|
| 1 | +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 2 | +% % |
| 3 | +% SU2 configuration file % |
| 4 | +% Case description: Buoyancy-driven flow inside a cavity % |
| 5 | +% Author: Thomas D. Economon % |
| 6 | +% Date: 2018.06.10 % |
| 7 | +% File Version 6.1.0 "Falcon" % |
| 8 | +% % |
| 9 | +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 10 | + |
| 11 | +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% |
| 12 | +% |
| 13 | +% Physical governing equations (EULER, NAVIER_STOKES, |
| 14 | +% WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY, |
| 15 | +% POISSON_EQUATION) |
| 16 | +PHYSICAL_PROBLEM= NAVIER_STOKES |
| 17 | +% |
| 18 | +% Regime type (COMPRESSIBLE, INCOMPRESSIBLE, FREESURFACE) |
| 19 | +REGIME_TYPE= INCOMPRESSIBLE |
| 20 | +% |
| 21 | +% Specify turbulent model (NONE, SA, SA_NEG, SST) |
| 22 | +KIND_TURB_MODEL= NONE |
| 23 | +% |
| 24 | +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) |
| 25 | +MATH_PROBLEM= DIRECT |
| 26 | +% |
| 27 | +% Restart solution (NO, YES) |
| 28 | +RESTART_SOL= NO |
| 29 | + |
| 30 | +% ---------------- INCOMPRESSIBLE FLOW CONDITION DEFINITION -------------------% |
| 31 | +% |
| 32 | +% Density model within the incompressible flow solver. |
| 33 | +% Options are CONSTANT (default), BOUSSINESQ, or VARIABLE. If VARIABLE, |
| 34 | +% an appropriate fluid model must be selected. |
| 35 | +INC_DENSITY_MODEL= VARIABLE |
| 36 | +% |
| 37 | +% Solve the energy equation in the incompressible flow solver |
| 38 | +INC_ENERGY_EQUATION = YES |
| 39 | +% |
| 40 | +% Initial density for incompressible flows (1.2886 kg/m^3 by default) |
| 41 | +% Uncomment a density below for a desired Rayleigh number |
| 42 | +%INC_DENSITY_INIT= 0.00018903539834 % Ra ~ 1e3 |
| 43 | +%INC_DENSITY_INIT= 0.00059778241716 % Ra ~ 1e4 |
| 44 | +%INC_DENSITY_INIT= 0.00189035398341 % Ra ~ 1e5 |
| 45 | +INC_DENSITY_INIT= 0.00597782417156 % Ra ~ 1e6 |
| 46 | +% |
| 47 | +% Initial velocity for incompressible flows (1.0,0,0 m/s by default) |
| 48 | +INC_VELOCITY_INIT= ( 1.0, 0.0, 0.0 ) |
| 49 | +% |
| 50 | +% Initial temperature for incompressible flows that include the |
| 51 | +% energy equation (288.15 K by default). Value is ignored if |
| 52 | +% INC_ENERGY_EQUATION is false. |
| 53 | +INC_TEMPERATURE_INIT= 288.15 |
| 54 | + |
| 55 | +% ---- IDEAL GAS, POLYTROPIC, VAN DER WAALS AND PENG ROBINSON CONSTANTS -------% |
| 56 | +% |
| 57 | +% Fluid model (STANDARD_AIR, IDEAL_GAS, VW_GAS, PR_GAS, |
| 58 | +% CONSTANT_DENSITY, INC_IDEAL_GAS) |
| 59 | +FLUID_MODEL= INC_IDEAL_GAS |
| 60 | +% |
| 61 | +% Specific heat at constant pressure, Cp (1004.703 J/kg*K (air)). |
| 62 | +% Incompressible fluids with energy eqn. only (CONSTANT_DENSITY, INC_IDEAL_GAS). |
| 63 | +SPECIFIC_HEAT_CP= 1004.703 |
| 64 | +% |
| 65 | +% Molecular weight for an incompressible ideal gas (28.96 g/mol (air) default) |
