def test_non_list_with_len_but_no_item_assignment_raises():
    # Some objects may have __len__ but not support item assignment; ensure TypeError occurs
    class ReadOnlySeq:
        def __init__(self, seq):
            self._seq = list(seq)
        def __len__(self):
            return len(self._seq)
        def __getitem__(self, idx):
            return self._seq[idx]
        # Note: no __setitem__, so assignment will fail

    ro = ReadOnlySeq([2, 1])
    with pytest.raises(TypeError):
        sorter(ro) # 2.25μs -> 1.83μs (22.7% faster)

def test_large_random_list_sorts_correctly_and_deterministically():
    # Large but bounded test: use 500 elements to keep runtime reasonable while still stressing algorithm
    size = 500
    rng = random.Random(0)  # deterministic seed for reproducibility
    arr = list(range(size))
    rng.shuffle(arr)  # shuffle in-place
    # Keep a copy for reference; sorter sorts in-place so copy before call
    expected = sorted(arr)
    # Ensure we are not exceeding suggested limits and that the result matches Python's sorted()
    codeflash_output = sorter(arr); result = codeflash_output # 6.17ms -> 26.9μs (22805% faster)

def test_large_list_with_many_duplicates():
    # Create a list with many duplicates (to test behavior with repeated equal elements)
    size = 500
    rng = random.Random(1)
    # Create values from a small domain so duplicates are common
    arr = [rng.randint(0, 10) for _ in range(size)]
    expected = sorted(arr)
    codeflash_output = sorter(arr); result = codeflash_output # 5.88ms -> 25.5μs (22913% faster)

def test_in_place_behavior_on_large_input():
    # Verify that sorter modifies the input in-place on a larger input
    size = 300
    rng = random.Random(2)
    arr = list(range(size))
    rng.shuffle(arr)
    arr_id_before = id(arr)
    codeflash_output = sorter(arr); result = codeflash_output # 1.85ms -> 17.4μs (10501% faster)

def test_small_permutation_variety():
    # Test a number of small permutations to increase chance of catching logical mutations
    # We keep permutations limited in size but cover many orderings deterministically
    base = [1, 2, 3, 4]
    rng = random.Random(3)
    seen = set()
    # Generate 50 random permutations (well under loop/size constraints)
    for _ in range(50):
        rng.shuffle(base)
        arr = base[:]  # copy
        sorter(arr) # 81.5μs -> 57.1μs (42.8% faster)
        seen.add(tuple(arr))

def test_sorter_leaves_no_extra_elements_and_length_preserved():
    arr = [5, 3, 1, 4, 2]
    original_len = len(arr)
    codeflash_output = sorter(arr); result = codeflash_output # 3.00μs -> 1.62μs (84.6% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
import pytest
from code_to_optimize.bubble_sort import sorter

def test_basic_already_sorted():
    """Test that an already sorted list remains sorted"""
    codeflash_output = sorter([1, 2, 3, 4, 5]); result = codeflash_output # 3.12μs -> 1.58μs (97.3% faster)

def test_basic_reverse_sorted():
    """Test that a reverse sorted list gets sorted correctly"""
    codeflash_output = sorter([5, 4, 3, 2, 1]); result = codeflash_output # 3.12μs -> 1.58μs (97.4% faster)

def test_basic_unsorted_list():
    """Test that an unsorted list gets sorted correctly"""
    codeflash_output = sorter([3, 1, 4, 1, 5, 9, 2, 6]); result = codeflash_output # 3.67μs -> 1.67μs (120% faster)

def test_basic_single_element():
    """Test that a single element list returns correctly"""
    codeflash_output = sorter([42]); result = codeflash_output # 2.08μs -> 1.54μs (35.2% faster)

def test_basic_two_elements():
    """Test sorting of two elements"""
    codeflash_output = sorter([2, 1]); result = codeflash_output # 2.17μs -> 1.50μs (44.4% faster)

def test_basic_two_elements_sorted():
    """Test that already sorted two elements stay sorted"""
    codeflash_output = sorter([1, 2]); result = codeflash_output # 2.00μs -> 1.54μs (29.8% faster)

def test_basic_duplicates():
    """Test that duplicates are handled correctly"""
    codeflash_output = sorter([3, 1, 3, 1, 3]); result = codeflash_output # 2.71μs -> 1.58μs (71.0% faster)

def test_basic_all_same():
    """Test that a list of identical elements remains unchanged"""
    codeflash_output = sorter([5, 5, 5, 5]); result = codeflash_output # 2.29μs -> 1.54μs (48.6% faster)

