diff --git a/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/README.md b/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/README.md new file mode 100644 index 000000000000..af0a0d30612b --- /dev/null +++ b/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/README.md @@ -0,0 +1,145 @@ + + +# gcusumors + +> Compute the cumulative sum of a one-dimensional ndarray using ordinary recursive summation. + +
+ +
+ + + +
+ +## Usage + +```javascript +var gcusumors = require( '@stdlib/blas/ext/base/ndarray/gcusumors' ); +``` + +#### gcusumors( arrays ) + +Computes the cumulative sum of a one-dimensional ndarray using ordinary recursive summation. + +```javascript +var ndarray2array = require( '@stdlib/ndarray/to-array' ); +var scalar2ndarray = require( '@stdlib/ndarray/base/from-scalar' ); +var ndarray = require( '@stdlib/ndarray/base/ctor' ); + +var xbuf = [ 1.0, 3.0, 4.0, 2.0 ]; +var x = new ndarray( 'generic', xbuf, [ 4 ], [ 1 ], 0, 'row-major' ); + +var ybuf = [ 0.0, 0.0, 0.0, 0.0 ]; +var y = new ndarray( 'generic', ybuf, [ 4 ], [ 1 ], 0, 'row-major' ); + +var initial = scalar2ndarray( 0.0, 'generic', 'row-major' ); + +var v = gcusumors( [ x, y, initial ] ); +// returns + +var bool = ( v === y ); +// returns true + +var arr = ndarray2array( v ); +// returns [ 1.0, 4.0, 8.0, 10.0 ] +``` + +The function has the following parameters: + +- **arrays**: array-like object containing a one-dimensional input ndarray, a one-dimensional output ndarray, and a zero-dimensional ndarray containing the initial sum. + +
+ + + +
+ +## Notes + +- If provided an empty one-dimensional input ndarray, the function returns the output ndarray unchanged. + +
+ + + +
+ +## Examples + + + +```javascript +var discreteUniform = require( '@stdlib/random/array/discrete-uniform' ); +var ndarray = require( '@stdlib/ndarray/base/ctor' ); +var zerosLike = require( '@stdlib/ndarray/zeros-like' ); +var scalar2ndarray = require( '@stdlib/ndarray/from-scalar' ); +var ndarray2array = require( '@stdlib/ndarray/to-array' ); +var gcusumors = require( '@stdlib/blas/ext/base/ndarray/gcusumors' ); + +var xbuf = discreteUniform( 10, -50, 50, { + 'dtype': 'generic' +}); +var x = new ndarray( 'generic', xbuf, [ xbuf.length ], [ 1 ], 0, 'row-major' ); +console.log( ndarray2array( x ) ); + +var y = zerosLike( x ); +console.log( ndarray2array( y ) ); + +var initial = scalar2ndarray( 100.0, { + 'dtype': 'generic' +}); + +var v = gcusumors( [ x, y, initial ] ); +console.log( ndarray2array( v ) ); +``` + +
+ + + +
+ +## References + +- Shewchuk, Jonathan Richard. 1997. "Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates." _Discrete & Computational Geometry_ 18 (3): 305–63. doi:[10.1007/pl00009321][@shewchuk:1997a]. + +
+ + + + + + + + + + + + + + diff --git a/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/benchmark/benchmark.js b/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/benchmark/benchmark.js new file mode 100644 index 000000000000..42a3b47c397d --- /dev/null +++ b/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/benchmark/benchmark.js @@ -0,0 +1,112 @@ +/** +* @license Apache-2.0 +* +* Copyright (c) 2025 The Stdlib Authors. +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*/ + +'use strict'; + +// MODULES // + +var bench = require( '@stdlib/bench' ); +var uniform = require( '@stdlib/random/array/uniform' ); +var zeros = require( '@stdlib/array/zeros' ); +var isnan = require( '@stdlib/math/base/assert/is-nan' ); +var pow = require( '@stdlib/math/base/special/pow' ); +var ndarray = require( '@stdlib/ndarray/base/ctor' ); +var scalar2ndarray = require( '@stdlib/ndarray/base/from-scalar' ); +var pkg = require( './../package.json' ).name; +var gcusumors = require( './../lib' ); + + +// VARIABLES // + +var options = { + 'dtype': 'generic' +}; + + +// FUNCTIONS // + +/** +* Creates a benchmark function. +* +* @private +* @param {PositiveInteger} len - array length +* @returns {Function} benchmark function +*/ +function createBenchmark( len ) { + var initial; + var xbuf; + var ybuf; + var x; + var y; + + xbuf = uniform( len, -10.0, 10.0, options ); + x = new ndarray( options.dtype, xbuf, [ len ], [ 1 ], 0, 'row-major' ); + + initial = scalar2ndarray( 0.0, options.dtype, 'row-major' ); + + ybuf = zeros( len, options.dtype ); + y = new ndarray( options.dtype, ybuf, [ len ], [ 1 ], 0, 'row-major' ); + + return benchmark; + + function benchmark( b ) { + var v; + var i; + + b.tic(); + for ( i = 0; i < b.iterations; i++ ) { + v = gcusumors( [ x, y, initial ] ); + if ( typeof v !== 'object' ) { + b.fail( 'should return an ndarray' ); + } + } + b.toc(); + if ( isnan( v.get( i%len ) ) ) { + b.fail( 'should not return NaN' ); + } + b.pass( 'benchmark finished' ); + b.end(); + } +} + + +// MAIN // + +/** +* Main execution sequence. +* +* @private +*/ +function main() { + var len; + var min; + var max; + var f; + var i; + + min = 1; // 10^min + max = 6; // 10^max + + for ( i = min; i <= max; i++ ) { + len = pow( 10, i ); + f = createBenchmark( len ); + bench( pkg+':len='+len, f ); + } +} + +main(); diff --git a/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/docs/repl.txt b/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/docs/repl.txt new file mode 100644 index 000000000000..36e524427073 --- /dev/null +++ b/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/docs/repl.txt @@ -0,0 +1,39 @@ + +{{alias}}( arrays ) + Computes the cumulative sum of a one-dimensional ndarray + using ordinary recursive summation. + + If provided an empty input ndarray, the function returns the output ndarray + unchanged. + + Parameters + ---------- + arrays: ArrayLikeObject + Array-like object containing a one-dimensional input ndarray, a one- + dimensional output ndarray, and a zero-dimensional ndarray containing + the initial sum. + + Returns + ------- + out: ndarray + Output ndarray. + + Examples + -------- + > var xbuf = [ 1.0, -2.0, 2.0 ]; + > var ybuf = [ 0.0, 0.0, 0.0 ]; + > var dt = 'generic'; + > var sh = [ xbuf.length ]; + > var st = [ 1 ]; + > var oo = 0; + > var ord = 'row-major'; + > var x = new {{alias:@stdlib/ndarray/ctor}}( dt, xbuf, sh, st, oo, ord ); + > var y = new {{alias:@stdlib/ndarray/ctor}}( dt, ybuf, sh, st, oo, ord ); + > var s = {{alias:@stdlib/ndarray/from-scalar}}( 0.0, { 'dtype': dt } ); + > {{alias}}( [ x, y, s ] ); + > {{alias:@stdlib/ndarray/to-array}}( y ) + [ 1.0, -1.0, 1.0 ] + + See Also + -------- + diff --git a/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/docs/types/index.d.ts b/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/docs/types/index.d.ts new file mode 100644 index 000000000000..9390b864dc0f --- /dev/null +++ b/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/docs/types/index.d.ts @@ -0,0 +1,58 @@ +/* +* @license Apache-2.0 +* +* Copyright (c) 2025 The Stdlib Authors. +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*/ + +// TypeScript Version: 4.1 + +/// + +import { typedndarray } from '@stdlib/types/ndarray'; + +/** +* Computes the cumulative sum of a one-dimensional ndarray using ordinary recursive summation. +* +* @param arrays - array-like object containing an input ndarray, an output ndarray, and ndarray containing the initial sum +* @returns output ndarray +* +* @example +* var ndarray2array = require( '@stdlib/ndarray/to-array' ); +* var scalar2ndarray = require( '@stdlib/ndarray/base/from-scalar' ); +* var ndarray = require( '@stdlib/ndarray/base/ctor' ); +* +* var xbuf = [ 1.0, 3.0, 4.0, 2.0 ]; +* var x = new ndarray( 'generic', xbuf, [ 4 ], [ 1 ], 0, 'row-major' ); +* +* var ybuf = [ 0.0, 0.0, 0.0, 0.0 ]; +* var y = new ndarray( 'generic', ybuf, [ 4 ], [ 1 ], 0, 'row-major' ); +* +* var initial = scalar2ndarray( 0.0, 'generic', 'row-major' ); +* +* var v = gcusumors( [ x, y, initial ] ); +* // returns +* +* var bool = ( v === y ); +* // returns true +* +* var arr = ndarray2array( v ); +* // returns [ 1.0, 4.0, 8.0, 10.0 ] +*/ +declare function gcusumors = typedndarray>( arrays: [ T, T, T ] ): T; + + +// EXPORTS // + +export = gcusumors; diff --git a/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/docs/types/test.ts b/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/docs/types/test.ts new file mode 100644 index 000000000000..e4f15681304a --- /dev/null +++ b/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/docs/types/test.ts @@ -0,0 +1,69 @@ +/* +* @license Apache-2.0 +* +* Copyright (c) 2025 The Stdlib Authors. +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*/ + +/* eslint-disable space-in-parens */ + +import zeros = require( '@stdlib/ndarray/zeros' ); +import gcusumors = require( './index' ); + + +// TESTS // + +// The function returns an ndarray... +{ + const x1 = zeros( [ 10 ], { + 'dtype': 'float64' + }); + const y1 = zeros( [ 10 ], { + 'dtype': 'float64' + }); + const initial1 = zeros( [], { + 'dtype': 'float64' + }); + + gcusumors( [ x1, y1, initial1 ] ); // $ExpectType float64ndarray +} + +// The compiler throws an error if the function is provided a first argument which is not an array of ndarrays... +{ + gcusumors( '10' ); // $ExpectError + gcusumors( 10 ); // $ExpectError + gcusumors( true ); // $ExpectError + gcusumors( false ); // $ExpectError + gcusumors( null ); // $ExpectError + gcusumors( undefined ); // $ExpectError + gcusumors( [] ); // $ExpectError + gcusumors( {} ); // $ExpectError + gcusumors( ( x: number ): number => x ); // $ExpectError +} + +// The compiler throws an error if the function is provided an unsupported number of arguments... +{ + const x = zeros( [ 10 ], { + 'dtype': 'float64' + }); + const y = zeros( [ 10 ], { + 'dtype': 'float64' + }); + const initial = zeros( [], { + 'dtype': 'float64' + }); + + gcusumors(); // $ExpectError + gcusumors( [ x, y, initial ], {} ); // $ExpectError +} diff --git a/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/examples/index.js b/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/examples/index.js new file mode 100644 index 000000000000..d74f691a0995 --- /dev/null +++ b/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/examples/index.js @@ -0,0 +1,42 @@ +/** +* @license Apache-2.0 +* +* Copyright (c) 2025 The Stdlib Authors. +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*/ + +'use strict'; + +var discreteUniform = require( '@stdlib/random/array/discrete-uniform' ); +var ndarray = require( '@stdlib/ndarray/base/ctor' ); +var zerosLike = require( '@stdlib/ndarray/zeros-like' ); +var scalar2ndarray = require( '@stdlib/ndarray/from-scalar' ); +var ndarray2array = require( '@stdlib/ndarray/to-array' ); +var gcusumors = require( './../lib' ); + +var xbuf = discreteUniform( 10, -50, 50, { + 'dtype': 'generic' +}); +var x = new ndarray( 'generic', xbuf, [ xbuf.length ], [ 1 ], 0, 'row-major' ); +console.log( ndarray2array( x ) ); + +var y = zerosLike( x ); +console.log( ndarray2array( y ) ); + +var initial = scalar2ndarray( 100.0, { + 'dtype': 'generic' +}); + +var v = gcusumors( [ x, y, initial ] ); +console.log( ndarray2array( v ) ); diff --git a/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/lib/index.js b/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/lib/index.js new file mode 100644 index 000000000000..05a56843eb37 --- /dev/null +++ b/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/lib/index.js @@ -0,0 +1,57 @@ +/** +* @license Apache-2.0 +* +* Copyright (c) 2025 The Stdlib Authors. +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*/ + +'use strict'; + +/** +* Compute the cumulative sum of a one-dimensional ndarray using ordinary recursive summation. +* +* @module @stdlib/blas/ext/base/ndarray/gcusumors +* +* @example +* var ndarray2array = require( '@stdlib/ndarray/to-array' ); +* var ndarray = require( '@stdlib/ndarray/base/ctor' ); +* var scalar2ndarray = require( '@stdlib/ndarray/base/from-scalar' ); +* var gcusumors = require( '@stdlib/blas/ext/base/ndarray/gcusumors' ); +* +* var xbuf = [ 1.0, 3.0, 4.0, 2.0 ]; +* var x = new ndarray( 'generic', xbuf, [ 4 ], [ 1 ], 0, 'row-major' ); +* +* var ybuf = [ 0.0, 0.0, 0.0, 0.0 ]; +* var y = new ndarray( 'generic', ybuf, [ 4 ], [ 1 ], 0, 'row-major' ); +* +* var initial = scalar2ndarray( 0.0, 'generic', 'row-major' ); +* +* var v = gcusumors( [ x, y, initial ] ); +* // returns +* +* var bool = ( v === y ); +* // returns true +* +* var arr = ndarray2array( v ); +* // returns [ 1.0, 4.0, 8.0, 10.0 ] +*/ + +// MODULES // + +var main = require( './main.js' ); + + +// EXPORTS // + +module.exports = main; diff --git a/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/lib/main.js b/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/lib/main.js new file mode 100644 index 000000000000..7afe3122d899 --- /dev/null +++ b/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/lib/main.js @@ -0,0 +1,72 @@ +/** +* @license Apache-2.0 +* +* Copyright (c) 2025 The Stdlib Authors. +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*/ + +'use strict'; + +// MODULES // + +var numelDimension = require( '@stdlib/ndarray/base/numel-dimension' ); +var getStride = require( '@stdlib/ndarray/base/stride' ); +var getOffset = require( '@stdlib/ndarray/base/offset' ); +var getData = require( '@stdlib/ndarray/base/data-buffer' ); +var ndarraylike2scalar = require( '@stdlib/ndarray/base/ndarraylike2scalar' ); +var strided = require( '@stdlib/blas/ext/base/gcusumors' ).ndarray; + + +// MAIN // + +/** +* Computes the cumulative sum of a one-dimensional ndarray using ordinary recursive summation. +* +* @param {ArrayLikeObject} arrays - array-like object containing an input ndarray, an output ndarray, and an ndarray containing the initial sum +* @returns {Object} output ndarray +* +* @example +* var ndarray2array = require( '@stdlib/ndarray/to-array' ); +* var ndarray = require( '@stdlib/ndarray/base/ctor' ); +* var scalar2ndarray = require( '@stdlib/ndarray/base/from-scalar' ); +* +* var xbuf = [ 1.0, 3.0, 4.0, 2.0 ]; +* var x = new ndarray( 'generic', xbuf, [ 4 ], [ 1 ], 0, 'row-major' ); +* +* var ybuf = [ 0.0, 0.0, 0.0, 0.0 ]; +* var y = new ndarray( 'generic', ybuf, [ 4 ], [ 1 ], 0, 'row-major' ); +* +* var initial = scalar2ndarray( 0.0, 'generic', 'row-major' ); +* +* var v = gcusumors( [ x, y, initial ] ); +* // returns +* +* var bool = ( v === y ); +* // returns true +* +* var arr = ndarray2array( v ); +* // returns [ 1.0, 4.0, 8.0, 10.0 ] +*/ +function gcusumors( arrays ) { + var x = arrays[ 0 ]; + var y = arrays[ 1 ]; + var v = ndarraylike2scalar( arrays[ 2 ] ); + strided( numelDimension( x, 0 ), v, getData( x ), getStride( x, 0 ), getOffset( x ), getData( y ), getStride( y, 0 ), getOffset( y ) ); // eslint-disable-line max-len + return y; +} + + +// EXPORTS // + +module.exports = gcusumors; diff --git a/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/package.json b/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/package.json new file mode 100644 index 000000000000..3133d2401e4c --- /dev/null +++ b/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/package.json @@ -0,0 +1,66 @@ +{ + "name": "@stdlib/blas/ext/base/ndarray/gcusumors", + "version": "0.0.0", + "description": "Compute the cumulative sum of a one-dimensional ndarray using ordinary recursive summation.", + "license": "Apache-2.0", + "author": { + "name": "The Stdlib Authors", + "url": "https://github.com/stdlib-js/stdlib/graphs/contributors" + }, + "contributors": [ + { + "name": "The Stdlib Authors", + "url": "https://github.com/stdlib-js/stdlib/graphs/contributors" + } + ], + "main": "./lib", + "directories": { + "benchmark": "./benchmark", + "doc": "./docs", + "example": "./examples", + "lib": "./lib", + "test": "./test" + }, + "types": "./docs/types", + "scripts": {}, + "homepage": "https://github.com/stdlib-js/stdlib", + "repository": { + "type": "git", + "url": "git://github.com/stdlib-js/stdlib.git" + }, + "bugs": { + "url": "https://github.com/stdlib-js/stdlib/issues" + }, + "dependencies": {}, + "devDependencies": {}, + "engines": { + "node": ">=0.10.0", + "npm": ">2.7.0" + }, + "os": [ + "aix", + "darwin", + "freebsd", + "linux", + "macos", + "openbsd", + "sunos", + "win32", + "windows" + ], + "keywords": [ + "stdlib", + "stdmath", + "statistics", + "stats", + "mathematics", + "math", + "cumulative", + "accumulate", + "sum", + "total", + "summation", + "ndarray" + ], + "__stdlib__": {} +} diff --git a/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/test/test.js b/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/test/test.js new file mode 100644 index 000000000000..2dc5e1faf136 --- /dev/null +++ b/lib/node_modules/@stdlib/blas/ext/base/ndarray/gcusumors/test/test.js @@ -0,0 +1,310 @@ +/** +* @license Apache-2.0 +* +* Copyright (c) 2025 The Stdlib