@@ -12,6 +12,7 @@ This page contains a very brief summary of the different governing equation sets
1212- [ Incompressible Navier-Stokes] ( #incompressible-navier-stokes )
1313- [ Incompressible Euler] ( #incompressible-euler )
1414- [ Turbulence Modeling] ( #turbulence-modeling )
15+ - [ Species Transport] ( #species-transport )
1516- [ Elasticity] ( #elasticity )
1617- [ Heat Conduction] ( #heat-conduction )
1718
@@ -169,6 +170,34 @@ Within the turbulence solvers, we discretize the equations in space using a fini
169170
170171---
171172
173+ # Species Transport #
174+
175+ Compatible with ` NAVIER_STOKES ` , ` RANS ` , ` INC_NAVIER_STOKES ` , ` INC_RANS `
176+
177+ $$ \mathcal{R}(U) = \frac{\partial U}{\partial t} + \nabla \cdot \bar{F}^{c}(U) - \nabla \cdot \bar{F}^{v}(U,\nabla U) - S = 0 $$
178+
179+ where the conservative variables (which are also the working variables) are given by
180+
181+ $$ U=\left\lbrace \rho Y_1, ..., \rho Y_{N-1} \right\rbrace ^\mathsf{T} $$
182+
183+ with $$ Y_i $$ $$ [-] $$ being the species mass fraction. And
184+
185+ $$ \sum_{i=0}^N Y_i = 1 \Rightarrow Y_N = 1 - \sum_{i=0}^{N-1} Y_i $$
186+
187+ $$ S $$ is a generic source term, and the convective and viscous fluxes are
188+
189+ $$ \bar{F}^{c}(V) = \left\{\begin{array}{c} \rho Y_1 \bar{v} \\ ... \\\rho Y_{N-1} \, \bar{v} \end{array} \right\} $$
190+
191+ $$ \bar{F}^{v}(V,\nabla V) = \left\{\begin{array}{c} D \nabla Y_{1} \\ ... \\ D \nabla Y_{N-1} \end{array} \right\} $$
192+
193+ with $$ D $$ $$ [m^2/s] $$ being the mass diffusion.
194+
195+ $$ D = D_{lam} + \frac{\mu_T}{Sc_{T}} $$
196+
197+ where $$ \mu_T $$ is the eddy viscosity and $$ Sc_{T} $$ $$ [-] $$ the turbulent Schmidt number.
198+
199+ ---
200+
172201# Elasticity #
173202
174203| Solver | Version |
0 commit comments