Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
45 changes: 22 additions & 23 deletions machine_learning/xgboost_classifier.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,32 +8,33 @@


def data_handling(data: dict) -> tuple:
# Split dataset into features and target
# data is features
"""
>>> data_handling(({'data':'[5.1, 3.5, 1.4, 0.2]','target':([0])}))
('[5.1, 3.5, 1.4, 0.2]', [0])
>>> data_handling(
... {'data': '[4.9, 3.0, 1.4, 0.2], [4.7, 3.2, 1.3, 0.2]', 'target': ([0, 0])}
... )
('[4.9, 3.0, 1.4, 0.2], [4.7, 3.2, 1.3, 0.2]', [0, 0])
Split dataset into features and target.

>>> from sklearn.datasets import load_iris
>>> iris = load_iris()
>>> features, targets = data_handling(iris)
>>> features.shape
(150, 4)
>>> targets.shape
(150,)
"""
return (data["data"], data["target"])


def xgboost(features: np.ndarray, target: np.ndarray) -> XGBClassifier:
"""
# THIS TEST IS BROKEN!! >>> xgboost(np.array([[5.1, 3.6, 1.4, 0.2]]), np.array([0]))
XGBClassifier(base_score=0.5, booster='gbtree', callbacks=None,
colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1,
early_stopping_rounds=None, enable_categorical=False,
eval_metric=None, gamma=0, gpu_id=-1, grow_policy='depthwise',
importance_type=None, interaction_constraints='',
learning_rate=0.300000012, max_bin=256, max_cat_to_onehot=4,
max_delta_step=0, max_depth=6, max_leaves=0, min_child_weight=1,
missing=nan, monotone_constraints='()', n_estimators=100,
n_jobs=0, num_parallel_tree=1, predictor='auto', random_state=0,
reg_alpha=0, reg_lambda=1, ...)
Train an XGBoost classifier.

>>> from sklearn.datasets import load_iris
>>> iris = load_iris()
>>> X_train, y_train = iris.data[:100], iris.target[:100]
>>> classifier = xgboost(X_train, y_train)
>>> predictions = classifier.predict(iris.data[:5])
>>> len(predictions)
5
>>> all(pred in [0, 1, 2] for pred in predictions)
True
"""
classifier = XGBClassifier()
classifier.fit(features, target)
Expand All @@ -46,20 +47,18 @@ def main() -> None:
https://xgboost.readthedocs.io/en/stable/
Iris type dataset is used to demonstrate algorithm.
"""

# Load Iris dataset
iris = load_iris()
features, targets = data_handling(iris)
x_train, x_test, y_train, y_test = train_test_split(
features, targets, test_size=0.25
features, targets, test_size=0.25, random_state=42
)

names = iris["target_names"]

# Create an XGBoost Classifier from the training data
xgboost_classifier = xgboost(x_train, y_train)

# Display the confusion matrix of the classifier with both training and test sets
# Display the confusion matrix of the classifier with test set
ConfusionMatrixDisplay.from_estimator(
xgboost_classifier,
x_test,
Expand Down