The Python for Data Science Piscine project, is a collection of progressive modules to get familiar with the tools needed in AI/Data science... Let's dive in! 🌟
- Python basics and syntax fundamentals 🐍
- Data types and structures 🔢
- Script creation and function implementation 🛠️
- Error handling and argument parsing
⚠️
- Lists, tuples, sets, and dictionaries
- String manipulation and formatting
- Type checking and NULL handling
- Command-line arguments
- Basic package creation
- Basic error handling
- First standalone programs
- Arguments handling
- Package management
- Error assertions
- Main function structure
- Array manipulation and operations 📊
- Image processing fundamentals 🖼️
- NumPy array operations 🔢
- Basic data visualization 📉
- 2D array operations
- Image loading and manipulation
- RGB color handling
- Array slicing and transformation
- Basic image filters
- Data visualization foundations
NumPyarrays- Image processing
- RGB channels
- Array slicing
- Matrix operations
- Data visualization
- Pixel manipulation
- Dataset loading and manipulation 📂
- Data visualization techniques 📉
- Statistical analysis 📊
- Real-world data handling 🌍
- CSV file handling
- Data visualization with
matplotlib - Country-specific data analysis
- Population data analysis
- Life expectancy analysis
- Data correlation studies
PandasDataFrame- Data visualization
- Statistical analysis
- CSV manipulation
- Time series
- Data correlation
Matplotlib
- OOP principles and implementation 🧑💻
- Class inheritance and abstraction 🏰
- Method decorators 🎨
- Property management 🏡
- Abstract class creation
- Multiple inheritance
- Class properties and methods
- Vector calculations
- Advanced class design patterns
- Classes
- Inheritance
- Abstract methods
- Properties
- Decorators
- Method overriding
- Vector operations
- Advanced data structures 🏗️
- Performance optimization ⚡
- Functional programming concepts 🔄
- Design patterns 🧩
- Statistics calculation
- Function decorators
- Data class implementation
- Inner/Outer functions
- Call limiting patterns
- Data classes
- Decorators
- Statistics
- Function wrappers
- Design patterns
- Performance optimization
- Functional programming