Skip to content

Commit cede76e

Browse files
committed
More incompressible tutorials.
1 parent 40020b6 commit cede76e

15 files changed

+133094
-5
lines changed
69.5 KB
Loading
216 KB
Loading
205 KB
Loading
190 KB
Loading
14.6 KB
Loading
70.7 KB
Loading
126 KB
Loading
Lines changed: 282 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,282 @@
1+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2+
% %
3+
% SU2 configuration file %
4+
% Case description: Buoyancy-driven flow inside a cavity %
5+
% Author: Thomas D. Economon %
6+
% Date: 2018.06.10 %
7+
% File Version 6.1.0 "Falcon" %
8+
% %
9+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
10+
11+
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
12+
%
13+
% Physical governing equations (EULER, NAVIER_STOKES,
14+
% WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY,
15+
% POISSON_EQUATION)
16+
PHYSICAL_PROBLEM= NAVIER_STOKES
17+
%
18+
% Regime type (COMPRESSIBLE, INCOMPRESSIBLE, FREESURFACE)
19+
REGIME_TYPE= INCOMPRESSIBLE
20+
%
21+
% Specify turbulent model (NONE, SA, SA_NEG, SST)
22+
KIND_TURB_MODEL= NONE
23+
%
24+
% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT)
25+
MATH_PROBLEM= DIRECT
26+
%
27+
% Restart solution (NO, YES)
28+
RESTART_SOL= NO
29+
30+
% ---------------- INCOMPRESSIBLE FLOW CONDITION DEFINITION -------------------%
31+
%
32+
% Density model within the incompressible flow solver.
33+
% Options are CONSTANT (default), BOUSSINESQ, or VARIABLE. If VARIABLE,
34+
% an appropriate fluid model must be selected.
35+
INC_DENSITY_MODEL= VARIABLE
36+
%
37+
% Solve the energy equation in the incompressible flow solver
38+
INC_ENERGY_EQUATION = YES
39+
%
40+
% Initial density for incompressible flows (1.2886 kg/m^3 by default)
41+
% Uncomment a density below for a desired Rayleigh number
42+
%INC_DENSITY_INIT= 0.00018903539834 % Ra ~ 1e3
43+
%INC_DENSITY_INIT= 0.00059778241716 % Ra ~ 1e4
44+
%INC_DENSITY_INIT= 0.00189035398341 % Ra ~ 1e5
45+
INC_DENSITY_INIT= 0.00597782417156 % Ra ~ 1e6
46+
%
47+
% Initial velocity for incompressible flows (1.0,0,0 m/s by default)
48+
INC_VELOCITY_INIT= ( 1.0, 0.0, 0.0 )
49+
%
50+
% Initial temperature for incompressible flows that include the
51+
% energy equation (288.15 K by default). Value is ignored if
52+
% INC_ENERGY_EQUATION is false.
53+
INC_TEMPERATURE_INIT= 288.15
54+
55+
% ---- IDEAL GAS, POLYTROPIC, VAN DER WAALS AND PENG ROBINSON CONSTANTS -------%
56+
%
57+
% Fluid model (STANDARD_AIR, IDEAL_GAS, VW_GAS, PR_GAS,
58+
% CONSTANT_DENSITY, INC_IDEAL_GAS)
59+
FLUID_MODEL= INC_IDEAL_GAS
60+
%
61+
% Specific heat at constant pressure, Cp (1004.703 J/kg*K (air)).
62+
% Incompressible fluids with energy eqn. only (CONSTANT_DENSITY, INC_IDEAL_GAS).
63+
SPECIFIC_HEAT_CP= 1004.703
64+
%
65+
% Molecular weight for an incompressible ideal gas (28.96 g/mol (air) default)
66+
% Incompressible fluids with energy eqn. only (CONSTANT_DENSITY, INC_IDEAL_GAS).
67+
MOLECULAR_WEIGHT= 28.96
68+
69+
% --------------------------- VISCOSITY MODEL ---------------------------------%
70+
%
71+
% Viscosity model (SUTHERLAND, CONSTANT_VISCOSITY).
72+
VISCOSITY_MODEL= CONSTANT_VISCOSITY
73+
%
74+
% Molecular Viscosity that would be constant (1.716E-5 by default)
75+
MU_CONSTANT= 1.716e-5
76+
77+
% --------------------------- THERMAL CONDUCTIVITY MODEL ----------------------%
78+
%
79+
% Conductivity model (CONSTANT_CONDUCTIVITY, CONSTANT_PRANDTL).
