From 64b59f8f8e9161a66e1f8e0587d4d3ec728e6ec4 Mon Sep 17 00:00:00 2001
From: Planeshifter <1913638+Planeshifter@users.noreply.github.com>
Date: Sat, 31 Jan 2026 03:58:52 +0000
Subject: [PATCH] docs: update namespace table of contents
Signed-off-by: stdlib-bot <82920195+stdlib-bot@users.noreply.github.com>
---
lib/node_modules/@stdlib/stats/README.md | 69 +++++++++++++++++++
.../@stdlib/stats/base/ndarray/README.md | 12 ++++
2 files changed, 81 insertions(+)
diff --git a/lib/node_modules/@stdlib/stats/README.md b/lib/node_modules/@stdlib/stats/README.md
index dea4ee206acb..7e1a1469a0a2 100644
--- a/lib/node_modules/@stdlib/stats/README.md
+++ b/lib/node_modules/@stdlib/stats/README.md
@@ -117,15 +117,38 @@ Other statistical functions included are:
- [`maxBy( x[, options], clbk[, thisArg] )`][@stdlib/stats/max-by]: compute the maximum value along one or more ndarray dimensions according to a callback function.
- [`max( x[, options] )`][@stdlib/stats/max]: compute the maximum value along one or more ndarray dimensions.
- [`maxabs( x[, options] )`][@stdlib/stats/maxabs]: compute the maximum absolute value along one or more ndarray dimensions.
+- [`maxsorted( x[, options] )`][@stdlib/stats/maxsorted]: compute the maximum value along one or more sorted ndarray dimensions.
- [`mean( x[, options] )`][@stdlib/stats/mean]: compute the arithmetic mean along one or more ndarray dimensions.
+- [`meankbn( x[, options] )`][@stdlib/stats/meankbn]: compute the arithmetic mean along one or more ndarray dimensions using an improved Kahan–Babuška algorithm.
+- [`meankbn2( x[, options] )`][@stdlib/stats/meankbn2]: compute the arithmetic mean along one or more ndarray dimensions using a second-order iterative Kahan–Babuška algorithm.
+- [`meanors( x[, options] )`][@stdlib/stats/meanors]: compute the arithmetic mean along one or more ndarray dimensions using ordinary recursive summation.
+- [`meanpn( x[, options] )`][@stdlib/stats/meanpn]: compute the arithmetic mean along one or more ndarray dimensions using a two-pass error correction algorithm.
+- [`meanpw( x[, options] )`][@stdlib/stats/meanpw]: compute the arithmetic mean along one or more ndarray dimensions using pairwise summation.
+- [`meanwd( x[, options] )`][@stdlib/stats/meanwd]: compute the arithmetic mean along one or more ndarray dimensions using Welford's algorithm.
+- [`mediansorted( x[, options] )`][@stdlib/stats/mediansorted]: compute the median value along one or more sorted ndarray dimensions.
+- [`midrangeBy( x[, options], clbk[, thisArg] )`][@stdlib/stats/midrange-by]: compute the mid-range along one or more ndarray dimensions according to a callback function.
+- [`midrange( x[, options] )`][@stdlib/stats/midrange]: compute the mid-range along one or more ndarray dimensions.
- [`minBy( x[, options], clbk[, thisArg] )`][@stdlib/stats/min-by]: compute the minimum value along one or more ndarray dimensions according to a callback function.
- [`min( x[, options] )`][@stdlib/stats/min]: compute the minimum value along one or more ndarray dimensions.
- [`minabs( x[, options] )`][@stdlib/stats/minabs]: compute the minimum absolute value along one or more ndarray dimensions.
+- [`minsorted( x[, options] )`][@stdlib/stats/minsorted]: compute the minimum value along one or more sorted ndarray dimensions.
+- [`nanmaxBy( x[, options], clbk[, thisArg] )`][@stdlib/stats/nanmax-by]: compute the maximum value along one or more ndarray dimensions according to a callback function, ignoring `NaN` values.
- [`nanmax( x[, options] )`][@stdlib/stats/nanmax]: compute the maximum value along one or more ndarray dimensions, ignoring `NaN` values.
+- [`nanmaxabs( x[, options] )`][@stdlib/stats/nanmaxabs]: compute the maximum absolute value along one or more ndarray dimensions, ignoring `NaN` values.
- [`nanmean( x[, options] )`][@stdlib/stats/nanmean]: compute the arithmetic mean along one or more ndarray dimensions, ignoring `NaN` values.
+- [`nanmeanors( x[, options] )`][@stdlib/stats/nanmeanors]: compute the arithmetic mean along one or more ndarray dimensions, ignoring `NaN` values and using ordinary recursive summation.
