@@ -1074,7 +1074,7 @@ x_2 = 2 → horizontal line
10741074
10751075<br >
10761076
1077- ### [ Step 2] ( ) ➢ Identify the Feasible Region:
1077+ ## [ Step 2] ( ) ➢ Identify the Feasible Region:
10781078
10791079- The feasible region is the intersection of all shaded regions that satisfy the constraints.
10801080- Must include $x_1 \geq 0$ and $x_2 \geq 0$.
@@ -1087,7 +1087,7 @@ x_1 \geq 0$ and $x_2 \geq 0
10871087
10881088<br ><br >
10891089
1090- ### [ Step 3] ( ) ➢ Find Intersection Points (Vertices):
1090+ ## [ Step 3] ( ) ➢ Find Intersection Points (Vertices):
10911091
10921092 <br >
10931093
@@ -1142,7 +1142,7 @@ Intersection of x_1 + 3x_2 = 7 and 2x_1 + 2x_2 = 8:
11421142
11431143<br ><br >
11441144
1145- ### [ Step 4] ( ) ➢ Evaluate Objective Function at Each Vertex:
1145+ ## [ Step 4] ( ) ➢ Evaluate Objective Function at Each Vertex:
11461146
11471147## Feasible Vertices:
11481148
@@ -1230,7 +1230,7 @@ The transportation problem is a type of **linear programming** model where the o
12301230
12311231<br >
12321232
1233- ### [ The Case of Unbalanced Systems] ( ) :
1233+ ## [ The Case of Unbalanced Systems] ( ) :
12341234
12351235The standard transportation model assumes total supply equals total demand. However, in real-world scenarios, systems can be ** unbalanced** .
12361236
@@ -1404,7 +1404,7 @@ This is a method to generate an initial feasible solution without considering tr
14041404
14051405<br >
14061406
1407- ### ➢ [ Steps] ( ) :
1407+ ## ➢ [ Steps] ( ) :
14081408
140914091 . ** Start in the top-left (northwest) corner** of the transportation table.
14101410 - This is always cell $begin:math: text $ x_ {11} $end:math: text $.
@@ -1426,7 +1426,7 @@ This method takes into account the transportation costs to guide the initial all
14261426
14271427<br >
14281428
1429- ### ➢ [ Steps] ( ) :
1429+ ## ➢ [ Steps] ( ) :
14301430
143114311 . ** Identify the cell with the lowest unit cost** in the cost matrix among the remaining unallocated cells.
143214322 . ** Allocate as much as possible** to this cell, without exceeding supply or demand constraints.
@@ -1496,7 +1496,7 @@ The initial solution obtained via the Northwest Corner Method has a total cost o
14961496
14971497<br >
14981498
1499- ### [ Step 1] ( ) : Optimality Check Using Multipliers
1499+ ## [ Step 1] ( ) : Optimality Check Using Multipliers
15001500
15011501#### - [ ** Multipliers calculation** ] ( ) :
15021502
@@ -1509,10 +1509,10 @@ u_1 = 0, leading to v_1 = 12, u_2 = 6, v_2 = 18, u_3 = -3, and v_3 = 37.
15091509
15101510### - [ ** Reduced costs** for non-basic variables] ( ) :
15111511
1512- #### - $\bar{c}_ {12} = -4$
1513- #### - $\bar{c}_ {13} = 7$
1514- #### - $\bar{c}_ {23} = 11$
1515- #### - $\bar{c}_ {31} = -13$
1512+ ### - $\bar{c}_ {12} = -4$
1513+ ### - $\bar{c}_ {13} = 7$
1514+ ### - $\bar{c}_ {23} = 11$
1515+ ### - $\bar{c}_ {31} = -13$
15161516
15171517``` latex
15181518\bar{c}_{12} = -4
@@ -1521,17 +1521,17 @@ u_1 = 0, leading to v_1 = 12, u_2 = 6, v_2 = 18, u_3 = -3, and v_3 = 37.
15211521\bar{c}_{31} = -13
15221522```
15231523
1524- #### - [ ** Negative reduced costs indicate non-optimality** ] ( ) .
1524+ ### - [ ** Negative reduced costs indicate non-optimality** ] ( ) .
15251525
15261526<br >
15271527
15281528## [ Step 2] ( ) : Improving the Solution:
15291529
1530- ##### - ** Entering variable** : $x_ {31}$ (most negative reduced cost: $-13$).
1530+ ### - ** Entering variable** : $x_ {31}$ (most negative reduced cost: $-13$).
15311531
15321532### - ** Loop construction** : Adjustments involve $x_ {31}$, $x_ {32}$, $x_ {22}$, and $x_ {21}$, with a minimum adjustment of 10 units.
