Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 8 additions & 4 deletions pyiceberg/partitioning.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,6 +56,7 @@
TimestampType,
TimestamptzType,
TimeType,
UnknownType,
UUIDType,
)
from pyiceberg.utils.datetime import date_to_days, datetime_to_micros, time_to_micros
Expand Down Expand Up @@ -222,11 +223,14 @@ def partition_type(self, schema: Schema) -> StructType:
:return: A StructType that represents the PartitionSpec, with a NestedField for each PartitionField.
"""
nested_fields = []
schema_ids = schema._lazy_id_to_field
for field in self.fields:
source_type = schema.find_type(field.source_id)
result_type = field.transform.result_type(source_type)
required = schema.find_field(field.source_id).required
nested_fields.append(NestedField(field.field_id, field.name, result_type, required=required))
if source_field := schema_ids.get(field.source_id):
result_type = field.transform.result_type(source_field.field_type)
nested_fields.append(NestedField(field.field_id, field.name, result_type, required=source_field.required))
else:
Copy link
Contributor Author

@gabeiglio gabeiglio Aug 21, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Wanted to get some opinions for just allowing this for VoidTransforms fields, as as of now we can drop columns without dropping the partition first

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Unfortunally, dropping is not an option. The V1 tables do not have field-IDs encoded in the struct, and is purely positional based. See the spec for details. Dropping a field, would change the position, potentially resulting in data integrity issues.

Copy link
Contributor Author

@gabeiglio gabeiglio Aug 21, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@Fokko I was referring more to that if the field's transform is not VoidTransform then we should potentially fail here. Java does not allow dropping a schema column if there is an non-void partition referencing that field, but here it is not guaranteed that if there is no source-field for a partition then the partition will be void.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@Fokko gentle pin as this might gone off radar :)

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think this is fine, if I understand the concern correctly. The worry is that we're allowing unknown type for non void transforms when the source field is missing.

On the Java side, when we're reading partition specs from the metadata, we are using the allow missing fields equal to true, which skips the validation if the source is missing(here).

This validation is only hit when we're constructing new partition specs. When we're reading, it's fine.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sorry, I think I misunderstood the question, but nothing is being dropped here, so that all looks good.

# Since the source field has been drop we cannot determine the type
nested_fields.append(NestedField(field.field_id, field.name, UnknownType()))
return StructType(*nested_fields)

def partition_to_path(self, data: Record, schema: Schema) -> str:
Expand Down
16 changes: 16 additions & 0 deletions tests/integration/test_reads.py
Original file line number Diff line number Diff line change
Expand Up @@ -1083,3 +1083,19 @@ def test_filter_after_arrow_scan(catalog: Catalog) -> None:

scan = scan.filter("ts >= '2023-03-05T00:00:00+00:00'")
assert len(scan.to_arrow()) > 0


@pytest.mark.integration
@pytest.mark.parametrize("catalog", [pytest.lazy_fixture("session_catalog")])
def test_scan_source_field_missing_in_spec(catalog: Catalog, spark: SparkSession) -> None:
identifier = "default.test_dropped_field"
spark.sql(f"DROP TABLE IF EXISTS {identifier}")
spark.sql(f"CREATE TABLE {identifier} (foo int, bar int, jaz string) USING ICEBERG PARTITIONED BY (foo, bar)")
spark.sql(
f"INSERT INTO {identifier} (foo, bar, jaz) VALUES (1, 1, 'dummy data'), (1, 2, 'dummy data again'), (2, 1, 'another partition')"
)
spark.sql(f"ALTER TABLE {identifier} DROP PARTITION FIELD foo")
spark.sql(f"ALTER TABLE {identifier} DROP COLUMN foo")

table = catalog.load_table(identifier)
assert len(list(table.scan().plan_files())) == 3
36 changes: 36 additions & 0 deletions tests/table/test_partitioning.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@
TimestampType,
TimestamptzType,
TimeType,
UnknownType,
UUIDType,
)

Expand Down Expand Up @@ -165,6 +166,28 @@ def test_partition_spec_to_path() -> None:
assert spec.partition_to_path(record, schema) == "my%23str%25bucket=my%2Bstr/other+str%2Bbucket=%28+%29/my%21int%3Abucket=10"


def test_partition_spec_to_path_dropped_source_id() -> None:
schema = Schema(
NestedField(field_id=1, name="str", field_type=StringType(), required=False),
NestedField(field_id=2, name="other_str", field_type=StringType(), required=False),
NestedField(field_id=3, name="int", field_type=IntegerType(), required=True),
)

spec = PartitionSpec(
PartitionField(source_id=1, field_id=1000, transform=TruncateTransform(width=19), name="my#str%bucket"),
PartitionField(source_id=2, field_id=1001, transform=IdentityTransform(), name="other str+bucket"),
# Point partition field to missing source id
PartitionField(source_id=4, field_id=1002, transform=BucketTransform(num_buckets=25), name="my!int:bucket"),
spec_id=3,
)

record = Record("my+str", "( )", 10)

# Both partition field names and values should be URL encoded, with spaces mapping to plus signs, to match the Java
# behaviour: https://github.com/apache/iceberg/blob/ca3db931b0f024f0412084751ac85dd4ef2da7e7/api/src/main/java/org/apache/iceberg/PartitionSpec.java#L198-L204
assert spec.partition_to_path(record, schema) == "my%23str%25bucket=my%2Bstr/other+str%2Bbucket=%28+%29/my%21int%3Abucket=10"


def test_partition_type(table_schema_simple: Schema) -> None:
spec = PartitionSpec(
PartitionField(source_id=1, field_id=1000, transform=TruncateTransform(width=19), name="str_truncate"),
Expand All @@ -178,6 +201,19 @@ def test_partition_type(table_schema_simple: Schema) -> None:
)


def test_partition_type_missing_source_field(table_schema_simple: Schema) -> None:
spec = PartitionSpec(
PartitionField(source_id=1, field_id=1000, transform=TruncateTransform(width=19), name="str_truncate"),
PartitionField(source_id=10, field_id=1001, transform=BucketTransform(num_buckets=25), name="int_bucket"),
spec_id=3,
)

assert spec.partition_type(table_schema_simple) == StructType(
NestedField(field_id=1000, name="str_truncate", field_type=StringType(), required=False),
NestedField(field_id=1001, name="int_bucket", field_type=UnknownType(), required=False),
)


@pytest.mark.parametrize(
"source_type, value",
[
Expand Down