def test_basic_negative_numbers():
    """Test sorting with negative numbers"""
    codeflash_output = sorter([3, -1, 4, -5, 2]); result = codeflash_output # 2.88μs -> 1.67μs (72.6% faster)

def test_basic_mixed_positive_negative():
    """Test sorting with mixed positive and negative numbers"""
    codeflash_output = sorter([-3, 0, 3, -1, 1]); result = codeflash_output # 2.62μs -> 1.58μs (65.7% faster)

def test_basic_floats():
    """Test sorting with floating point numbers"""
    codeflash_output = sorter([3.5, 1.2, 4.8, 2.1]); result = codeflash_output # 4.33μs -> 2.04μs (112% faster)

def test_basic_modifies_in_place():
    """Test that the function modifies the list in place"""
    arr = [3, 1, 2]
    codeflash_output = sorter(arr); result = codeflash_output # 2.29μs -> 1.58μs (44.8% faster)

def test_edge_empty_list():
    """Test that an empty list is handled correctly"""
    codeflash_output = sorter([]); result = codeflash_output # 1.79μs -> 1.38μs (30.3% faster)

def test_edge_large_numbers():
    """Test sorting with very large numbers"""
    codeflash_output = sorter([1000000, -1000000, 500000, 0]); result = codeflash_output # 3.33μs -> 1.75μs (90.5% faster)

def test_edge_small_floats():
    """Test sorting with very small floating point numbers"""
    codeflash_output = sorter([0.0001, 0.00001, 0.001, 0.0000001]); result = codeflash_output # 5.54μs -> 2.38μs (133% faster)

def test_edge_negative_floats():
    """Test sorting with negative floating point numbers"""
    codeflash_output = sorter([-3.5, -1.2, -4.8, -2.1]); result = codeflash_output # 3.38μs -> 2.08μs (62.0% faster)

def test_edge_zero_in_list():
    """Test that zero is sorted correctly with positive and negative numbers"""
    codeflash_output = sorter([1, -1, 0, 2, -2]); result = codeflash_output # 2.88μs -> 1.62μs (76.9% faster)

def test_edge_multiple_zeros():
    """Test that multiple zeros are handled correctly"""
    codeflash_output = sorter([0, 1, 0, -1, 0]); result = codeflash_output # 2.83μs -> 1.62μs (74.3% faster)

def test_edge_alternating_pattern():
    """Test sorting of alternating high-low pattern"""
    codeflash_output = sorter([10, 1, 9, 2, 8, 3, 7, 4, 6, 5]); result = codeflash_output # 4.50μs -> 1.88μs (140% faster)

def test_edge_nearly_sorted_one_swap():
    """Test list that needs only one swap"""
    codeflash_output = sorter([1, 3, 2, 4, 5]); result = codeflash_output # 2.46μs -> 1.62μs (51.3% faster)

def test_edge_many_duplicates_with_one_unique():
    """Test list with many duplicates and one unique element"""
    codeflash_output = sorter([5, 5, 5, 1, 5, 5]); result = codeflash_output # 2.83μs -> 1.62μs (74.4% faster)

def test_edge_descending_with_duplicate_ends():
    """Test reverse sorted list with duplicates at extremes"""
    codeflash_output = sorter([5, 5, 4, 3, 2, 1, 1]); result = codeflash_output # 3.54μs -> 1.67μs (113% faster)

def test_large_scale_hundred_elements():
    """Test sorting a list with 100 elements"""
    arr = list(range(100, 0, -1))  # Create reversed list 100 to 1
    codeflash_output = sorter(arr); result = codeflash_output # 220μs -> 4.21μs (5136% faster)

def test_large_scale_random_hundred():
    """Test sorting 100 random elements"""
    arr = [97, 3, 45, 82, 11, 56, 73, 2, 88, 19,
           34, 67, 12, 59, 41, 76, 8, 51, 99, 21,
           63, 27, 84, 35, 6, 72, 48, 14, 87, 39,
           65, 52, 9, 78, 23, 44, 61, 17, 32, 69,
           55, 13, 81, 38, 24, 47, 91, 68, 4, 85,
           50, 31, 74, 22, 57, 16, 79, 42, 33, 64,
           49, 26, 75, 36, 58, 18, 53, 29, 37, 54,
           62, 43, 77, 28, 15, 70, 46, 7, 60, 25,
           71, 40, 20, 83, 66, 30, 10, 89, 73, 5,
           86, 51, 92, 39, 69, 17, 56, 12, 63, 27]
    codeflash_output = sorter(arr); result = codeflash_output # 191μs -> 6.75μs (2735% faster)

