Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Jan 30, 2026

📄 83% (0.83x) speedup for _BaseExpr.__pow__ in aerospike_helpers/expressions/resources.py

⏱️ Runtime : 1.24 milliseconds 679 microseconds (best of 250 runs)

📝 Explanation and details

The optimization achieves an 82% speedup (1.24ms → 679μs) by inlining the expression creation logic directly into _overload_op instead of calling the separate _create_operator_expression helper function.

Key optimization:
The original code spent 65% of its time (3.9μs out of 6.0μs per call) in the _create_operator_expression function call. By inlining this logic:

# Instead of:
return _create_operator_expression(l, r, op_type)

# Now:
new_expr = _BaseExpr()
new_expr._op = op_type
new_expr._children = l + r
return new_expr

Why this is faster:

  1. Eliminates function call overhead: Python function calls involve frame creation, argument passing, and stack management. Removing this call saves ~4μs per operation
  2. Avoids tuple unpacking: The original helper used (*left_children, *right_children) which creates an intermediate unpacked representation, while l + r directly concatenates tuples more efficiently
  3. Reduces indirection: Direct attribute assignment is faster than passing through another function's namespace

Test results show consistent improvements:

  • Basic operations: 16-31% faster (e.g., test_pow_basic_integer_operands: 2.14μs → 1.78μs)
  • Chained operations scale better: test_pow_multiple_operations_large_scale shows 69.7% improvement (225μs → 132μs for 200 operations)
  • Recursive patterns: test_pow_performance_with_recursive_operations achieves 113% speedup (794μs → 373μs for 500 operations)

The optimization particularly benefits hot paths with frequent expression construction, as evidenced by the dramatic improvements in high-iteration tests. All behavioral semantics remain identical—the function still correctly handles operator flattening, type checking, and child tuple concatenation.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 2062 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Click to see Generated Regression Tests
from typing import Dict, Optional, Tuple, Union

# imports
import pytest  # used for our unit tests
from aerospike_helpers.expressions.resources import _BaseExpr

# Minimal definition of _ExprOp to provide integer op codes used by _BaseExpr.
# This is not a modification of _BaseExpr; it simply supplies constants the class expects.
class _ExprOp:
    ABS = 1
    FLOOR = 2
    CEIL = 3
    ADD = 4
    SUB = 5
    MUL = 6
    DIV = 7
    POW = 8
    MOD = 9

def test_pow_basic_two_baseexprs():
    # Basic: left and right are new _BaseExpr instances without prior POW op.
    left = _BaseExpr()  # fresh expression, default _op != POW
    right = _BaseExpr()  # fresh expression, default _op != POW

    # Use the operator form; this calls left.__pow__(right)
    result = left ** right

def test_pow_left_already_pow_uses_children():
    # Edge: left has _op == POW and pre-populated children; ensure we reuse its children
    left = _BaseExpr()
    left._op = _ExprOp.POW
    left._children = (1, 2)  # using primitive children to test tuple concatenation

    right = 3  # primitive right operand

    result = left ** right

def test_pow_right_already_pow_uses_children():
    # Edge: right is a _BaseExpr with _op == POW and has children; ensure we use its children
    left = _BaseExpr()

    right = _BaseExpr()
    right._op = _ExprOp.POW
    right._children = (4, 5)

    result = left ** right

def test_pow_both_sides_pow_combines_children():
    # Edge: both sides already represent POW op; children should be concatenated in order
    left = _BaseExpr()
    left._op = _ExprOp.POW
    left._children = (1, 2)

    right = _BaseExpr()
    right._op = _ExprOp.POW
    right._children = (3, 4)

    result = left ** right

def test_pow_left_pow_empty_children_produces_right_only():
    # Edge: left has op == POW but an empty children tuple; result should effectively take only right's contribution
    left = _BaseExpr()
    left._op = _ExprOp.POW
    left._children = ()  # explicitly empty

    result = left ** 7  # primitive right

def test_pow_chain_operations_builds_up_children_and_preserves_intermediates():
    # Basic chaining behavior: result of a**b should, when used in (a**b)**5, preserve (a,b,5)
    a = _BaseExpr()
    b = _BaseExpr()

    c = a ** b  # should have children (a, b)

    # Now pow the existing expression with a primitive
    d = c ** 5

def test_pow_with_various_primitive_right_operands():
    # Basic: verify the function handles different primitive types on the right-hand side
    primitives = (10, 2.5, "string", b"bytes", {"k": "v"})
    for val in primitives:
        left = _BaseExpr()
        res = left ** val  # operator form

def test_pow_right_is_baseexpr_but_not_pow_keeps_right_as_single_child():
    # Edge: right is a _BaseExpr but its _op != POW -> treat right as a single operand
    left = _BaseExpr()
    right = _BaseExpr()
    # Give right some other op code and children to ensure they are ignored by __pow__
    right._op = _ExprOp.ADD
    right._children = (9,)

    result = left ** right

def test_pow_large_scale_combination_under_1000_elements():
    # Large scale: combine two large child tuples that together are under 1000 elements
    left = _BaseExpr()
    right = _BaseExpr()

    # Construct significant-but-bounded child tuples for each side
    left._op = _ExprOp.POW
    left_children = tuple(range(500))  # 500 elements
    left._children = left_children

    right._op = _ExprOp.POW
    right_children = tuple(range(500, 900))  # 400 elements, total combined 900 < 1000
    right._children = right_children

    result = left ** right

def test_pow_result_is_new_instance_and_not_alias_of_operands():
    # Basic sanity: the created expression must be a new _BaseExpr, distinct from operands
    left = _BaseExpr()
    right = _BaseExpr()

    result = left ** right
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
import pytest
from aerospike_helpers.expressions.resources import (
    _BaseExpr, _create_operator_expression)

# Helper class to represent operation types
class _ExprOp:
    POW = 5
    ADD = 1
    SUB = 2
    MUL = 3
    DIV = 4
    MOD = 6

def test_pow_basic_integer_operands():
    """Test __pow__ with two integer operands."""
    base = _BaseExpr()
    base._op = 0
    base._children = (2,)
    
    codeflash_output = base.__pow__(3); result = codeflash_output # 2.14μs -> 1.78μs (20.6% faster)

def test_pow_with_float_operands():
    """Test __pow__ with float operands."""
    base = _BaseExpr()
    base._op = 0
    base._children = (2.5,)
    
    codeflash_output = base.__pow__(2.0); result = codeflash_output # 2.25μs -> 1.93μs (16.3% faster)

def test_pow_with_expr_base_and_int_exponent():
    """Test __pow__ where base is an expression and exponent is an integer."""
    base = _BaseExpr()
    base._op = 0
    base._children = (2,)
    
    codeflash_output = base.__pow__(4); result = codeflash_output # 2.19μs -> 1.67μs (31.2% faster)

def test_pow_with_both_expr_operands():
    """Test __pow__ where both base and exponent are expressions."""
    base = _BaseExpr()
    base._op = 0
    base._children = (2,)
    
    exponent = _BaseExpr()
    exponent._op = 0
    exponent._children = (3,)
    
    codeflash_output = base.__pow__(exponent); result = codeflash_output # 2.14μs -> 1.74μs (23.0% faster)

def test_pow_with_matching_op_flattening():
    """Test __pow__ with base having same POW operation (should flatten)."""
    base = _BaseExpr()
    base._op = _ExprOp.POW
    base._children = (2, 3)
    
    codeflash_output = base.__pow__(4); result = codeflash_output # 2.20μs -> 1.79μs (22.8% faster)

def test_pow_with_both_matching_op():
    """Test __pow__ where both operands have POW operation (both should flatten)."""
    base = _BaseExpr()
    base._op = _ExprOp.POW
    base._children = (2, 3)
    
