@@ -1608,16 +1608,50 @@ u =$, $v =
16081608
16091609### [ Step 1] ( ) : Check Optimality (MODI Method)
16101610
1611- #### ** 1.1 Calculate Dual Variables \( u_i \) and \( v_j \) **
1611+ #### [ 1.1] ( ) - Calculate Dual Variables $ \( u_i \) and \( v_j \) $
16121612
1613- For basic variables, solve $ \( u_i + v_j = c_ {ij} \) $:
1613+ For basic variables, solve the equation $ u_i + v_j = c_ {ij}$:
16141614
1615- - Let \( u_1 = 0 \) :
1616- - $\( u_1 + v_1 = 12 \implies v_1 = 12 \)
1617- - \( u_2 + v_1 = 18 \implies u_2 = 6 \)
1618- - \( u_2 + v_2 = 24 \implies v_2 = 18 \)
1619- - \( u_3 + v_2 = 15 \implies u_3 = -3 \)
1620- - \( u_3 + v_3 = 34 \implies v_3 = 37 \)
1615+ - Let $u_1 = 0$:
1616+ - $u_1 + v_1 = 12 \implies v_1 = 12$
1617+ - $u_2 + v_1 = 18 \implies u_2 = 6$
1618+ - $u_2 + v_2 = 24 \implies v_2 = 18$
1619+ - $u_3 + v_2 = 15 \implies u_3 = -3$
1620+ - $u_3 + v_3 = 34 \implies v_3 = 37$
1621+
1622+ <br >
1623+
1624+ #### ** Result:**
1625+
1626+ $$
1627+ \begin{align*}
1628+ u_1 &= 0, \quad u_2 = 6, \quad u_3 = -3 \\
1629+ v_1 &= 12, \quad v_2 = 18, \quad v_3 = 37
1630+ \end{align*}
1631+ $$
1632+
1633+
1634+ ``` latex
1635+ \begin{align*}
1636+ u_1 &= 0, \quad u_2 = 6, \quad u_3 = -3 \\
1637+ v_1 &= 12, \quad v_2 = 18, \quad v_3 = 37
1638+ \end{align*}
1639+ ```
1640+
1641+ <br >
1642+
1643+ #### [ 1.2] ( ) - Compute Reduced Costs for Non-Basic Variables
1644+
1645+ $$
1646+ \bar{c}_{ij} = u_i + v_j - c_{ij}
1647+ $$
1648+
1649+
1650+ ``` latex
1651+ \bar{c}_{ij} = u_i + v_j - c_{ij}
1652+ ```
1653+
1654+ <br >
16211655
16221656
16231657
0 commit comments