+- [`nanmeanpn( x[, options] )`][@stdlib/stats/nanmeanpn]: compute the arithmetic mean along one or more ndarray dimensions, ignoring `NaN` values and using a two-pass error correction algorithm.
+- [`nanmeanwd( x[, options] )`][@stdlib/stats/nanmeanwd]: compute the arithmetic mean along one or more ndarray dimensions, ignoring `NaN` values and using Welford's algorithm.
+- [`nanmidrangeBy( x[, options], clbk[, thisArg] )`][@stdlib/stats/nanmidrange-by]: compute the **mid-range** along one or more ndarray dimensions according to a callback function, ignoring `NaN` values.
+- [`nanminBy( x[, options], clbk[, thisArg] )`][@stdlib/stats/nanmin-by]: compute the minimum value along one or more ndarray dimensions according to a callback function, ignoring `NaN` values.
- [`nanmin( x[, options] )`][@stdlib/stats/nanmin]: compute the minimum value along one or more ndarray dimensions, ignoring `NaN` values.
+- [`nanminabs( x[, options] )`][@stdlib/stats/nanminabs]: compute the minimum absolute value along one or more ndarray dimensions, ignoring `NaN` values.
+- [`nanrangeBy( x[, options], clbk[, thisArg] )`][@stdlib/stats/nanrange-by]: compute the **range** along one or more ndarray dimensions according to a callback function, ignoring `NaN` values.
+- [`nanrange( x[, options] )`][@stdlib/stats/nanrange]: compute the range along one or more ndarray dimensions, ignoring `NaN` values.
- [`padjust( pvals, method[, comparisons] )`][@stdlib/stats/padjust]: adjust supplied p-values for multiple comparisons.
+- [`rangeBy( x[, options], clbk[, thisArg] )`][@stdlib/stats/range-by]: compute the **range** along one or more ndarray dimensions according to a callback function.
- [`range( x[, options] )`][@stdlib/stats/range]: compute the range along one or more ndarray dimensions.
+- [`rangeabs( x[, options] )`][@stdlib/stats/rangeabs]: compute the range of absolute values along one or more ndarray dimensions.
- [`ranks( arr[, opts] )`][@stdlib/stats/ranks]: compute ranks for values of an array-like object.
@@ -183,24 +206,70 @@ console.log( objectKeys( statistics ) );
[@stdlib/stats/maxabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/maxabs
+[@stdlib/stats/maxsorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/maxsorted
+
[@stdlib/stats/mean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/mean
+[@stdlib/stats/meankbn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/meankbn
+
+[@stdlib/stats/meankbn2]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/meankbn2
+
+[@stdlib/stats/meanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/meanors
+
+[@stdlib/stats/meanpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/meanpn
+
+[@stdlib/stats/meanpw]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/meanpw
+
+[@stdlib/stats/meanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/meanwd
+
+[@stdlib/stats/mediansorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/mediansorted
+
+[@stdlib/stats/midrange-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/midrange-by
+
+[@stdlib/stats/midrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/midrange
+
[@stdlib/stats/min-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/min-by
[@stdlib/stats/min]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/min
[@stdlib/stats/minabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/minabs
+[@stdlib/stats/minsorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/minsorted
+
+[@stdlib/stats/nanmax-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanmax-by
+
[@stdlib/stats/nanmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanmax
+[@stdlib/stats/nanmaxabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanmaxabs
+
[@stdlib/stats/nanmean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanmean
+[@stdlib/stats/nanmeanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanmeanors
+
+[@stdlib/stats/nanmeanpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanmeanpn
+
+[@stdlib/stats/nanmeanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanmeanwd
+
+[@stdlib/stats/nanmidrange-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanmidrange-by
+
+[@stdlib/stats/nanmin-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanmin-by
+
[@stdlib/stats/nanmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanmin
+[@stdlib/stats/nanminabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanminabs
+
+[@stdlib/stats/nanrange-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanrange-by
+
+[@stdlib/stats/nanrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/nanrange
+
[@stdlib/stats/padjust]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/padjust
+[@stdlib/stats/range-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/range-by
+
[@stdlib/stats/range]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/range
+[@stdlib/stats/rangeabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/rangeabs
+
[@stdlib/stats/ranks]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/ranks
[@stdlib/stats/base]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base
diff --git a/lib/node_modules/@stdlib/stats/base/ndarray/README.md b/lib/node_modules/@stdlib/stats/base/ndarray/README.md
index bade65e4fdec..8723d51770f2 100644
--- a/lib/node_modules/@stdlib/stats/base/ndarray/README.md
+++ b/lib/node_modules/@stdlib/stats/base/ndarray/README.md
@@ -94,7 +94,9 @@ The namespace exposes the following APIs:
- [`dstdev( arrays )`][@stdlib/stats/base/ndarray/dstdev]: calculate the standard deviation of a one-dimensional double-precision floating-point ndarray.
