diff --git a/content/docs/zkdocs/protocol-primitives/alt-shamir.md b/content/docs/zkdocs/protocol-primitives/alt-shamir.md index 39ae877..61f3043 100644 --- a/content/docs/zkdocs/protocol-primitives/alt-shamir.md +++ b/content/docs/zkdocs/protocol-primitives/alt-shamir.md @@ -14,7 +14,7 @@ These alternative schemes are certainly harder to implement (and to review), and ### Transforming the Inputs Using a Nonzero Function -Suppose we are working over $\z{p}$, where $p=2^{255}-19$. Consider the multiplicative group $\zns{p}$ of integers less than $p$ and relatively prime to $p$. We can define $h\left(m\right)=2^{m}\pmod{p}$. Since $0\not\in \zns{p}$, we know that $h\left(m\right)\neq 0$ for any integer $m$. Since $2$ is a generator of $\zns{p}$, we know that $h\left(m\right)$ has maximal order in $\zns{p}$. +Suppose we are working over $\z{p}$, where $p=2^{255}-19$. Consider the multiplicative group $\zns{p}$ of integers less than $p$ and relatively prime to $p$. We can define $h\left(m\right)=2^{m}\pmod{p}$. Since $0\notin \zns{p}$, we know that $h\left(m\right)\neq 0$ for any integer $m$. Since $2$ is a generator of $\zns{p}$, we know that $h\left(m\right)$ has maximal order in $\zns{p}$. During share generation, given an integer input $x$, define $x'=h\left(x\right)$. Then, generate the corresponding share according to $\left(x',f\left(x'\right)\right)$. Because $x'\neq 0$, counters and external inputs can be used without the risk of generating a zero share. diff --git a/themes/book/assets/menu-reset.js b/themes/book/assets/menu-reset.js index 37cb47b..5e3ada8 100644 --- a/themes/book/assets/menu-reset.js +++ b/themes/book/assets/menu-reset.js @@ -1,7 +1,7 @@ (function() { var menu = document.querySelector("aside .book-menu-content"); addEventListener("beforeunload", function(event) { - localStorage.setItem("menu.scrollTop", menu.scrollTop); + localStorage.setItem("menu.scrollTop", menu.scrollTop || 0); }); menu.scrollTop = localStorage.getItem("menu.scrollTop"); })();