|
| 1 | +import random |
| 2 | +import numpy as np |
| 3 | +from tqdm.notebook import tqdm |
| 4 | +from omegaconf import DictConfig |
| 5 | +from dataclasses import dataclass |
| 6 | +from typing import Optional, Tuple, Union |
| 7 | +from typing import Iterable, Sequence, List |
| 8 | + |
| 9 | +from torchtyping import TensorType |
| 10 | + |
| 11 | +import transformers |
| 12 | +from transformers import DataCollatorWithPadding |
| 13 | +from transformers import pipeline, AutoTokenizer |
| 14 | + |
| 15 | +from datasets import load_dataset |
| 16 | + |
| 17 | +import torch |
| 18 | +import torch.nn as nn |
| 19 | +import torch.nn.functional as F |
| 20 | +from torch.nn.utils.rnn import pad_sequence |
| 21 | +from torch.utils.data import DataLoader, Dataset |
| 22 | +from torch.optim.lr_scheduler import CosineAnnealingLR |
| 23 | + |
| 24 | + |
| 25 | +class PromptPipeline(): |
| 26 | + def __init__(self, prompts: List[str], max_prompt_length: int, tokenizer): |
| 27 | + super().__init__() |
| 28 | + |
| 29 | + prompts = tokenizer(prompts).input_ids |
| 30 | + |
| 31 | + self.tokenizer = tokenizer |
| 32 | + self.prompts = [prompt[-max_prompt_length:] for prompt in prompts] |
| 33 | + self.prompts = [{"input_ids": prompt, "attention_mask": [1] * len(prompt)} for prompt in self.prompts] |
| 34 | + |
| 35 | + def __getitem__(self, ix: int): |
| 36 | + return self.prompts[ix] |
| 37 | + |
| 38 | + def __len__(self) -> int: |
| 39 | + return len(self.prompts) |
| 40 | + |
| 41 | + def create_loader(self, batch_size: int, shuffle=False) -> DataLoader: |
| 42 | + collate_fn = DataCollatorWithPadding(self.tokenizer) |
| 43 | + return DataLoader(self, batch_size=batch_size, collate_fn=collate_fn, shuffle=shuffle) |
| 44 | + |
| 45 | +@dataclass |
| 46 | +class PPORLElement: |
| 47 | + query_tensor: TensorType["query_size"] |
| 48 | + response_tensor: TensorType["response_size"] |
| 49 | + logprobs: TensorType["response_size", "vocab_size"] |
| 50 | + values: TensorType["response_size"] |
| 51 | + rewards: TensorType["response_size"] |
| 52 | + |
| 53 | + |
| 54 | +@dataclass |
| 55 | +class PPORLBatch: |
| 56 | + query_tensors: TensorType["batch_size", "query_size"] |
| 57 | + response_tensors: TensorType["batch_size", "response_size"] |
| 58 | + logprobs: TensorType["batch_size", "response_size", "vocab_size"] |
| 59 | + values: TensorType["batch_size", "response_size"] |
| 60 | + rewards: TensorType["batch_size", "response_size"] |
| 61 | + |
| 62 | + |
| 63 | +class PPORolloutStorage(): |
| 64 | + def __init__(self, pad_token_id): |
| 65 | + super().__init__() |
| 66 | + self.pad_token_id = pad_token_id |
| 67 | + self.history: Iterable[PPORLElement] = [None] |
| 68 | + |
| 69 | + def push(self, exps: Iterable[PPORLElement]): |
| 70 | + self.history += exps |
| 71 | + |
| 72 | + def clear_history(self): |
| 73 | + self.history = [] |
| 74 | + |
| 75 | + def __getitem__(self, index: int) -> PPORLElement: |
| 76 | + return self.history[index] |
| 77 | + |
| 78 | + def __len__(self) -> int: |
| 79 | + return len(self.history) |