- [`dstdevch( arrays )`][@stdlib/stats/base/ndarray/dstdevch]: calculate the standard deviation of a one-dimensional double-precision floating-point ndarray using a one-pass trial mean algorithm.
- [`dstdevpn( arrays )`][@stdlib/stats/base/ndarray/dstdevpn]: calculate the standard deviation of a one-dimensional double-precision floating-point ndarray using a two-pass algorithm.
+- [`dstdevtk( arrays )`][@stdlib/stats/base/ndarray/dstdevtk]: calculate the standard deviation of a one-dimensional double-precision floating-point ndarray using a one-pass textbook algorithm.
- [`dstdevwd( arrays )`][@stdlib/stats/base/ndarray/dstdevwd]: calculate the standard deviation of a one-dimensional double-precision floating-point ndarray using Welford's algorithm.
+- [`dstdevyc( arrays )`][@stdlib/stats/base/ndarray/dstdevyc]: calculate the standard deviation of a one-dimensional double-precision floating-point ndarray using a one-pass algorithm proposed by Youngs and Cramer.
- [`dztest( arrays )`][@stdlib/stats/base/ndarray/dztest]: compute a one-sample Z-test for a one-dimensional double-precision floating-point ndarray.
- [`dztest2( arrays )`][@stdlib/stats/base/ndarray/dztest2]: compute a two-sample Z-test for two one-dimensional double-precision floating-point ndarrays.
- [`maxBy( arrays, clbk[, thisArg ] )`][@stdlib/stats/base/ndarray/max-by]: compute the maximum value of a one-dimensional ndarray via a callback function.
@@ -189,7 +191,9 @@ The namespace exposes the following APIs:
- [`sstdev( arrays )`][@stdlib/stats/base/ndarray/sstdev]: calculate the standard deviation of a one-dimensional single-precision floating-point ndarray.
- [`sstdevch( arrays )`][@stdlib/stats/base/ndarray/sstdevch]: calculate the standard deviation of a one-dimensional single-precision floating-point ndarray using a one-pass trial mean algorithm.
- [`sstdevpn( arrays )`][@stdlib/stats/base/ndarray/sstdevpn]: calculate the standard deviation of a one-dimensional single-precision floating-point ndarray using a two-pass algorithm.
+- [`sstdevtk( arrays )`][@stdlib/stats/base/ndarray/sstdevtk]: calculate the standard deviation of a one-dimensional single-precision floating-point ndarray using a one-pass textbook algorithm.
- [`sstdevwd( arrays )`][@stdlib/stats/base/ndarray/sstdevwd]: calculate the standard deviation of a one-dimensional single-precision floating-point ndarray using Welford's algorithm.
+- [`sstdevyc( arrays )`][@stdlib/stats/base/ndarray/sstdevyc]: calculate the standard deviation of a one-dimensional single-precision floating-point ndarray using a one-pass algorithm proposed by Youngs and Cramer.
- [`stdev( arrays )`][@stdlib/stats/base/ndarray/stdev]: calculate the standard deviation of a one-dimensional ndarray.
- [`stdevch( arrays )`][@stdlib/stats/base/ndarray/stdevch]: calculate the standard deviation of a one-dimensional ndarray using a one-pass trial mean algorithm.
- [`stdevpn( arrays )`][@stdlib/stats/base/ndarray/stdevpn]: calculate the standard deviation of a one-dimensional ndarray using a two-pass algorithm.
@@ -343,8 +347,12 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/base/ndarray/dstdevpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dstdevpn
+[@stdlib/stats/base/ndarray/dstdevtk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dstdevtk
+
[@stdlib/stats/base/ndarray/dstdevwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dstdevwd
+[@stdlib/stats/base/ndarray/dstdevyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dstdevyc
+
[@stdlib/stats/base/ndarray/dztest]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dztest
[@stdlib/stats/base/ndarray/dztest2]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dztest2
@@ -533,8 +541,12 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/base/ndarray/sstdevpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/sstdevpn
+[@stdlib/stats/base/ndarray/sstdevtk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/sstdevtk
+
[@stdlib/stats/base/ndarray/sstdevwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/sstdevwd
+[@stdlib/stats/base/ndarray/sstdevyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/sstdevyc
+
[@stdlib/stats/base/ndarray/stdev]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/stdev
[@stdlib/stats/base/ndarray/stdevch]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/stdevch