Authors. +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*/ + +'use strict'; + +// MODULES // + +var tape = require( 'tape' ); +var isSameArray = require( '@stdlib/assert/is-same-array' ); +var ndarray = require( '@stdlib/ndarray/base/ctor' ); +var scalar2ndarrayLike = require( '@stdlib/ndarray/base/from-scalar-like' ); +var zerosLike = require( '@stdlib/ndarray/zeros-like' ); +var getData = require( '@stdlib/ndarray/data-buffer' ); +var gcusumors = require( './../lib' ); + + +// FUNCTIONS // + +/** +* Returns a one-dimensional ndarray. +* +* @private +* @param {Collection} buffer - underlying data buffer +* @param {NonNegativeInteger} length - number of indexed elements +* @param {integer} stride - stride length +* @param {NonNegativeInteger} offset - index offset +* @returns {ndarray} one-dimensional ndarray +*/ +function vector( buffer, length, stride, offset ) { + return new ndarray( 'generic', buffer, [ length ], [ stride ], offset, 'row-major' ); +} + + +// TESTS // + +tape( 'main export is a function', function test( t ) { + t.ok( true, __filename ); + t.strictEqual( typeof gcusumors, 'function', 'main export is a function' ); + t.end(); +}); + +tape( 'the function has an arity of 1', function test( t ) { + t.strictEqual( gcusumors.length, 1, 'has expected arity' ); + t.end(); +}); + +tape( 'the function computes the cumulative sum of a one-dimensional ndarray using ordinary recursive summation.', function test( t ) { + var expected; + var initial; + var xbuf; + var x; + var y; + var v; + + xbuf = [ 1.0, -2.0, -4.0, 5.0, 0.0, 3.0 ]; + x = vector( xbuf, 6, 1, 0 ); + y = zerosLike( x ); + initial = scalar2ndarrayLike( x, 0.0 ); + v = gcusumors( [ x, y, initial ] ); + + expected = [ 1.0, -1.0, -5.0, 0.0, 0.0, 3.0 ]; + t.strictEqual( v, y, 'returns expected value' ); + t.strictEqual( isSameArray( getData( v ), expected ), true, 'returns expected value' ); + + xbuf = [ -4.0, -5.0 ]; + x = vector( xbuf, 2, 1, 0 ); + y = zerosLike( x ); + initial = scalar2ndarrayLike( x, 10.0 ); + v = gcusumors( [ x, y, initial ] ); + + expected = [ 6.0, 1.0 ]; + t.strictEqual( v, y, 'returns expected value' ); + t.strictEqual( isSameArray( getData( v ), expected ), true, 'returns expected value' ); + + xbuf = [ -0.0, 0.0, -0.0 ]; + x = vector( xbuf, 3, 1, 0 ); + y = zerosLike( x ); + initial = scalar2ndarrayLike( x, -0.0 ); + v = gcusumors( [ x, y, initial ] ); + + expected = [ -0.0, 0.0, 0.0 ]; + t.strictEqual( v, y, 'returns expected value' ); + t.strictEqual( isSameArray( getData( v ), expected ), true, 'returns expected value' ); + + xbuf = [ -0.0, -0.0, -0.0 ]; + x = vector( xbuf, 3, 1, 0 ); + y = zerosLike( x ); + initial = scalar2ndarrayLike( x, -0.0 ); + v = gcusumors( [ x, y, initial ] ); + + expected = [ -0.0, -0.0, -0.0 ]; + t.strictEqual( v, y, 'returns expected value' ); + t.strictEqual( isSameArray( getData( v ), expected ), true, 'returns expected value' ); + + xbuf = [ -0.0, -0.0, -0.0 ]; + x = vector( xbuf, 3, 1, 0 ); + y = zerosLike( x ); + initial = scalar2ndarrayLike( x, 0.0 ); + v = gcusumors( [ x, y, initial ] ); + + expected = [ 0.0, 0.0, 0.0 ]; + t.strictEqual( v, y, 'returns expected value' ); + t.strictEqual( isSameArray( getData( v ), expected ), true, 'returns expected value' ); + + xbuf = [ NaN ]; + x = vector( xbuf, 1, 1, 0 ); + y = zerosLike( x ); + initial = scalar2ndarrayLike( x, 0.0 ); + v = gcusumors( [ x, y, initial ] ); + + expected = [ NaN ]; + t.strictEqual( v, y, 'returns expected value' ); + t.strictEqual( isSameArray( getData( v ), expected ), true, 'returns expected value' ); + + xbuf = [ NaN, NaN ]; + x = vector( xbuf, 2, 1, 0 ); + y = zerosLike( x ); + initial = scalar2ndarrayLike( x, NaN ); + v = gcusumors( [ x, y, initial ] ); + + expected = [ NaN, NaN ]; + t.strictEqual( v, y, 'returns expected value' ); + t.strictEqual( isSameArray( getData( v ), expected ), true, 'returns expected value' ); + + t.end(); +}); + +tape( 'if provided an empty ndarray, the function returns the output array unchanged', function test( t ) { + var expected; + var initial; + var xbuf; + var x; + var y; + var v; + + xbuf = []; + x = vector( xbuf, 0, 1, 0 ); + y = zerosLike( x ); + initial = scalar2ndarrayLike( x, 100.0 ); + + v = gcusumors( [ x, y, initial ] ); + + expected = []; + t.strictEqual( v, y, 'returns expected value' ); + t.strictEqual( isSameArray( getData( v ), expected ), true, 'returns expected value' ); + + t.end(); +}); + +tape( 'the function supports one-dimensional ndarrays having non-unit strides', function test( t ) { + var expected; + var initial; + var xbuf; + var ybuf; + var x; + var y; + var v; + + xbuf = [ + 1.0, // 0 + 2.0, + 2.0, // 1 + -7.0, + -2.0, // 2 + 3.0, + 4.0, // 3 + 2.0 + ]; + x = vector( xbuf, 4, 2, 0 ); + + ybuf = [ + 0.0, // 0 + 0.0, + 0.0, // 1 + 0.0, + 0.0, // 2 + 0.0, + 0.0, // 3 + 0.0 + ]; + y = vector( ybuf, 4, 2, 0 ); + + initial = scalar2ndarrayLike( x, 5.0 ); + + v = gcusumors( [ x, y, initial ] ); + + expected = [ + 6.0, // 0 + 0.0, + 8.0, // 1 + 0.0, + 6.0, // 2 + 0.0, + 10.0, // 3 + 0.0 + ]; + t.strictEqual( v, y, 'returns expected value' ); + t.strictEqual( isSameArray( getData( v ), expected ), true, 'returns expected value' ); + t.end(); +}); + +tape( 'the function supports one-dimensional ndarrays having negative strides', function test( t ) { + var expected; + var initial; + var xbuf; + var ybuf; + var x; + var y; + var v; + + xbuf = [ + 1.0, // 2 + -2.0, + 3.0, // 1 + 4.0, + -5.0 // 0 + ]; + x = vector( xbuf, 3, -2, 4 ); + + ybuf = [ + 0.0, // 2 + 0.0, // 1 + 0.0, // 0 + 0.0, + 0.0 + ]; + y = vector( ybuf, 3, -1, 2 ); + + initial = scalar2ndarrayLike( x, 0.0 ); + + v = gcusumors( [ x, y, initial ] ); + + expected = [ + -1.0, // 2 + -2.0, // 1 + -5.0, // 0 + 0.0, + 0.0 + ]; + t.strictEqual( v, y, 'returns expected value' ); + t.strictEqual( isSameArray( getData( v ), expected ), true, 'returns expected value' ); + t.end(); +}); + +tape( 'the function supports one-dimensional ndarrays having non-zero offsets', function test( t ) { + var expected; + var initial; + var xbuf; + var ybuf; + var x; + var y; + var v; + + xbuf = [ + 2.0, + 1.0, // 0 + 2.0, + -2.0, // 1 + -2.0, + 2.0, // 2 + 3.0, + 4.0 // 3 + ]; + x = vector( xbuf, 4, 2, 1 ); + + ybuf = [ + 0.0, + 0.0, + 0.0, // 0 + 0.0, // 1 + 0.0, // 2 + 0.0, // 3 + 0.0, + 0.0 + ]; + y = vector( ybuf, 4, 1, 2 ); + + initial = scalar2ndarrayLike( x, 0.0 ); + + v = gcusumors( [ x, y, initial ] ); + + expected = [ + 0.0, + 0.0, + 1.0, // 0 + -1.0, // 1 + 1.0, // 2 + 5.0, // 3 + 0.0, + 0.0 + ]; + t.strictEqual( v, y, 'returns expected value' ); + t.strictEqual( isSameArray( getData( v ), expected ), true, 'returns expected value' ); + t.end(); +});