| 80 | + |
| 81 | + def create_loader(self, batch_size: int, shuffle: bool) -> DataLoader: |
| 82 | + def collate_fn(elems: Iterable[PPORLElement]): |
| 83 | + return PPORLBatch( |
| 84 | + pad_sequence( |
| 85 | + [elem.query_tensor.flip(0) for elem in elems], |
| 86 | + padding_value=self.pad_token_id, |
| 87 | + batch_first=True, |
| 88 | + ).flip(1), |
| 89 | + pad_sequence( |
| 90 | + [elem.response_tensor for elem in elems], |
| 91 | + padding_value=self.pad_token_id, |
| 92 | + batch_first=True, |
| 93 | + ), |
| 94 | + pad_sequence( |
| 95 | + [elem.logprobs for elem in elems], |
| 96 | + padding_value=0.0, |
| 97 | + batch_first=True, |
| 98 | + ), |
| 99 | + pad_sequence( |
| 100 | + [elem.values for elem in elems], |
| 101 | + padding_value=0.0, |
| 102 | + batch_first=True |
| 103 | + ), |
| 104 | + pad_sequence( |
| 105 | + [elem.rewards for elem in elems], |
| 106 | + padding_value=0.0, |
| 107 | + batch_first=True, |
| 108 | + ), |
| 109 | + ) |
| 110 | + |
| 111 | + return DataLoader(self, batch_size, shuffle=shuffle, collate_fn=collate_fn) |
| 112 | + |
| 113 | +class Actor(): |
| 114 | + |
| 115 | + def __init__( |
| 116 | + self, |
| 117 | + prompt_pipeline, |
| 118 | + tokenizer, |
| 119 | + chunk_size = 128): |
| 120 | + |
| 121 | + self.prompt_pipeline = prompt_pipeline |
| 122 | + self.chunk_size = chunk_size |
| 123 | + |
| 124 | + self.prompt_pipeline_loader = self.prompt_pipeline.create_loader(self.chunk_size, shuffle=True) |
| 125 | + self.prompt_pipeline_iterator = iter(self.prompt_pipeline_loader) |
| 126 | + |
| 127 | + self.ref_model = Agent(config.model.model_path) |
| 128 | + self.ref_model_device = config.train.ref_model_device |
| 129 | + self.ref_model = self.ref_model.to(self.ref_model_device) |
| 130 | + |
| 131 | + self.tokenizer = tokenizer |
| 132 | + |
| 133 | + |
| 134 | + def make_experience(self, model, num_rollouts = 128): |
| 135 | + model_device = next(model.parameters()).device |
| 136 | + |
| 137 | + ppo_rl_elements = [] |
| 138 | + while len(ppo_rl_elements) < num_rollouts: |
| 139 | + try: |
| 140 | + batch = next(self.prompt_pipeline_iterator) |
| 141 | + except StopIteration: |
| 142 | + self.pipeline_iterator = iter(self.prompt_pipeline_loader) |
| 143 | + batch = next(self.prompt_pipeline_iterator) |
| 144 | + |
| 145 | + trajectories = generate(model, self.tokenizer, **batch.to(model_device)) |
| 146 | + |
| 147 | + query_tensors = batch.input_ids |
| 148 | + response_tensors = trajectories[:, query_tensors.shape[1] :] |
| 149 | + |
| 150 | + all_tokens, attention_mask, position_ids = get_model_inputs( |
| 151 | + query_tensors.to(response_tensors.device), response_tensors, self.tokenizer.pad_token_id) |
| 152 | + with torch.no_grad(): |
| 153 | + logits, values = model( |
| 154 | + all_tokens, |
| 155 | + attention_mask=attention_mask, |
| 156 | + position_ids=position_ids) |
| 157 | + ref_logits, _ = self.ref_model( |
| 158 | + all_tokens.to(self.ref_model_device), |
| 159 | + attention_mask=attention_mask.to(self.ref_model_device), |
