From 3ba7117243bc9abac8f1fd20548b2b88c56a9bfb Mon Sep 17 00:00:00 2001 From: KilianPoirier Date: Mon, 4 Sep 2023 09:04:59 +0000 Subject: [PATCH 01/10] Added RQAOA notebook and related structural files --- binder-index.md | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/binder-index.md b/binder-index.md index a851276f87f1..6abda43524f4 100644 --- a/binder-index.md +++ b/binder-index.md @@ -272,6 +272,14 @@ These are noted in the README.md files for each sample, along with complete inst + + + Recursive Quantum Approximate Optimization Algorithm + + Python + + + Grover's search From 18b759d33484962adf0ce5b35a477d1dc6f47323 Mon Sep 17 00:00:00 2001 From: KilianPoirier Date: Mon, 4 Sep 2023 09:05:55 +0000 Subject: [PATCH 02/10] More files --- .../azure-quantum/recursive-qaoa/README.md | 11 + .../recursive-qaoa/RQAOA-introduction.ipynb | 748 ++++++++++++++++++ 2 files changed, 759 insertions(+) create mode 100644 samples/azure-quantum/recursive-qaoa/README.md create mode 100644 samples/azure-quantum/recursive-qaoa/RQAOA-introduction.ipynb diff --git a/samples/azure-quantum/recursive-qaoa/README.md b/samples/azure-quantum/recursive-qaoa/README.md new file mode 100644 index 000000000000..b1f8f8c6e949 --- /dev/null +++ b/samples/azure-quantum/recursive-qaoa/README.md @@ -0,0 +1,11 @@ +# Solving Quadratic Unconstrained Binary Optimization (QUBO) problems using QAOA on Azure Quantum + +This sample shows how to solve quadratic unconstrained binary optimization problems using the Recursive Quantum Approximate Optimization Algorithm (RQAOA) on the Azure Quantum service. It demonstrate how to operate the RQAOA workflow for a general QUBO problem that can be taylored to more specific case like graph coloring or minimum vertex cover. + +## Manifest + +- [RQAOA-introduction.ipynb](./RQAOA-introduction.ipynb) Python notebook demonstrating how to run RQAOA locally and on the Azure Quantum platform using the OpenQAOA package. + +## See Also + +To learn more about QAOA and how to solve QUBO problems using OpenQAOA, visit https://openqaoa.entropicalabs.com/ \ No newline at end of file diff --git a/samples/azure-quantum/recursive-qaoa/RQAOA-introduction.ipynb b/samples/azure-quantum/recursive-qaoa/RQAOA-introduction.ipynb new file mode 100644 index 000000000000..20101bc05d7d --- /dev/null +++ b/samples/azure-quantum/recursive-qaoa/RQAOA-introduction.ipynb @@ -0,0 +1,748 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "536532e3-e7d1-4dd3-89bd-e42364e0f0a3", + "metadata": {}, + "source": [ + "# Recursive Quantum Approximate Optimization Algorithm" + ] + }, + { + "cell_type": "markdown", + "id": "c23791bb-879b-4ae1-85ca-b4ddf0678df2", + "metadata": {}, + "source": [ + "In this notebook, we provide a short introduction to recursive QAOA, and demonstrate how this technique is implemented in the OpenQAOA workflows by solving a fully-connected Hamiltonian with $\\pm 1$ weights." + ] + }, + { + "cell_type": "markdown", + "id": "21db9274-9f0d-4056-91ac-d6675af70d22", + "metadata": { + "tags": [] + }, + "source": [ + "### A brief introduction to RQAOA" + ] + }, + { + "cell_type": "markdown", + "id": "5e32b853-04df-4f17-b494-c8c6a6ff8a19", + "metadata": {}, + "source": [ + "Recursive QAOA (RQAOA) is an iterative variant of QAOA, first introduced by Bravyi et al. in [1] and further explored in [2,3]. \n", + "\n", + "This technique consists in recursively reducing the size of the problem by running QAOA. At each step, the QAOA output distribution is used to compute the expectation values \n", + "\n", + "$$\n", + "\\mathcal{M}_{i} = \\langle Z_{i} \\rangle \\qquad \\qquad \\qquad \\qquad \\qquad \\mathcal{M}_{ij} = \\langle Z_{i}Z_{j} \\rangle,\n", + "$$\n", + "\n", + "associated with the terms present in the Hamiltonian. Note that, by definition, these quantities are bounded between -1 and 1. The expectation values are then ranked according to their magnitude $|\\mathcal{M}_{(i),(ij)}|$, where we use $\\mathcal{M}_{(i),(ij)}$ to generically refer to both single- and two-spin expectation values. In its original formulation, the highest ranked value is selected. This value is then utilized to eliminate a qubit from the Hamiltonian, by imposing a constraint on the respective qubits, according to the nature of the highest ranked expectation value. The two kinds of constraints are\n", + "\n", + "$$\n", + "Z_{i} \\mapsto \\textrm{sign}(\\mathcal{M}_{(i)}) \\qquad \\qquad \\textrm{and} \\qquad \\qquad Z_{i} \\mapsto \\textrm{sign}(\\mathcal{M}_{(ij)}) Z_{j},\n", + "$$\n", + "\n", + "where the expectation value is rounded via the `sign` operation for consistency. The first one can be interpreted as fixing qubit $i$ to a specific state, $| 0 \\rangle$ if $\\textrm{sign}(\\mathcal{M}_{(i)}) > 0$ and $|1 \\rangle$ if $\\textrm{sign}(\\mathcal{M}_{(i)}) < 0$, and the second one as fixing qubit $i$ with respect to the configuration of $j$, i.e. $i$ and $j$ will be aligned if $\\textrm{sign}(\\mathcal{M}_{(ij)})> 0$ and antialigned otherwise. Inserting the correponding constraint directly into the Hamiltonian, we reduce the size of the problem by one qubit. Using the reduced Hamiltonian, QAOA is then run again and the same procedure is followed. Once the reduced problem reaches a predefined cutoff size $n_{\\textrm{cutoff}}$, it is solved exactly via classical methods. The final answer is then reconstructed by re-inserting the eliminated qubits into the classical solution following the appropriate order.\n", + "\n", + "In summary, the process is:\n", + "\n", + "1. Execute QAOA\n", + "2. Compute expectation values $\\mathcal{M}_{(i),(ij)}$ of terms present in the Hamiltonian\n", + "3. Rank expectation values according to their magnitude $|\\mathcal{M}_{(i),(ij)}|$\n", + "4. Select the expectation value with highest magnitude\n", + "5. Eliminate variable by imposing the appropriate constraint and obtain reduced problem\n", + "6. If new problem size is smaller than $n_{\\textrm{cutoff}}$, obtain final solution classically and reinsert constraints, else, return to step 1 using the reducedproblem\n", + "\n", + "This version of RQAOA is included in OpenQAOA. Additionally, OpenQAOA incorporates RQAOA from two different generalized version of these procedure, which enable multiple qubit eliminations during the recursive process, modifying steps 4 and 5 above. These strategies are denoted as `custom` and `adaptive` [4], in accordance with the precise concept under which the elimination method takes place. In a nutshell, they are described as follows:\n", + "\n", + "\n", + "* The ``custom`` strategy allows the user to define the number of eliminations to be performed at each step. This is defined by the parameter ``steps``. If the parameter is set as an integer, the algorithm will use this value as the number of qubits to be eliminated at each step. Alternatively, it is possible to pass a list, which specifies the number of qubits to be eliminated at each step. For ``steps = 1``, the algorithm reduces to the original form of RQAOA presented in [1].\n", + "\n", + "* The ``adaptive`` strategy adaptively selects how many qubits to eliminate at each step. The maximum number of allowed eliminations is given by the parameter ``n_max``. At each step, the algorithm selects the top ``n_max+1`` expectation values (ranked in magnitude), computes the mean among them, and uses the ones lying above it for qubit elimination. This corresponds to a maximum of ``n_max`` possible elimination per step. For ``n_max= 1``, the algorithm reduces to the original form of RQAOA presented in [1].\n", + "\n", + "**NOTE**: The specific performance of these generalizations is currently under investigation. In particular, the development of Adaptive RQAOA is associated with an internal research project at Entropica Labs to be released publicly in the near future [4]. We make these strategies already available to the community in order to strengthen the exploration of more complex elimination schemes for RQAOA, beyond its original formulation [1]." + ] + }, + { + "cell_type": "markdown", + "id": "61270353-74c9-4163-a663-5c89d18976fc", + "metadata": {}, + "source": [ + "## References" + ] + }, + { + "cell_type": "markdown", + "id": "6534a736-093b-44d3-95b6-7a8fa309c2f8", + "metadata": {}, + "source": [ + "[1] S. Bravyi, A. Kliesch, R. Koenig, and E. Tang, [Physical Review Letters 125, 260505 (2020)](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.260505) \\\n", + "[2] S. Bravyi, A. Kliesch, R. Koenig, and E. Tang, [(2020), 10.22331/q-2022-03-30-678](https://quantum-journal.org/papers/q-2022-03-30-678/) \\\n", + "[3] D. J. Egger, J. Marecek, and S. Woerner, [Quantum 5, 479 (2021)](https://doi.org/10.22331/q-2021-06-17-479) \\\n", + "[4] E. I. Rodríguez Chiacchio, V. Sharma, E. Munro (Work in progress) " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "f1b38648-393a-4974-af43-a2c7d960fb17", + "metadata": {}, + "outputs": [], + "source": [ + "try:\n", + " import openqaoa\n", + "except ImportError:\n", + " !pip -q install openqaoa" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "01bd94e3-7f36-4c38-85a8-f85283804369", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import networkx as nx\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from openqaoa import RQAOA, QUBO, create_device\n", + "from openqaoa.utilities import ground_state_hamiltonian, plot_graph\n", + "from openqaoa.qaoa_components import Hamiltonian" + ] + }, + { + "cell_type": "markdown", + "id": "b7d33cb7-0110-4278-993f-69b5c4defbb6", + "metadata": {}, + "source": [ + "## Setting the problem" + ] + }, + { + "cell_type": "markdown", + "id": "be11f78a-d04d-46b3-891d-5b1e37e409fb", + "metadata": {}, + "source": [ + "We define our problem to be a fully-connected system, where we choose the couplings $J_{ij}$ to be of magnitude 1, but with a randomly assigned signs, and for simplicity we set linear terms to 0. The workflow requires us to define the problem as an instance of the ``QUBO`` (Quadratic Unconstrained Binary Optimization) class, which is easily done by defining the connectivity of the problem and the coupling values." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "1f9d971e-b5bc-4dcd-be67-f98742374570", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn8AAAGiCAYAAACWBqCXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADWu0lEQVR4nOyddVwU+RvHPwsICCqKhY2NAXoW5tmKd5513tl1xtlid3djx+88uz3rzu7ksBUDW7HAQFpB2Pn98bmle2t29/t+vfal7MzOfGd2dub5PvF5FJIkSRAIBAKBQCAQmARm+h6AQCAQCAQCgUB3CONPIBAIBAKBwIQQxp9AIBAIBAKBCSGMP4FAIBAIBAITQhh/AoFAIBAIBCaEMP4EAoFAIBAITAhh/AkEAoFAIBCYEML4EwgEAoFAIDAhhPEnEAgEAoFAYEII408gEAgEAoHAhBDGn0AgEAgEAqPj/Pnz+Omnn5A/f34oFArs378/1c+cPXsWlSpVgpWVFUqUKIENGzYkWmfFihVwdHSEtbU1XF1dceXKFc0PXssI408gEAgEAoHRERYWhgoVKmDFihVpWv/58+f48ccfUb9+fdy6dQvu7u7o1asXjh07FrPOzp07MWzYMEyePBk3btxAhQoV0LRpU7x//15bh6EVFJIkSfoehEAgEAgEAoG2UCgU2LdvH1q1apXsOqNHj8ahQ4dw9+7dmPfat2+PwMBAHD16FADg6uqKqlWrYvny5QAApVKJQoUKYdCgQRgzZoxWj0GTWKRlJaVSibdv3yJr1qxQKBTaHpNAIBAIBCaLJEkICQlB/vz5YWZm2AG6r1+/IjIyUiPbkiQpkQ1iZWUFKysrjWzf09MTjRo1ivde06ZN4e7uDgCIjIzE9evXMXbs2JjlZmZmaNSoETw9PTUyBl2RJuPv7du3KFSokLbHIhAIBAKB4D9evXqFggUL6nsYGebr168omjkz/DS0vSxZsiA0NDTee5MnT8aUKVM0sn0/Pz/kzZs33nt58+ZFcHAwvnz5gs+fPyM6OjrJdXx8fDQyBl2RJuMva9asAHghZsuWTasDEggEAoHAlAkODkahQoVinr2GSmRkJPwAvFIooK7lEAygUGhoIjtEU14/UyNNxp/KzZotWzZh/AkEAoFAoAOMJc0qG4Bs6h7Lf+UJ2rRDHBwc4O/vH+89f39/ZMuWDZkzZ4a5uTnMzc2TXMfBwUErY9IWhp1MIBAIBAKBQN6YmWnmpWVq1KiBU6dOxXvvxIkTqFGjBgDA0tISlStXjreOUqnEqVOnYtYxFNLk+RMIBAKBQCDIEGZmgCY8f9HR6fpIaGgonjx5EvP38+fPcevWLdjb26Nw4cIYO3Ys3rx5g02bNgEA+vbti+XLl2PUqFH47bffcPr0aezatQuHDh2K2cawYcPQrVs3VKlSBdWqVYOHhwfCwsLQo0cP9Y5PxwjjTyAQCAQCgdFx7do11K9fP+bvYcOGAQC6deuGDRs24N27d/D19Y1ZXrRoURw6dAhDhw7FkiVLULBgQfzxxx9o2rRpzDrt2rXDhw8fMGnSJPj5+aFixYo4evRooiIQuZMmnb/g4GDY2dkhKChI5PwJBAKBQKBFjOWZG3McVlZq5/wFSxLsIiIM/pzIBeH5EwgEAoFAoD00FfYVaAxR8CEQCAQCgUBgQgjPn0AgEAgEAu0hPH+yQxh/AoFAIBAItIcw/mSHCPsKBAKBQCAQmBDC8ycQCAQCgUB7CM+f7BDGn0AgEAgEAu0hjD/ZIcK+AoFAIBAIBCaE8PwJBAKBQCDQHgqF+r15lUrNjEUAQBh/AoFAIBAItImZmfrGn0CjiG9DIBAIBAKBwIQQnj+BQCAQCATaQ3j+ZIcw/gQCgUAgEGgPYfzJDmH8CQQCgyQsIgovPoUhMkoJSwszOOa0ha2VuKUJBAJBaog7pUAgMBge+4dgq5cvzjx8D9+AcMRV/lIAKGxvg/ql86CTa2GUzJtVX8MUCARxEZ4/2SGMP4FAIHteBYRj3D5vXHjyEeZmCkQrEwu+SgBeBoRjs9dLbPB8gTolcmFWa2cUsrfR/YAFAkEswviTHeLbEAgEsmbHVV80WnwOl599AoAkDb+4qJZffvYJjRafw46rvlofo0AgEBgSwvMnEAhky/Izj7Hg+KMMfTZaKSFaKWHMXm98DI3AwPolNTw6gUCQJoTnT3YI408gEMiSHVd9M2z4JWTB8UfIncUK7aoW1sj2BAJBOhDGn+wQxp9AIJAdrwLCMfngvSSXfX15B/7bxyW5zKHLAlgVcEpy2aSD91CzeC6RAygQCEweYfwJBALZMW6fN6JSye3LWvknWOYrFe89ixz5kl0/Silh3D5vbO7pqpExCgSCNCI8f7JDGH8CgUBWPPYPwYUnH1Ndz6pQOdg61U7zdqOVEi48+Ygn70NQIo+QgREIdIZCob7xJ6U8GRSkD2GKCwQCWbHVyxfmZoo0rauMCIekjE7zts3NFNjyr6j+FQgEpo3w/AkEAllx5uH7VOVcAODT4SWQIr8ACjNYFSqHHPV/g1W+lCt6o5USzjx6jykop6nhCgSC1NBE2Fd4/jSKMP4EAoFsCI2Igm9AeMormWeCTemayFysCsxs7PDtoy+Cr+yD/9bRcOg8H5YOxVP8uO+ncIRFRIlWcAKBrhDGn+wQdz+BQCAbXn4KQ2q3eOuCZWBdsEzsGyVdYeNUC+/WDcLncxuRt920FD8vAXjxKQzl8tupPV6BQCAwRITxJxAIZENklDJDn8uUIz8yl3RF+KPLkJTRUJiZa2U/AoEgAwjPn+wQxp9AINAr374Bjx4Bd+4A5+5k/AFhkS0XEB0F6VsEFFYpa/lZWohaN4FAZwjjT3YI408gEOgMf38aeXFf9+8DkZFcXtDRFubtAKSt2DceUYF+UFhYQmFpneJ6CgCOOW3TvwOBQCAwEoTxJxAINM7XrzTqvL3jG3rv33O5jQ3g7AxUqQL89hvg4sK/7e0tUHe+DV6mUPQRHR4Ec5v4+XqR/s8Q/vgKMherDIUiZQ9D4Zw2othDINAlwvMnO8QdUCAQZBhJAl69SuzNe/QIiP5Pfq94cRp3/frxXxcXoFix5J8F9UvnwWavl8nKvXzYPxdmmSxhVaDMf9W+rxB6+ygUmayQo173FMdrbqZA/VJ51DhigUCQboTxJzuE8ScQCNJEaChw925iQy8oiMvt7GjYNWgAuLvz/+XLA1mypG8/nVwLY4Pni2SX25SqjrB7ZxF8ZT+UkeEwt7GDTamasKvdAZly5E9x29FKCZ2rF07fgAQCgcDIEMafQCCIh1IJPH1Kwy5u2PbpUy43NwdKl6Zx5+YW680rVIhdnNTi82eUnDAKdUIK43KRCohOomo3W5UWyFalRbo3LUUrYBmYEyFvsgLC+ScQ6A7h+ZMdwvgTCEyYgIDEeXl37wLh/6Xc5c4NVKgAtGwZa+SVKQNYp1xTkX4kCdixgy7Dr18xa8Z8NHqfCdEalGSxzKSA1W1nVKnC3Uydmn6vpEAgyADC+JMdwvgTCEyAuHIqcV+vX3O5pSVQtiyNu19/jTX08ubVweCePQP69weOHQN++QXw8ECh/Pkx9aovxuz11thuZrQqhzZTbLBoEQ2/PXuAFSuA5s01tguBQCAwCITxJxAYEZIUX05F5dWLK6dSqBANuy5dWGHr4gKUKgVkyqTjwX77BixcSEssb17gn3+AH3+MWdy+amF8DI3AguOPeGBqxJRHNimNdlWZ6zd6NG3M/v2Bn34C2rYFliwB8qecLigQCDKKQqG+508phNk1iTD+BAIDRSWnktCb9+EDl6vkVKpWBXr2jJVTyZFDv+MGAHh6An36AA8exMZgbRNr7w2sXxK5ggMw+cIbRGWyRHQ6BAClaAUszBWY1aZcjOGnolgx4MgRYOdOYMgQhrJnzwZ+/505jQKBQINoIuyr7ucF8RBnUyCQOZIE+PrSMTZrFtC+PUO0WbIAlSsDPXoABw8C2bLRm/XXX8Djx0BICPDvv8DatcDAgcD338vA8AsM5CBr1WLi4NWrwIIFSRp+AABJQvvFo3Hy5DzULJYTAOVaUkK1PA9y4v2GuqieJ+nqXoWC59LHB2jXDhgwgMO6cyfDRycQCGTGihUr4OjoCGtra7i6uuLKlSvJrluvXj0oFIpErx/jRCS6d++eaLmbm5suDkWjCM+fQCAjQkLiy6mowrYqOZXs2enBa9gQGDqUnryMyKnoHEkCdu+mmy00lHHW/v1Td7Nt3gycO4dCJ05gc6MaeOwfgq1evjjz6D18P4Ujbgq4AhRwrl8qDzpXL4y8mbPCaSt3uX9/8rvIkYMGcteu9PxVrgwMHw5MmkTvqUAgUBM9ef527tyJYcOGYfXq1XB1dYWHhweaNm2Khw8fIk+exCX/e/fuRaQqPwbAp0+fUKFCBfzyyy/x1nNzc8P69etj/rayskr32PSNQpJSL6EJDg6GnZ0dgoKCkC1bNl2MSyAwaqKjWeeQMGT77BmXx5VTifsqWFADciq65sULutUOHwZatwaWLuWBpEZAAODkREt3+/ZEi8MionD0Uhg6dlZi2xYzuNWyTdS5Y/duFrAcPMj8vtSIjATmzwemTwfy5QNWraKcjUCgS4zlmRtzHDVrIpuFer6m4Kgo2F2+nK5z4urqiqpVq2L58uUAAKVSiUKFCmHQoEEYM2ZMqp/38PDApEmT8O7dO9j+F53o3r07AgMDsT+lGaUBIDx/AoGWSU1OJU8eGnatWmlZTkXXREUBHh7A5MmAvT3dby1bpv3z48YBERHAokVJLra1skDR7HaIfAcUzQ7YJjH5btsWaNoUGDSI4tPJRZdVWFoC48czDNy3L9CsGUPDixcDDg5pH7pAINAOwcHB8f62srJK0vMWGRmJ69evY+zYsTHvmZmZoVGjRvD09EzTvtatW4f27dvHGH4qzp49izx58iBHjhxo0KABZsyYgZw5c2bgaPSHMP4EAg3x7Rvw8GF8I8/bO76cSrlyNO7atYstwNCJnIquuXKFMdQ7d2h5TZ8OZM2a9s97eTEWu2QJXXAZRKEAli9naHzmTOZMpoUSJYATJ4CtWxleL1MGmDsX6NVL5J0LBOlGg2HfQoUKxXt78uTJmDJlSqLVP378iOjoaORNcIPNmzcvfHx8Ut3dlStXcPfuXaxbty7e+25ubmjTpg2KFi2Kp0+fYty4cWjWrBk8PT1hbkDVYsL4EwjSSUI5FdXr/n0agEB8ORWVN69kST3Iqeia4GBgwgRaXBUr0oirUiV924iKYiPgihX5r5qUKAGMHUvjr0sXGnJpQaEAOnem92/UKNqymzYBa9bQiBcIBGlEg8bfq1ev4oV9tZVvt27dOjg7O6NatWrx3m/fvn3M/52dneHi4oLixYvj7NmzaNiwoVbGog2E8ScQpEBqciq2tvQqVatGr5Cs5FR0zb599PIFBlK/b9AgICN5PitXArdusVRZzTwhFaNHA1u2sMbk9On05U3mzAmsWxdbEFKxIo3BCROAzJk1MjyBQJBGsmXLlqacv1y5csHc3Bz+/v7x3vf394dDKjkcYWFh2LFjB6ZNm5bqfooVK4ZcuXLhyZMnwvgTGA5hEVF48SkMkVFKWFqYwTFn4qR5U0Alp5LQyHv0iNqiCgVQvDiNuwEDYr15RYuKMCBevaKhd+AA22UsXw4UKZKxbb19S6vq999pUWsIa2valE2a0Ajs0iX926hbF7h9G5gzh+HjXbtYENKokcaGKRAYJ3qo9rW0tETlypVx6tQptGrVCgALPk6dOoWBAwem+Nndu3cjIiICnTt3TnU/r1+/xqdPn5BPjfQUfWB6T3lBrFzGw/fwDUhCLsPeBvVL50En18IomTcdeVoGQkI5FdVLlUesklNp1AgYNoz/L1fOAORUdE10NLBsGY21bNnYL61NG/XKkYcNozstrcl56aBxY+ZaDh9OGzUj3lkrK9avtG/PgpDGjRkaXrSIfZAFAkES6EnqZdiwYejWrRuqVKmCatWqwcPDA2FhYejRowcAoGvXrihQoABmz54d73Pr1q1Dq1atEhVxhIaGYurUqfj555/h4OCAp0+fYtSoUShRogSaNm2a8WPTA8L4MyFeBYRj3D5vXHjyEeZmCkQrE6v8SABeBoRjs9dLbPB8gTolcmFWa2cUsjc8wbO0yKk4OdG4++EHA5dT0TU3brBDx40bjKXOnAnY2am3zRMn2HJj0yatxc0XLeJ3Pn48PYEZpXRpho83bqQxefgwJWJ69BDXjkAgF9q1a4cPHz5g0qRJ8PPzQ8WKFXH06NGYIhBfX1+YJTAqHz58iIsXL+L48eOJtmdubo47d+5g48aNCAwMRP78+dGkSRNMnz7d4LT+hM6fibDjqi8mH7yHKKWUpNGXHOZmCliYKTC1RTm0T9AiS04EBCQ28u7eBb584fK8eRNr5jk5GYGciq4JDaX68ZIlTHZcswaoXl397X79yi8lf37gzJk0W1A3blCU+fp1oFKltO1qyRJW8P77r2Yiyx8+0ADcvJldVNas4bUlEGQUY3nmxhxHo0aa0fk7edLgz4lcEJ4/E2D5mcdYcPxRhj4b/Z+xOGavNz6GRmBg/ZIaHl36SEpO5c4d4M0bLo8rp9K+vZHLqeiav/9mwuPHj0x8c3fXXPnyvHnA8+fUAtSy62zAAGDDBhYSX7mifi/f3LnprOzWjaHgChVYXTxmjJhcCAQA+JtWN+wrXOoaRRh/Rs6Oq74ZNvwSsuD4I+TOYoV2OvAAShLg5xe/xVlCOZXChWncdesWa+SVKqWxAlGBijdvgMGDgb172e5i5UpWumiKJ0+Y4zdiBJsWaxkLC2D1aqBGDR7KoEGa2W7DhrxWVXqC27dzP/Xra2b7AoFAoCnEY9KIeRUQjskH7yW7PMLvCYIubkPE6/uQor7BInteZKnohmxVWiT7mUkH76Fm8VwazQH88iVpOZWPH7nc1paGnasr0Ls3Db3y5U1UTkWXREfTehk7lk1ud+xgrzRNzsAlCRg4kO0zJk7U3HZTwdWVKYsTJrALiKYK9aytqWfdoQO336AB0L07sGABJWMEApNETwUfguQRxp8RM26fN6KSye/78vwG3u+ZBsu8xWFXsz0UltaICvRDdMjHFLcZpZQwbp83Nvd0Tfd40iOnMnCgkFPRK7dv03pRdeqYPVs71vZffwHHjrH5ro1ui4pmz6Yzc/hwYNs2zW67bFng/Hngzz+BkSOBf/6h9GGXLiJ6JTBBhPEnO4TxZ6Q89g/BhSdJG3LKiHB8/GcRMhevitytx0KhSPuPKlop4cKTj3jyPgQl8iQvAxMSEhuujRu2jSunUqECpTKGD4+VU0mt96pAy4SFAVOnxpbFXrwI1KqlnX2FhDBvsGVL4KeftLOPFMiRgxW63bsDv/2meb0+MzMKf//0ExVsunVjdfDq1ez2IhAIBPpCGH9GylYv32TlXMLun4UyLBA5vu8KhcIMysivUGSyTLMRaG6mwJZ/fTGlRTlERwNPnyb25j1//t+6ceRUfvwx1ptXoIDwgMiOI0co2+LnB0ybxhw8S0vt7W/yZODzZ5bf6omuXemdGzCA16021Bry5mWP4K5dWWTi7Mxw86hR2j29AoFsEJ4/2SGMPyPlzMP3yUq6fH1xCworG0SFfsL7vTMQFfAGikzWsC1fH/YNe0NhkfITKVopYeeF9zg8o1w8ORUHBz7Y2rSJNfLKlNHOA1WgQd69o/bJzp10f504wYa42uT2bWDpUlZHZLQbiAZQKFj0UbEiC461mXbYtCnlh6ZPp3N12zZg7Vqgdm3t7VMgkAXC+JMdwvgzQkIjouAbEJ7s8m8BbwFlND78NR1ZXJrAum43fPX1Rsj1v6H8GobcLUeluo8v5uGoUj4KHTpYxFTa5smjyaMQaB2lktbHmDF0QW3ZAnTsqH2XrFJJF1jp0jQ69Uy5ckw9mDmTh1+8uPb2ZWPDXMOOHZlKWacOQ8Nz5wL29trbr0AgEMRFmNJGyMtPYUhJxln69hXStwjYlm8A+8a/w6Z0Tdg3/h1ZKroh/MF5fAt4k/pOFMCYGWEYOpQSF8LwMzDu3qXl0a8fy119fIBOnXQTi//zT8DTk41xZRL3nDiR4dmBA1mYpG2cnZlOuXIlewSXKUNPoC72LRDoHJXnT92XQGOIs2mEREYpU1yuCuvalqkb733bsvUAABFvfDSyH4EM+fIFGDcO+O47tkU5dw744w/duZ0+fgRGj2b1w/ff62afacDWllHoo0dZAawLzMxoe/v4AHXr0vZ2c2MOrUBgVAjjT3aIs2mEWFqk/LWaZ6HgmLlt9vjv27I3q/JrqEb2I5AZJ05QIHHhQrq6bt3SvQE2ahTdW/Pm6Xa/aUBVdDxkCAuRdUW+fPT+/fMPu9eUL88GKioxc4FAINA04ulthDjmtEVKwTtLByY1RYV8ivd+VEgAAMDcxi7VfUgS0O1nW/TqRY/J2bPAp0+pfkygD96/p1upSRMWV9y5w/68uq7EuXgRWL+eSW8yzRNYupQO0SlTdL/vH38E7t1j6HnCBPYq9vTU/TgEAo0jPH+yQ5xNI8TWygKFU+jAYetUBwAQeud4vPdD7xwHzMxhVdg51X1kt7CBs5MFbt6kM6d+fSBXLkq4NGvGyN7WrdT4i4xU73gEGUSpBNato9bOsWNsaHvqFAstdM23b4xxqtq0yBRHR9rFS5bQRtY1trbUHrx2DcicmRKL/foBgYG6H4tAoDGE8Sc7RLWvkVK/dB5s9nqZpNyLpUNx2Lo0RtidE/igVMK6cHl89fVGuM9FZKvxCyyyptyHytxMgdbV8mDKf13goqKAx4/j6/zt2BEb2cuUiQntKvkX1cvBQWj9aY0HD1hOeuEC8+sWLKB1ri+WLGEPv2vXZH8THzYM2LQJ6NuXzkp9DLdiRXr9Vq4Exo8H9u/nKfzlF/GbEQgE6iOMPyOlk2thbPB8kezynE0HwCJbboTeOYnwR56wsMuNHA17I1vVlqluO1opoXP1wjF/W1jQuCtTBmjXLna9wMDEXT727WMTCYC2SEKDsGxZejwEGeTrV2DWLCaNOTrS09eggX7H9OoV46iDBrHQROZYWtLoql+fUeqePfUzDnNznrLWrYHBg/nb2rgRWLGCX61AYDAoFOrPosSsR6MI489IKZk3K+qUyIXLzz4l6f1TmFsge+2OyF67Y7q2ay4pUbNYzhRbu6nInp1qInXqxL6nVAIvXsT3Eh46RK+GJPH+UKoUpTDiGoVFiojffqqcPk131YsX1O4bNw6wttb3qFhBkS0bu4YYCPXqsQ/vqFEsBNGn07RgQVYgHzjAfMBy5SgS7e7OiZdAIHuEyLPsEGfTiJnV2hkWZpq0mCRYRH/DLI+BtNgygJkZUKwY0KoVc6v27AEePWJ1pZcXsGYN+/2+f8/2si1bAkWL0pCsXZvdx1avBi5fju0TbPJ8/MgGtQ0bMpZ++zYNLTkYfocO0d27eDENQANiwQJOVkaP1vdISMuWjJz37s0xVakCXLmi71EJBAJDRBh/RkwhextMbVFOg1tUYFp9RxQqnAdo3pwJSG/famTLtrZAtWpIVD386hXth7Fj6f27cIGhsFq1ADu7pA3J6GiNDEn+SBKLOJyc6Bb63/944sqU0ffISHg4XVWNGwO//qrv0aSbPHlYmPznn8ClS/oeDcmaFfDw4ETJ3ByoXp0hYTEREsgaUfAhO0TQwMhpX7UwPoZGYMHxR4AEpKgBkwojm5RGu/olgGZH2Ad2yBAaGrNns7jA3Fxj4wYY5i1YkK8ffoh9PyKCwrhxQ8f/+x/g58flmTNTKy1h6DhnynUshsWjRwzxnjlDGZeFC9miQk7MmsW+wcePG2zMvndv5v317QvcuMHiJTlQpQoNwGXLKNm4dy//36qVwZ5qgTEjwr6yQ5xNE2Bg/ZJokt0ZyigzmKXzyWAuKWFlYYa5bZwxoH4JvqlQAO3b0wJr1w4YMICuOB1pY1hZARUqMCdr/nyqmLx7B/j7AydPskdruXLUMB49mvUORiNDExHBkK6zM/DyJQ9+yxb5GX4+Piz3HjMGKFlS36PJMObm7EJ3/z490nLCwoKtke/fpyZgmzY0/l690vfIBAKB3BHGnwnw7h2wc1Zh1A2ri1rF/+vukUouoGp5zRe3cbJJLrSrWjjxSjlyAGvXMhYbEgJUrsyHfXi4xo8hLeTJw7S3oUPprbl+HQgN5cNxxw6mxVlY0GnZuTO9gVmyJG1IyrLH6vnz1ACZPh0YPpz9eZs00feoEiNJTM4sXJjXg4FTqRLnN5Mny9OwKlyYUf+//qKSTpkyDA2bTPqDQP6IsK/sUEhS6o+54OBg2NnZISgoCNkMLGlbwKjg8eNsHWVvDzz2D8FWL1+cefQevp/CEfcCUAAonNMG9UvlQecq+VGiSR1aSJcvp/zji4yk9TR9OvtVrVrFRqUyJTCQtlPc0LG3N41FIFaGJm7ouFw5PcnQBASw7HTdOqBmTVbFlC+vh4Gkka1baV0fPQo0barVXd24wTnH9es00rRFUBBTK2vWpJElV4KC2B1kxQqej7VrtXteBNrBWJ65McfRvTuyWVqqt63ISNht2GDw50QuCOPPyDl1CmjUiJ6w7t0TLw+LiMKLS9cR2bkrLLdsgmOtyrC1ipMKeuEC+7+uWQP06ZP6Dp88YYLUqVMMDS9ezApUAyApGZo7d3hIKhmakiUTaxNqTYZGkoBt2+jKjIwE5s5lEpqcZ8CBgewgUrcuG9ZqGV0ZfwC9xx06sAApbg6qHPHy4s/17l2m5k6bxjmcwDAwlmeuMP7kizD+jJiICBonefMC586lYKCk9gTt0YNxJR+ftPVklSTmoQ0bxvYfc+eyjFfORksKhIWx52pcD+Ht28Dnz1yeLVvi4pLy5dVUNnn6lH29TpxgpayHBz2qcmfgQCoR+/gwyVLL6NL4kyRG2Z8+pVFlk3wHRVnw7Rsvm8mT6clesQL46Sd9j0qQFozlmRtzHL/9phnj788/Df6cyAXDfBoL0sT8+cCzZ4zAquWZUvVpGzUqbesrFEyi8/FhFvrvv9N7eO+eGoPQHwllaM6coQzN69fA4cPUUk5Nhmb3bobdU83DioxklWz58qzoPXSISYqGYPhdu8bWGNOn68Tw0zUKBQ2oN29Y4C53MmUCRo5kzmv58kCLFsDPP3P8AoFOETl/skOcTSPl2TNWvQ4bxlw1tcidm967jRtZdJBWcuZkntrZsxQirliRjUq/fFFzQPpHoUi6ejg0lFXGmzbxQfvlC2Vofv2VOWNZswJVq7Jl2JIlsYYkAIrJVapEa3HQIBrLco8vqoiOZrjfxYXePyOlVCl+33Pn0pg3BBwdY+cQly6xIGT5clEQIhCYMiLsa4RIEjWYvb2BBw/ouUqRtMTOlEq6tIKDad2kV/AsIoL9ZmfNYnniqlVMRjQR3r+P7W+set27x9MCAPltAuES7gmXfB/gMrAuXH4qgtKl2WfWIFixgkbf5ctAjRo6260uw74qvnyhJ83RkdJChqSrFxjIAuw1a+jNXruW1e4CeWEsz9yY4+jTRzNh37VrDf6cyAXh+TNC9u1jOHLp0jQYfmnFzIwGm48PizjSi5UVk49u36bLrHFjhoY/fNDQAOVNkjI0IRIeLDyMnXZ90CPqf8hU3gk7Lbug8/giiWRo5s1j8ezbtzKUofHzY+y7d2+dGn76InNm2rqnTwPbt+t7NOkje3a2R7x0ibmslSszmyMsTN8jExg1CoX6IV9DmmUZAML4MzJCQ1nd17w5e4FqlIoV2Utq6lQKDGcEJyfGOtevp4Xq5MT+WbKzaLTM8+ewaPEDnIb/iF8bBWDGs4446F0UL14o8Pkz8wc9PGhLPX3KNLpmzWg3585N4Wp3d566a9f0HEkfPpwuyjlz9DgI3eLmBrRty7SKwEB9jyb91KxJr+n06ewMUr48cOSIvkclEAh0hTD+jIwpU5hDtmyZliZK06bRfTBkSMa3oVBQd8bHB/jxRybA1avHv42db9/oxitXjnHfgwfZlDhOgUT27EDt2tRJXr2akdSgIBqB+/bR/ra3p+3cqxdzCLNkoR3966/AjBnc7IsXOrCpT5+mHM38+RyUCbF4MT1mEyfqeyQZw9KSPbPv3qWE0Q8/UJ3p3Tt9j0xgdIiCD9khzqYRcecOvUUTJzIfSSuoOssfOAD8/bd628qdm5URJ08ynlmhAq3Xr181MVL54eXFpqxjx7I44v79NGtvmJnFrx7es4fFwCEhwJUrzN1q2pRR9EWL6PUtWpRVx3ENyUuXmLapESIiuOHatYGuXTW0UcOhYEE6wVeuZBjfUClenJ1ttm6lLV+mDK8VpVLfIxMYDcL4kx3ibBoJSiVl4UqWZBROq7RtS0tj0CDNtHJr2JDVEKNGsSCkQgVWCBsLQUEshqhRg/3lrlyhhaYB1V1b26Srh1UyNOPHx5ehqV2bBmHRojQQJ05MhwxNQhYsoDty1SqTvTEPHsyQad++hl09q1AAHTvS+f7LL7yX1KlDr6BAIDA+TPOObYRs2MDw4MqVOqgQVSioFeHnxxijJrC2ZgLSrVv0CNavT3HpGB0UA0SS2AusbFl+QYsW0ftXubJWd5sWGZq2belg/eOPWBmaLFkSG5IfPyazk2fP+N0PHSrvVnNaxsKCtu+1a6ygNXTs7SlNdO4cuwp+9x1reYxAnUmgT4TnT3ZYpL6KQO58+kSnWefOtJl0QokSDF/OnMly1DJlNLPdsmWpJbhuHQ/qn3+AhQu5D0Oq9vL1pbfv77+prrt8OVCokF6HZGVFp2pCaY8PH+LL0Ny+TYMxRoYmf/zuJc7lJTiNGQrL3LkZgzZxatZk7uW4cdQ0N5Buhiny/fecKMybRxt/506Gghs31vfIBAaJJow3YfxpFHE2jYDRoxlyWrBADzsuUoR5X5qsLDAzo2yIjw/7aXXrRk3Ax481tw9tERVFD1/ZskwE27sX2L9f74ZfSiRVPRwaSo3InTvpgM2Uif/v3BmoUFEB26N74GLmjc59s8hbhkZHzJlDL+DIkfoeieawsmJagLc3f+ZNmgCdOlGzUiAQGDbC+DNwLl2ik2zWLPbw1SnW1owznz3LXr6aJm9euqCOHgWeP2cD3Rkz2AJNjly/Dri6AiNGAL/9RuupdWvD8lj+h4VF0tXDn1+F4kLuNlhS7n+o2TQbnj1LXYZGE2mhcidnTnrJtmxhuNyYKFUKOHWKmQvHjvG6WLdOFIQI0oEI+8oOcTYNmKgoJmZXrQr06aOnQTRuDLRrR4Pn82ft7KNpU2aeDx3K8sqKFYGLF7Wzr4wQEkJrp1o1umD//ZcK20aoQp99yVTUDj2K/n83w+o1ihgZmmfP6OAcMoSG0JEjsTI0WbPqSYZGx3TvziY4/fvLd36SURQKOuB9fJjF0KsX1ZkePND3yAQGgTD+ZIc4mwbM0qWUilu1CjA31+NAFi1iRvj48drbh40NMHs2lWnt7FiK2Ls3s9L1yYEDDPH+739s+HrtGo1AY8Tbm+J2EyawXPg/zMySrh5OSoZm8eL4MjS1anECs2qVhmVo9ICqCc7jx3pIwdARuXLRA3j6NOu9KlRg2qexqjMJDJ8VK1bA0dER1tbWcHV1xZUrV5Jdd8OGDVAoFPFe1tbW8daRJAmTJk1Cvnz5kDlzZjRq1AiPDSElKQHC+DNQXr9mt7T+/bVePJo6+fMz9rd6NZ/22sTZmVbCypXArl0sNNm2TfdupNevGdJt1YpjuneP3k8LI62hiqslNGJEmj6SlAzNx4/xZWgcHenEHTxYwzI0esLZmQ7q6dOZqWCs1K/P4qCxY5nv6OJCg1AgSBI9ef527tyJYcOGYfLkybhx4wYqVKiApk2b4n0KiavZsmXDu3fvYl4vE3SzmjdvHpYuXYrVq1fDy8sLtra2aNq0Kb4a2AxIGH8Girs7pTk0pbSiNgMG0A3Qr5/2n9RmZtyPjw9Qty6z0N3cqDmnbaKj2T6lbFmGd3ftAg4d0qKqtkzYuDHW6FZDSyg1GZrNm6kzFxHBvLIMydDomcmT6SEbNMj4QttxsbZmFsbt26xwbtiQoW+5fi8CPaIn42/RokXo3bs3evTogbJly2L16tWwsbHBn3/+mexnFAoFHBwcYl554yTTS5IEDw8PTJgwAS1btoSLiws2bdqEt2/fYv/+/Rk5M3pDGH8GyJEjlI9btIieEllgYUHP382bNBB0Qb58NL7++YfuofLl6Yb49k07+7t1i0LNQ4aw7PXBA1oqBljQkS4+fWIZa6dOWtMSUsnQdO6MeNXD79+z2GD2bHrVbt8GxoxhUUnu3AwnAzQIt2yhN0rf+XZZsnA8hw4xK8DYKVOGNV9//MF8TicnhoaN2fAV6I/g4OB4rwiVJlUCIiMjcf36dTRq1CjmPTMzMzRq1Aienp7Jbj80NBRFihRBoUKF0LJlS9y7dy9m2fPnz+Hn5xdvm3Z2dnB1dU1xm3JEGH8GxpcvlI9r2JB9OGWFqysrTyZM0G2D0B9/ZNh14EDuu1IlQJM/xLAwhjqrVOEXoPKAZc+uuX3ImTFjWF20cKHOd51U9XBISKwMTcuWXO/ECUpBVqjAcLOLS2JDUpfGSOvW7JU7eDC9msaOmRm9sj4+dML36MF71KNH+h6ZQBYoFOp7/f6bZBcqVAh2dnYxr9mzZye5y48fPyI6Ojqe5w4A8ubNCz8/vyQ/U7p0afz55584cOAAtmzZAqVSiZo1a+L169cAEPO59GxTrgjjz8CYPZs5UytWyNThNGsW3Tha7zGXAFtbYP58WgeZM8dWEgQGqrfdQ4cY4l2xgjH2Gzfo/TMVLl+mS0cvWkJJE1eGpn9/vvfPP/yqL15kIVStWsy505cMjULB7IAPH4Bp07SzDzmSJw89sMePU+fc2ZnHn4xzRmAqaDDs++rVKwQFBcW8xo4dq7Fh1qhRA127dkXFihVRt25d7N27F7lz58YaY2jfkwBh/BkQjx6xoHTUKKB0aX2PJhns7WmEbd8OnDyp+/1XrEivnyoOWKYMQ8Ppdfu8fUvronlzWhr37tEDlimTVoYtS1RaQlWqAL//ru/RpEpS1cNpkaEpXZrR++nTGaZ9/lwzGnbFitERvXix6fXIbdyYuZwjRvC8VqzIxj0Cgbpky5Yt3svKyirJ9XLlygVzc3P4+/vHe9/f3x8OaWzDkylTJnz33Xd48uQJAMR8Tp1tygVh/BkIkkQvR8GCbCMla7p2ZX+oAQP0M+U3N2e2/YMH9NK1a0cj7sWL1D+rVDKkW6YMG5yqRKaLFdP6sGXHsmV8gq9erWctoYyTnAxNaGisDI2bG4sUPDxYvF2sGCP6mpChGTECKF6c2zG1HLjMmdn98eZNzgnr1qXRrW91JoEe0EPBh6WlJSpXroxTp07FvKdUKnHq1CnUSGP0Jjo6Gt7e3siXLx8AoGjRonBwcIi3zeDgYHh5eaV5m3LBSHUpjI8dO5j4fvgwb6qyRqGgAVWxIpOuJk7UzzgKFmR7tQMHmA9YrhzLE93dk5Zk8fZmzuK//1JDcM4cPrVMkdevKeAmCy0hzWNjQ89f1aqx70kSHb537sT2Or50iVHvqCiu4+gYv8+xiwvbXCdnG1tZ8afQsCELprt31/aRyY/y5YELFyiFOXo0i0IWLwY6dpRp6opA82hCpDkDnx82bBi6deuGKlWqoFq1avDw8EBYWBh69OgBAOjatSsKFCgQkzc4bdo0VK9eHSVKlEBgYCDmz5+Ply9folevXgBYCezu7o4ZM2agZMmSKFq0KCZOnIj8+fOjVatW6h2fjhHGnwEQFAQMGwb8/DPzlwyCcuWY9zdzJu/yxYvrbywtWzLZa+JEPn22bKHLRyXGHB7OxKSFC6ljd/48RaRNmaFDmUcpGy0h7aOSoVFJ0aiIjGQhw507sa9162JrmqytebknNApz5eLyBg34Exg5EvjpJ4aeTQ0zM2YOtGzJuVfnzjSGV63S761BYNy0a9cOHz58wKRJk+Dn54eKFSvi6NGjMQUbvr6+MItjVH7+/Bm9e/eGn58fcuTIgcqVK+Py5csoW7ZszDqjRo1CWFgY+vTpg8DAQNSuXRtHjx5NJAYtdxSSlHowIjg4GHZ2dggKCkI2I2xZJXcGD2aC+oMHQKFCWtjBjRv07ly/zkpZTREWxmKJcuVYOCGHaf61a3wK3bxJb2C9eozNvX3LBK1Ro9TSsTMKjh6l9bN1K60WGaOtSzctfPgQ6yFUve7di+12kS9frCFYuDAFkX/9lYajqXPkCJ3Kfn6ck40YIX52cTGWZ27McUyZgmxqGkfBX7/CbsoUgz8nckF4/mTOjRssNJ03T0uGnzaxtWXpZatWDL/+/LO+R8TiBS8vVq9On868NpWAnGyraHTIly/M1WzYEOjQQd+jkTWq6uEGDWLfi4oCnjyJHzrevTs23fTPP5lKWr16fC9hvnzymBvpimbNWAQzbRqzC7ZtA9asYZ6lwAjRU9hXkDzC+JMx0dFA3750nA0erO/RZJCWLRnrGjIEaNKE5ZX6RKkE1q9n0lGWLEziunWLHr/lyw3QwtYwc+YAr14xudSUrBENoZKhUUnRqAgK4vyiSxdK0jx7xlRUlQZgzpycg8Q1CMuVY26isWJrS/WCjh2Zalu7Np3yc+aYjoSmQKAvhCktY9auBa5eZV6MQSuMLF3KEr8pU/Q7jvv3WXLYpw+9kY8f07W6Zw9PdJkyLPk0lEaymubRIz55Za0lZJjY2bEA/q+/+FP49dfEMjS5cjHi3rs301GzZNGeDI2cqFCBcpLLl9MD6OREAW9Tq442avTU3k2QPOJsyhR/f+YI9expBKEQR0fGdpYsYRxM13z5wny+ihXZL+zMGXr/cuWid+vnn5lQ2aMHK2tcXZlEZkpIEsO9BQoA48frezRGS5UqlH2ZOJEFI8nJ0Fy9yirjZs3YXS81GZqgID0fmJqYm/Pye/CAHsD27dkh5flzfY9MoBGE8Sc7xNmUKSNH8oY4Z46+R6Ihhg0DSpXiE0uXrotTpxhDmz+fAom3b7PIIyF2dsz/8/Rkb+Bq1Vjxagq9uQC6Wk6epPtF9lpChs3MmQx5Dh2a9HIbGxqJv/1Go+/0aeoQvnnDQokJE2g0XrrEdJDatWkQFi0KtGjB5bt2sULZ0JzYBQrQEX/wIItnypVjvrO22nULBKaKyPmTIWfPAps3c+avkosweCwtKXhWvz69bj17and/Hz5QambzZoZ6//6b8aTUcHVlRbCHBzB5MuN0K1Ywb9FYCQqiJdKmDd0tAq2SPTtVhTp3Bo4dA5o2Tf0zCgWQPz9fbm6x7yclQ/Pnn2mXoZErP/3EW8WkSYyAbN3KNBhXV/W2GxYRhRefwhAZpYSlhRkcc9rC1ko8BrWOKPiQHeKqlxmRkZRAqFmTUUijol49ZryPGsVYlzaeQJIEbNhA7QhJoq5Gjx7pK17IlImu17Zt+WW0aEHDaOlSuiaMjUmTgJAQGrwCndCxIy/NAQNYFZxRZ6ulZaxBFxeVDE1cKZrt25OWoVG9nJzkJbeSJQuwaBGN5D592Kynf396Tu3s0r6dx/4h2OrlizMP38M3IBxxUwkVAArb26B+6Tzo5FoYJfPquSDNWFEo1DfeRAGaRhGmtMxYuJB596tWGelEZ8EChn1Hj9b8th8+pLvgt9/owfLx4f8zetMoWpRVrzt3MsZWpgzDooYWS0uJGzd4TFOmiEpnHaJqguPry4pXTaOSoRkyhEbm1avMYPDxYUi4Z092H9m9m/OxChUYinZxATp14piOHGGoWd+FF5UqUZ1p8WIKQ5ctS4d8auN6FRCOLuu80NjjPDZ7vcTLBIYfAEgAXgaEY7PXSzT2OI8u67zwKiBcW4ciEMgGYzQvDJYXL1jV5+6eeCZvNOTJA8yezdjUpUua2WZEBI0XFxe2JTtxguHePHnU37ZCwdJMHx+6awYNolv29m31t61voqOZg1m2LK0EgU5xcqKDefZsFp5rG3PzpKuHAwOBixfp2K5Vi/ehmTM5fypYkA76+vXjG5LhOraPzM25//v3mQ/Zti2DB76+Sa+/46ovGi0+h8vPPgEAopUpW4qq5ZeffUKjxeew42oyGxZkDFHwITvE2ZQRgwezlezkyfoeiZZRaVn066d+JvfZszT6Zs7kk9TbG2jUSCPDjEf27MDq1TRYw8LYVmLUKP7fUPnf/4ArV3hcBq0lZLiMH888vgED9Odhs7NLXD2s0iLcv5/poLlzMz9R3zI0hQpxX/v20Wldtiw9gqreywCw/MxjjNnrjYgoZapGX0KilRIiopQYs9cby8/owCI3FYTxJzvE2ZQJBw6wJmHJEv3rIGsdc3M+Ze7do7shI3z6xJBu/fp0Tdy6xT602q5UrVmTTx1Vd5Dy5RkfMzRUWkK//WYEWkKGi40NL6MTJxiOlQtmZrEyNHGrh9MjQ7NyJT2K2pChadWKXsCePVnXpVJn2nHVFwuOP9LIPhYcf4SdwgMoMFJEb18ZoPcWuPpqkJqRpsWSBGzZQumYqCgmJ/XqpZ9Z4dOnfMqdOMHQsIcHM+kNgW7dgH/+YZ6k3Es/U0CfvX01SevWzGvz8QEM7RYrSawujltxfOcOf9Yqj1yRIokLTEqUYEcUdbl6lQUh916Go2Cfc1AqUnc/Bl3eicDzm5EpV2Hk77Uy2fWsLMxwcmhdFLLXbasVY3nmxhzH4sXIpubEPPjLF9gNHWrw50QuCM+fDJg2jdrDy5ebWEHT9Ol0c7q7p239x4+Bxo2Brl0Z2n3wgHd9fYUDihdnLGzLFgpHlynDEKrcWzCcOwds2kTD2YANP2NiyRJ6yCZN0vdI0o9KhsbNjZkQW7bQ+AsLY2rs5s1Au3bM8Fi/nv8vU4Y//aT0DNNL1ao0AF0HeiM6DbHzqOCPCPLcBUUm69TXVUoYt887/YMSxEeEfWWHkHrRM/fuUc5g8mSGTUwKOzsm7HTowKra5DTmIiOp9DpjBp8yR47EFzvTJwoFyyObNWMFc79+NKzWrmVIWG5ERnKMNWrwqSuQBYULs2ZpzBg6Zb/7Tt8jUp/kZGg+fowvQaMJGZrnn0Lw6ttHKNJgH3w+sw5W+UtDUiqh/BKc4rrRSgkXnnzEk/chKJHH2PNxBKaEMKX1iCRRt6pYMdYqmCTt2tGLN2gQ27Al5OJFtmWbMoXlfnfvysfwi4u9PQsozp0DPn/m03vcuKSPSZ8sWkQtodWrxUxaZri7M/1D101wdE1S1cNpkaFxdk5ehmarly/MzVIPm3z1vYtwn0vI0bBPmsdrbqbAln9F7p9aCM+f7BCePz2yaRNw/jy7allZ6Xs0ekKhYAcNZ2dg1iyGggEaUKNH06BydWVylyHo33z/PYtPVJ7KnTtpaDVurO+RUcNj2jQ+dQ3hXJoYmTKxDqpOHV72v/+u7xHpDpUMjaqCWEVQEOd7Kg+htzcL40JCuNzenpeyf7X3iDZLOeQrKaMRcGI1slRoAss8jmkeW7RSwplH7zEF5TJwZAIAosOHDBFnU08EBLAJRYcOQMOG+h6NnilViobe3Lmc/m/fzjjPzp00DC9dMixjxcoKmDiRT6oiRYAmTeiyeP9ev+MaMoRPyylT9DsOQbLUrg10787wr74vFzmQUIZGVT38/DkVEoYOBezzRCFckbrwYOjNI4gK/oDs33dJ9zh8P4UjLCIq9RUFAgNBGH96YuxYpl8tWqTvkciEsWOZ7FOrFsWUv/+eBR39+9MtYIiUKgWcOsV2c8eO0aD94w/9xPQOHuTLw8MEtIQMm3nz6BAfNUrfI5EnCgXg6MiuixMmANMWh7FPWwpEfwlG4IWtyF6zHcxt0tEb7j8kAC8+GbCmp74RYV/ZIc6mHvj3X4Z1Zs4EHBz0PRoZ8O0byx3fvYt1ie7ezeIOQ0ehYAa/jw+fVr17s8fxgwe6G0NYGHMq3dyAn3/W3X4FGSJ3bjrBN25kWoggZSKjUp9MBZ7fDLPMWZC1yk9a3Y8gGYTxJzvE2dQxUVEMYXz3Hf81eTw9KdA2fjx1/1q1olaENpRh9UmuXPQAnj4N+Pkxi33SpNgSR20yfbqJagkZLj17siC7Xz9GCARJ4+8P3LiW8mPsW8AbhN46hqyVWyA6JABRgf6ICvSHFP0NkjIaUYH+iP4Skuq+LC3E41JgPIiCDx2zYgW1r7y8DDeaqRECA1kNu3o1VXqvXaNF/Po1RcAmTGDrA2Ojfn1mrs+ezdeOHTwHDRpoZ3/37gELF9LQLF5cO/sQaBwzM+a4VapENaTRo/U9Iv3y9Ss7eiSUiHn/HlBkskWhYcnPa6JDPgGSEp9PrsHnk2sSLX+zuieyVmkB+0bJVwArADjmtNXQ0ZggCoX6njsxcdUowvjTIW/fsg6gb18Kk5okkgTs2UMvX2goc9AGDIi1hAsWBKZOpfZN9+40DI0Na2seY/v2LOls2JDC1QsXalZ0WaUlVLSoSCAzQCpU4M9k2jReKkWK6HtE2keSgFevEncLefQIiI7mOsWLs/6rXz+VDqAFfttnA9+ApIs+MuUugtxtxid6P/D8Zigjv8C+UR9YZE+5M0/hnDawtRKPywwjqn1lh7iadcjQoWw9O2uWvkeiJ168AAYOZA+7Vq3Y1zeptm6DBzPhqW9fJkgaq4u0TBng7Fm2PRg5kudlwQLmCGpilrt5M5PGTpwwYS0hw2baNGrfDRkC7N+v79FoltDQ+DIuqpcq4yN7dhp3DRpQA9HFhbrpWbIk3laD0nmw2eslopWJ5V7MbexgU6pGoveDrx4AgCSXxfu8mQL1S+VJ7+EJBLJGGH864vhx3sQ3b+ZNzaSIiqKHb/JkIEcOYN8+Gn/JYWHBmFetWsCaNfReGStmZkzw+ukn9ivu0YMCkKtXs1o4o6gKZ9q3p4i2wCDJmpU/nV9/pb7dTxmvV9AbSiXbYKt0+lRG3tOnXK7S+HNxYaMcVVePggXTPgfq5FoYGzxfaGX80UoJnasX1sq2TQbh+ZMdwvjTAV+/MrJZrx7l3kwKVdf127dZcTpjRtqkRmrWBHr1Yl7gzz8DefNqf6z6JE8eFrp068Z4lrMzi2BGj86Y127cOCAiQmgJGQFt2wJNm/Ln06ABu13IlYCAxHl5d+8C4f9FZHPnZji7ZctYI69MGWZCZJjoaJTc8Sfq+IbhcsHyiDZLW6TAodOcVNcxN1OgZrGcorWbugjjT3YI408HzJ0LvHxJmTWTyVkNDmbRxvLlbM/m5ZX+RMc5c+glHDGCLlNToHFjPj1nzGCV7vbt9H5+/33at+Hlxd7CS5ZQO1Fg0CgU/BmVL8/LYvZsfY+I6kyPHiUO2b5+zeWWlkC5cjTufv011tDT+Bzu5k1OLq9fx6z+w9DIMhOiNSjJYmGmwKzWzhrbnkAgF4Txp2WePOHNesQIznBNgn376Kb4/Jk5bIMHM5SbXnLmpOJtz57Ab7+xUtYUyJyZIpAdOrAgpG5dnoN589ihIyXiagkZc7jcxChRgjroM2aw323ZsrrZryRRTiVue7U7d1h5q5KgKVSIhl2XLrFGXsmSbFenNUJDmUbi4UGr+PJlFKpeHVOv+mLMXm+N7WZai3IoZG+jse2ZLMLzJzuE8adFJInh3nz56AQzel69otF34ADw44/UtVG3RLF7d+DPP2nI3L5Nl4KpUL48cOECFcFHj6brePFidkBJzoW8ciV7CxtzoYyJMno0MwP69wfOnNF8FEElp5LQm/fhA5fb2DAboWpVzkVcXPh3jhyaHUeq/PMPb6wfPnBmPXRojKXZvmphfAyNwILjj9iWQ41zNLJJabSrKnL9NIIw/mSHMP60yJ49LPT4+2/eOI2W6GjGpSZMYD7f7t3M09PE00klePbdd/Qijhun/jYNCTMzev9atmTJY+fOFItetYruoLi8fcvv4PffgWrV9DFagRaxtqZt36QJjcAu6W9RCyBtciolStC4698/1ptXrJien79v37Lsec8edqtZuZIyRgkYWL8kvgZaYdmlezDLJEFC4grg5DA3U8DCTIFpLcoJw09g1AjjT0sEB/NZ3bIl0Ly5vkejRW7cYM7NjRsMN86axW7smsTZmbP76dMZCk3ihm/0ODhQEDpuQcjEicwnUHlDhw0zcS0h46dxY6BdO2D4cN5XUvO6hYTEl1NRhW0Tyqk0bMifmIsLc/WSklPRG9HRzHsdO5bX9/btPAnJTC6VSmD/wsKwCs+Fqv28cenZR5ibKZKUgVGhWl6zWE7Mau0sQr2aRnj+ZIcw/rTE5MlsYrF0qb5HoiVCQ9k1YskSPi0uXwaqV9fe/iZPpvEzeLCJVc4koFkzdu2YNo3nf9s2PhjDw4GdOykTo/M4nECXLFoEODnRCb5qFd+LjgaePUvszXv2jMs1IaeiF+7c4eTSy4se7dmzU72+N2wALl0CTp2yQYMGrnjsH4KtXr448+g9fD+Fx/MDKkAB5/ql8qBz9cKiqldbCONPdgjjTwvcukWjb/ZsoLAxRg7+/ps5Nx8/Jsq50RpZstDQ/Pln5hSmpBNo7NjasoS8Y0c+GGvXBrJloy5i5876Hp1Ay1hb0wG8YgUjoX5+8eVU8ualYde6dWxentpyKromPJxdcBYupNV68SKv71T49InNbDp1iu2YWDJvVkxpUQ5TUA5hEVF4cek6Ijt3heWWTXCsVVl07hCYJOKq1zBKJaNyZcrQJjIq3rxhzs1ff1F4bOVKJgLpitatgR9+oPevUSOZxab0QIUK9Li2aAEcPgz4+FBJ/NdfZe7OEaSFb9+Ahw8Th2xVcioKBZu3tG3LKKjK0DN4ScyjR3kTffeOHu64qQ2pMGYMC94XLEh6ua2VBcplzwS8ewRkzwQIw083CM+f7BBXvoZZt46FlufPa98ZpjOio9lxYuxYVq6kknOjNRQKYNkyhpmnTaP0ianz/Dlw6hQ9sX5+7OixYUOyyfAC+ZFQTkX1evAgZTmVz5+BOnVYfTtokH6PQSP4+XHGvGMHJ3cnTiQuakqBy5eBP/5g7ZmDgxbHKUg/wviTHcL40yAfPlCOoVs33pSNgtu3mWvj5cUQ45w5+s0pK1aMFa1TpgBdu1IOxVSRJPZKdnCgIWxjExuSL1eO50gXIXlBmklNTsXWlt47V1c2uElNTqVPH/4c2rY1YD1vpZJW2+jRvFa3bElZzigJVPKWVaqwJbhAIEgZYfxpkFGj+O/8+fodh0YIC2POzaJFzLm5cIG5ZXJA1fGjf3/g3DnTDXHu2QMcO8YCGJWW0E8/UQx70iR6arduZbcPV1f9jtXEkCTA1zdpORWlkpds8eI07gYMiPXmFS2aPgfH7NnA3r0s9N6+XXvHozXu3ePk8tIlCrnPm0dx93SydCnD4leuCHlLWaJQqO+5M9X7vJYQxp+GuHCB0bY1a9i/0qA5coSGVQZybnSClRXDmg0bAhs3Ugja1AgJidUS+umn+MuyZKHR3rkzXUM1avD7nDlT8zI8gkRyKqr8vIRyKo0a0UjTpJxKjhycbHbvTtupcWP1t6kTvnxhu5J582gFnz3LTjYZ4PVrigH070/Pn0CGiLCv7BBnUwN8+8aQQ/XqDNUYLB8/Mmfshx94Q757l3oScjL8VDRowNDQyJEs8TM1VFpCS5Ykv06lSgzXL15MI7lsWRbrSGkXvRXEEh0NPH7MUzh5MuuPihdnoXXNmvTgnTvH/LwxY9iIwtcXCAjg+8uWAb170wmryVqlrl3Z+nnAACAiQnPb1RonTzKWvWABtSpv386w4Qcws8HWlrakQJCQFStWwNHREdbW1nB1dcWVK1eSXfd///sf6tSpgxw5ciBHjhxo1KhRovW7d+8OhUIR7+Xm5qbtw9A4wvOnATw8mJx9/bqBTk6U/zVC//ln6kFs3kytBLm72RcupODZ2LEMbZoKt28zzjVzZurt88zNWaHdpg3zA9u2pTrwihVGqkOkGQICEnvyUpJTcXFhhb+Vle7HqlDQEV6xIh1pEyfqfgxp4v17qlNv2QLUqwccOsSUEjU4epTZD1u20MMqkCl68vzt3LkTw4YNw+rVq+Hq6goPDw80bdoUDx8+RJ48eRKtf/bsWXTo0AE1a9aEtbU15s6diyZNmuDevXsoUKBAzHpubm5Yv359zN9W+vjhq4lCklJ3AwQHB8POzg5BQUHIli2bLsZlMPj68qbfuzeNQIPj7l0aenfuUDLkzz8zlHOjN1asoFHj6aldkWm5oFQy9zIoCLh5M/1e2X37WBoaGMiQ/uDBgIXhzgFv3AAqV+bEq1Kl9H8+oZyK6vXmDZdbWjJEqzLw5CynMmYM70H37tEjKRskCVi/nl56gJO2bt3Unlx++cJ6L0dHOhPTvDl1LxodYCzP3Jjj+PtvZLO1VW9bYWGw++mndJ0TV1dXVK1aFcuXLwcAKJVKFCpUCIMGDcKYMWNS/Xx0dDRy5MiB5cuXo2vXrgDo+QsMDMT+/fszfCxywHDv+jJhyBDOOKdN0/dI0smXL2yXNn8+oJrRTJ5sWIYfwNK+9ev577VrBm3IpIl162jonjuXsXB869bMlVS1hlMVhFSurPmxyojk5FTu36cBCNAR6uJCu0Rl5JUqZTiX1MSJLPoYOJCyj7Jw3Pv4sKDj/Hme2PnzNZYUPXs2exQfOiSTYxXohODg4Hh/W1lZJel5i4yMxPXr1zF27NiY98zMzNCoUSN4enqmaV/h4eH49u0b7O3t471/9uxZ5MmTBzly5ECDBg0wY8YM5DSwZ6eB3NbkyT//APv3s6uWQU3OTpygsfT6NXUimjZlUYAhYm5ODcJq1Sjw5e6u7xFpj7haQt9/n/HtZMvGXEFVQUi1avQGTp8OZDX89lZfviSWU/H2TlpOpXdvGnrlyxt+VzxbW2YDtGrFvMS2bfU4mK9faZ3Nnk3X3KlTsS03NMCjR2xyM2oUMz8EMkeDYd9ChQrFe3vy5MmYMmVKotU/fvyI6Oho5E3gps+bNy98fHzStMvRo0cjf/78aNSoUcx7bm5uaNOmDYoWLYqnT59i3LhxaNasGTw9PWFuQKXmwvjLIOHhfF42aQL88ou+R5NG3r9nueHWrcy5OXyYOTc3buh7ZOpRpQorbiZO5JcRJzfDqBg9mv9qSkuoalXg6lUagpMm0WJYvpwVxAaAJLEgHaBDdO5c7cipGBKq4m93d87p9GLLnznDyeXz54xFjxun0d5yksTvs0ABYPx4jW1WoE00aPy9evUqXthXW/l2c+bMwY4dO3D27FlYx7l+27dvH/N/Z2dnuLi4oHjx4jh79iwaNmyolbFoAyO9BWqfmTP54FmxwgBCDkoln45OTpRxWb8eOH1a7WRrWTFzJl0fRtdT7z8uXuT3Nnu2ZrWELCyYhH/vHi2jVq0YGlb1EJMJISGMdq9Zwwd/nTpMt2jenMs3bWJYt3FjruPlxc8kVZ1rrIafiqVLWbCShDNEu3z8CPToQQ9fnjxscj5tmsabCu/cyRy/ZcuAzJk1ummBAZAtW7Z4r+SMv1y5csHc3Bz+/v7x3vf394dDKi1gFixYgDlz5uD48eNwcXFJcd1ixYohV65cePLkSfoORM8Iz18GePCAzpdx49LVfUg/PHjAnJsLF6gJsWCBEQgRJkH27Ewk79yZwsdNm+p7RJpDpSWkilNqA0dH5jHs2cMikDJlaFAPGKBT1dzoaODp08S5ec+fc7m5OecwLi7Ajz9S23rIEMrEGXnaYppxdKQjd8KE2PxFrSJJVAgYNoxf4P/+R9FBLVjZQUGc37Vuze9fYCDoodrX0tISlStXxqlTp9CqVSsALPg4deoUBg4cmOzn5s2bh5kzZ+LYsWOokgbhyNevX+PTp0/Ip+UWOz169EjTenGrkFNCGH/pRJIoJlqkCCMasuXrV2DWLLZjK1KEU2UDcklniI4d6eEcOJBJXhr2OOgNDw8msV27pl23lULBsHmTJpTPcXfnQ33tWuC77zS+u0+f+DXFNfLu3mXOHhArp9KmTfJyKqqMBdl733XMsGH86vr2pdNYa5fN48fcyenT/P0tWqTVUuiJE+nRTUneUiBD9CT1MmzYMHTr1g1VqlRBtWrV4OHhgbCwsBhDqmvXrihQoABmz54NAJg7dy4mTZqEbdu2wdHREX5+fgCALFmyIEuWLAgNDcXUqVPx888/w8HBAU+fPsWoUaNQokQJNNWyw2HTpk1wc3OL8XSGhYXh9OnT+Ok/kf+IiAgcOXJEGH/aYutWehmOHZOxbXH6NG/IL15oJedGtqgEz1xcaPTqPO6lBV694nEMGqQVAyxJ7Ox4Hrt0ode4alUaglOnMrSeTlKTU7GyipVT6dCBxRhylVMxFCwt+RXWq0f1Jo2Lz0dEUFRw5kwm3x07xkmDFrlxg2k2c+dSSFsgSI127drhw4cPmDRpEvz8/FCxYkUcPXo0pgjE19cXZnGMylWrViEyMhJtE1RLqYpKzM3NcefOHWzcuBGBgYHInz8/mjRpgunTp+tE6+/PP/+MGfvz58/h4uKCvXv3AgA+fPiQajg7LsL4SwefPzM96tdftX6fyxgfP1K+Y+NGasHt38+uDqaEkxP1xGbPpn5hyZL6HpF6DBlCY0wfWkI1alALbdEiGn67d9OiSCbeJkmAn19iI+/Bg+TlVFxc+BUZipyKIVG3Lu330aOZypkrl4Y2fOECJwWPH/O3NmFCbG9pLREdzcyHsmX5kxAYGHps7zZw4MBkw7xnz56N9/eLFy9S3FbmzJlx7NixDI1D0ySUaJYkKdF7KSFuuelgwgSGpBYv1vdIEiBJzHgfPlzrOTcGwfjxwLZtzFc7dsxwY4KHDlGUeccO/WkJZcpE6+GXX/j0bd4c+OUXfJntgfuB+RMZeh8/8mMqOZXq1akmo9LNE10YdMuCBcDff/MrXLdOzY0FBHBDf/zBicGNG/xSdcD//gdcuUK7M1MmnexSoEkUCvWfR4Z6H5cpwvhLI1evAqtW0QmSP7++RxOHR48Y4j1zRic5NwaBjQ1LAX/6id6qX3/V94jST3g4cxcbN9br+CUJePkS8L5XDHfqHEWW4B3otNcdmXaXwTrMxhr0RfGSZnBxYWRaZeQZs5yKIZEnD53g/fpxPlirVgY2IklUjx46lOHeVato0evoC/b3Zwpqjx4MaAgEAqJIYBAn/DslhPGXBlQhhwoV+DyWBRERTH5R5dwcPWpcFa7q0rw5Y13u7oCbm4GpcCNWS+j4cZ3NeIODWXCRUBxZJaifI4cCLi4d8PY3N/TwGY2VFwZgWbXNMP9jrc48QIL006dPbBOcGzfS6Tl7+pQVbsePcxLi4QFouaoxISNH0s6cN0+nuxVoEj2GfY2F0qVLwyJOfoy9vT3GjRsX87eVlVW6ik6E8ZcGVq3iTfPyZZnkJl24wDv6kyfM