@@ -5633,15 +5633,15 @@ def set_axis(
56335633 Change the row labels.
56345634
56355635 >>> df.set_axis(["a", "b", "c"], axis="index")
5636- A B
5636+ A B
56375637 a 1 4
56385638 b 2 5
56395639 c 3 6
56405640
56415641 Change the column labels.
56425642
56435643 >>> df.set_axis(["I", "II"], axis="columns")
5644- I II
5644+ I II
56455645 0 1 4
56465646 1 2 5
56475647 2 3 6
@@ -5757,7 +5757,7 @@ def reindex(
57575757 ... index=index,
57585758 ... )
57595759 >>> df
5760- http_status response_time
5760+ http_status response_time
57615761 Firefox 200 0.04
57625762 Chrome 200 0.02
57635763 Safari 404 0.07
@@ -5770,7 +5770,7 @@ def reindex(
57705770
57715771 >>> new_index = ["Safari", "Iceweasel", "Comodo Dragon", "IE10", "Chrome"]
57725772 >>> df.reindex(new_index)
5773- http_status response_time
5773+ http_status response_time
57745774 Safari 404.0 0.07
57755775 Iceweasel NaN NaN
57765776 Comodo Dragon NaN NaN
@@ -5783,15 +5783,15 @@ def reindex(
57835783 ``method`` to fill the ``NaN`` values.
57845784
57855785 >>> df.reindex(new_index, fill_value=0)
5786- http_status response_time
5786+ http_status response_time
57875787 Safari 404 0.07
57885788 Iceweasel 0 0.00
57895789 Comodo Dragon 0 0.00
57905790 IE10 404 0.08
57915791 Chrome 200 0.02
57925792
57935793 >>> df.reindex(new_index, fill_value="missing")
5794- http_status response_time
5794+ http_status response_time
57955795 Safari 404 0.07
57965796 Iceweasel missing missing
57975797 Comodo Dragon missing missing
@@ -5801,7 +5801,7 @@ def reindex(
58015801 We can also reindex the columns.
58025802
58035803 >>> df.reindex(columns=["http_status", "user_agent"])
5804- http_status user_agent
5804+ http_status user_agent
58055805 Firefox 200 NaN
58065806 Chrome 200 NaN
58075807 Safari 404 NaN
@@ -5811,7 +5811,7 @@ def reindex(
58115811 Or we can use "axis-style" keyword arguments
58125812
58135813 >>> df.reindex(["http_status", "user_agent"], axis="columns")
5814- http_status user_agent
5814+ http_status user_agent
58155815 Firefox 200 NaN
58165816 Chrome 200 NaN
58175817 Safari 404 NaN
@@ -9149,7 +9149,7 @@ def eq(self, other, axis: Axis = "columns", level=None) -> DataFrame:
91499149 ... index=["A", "B", "C"],
91509150 ... )
91519151 >>> df
9152- cost revenue
9152+ cost revenue
91539153 A 250 100
91549154 B 150 250
91559155 C 100 300
@@ -9180,7 +9180,7 @@ def eq(self, other, axis: Axis = "columns", level=None) -> DataFrame:
91809180 Use the method to control the broadcast axis:
91819181
91829182 >>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis="index")
9183- cost revenue
9183+ cost revenue
91849184 A True False
91859185 B True True
91869186 C True True
@@ -9209,7 +9209,7 @@ def eq(self, other, axis: Axis = "columns", level=None) -> DataFrame:
92099209 ... {"revenue": [300, 250, 100, 150]}, index=["A", "B", "C", "D"]
92109210 ... )
92119211 >>> other
9212- revenue
9212+ revenue
92139213 A 300
92149214 B 250
92159215 C 100
@@ -9305,7 +9305,7 @@ def ne(self, other, axis: Axis = "columns", level=None) -> DataFrame:
93059305 ... index=["A", "B", "C"],
93069306 ... )
93079307 >>> df
9308- cost revenue
9308+ cost revenue
93099309 A 250 100
93109310 B 150 250
93119311 C 100 300
@@ -9336,7 +9336,7 @@ def ne(self, other, axis: Axis = "columns", level=None) -> DataFrame:
93369336 Use the method to control the broadcast axis:
93379337
93389338 >>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis="index")
9339- cost revenue
9339+ cost revenue
93409340 A True False
93419341 B True True
93429342 C True True
@@ -9365,7 +9365,7 @@ def ne(self, other, axis: Axis = "columns", level=None) -> DataFrame:
93659365 ... {"revenue": [300, 250, 100, 150]}, index=["A", "B", "C", "D"]
93669366 ... )
93679367 >>> other
9368- revenue
9368+ revenue
93699369 A 300
93709370 B 250
93719371 C 100
0 commit comments