|
1 | | -import inspect |
2 | | - |
3 | 1 | import graphblas as gb |
4 | 2 | import networkx as nx |
5 | 3 |
|
6 | 4 | import graphblas_algorithms as ga |
7 | | -from graphblas_algorithms import average_clustering, clustering, transitivity, triangles |
8 | | - |
9 | | -nx_triangles = nx.triangles |
10 | | -nx.triangles = triangles |
11 | | -nx.algorithms.triangles = triangles |
12 | | -nx.algorithms.cluster.triangles = triangles |
13 | | - |
14 | | -nx_transitivity = nx.transitivity |
15 | | -nx.transitivity = transitivity |
16 | | -nx.algorithms.transitivity = transitivity |
17 | | -nx.algorithms.cluster.transitivity = transitivity |
18 | | - |
19 | | -nx_clustering = nx.clustering |
20 | | -nx.clustering = clustering |
21 | | -nx.algorithms.clustering = clustering |
22 | | -nx.algorithms.cluster.clustering = clustering |
23 | | - |
24 | | -nx_average_clustering = nx.average_clustering |
25 | | -nx.average_clustering = average_clustering |
26 | | -nx.algorithms.average_clustering = average_clustering |
27 | | -nx.algorithms.cluster.average_clustering = average_clustering |
28 | | - |
29 | | - |
30 | | -def test_signatures(): |
31 | | - nx_sig = inspect.signature(nx_triangles) |
32 | | - sig = inspect.signature(triangles) |
33 | | - assert nx_sig == sig |
34 | | - nx_sig = inspect.signature(nx_transitivity) |
35 | | - sig = inspect.signature(transitivity) |
36 | | - assert nx_sig == sig |
37 | | - nx_sig = inspect.signature(nx_clustering) |
38 | | - sig = inspect.signature(clustering) |
39 | | - assert nx_sig == sig |
| 5 | +from graphblas_algorithms import average_clustering, clustering, transitivity, triangles # noqa |
40 | 6 |
|
41 | 7 |
|
42 | 8 | def test_triangles_full(): |
@@ -89,32 +55,32 @@ def test_triangles_full(): |
89 | 55 | assert ga.cluster.average_clustering_core(G2, mask=mask.S) == 1 |
90 | 56 |
|
91 | 57 |
|
92 | | -def test_directed(): |
| 58 | +def test_directed(orig): |
93 | 59 | # XXX" is transitivity supposed to work on directed graphs like this? |
94 | 60 | G = nx.complete_graph(5, create_using=nx.DiGraph()) |
95 | 61 | G.remove_edge(1, 2) |
96 | 62 | G.remove_edge(2, 3) |
97 | 63 | G.add_node(5) |
98 | | - expected = nx_transitivity(G) |
| 64 | + expected = orig.transitivity(G) |
99 | 65 | result = transitivity(G) |
100 | 66 | assert expected == result |
101 | 67 | # clustering |
102 | | - expected = nx_clustering(G) |
| 68 | + expected = orig.clustering(G) |
103 | 69 | result = clustering(G) |
104 | 70 | assert result == expected |
105 | | - expected = nx_clustering(G, [0, 1, 2]) |
| 71 | + expected = orig.clustering(G, [0, 1, 2]) |
106 | 72 | result = clustering(G, [0, 1, 2]) |
107 | 73 | assert result == expected |
108 | 74 | for i in range(6): |
109 | | - assert nx_clustering(G, i) == clustering(G, i) |
| 75 | + assert orig.clustering(G, i) == clustering(G, i) |
110 | 76 | # average_clustering |
111 | | - expected = nx_average_clustering(G) |
| 77 | + expected = orig.average_clustering(G) |
112 | 78 | result = average_clustering(G) |
113 | 79 | assert result == expected |
114 | | - expected = nx_average_clustering(G, [0, 1, 2]) |
| 80 | + expected = orig.average_clustering(G, [0, 1, 2]) |
115 | 81 | result = average_clustering(G, [0, 1, 2]) |
116 | 82 | assert result == expected |
117 | | - expected = nx_average_clustering(G, count_zeros=False) |
| 83 | + expected = orig.average_clustering(G, count_zeros=False) |
118 | 84 | result = average_clustering(G, count_zeros=False) |
119 | 85 | assert result == expected |
120 | 86 |
|
|
0 commit comments