Skip to content

HoudaChairi/Python_for_Data_Science

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

68 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

📊 42 Python for Data Science Piscine

📚 Overview

The Python for Data Science Piscine project, is a collection of progressive modules to get familiar with the tools needed in AI/Data science... Let's dive in! 🌟


🎯 Detailed Module Breakdown

Module 0: Starting

Core Concepts:

  • Python basics and syntax fundamentals 🐍
  • Data types and structures 🔢
  • Script creation and function implementation 🛠️
  • Error handling and argument parsing ⚠️

Key Topics:

  • Lists, tuples, sets, and dictionaries
  • String manipulation and formatting
  • Type checking and NULL handling
  • Command-line arguments
  • Basic package creation
  • Basic error handling
  • First standalone programs

Keywords:

  • Arguments handling
  • Package management
  • Error assertions
  • Main function structure

Module 1: Array

Core Concepts:

  • Array manipulation and operations 📊
  • Image processing fundamentals 🖼️
  • NumPy array operations 🔢
  • Basic data visualization 📉

Key Topics:

  • 2D array operations
  • Image loading and manipulation
  • RGB color handling
  • Array slicing and transformation
  • Basic image filters
  • Data visualization foundations

Keywords:

  • NumPy arrays
  • Image processing
  • RGB channels
  • Array slicing
  • Matrix operations
  • Data visualization
  • Pixel manipulation

Module 2: DataTable

Core Concepts:

  • Dataset loading and manipulation 📂
  • Data visualization techniques 📉
  • Statistical analysis 📊
  • Real-world data handling 🌍

Key Topics:

  • CSV file handling
  • Data visualization with matplotlib
  • Country-specific data analysis
  • Population data analysis
  • Life expectancy analysis
  • Data correlation studies

Keywords:

  • Pandas DataFrame
  • Data visualization
  • Statistical analysis
  • CSV manipulation
  • Time series
  • Data correlation
  • Matplotlib

Module 3: Object-Oriented Programming

Core Concepts:

  • OOP principles and implementation 🧑‍💻
  • Class inheritance and abstraction 🏰
  • Method decorators 🎨
  • Property management 🏡

Key Topics:

  • Abstract class creation
  • Multiple inheritance
  • Class properties and methods
  • Vector calculations
  • Advanced class design patterns

Keywords:

  • Classes
  • Inheritance
  • Abstract methods
  • Properties
  • Decorators
  • Method overriding
  • Vector operations

Module 4: Data-Oriented Design (DOD)

Core Concepts:

  • Advanced data structures 🏗️
  • Performance optimization ⚡
  • Functional programming concepts 🔄
  • Design patterns 🧩

Key Topics:

  • Statistics calculation
  • Function decorators
  • Data class implementation
  • Inner/Outer functions
  • Call limiting patterns

Keywords:

  • Data classes
  • Decorators
  • Statistics
  • Function wrappers
  • Design patterns
  • Performance optimization
  • Functional programming

About

Python piscine to get familiar with the tools needed in AI/Data science...

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages