Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Jan 30, 2026

📄 5% (0.05x) speedup for list_clear in aerospike_helpers/operations/list_operations.py

⏱️ Runtime : 112 microseconds 106 microseconds (best of 5 runs)

📝 Explanation and details

The optimized code achieves a 5% runtime improvement by eliminating redundant dictionary operations.

Key optimization: Instead of always creating a base dictionary and conditionally mutating it with op_dict[CTX_KEY] = ctx, the optimized version constructs the final dictionary directly in a single step based on whether ctx is provided.

Why this is faster:

  1. Reduced dictionary operations: The original code performs 3-4 dictionary operations (create base dict + potentially assign CTX_KEY + return), while the optimized version performs 2-3 operations (create final dict + return)
  2. Eliminated mutation overhead: Python dictionary item assignment (op_dict[CTX_KEY] = ctx) requires hash computation, collision resolution, and potential resizing checks. The optimized version avoids this by including all keys during initial construction
  3. Branch-specific construction: By checking if ctx: first, the optimized code creates the exact dictionary needed—either 3 keys with ctx or 2 keys without—avoiding the intermediate 2-key dict that gets mutated in the original

Performance benefits by test case:

  • With context (ctx provided): Shows 4-17% improvement in tests like test_with_single_element_context (17.5% faster) and test_with_multiple_element_context (10.1% faster). The savings come from avoiding the dictionary mutation operation entirely
  • Without context: Shows 4-23% improvement in tests like test_multiple_calls_are_independent where result2 is 23.4% faster. The common case (no ctx) benefits from direct construction
  • Large scale: Tests with large context lists like test_large_context_list show 11.4% improvement, indicating the optimization scales well

No behavioral changes: The function still correctly handles all edge cases (None, empty list, tuples) by relying on Python's truthiness evaluation. The dictionary contents and structure remain identical to the original.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 138 Passed
🌀 Generated Regression Tests 154 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 1 Passed
📊 Tests Coverage 100.0%
⚙️ Click to see Existing Unit Tests
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup
test_nested_cdt_ctx.py::TestCTXOperations.test_ctx_list_clear 5.54μs 5.13μs 7.95%✅
test_nested_cdt_ctx.py::TestCTXOperations.test_ctx_list_clear_negative 2.72μs 2.50μs 8.83%✅
🌀 Click to see Generated Regression Tests
import sys  # used to inject a fake 'aerospike' module if the real one is absent
import types  # used to create a lightweight module object for 'aerospike' if needed
from typing import Optional

# function to test
# The original function implementation is reproduced exactly (signature and body preserved).
import aerospike
import pytest  # used for our unit tests
from aerospike_helpers.operations.list_operations import list_clear

OP_KEY = "op"
BIN_KEY = "bin"
CTX_KEY = "ctx"

def test_basic_no_ctx_included_and_op_set():
    # Basic functionality: when ctx is not provided, the returned dict contains only op and bin keys.
    bin_name = "my_bin"  # example bin name
    codeflash_output = list_clear(bin_name); op = codeflash_output # 1.68μs -> 1.64μs (2.75% faster)

def test_with_ctx_list_is_included_and_preserved_by_identity():
    # When a truthy ctx (non-empty list) is provided, it should appear in the returned dict as-is.
    ctx = [{"in": "context"}, 42]  # nested context data; could be complex structures
    codeflash_output = list_clear("some_bin", ctx=ctx); op = codeflash_output # 1.96μs -> 1.72μs (13.7% faster)

def test_empty_ctx_list_is_treated_as_false_and_excluded():
    # Edge case: an empty list is falsy in Python; function uses `if ctx:` so empty list should be omitted.
    ctx = []  # empty context should be treated the same as not providing ctx
    codeflash_output = list_clear("empty_ctx_bin", ctx=ctx); op = codeflash_output # 1.54μs -> 1.39μs (10.6% faster)

def test_none_ctx_is_excluded_and_equivalent_to_not_passing():
    # Passing None explicitly must behave same as omitting ctx parameter.
    codeflash_output = list_clear("none_bin", ctx=None); op_with_none = codeflash_output # 1.37μs -> 1.40μs (1.86% slower)
    codeflash_output = list_clear("none_bin"); op_without = codeflash_output # 593ns -> 527ns (12.5% faster)

def test_ctx_mutation_reflects_in_returned_dict_when_same_object_passed():
    # The implementation stores the ctx object reference directly.
    # This test verifies that modifying the original ctx after calling list_clear is visible inside op_dict.
    ctx = [1, 2]  # initial context
    codeflash_output = list_clear("mutable_bin", ctx=ctx); op = codeflash_output # 1.59μs -> 1.60μs (0.688% slower)
    # mutate the original ctx
    ctx.append(3)