15331533
1534- ##### - ** Updated solution** :
1534+ ### - ** Updated solution** :
15351535
15361536### - $x_ {31} = 10$, $x_ {21} = 10$, $x_ {22} = 130$, $x_ {32} = 0$.
15371537
@@ -1543,18 +1543,19 @@ x_{31} = 10, x_{21} = 10, x_{22} = 130, x_{32} = 0\
15431543
15441544<br >
15451545
1546- ### [ Step 3] ( ) : Rechecking Optimality:
1546+ ## [ Step 3] ( ) : Rechecking Optimality:
15471547
1548- ##### - ** Recalculated multipliers** (after correction)
1548+ ### - ** Recalculated multipliers** (after correction)
15491549
15501550### - $u =$, $v =$.
15511551
15521552``` latex
15531553u =$, $v =
15541554```
15551555
1556+ <br >
15561557
1557- #### - ** New reduced costs** :
1558+ ### - ** New reduced costs** :
15581559
15591560#### - c̄₁₂ = -4, c̄₁₃ = -6, c̄₂₃ = -2, c̄₃₁ = 0
15601561
@@ -1568,7 +1569,7 @@ u =$, $v =
15681569
15691570### [ Final Solution Status] ( ) :
15701571
1571- #### - The improved solution after one iteration is not optimal. Continued iterations are required, focusing on variables like $x_ {13}$ (reduced cost: $-6$) to further reduce costs.
1572+ ### - The improved solution after one iteration is not optimal. Continued iterations are required, focusing on variables like $x_ {13}$ (reduced cost: $-6$) to further reduce costs.
15721573
15731574#### - The transportation algorithm must [ repeat] ( ) until [ all reduced costs] ( ) are non-negative.
15741575
@@ -1606,9 +1607,9 @@ u =$, $v =
16061607
16071608<br >
16081609
1609- ### [ Step 1] ( ) : Check Optimality (MODI Method)
1610+ ## [ Step 1] ( ) : Check Optimality (MODI Method)
16101611
1611- #### [ 1.1] ( ) - Calculate Dual Variables $\( u_i \) and \( v_j \) $
1612+ ### [ 1.1] ( ) : Calculate Dual Variables $\( u_i \) and \( v_j \) $
16121613
16131614For basic variables, solve the equation $u_i + v_j = c_ {ij}$:
16141615
@@ -1618,10 +1619,20 @@ For basic variables, solve the equation $u_i + v_j = c_{ij}$:
16181619 - $u_2 + v_2 = 24 \implies v_2 = 18$
16191620 - $u_3 + v_2 = 15 \implies u_3 = -3$
16201621 - $u_3 + v_3 = 34 \implies v_3 = 37$
1622+
1623+
1624+ ``` latex
1625+ Let \( u_1 = 0 \):
1626+ - \( u_1 + v_1 = 12 \implies v_1 = 12 \)
1627+ - \( u_2 + v_1 = 18 \implies u_2 = 6 \)
1628+ - \( u_2 + v_2 = 24 \implies v_2 = 18 \)
1629+ - \( u_3 + v_2 = 15 \implies u_3 = -3 \)
1630+ - \( u_3 + v_3 = 34 \implies v_3 = 37 \)
1631+ ```
16211632
16221633 <br >
16231634
1624- #### ** Result:**
1635+ ### ** Result:**
16251636
16261637$$
16271638\begin{align*}
@@ -1640,7 +1651,7 @@ v_1 &= 12, \quad v_2 = 18, \quad v_3 = 37
16401651
16411652<br >
16421653
1643- #### [ 1.2] ( ) - Compute Reduced Costs for Non-Basic Variables
1654+ ### [ 1.2] ( ) : Compute Reduced Costs for Non-Basic Variables
16441655
16451656$$
16461657\bar{c}_{ij} = u_i + v_j - c_{ij}
@@ -1653,7 +1664,20 @@ $$
16531664
16541665<br >
16551666
1667+ Non-Basic Variable | Reduced Cost | Value |
1668+ | --------------------| ---------------------------| --------|
1669+ | \( x_ {12} \) | \( 0 + 18 - 22 = -4 \) | \( -4\) |
1670+ | \( x_ {13} \) | \( 0 + 37 - 30 = 7 \) | \( 7\) |
1671+ | \( x_ {23} \) | \( 6 + 37 - 32 = 11 \) | \( 11\) |
1672+ | \( x_ {31} \) | \( -3 + 12 - 22 = -13 \) | \( -13\) |
1673+
1674+ <br >
1675+
1676+ ### ** Conclusion:** Negative reduced costs $\( x_ {12}, x_ {31} \) $ indicate the [ solution is ** not optimal] ( ) ** .
1677+
1678+ <br >
16561679
1680+ ## [ Step 2] ( ) : Improve the Solution
16571681
16581682
16591683
0 commit comments