80+
CONDUCTIVITY_MODEL= CONSTANT_CONDUCTIVITY
81+
%
82+
% Molecular Thermal Conductivity that would be constant (0.0257 by default)
83+
KT_CONSTANT= 0.0246295028571
84+
85+
% ----------------------- BODY FORCE DEFINITION -------------------------------%
86+
%
87+
% Apply a body force as a source term (NO, YES)
88+
BODY_FORCE= YES
89+
%
90+
% Vector of body force values (BodyForce_X, BodyForce_Y, BodyForce_Z)
91+
BODY_FORCE_VECTOR= ( 0.0, -9.81, 0.0 )
92+
93+
% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
94+
%
95+
% Reference origin for moment computation
96+
REF_ORIGIN_MOMENT_X = 0.25
97+
REF_ORIGIN_MOMENT_Y = 0.00
98+
REF_ORIGIN_MOMENT_Z = 0.00
99+
%
100+
% Reference area for force coefficients (0 implies automatic calculation)
101+
REF_AREA= 1.0
102+
103+
% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
104+
%
105+
% Navier-Stokes (no-slip), constant heat flux wall marker(s) (NONE = no marker)
106+
% Format: ( marker name, constant heat flux (J/m^2), ... )
107+
MARKER_HEATFLUX= ( upper, 0.0, lower, 0.0 )
108+
%
109+
% Navier-Stokes (no-slip), isothermal wall marker(s) (NONE = no marker)
110+
% Format: ( marker name, constant wall temperature (K), ... )
111+
MARKER_ISOTHERMAL= ( left, 461.04, right, 115.26 )
112+
%
113+
% Marker(s) of the surface to be plotted or designed
114+
MARKER_PLOTTING= ( upper, left, right, lower )
115+
%
116+
% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated
117+
MARKER_MONITORING= ( NONE )
118+
119+
% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
120+
%
121+
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
122+
NUM_METHOD_GRAD= GREEN_GAUSS
123+
%
124+
% Courant-Friedrichs-Lewy condition of the finest grid
125+
CFL_NUMBER= 50.0
126+
%
127+
% Adaptive CFL number (NO, YES)
128+
CFL_ADAPT= NO
129+
%
130+
% Parameters of the adaptive CFL number (factor down, factor up, CFL min value,
131+
% CFL max value )
132+
CFL_ADAPT_PARAM= ( 1.5, 0.5, 15.0, 1e10)
133+
%
134+
% Maximum Delta Time in local time stepping simulations
135+
MAX_DELTA_TIME= 1E6
136+
%
137+
% Runge-Kutta alpha coefficients
138+
RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 )
139+
%
140+
% Number of total iterations
141+
EXT_ITER= 99999
142+
143+
% ------------------------ LINEAR SOLVER DEFINITION ---------------------------%
144+
%
145+
% Linear solver for the implicit (or discrete adjoint) formulation (BCGSTAB, FGMRES)
146+
LINEAR_SOLVER= FGMRES
147+
%
148+
% Preconditioner of the Krylov linear solver (JACOBI, LINELET, LU_SGS)
149+
LINEAR_SOLVER_PREC= ILU
150+
%
151+
% Linael solver ILU preconditioner fill-in level (0 by default)
152+
LINEAR_SOLVER_ILU_FILL_IN= 0
153+
%
154+
% Min error of the linear solver for the implicit formulation
155+
LINEAR_SOLVER_ERROR= 1E-15
156+
%
157+
% Max number of iterations of the linear solver for the implicit formulation
158+
LINEAR_SOLVER_ITER= 10
159+
160+
% -------------------------- MULTIGRID PARAMETERS -----------------------------%
161+
%
162+
% Multi-Grid Levels (0 = no multi-grid)
163+
MGLEVEL= 2
164+
%
165+
% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE)
166+
MGCYCLE= V_CYCLE
167+
%
168+
% Multi-grid pre-smoothing level
169+
MG_PRE_SMOOTH= ( 1, 1, 1, 1 )
170+
%
171+
% Multi-grid post-smoothing level
172+
MG_POST_SMOOTH= ( 0, 0, 0, 0 )
173+
%
174+
% Jacobi implicit smoothing of the correction
175+
MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 )
