|
457 | 457 | {"key": "zhong2020semantic", "year": "2020", "title":"Semantic Scaffolds for Pseudocode-to-Code Generation", "abstract": "<p>We propose a method for program generation based on semantic scaffolds, lightweight structures representing the high-level semantic and syntactic composition of a program. By first searching over plausible scaffolds then using these as constraints for a beam search over programs, we achieve better coverage of the search space when compared with existing techniques. We apply our hierarchical search method to the SPoC dataset for pseudocode-to-code generation, in which we are given line-level natural language pseudocode annotations and aim to produce a program satisfying execution-based test cases. By using semantic scaffolds during inference, we achieve a 10% absolute improvement in top-100 accuracy over the previous state-of-the-art. Additionally, we require only 11 candidates to reach the top-3000 performance of the previous best approach when tested against unseen problems, demonstrating a substantial improvement in efficiency.</p>\n", "tags": ["code generation","synthesis"] }, |
458 | 458 | {"key": "zhou2019devign", "year": "2020", "title":"Devign: Effective Vulnerability Identification by Learning Comprehensive Program Semantics via Graph Neural Networks", "abstract": "<p>Vulnerability identification is crucial to protect the software systems from attacks for cyber security. It is especially important to localize the vulnerable functions among the source code to facilitate the fix. However, it is a challenging and tedious process, and also requires specialized security expertise. Inspired by the work on manually-defined patterns of vulnerabilities from various code representation graphs and the recent advance on graph neural networks, we propose Devign, a general graph neural network based model for graph-level classification through learning on a rich set of code semantic representations. It includes a novel Conv module to efficiently extract useful features in the learned rich node representations for graph-level classification. The model is trained over manually labeled datasets built on 4 diversified large-scale open-source C projects that incorporate high complexity and variety of real source code instead of synthesis code used in previous works. The results of the extensive evaluation on the datasets demonstrate that Devign outperforms the state of the arts significantly with an average of 10.51% higher accuracy and 8.68% F1 score, increases averagely 4.66% accuracy and 6.37% F1 by the Conv module.</p>\n", "tags": ["GNN","static analysis"] }, |
459 | 459 | {"key": "zhou2021improving", "year": "2021", "title":"Improving Code Autocompletion with Transfer Learning", "abstract": "<p>Software language models have achieved promising results predicting code completion usages, and several industry studies have described successful IDE integrations. Recently, accuracy in autocompletion prediction improved 12.8% from training on a real-world dataset collected from programmers’ IDE activity. But what if limited examples of IDE autocompletion in the target programming language are available for model training? In this paper, we investigate the efficacy of pretraining autocompletion models on non-IDE, non-autocompletion, and different-language example code sequences. We find that these unsupervised pretrainings improve model accuracy by over 50% on very small fine-tuning datasets and over 10% on 50k labeled examples. We confirm the real-world impact of these pretrainings in an online setting through A/B testing on thousands of IDE autocompletion users, finding that pretraining is responsible for increases of up to 6.63% autocompletion usage.</p>\n", "tags": ["autocomplete","Transformer"] }, |
| 460 | +{"key": "zhou2022codebertscore", "year": "2023", "title":"CodeBERTScore: Evaluating Code Generation with Pretrained Models of Code", "abstract": "<p>Since the rise of neural models of code that can generate long expressions and statements rather than a single next-token, one of the major problems has been reliably evaluating their generated output. In this paper, we propose CodeBERTScore: an automatic evaluation metric for code generation, which builds on BERTScore (Zhang et al., 2020). Instead of measuring exact token matching as BLEU, CodeBERTScore computes a soft similarity score between each token in the generated code and in the reference code, using the contextual encodings of large pretrained models. Further, instead of encoding only the generated tokens as in BERTScore, CodeBERTScore also encodes the programmatic context surrounding the generated code. We perform an extensive evaluation of CodeBERTScore across four programming languages. We find that CodeBERTScore achieves a higher correlation with human preference and with functional correctness than all existing metrics. That is, generated code that receives a higher score by CodeBERTScore is more likely to be preferred by humans, as well as to function correctly when executed. Finally, while CodeBERTScore can be used with a multilingual CodeBERT as its base model, we release five language-specific pretrained models to use with our publicly available code at https://github.com/neulab/code-bert-score . Our language-specific models have been downloaded more than 25,000 times from the Huggingface Hub.</p>\n", "tags": ["evaluation","Transformer"] }, |
