Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions src/maxdiffusion/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,11 @@
],
}

if is_flax_available():
from flax import config as flax_config

flax_config.update("flax_always_shard_variable", False)

try:
if not is_onnx_available():
raise OptionalDependencyNotAvailable()
Expand Down
6 changes: 3 additions & 3 deletions src/maxdiffusion/configuration_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -376,11 +376,11 @@ def load_config(
if os.path.isfile(pretrained_model_name_or_path):
config_file = pretrained_model_name_or_path
elif os.path.isdir(pretrained_model_name_or_path):
if os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)):
if subfolder is not None and os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)):
config_file = os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)):
# Load from a PyTorch checkpoint
config_file = os.path.join(pretrained_model_name_or_path, cls.config_name)
elif subfolder is not None and os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)):
config_file = os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
else:
raise EnvironmentError(f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}.")
else:
Expand Down
26 changes: 14 additions & 12 deletions src/maxdiffusion/trainers/wan_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -444,19 +444,21 @@ def loss_fn(params):
noise = jax.random.normal(key=new_rng, shape=latents.shape, dtype=latents.dtype)
noisy_latents = scheduler.add_noise(scheduler_state, latents, noise, timesteps)

model_pred = model(
hidden_states=noisy_latents,
timestep=timesteps,
encoder_hidden_states=encoder_hidden_states,
deterministic=False,
rngs=nnx.Rngs(dropout_rng),
)
with jax.named_scope("forward_pass"):
model_pred = model(
hidden_states=noisy_latents,
timestep=timesteps,
encoder_hidden_states=encoder_hidden_states,
deterministic=False,
rngs=nnx.Rngs(dropout_rng),
)

training_target = scheduler.training_target(latents, noise, timesteps)
training_weight = jnp.expand_dims(scheduler.training_weight(scheduler_state, timesteps), axis=(1, 2, 3, 4))
loss = (training_target - model_pred) ** 2
loss = loss * training_weight
loss = jnp.mean(loss)
with jax.named_scope("loss"):
training_target = scheduler.training_target(latents, noise, timesteps)
training_weight = jnp.expand_dims(scheduler.training_weight(scheduler_state, timesteps), axis=(1, 2, 3, 4))
loss = (training_target - model_pred) ** 2
loss = loss * training_weight
loss = jnp.mean(loss)

return loss

Expand Down
Loading