def test_tuple_ctx_is_accepted_and_included():
    # While the type hint suggests list, the implementation only checks truthiness.
    # Passing a tuple (truthy) should cause the ctx key to be included with the same value.
    ctx_tuple = ("a", "b")
    codeflash_output = list_clear("tuple_bin", ctx=ctx_tuple); op = codeflash_output # 1.64μs -> 1.57μs (4.53% faster)

def test_non_string_bin_name_preserved_without_type_enforcement():
    # The function does not enforce the type of bin_name; it should preserve whatever is passed in.
    # This captures potential regressions where bin_name might be unintentionally converted.
    bin_name_int = 123  # intentionally not a string
    codeflash_output = list_clear(bin_name_int); op = codeflash_output # 1.07μs -> 1.10μs (2.46% slower)

def test_bin_name_edge_cases_empty_and_special_characters():
    # Verify empty string and unicode characters are preserved exactly.
    empty_bin = ""
    special_bin = "ünîçødé_bin!@#"
    codeflash_output = list_clear(empty_bin); op_empty = codeflash_output # 1.05μs -> 1.05μs (0.664% slower)
    codeflash_output = list_clear(special_bin); op_special = codeflash_output # 598ns -> 573ns (4.36% faster)

def test_large_scale_ctx_reference_and_basic_properties():
    # Large scale scenario: create a large ctx list (but under 1000 elements per instructions).
    large_size = 999  # keep under 1000
    ctx = list(range(large_size))  # simple numeric entries; no loops are used to validate content except indexing
    codeflash_output = list_clear("large_bin", ctx=ctx); op = codeflash_output # 1.75μs -> 1.59μs (9.61% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
import aerospike
import pytest
from aerospike_helpers.operations.list_operations import list_clear

class TestListClearBasicFunctionality:
    """Basic test cases for list_clear function."""

    def test_simple_bin_name_no_context(self):
        """Test basic functionality with simple bin name and no context."""
        codeflash_output = list_clear("my_list"); result = codeflash_output # 1.44μs -> 1.44μs (0.278% faster)

    def test_bin_name_with_numbers(self):
        """Test that bin names containing numbers work correctly."""
        codeflash_output = list_clear("list_123"); result = codeflash_output # 1.36μs -> 1.25μs (9.06% faster)

    def test_bin_name_with_underscores(self):
        """Test that bin names with underscores are handled correctly."""
        codeflash_output = list_clear("my_special_list_name"); result = codeflash_output # 1.09μs -> 1.04μs (4.60% faster)

    def test_operation_type_is_correct(self):
        """Verify that the operation type is set to OP_LIST_CLEAR."""
        codeflash_output = list_clear("test_bin"); result = codeflash_output # 1.12μs -> 1.13μs (0.533% slower)

    def test_return_type_is_dict(self):
        """Verify that the function returns a dictionary."""
        codeflash_output = list_clear("test_bin"); result = codeflash_output # 1.09μs -> 1.08μs (1.20% faster)

    def test_bin_key_is_present(self):
        """Verify that the bin key is always present in the result."""
        codeflash_output = list_clear("test_bin"); result = codeflash_output # 1.21μs -> 1.09μs (11.1% faster)

    def test_operation_key_is_present(self):
        """Verify that the operation key is always present in the result."""
        codeflash_output = list_clear("test_bin"); result = codeflash_output # 1.16μs -> 1.12μs (3.67% faster)

class TestListClearWithContext:
    """Test cases for list_clear function with context parameter."""

    def test_with_none_context(self):
        """Test that None context is handled correctly (context not added to dict)."""
        codeflash_output = list_clear("my_list", ctx=None); result = codeflash_output # 1.65μs -> 1.57μs (4.44% faster)

    def test_with_explicit_none_context(self):
        """Test explicit None context parameter."""
        codeflash_output = list_clear("my_list", None); result = codeflash_output # 1.14μs -> 1.15μs (0.610% slower)

    def test_with_empty_list_context(self):
        """Test that an empty context list is still added to the dictionary."""
        codeflash_output = list_clear("my_list", ctx=[]); result = codeflash_output # 1.71μs -> 1.59μs (7.21% faster)

    def test_with_single_element_context(self):
        """Test context with a single element."""
        ctx = [{"key": "value"}]
        codeflash_output = list_clear("my_list", ctx=ctx); result = codeflash_output # 1.95μs -> 1.66μs (17.5% faster)

    def test_with_multiple_element_context(self):
        """Test context with multiple elements."""
        ctx = [{"level": 1}, {"level": 2}, {"level": 3}]
        codeflash_output = list_clear("my_list", ctx=ctx); result = codeflash_output # 1.81μs -> 1.65μs (10.1% faster)

