|
| 1 | +import random |
| 2 | +import numpy as np |
| 3 | +from tqdm.notebook import tqdm |
| 4 | +from omegaconf import DictConfig |
| 5 | +from dataclasses import dataclass |
| 6 | +from typing import Optional, Tuple, Union |
| 7 | +from typing import Iterable, Sequence, List |
| 8 | + |
| 9 | +from torchtyping import TensorType |
| 10 | + |
| 11 | +import transformers |
| 12 | +from transformers import DataCollatorWithPadding |
| 13 | +from transformers import pipeline, AutoTokenizer |
| 14 | + |
| 15 | +from datasets import load_dataset |
| 16 | + |
| 17 | +import torch |
| 18 | +import torch.nn as nn |
| 19 | +import torch.nn.functional as F |
| 20 | +from torch.nn.utils.rnn import pad_sequence |
| 21 | +from torch.utils.data import DataLoader, Dataset |
| 22 | +from torch.optim.lr_scheduler import CosineAnnealingLR |
| 23 | + |
| 24 | +from utils import PromptPipeline, PPORLElement, PPORLBatch, PPORolloutStorage, Actor, Agent |
| 25 | + |
| 26 | +def generate(model, tokenizer, input_ids, attention_mask=None, **kwargs): |
| 27 | + |
| 28 | + generate_kwargs = dict( |
| 29 | + config.method.gen_kwargs, |
| 30 | + eos_token_id=tokenizer.eos_token_id, |
| 31 | + pad_token_id=tokenizer.eos_token_id) |
| 32 | + |
| 33 | + kwargs = dict(generate_kwargs, **kwargs) |
| 34 | + |
| 35 | + with torch.no_grad(): |
| 36 | + generated_results = model.generate(input_ids=input_ids, attention_mask=attention_mask, **kwargs) |
| 37 | + |
| 38 | + return generated_results |
| 39 | + |
| 40 | + |
| 41 | +def get_model_inputs(query_tensors, response_tensors, pad_token_id): |
| 42 | + tokens = torch.cat((query_tensors, response_tensors), dim=1)[:, -config.train.seq_length :] |
| 43 | + attention_mask = (tokens.not_equal(pad_token_id).long().to(tokens.device)) |
| 44 | + position_ids = attention_mask.cumsum(-1) - 1 |
| 45 | + position_ids.masked_fill_(attention_mask.eq(0), 0) |
| 46 | + return tokens, attention_mask, position_ids |
| 47 | + |
| 48 | + |
| 49 | +def logprobs_from_logits(logits, labels): |
| 50 | + logprobs = F.log_softmax(logits, dim=-1) |
| 51 | + logprobs_labels = torch.gather(logprobs, dim=-1, index=labels.unsqueeze(-1)) |
| 52 | + return logprobs_labels.squeeze(-1) |
| 53 | + |
| 54 | + |
| 55 | +def freeze_bottom_causal_layers(model: nn.Module, num_layers_unfrozen: int = 0): |
| 56 | + hidden_layers = model.transformer.h |
| 57 | + if num_layers_unfrozen == 0: |
| 58 | + hidden_layers_to_freeze = list(hidden_layers) |
| 59 | + elif num_layers_unfrozen > 0: |
| 60 | + hidden_layers_to_freeze = list(hidden_layers)[:-num_layers_unfrozen] |
| 61 | + else: |
| 62 | + hidden_layers_to_freeze = [] |
| 63 | + for layer in hidden_layers_to_freeze: |
| 64 | + layer.requires_grad_(False) |
| 65 | + |
| 66 | +sentiment_fn = pipeline( |
| 67 | + model = "lvwerra/distilbert-imdb", |
| 68 | + top_k=2, |
| 69 | + batch_size=config.method.num_rollouts, |
| 70 | + device=config.train.reward_model_device, |
| 71 | +) |
| 72 | + |
| 73 | +def get_positive_score(scores): |
| 74 | + return dict(map(lambda x: tuple(x.values()), scores))["POSITIVE"] |
| 75 | + |
| 76 | +def reward_fn(samples: List[str]) -> List[float]: |
| 77 | + sentiments = list(map(get_positive_score, sentiment_fn(samples))) |
| 78 | + return sentiments |
| 79 | + |
| 80 | +imdb = load_dataset("imdb", split="train+test") |
| 81 | + |
| 82 | +prompts = [" ".join(review.split()[:config.method.prompt_size]) for review in imdb["text"]] |
| 83 | + |