460 | 461 | {"key": "zhou2022docoder", "year": "2022", "title":"DocCoder: Generating Code by Retrieving and Reading Docs", "abstract": "<p>Natural-language-to-code models learn to generate a code snippet given a natural language (NL) intent. However, the rapid growth of both publicly available and proprietary libraries and functions makes it impossible to cover all APIs using training examples, as new libraries and functions are introduced daily. Thus, existing models inherently cannot generalize to using unseen functions and libraries merely through incorporating them into the training data. In contrast, when human programmers write programs, they frequently refer to textual resources such as code manuals, documentation, and tutorials, to explore and understand available library functionality. Inspired by this observation, we introduce DocCoder: an approach that explicitly leverages code manuals and documentation by (1) retrieving the relevant documentation given the NL intent, and (2) generating the code based on the NL intent and the retrieved documentation. Our approach is general, can be applied to any programming language, and is agnostic to the underlying neural model. We demonstrate that DocCoder consistently improves NL-to-code models: DocCoder achieves 11x higher exact match accuracy than strong baselines on a new Bash dataset tldr; on the popular Python CoNaLa benchmark, DocCoder improves over strong baselines by 1.65 BLEU.</p>\n", "tags": ["Transformer","search","code generation"] }, |
461 | 462 | {"key": "zhu2020ocor", "year": "2020", "title":"OCoR: An Overlapping-Aware Code Retriever", "abstract": "<p>Code retrieval helps developers reuse the code snippet in the open-source projects. Given a natural language description, code retrieval aims to search for the most relevant code among a set of code. Existing state-of-the-art approaches apply neural networks to code retrieval. However, these approaches still fail to capture an important feature: overlaps. The overlaps between different names used by different people indicate that two different names may be potentially related (e.g., “message” and “msg”), and the overlaps between identifiers in code and words in natural language descriptions indicate that the code snippet and the description may potentially be related. To address these problems, we propose a novel neural architecture named OCoR, where we introduce two specifically-designed components to capture overlaps: the first embeds identifiers by character to capture the overlaps between identifiers, and the second introduces a novel overlap matrix to represent the degrees of overlaps between each natural language word and each identifier.\nThe evaluation was conducted on two established datasets. The experimental results show that OCoR significantly outperforms the existing state-of-the-art approaches and achieves 13.1% to 22.3% improvements. Moreover, we also conducted several in-depth experiments to help understand the performance of different components in OCoR.</p>\n", "tags": ["search"] }, |
462 | 463 | {"key": "zhu2921syntax", "year": "2021", "title":"A Syntax-Guided Edit Decoder for Neural Program Repair", "abstract": "<p>Automated Program Repair (APR) helps improve the efficiency of software development and maintenance. Recent APR techniques use deep learning, particularly the encoder-decoder architecture, to generate patches.\nThough existing DL-based APR approaches have proposed different encoder architectures, the decoder remains to be the standard one, which generates a sequence of tokens one by one to replace the faulty statement.\nThis decoder has multiple limitations: 1) allowing to generate syntactically incorrect programs, 2) inefficiently representing small edits, and 3) not being able to generate project-specific identifiers.\nIn this paper, we propose Recoder, a syntax-guided edit decoder with placeholder generation. Recoder is novel in multiple aspects: 1) Recoder generates edits rather than modified code, allowing efficient representation of small edits; 2) Recoder is syntax-guided, with the novel provider/decider architecture to ensure the syntactic correctness of the patched program and accurate generation; 3) Recoder generates placeholders that could be instantiated as project-specific identifiers later.\nWe conduct experiments to evaluate Recoder on 395 bugs from Defects4J v1.2, 420 additional bugs from Defects4J v2.0, 297 bugs from IntroClassJava and 40 bugs from QuixBugs. Our results show that Recoder repairs 53 bugs on Defects4J v1.2, which achieves 26.2% (11 bugs) improvement over the previous state-of-the-art approach for single-hunk bugs (TBar). Importantly, to our knowledge, Recoder is the first DL-based APR approach that has outperformed the traditional APR approaches on this benchmark.</p>\n", "tags": ["edit"] }, |
|
0 commit comments