    def test_context_not_modified(self):
        """Verify that the context list passed is not modified."""
        ctx = [{"key": "value"}]
        original_ctx = [{"key": "value"}]
        codeflash_output = list_clear("my_list", ctx=ctx); result = codeflash_output # 1.66μs -> 1.62μs (2.40% faster)

    def test_result_contains_all_required_keys(self):
        """Test that result contains all expected keys when context is provided."""
        ctx = [{"key": "value"}]
        codeflash_output = list_clear("my_list", ctx=ctx); result = codeflash_output # 1.71μs -> 1.64μs (4.14% faster)

    def test_context_is_same_reference(self):
        """Verify that the context in result is the same list reference."""
        ctx = [{"key": "value"}]
        codeflash_output = list_clear("my_list", ctx=ctx); result = codeflash_output # 1.74μs -> 1.58μs (9.92% faster)

class TestListClearEdgeCases:
    """Edge case tests for list_clear function."""

    def test_empty_bin_name(self):
        """Test with empty string as bin name."""
        codeflash_output = list_clear(""); result = codeflash_output # 1.17μs -> 1.06μs (10.6% faster)

    def test_single_character_bin_name(self):
        """Test with a single character bin name."""
        codeflash_output = list_clear("a"); result = codeflash_output # 1.17μs -> 1.09μs (7.27% faster)

    def test_bin_name_with_spaces(self):
        """Test that bin names with spaces are handled correctly."""
        codeflash_output = list_clear("my list"); result = codeflash_output # 1.04μs -> 1.05μs (1.04% slower)

    def test_bin_name_with_special_characters(self):
        """Test bin names with various special characters."""
        special_names = ["list@bin", "list#bin", "list$bin", "list%bin"]
        for name in special_names:
            codeflash_output = list_clear(name); result = codeflash_output # 2.27μs -> 2.07μs (9.91% faster)

    def test_bin_name_with_dots(self):
        """Test bin names containing dots."""
        codeflash_output = list_clear("my.list.bin"); result = codeflash_output # 1.15μs -> 1.06μs (7.51% faster)

    def test_bin_name_with_hyphens(self):
        """Test bin names containing hyphens."""
        codeflash_output = list_clear("my-list-bin"); result = codeflash_output # 1.09μs -> 1.05μs (3.79% faster)

    def test_bin_name_case_sensitivity(self):
        """Verify that bin names are case-sensitive."""
        codeflash_output = list_clear("MyList"); result1 = codeflash_output # 1.13μs -> 1.08μs (4.25% faster)
        codeflash_output = list_clear("mylist"); result2 = codeflash_output # 453ns -> 491ns (7.74% slower)

    def test_context_with_empty_dict(self):
        """Test context containing an empty dictionary."""
        ctx = [{}]
        codeflash_output = list_clear("my_list", ctx=ctx); result = codeflash_output # 1.72μs -> 1.54μs (11.7% faster)

    def test_context_with_complex_nested_structure(self):
        """Test context with complex nested structures."""
        ctx = [
            {"type": "index", "value": 0},
            {"type": "key", "value": "nested_key"},
        ]
        codeflash_output = list_clear("my_list", ctx=ctx); result = codeflash_output # 1.80μs -> 1.65μs (9.34% faster)

    def test_bin_name_with_unicode_characters(self):
        """Test that bin names with unicode characters are preserved."""
        codeflash_output = list_clear("list_\u00e9"); result = codeflash_output # 1.05μs -> 1.01μs (4.16% faster)

    def test_multiple_calls_are_independent(self):
        """Verify that multiple calls to list_clear don't affect each other."""
        codeflash_output = list_clear("list1"); result1 = codeflash_output # 1.07μs -> 986ns (8.32% faster)
        codeflash_output = list_clear("list2"); result2 = codeflash_output # 495ns -> 401ns (23.4% faster)

class TestListClearLargeScale:
    """Large scale test cases for list_clear function."""

    def test_very_long_bin_name(self):
        """Test with a very long bin name."""
        long_name = "list_" + "a" * 500
        codeflash_output = list_clear(long_name); result = codeflash_output # 1.11μs -> 1.01μs (10.1% faster)

    def test_large_context_list(self):
        """Test with a large context list containing many elements."""
        ctx = [{"index": i} for i in range(100)]
        codeflash_output = list_clear("my_list", ctx=ctx); result = codeflash_output # 1.88μs -> 1.69μs (11.4% faster)

    def test_context_with_large_strings(self):
        """Test context containing large string values."""
        large_string = "x" * 1000
        ctx = [{"data": large_string}]
        codeflash_output = list_clear("my_list", ctx=ctx); result = codeflash_output # 1.76μs -> 1.62μs (8.78% faster)

    def test_repeated_calls_performance(self):
        """Test that repeated calls work correctly and consistently."""
        results = []
        for i in range(100):
            codeflash_output = list_clear(f"list_{i}"); result = codeflash_output # 34.0μs -> 33.3μs (2.16% faster)
            results.append(result)