| 160 | + position_ids=position_ids.to(self.ref_model_device)) |
| 161 | + |
| 162 | + all_tokens = all_tokens.cpu() |
| 163 | + logits = logits.cpu() |
| 164 | + ref_logits = ref_logits.cpu() |
| 165 | + |
| 166 | + logprobs = logprobs_from_logits(logits[:, :-1, :], all_tokens[:, 1:]) |
| 167 | + ref_logprobs = logprobs_from_logits(ref_logits[:, :-1, :], all_tokens[:, 1:]) |
| 168 | + |
| 169 | + n = trajectories.shape[0] |
| 170 | + values = values.cpu()[:, :-1] |
| 171 | + query_tensors = query_tensors.cpu() |
| 172 | + response_tensors = response_tensors.cpu() |
| 173 | + |
| 174 | + start = query_tensors.shape[1] - 1 |
| 175 | + ends = start + attention_mask[:, start:].sum(1) |
| 176 | + all_values = [values[i, start : ends[i]] for i in range(n)] |
| 177 | + all_logprobs = [logprobs[i, start : ends[i]] for i in range(n)] |
| 178 | + |
| 179 | + texts = self.tokenizer.batch_decode(trajectories, skip_special_tokens=True) |
| 180 | + scores = torch.tensor(reward_fn(texts), device='cpu', dtype=torch.float) |
| 181 | + |
| 182 | + rewards = -config.method.kl_coef * (logprobs - ref_logprobs) |
| 183 | + all_rewards = [None] * n |
| 184 | + for i in range(n): |
| 185 | + rs = rewards[i][start : ends[i]] |
| 186 | + rs[-1] = scores[i] |
| 187 | + all_rewards[i] = rs |
| 188 | + |
| 189 | + new_ppo_rl_elements = [ |
| 190 | + PPORLElement( |
| 191 | + query_tensor=query_tensors[i], |
| 192 | + response_tensor=response_tensors[i], |
| 193 | + logprobs=all_logprobs[i], |
| 194 | + values=all_values[i], |
| 195 | + rewards=all_rewards[i], |
| 196 | + ) |
| 197 | + for i in range(n) |
| 198 | + ] |
| 199 | + |
| 200 | + ppo_rl_elements += new_ppo_rl_elements |
| 201 | + |
| 202 | + return ppo_rl_elements, scores.mean().item() |
| 203 | + |
| 204 | +class Agent(nn.Module): |
| 205 | + def __init__(self, model_path, num_layers_unfrozen=0): |
| 206 | + super().__init__() |
| 207 | + |
| 208 | + self.base_model = transformers.AutoModelForCausalLM.from_pretrained(model_path, cache_dir="./models") |
| 209 | + |
| 210 | + self.logit_head = self.base_model.get_output_embeddings() |
| 211 | + |
| 212 | + n_embd = self.base_model.lm_head.in_features |
| 213 | + self.value_head = nn.Sequential( |
| 214 | + nn.Linear(n_embd, n_embd*2), |
| 215 | + nn.ReLU(), |
| 216 | + nn.Linear(n_embd*2, 1)) |
| 217 | + |
| 218 | + freeze_bottom_causal_layers(self.base_model, num_layers_unfrozen) |
| 219 | + |
| 220 | + |
| 221 | + def generate(self, input_ids, **x): |
| 222 | + return self.base_model.generate(input_ids, **x) |
| 223 | + |
| 224 | + def forward(self, input_ids, attention_mask, position_ids): |
| 225 | + |
| 226 | + transformer_outputs = self.base_model.transformer(input_ids=input_ids, |
| 227 | + attention_mask=attention_mask, |
| 228 | + position_ids=position_ids) |
| 229 | + |
| 230 | + last_hidden_state = transformer_outputs.last_hidden_state |
| 231 | + lm_logits = self.logit_head(last_hidden_state) |
| 232 | + value = self.value_head(last_hidden_state).squeeze(-1) |
| 233 | + |
| 234 | + return lm_logits, value |
0 commit comments