    exponent = _BaseExpr()
    exponent._op = _ExprOp.POW
    exponent._children = (4, 5)
    
    codeflash_output = base.__pow__(exponent); result = codeflash_output # 2.12μs -> 1.72μs (22.8% faster)

def test_pow_with_different_op_no_flattening():
    """Test __pow__ where operands have different operations (no flattening)."""
    base = _BaseExpr()
    base._op = _ExprOp.ADD
    base._children = (2, 3)
    
    codeflash_output = base.__pow__(4); result = codeflash_output # 2.24μs -> 1.75μs (28.1% faster)

def test_pow_returns_new_expr():
    """Test that __pow__ returns a new expression object."""
    base = _BaseExpr()
    base._op = 0
    base._children = (2,)
    
    codeflash_output = base.__pow__(3); result = codeflash_output # 2.23μs -> 1.78μs (25.0% faster)

def test_pow_with_zero_exponent():
    """Test __pow__ with zero as exponent (edge case for mathematical meaning)."""
    base = _BaseExpr()
    base._op = 0
    base._children = (5,)
    
    codeflash_output = base.__pow__(0); result = codeflash_output # 2.19μs -> 1.78μs (23.3% faster)

def test_pow_with_one_as_exponent():
    """Test __pow__ with one as exponent (edge case for identity)."""
    base = _BaseExpr()
    base._op = 0
    base._children = (7,)
    
    codeflash_output = base.__pow__(1); result = codeflash_output # 2.22μs -> 1.73μs (28.4% faster)

def test_pow_with_negative_exponent():
    """Test __pow__ with negative exponent."""
    base = _BaseExpr()
    base._op = 0
    base._children = (2,)
    
    codeflash_output = base.__pow__(-2); result = codeflash_output # 2.23μs -> 1.77μs (26.2% faster)

def test_pow_with_negative_base():
    """Test __pow__ with negative base value."""
    base = _BaseExpr()
    base._op = 0
    base._children = (-3,)
    
    codeflash_output = base.__pow__(2); result = codeflash_output # 2.24μs -> 1.79μs (24.7% faster)

def test_pow_with_very_small_float():
    """Test __pow__ with very small float values."""
    base = _BaseExpr()
    base._op = 0
    base._children = (0.0001,)
    
    codeflash_output = base.__pow__(0.5); result = codeflash_output # 2.29μs -> 1.96μs (16.9% faster)

def test_pow_with_very_large_exponent():
    """Test __pow__ with very large exponent value."""
    base = _BaseExpr()
    base._op = 0
    base._children = (2,)
    
    codeflash_output = base.__pow__(1000); result = codeflash_output # 2.13μs -> 1.71μs (24.5% faster)

def test_pow_with_string_operand():
    """Test __pow__ with string as operand (edge case for type handling)."""
    base = _BaseExpr()
    base._op = 0
    base._children = ("2",)
    
    codeflash_output = base.__pow__("3"); result = codeflash_output # 2.21μs -> 1.95μs (13.1% faster)

def test_pow_with_bytes_operand():
    """Test __pow__ with bytes as operand (edge case for type handling)."""
    base = _BaseExpr()
    base._op = 0
    base._children = (b"base",)
    
    codeflash_output = base.__pow__(b"exp"); result = codeflash_output # 2.07μs -> 1.69μs (22.8% faster)

def test_pow_preserves_original_base():
    """Test that __pow__ does not modify the original base expression."""
    base = _BaseExpr()
    base._op = 0
    base._children = (2,)
    original_op = base._op
    original_children = base._children
    
    codeflash_output = base.__pow__(3); result = codeflash_output # 2.17μs -> 1.77μs (22.3% faster)

def test_pow_with_empty_children_in_exponent():
    """Test __pow__ with exponent having empty children tuple."""
    base = _BaseExpr()
    base._op = 0
    base._children = (2,)
    
    exponent = _BaseExpr()
    exponent._op = _ExprOp.POW
    exponent._children = ()
    