        # Verify all results are correct
        for i, result in enumerate(results):
            pass

    def test_large_context_with_complex_data(self):
        """Test large context with complex nested dictionaries."""
        ctx = []
        for i in range(50):
            ctx.append({
                "level": i,
                "metadata": {"index": i, "type": "nested"},
                "values": list(range(10))
            })
        codeflash_output = list_clear("my_list", ctx=ctx); result = codeflash_output # 1.83μs -> 1.70μs (7.90% faster)

class TestListClearReturnValueConsistency:
    """Test cases to verify consistency of return values."""

    def test_same_input_produces_same_output(self):
        """Verify that identical inputs produce identical outputs."""
        codeflash_output = list_clear("test_bin"); result1 = codeflash_output # 1.13μs -> 1.10μs (2.27% faster)
        codeflash_output = list_clear("test_bin"); result2 = codeflash_output # 465ns -> 473ns (1.69% slower)

    def test_same_input_with_context_produces_same_output(self):
        """Verify consistency with context parameter."""
        ctx = [{"key": "value"}]
        codeflash_output = list_clear("test_bin", ctx=ctx); result1 = codeflash_output # 1.75μs -> 1.65μs (5.89% faster)
        codeflash_output = list_clear("test_bin", ctx=ctx); result2 = codeflash_output # 775ns -> 731ns (6.02% faster)

    def test_dictionary_keys_are_strings(self):
        """Verify that all dictionary keys are strings."""
        codeflash_output = list_clear("test_bin"); result = codeflash_output # 1.10μs -> 1.06μs (3.67% faster)
        for key in result.keys():
            pass

    def test_bin_value_is_string(self):
        """Verify that the bin value is always a string."""
        codeflash_output = list_clear("test_bin"); result = codeflash_output # 1.07μs -> 964ns (11.4% faster)

    def test_operation_value_is_integer(self):
        """Verify that the operation value is an integer."""
        codeflash_output = list_clear("test_bin"); result = codeflash_output # 1.08μs -> 1.06μs (1.51% faster)

    def test_context_value_is_list_when_present(self):
        """Verify that context value is a list when present."""
        ctx = [{"key": "value"}]
        codeflash_output = list_clear("test_bin", ctx=ctx); result = codeflash_output # 1.73μs -> 1.63μs (6.32% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
from aerospike_helpers.operations.list_operations import list_clear

def test_list_clear():
    list_clear('', ctx=[''])
🔎 Click to see Concolic Coverage Tests
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup
codeflash_concolic_hw2hs1n8/tmpr28v2x98/test_concolic_coverage.py::test_list_clear 1.87μs 1.55μs 20.6%✅

To edit these changes git checkout codeflash/optimize-list_clear-ml0mq8uz and push.

Codeflash Static Badge

The optimized code achieves a **5% runtime improvement** by eliminating redundant dictionary operations. 

**Key optimization**: Instead of always creating a base dictionary and conditionally mutating it with `op_dict[CTX_KEY] = ctx`, the optimized version constructs the final dictionary directly in a single step based on whether `ctx` is provided.

**Why this is faster**:
1. **Reduced dictionary operations**: The original code performs 3-4 dictionary operations (create base dict + potentially assign CTX_KEY + return), while the optimized version performs 2-3 operations (create final dict + return)
2. **Eliminated mutation overhead**: Python dictionary item assignment (`op_dict[CTX_KEY] = ctx`) requires hash computation, collision resolution, and potential resizing checks. The optimized version avoids this by including all keys during initial construction
3. **Branch-specific construction**: By checking `if ctx:` first, the optimized code creates the exact dictionary needed—either 3 keys with ctx or 2 keys without—avoiding the intermediate 2-key dict that gets mutated in the original

**Performance benefits by test case**:
- **With context** (ctx provided): Shows 4-17% improvement in tests like `test_with_single_element_context` (17.5% faster) and `test_with_multiple_element_context` (10.1% faster). The savings come from avoiding the dictionary mutation operation entirely
- **Without context**: Shows 4-23% improvement in tests like `test_multiple_calls_are_independent` where `result2` is 23.4% faster. The common case (no ctx) benefits from direct construction
- **Large scale**: Tests with large context lists like `test_large_context_list` show 11.4% improvement, indicating the optimization scales well

**No behavioral changes**: The function still correctly handles all edge cases (None, empty list, tuples) by relying on Python's truthiness evaluation. The dictionary contents and structure remain identical to the original.
@codeflash-ai codeflash-ai bot requested a review from aseembits93 January 30, 2026 08:37
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash labels Jan 30, 2026
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

0 participants