| 66 | +% Incompressible fluids with energy eqn. only (CONSTANT_DENSITY, INC_IDEAL_GAS). |
| 67 | +MOLECULAR_WEIGHT= 28.96 |
| 68 | + |
| 69 | +% --------------------------- VISCOSITY MODEL ---------------------------------% |
| 70 | +% |
| 71 | +% Viscosity model (SUTHERLAND, CONSTANT_VISCOSITY). |
| 72 | +VISCOSITY_MODEL= CONSTANT_VISCOSITY |
| 73 | +% |
| 74 | +% Molecular Viscosity that would be constant (1.716E-5 by default) |
| 75 | +MU_CONSTANT= 1.716e-5 |
| 76 | + |
| 77 | +% --------------------------- THERMAL CONDUCTIVITY MODEL ----------------------% |
| 78 | +% |
| 79 | +% Conductivity model (CONSTANT_CONDUCTIVITY, CONSTANT_PRANDTL). |
| 80 | +CONDUCTIVITY_MODEL= CONSTANT_CONDUCTIVITY |
| 81 | +% |
| 82 | +% Molecular Thermal Conductivity that would be constant (0.0257 by default) |
| 83 | +KT_CONSTANT= 0.0246295028571 |
| 84 | + |
| 85 | +% ----------------------- BODY FORCE DEFINITION -------------------------------% |
| 86 | +% |
| 87 | +% Apply a body force as a source term (NO, YES) |
| 88 | +BODY_FORCE= YES |
| 89 | +% |
| 90 | +% Vector of body force values (BodyForce_X, BodyForce_Y, BodyForce_Z) |
| 91 | +BODY_FORCE_VECTOR= ( 0.0, -9.81, 0.0 ) |
| 92 | + |
| 93 | +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% |
| 94 | +% |
| 95 | +% Reference origin for moment computation |
| 96 | +REF_ORIGIN_MOMENT_X = 0.25 |
| 97 | +REF_ORIGIN_MOMENT_Y = 0.00 |
| 98 | +REF_ORIGIN_MOMENT_Z = 0.00 |
| 99 | +% |
| 100 | +% Reference area for force coefficients (0 implies automatic calculation) |
| 101 | +REF_AREA= 1.0 |
| 102 | + |
| 103 | +% -------------------- BOUNDARY CONDITION DEFINITION --------------------------% |
| 104 | +% |
| 105 | +% Navier-Stokes (no-slip), constant heat flux wall marker(s) (NONE = no marker) |
| 106 | +% Format: ( marker name, constant heat flux (J/m^2), ... ) |
| 107 | +MARKER_HEATFLUX= ( upper, 0.0, lower, 0.0 ) |
| 108 | +% |
| 109 | +% Navier-Stokes (no-slip), isothermal wall marker(s) (NONE = no marker) |
| 110 | +% Format: ( marker name, constant wall temperature (K), ... ) |
| 111 | +MARKER_ISOTHERMAL= ( left, 461.04, right, 115.26 ) |
| 112 | +% |
| 113 | +% Marker(s) of the surface to be plotted or designed |
| 114 | +MARKER_PLOTTING= ( upper, left, right, lower ) |
| 115 | +% |
| 116 | +% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated |
| 117 | +MARKER_MONITORING= ( NONE ) |
| 118 | + |
| 119 | +% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% |
| 120 | +% |
| 121 | +% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES) |
| 122 | +NUM_METHOD_GRAD= GREEN_GAUSS |
| 123 | +% |
| 124 | +% Courant-Friedrichs-Lewy condition of the finest grid |
| 125 | +CFL_NUMBER= 50.0 |
| 126 | +% |
| 127 | +% Adaptive CFL number (NO, YES) |
| 128 | +CFL_ADAPT= NO |
| 129 | +% |
| 130 | +% Parameters of the adaptive CFL number (factor down, factor up, CFL min value, |
| 131 | +% CFL max value ) |
| 132 | +CFL_ADAPT_PARAM= ( 1.5, 0.5, 15.0, 1e10) |
| 133 | +% |
| 134 | +% Maximum Delta Time in local time stepping simulations |
| 135 | +MAX_DELTA_TIME= 1E6 |
| 136 | +% |
| 137 | +% Runge-Kutta alpha coefficients |
| 138 | +RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 ) |
| 139 | +% |
| 140 | +% Number of total iterations |
| 141 | +EXT_ITER= 99999 |
| 142 | + |
| 143 | +% ------------------------ LINEAR SOLVER DEFINITION ---------------------------% |
| 144 | +% |
| 145 | +% Linear solver for the implicit (or discrete adjoint) formulation (BCGSTAB, FGMRES) |
| 146 | +LINEAR_SOLVER= FGMRES |
| 147 | +% |
| 148 | +% Preconditioner of the Krylov linear solver (JACOBI, LINELET, LU_SGS) |
| 149 | +LINEAR_SOLVER_PREC= ILU |
| 150 | +% |
| 151 | +% Linael solver ILU preconditioner fill-in level (0 by default) |
| 152 | +LINEAR_SOLVER_ILU_FILL_IN= 0 |
| 153 | +% |
| 154 | +% Min error of the linear solver for the implicit formulation |
| 155 | +LINEAR_SOLVER_ERROR= 1E-15 |
| 156 | +% |
| 157 | +% Max number of iterations of the linear solver for the implicit formulation |
| 158 | +LINEAR_SOLVER_ITER= 10 |
| 159 | + |
| 160 | +% -------------------------- MULTIGRID PARAMETERS -----------------------------% |
| 161 | +% |
| 162 | +% Multi-Grid Levels (0 = no multi-grid) |
| 163 | +MGLEVEL= 2 |
| 164 | +% |
| 165 | +% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE) |
| 166 | +MGCYCLE= V_CYCLE |
| 167 | +% |
| 168 | +% Multi-grid pre-smoothing level |
| 169 | +MG_PRE_SMOOTH= ( 1, 1, 1, 1 ) |
| 170 | +% |
| 171 | +% Multi-grid post-smoothing level |
| 172 | +MG_POST_SMOOTH= ( 0, 0, 0, 0 ) |
| 173 | +% |
| 174 | +% Jacobi implicit smoothing of the correction |
| 175 | +MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 ) |
| 176 | +% |
| 177 | +% Damping factor for the residual restriction |
| 178 | +MG_DAMP_RESTRICTION= 0.8 |
| 179 | +% |
| 180 | +% Damping factor for the correction prolongation |
| 181 | +MG_DAMP_PROLONGATION= 0.8 |
| 182 | + |
| 183 | +% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% |
| 184 | +% |
| 185 | +% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, |
| 186 | +% TURKEL_PREC, MSW) |
| 187 | +CONV_NUM_METHOD_FLOW= FDS |
| 188 | +% |
| 189 | +% Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations. |
| 190 | +% Required for 2nd order upwind schemes (NO, YES) |
| 191 | +MUSCL_FLOW= YES |
| 192 | +% |
| 193 | +% Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG, |
| 194 | +% BARTH_JESPERSEN, VAN_ALBADA_EDGE) |
| 195 | +SLOPE_LIMITER_FLOW= NONE |
| 196 | +% |
| 197 | +% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) |
| 198 | +TIME_DISCRE_FLOW= EULER_IMPLICIT |
| 199 | + |
| 200 | + |
| 201 | +% --------------------------- CONVERGENCE PARAMETERS --------------------------% |
| 202 | +% |
| 203 | +% Convergence criteria (CAUCHY, RESIDUAL) |
| 204 | +CONV_CRITERIA= RESIDUAL |
| 205 | +% |