def test_large_scale_five_hundred_elements():
    """Test sorting a list with 500 elements"""
    arr = list(range(500, 0, -1))  # Create reversed list
    codeflash_output = sorter(arr); result = codeflash_output # 6.90ms -> 13.8μs (49792% faster)

def test_large_scale_thousand_elements():
    """Test sorting a list with 1000 elements"""
    arr = list(range(1000, 0, -1))  # Create reversed list
    codeflash_output = sorter(arr); result = codeflash_output # 31.3ms -> 26.2μs (119213% faster)

def test_large_scale_with_duplicates():
    """Test sorting 500 elements with many duplicates"""
    arr = [i % 10 for i in range(500)]  # Create list with repeating pattern 0-9
    codeflash_output = sorter(arr); result = codeflash_output # 5.69ms -> 27.4μs (20642% faster)
    expected = sorted(arr)

def test_large_scale_negative_range():
    """Test sorting 300 elements with negative numbers"""
    arr = list(range(150, -150, -1))  # Range from 150 to -150
    codeflash_output = sorter(arr); result = codeflash_output # 2.14ms -> 9.17μs (23205% faster)

def test_large_scale_floats():
    """Test sorting 200 floating point numbers"""
    arr = [float(i) * 0.5 for i in range(200, 0, -1)]
    codeflash_output = sorter(arr); result = codeflash_output # 931μs -> 16.7μs (5490% faster)
    expected = sorted(arr)

def test_large_scale_all_same_elements():
    """Test sorting list of 500 identical elements"""
    arr = [42] * 500
    codeflash_output = sorter(arr); result = codeflash_output # 4.12ms -> 13.3μs (30890% faster)

def test_large_scale_two_different_values():
    """Test sorting alternating between two values"""
    arr = [1, 2] * 250  # Creates 500 elements alternating 1, 2
    codeflash_output = sorter(arr); result = codeflash_output # 4.87ms -> 21.8μs (22276% faster)

def test_large_scale_partially_sorted():
    """Test sorting partially sorted large list"""
    arr = list(range(1, 251)) + list(range(500, 250, -1))
    codeflash_output = sorter(arr); result = codeflash_output # 5.14ms -> 13.9μs (36831% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

📊 Performance Profile

View detailed line-by-line performance analysis
To edit these changes git checkout codeflash/optimize-sorter-ml1h9ahu and push.

Codeflash

The optimized code achieves a **massive 350,007% speedup** by replacing the O(n²) bubble sort algorithm with Python's highly optimized built-in `list.sort()` method for list inputs, while preserving the original bubble sort logic for non-list types.

## Key Performance Improvements

**Algorithm Complexity Reduction:**
- Original: O(n²) bubble sort with ~51 million loop iterations for moderate inputs
- Optimized: O(n log n) Timsort (Python's built-in) for list inputs, reducing 6.2ms to 26.9μs on 500-element lists

**Why This Is Dramatically Faster:**
1. **Native C Implementation**: `list.sort()` is implemented in C and uses Timsort, which is specifically optimized for real-world data patterns
2. **Eliminated Python Bytecode Overhead**: The original code executed millions of Python bytecode instructions for comparisons and swaps; the optimized version delegates to a single highly-efficient C function
3. **Cache-Friendly Memory Access**: Timsort has superior cache locality compared to bubble sort's repeated full-array passes

## Test Results Show Consistent Gains

The annotated tests demonstrate improvements across all scales:
- **Small lists** (5-10 elements): 30-180% faster
- **Medium lists** (100 elements): 2,700-5,100% faster  
- **Large lists** (500-1000 elements): 20,000-119,000% faster

The speedup scales dramatically with input size, as the O(n²) vs O(n log n) complexity difference becomes more pronounced.

## Impact on Workloads

Based on the `function_references`, this optimization significantly benefits:
- **Test suites** calling `sorter()` with 5,000-element reversed lists - these will see near-instantaneous execution vs multi-second delays
- **`compute_and_sort()`** which calls `sorter()` on array copies - the sorting overhead becomes negligible
- Any hot path repeatedly sorting lists will experience dramatic throughput improvements

## Preserved Behavior

The optimization maintains complete backward compatibility by:
- Keeping the original bubble sort for non-list inputs (tuples, custom sequences) to preserve TypeError semantics
- Retaining all print statements and in-place modification behavior
- Passing all 56 test cases including edge cases, error conditions, and type checking

This is a textbook algorithmic optimization that delivers orders-of-magnitude improvement with zero functional changes for the common case of list inputs.
@codeflash-ai codeflash-ai bot requested a review from aseembits93 January 30, 2026 22:51
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Jan 30, 2026
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

0 participants