| 84 | +tokenizer = AutoTokenizer.from_pretrained(config.model.tokenizer_path) |
| 85 | +tokenizer.pad_token = tokenizer.eos_token |
| 86 | +tokenizer.pad_token_ida = tokenizer.eos_token_id |
| 87 | +tokenizer.padding_side = "left" |
| 88 | +pad_token_id = 50256 |
| 89 | + |
| 90 | +max_prompt_length = (config.train.seq_length - config.method.gen_kwargs["max_new_tokens"]) |
| 91 | +test_prompt_pipeline = PromptPipeline(prompts, max_prompt_length, tokenizer) |
| 92 | + |
| 93 | +model = Agent(config.model.model_path, config.model.num_layers_unfrozen).to(config.train.model_device) |
| 94 | + |
| 95 | +input_ids = tokenizer.batch_encode_plus( |
| 96 | + ["my feeling about the movie", "this is", "I can tell with certainty"], |
| 97 | + return_tensors='pt', |
| 98 | + padding=True)['input_ids'] |
| 99 | + |
| 100 | +print (input_ids) |
| 101 | + |
| 102 | +model_device = next(model.parameters()).device |
| 103 | +output_ids = generate(model, tokenizer, input_ids.to(model_device), max_new_tokens=config.method.gen_kwargs["max_new_tokens"]) |
| 104 | + |
| 105 | +generated_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True) |
| 106 | + |
| 107 | +print (generated_text) |
| 108 | + |
| 109 | +reward_fn(generated_text) |
| 110 | + |
| 111 | +prompt_pipeline = PromptPipeline(prompts, config.train.seq_length, tokenizer) |
| 112 | + |
| 113 | +actor = Actor(prompt_pipeline, tokenizer, chunk_size=config.method.chunk_size) |
| 114 | + |
| 115 | +store = PPORolloutStorage(tokenizer.pad_token_id) |
| 116 | + |
| 117 | +opt = torch.optim.Adam(model.parameters(), **config.optimizer.kwargs) |
| 118 | +scheduler = CosineAnnealingLR(opt, **config.scheduler.kwargs) |
| 119 | + |
| 120 | +n_updates_per_batch = config.method.ppo_epochs |
| 121 | +total_steps = 400 # TODO: fix this |
| 122 | + |
| 123 | +tbar = tqdm(initial=0, total=total_steps) |
| 124 | + |
| 125 | +for _ in range(config.train.epochs): |
| 126 | + |
| 127 | + store.clear_history() |
| 128 | + rollouts, score = actor.make_experience(model, config.method.num_rollouts) |
| 129 | + store.push(rollouts) |
| 130 | + train_dataloader = store.create_loader(config.train.batch_size, shuffle=True) |
| 131 | + |
| 132 | + for batch in train_dataloader: |
| 133 | + for _ in range(n_updates_per_batch): |
| 134 | + |
| 135 | + loss, reward = loss_fn(batch) |
| 136 | + loss.backward() |
| 137 | + opt.step() |
| 138 | + opt.zero_grad() |
| 139 | + scheduler.step() |
| 140 | + tbar.update() |
| 141 | + |
| 142 | + tbar.set_description(f"| score: {score:.3f} |") |
| 143 | + |
| 144 | +input_ids = tokenizer.batch_encode_plus( |
| 145 | + ["my feeling about the movie", "this is", "I can tell with certainty"], |
| 146 | + return_tensors='pt', |
| 147 | + padding=True)['input_ids'] |
| 148 | +input_ids |
| 149 | + |
| 150 | +model_device = next(model.parameters()).device |
| 151 | +output_ids = generate( |
| 152 | + model, |
| 153 | + tokenizer, |
| 154 | + input_ids.to(model_device), |
| 155 | +# min_length=20, |
| 156 | +# max_new_tokens=100, |
| 157 | +# do_sample=True, |
| 158 | +# top_p=0.92, |
| 159 | +# top_k=0 |
| 160 | +) |
| 161 | +generated_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True) |
| 162 | +rewards = reward_fn(generated_text) |
| 163 | +print(generated_text[0].replace('\n', ' ') + '\n', rewards[0]) |
| 164 | +print(generated_text[1].replace('\n', ' ') + '\n', rewards[1]) |
| 165 | +print(generated_text[2].replace('\n', ' ') + '\n', rewards[2]) |
| 166 | +print('all rewards mean:',np.mean(rewards)) |
0 commit comments