Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions train.py
Original file line number Diff line number Diff line change
Expand Up @@ -194,7 +194,7 @@ def train(
else:
loss = model.loss(ypred, label, adj, batch_num_nodes)
loss.backward()
nn.utils.clip_grad_norm(model.parameters(), args.clip)
nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
iter += 1
avg_loss += loss
Expand Down Expand Up @@ -294,7 +294,7 @@ def train_node_classifier(G, labels, model, args, writer=None):
else:
loss = model.loss(ypred_train, labels_train)
loss.backward()
nn.utils.clip_grad_norm(model.parameters(), args.clip)
nn.utils.clip_grad_norm_(model.parameters(), args.clip)

optimizer.step()
#for param_group in optimizer.param_groups:
Expand Down Expand Up @@ -424,7 +424,7 @@ def train_node_classifier_multigraph(G_list, labels, model, args, writer=None):
else:
loss = model.loss(ypred_train_cmp, labels_train)
loss.backward()
nn.utils.clip_grad_norm(model.parameters(), args.clip)
nn.utils.clip_grad_norm_(model.parameters(), args.clip)

optimizer.step()
#for param_group in optimizer.param_groups:
Expand Down Expand Up @@ -516,7 +516,7 @@ def evaluate(dataset, model, args, name="Validation", max_num_examples=None):
preds = np.hstack(preds)

result = {
"prec": metrics.precision_score(labels, preds, average="macro"),
"prec": metrics.precision_score(labels, preds, average="macro", zero_division=0),
"recall": metrics.recall_score(labels, preds, average="macro"),
"acc": metrics.accuracy_score(labels, preds),
}
Expand All @@ -534,13 +534,13 @@ def evaluate_node(ypred, labels, train_idx, test_idx):
labels_test = np.ravel(labels[:, test_idx])

result_train = {
"prec": metrics.precision_score(labels_train, pred_train, average="macro"),
"prec": metrics.precision_score(labels_train, pred_train, average="macro", zero_division=0),
"recall": metrics.recall_score(labels_train, pred_train, average="macro"),
"acc": metrics.accuracy_score(labels_train, pred_train),
"conf_mat": metrics.confusion_matrix(labels_train, pred_train),
}
result_test = {
"prec": metrics.precision_score(labels_test, pred_test, average="macro"),
"prec": metrics.precision_score(labels_test, pred_test, average="macro", zero_division=0),
"recall": metrics.recall_score(labels_test, pred_test, average="macro"),
"acc": metrics.accuracy_score(labels_test, pred_test),
"conf_mat": metrics.confusion_matrix(labels_test, pred_test),
Expand Down