    codeflash_output = base.__pow__(exponent); result = codeflash_output # 2.14μs -> 1.74μs (23.0% faster)

def test_pow_with_single_child_base():
    """Test __pow__ with base having single child."""
    base = _BaseExpr()
    base._op = _ExprOp.POW
    base._children = (5,)
    
    codeflash_output = base.__pow__(2); result = codeflash_output # 2.22μs -> 1.79μs (24.3% faster)

def test_pow_with_multiple_children_matching_op():
    """Test __pow__ with base having multiple children and matching POW operation."""
    base = _BaseExpr()
    base._op = _ExprOp.POW
    base._children = (2, 3, 4)
    
    codeflash_output = base.__pow__(5); result = codeflash_output # 2.22μs -> 1.79μs (24.0% faster)

def test_pow_chain_operations():
    """Test chaining multiple __pow__ operations."""
    base = _BaseExpr()
    base._op = 0
    base._children = (2,)
    
    codeflash_output = base.__pow__(3); result1 = codeflash_output # 2.19μs -> 1.81μs (21.1% faster)
    
    codeflash_output = result1.__pow__(2); result2 = codeflash_output # 1.45μs -> 1.05μs (37.6% faster)

def test_pow_with_zero_as_base():
    """Test __pow__ with zero as base (mathematical edge case)."""
    base = _BaseExpr()
    base._op = 0
    base._children = (0,)
    
    codeflash_output = base.__pow__(5); result = codeflash_output # 2.24μs -> 1.73μs (29.2% faster)

def test_pow_with_one_as_base():
    """Test __pow__ with one as base (mathematical edge case)."""
    base = _BaseExpr()
    base._op = 0
    base._children = (1,)
    
    codeflash_output = base.__pow__(100); result = codeflash_output # 2.20μs -> 1.78μs (23.9% faster)

def test_pow_with_mixed_numeric_types():
    """Test __pow__ mixing integers and floats."""
    base = _BaseExpr()
    base._op = 0
    base._children = (2,)
    
    codeflash_output = base.__pow__(3.5); result = codeflash_output # 2.27μs -> 1.94μs (17.3% faster)

def test_pow_with_large_operand_values():
    """Test __pow__ with very large operand values."""
    base = _BaseExpr()
    base._op = 0
    base._children = (10**15,)
    
    codeflash_output = base.__pow__(10**10); result = codeflash_output # 2.12μs -> 1.73μs (22.7% faster)

def test_pow_deep_expression_nesting():
    """Test __pow__ with deeply nested expression hierarchy."""
    expr = _BaseExpr()
    expr._op = 0
    expr._children = (2,)
    
    # Create a chain of 50 pow operations
    for i in range(50):
        codeflash_output = expr.__pow__(i + 1); expr = codeflash_output # 42.9μs -> 30.7μs (39.4% faster)

def test_pow_with_many_children_flattening():
    """Test __pow__ flattening with expression having many children."""
    base = _BaseExpr()
    base._op = _ExprOp.POW
    # Create expression with 100 children
    base._children = tuple(range(100))
    
    codeflash_output = base.__pow__(500); result = codeflash_output # 2.08μs -> 1.80μs (15.5% faster)

def test_pow_multiple_operations_large_scale():
    """Test multiple __pow__ operations in sequence at large scale."""
    expr = _BaseExpr()
    expr._op = 0
    expr._children = (2,)
    
    # Perform 200 pow operations
    for i in range(200):
        codeflash_output = expr.__pow__(i); expr = codeflash_output # 225μs -> 132μs (69.7% faster)

def test_pow_with_complex_nested_expression_tree():
    """Test __pow__ with complex nested expression structures."""
    # Create multiple independent expressions
    exprs = []
    for i in range(100):
        e = _BaseExpr()
        e._op = 0
        e._children = (i,)
        exprs.append(e)
    
