Skip to content

Commit fd115f2

Browse files
Merge pull request #856 from Quantum-Software-Development/FabianaCampanari-patch-1
Update README.md
2 parents 25fedf2 + 185a9b0 commit fd115f2

File tree

1 file changed

+46
-22
lines changed

1 file changed

+46
-22
lines changed

README.md

Lines changed: 46 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -1074,7 +1074,7 @@ x_2 = 2 → horizontal line
10741074

10751075
<br>
10761076

1077-
### [Step 2]() ➢ Identify the Feasible Region:
1077+
## [Step 2]() ➢ Identify the Feasible Region:
10781078

10791079
- The feasible region is the intersection of all shaded regions that satisfy the constraints.
10801080
- Must include $x_1 \geq 0$ and $x_2 \geq 0$.
@@ -1087,7 +1087,7 @@ x_1 \geq 0$ and $x_2 \geq 0
10871087

10881088
<br><br>
10891089

1090-
### [Step 3]() ➢ Find Intersection Points (Vertices):
1090+
## [Step 3]() ➢ Find Intersection Points (Vertices):
10911091

10921092
<br>
10931093

@@ -1142,7 +1142,7 @@ Intersection of x_1 + 3x_2 = 7 and 2x_1 + 2x_2 = 8:
11421142

11431143
<br><br>
11441144

1145-
### [Step 4]() ➢ Evaluate Objective Function at Each Vertex:
1145+
## [Step 4]() ➢ Evaluate Objective Function at Each Vertex:
11461146

11471147
## Feasible Vertices:
11481148

@@ -1230,7 +1230,7 @@ The transportation problem is a type of **linear programming** model where the o
12301230

12311231
<br>
12321232

1233-
### [The Case of Unbalanced Systems]():
1233+
## [The Case of Unbalanced Systems]():
12341234

12351235
The standard transportation model assumes total supply equals total demand. However, in real-world scenarios, systems can be **unbalanced**.
12361236

@@ -1404,7 +1404,7 @@ This is a method to generate an initial feasible solution without considering tr
14041404

14051405
<br>
14061406

1407-
### [Steps]():
1407+
## [Steps]():
14081408

14091409
1. **Start in the top-left (northwest) corner** of the transportation table.
14101410
- This is always cell $begin:math:text$ x_{11} $end:math:text$.
@@ -1426,7 +1426,7 @@ This method takes into account the transportation costs to guide the initial all
14261426

14271427
<br>
14281428

1429-
### [Steps]():
1429+
## [Steps]():
14301430

14311431
1. **Identify the cell with the lowest unit cost** in the cost matrix among the remaining unallocated cells.
14321432
2. **Allocate as much as possible** to this cell, without exceeding supply or demand constraints.
@@ -1496,7 +1496,7 @@ The initial solution obtained via the Northwest Corner Method has a total cost o
14961496

14971497
<br>
14981498

1499-
### [Step 1](): Optimality Check Using Multipliers
1499+
## [Step 1](): Optimality Check Using Multipliers
15001500

15011501
#### - [**Multipliers calculation**]():
15021502

@@ -1509,10 +1509,10 @@ u_1 = 0, leading to v_1 = 12, u_2 = 6, v_2 = 18, u_3 = -3, and v_3 = 37.
15091509

15101510
### - [**Reduced costs** for non-basic variables]():
15111511

1512-
#### - $\bar{c}_{12} = -4$
1513-
#### - $\bar{c}_{13} = 7$
1514-
#### - $\bar{c}_{23} = 11$
1515-
#### - $\bar{c}_{31} = -13$
1512+
### - $\bar{c}_{12} = -4$
1513+
### - $\bar{c}_{13} = 7$
1514+
### - $\bar{c}_{23} = 11$
1515+
### - $\bar{c}_{31} = -13$
15161516

15171517
```latex
15181518
\bar{c}_{12} = -4
@@ -1521,17 +1521,17 @@ u_1 = 0, leading to v_1 = 12, u_2 = 6, v_2 = 18, u_3 = -3, and v_3 = 37.
15211521
\bar{c}_{31} = -13
15221522
```
15231523

1524-
#### - [**Negative reduced costs indicate non-optimality**]().
1524+
### - [**Negative reduced costs indicate non-optimality**]().
15251525

15261526
<br>
15271527

15281528
## [Step 2](): Improving the Solution:
15291529

1530-
##### - **Entering variable**: $x_{31}$ (most negative reduced cost: $-13$).
1530+
### - **Entering variable**: $x_{31}$ (most negative reduced cost: $-13$).
15311531

15321532
### - **Loop construction**: Adjustments involve $x_{31}$, $x_{32}$, $x_{22}$, and $x_{21}$, with a minimum adjustment of 10 units.
15331533