176+
%
177+
% Damping factor for the residual restriction
178+
MG_DAMP_RESTRICTION= 0.8
179+
%
180+
% Damping factor for the correction prolongation
181+
MG_DAMP_PROLONGATION= 0.8
182+
183+
% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
184+
%
185+
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
186+
% TURKEL_PREC, MSW)
187+
CONV_NUM_METHOD_FLOW= FDS
188+
%
189+
% Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations.
190+
% Required for 2nd order upwind schemes (NO, YES)
191+
MUSCL_FLOW= YES
192+
%
193+
% Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG,
194+
% BARTH_JESPERSEN, VAN_ALBADA_EDGE)
195+
SLOPE_LIMITER_FLOW= NONE
196+
%
197+
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
198+
TIME_DISCRE_FLOW= EULER_IMPLICIT
199+
200+
201+
% --------------------------- CONVERGENCE PARAMETERS --------------------------%
202+
%
203+
% Convergence criteria (CAUCHY, RESIDUAL)
204+
CONV_CRITERIA= RESIDUAL
205+
%
206+
% Residual reduction (order of magnitude with respect to the initial value)
207+
RESIDUAL_REDUCTION= 8
208+
%
209+
% Min value of the residual (log10 of the residual)
210+
RESIDUAL_MINVAL= -12
211+
%
212+
% Start convergence criteria at iteration number
213+
STARTCONV_ITER= 10
214+
%
215+
% Number of elements to apply the criteria
216+
CAUCHY_ELEMS= 100
217+
%
218+
% Epsilon to control the series convergence
219+
CAUCHY_EPS= 1E-6
220+
%
221+
% Function to apply the criteria (LIFT, DRAG, NEARFIELD_PRESS, SENS_GEOMETRY,
222+
% SENS_MACH, DELTA_LIFT, DELTA_DRAG)
223+
CAUCHY_FUNC_FLOW= DRAG
224+
225+
% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
226+
%
227+
% Mesh input file
228+
MESH_FILENAME= mesh_cavity_257x257.su2
229+
%
230+
% Mesh input file format (SU2, CGNS, NETCDF_ASCII)
231+
MESH_FORMAT= SU2
232+
%
233+
% Mesh output file
234+
MESH_OUT_FILENAME= mesh_out.su2
235+
%
236+
% Restart flow input file
237+
SOLUTION_FLOW_FILENAME= solution_flow.dat
238+
%
239+
% Restart adjoint input file
240+
SOLUTION_ADJ_FILENAME= solution_adj.dat
241+
%
242+
% Output file format (PARAVIEW, TECPLOT, STL)
243+
OUTPUT_FORMAT= PARAVIEW
244+
%
245+
% Output file convergence history (w/o extension)
246+
CONV_FILENAME= history
247+
%
248+
% Output file restart flow
249+
RESTART_FLOW_FILENAME= restart_flow.dat
250+
%
251+
% Output file restart adjoint
252+
RESTART_ADJ_FILENAME= restart_adj.dat
253+
%
254+
% Output file flow (w/o extension) variables
255+
VOLUME_FLOW_FILENAME= flow
256+
%
257+
% Output file adjoint (w/o extension) variables
258+
VOLUME_ADJ_FILENAME= adjoint
259+
%
260+
% Output objective function gradient (using continuous adjoint)
261+
GRAD_OBJFUNC_FILENAME= of_grad.dat
262+
%
263+
% Output file surface flow coefficient (w/o extension)
264+
SURFACE_FLOW_FILENAME= surface_flow
265+
%
266+
% Output file surface adjoint coefficient (w/o extension)
267+
SURFACE_ADJ_FILENAME= surface_adjoint
268+
%
269+
% Writing solution file frequency
270+
WRT_SOL_FREQ= 100
271+
%
272+
% Writing convergence history frequency
273+
WRT_CON_FREQ= 1
274+
275+
% ----------------------- GEOMETRY EVALUATION PARAMETERS ----------------------%
276+
%
277+
% Extract a slice using GEO_BOUNDS (works with 2D cartesian grids only)
278+
WRT_SLICE= YES
279+
%
280+
% Geometrical bounds (Y coordinate) for the wing geometry analysis or
281+
% fuselage evaluation (X coordinate).
282+
GEO_BOUNDS= ( 0.499, 0.501)

0 commit comments

Comments
 (0)