    # Chain them together with pow operations
    result = exprs[0]
    for i in range(1, min(50, len(exprs))):
        codeflash_output = result.__pow__(exprs[i]); result = codeflash_output # 42.4μs -> 31.4μs (34.8% faster)

def test_pow_stress_test_with_various_types():
    """Stress test __pow__ with various operand types."""
    base = _BaseExpr()
    base._op = 0
    base._children = (1,)
    
    test_values = [
        0, 1, -1, 42, 999, 10**6,
        0.5, 3.14159, -2.5, 1e-10,
        "str", b"bytes"
    ]
    
    results = []
    for val in test_values:
        expr = _BaseExpr()
        expr._op = 0
        expr._children = (2,)
        codeflash_output = expr.__pow__(val); result = codeflash_output # 10.3μs -> 8.66μs (18.4% faster)
        results.append(result)

def test_pow_performance_with_recursive_operations():
    """Test __pow__ performance with recursive-like operation patterns."""
    # Create a base expression
    base = _BaseExpr()
    base._op = 0
    base._children = (10,)
    
    # Apply pow operation 500 times
    result = base
    for i in range(500):
        codeflash_output = result.__pow__(2); result = codeflash_output # 794μs -> 373μs (113% faster)

def test_pow_maintains_immutability_large_scale():
    """Test that __pow__ maintains immutability across large number of operations."""
    original = _BaseExpr()
    original._op = 0
    original._children = (5,)
    
    original_op = original._op
    original_children = original._children
    
    # Perform many operations on the original
    for i in range(100):
        codeflash_output = original.__pow__(i); _ = codeflash_output # 62.6μs -> 51.7μs (21.1% faster)

def test_pow_with_maximum_practical_children_count():
    """Test __pow__ with expression having maximum practical number of children."""
    base = _BaseExpr()
    base._op = _ExprOp.POW
    # Create an expression with 500 children
    base._children = tuple(range(500))
    
    exponent = _BaseExpr()
    exponent._op = _ExprOp.POW
    # Create another expression with 500 children
    exponent._children = tuple(range(500, 1000))
    
    codeflash_output = base.__pow__(exponent); result = codeflash_output # 2.28μs -> 1.86μs (22.7% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-_BaseExpr.__pow__-ml0hlriq and push.

Codeflash Static Badge

The optimization achieves an **82% speedup** (1.24ms → 679μs) by **inlining the expression creation logic** directly into `_overload_op` instead of calling the separate `_create_operator_expression` helper function.

**Key optimization:**
The original code spent **65% of its time** (3.9μs out of 6.0μs per call) in the `_create_operator_expression` function call. By inlining this logic:

```python
# Instead of:
return _create_operator_expression(l, r, op_type)

# Now:
new_expr = _BaseExpr()
new_expr._op = op_type
new_expr._children = l + r
return new_expr
```

**Why this is faster:**
1. **Eliminates function call overhead**: Python function calls involve frame creation, argument passing, and stack management. Removing this call saves ~4μs per operation
2. **Avoids tuple unpacking**: The original helper used `(*left_children, *right_children)` which creates an intermediate unpacked representation, while `l + r` directly concatenates tuples more efficiently
3. **Reduces indirection**: Direct attribute assignment is faster than passing through another function's namespace

**Test results show consistent improvements:**
- Basic operations: 16-31% faster (e.g., `test_pow_basic_integer_operands`: 2.14μs → 1.78μs)
- Chained operations scale better: `test_pow_multiple_operations_large_scale` shows 69.7% improvement (225μs → 132μs for 200 operations)
- Recursive patterns: `test_pow_performance_with_recursive_operations` achieves 113% speedup (794μs → 373μs for 500 operations)

The optimization particularly benefits **hot paths with frequent expression construction**, as evidenced by the dramatic improvements in high-iteration tests. All behavioral semantics remain identical—the function still correctly handles operator flattening, type checking, and child tuple concatenation.
@codeflash-ai codeflash-ai bot requested a review from aseembits93 January 30, 2026 06:13
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash labels Jan 30, 2026
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

0 participants