1534-
##### - **Updated solution**:
1534+
### - **Updated solution**:
15351535

15361536
### - $x_{31} = 10$, $x_{21} = 10$, $x_{22} = 130$, $x_{32} = 0$.
15371537

@@ -1543,18 +1543,19 @@ x_{31} = 10, x_{21} = 10, x_{22} = 130, x_{32} = 0\
15431543

15441544
<br>
15451545

1546-
### [Step 3](): Rechecking Optimality:
1546+
## [Step 3](): Rechecking Optimality:
15471547

1548-
##### - **Recalculated multipliers** (after correction)
1548+
### - **Recalculated multipliers** (after correction)
15491549

15501550
### - $u =$, $v =$.
15511551

15521552
```latex
15531553
u =$, $v =
15541554
```
15551555

1556+
<br>
15561557

1557-
#### - **New reduced costs**:
1558+
### - **New reduced costs**:
15581559

15591560
#### - c̄₁₂ = -4, c̄₁₃ = -6, c̄₂₃ = -2, c̄₃₁ = 0
15601561

@@ -1568,7 +1569,7 @@ u =$, $v =
15681569

15691570
### [Final Solution Status]():
15701571

1571-
#### - The improved solution after one iteration is not optimal. Continued iterations are required, focusing on variables like $x_{13}$ (reduced cost: $-6$) to further reduce costs.
1572+
### - The improved solution after one iteration is not optimal. Continued iterations are required, focusing on variables like $x_{13}$ (reduced cost: $-6$) to further reduce costs.
15721573

15731574
#### - The transportation algorithm must [repeat]() until [all reduced costs]() are non-negative.
15741575

@@ -1606,9 +1607,9 @@ u =$, $v =
16061607

16071608
<br>
16081609

1609-
### [Step 1](): Check Optimality (MODI Method)
1610+
## [Step 1](): Check Optimality (MODI Method)
16101611

1611-
#### [1.1]() - Calculate Dual Variables $\( u_i \) and \( v_j \)$
1612+
### [1.1](): Calculate Dual Variables $\( u_i \) and \( v_j \)$
16121613

16131614
For basic variables, solve the equation $u_i + v_j = c_{ij}$:
16141615

@@ -1618,10 +1619,20 @@ For basic variables, solve the equation $u_i + v_j = c_{ij}$:
16181619
- $u_2 + v_2 = 24 \implies v_2 = 18$
16191620
- $u_3 + v_2 = 15 \implies u_3 = -3$
16201621
- $u_3 + v_3 = 34 \implies v_3 = 37$
1622+
1623+
1624+
```latex
1625+
Let \( u_1 = 0 \):
1626+
- \( u_1 + v_1 = 12 \implies v_1 = 12 \)
1627+
- \( u_2 + v_1 = 18 \implies u_2 = 6 \)
1628+
- \( u_2 + v_2 = 24 \implies v_2 = 18 \)
1629+
- \( u_3 + v_2 = 15 \implies u_3 = -3 \)
1630+
- \( u_3 + v_3 = 34 \implies v_3 = 37 \)
1631+
```
16211632

16221633
<br>
16231634

1624-
#### **Result:**
1635+
### **Result:**
16251636

16261637
$$
16271638
\begin{align*}
@@ -1640,7 +1651,7 @@ v_1 &= 12, \quad v_2 = 18, \quad v_3 = 37
16401651

16411652
<br>
16421653

1643-
#### [1.2]() - Compute Reduced Costs for Non-Basic Variables
1654+
### [1.2](): Compute Reduced Costs for Non-Basic Variables
16441655

16451656
$$
16461657
\bar{c}_{ij} = u_i + v_j - c_{ij}
@@ -1653,7 +1664,20 @@ $$
16531664

16541665
<br>
16551666

1667+
Non-Basic Variable | Reduced Cost | Value |
1668+
|--------------------|---------------------------|--------|
1669+
| \( x_{12} \) | \( 0 + 18 - 22 = -4 \) | \(-4\) |
1670+
| \( x_{13} \) | \( 0 + 37 - 30 = 7 \) | \(7\) |
1671+
| \( x_{23} \) | \( 6 + 37 - 32 = 11 \) | \(11\) |
1672+
| \( x_{31} \) | \( -3 + 12 - 22 = -13 \) | \(-13\)|
1673+
1674+
<br>
1675+
1676+
### **Conclusion:** Negative reduced costs $\( x_{12}, x_{31} \)$ indicate the [solution is **not optimal]()**.
1677+
1678+
<br>
16561679

1680+
## [Step 2](): Improve the Solution
16571681

16581682

16591683

0 commit comments

Comments
 (0)