| 206 | +% Residual reduction (order of magnitude with respect to the initial value) |
| 207 | +RESIDUAL_REDUCTION= 8 |
| 208 | +% |
| 209 | +% Min value of the residual (log10 of the residual) |
| 210 | +RESIDUAL_MINVAL= -12 |
| 211 | +% |
| 212 | +% Start convergence criteria at iteration number |
| 213 | +STARTCONV_ITER= 10 |
| 214 | +% |
| 215 | +% Number of elements to apply the criteria |
| 216 | +CAUCHY_ELEMS= 100 |
| 217 | +% |
| 218 | +% Epsilon to control the series convergence |
| 219 | +CAUCHY_EPS= 1E-6 |
| 220 | +% |
| 221 | +% Function to apply the criteria (LIFT, DRAG, NEARFIELD_PRESS, SENS_GEOMETRY, |
| 222 | +% SENS_MACH, DELTA_LIFT, DELTA_DRAG) |
| 223 | +CAUCHY_FUNC_FLOW= DRAG |
| 224 | + |
| 225 | +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% |
| 226 | +% |
| 227 | +% Mesh input file |
| 228 | +MESH_FILENAME= mesh_cavity_257x257.su2 |
| 229 | +% |
| 230 | +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) |
| 231 | +MESH_FORMAT= SU2 |
| 232 | +% |
| 233 | +% Mesh output file |
| 234 | +MESH_OUT_FILENAME= mesh_out.su2 |
| 235 | +% |
| 236 | +% Restart flow input file |
| 237 | +SOLUTION_FLOW_FILENAME= solution_flow.dat |
| 238 | +% |
| 239 | +% Restart adjoint input file |
| 240 | +SOLUTION_ADJ_FILENAME= solution_adj.dat |
| 241 | +% |
| 242 | +% Output file format (PARAVIEW, TECPLOT, STL) |
| 243 | +OUTPUT_FORMAT= PARAVIEW |
| 244 | +% |
| 245 | +% Output file convergence history (w/o extension) |
| 246 | +CONV_FILENAME= history |
| 247 | +% |
| 248 | +% Output file restart flow |
| 249 | +RESTART_FLOW_FILENAME= restart_flow.dat |
| 250 | +% |
| 251 | +% Output file restart adjoint |
| 252 | +RESTART_ADJ_FILENAME= restart_adj.dat |
| 253 | +% |
| 254 | +% Output file flow (w/o extension) variables |
| 255 | +VOLUME_FLOW_FILENAME= flow |
| 256 | +% |
| 257 | +% Output file adjoint (w/o extension) variables |
| 258 | +VOLUME_ADJ_FILENAME= adjoint |
| 259 | +% |
| 260 | +% Output objective function gradient (using continuous adjoint) |
| 261 | +GRAD_OBJFUNC_FILENAME= of_grad.dat |
| 262 | +% |
| 263 | +% Output file surface flow coefficient (w/o extension) |
| 264 | +SURFACE_FLOW_FILENAME= surface_flow |
| 265 | +% |
| 266 | +% Output file surface adjoint coefficient (w/o extension) |
| 267 | +SURFACE_ADJ_FILENAME= surface_adjoint |
| 268 | +% |
| 269 | +% Writing solution file frequency |
| 270 | +WRT_SOL_FREQ= 100 |
| 271 | +% |
| 272 | +% Writing convergence history frequency |
| 273 | +WRT_CON_FREQ= 1 |
| 274 | + |
| 275 | +% ----------------------- GEOMETRY EVALUATION PARAMETERS ----------------------% |
| 276 | +% |
| 277 | +% Extract a slice using GEO_BOUNDS (works with 2D cartesian grids only) |
| 278 | +WRT_SLICE= YES |
| 279 | +% |
| 280 | +% Geometrical bounds (Y coordinate) for the wing geometry analysis or |
| 281 | +% fuselage evaluation (X coordinate). |
| 282 | +GEO_BOUNDS= ( 0.499, 0.501) |
0 commit comments