8Zs4Ues5NwbJkiUsD500ybAaL8fVEtJCzmJ65FSaN4/NzStQQGWH5gCwFrjYFea//87+qMOH8zyL61B2mJnxHla1Kn8SI0ak4UPfvjFmPG0aIwmHDgE//KD1sSbk3DlWLf/vfxrMWRToHmH8qc39+/fj/Z09e/Z4/Ynt7Oxw+PDhNG9PDqaMrHn3jilkvXszf0mvBASwn9G6dTrPuTFIChdmpeyYMaww0FW1rDqo2hcULqwRLaHU5FQcHGjY/fxzrJHn5BRfTiVZatcGbt6koTp9OrBrF60M4YGWHZUq8bKaMgVo1y6VallPT04uHzygZszkyRmq8laXyEhGXGrUYMhaIDB1JEnCyZMn8eDBAwCAk5MTGjdunK5wrwph/KXCiBGUTfhPBkg/SBILGIYO5R1Rxzk3Bo27O4th+vWj61bu52zbNuZvHj2aLnmeyMik5VTevuXyhHIqqty8PHnUHK+lJWdHv/7Kc+zmxh0sXixyT2XG9OlMgXV3Z9eTRAQGMrluzRq2TLx2DahYUbeDjMOiRUxpvn5d/j9bQSoIz5/aPHnyBK1atcLjx49j+hu/evUKpUqVwr59+1AinR0nhPGXAqdO8Vm8fj1gb6+nQTx9yofqiRN6y7kxaDJlorFcpw6rFPv00feIkicwkJ6WX35J1nuWHjmV7t11KKdSsiSv0S1beAxOTkzS6tnT5G/acsHOjjZ5hw5s6x0TxZUkWoVDhgBhYewP16+fTju7JOTFC0acBw9mrrXAwBHGn9r07NkTBQoUwKlTp2K0/vz9/dGlSxf89ttvOH/+fLq2J4y/ZIiIYJ5znTqMGOqcyEi2K9Nzzo1RULs2LaExY1gEora7S0uMH88q3/+0hL58YcvdhGFblZxKliz03tWoQdk1FxegfHk9yqkoFBSW++EHZun36UOv65o1pqc3KVPatYttgnP3LmDz/gXjwYcPs5XK0qVM7tQzgwdzwj11qr5HIhDIgytXrsDLyyvG8AOAvHnzYtGiRahatWq6tyeMv2SYPx949gzYu1cP8kKXLvFp7uPDUO+UKXrJuTEq5s0DDhxgzuSGDfoeTTwkCXh38CryrVqFE26L8MfQArhzhxq6SiWvvxIlEE9OxcWFPVxlORnOmZNtJbp25XVcsSLP+/jxQObM+h6dSaNQsEuGs7OEWS3+xQzPRrSyDhwAWrTQ9/AAAAcPUptw924ga1Z9j0agEYTnT20cHR0RFBSU6P3AwEAUL1483dsTxl8SPHtGpY1hw5gnpTMCA+mdWrOGpXl6zrkxKnLnpjROnz7MHv/+e70MIyk5lXt3onEipB/ewwWdPAeiXAV2kBkxgkZeuXIGavvXq8cDnDOHfaZ37gRWrzb+HtMyp1TgFYzOcRNzTvVA524T4bRsgGysrLAwTnDc3FiEJDAShPGnNkuXLsWwYcMwY8YM1KhRAwDg6emJcePGwSMDahbC+EuAJPHmkycPlSt0ttNdu5hzEx5OgWI959wYJT17MoGzXz9WqVpaam1X0dFU4kkYslXJqVhYxMqpTMq1GlUOXMf7/ZfxvoWFcQnZW1mxWrRdOwrNNWrE0PDChTTIBbojOJje1xUrMLZCdWy16I4Br8bgZBZALpfc9OkUdT51SjR0EAji4ubmBgBo1qxZvPcVCgWaJOg3q1QqU92eMP4SsG8f01/279eRt+X5c+bcHDkCtG7NnJuCBXWwYxNEJXhWqRILZ0aN0shmP31KXIBx714a5VT8/IDS44DevZGnZQ2NjEeWODmxinnDBro0Dx2ijlz37uIpr20kiTe2QYOAoCBg0SJkHjgQK05aoFkzNu/o2FHfg+RvZuFCypams3BRIHeE509t9u3bp9HtCeMvDqGhdL41b66D9Jdv35jYP2UKc6T27wdattTyTgWoUIHZ5FOn0htVpEiaP5oeOZWOHdMopzJ8OD2Qc+aod1yGgELBHl3Nm/O4f/sN2LiRaQ6lS+t7dMaJry+NvoMH2e5w+XKWg4Oh1bZtmd7yww/67bssSSywK1qU7YMFRoYw/tSmhYaNEmH8xWHKFHpxli3TsjPCy4u5Z3fv0hCZNk02OTcmwbRpsWH2/fsTLZYkinvHbXGWUE6lSBEadz16xHrzSpRIp5yKLLSE9EDu3KwC7taNoWAXF+rLjR2bRnVpQapERdHQmzCBGi9//cXIQoIbm4cHnbITJnB1fbF5M3D+PNWCxCUgECRNSEgItm3bhocPHwIASpUqhU6dOiFrBuwHYfz9x507vBFOn84qSq0QFMScm5Ur2W3iyhWgcmUt7UyQLFmz8sv+9VdE7Pkb3o4/JfLmffrEVbUmpxIRwXC/3rSEZEDDhjzZM2eyIGT7dnoB69XT98gMm+vXObm8eZPX2MyZyfa2LlCATvARIxiBr1JFt0MF2LhoxAigfXumhAqMEIVCfc+dCaaHzJ8/Hw4ODujSpQv+/fdfNG/eHObm5nD+r7PXli1bMGHCBBw8eBA1a9ZM17aF8QfKafTrB5QqxWiUxpEkasYMHkwDcOFChmJk0SjYNJAk4OXLOAbe7bYYZNMUhX4ZhLpogC8K2xg5lcGDdSCnsmABBbz37DHJm1oMmTMDM2ZQefj334H69elOnT+f6RCCtBMayoS5pUs5Y/n3X6BatVQ/Nngwo+/9+vEjuq4zGzcO+PqVHT0ERooI+2aIlStXYsuWLQCAfv36oXnz5vjf//6HTJkyAQAiIyPRp08fDBgwADdv3kzXtoX1AeagX77MfHSNF4D6+lJR9e+/E+XcCLRDcDBDtQkrbUNCuDxHDqBCBQXOtl2OsdvK43HnmbBbPkt3cirPntHgGTqUbkQBkyXPn6cC8ahR/L0sWgR07mzaxnFaOXiQ95lPnyhpNGQIu9ukAQsL1kHVqkXHa//+Wh5rHLy8gLVrReMigSAp/P39UeA/0XUfHx9s3749xvADAEtLS4wZMwbfZaBvvckbf58+8VnTubOGo01RUUwenDgxxZwbQcZRyakkDNm+eMHlceVUfvop1puXP7/qaygBFB+H/DNmAKO6AGXKaH/QKi2h3Ll1qCVkIJiZAb17s9pq6FCKRG/cSMukZEl9j06evHlD193evUCzZkwpyUDeSs2aQK9e9MK1acMKdW0TFcWUz4oVdWtwCvSA8PxliHz58uHWrVtwdHSEs7MzXr58CScnp3jrvHz5MiYMnB5M3vgbPZpGxIIFGtxowpybGTNoAAoyzMePiT15d+8yXATQa+DiwurFRHIqKTFqFLPN+/cHTp/WvnGu0hLat48JhYLE5M3LQpiuXfm9ODuzImHUKK1qMxoU0dE0iseNoybVzp3sCa3G9TtnDi/LESPYolnbrFwJ3L7NULPIgDFyhPGXIVq3bo1BgwYhLCwMw4cPx9ChQzF8+HBU+y+d48qVK5g/fz7mzp2b7m2b9E/u0iVGmVau5PNGbUJC6OlbtozhPE9PwNVVAxs2HSIj2dUubpVtQjmV8uVp3HXqFCunkmG9YGtrXgBNmvCJ16WLxo4lEXG1hISsT+q4udHCnz6dVQnbtjFGWLu2vkemX27dYn7klSt0nc2erRGdlpw52QWxZ0+q8DRooPYmk+XtW9rzv/+eprREgcAkmTFjBj58+ICePXvi239SE3369IEkSQAo8AzQSEyLsHNcTNb4i4pignPVqnTSqc2BA7E5N3PmAO7uac65MUUSyqmoXg8e8LsBNCSnkhYaN6bm3/DhNMxy5NDwDv5j6lReH0uXivB/WrGxoXHTsSN/qHXqMDQ8d672vie5EhZGParFi5micOkS47UapHt3tmXu35+/R205WocN47xr1iztbF8gM4TnL0NYW1tj48aNWLt2LXx9ffH169cYw09dTNb4W7qUivJXrqhZ3fb6NXNu9u1TK+fGmAkPB+7fT2zoJZRTqVkzVvbN2VnHkfJFixgnVknxaBpvbz60p02jkq0gfTg709hZs4b9rw8cYJVAqfaQT3MyLXL4MC0yf3+mkQwfrpXJpaoJznffMRVm3DiN7wInTjBKvXGj6dnvJosw/tTCysoKJTWc92ySxt/r12w32r+/GjJ70dE0EsaPp3dCAzk3ho4ksdgioTjy48eU01EomLfv4sLop8qbV6SIDH7X+fPzoeruTveHJmNRKi2hkiWZUCXIGGZmPI8tW/J76tgRxWtsRFGsBFBM36PTDu/e8Vh37aKH+tQpoHhxre7S2Zn1NtOnU4FHk3OVr195361bV7sZFgKBMfLu3TusWLECN27cQJYsWVChQgUMHDgQdhnwlJik8efuTm/TjBkZ3MCtWwxBXb2q0ZwbQ0IlpxLXk+ftHSunYm9Pw65pU2DkSP6/XDnaybKlf3922+jXTwMu4Ths2ECv1enTomBBE+TPT2Po0CFY9x6AuyiPzxsmA87DjCfVQqlkfuOYMUx03bqVlpiOJpeTJwM7drAw/e+/NbfbefM4QTxwwKTnyaaH8PypzdOnT1GrVi3Y29ujXLlyOHDgAEJCQrB06VKcOnUK5dMrGyalgaCgIAmAFBQUlJbVZc3hw5IESNK2bRn4cGioJA0fLknm5pJUrpwkXbqk8fHphevXeVKuX0+0KCpKknx8JGnXLkmaMEGSWrSQJEdHrg5IkoWFJJUvL0kdO0rSnDk8v69fS5JSqYfj0AT//itJCoUkLV2qme19/ChJOXNKUufOmtmeIB43L4ZK8zFcUpqbS5KzsyRdvqzvIamPt7ck1ajBH1ivXpL06ZNehvHXXxzC3r2a2d7jx5JkZSVJY8ZoZnsZJoX7nVwwlmduzHE8fSpJ79+r9Qp6+tQozklG+fnnn6VffvlFio6Olp49eyZlyZJFkiRJmjBhgtSsWbN0b8+kPH9fvrAmo2FDthJKF4cO0TP0/j3jIcOHG50X5/Nn4Obp+J68pORUfvklvpyKUZ0GV1d6dSdMoG6MusqzY8awgkWjWkICFcrMthiJBfhxUyeU8fidSsV9+7KSwNC88eHhvLcsWMAUgfPnWeCiJ1q3Bn74gSkajRurp0wkSbz3OjhQEEEgEKSPM2fO4NixYzAzM4tX9NG1a1d4eHike3smZfzNns18vyNH0hFyePeOd7/du3kHPH1a6zk32iaunMqdO0D4RWA5gIaNgJtgFV65chqUUzE0Zs+maO7w4ZQXySiXLwN//AGsWKEhLSFBcnxx+o7SSitXskph3z5WdbVtaxjxxePHmW7w5g1jriNHpkGkUrsoFFStKleOdUrz5mV8W3v2AMeOMdwr69QPgXYQYV+1iYiIgL29faL3w8PDYZuB9lQmY/w9ekR1iFGj2MM3VZTK2MpCPeTcaIK0yKk4OgKt/us2N2c2ULiVluRUDIkcOeh96daNgmcZ6Tav0hKqUoViZgLtY27OJLXWrVmB/+uvwI8/sqWiXCvw/f2pe7JtG4X1jhxJ4w1KNxQrRif4lCnU3M5IN8LgYOZZt2jBl8AEUSjUN94M6NmrDYoUKYLHjx+jWLHY4rbXr19j9OjRaNKkSbq3ZxSmdFhEFO69DcJN38+49zYIYRFR8ZZLEiO2BQumUbrA25vho/79+QDx8aHOmIwvvvBw1p+sW0dHZf369NQVKEAFmunTgefPeVhLlwIXLwKBgXxv8WJuo0kThnFN2vBT0aUL8P337NASEZH+zy9dypj56tWaKxwRpI2CBem53b+fLSTKlaMxHxWV6kd1hlJJr3CZMnSJbdwInDwpK8NPxYgRDHb068dhp5cpU3ivWbpU0yMTCEwHNzc37Ny5M+bv8PBwFC5cGFFRUViseoinA4N9zD/2D8FWL1+cefgevgHhiCt7qABQ2N4G9UvnQSfXwrh2OitOnaJUVubMKWw0PJzxjYUL6f46d44GgIxQKoGXLxN78x4/ppErazkVQ0KhYAixYkXGu9KTqKQRLSGB2rRsSW/axIns47h1Kytoq1bV77ju32de4oULlBWaPx/IlUu/Y0oBKyv+FBo2pI3ao0faP3v7No2+mTN5DxKYKCLsqzYLFy6MyfXLly8fDh8+jOLFi6NEiRIZ2p5CklKXiw4ODoadnR2CgoKQLVu2DO1IU7wKCMe4fd648OQjzM0UiFYmP3zVcuWbXKgQ6Yy/d6SQbHLsGKe2b99Su2/UKL3n3AQF0XmUmpxK3FeG5FRu3KCRcv06UKmSxo/DoBkzhmLC9+6lPdfzl1/4YPfxMbyiAwMjzZfutWss5Ll1i5UHM2YAur6Xff1KK2juXIrnrV5NF72B0KkTb5MPH7IVXGoolezEFxTENueyKQwzgPudnJ656hBzHK9fq30cwcHBsCtY0ODPiVwwKM/fjqu+mHzwHqL+M/hSMvziLlfk+4SHmc5hx9VyaF+1cPyV/P2paLp9O2/ER4/qPPQSHU3PXUIj78ULLrewYHTIxYXODJWhly+frCPRxsHEiRQ8GziQruPUTvjRo8xu37pVGH5yokoVajcuW8bvdO9e/r91a93s//RpevtevmTuyZgxrKwyIBYupOjB2LF0oKbGunWswTl7VkaGn0AgAGBAxt/yM4+x4PijDH1WYSYhMlrCmL3e+BgagYH1S3Jaum4dPXzm5hTi7dpV69bUx4+JQ7b37pmYnIohYWvLuFXLljQYfv45+XW/fGGOYMOGLA4SyAsLC0702rShMd+mDb/XZcuAQoW0s88PH5g0t2kTU0gOHuQP2gBxcKDjcuBAhn5r1Eh+3Q8fGGnv2pXdPAQmjgj7yg6DMP52XPXNsOGXkAXHHyF3cADaLRjBqgct5dwklFNRvd6943Jra1bOubgAnTuboJyKIdGiBfDTT0yibNIEyJo16fVUWkJp8RAK9EeRIjTC9u5ldXDZsgwDDxyoueIcSWKC3IgRsRPN7t0N/gHWt29sE5xr15IvDhs9mv/On6+7sQlkjDD+ZIfsjb9XAeGYfPBessulqG8IvLAFYffOQPk1FJlyOyL7912Queh3yX0Cky68Qc2Qbyh0+rTaOTeSxDTBhEaej098ORUXF6Bnz1hvXokSogjUoFi6lEbClCmMfyUkrpZQ6dI6H54gnSgU9OI2asQc36FDgc2bGc9UNw/s4UNaSWfPcma3cCGQJ49Ghq1vzM2ZqlitGh2mQ4cmXufiRRqIq1cbzWELBAZBWFhYmjX/ZG/8jdvnHZPjlxQfDy1G+MNLyFalJSzs8yPM+yTe756CvB1mwbpQuSQ+oUBUJkuMG7AYm+unELdIgvBwhmgTGnoBAVyeJQsNu9q1Wejp4kLvXgZ6LgvkhqMjMGkSRc+6deOXq0KSGO4tUCCNWkIC2WBnRx3Azp2px1i1Kj2806alv6VFRAQnADNnMox8/DiF4Y2MKlXo+Zs0iekpBQvGLvv2jcuqVQN699bfGAUyQ3j+tMKXL19w6dIlnDlzBmfOnMG1a9cQGRmZps/K2vh77B+CC08+Jrs84u1DhD84j+z1f4OdaxsAQJbyDfD2jwEIPLseDl2SbqkVDQUuPAvAk/chKJEncQgvLXIqpUoxTOvuLuRUTIZhw+gd6teP1byqL3vnTmq0HTqUipaQQLZUr844pocHZXr27GFnlp9+Stvnz52j8fj0Kb2/EyYY9bUwcybw11/8SezaFfu+hweVbK5dE/dCQRyE8acRIiIicPny5Rhj7+rVq/j27RtKly6NevXqwd3dPc3bkvXZ3OrlC3Oz5HOnwh9eAhRmyFrRLeY9hYUlslRojIg3PogK/pDsZ83NFNjyry+CghimWLmSkZqaNVmkWawY0KoVb2afPlEo+Y8/KKQcGsqw7u7dLBxs2ZLKDeLaNHIsLXmhXL7MuBZAHQtVEcEPP+h3fAL1yJSJbdXu3aNmUosWbA/35k3ynwkIYD5HvXrUP7l1i5aRERt+AO+RCxfyHnjsGN/z9WVWxMCBwHfJZd0IBDpmxYoVcHR0hLW1NVxdXXHlypUU19+9ezecnJxgbW0NZ2dnHD58ON5ySZIwadIk5MuXD5kzZ0ajRo3w+PFjbR4CAKB+/frInj07GjZsiF27dqF8+fLYuHEj3r59i/v372PlypX49ddf07w9WZsrZx6+T1HOJdL/GTLZF4CZVXxhO8t8pWKWJ0e0UsKG4++RPTt7pw8Zwme6qp3RkSO853/8SJUGDw92+qpSRfSmNGnq1mX3j1GjeHFMnEjhxQw01hbIlKJFWbSzYwdnhmXK0AsYHR27jiQBW7awcvevv9gK8sIFGo0mQseOTJkeMICF7u7ujKJPn67vkQlkh8rzp+4rnezcuRPDhg3D5MmTcePGDVSoUAFNmzbF+/fvk1z/8uXL6NChA3r27ImbN2+iVatWaNWqFe7evRuzzrx587B06VKsXr0aXl5esLW1RdOmTfFVJdmhJS5cuABLS0uMGzcOe/fuxapVq9CuXTvkzWDfeNkaf6ERUfANCE9xnejQAJhnyZHoffMs9jHLUyRLOP7YEIXbt4GwMIZ2t2zhc93NDcifXxRtCpJgwQLmBvTqRaNg6lTtSYUI9INCAbRrF9vaceBA9ka8fRt48oRV3126UNbHx4cC0ibm+lc1wfH1pfNz3z62ihT6u4JE6Mn4W7RoEXr37o0ePXqgbNmyWL16NWxsbPDnn38muf6SJUvg5uaGkSNHokyZMpg+fToqVaqE5cuXA6DXz8PDAxMmTEDLli3h4uKCTZs24e3bt9i/f786ZyhVPD09MWHCBNy6dQs1a9aEg4MD2rVrh1WrVsHHxyfd25Pt3erlpzCkLOEMSFGRgHmmRO8rLCxjl6eEAqjeOAwuLkJHT5AO8uRhaO/AASZ6Dh6s7xEJtEX27CxbvXSJHt5Klejte/SI3sHt2ymAZ6I4OdHjt307U2bSEXUSCDJEcHBwvFdEMr3XIyMjcf36dTRq1CjmPTMzMzRq1Aienp5JfsbT0zPe+gDQtGnTmPWfP38OPz+/eOvY2dnB1dU12W1qiqpVq2LkyJH4559/8PnzZxw+fBjVqlXDkSNHULNmTeTLlw/t27dP8/Zka/xFRqXeQVxhYQlEf0v0vsroUxmB6u5HIEgW4Ro2DSQp9qVQiO9dIEgHEhQaeQFAoUKFYGdnF/OaPXt2kvv8+PEjoqOjE4VF8+bNCz8/vyQ/4+fnl+L6qn/Ts01toFAoUKlSJbi7u2PChAkYPXo0rKyssCtu9VUqyNb4s7RIfWjmWewRHfo50fuqcK8q/JsSJ46Z4fZtqjQIBGnC35/acC1asAff0qX6HpFAW3z+zCre2rUZz7x1C3jwgOX+P/wAtG8P6PCmLzcePGC6a/v2zJlOx7NHIMgQr169QlBQUMxr7Nix+h6SzoiMjMTFixcxa9YsNG3aFNmzZ0e7du3g4+ODadOm4YWqJ2wakK3Ui2NOWyiAFEO/lnmKIfjlHSgjwuMVfUS+ZTcQy7zFUt6JBIwZYIvR36hU7+QUK9uieom8P0EiRo5k/sm6ddSDmzyZ8S6R92c8SBIlfNzdWc2wYgWNQJUy+7FjwLZtrPR2cqK+X+/eJpX3p5K3LFyYxe8RETwdzZqJvD9BfJRKvtTdBgBky5YN2dJwgeXKlQvm5ubw9/eP976/vz8ckknVcHBwSHF91b/+/v7Ily9fvHUqVqyY1kPJEA0aNMC///6LPHnyoG7duujYsSPWrl2LIkWKZGh7sr1T2VpZoLB9ymW1Nk61AEmJkFtHY96Tor4h1PsELPOXhkW2lHulFcllg88fLHDxIp03tWvTkTNzJif1BQuy61v9+qwGXreOUi/hKdehCIyZc+eo9TdvHi+O6dPZ7i0d+koCmfP8OW8AHTpQCuDBA6q2x23Jo1AAnTqx2KNtW+pE1akDxKkKNHa2bQPOnKFdbG1ND2BQEAvgBYK4qIw/dV/pwdLSEpUrV8apU6fijEOJU6dOoUYyjalr1KgRb30AOHHiRMz6RYsWhYODQ7x1goOD4eXllew2NcX58+eRKVMmfP/996hbty6+//77DBt+gIw9fwBQv3QebPZ6mazci1X+0rBxqo3AcxuhDA+ERY78CPM+haig98jbbEiK2zY3U6B+qTyws2MRX61ascskKbHI87FjbASgVPK+X7IkRZ7jegkdHU1q4m96REZS4LlmTXa2B6htsXgxDYXDh4XWnyHz7Ru/yylT2GT777+B5s1T/oy9PQVAu3alZ/C77+gZnjjRqLX+AgMp8PzLL0DTpnyvcGGeujFj2ARH3S55AoG6DBs2DN26dUOVKlVQrVo1eHh4ICwsDD3+u3937doVBQoUiMkbHDJkCOrWrYuFCxfixx9/xI4dO3Dt2jWsXbsWAHPt3N3dMWPGDJQsWRJFixbFxIkTkT9/frRq1UqrxxJX3HnIkCEICwtD4cKFUbduXdSrVw/169eHo6Njmrcna+Ovk2thbPB8keI6uZoPQ+D5LQi7ewbRX0NhmccRedpOgnXh8il+LlopoXP1wkkuUyhoyDk6Mq1LRXg41evjGoVLlsRv75bQIHR2Fu3djIZFi1jleeNGfCu/XTu6hQcOpOdHCEEaHv/+S7mWe/foxZ06NX3t3b7/nvmA8+YBM2YwZLx6tVG2dwOY8hoeTls5Lu7uwKZNnCN5eorJsIBoMuybHtq1a4cPHz5g0qRJ8PPzQ8WKFXH06NGYgg1fX1+YxblIa9asiW3btmHChAkYN24cSpYsif3796N8+Vh7YtSoUQgLC0OfPn0QGBiI2rVr4+jRo7C2tlbvAFOhWrVqqFatGkaPHo2oqChcuXIFZ86cwenTpzFgwAB8/foVRYoUwfPnz9O0PYUkSakpqiA4OBh2dnYICgpKU6xdk3RZ54XLzz6lKPacXsyV0aj54TE2d/4OaNBArW1JEvDuXeJWcA8eAFFRXKdIkcS5hCVKMM9QFty4AVSuDFy/LqbryfHiBVC2LJ9qCxcmXv7oES39UaOEyq0OUfvSDQpiP+ZVq7ihNWvU/w08esQw8JkzDA0vWkR5ICPh6lXA1ZU/g6FDEy+/eJER8NWr6QyVHQZwv9PnM1eTqI7Dz0/94wgODoaDg+GfE20QGRmJf//9F6dOncLUqVPT9BnZz8tmtXaGRQot3jKCRSYLzPI9Q4HW7t3ZqSGDKBQsCnFz43N/yxYaf3FFo9u1Y0Rp/Xr+v0wZpolVqcLo4eLFwKlTwIfku9EJ9M3gwQzxTZmS9PJSpYDRo5n4//ChTocmyACSxP69ZcrQVeXhQe+fJoyBUqX4g96wATh6lAUh69ap7/qQAdHRnP+4uACDBiW9Tu3avK+NGQMk00hBIBBkAG9vb3Tu3Blly5ZFtWrV0Lt3bzx9+hSWlpb4/vvv02z4AQZg/BWyt8HUFpptmTStZXkUOn4Q+N//KNTr5MQbdepO0DRjaUlHUKdOtAdU7eI+fGC7uDlzgAoVGCUcNw5o1IjOgXz5mEMzciTrCoQMjQw4eJD5X0uW0GpPjrFjWfHbv79GryWBhnn5kvkcv/wCVKvGXI7Bg+MXdKiLQsHENx8f7qtXL/b/ffBAc/vQA6tX02G2alXKkYu5c3kKRo7U3dgE8kUfBR/GxvXr11GjRg28f/8eTZo0gbe3NywsLFCxYkVcvHgx3duTvfEHAO2rFsaIJqU0sq2RTUqjXdXCTEbp1Ys356ZNOVVt2JAhGy2SVPVwaCiHsWsXh2RtzXahXbsCFSvG5hImNCSFfaEDwsLo4mjWDGjTJuV1M2dm6ePp02x5IJAXUVEMwZYtC9y8yX5k+/drV6InVy5OLE+fph5ghQqUBtJyH1Bt4OfHiWrv3kBqhY25c/NetWkTC+QFpo0w/tRn/Pjx6NGjB44fP44hQ4bAwsICq1atwqxZszBu3Lh0b88gjD8AGFi/JOa0cYaVhRnM0xkGlpQKKJRmmNvGGQPql4i/MG9eYOtWlvO+fEkra9o0nbrbzM2B0qXpiJg+nc7IZ8+YjnTpErBsGXNoXr5MLENTrx6dFn/8AVy5QltFoEGmT2fsatmytAk+urlR+mPYMJZECuTBtWv08o0YwRnWgweAlqvz4lG/PvNAxowBZs+mEXjmjO72rwGGD2dEI5mGCono2ZNGYv/+LJQXCAQZx9PTE7169QLAHsMqfvzxR1y7di3d2zMY4w+gB/Dk0LqoWSwnAKRqBKqWl8yWE6/X1EW2j0lX9wJgo3Zvbz60p0+ny+38eU0NPUNky0ZVkb592UD94kUahM+f00AcOpSh4uPHmVjt6sqoZKlStD+mTaNj49kzMWvKEPfuMat93DigePG0f87Dg1a4EDzTPyEhdLO7utJV7uWVevheW1hb80d5+zYnnQ0aqJ1zrCtOnaKu37x5QM6cafuMmRnDww8fJq4KFpgWwvOnPpIkwdbWNtH779+/R+7cKWsaJ4VBGX8AcwA393TFCffv0cW1CIrktEFCE1ABoEhOG3RxLYKTQ7/HiXGuqFvFBgMHUqw/WWxsOK29cQPIkQOoW5deApWWiwxQydC0aAFMmMBQsY8Pn3FXr9ID+MMPHPLSpUDr1rRb7OySNiQFySBJdFkUK8ZKnvRQoAClQlauZIKUQD/s38+Cjj/+oNVy9SpQtaq+R8UxnT3LcR08yJzjjRtlm8cREcFOHrVrM40xPVSowMjEtGmMXAhME2H8qU/x4sVx7969mL8lScLFixcxcODAjGkMSmkgKChIAiAFBQWlZXWdE/r1m3T3TaB042WAdPdNoBT69VuidR4+lCRLS0maMCGNG42OlqRVqyTJzk6ScueWpC1bJEmp1Oi4tY1SKUlv30rS0aOSNG+eJHXuLEkuLpKUKVNsl/oiRSRpSJ3rkgRIx2Zfl+7fl6RviU+f6bFxI0/QyZMZ+/y3bzzZVapIUlSUZscmiOE6L13p+vU4b756JUmtWnHBjz9K0osXehtfqvj7S1KnThxr/fq8UcmMGTMkycJCkry9M/b54GBJyp9fklq00Oy4MkySF428kPszN62ojuPFiyApIEBS6/XihXGck4wye/ZsaeDAgZIkSdLTp08lc3NzydzcXPrtt9+ksLCwdG/PKIy/tDJxIg1AH590fOjtW0n69VfeLBo3lqQnT7Q2Pl0RESFJd+7Qnh01SpIG1ODN8DtclwBJsrKSpEqVJKl7d0latIj2z/v3+h61Dvn0iQZ/hw7qbefSJV43K1ZoZlyCRMR7jkdFSdKSJZKUJYsk5csnSbt3G86E7dgxSSpWjD++adMk6etXfY9IkiRJevpUkqytJWnkSPW2s2sXv6cDBzQzLrUQxp/OUB3H8+dB0sePklqv58+N45xogm/fvkk+Pj5SREREhrche5FnTfLlC1C+PFC0KHDiRNry92M4fJhhQH9/5nKNGMHsZ2PgP9HTzyev45ZZpRiham9vStGoQuUODonFqp2cACsr/Q5f4/Tty2pdHx9q76hD797A7t3cVjLNxAUZJ0avd6sPKi3uwjB7v37ArFmG11rnyxfmG8+fTxX4tWtZ6aUnJInd7by9qYaTnoYnSW2rWTP+DO7dA5JIXdIdQuRZZ6iO4+nTIGTNqt5xhIQEo3hxwz8ncsHgcv7UIXNm9uc9dQrYsSOdH/7hB961Bg4EJk3iTePSJa2MU1/kyBFfhubKFeYSPnxI+6V3b57DhDI05csDHTtSu/DwYeD1a9mmL6WOlxcfujNmqG/4ATwpFhZC8ExbhIfz386dmZx2+TLldgzN8AP445o1izI09vZsGafHnON9+/h7XrJEPcMP4ER7+XLKxcyYoZnxCQSmRLFixVC0aNFkXwDw6dOnmP+nhlwajOmMZs2An39mUe8PP6TzGWFry1l5p07sA1q7NstsZ8+m5WSEmJuzelhVQawiOJhewbgt7f75h8YiwNOR0EtYrpyeZ/ypERVFr99339HLqwly5mSxQc+ewG+/0boWaIZDh4BeKwEcohbjgo5Apkz6HpX6lC8PXLhAEfrRo1kUsngxZ1jpCldknNBQTgJ//FFzijglSrBwfvp0oEsXyi0KTAN99fY1Jtzd3VNdx9bWFkOT6rmYBCYV9lXx+jUL7rp3p3xbhoiOpo7BuHGsEl6yBPj1V53dnDWKhsIgksSKvrhh4zt3qJutVPLUlCiR2Ch0dJRJA/ilS9mZ3stLs1WhSiW9OJ8+UebDWNIF9MXbt7RM9uzBjRoDUNlzuZwjeOrx7h01nXbuBBo35j0nPbJDGWTkSDpQ791jmoym+PqVUqoFClDmUC+3SxH21Rmq43j4UDNh39KlDf+cyAU5PHJ1TsGCGlDiMDdnCPj+faBWLaB9e7oSnz/X6FgNiYQyNDt3Uks3NJQau+vW0ZPw+XNiGZoaNehEXbGCTg+d6yO/fctB9+2reTkQleDZ48fAggWa3bYpER3NH22ZMtTg3L5djdmbgZAvH3NUDh/mLKp8eUYatKia7O1NR+OECZo1/ABKHa5cya4fmzdrdtsCgbGjVCpx7NgxLF26FEuXLsXRo0ehzKBL1CQ9fwAjfJUrs1jB01MDbT0PHqQY1qdPwJQpnK0bSghKDzNhSWL+T9yw8Z07NBa/feM6hQsn9hKWLJlyT9EM0749XRE+PtoL4Y8cycSn+/c1/1Q1du7cYaqFlxf/nTMHyJHDEJw4miMsjLPWRYtoAK9ZQ/FODaIrJ3X79ux49/ChHjJmDOCiMZZnruo4HjzQjOevTBnDPyfpYfPmzciaNStatWqFR48eoWXLlnj27BkK/deS8tWrVyhatCgOHDiA0qVLp2vbJun5A2hArFxJ3de1azWwwRYt+FD//Xdg7FigShU+qARJolDQqdG0KW2izZv5sAkN5XN+yxagQwc6ezZu5MOibFkmnleuzFbMixezeOfDBzUHc+IE3ZQLFmj3STR5MnvyDRpkwBUxOiY8nC3RKldmQumFCzR6jDTHNkVsbZk/ev06U01q1aKnWoNu8g0bWMe2YoV2sxMWLWIIOAMtSQUGiBB5zhgzZsxAlv+qrXr16gVHR0e8fv0aT548wZMnT/D69WsULVoUPXv2TP/G06IHYyyaQ0nRsyd1nP38NLjRa9colKdQSNKAAZIUGKjBjWsBA9C9+vhRks6coYxbz56SVLWqJGXOHCtW7eAgSU2aSNLw4dRnvnkzjVJpX75IUokSklSvnm404f76iwPet0/7+zJ0jhyRJEdHat/NmEGBygQYwKWrHaKiJGn5cknKmlWS8uaVpB071L5+P36UpJw5qTmtC5Ys4S3Sy0s3+4vBAC4aY3nmqo7j3r0gyddXUut1755xnJP0kDlzZunFfyL11tbW0p07dxKt4+3tLVlbW6d72ybr+VMxdy69gCNGaHCjlSvT67doEafSZctSH0V4ezJMzpxAvXpsFfXHH8nL0OzdyxZU331HR0mqMjTz5rFKZeVK3WSft27N3NDBg+nmFCTGz49u32bNmBR69y4wfrwolImLuTnTTB48oOpA+/ZMqFUj53jMGKbDLFyowXGmQP/+bP/Wty/3KzBehOcvY+TKlQuPHz8GQKmX4ODgROsEBwejeAaKwEze+FMpcWzZwnabGsPCgpWj9+/TGGzbFmjZEvD11eBOTBuVDE3btuwdun8/8OwZexarQld16wKvXjFH/scfgUKFYg3JaV2fIGr6LLztOAJhhcvoZtAKBYsUPnzgoAWxKJXMwShTBjh5krkAJ06wRFyQNAUKAHv2MOf47l3qKc2fH5s4m0YuX+akatYsIG9eLY01ARYWwOrVwK1bnHsJjBdh/GWMxo0bw93dHZcuXcL8+fMxcuRInDp1CiEhIQgJCcGpU6cwbNgwLFmyJN3bNtmCj7iokpwDAngj0riDQZKomDpoEC2TadPo+dFK5UIGMIAEaHWRJNrdMcUltyUMPNwMhcJ8UBb38VVhg+LFExeYFC2qJRmamTNZGHTzJt2Tps69e8yXvXSJeojz5tFKTwUTuHTTTmgoBeiXLOE1tXYt4Oqa6sdUxW+WlsC//2qg+C2d9O0LbNtGL74mdNVTxQAuGmN55qqO4/ZtzRR8VKhg+OckPXz+/BmtWrXCxYsXIUkSFAoFEppsqvfSW/UrE+tDv5iZceZZqRJDHmPHangHCgXQpg3QqBHDVyNGAFu38uZcubKGdyZICoUCKFKEr59+ArB7D7D7GCJ2H8SFojbxKo6XLWO1I8DQsbNzfIPQ2RnInl3NAY0YQc9Wv36ULTFEfUhN8OULWz7Mm8cQ79mzdNcK0k+WLEw16dyZFdE1ajC2OmsWkMLDculSyrtcuaJ7ww+gV37vXgrvb9+u+/0LtI8Qec4YOXLkwLlz5/D8+XM8efIEX79+TWT8ZRRh/P2HiwujtNOnM31GK0oc2bLRsujShTfnatXoDZw+HciaVQs7FCRJcDC/7JYtYdX2J1RGfBs8oQyNtzdTONev16AMjZUVZxwNG7KcuXt3zR6jIXDyJI1fX1+Kyo0ZY4SNovVApUp04S1fzvO6bx8tvDZtEk0yXr9mEXr//hQo0Ac5crDQvls3On0bN9bPOATaQ5LUN95MOWU+bgs3TSHCvnEIDWW6UcWKTKHRqjPm2zfAw4N33pw5eaNu2VKLO0wBAwiDaJShQ+l1ffCAVlwa+faNoamE2oRv3nC5lRVrexIahXnypLDRTp2A48epL5iGMKdR8OED3TxbtjD5cvVqIJ0aVSpM7dJNN69eUYz+4EG6vJcvj3fN//IL1XN8fDTgzVYDSeKl8O4df1PW1lrcmQFcNMbyzFUdx40bQciSRb3jCA0NRqVKhn9OMsrLly/TvG6RIkVSXUd4/uKQJQvTZX7+mfdKrdpimTJR4O6XXzjtbtWKr2XL2IJEoB1u3aIXZPbsdBl+AL+y8uVjK4hVfPoU28pO9dq1ixFNgAn0CQ3CMmX+c3ItXAg4OTHXQCOCkzJGkug+HTmSf69fT3ePqYa8dUGhQsCBA7E5x2XLMtIwaBCOnrTAnj3MQNGn4QfwEli5khPvefOYuigwHkTYV32KFSuWbN6fivTk/wnPXwIkCWjenIVz9+8z50snO929m/1Kw8JYDNC/v+4ScAxgJqwRlErKYgQFsdBCi9Ih0dHA06eJjcJnz7jc3Jw2n4sL0D1sBZocHAj/fZeRp2UN47SFfHxY0HH+PNC1K+N8uXOrvVlTuXQ1QnAww8DLl0NZ4Tu0/rAWoaUr4+RJ+djfY8YwIHL3rhaLvA3gojGWZ67qOK5c0Yznr1o1wz8nGeXOnTvx/v727Ru8vb0xf/58zJgxI57ci4uLS6rbE56/BKiUOMqVY1Hu3Lk62umvvwJNmtADNHgwiwHWruVUWKAZ1q1jL79z57SuGaeSoSlVip5kFSEhfLDFNQjb3e6LE1gPi9b9UM7uGspVsIjnJSxfXkeTEG3w9StFFlWe1pMnmeco0D3ZstHr3bkz/Fv0wV7/aghqOBiK0GmyyTmeOJGtjAcOBI4ckY9RKhDom6QMusqVK8PBwQHz5s3D6dOn07U9k9f5S4pixViUu2gRH9Q6I3t2YNUqyl2EhzMDe8QIegMF6vHhAzB6NMOM33+vt2FkzcoizN9/pw7hhQtAQJA5ChxcjQqKO9hWazkcHGgj9e0LVK/Oz5QsSSNy6lRG8J4+NYAwyJkzVPGdNQsYNYpuUGH46Z1H2auheMA1HG84D/Z71jIUfOCAvocFgJOcpUuBY8eoiy8wDoTOn/YoUaIEvDLQSlYYf8kwciSVJ/r310OVUc2aDE3MmEELoWxZ4NAhHQ/CyBg1iv/On6/fcSSBQgHk+6kKFP36ocn5idi56A0ePGAB0rVrwJ9/Mlc/KIj5+m3aMCSWLVtiQ1KDbV4zzqdPbL7coAGrXW7dYp6ZVrP4BWlBktgYxKGgBer9PZz6ii4uzDdu0ya2ekmPtGjB693dnZ5ygeEjjD/1CQoKivcKDAzEgwcPMG7cOJQsWTLd2xNh32TQuxKHpSUTYH75hXIYzZvz/0uW6EgJ1Yi4cIFt9tas0UiemdaYOZPujqFDgV27kDkzU5MSytD4+8cPGyeUoSlUKHGBSalSOtAUlySmKwwfTuXg//2P2h1aUckWZISdO+lVPnSI7RDh6Aj88w+7hAwezEokXeccJ8HSpZzzTp7MCIxAYOrY29snKfBcpEgRbNu2Ld3bE8ZfCjRowKrOkSM5G7W318MgihdnDGT7dk6FnZyYQ/X77+Khmha+feODzNUV6NVL36NJmezZWf3buTO/86ZNE62iUAAODnw1aRL7flIyNJs2qSlDkx4eP2ac+vRp/mgWLdJdnzBBmggK4ryiTRu2l45BoeDEsnFjYNw4Fp7pOefY0ZEVvxMmMFOjQgW9DEOgIUS1r/qcOXMm3t9mZmbIkycPSpQoAbMM2AKi2jcV/PwoQda+PR1HeiUggHlrf/zBZLC1a9luQl0MoPotw8yfTw/qtWvAd9/pezSpI0l0N/v6MuFUzVBpQEDiimNv7zTK0KSFyEhqc8yYAeTPz5zVJIxWbWHMl66mGTyYKQQPHtA7nCyenhShf/CA1uKUKXqpOIqM5E/Wzg64eFGDc10DuGiM5ZmrOo7z5zVT7fv994Z/TjTNt2/fcPnyZdRNZ2ck4flLBQcHRkEGDWIaU/XqehyMvT1DaV270vNXqRJDbJMmATY2ehyYTPH15YNr0CDDMPyAWMEzFxd6eKdMUWtz9vbslhb3vhAdTcmZuAbhvn10OgKM9pUundgoLFgwQfXlxYs0Eh4/ZmHSxIniOpQpN24wL3Tu3FQMP4CJpDdu8IKYOpUyVCtXJnAXah9LS+62Xj0arXJ33AsE2sbT0xMvXrxAZGRkzHtBQUFwd3fHn3/+CYVCgW7duqVpW8Lzlwaioxk1jIqiA0nruVNpISKCHpeZM9X3uBjATDhDtG7NhqUPHqTY21SWjB9PLby7d1nqqwOSkqG5c4fycACj0i4uQPVSAejhMxpOF/9AtGsNmP9vjWY80BnAWC9dTRIdzRqy8HCer0yZ0vHhZ8+Yc3z8uN5yjrt2ZY7iw4dArlwa2KABXDTG8sxVHcfZs5rx/NWrZ/jnJKMMGDAAq1evRpYsWWAeJx9XkqSY8yxJEj5//pym7YmksTRgbs4OVHfusNpSFlhZ0dNy5w4bEbu5MdfK31/fI5MH//wD7N8PLF5seIYfQOMvf36WZuqo3DwpGZrAQODFC+Dvv4GRIyS0jdyGkevLIN/FXeiHlbD0uoiSbZzjydA8eSLyc+TE//7HOdDq1ek0/ADqXh09CmzbRn1MJydONHX4BS9YwN2pCvYFhoeo9lWfXbt24cSJEwgKCkJAQEDM69GjR5AkCQEBAWk2/ABh/KWZKlU4AZ44URZqCLGUKsXyvY0bOTt3cuLd3pR/KeHhDPU2bkxvhSFiY8OZxokT7BWnJxQKoEgRoHmZpxh33g2D/u2EXD/Xg+VTH/S+3g/r1pslkqEpWZL2dvXqjAovX87GHum4Lwk0hL8/deN/+w2oVSuDG1EogA4d6EFv144FVLVqMXlUB+TJQ43w9euZaSAQmCIBAQGokETlk6rlW3oRxl86mDmTz+Rhw/Q9kgQoFIyN+PhQr6tPHyZ53b+v75Hph5kz2SF+xQrDbhHw448MXQ8dGht71TXfvjH3sHx5xt0OHQJ27kTmYvlQqRIlkBYt4vzj/Xue9mPHmKpYqhQ9TsOG8XK0t2eTj+bNWVS6Ywcv0ago/RyaKTByJAslNNKpyN6eRWbnz9Par1SJlmV4uAY2njJ9+gDVqnECrpI0EhgOkqS+10/nersyY/LkybBJIqc6S5YsmDx5crq3J4y/dKBS4ti1i0422ZErF6fHp09zyl+xIl2VqtJOU+DBg9gKXx3lymmVJUto+Omj072nJx/wEyaw39a9eykm/atkaJo0Yf3Hpk3Udw4LYy7htm1Ap06xcoAdOrCNYpYsiGdInjghshc0wblzPM9z52ooV05FnTr8YidPZlpF+fK0+LWImRmjzffv8ychMCxE2Fd9GjVqFK+FW2hoKPbt24cHDx5gUgaeD8L4SyedOgH16zMV6+tXfY8mGerXZy7g2LG887u4AKdO6XtU2keSGJIqUoTGnzFQqBAfssuWATdv6mafgYF0sdSqRSXga9doUGdQ7iNTJhp5HTowfHfoEPDqFRuBnD3LTVeuTLt94kQajw4OlKFp3JgF7Rs38vBl+5uTGZGR/Apr1GDIV+NYWnJS4O2ts5zjSpV4350yhdePQGBKjB8/Hs+ePQMAKJVK1K5dG7/99huqV6+OlStXpnt7wvhLJyoljpcvGQ2TLdbWzMC/c4eFA40aMTT84YO+R6Y9tm2jNbFihXG1EnN3p0Jzv37anf5KEt3aZcoAW7fSxeLpqTWhX5UMzaBBTFP18qKT89EjNpzo25dewf376RWsVIl/xzUkL1yIHboglkWLeB5Xr9ayFnzJkoz5b9pEl62Wc46nT2dh0pAhWtm8QEsIz5/6eHt74/v/+tKfPXsWb9++xevXr7F161Z4eHike3vC+MsATk7MpZkzhxJnssbJCThzBli3jhWwTk4MDRvb0zIwkMllv/wSv/WFMZApE2NeXl58sGqDFy+YjNeuHd1F9+/TKtNxiy9zc9oTcauHnz6lUejpyYlX/fosupo7l3YxQC24hIZkaKhOhy4bXrwApk2jgeTiooMdKhRAly503bZurdWcYzs7Rpr37RPtzg0JuRt/AQEB6NSpE7Jly4bs2bOjZ8+eCE3hBhIQEIBBgwahdOnSyJw5MwoXLozBgwcjKCgo3noKhSLRa8eOHRka49evX5EjRw4AwPHjx+Hm5gZbW1vUqFEDrzLgChfGXwYZP55yVwMHGoAdZWbG2I+PD3O2fvuNT9CHD/U9Ms0xfjwTzxcv1vdItEPt2lQZHzuWlRWaIiqKWhrlytFLvH8/sHcvFZ1lRNasSVcP//MPl3ftyt/jqVP0GFavzs+UKMEK5ClTeFimIEMzeDC9qmrqg6efXLmoxnzmDK9RVc6xhmP17doxkDFwoE5qTQQmQKdOnXDv3j2cOHEC//zzD86fP48+ffoku/7bt2/x9u1bLFiwAHfv3sWGDRtw9OhR9OzZM9G669evx7t372JerVq1ytAYS5YsiUOHDiE8PBx//fUX3NzcANAQtbOzS/8GpTQQFBQkAZCCgoLSsrrJ8PffkgRI0s6d+h5JOjl+XJKKF5ckS0tJmjxZkjw9eSDXr+t7ZBnjyhVJUigkafFifY9Eu3z4IEn29pLUrZtmtuflJUkVKkiSmZkkubtLUnCwZrarQ65fT3zphofz7/XrJWnoUElq2FCScufmeoAk2dpKkqurJPXuLUnLlknSuXOSFBCgt0PQKPv38xh379bzQL5+5b3F0lKSSpSQpJMnNbr5hw+56fHjM/DhpC4amWEsz1zVcRw6FCSdPSup9Tp0iNt69eqVFBQUFPP6+vWrWmO8f/++BEC6evVqzHtHjhyRFAqF9ObNmzRvZ9euXZKlpaX07du3mPcASPv27VNrfCr27NkjWVhYSJkyZZJKliwphYeHS5IkScuWLZN++eWXdG9PeP7UoHlzKqu4u+tPiSNDNG7MRO0RIyiL0r69vkeUcaKjmQtXoQJdAcZMrlzMNdi4ka6vjBIcTPdQ9eqMs165Qo9p1qyaG6seyZwZScrQ+PmxSn/qVLavu3qVxSTJydDcu2dYsiJhYfxa3dwYNtcrVlZ0Pd6+DRQoQFddt24ayzkuVYptzufNY0BDIG80GfYtVKgQ7OzsYl6zZ89Wa2yenp7Inj07qlSpEvNeo0aNYGZmBi8vrzRvR9V5xCJBC7ABAwYgV65cqFatGv78809IGQwV/vzzz7hz5w527dqFa9euIXPmzACAgQMHYlcGtGDl0KjMoFmyhPnxkyYBGci51B+ZM9Pw69iRL4A36/XrgZw59Tq0dLF6Nds0eXrKpO+elunZk99Rv34sf7W0TPtnJYnJUoMGUadt4UL+3xTOG2Krhxs3jn3v2zcWRsRtZ7d5M/D6NZdbWrLWJmGf47x59XMMKTF9Oo3c06dlJG+pyjnesIGTzX/+YZpB9+5qD3LsWNYl9e/PcL9sjlmgVV69ehWvvZuVlZVa2/Pz80OePHnivWdhYQF7e3v4+fmlaRsfP37E9OnTE4WKp02bhgYNGsDGxgbHjx9H//79ERoaisGDB2dorGXKlEGZMmUy9NmECM+fmhQuTJtp2TJKXxkc5cqxGATgTdrJiU8/2Scygq6cceOA3r3pxTIFVIJnDx+mL7/x1Su6qX/+mboq9+9TPNpEDL/kSE2GZsECdvd5+JATPLnK0Ny7R1t+3DigeHH9jSNJFArmq/r4ULhcQznHmTOzsP/MGRb6C+SLJj1/2bJli/dKzvgbM2ZMkgUXcV8+GnAbBwcH48cff0TZsmUxJUGi7cSJE1GrVi189913GD16NEaNGoX58+ervU9NIIw/DeDuTu+ftpU4tIZKC+Kvv2IlYRo3ln8p8/DhdM3IWnNHC1SowPjetGnUHEqJ6Gi6pMuUoV7fX38BBw5w1iJIloQyNP/+C4SE8Cfx11/8rWfNylOZnAzNP/8Avr7an0ep5C2LFpV5/9vcuWMlYV6/pgt16lQgIiLDm3RzA9q25a0gMFBzQxVoFn1U+w4fPhwPHjxI8VWsWDE4ODjgfYIiuqioKAQEBMDBwSHFfYSEhMDNzQ1Zs2bFvn37kCmV5tmurq54/fo1ItS45jWFaU/7NYRKieP774E//mBFokGSKxewfTuNv/79AWdnVuuNHJm+8KIuOHWK0/316/mkNjWmTgV27qSex/79Sa9z/Trw++/AjRtUx50xg1oZggxhZsbqYVUFsYqQEHre4oaOjxxhZB3gKU8YNi5fnsaiJti0iSmgJ04w1U72NGrEnOOZM/navh1Ys4bWdgbw8GDAYsIEVoILBACQO3du5M6dO9X1atSogcDAQFy/fh2VK1cGAJw+fRpKpRKurq7Jfi44OBhNmzaFlZUVDh48COs0aMveunULOXLkUDtUrQmE509D1KlDD8CYMZpV4tALzZrxaTZkCLtLVKwor47qERE0TuvUYRK5KZI1K596Bw4Af/8df1loKEO61aoxqc3Tk3kJwvDTCsnJ0Lx8ya9m1CjqrJ8+zcu2Rg3NydAEBHBu1r49bSqDIXNmTkZu3uSks149hoM/fUr3pgoU4Fxo5Uo6twXyQ846f2XKlIGbmxt69+6NK1eu4NKlSxg4cCDat2+P/PnzAwDevHkDJycnXLlyBQANvyZNmiAsLAzr1q1DcHAw/Pz84Ofnh+joaADA33//jT/++AN3797FkydPsGrVKsyaNQuDBg3SzoGkE2H8aZB58/ivrEMvacXGhiq6N24A2bLR0OrTh081fbNgAfDsGe/2ppzl3bYt0LQpY5NhYXzv779ZobBmDcPh164BKcxeBdpBoUhcPXz/Pu3yGzdY/9CyJb2GK1cyFbNkyfiG5LJl7M8bEJD8fsaN41xo0SKdHZpmKVeO1vLatSxGcnICtmxJd6x88GAGKvr2ZaaDQF5IkvqGnzbTJ7Zu3QonJyc0bNgQP/zwA2rXro21a9fGLP/27RsePnyI8P+EJW/cuAEvLy94e3ujRIkSyJcvX8xLJbicKVMmrFixAjVq1EDFihWxZs0aLFq0CJMnT9begaQDhZSGuuPg4GDY2dnFlDILkud//+ON+9w5hoENghs3WARw/TqTlxISHU1jYuxYtk3z8KCrQR+G17NnfGAMGhRrbZsyT54whtirF/DuHV1IzZrRonB01PfotE5ql66h4O8fP2x85w6NxchILi9YMHHoODCQc7IlS/hzMHj8/NilZ/t2oGFD5tKULJnmj1++zHbUy5czyyFZDOCiMZZnruo49uwJgo2NescRHh6Mtm0N/5zIBeH50zA9e3Lm3r+/YWmEpYi5OQ/owQNatB070sD4r8m0zpAkPuVy52bppYBZ/g0bsuzx3DnmAR46ZBKGnzGRVPVwaChw9y5TWzt35lxr61b+/MqXp+FnbU2ZxoULmfPn76/vI1EDBwce7JEjvLc4OzMnUGUBp0LNmpwDjR9PO1IgH+Qc9jVVhPGnYVRKHA8eGGGnsfz5gd27GVp88IBPoLlzdWfl7tsHHD4MLF2quWx5Q+b2bT7xDh9mPl+ZMuxtbMqhcCMioQyNqno4ICDW09ekCSuQU5KhuXFDvzI06cbNjVavuztzjr/7Ls05x3PmUL1oxAjtDlGQPoTxJz+E8acFKlZkDsrUqakrcRgkzZuzIKRfPyYdVa5MLQxtEhrKApTmzZksZcqEhTGxtHJl/v/SJRrlFy8yX0pg1Hz5wpzB339noXdqMjSVK3OuVLYsszVmzdKdDE2GsbGhJXfjBg+mTh0ecCo5xzlzMhtk61YW2CQkLCIK9wK/4Wa+UrgX+A1hEVFaOgCBQN6InD8tERLC3OWqVZNX4pAN6uTA3LjBm/L168y2nj1bO1WlI0cytHnvHkOdpsrhwwzB+/vT3aPSOgT4ZD99muK5OXLod5w6wgDStzRO+/YUNvbxSf1rVoWOVXmE3t78V6WJp20ZGo0QHc2CkDFj0pRzrFQyO+XjRzrHfQNDsNXLF2cevodvQDjiPvAUAArb26B+6Tzo5FoYJfPKo8WhsTxzVcexbZtmcv46djT8cyIXhM6fllApcfz6K6OkP/2k7xFpiUqV6HpYsYLJNvv2MSzbtq3mwo/e3oyhT5tmuobfu3cMg+3axZjeqVOJWzksWsQZx7hxzD0QGB0nTjCtc9OmtNn3WbIwBzluAxxJosZy3OKSM2fYKVFVKVu8OA1BZ+dYo7B48Vg9eJ1ibk53ZsuW/A107Mh49qpVSd4PVKk3VeqFo8F0b7yJ/ghzMwWilYn9HBKAlwHh2Oz1Ehs8X6BOiVyY1doZhexttH9cJoQmwrYi7KtZhOdPi0gS01cePaLDykau9xNNuU9evWIy0oEDbOO0YgVQpIh6Y1NN4z994jRebmLT2kapjPV6WFpyRtGhQ/KG9dKlfED++y91/owcU/L8ff1KY6xAARprmk7t/PqVqbxxjcLbt4EPH7jcxoZewbheQmdnPWis//MPy3k/fGBO4LBhTJCMw46rvhj31z1ESxIUZmmPbZubKWBhpsDUFuXQvmphTY88zRjLM1d1HFu2aMbz17mz4Z8TuSA8f1pEoaD9U7489UxnzdL3iLRMoUKMce/fDwwcyCSjadOYq5fRHrIbNjCn7fRp0zP87t6lbpCnJ8sY585N/Unbvz/PWb9+LAM1N9fJUAXaZ+5c4MULzq20UdNjbc3aiu++i/9+XBkab28a2ps2pSxDU6pUIntMczRvTlHoKVMYbdi6lROk/9yby888xoLjjwBF+s9TtFJCtFLCmL3e+BgagYH10y41I0ge4fmTH6LgQ8uUKEF5vAULOKs2CVq1okhZr17M1ataFbh6Nf3b+fSJhQ2dO7MRvKnw5QtDt999xwT3c+coIJkWF4uFBWNeN29S609gFDx5wnTaESM4p9IlcauHN2ygtzU0lNGM7duBLl0Sy9BkycLLt1s33vuOH6f8isYKTLJk4YavXmVPu5o1gf79seP8Qxp+GmDB8UfYedVXI9sydUS1r/wQYV8doArXFCxIB5bslDi0GTu7epXeq9u36Q2cMYMdQ9JC796sYn34kE8gU+DECRbOvHlDr8aoURlr2Nq3L5/MPj5AvnyaH6dMMIWwryRRVtPHh3Mq2aaPgHMVVVFJXG/hf40RkDt3Yi9h2bL0OmaY6GhgxQq8muOBRp0WIsIiE1jKEUvkh5cIurgNkX5PEB0WCEUmK2TKWQjZXNvApmTyHXCsLMxwcmhdnecAGsszV3UcGzZoJuzbvbvhnxO5IMK+OsDamuHfpk05O+7cWd8j0iEqr9+SJaxO3buXEvytWqX8ucuXgT/+4IkzBcPv/Xv24922jV7OI0cYO8sos2fzXKs6JggMlj17gGPHgIMH5W34ASxC+f77+N2NlEpqNsetNv77b6avShIzE0qVSmwUFiqUxomyuTkweDDGWVRAlG8wEhp+ABAd/B7KyC+wdW4I8yz2kL5FIPzhZXz4azrs3QYia0W3JDcdpZQwbp83NvcULRLVQYR95Ycw/nREkyas/B0+nLUQJqLEQSwseOBt2zJRu3VrVu4tW8Y7fEKiopizVqUKZWSMGaUS+PNPevjMzBhX69pVffdwjhwMi3XrBvz2G+N2AoMjOJj1Oy1bGq5igJkZ019KlADatIl9XxU6juslPHYssQxN3Irj8uWppJCQx/4huPAqFFAkncmUuXhVZC5eNd57WSs3x7sN7gi+sj9Z4y9aKeHCk4948j4EJfLIQwbGEBHGn/wQxp8OWbyYShzjx5toOlaRIpzy//UXVbDLlmUYeODA+IUJS5ey2MHYCxYePKBxe+FCbHJUrlya236XLsC6dTS4vb0zFj4W6JXJk2kMLVmi75FonixZAFdXvlQkJUNz9ixbi6tkaIoVS+wl3HzfN1k5l+RQmJnDImsuRPg9TnE9czMFtvzriyktymXgKAUCeSIKPnRI/vzA9OnU07pyRd+j0RMKBT2ADx7QwzV0KO/+N25w+evXfOL1789kLmPk61eGwCtUYBb86dP0+GnS8AN4rleuBJ4/Z9sDgUFx6xbnQZMmqa+YZCgoFAwG/PgjC+W2b6d3MDSUt4iNGxk4CAujQdi2LUPGfx59nybDTxn5FdHhQfj2+R2Cr+zHl2fXYV2kQoqfiVZKOPPovaYO0SQRBR/yQ3j+dMyAAUKJAwBjOitWMAHy99+ZG+juzuSgLFnoETRGTp9mMcaLF3y6jR2rZrZ7KpQrx5D7zJksxUwoDC2QJUol5z9OTpwfmTopydBcvRmFgefC07Sdz6f/QOito/xDYQabUjVg36Rfqp/z/RSOsIgo2FqJR2ZGkCT1jTfZtiI0UITnT8dYWNDzd/OmaMIAAKhRg6Was2axEGT/fhqE2mgRp08+fmRot2FDwMGB1c9Tp2rX8FMxcSL3OXCguIMaCOvWUd5x1SrTk7dMD3nzAkVdwtK8fraqLZGn/Qzk/HEoMherDElSAtHfUv2cBODFp7TvRyCQO8L40wOurlQxGT+eXbtMnkyZmAPo4EAtuwULGM95+1bfI1MfSaKr18mJ+Y5//MEkpjJldDcGW1vGD48eZb6lQNZ8+ACMHs25QtyqWUHSREal3aWUKWchZHasiCzODZHnl8mQIr/i/Z5pSIPiWbr2I4iPCPvKD2H86YnZs5l/P3y4vkciE2bPZv7bpUtM9LlwgQbTihWxmd6GxsOHQIMGQI8e7PPn4wP07KmfBqktWvDl7g6EhOh+/4I0M2oU/xVpmkmjVDKN9cAB5lBPGJvx35ONUy1EvnuMqIA3qa5raSEelxlFGH/yQ1zNesLeHpg/n3bOyZP6Ho2eefSIvatGjaLB1749DaUOHRiqrFWLYVJDISKCbe1cXNjv+PhxYMsWIE8e/Y5ryRIgIIBtsQSy5MIFOopnz9b/5SIHgoKAixdZt9SvH28F2bOz4rdVK2oFhvnbMi6bAaRvEQAAZUTKIV0FAMecthnbiUAgQ4Txp0e6dmVYZ8AA2gsmiSTxBBQsyJZmKnLkYDnfhQv0VFWuTOMwTOZ5N+fPAxUr0iUxYgQlVuSisefoyNLRJUuooSGQFd++schDlRZiSkRFcb63axcwYQKd1I6ONPTq1GF78EuXgKJFufzIETbB+fgROHvSAkVypqx+HR0WmOg9KToKYXdPQ2FhhUy5Cqf4+cI5bUSxhxoIz5/8EFezHlEpcVSsSC/ghAn6HpEe2LmTrs/Dh4HMmRMvr12b1THz59Og2r2bWfBuSYuy6o2AABqn69axz+jNm1SklRvDhgGbN7Pi+OJF/YSgBUni4cH2bdeuGffX8vFjfB2/O3co5/L1K5fnz0+nebt2sTp+pUunXPhSv3QebPZ6mazcy6ejyyFFhsOqUHmYZ82J6NDPCLt/FlGfXiNHg54ws0zi3vMf5mYK1C8l3LDqIESe5Ycw/vRMuXJ8HquUOIoV0/eIdEhQEHUs2rRh89LksLRkdUy7djRamjXj/z08WCSiTySJPfuGDQMiI1nK3bu3fJ/elpaccdSrx84ivXrpe0QCAL6+jMYPGpRYzsRQiYigNy9uW7c7d2KL3KytOT+qUIF65KpuHhmRu2xXpTA2eL5IdrltmToIvXMCITcPQ/klBGaWmWHpUAI56vVIsbcvQJ2/ztVT9gwKBIaGMP5kwKRJwI4dTG87dEj9zl4Gw8SJDOl6eKRt/RIlgBMnaGwNHcr8wLlz9WdsPXnCRKSTJ+VjjKaFunWZczB6NBOnNC0uLUg3Q4ZQ3WjaNH2PJP1IEgvzE3rzfHwYzgUYwnVxYb2TyptXooRmdE6vXAH69MmKr065kNnxEyRFYu+fbdm6sC1bN93bNjdToGaxnKK1m5oIz5/8kKl7wrRQKXEcOQLs3avv0eiIGzdYyTt1atL9fZNDoaAOoI8P8PPP9ATWqcN2cLoiMpK6hM7ONAAPH6b1bgiGn4r583k3HT1a3yMxef75h/KWixcD2bLpezQpEx4OXL3K7IYhQ4D69Tl3KFgQ+OEHRjBevmS2xtKlzCwIDIxfnfvLLwzjqmv4BQdTIap6dW7rz/7OsMyk2ZmzhZkCs1o7a3SbpojI+ZMfwvMnE1SN24cMAZo0Sbp5udEQHU2jrVw53r0zQs6cfAJ17coOId99x5y7CROSzh3UFJcucX8+PtTpmTSJ1ruhkScPS0r79QN++41llAKdEx7OUG/jxsCvv+p7NLEolWxCkzBk+/gxPX1mZkDJkvTgDR0a680rUkT7kQtJorE8aBANy0WLGDWxsLBBcOZyGLPXW2P7mtaiHArZp1xMIhAYIsL4kxFLlwJly9IZtmCBvkejRf73P7oPLl6kwLM61K1LGZg5c+iN27mTBSGarrD9/BkYMwZYuxaoVo1dSSqk3BNU9vTpA6xfT0P8xg31vwtBupk5kzlwx4/rL90jKCi+gacy+EJDudzenpd6s2Z0FLu48D5loweb6NUrGnoHD3KyvHw5UDhOOl77qoXxMTQCC44/UntfI5uURruqItdPE4iwr/wQxp+McHRkGtzEiXRoubjoe0RawN+f/Ww16W2ysgImT6Y+YN++dJ126kSXgLpiaZJE/YkhQ+imWb6c+zCGpsxmZixQqVKF8i8jRuh7RCbFgweMvo8bRy+atomKYpZCwty8ly+5PFMmNp5xdmYqqMqbly+f/vOQo6OBZcvo2LezY6Oa1q2THtfA+iWRK4sVJh+8hyillGwFcFKYmylgYabAtBblhOGnQYTxJz+E8Sczhg+nEke/fpS4k2vRaIYZOZIHNXeu5rddujRw+jSwcSNP5OHDfLr+9lvGnl7Pn1N47ehR5hcuXUodCmPiu+/oSpkyhUUr6cm/FGQYSeKlVbgwHcqa5sOHxCFbdeVU9MX168y0uHGDkqAzZqTe+rt91cKoVTwXxu3zxoUnH2FupkjRCFQtr1ksJ2a1dhahXoHRI4w/maFS4qhfnxG5nj31PSINcvYsLds//tBehalCAXTvDvz4Iz1ZvXoBmzZRMNrJKW3b+PaN2fdTpnCcqhiTsTJtGr2b7u6i96+O2LaNP4ejRyl5klHiyqnEffn5cbkm5VR0TWgooyBLl/IYPD0pgJ1WCtnbYHNPVzz2D8FWL1+cefQevp/C4zUDUYACzvVL5UHn6oVFVa+WkCT1PXdpaL8sSAfC+JMh9erxRj1qFAtBDOFGnSqRkXR11KzJXrfaJnduegC7dmWY1sWF4eaxY1N+2np5MRfu7l2GeqdNA7Jk0f549YmdHY3dDh3oLf3hB32PyKgJDKQs5C+/AE2bpu0zaZFTKVqUhl2vXpqXU9E1f/9NL9/Hj0zndXfPeEpqybxZMaVFOUxBOYRFROHFpzBERilhaWEGx5y2onOHDhBhX/khrnqZMn8+b4BjxtBRZvAsWsQevjdu6DaW3bAhY18zZ7K6dccO5rnVrx9/vaAgCkmvXAlUqsSClEqVdDdOfdOuHaunBw6k4auPbH4TYfx4po8uXpz08vBwhmgTGnoBAVyeNSsNuzp1aCC5uNAzJneZmLTw5g0FAPbuZYHJypXMhdYUtlYWKJc/lZixQGACCONPpuTNy+LV/v3pKDNoJY4XL+hBGzJEP1Us1tYUGOvQgclDDRoA3bqxpDpnToY6Bw+m4PTixTSADNFdog4KBXUXnZ154c2Yoe8RGSVXr7IYfdEiFlI8e5bYyHvyRP9yKromOprnZdw4Kift3EnPqLEdp6kiPH/yQxh/MkalxNGvH5OeDVaJY/Bg6kVMmaLfcZQtC5w7x7ZmI0dSdbZIEUrFtGjBSl5TLngoVYqu5tmzmXdQurS+R2Q0BAUBt24xC8HensbNxImxcio5c9Kw++GHWCNPX3Iquub2bd7rrlxhhsbs2UD27PoelUCTCONPfgjjT8aYmzNCWbUqk56HD9f3iDLAgQOMX+/ZIw/lajMzFoS8eUPv1u3bjJnNn2/ahp+KMWOALVvocj55Urhe0klUFIWQE1baquRUAKB4cebitWkTa+g5OJjeqQ4Lo6bpokWsxbp0iSnBAoFA+wjjT+ZUqsS8nsmT2QHAoOyTsDB6/Zo145NODly7RjfDrVtsEVC3LquCXVyYjDVqFHUDTZXMmRn+bdYM2L4d6NhR3yOSLSo5lbive/dYgQvEl1NRSbr8+itTK02dI0c4v/DzY0bG8OHylJkRaAbh+ZMfwvgzAKZPB3bvZt7Pnj36Hk06mD4deP8eOHNG/26NkBDG2ZYt4xPZy4suVQBwc+NYp02jwbNmDbPpTRU3N6BtW5ak/vCDycfg0iqnUrFirDh7QjmVTp243vz5ejkE2fDuHSt3d+1iE56TJ+kJFRg3wviTH8L4MwDs7Bga6diRM+ZmzfQ9ojRw7x6wcCF73xYrpt+xHDjAIo6AAGDePBaeWMS59G1smGjUsSMLQr7/nnoZc+cyQcsU8fBgLG7CBOZCmgCSxGyAhCHbhHIqLi5A796xIdvixVOuDzp1irp+69eb7uWkVLIz4pgx9PBt3cr6K33PCQUCU0UYfwZC+/bxlTgyZ9b3iFJA1b6gWDGGUfXF69cM7e7fTw/WihUp60Y4O7Pf8Jo1fEodOMDq344dTe8pVaAAPaHDh7PcvHJlfY9Io4SFJS2n8vkzl2tKTiUigj+FOnVYYG6K3L3LTAtPTzGnMlWE509+GFvzMKNFoaDm1evXVOKQNZs2AefPc8D6yJ+LjmaFTJkywL//Msb0zz9pEwwzM2N5tY8PtQA7d2YY9OlTrQ9bdgwaRIO4b1+eUwNEqaScyv79tGXbtmVRc9as7Bbx++/A8eNsAT1sGO39589ZnXvxIi/hvn1ZiJARHb0FC7j/lStNb/7w5QulW777f3t3HhZl2f0B/DsDCAICIpskaKQpIiS5ILYapOaWxmtRmlb+tFTSTM3dFBdyV9QyS3PFFl8tTXMLU1NDX4okQgRTMRVQkEWQZZjn98dxYJBtYJ6ZeWbmfK5rLmuW57lnBpgz577PuQMpqD5xAvjiCw78zJEq+NP2ois5OTkYNmwYHBwc4OTkhFGjRuGeqhS/Fs8//zxkMlmVy3vvvVflPunp6ejfvz9sbW3h5uaGqVOnQqGaRjAwzvwZkccfB6ZNo473w4dLtBNHTg4VULz+OjVY1rc//qA0Q3x8Zd+I+jYCrUnLltSPY+RISt106kRT2Oa0Mt3SkpqvPfUUZUPHjTP0iOqUl1d1ulY1faveTuWJJ2jnP/V2KrrKov/zDxWUT5pEPz7m5OhR+vW7cYN+bcy9jopJ27Bhw3Dr1i0cPXoUZWVlePvttzFmzBjExMTU+bjRo0cjMjKy4v9t1XozlZeXo3///vDw8MCZM2dw69YtjBgxAlZWVlgsgQwOB39GZsYMWi8zfjz9gZVcNmHmTNrKbcUK/Z63sJBKolevpk/006eB4GDtj9uvH80PzptHBSMxMRQImUtPip49aa5u5kyq2PbwMPSIqrRTOXKEruvfv7IAw8qKkr4BAcCQIYZppyIIlDh1daXgx1xkZVGwGxNDifOffqIvrcy8iTntm5+fX+V6a2trWGvxzSI5ORmHDh3C+fPn0bVrVwDA2rVr0a9fPyxfvhyenp61PtbW1hYetfxNPHLkCP7++28cO3YM7u7u6Ny5MxYsWIBp06Zh3rx5aGLgJAJP+xqZpk1p/f3PP9NOZZISF0eruhcupMyZvhw4QAHfp5/SNm7x8eIEfip2dlSm+b//0Rvw1FM0NZybK945pOyTTyiimjJF76e+fZt+1letqlx6aG9Pb3d4OLBvH92vd29qT3jhAmX6/vwT2L6denn36UM/jvr8orR3L22THB1t+ltDA/TB/OWXVCN0+DCwZQu9bxz4MYC+DGk75SsIdCwvLy84OjpWXKKiorQa29mzZ+Hk5FQR+AFAaGgo5HI54uLi6nzszp074eLigk6dOmHGjBkoKiqqclx/f3+4u7tXXNenTx/k5+cjKSlJqzGLgTN/Ruill4CwsMpOHI2Z1RSdQkHzPIGB+psevHmTKnd376ZP/+PHdVtZ3LkzrVpX7UP1/ffAmjWmvw9VixZUJf3OO8CoUdX3RRZBSQmQnFx92laVzWvalKZOAwNpJl7VTuXaNQoIJ06UzlbM9+7ReAYMAF5+2dCj0b3kZFo7eeoU9U9ftqxqmxvGxHT9+nU4qC3A1SbrBwAZGRlwc3Orcp2lpSWcnZ2RofoDVIM33ngDrVu3hqenJy5cuIBp06YhJSUFe/bsqTiueuAHoOL/6zquvnDwZ6RWr6aprdmzqXWdwa1fT+mWuDjd74urVNLWJzNmUPO0mBhKA+kjALOwoJLrwYOpgfVrr1GaY/166gNiqkaOpHLzcePofW7klIV6OxX1S0pK49qpqO+cIRXz5wPZ2ZT1M+XvBMXFVHz2ySdUSxUbq5PvBcwEiDnt6+DgUCX4q8306dOxZMmSOu+TnJzc6PGMGTOm4r/9/f3RsmVLhISE4PLly3jMCJpXcvBnpFq1og+ZqVPp27ZBO3HcvEnr4d57r7Jxsq5cuEBpht9+o+hgyRKgeXPdnrMmrVoBe/ZU9hD086M35IMPjHgT5jrI5ZTxDAykEtaZM+t9iKbtVJ59ll7CxrZTkZLERJqijow07e8CsbH06371Kn0HU30PY6wmhmj1MnnyZLz11lt13sfHxwceHh7Iysqqcr1CoUBOTk6t6/lqEhQUBABIS0vDY489Bg8PD5w7d67KfTIzMwGgQcfVFQ7+jNiECcDWrbT87OxZ3SfcavXhhzQvt2iR7s5RVESfqCtW0EKiU6eAp5/W3fk09fLLwAsv0Kr+6dOpGmfjRqB7d0OPTHz+/rSaf8ECquZ+EN0olRQEPBzkpaVRpk8up7csIICKpVXZPG9v08qMKZX0u9iunUGWR+rFnTv0Hm7bRkH7Dz/QDARjUuPq6gpXV9d67xccHIzc3FzEx8ejy4MsSmxsLJRKZUVAp4mEhAQAQMsH692Dg4OxaNEiZGVlVUwrHz16FA4ODujYsWMDn434OPgzYpaWVOPw9NMUb4wda4BBHD1KLVG2bdNdBu7wYXpyN29S1e3UqdJqt9KsGaV7hg+nNjM9elA59qJFxp3GqkHuxI9hs+0bZAx8H1E99+NCogyJiZTlA/TfTkVKtmyhIvPYWGn9eIpBEOiL5pQpFORu2kQzDnIuGWQakHKTZ19fX/Tt2xejR4/Ghg0bUFZWhoiICISHh1dU+t64cQMhISHYtm0bunfvjsuXLyMmJgb9+vVDixYtcOHCBUyaNAnPPvssAgICAAC9e/dGx44d8eabb2Lp0qXIyMjA7NmzMX78eK3XKYqBgz8j99RTtAZ/xgzqxPHQ+lLdKi6mNWDPP0+Bj9gyMiiruGsX9Qw8fJjSKlLVpQuteVy7lqbB9+yh/x4yxOhSXOrtVNQv6en2GIw12Jv1Cpre+wFtnxmMV14xTDsVKcnOpl52w4eb3rq3lBSa4v3lF9qjeOVKaorNmKakHPwBVLUbERGBkJAQyOVyhIWFITo6uuL2srIypKSkVFTzNmnSBMeOHcPq1atRWFgILy8vhIWFYfbs2RWPsbCwwI8//oixY8ciODgYdnZ2GDlyZJW+gIbEwZ8JWLKECk+nTKH2Fno98bVr1G9DzE98Vd+IadMovbltG32qGkNUYWlJU6NhYbSQLSwMGDiQ+vN4ext6dDXKyqpeZZuURBW4AO30FhBAM70BAYB/p8FQTuuH1UkTgM9CzaOXST2mT6eAeflyQ49EPCUl9Cu+aBHg5UU9FV980dCjYkx8zs7OdTZ0btOmDQRVrxlQu5kTJ07Ue9zWrVvj4MGDooxRbBz8mQBVJ45Ro6gbh14yD2lptHvGlCniLvpJSqKCjtOnqbHbsmX0BI2NtzctiNq7l7r9duxIa+Xef58CRANQtVN5OJv3YA1yre1Uqr/8MmD9WipyiYykHz4zduYMfVdZv17PmXcdOnmSfg3T0iijOXu2eUzdM92QeubPHHHwZyLeegvYvFnrThyaEQTKanl40KeCGO7fpxTD0qXUq+/4cZpONmYyGc3Fh4TQ6zR5MnUi3rhRp+XZtbVTuXixcoteVTuVMWPqb6dSIx8fek7z5gEjRpjf/mUPKBS0HLVrVwqWjF1ODgV7mzbR5i4JCRTjM6YNDv6kh4M/EyGXU/HHk09SQeyMGTo82e7dtP5u3z5AbS/DRjt2jD5B09OBWbNoDk0CC2JF4+hIa/9UBSHdu1OpdmQkFYtoob52Kg4OFNg99xwlHf39RWynolpnMHYscOKEWa7+j44G/voLOHfOgNX2IhAEapc5aRLtzrhhA3VSMsO3lDGzwMGfCQkIoDZzCxZQz2Od9BnLz6eTvPwyrWXTxu3bVNCxYwdFJ/v30/5QpiooiLaIW72a9iH+739pLeCgQfU+VKkErlypHuRdvmzAdirW1vSNIySE1mXW01PL1Pz7L72N48YZuM+mltLSKH4/doz+bqxaJYktnJkJ4cyf9HDwZ2LmzaPOKxMmiF+HAYA+7XJzKeXRWIJAfTFUzdA2b6bAwRgKOrRlZUWtaoYOpajh5Zdpajg6miorQC/vwwUYNbVTGTBAAu1UXngBeOMNek4DBxrn+sxGmjSJtn1esMDQI2mc0lIqUFmwgIK9gwdp60jGxMbBn/Rw8Gdi7O1pu9mwMKo3GDxYxIMnJFCQEhXV+MrVixepb8SJE8Cbb9IctQaNOE1OmzZQ/HAAqWsP4ULk97jgE4ML7f6DCwVtkJ5OQbCVFQV1AQGQdjuVFSsoYztjBq1nNAOHDtHqh507AScnQ4+m4U6fpjWKFy9SpnjuXApkGWPmgYM/EzRkCNCvH2X/XnxRpD/qqu0LOnSglEdDFRfTJqCqwPHYMZouNBNZWdWnbP/+W4aSkpcAvIRH7O4iIOksXm95EgGLn0PAwDZo395Idorz8KBinYgIqtAODjb0iHTq/n3q4R0SQu1vjMndu7SkVrUJTXw8ZZEZ0yVB0D5zp9ZphYmAgz8TJJNRfYGqE0c9e1trZtMm2k/3xImGRyS//EJphitXqJRw1iyT7RuhaTuVJ5+kme7KdirNgTNOwJiPgDmjgJxJNIdvZSTpmPfeo6n8sWNpXaOB2tnoQ1QUrfc7eFBiGdg6CALw7bfAxIm0U+K6dfSWGXORCjMePO0rPab7F9rM+fhQjDV/Ps2uatWJ4/Ztarg8ciRt6Kmp7GxaC/bVV7QVyZ49JtM3QpN2Kj4+FNy9+y4FePW2U+nZE/j9d5pGjYwEvvuOCir69dPb82o0Cwvgs88onbRuHRUFmaBLl+jL1EcfAe3bG3o0mrlyhZaXHjpEy0Gio4EHu1YxxswUB38mbOpUKqQdN44Sdo3OUnz0Ef27bJlm9xcEagEyeTI1Qtu4kTpQG2nfiMJCauehXnxRVzuVgAAKthvVxaVJE1o79+qrlEXr35+KQ9asAR5sGC5ZXbvSD9ucOTTmBwUspkIQaLr3kUeAmTMNPZr6lZVR5e68eYCLCxWAaVugz1hjcOZPejj4M2HqnTi2bm1kJ45Tp2g67/PPNSvMSE2loOXnn2lB1KpVRrPtgaTaqTz2GPVS3LWLsmi+vrRmcswYaQfRCxdSJcSkSTTPaEK++YaWqh44IP1VC3Fx9KPy11/04zN/Pu/CxwyHgz/p4eDPxKl34hg0CHB2rnp7YYkCV3PLUNrycTTJLUObEgXsrB/8WJSVUSAXFAT83//VfaLSUtqdY+FCmlP66Segb1/dPCkR1NdOxcVFAu1UZDJ68/r2pWn3sWOpn97nn9M8shQ5OdG09fDhFLz26WPoEYkiL4/i2VdekfYsfF4eLfdQNXw/f57+ZYwxdRz8mYEVK2h90owZFDekZhZgZ1w6jqdkIT2nCAIAjFwJHL0D2dHD8Ha2Ra/2bhj29zG0S06mBfx1ZZt+/ZXSDKmp1Ltvzhxxdv4QgUJB67QeDvLS0+l29XYqYWGVgZ67u4QW8zs7A198QYs3332XPs0l9jpX8cYb1Ltx/Hh6saWeJtPAnDlAQQH155YiQaAltRMmUB/2Vauo+JoLOpgUcOZPejj4MwOqThyTZhfhZvtEJN6+Awu5DOXK6rXzAoBrOUXY/ttVbBHa4pnJm7G4dXt41XTgu3dpPeCXXwI9elCxggEzUjW3U6EKXIDWagUE0Gy0KsgzmnYqABXbJCRQhnXRIppW/ewzoHdvQ4+sKpkMWL+eXuAlS2jRmRH7/Xd6OkuXAl41/iIYVno6xdk//kjZ/XXrpDlOZr44+JMeDv7MhHO3dDwyJgmJmQIgR42Bn7ryBzefsXRB6KoTmD/ID+HdHjR2FgTg669pMVFxMc0xvfuu3taiadJOxd+/pnYqehmebllbUxrqtdeoV0efPpRpW7lSWmsrO3SgLwZRUcCwYUC7doYeUaOUl9PL3LEjZdWkRKGgyt25c2m2fe9ekZu6M8ZMFgd/ZmDd8VQsP3IJaMQUULkAlCuUmL4nEXfulSCitQVVdB4+TBWdq1frrG+EIFA/tYerbGtrp6LK5vn4mMF01+OPU1HNtm1UfdKhA6WmpFRVPXMmbYExfjz9vEhmHl1zX3xB6+Z+/VVaGeL//Y9WWiQkUIX5ggVUdc6YFHHmT3o4+DNxX59Pp8BPBMuPXILr0U/x2p2LNMfUv78oxwWqt1NRXXJz6XZR26mYCpmMei/2708VPWPGVBaEdOxo6NHResR166hq5ttvKVtpRDIzaZ3sO+9Qm0opKCigxO/atfQ7EBcHdOtm6FExVjcO/qSHgz8Tdj2nCB/vS6rxNmXpfeTH7UHJzRSU3roEZfE9tOj3AewDQms/oCBgbui76BnRE16tXBo1Jk3aqbRvT9O0vXvruJ2KqXBxoUbaI0ZQCrRzZ6oOnjULsLEx7Nj696f9BidNAl56yajSU1On0s+jKDvkiOCHH6iIIyeHkrwTJ5r0RiqMMR3iPx0mbObeRChqWdunLMpH3uldsHBwhZXboyhJT6z/gDIZFHJLzDx8GdtH1R/83b1bOVWr/u/D7VQGDqwM8nx9TaI41DB69aIXOSqKLt98QwUhht5Dec0aemPnzpVuuexDfvmF+pR/+SX9nBrSv/9Stvv776nNzPr1QJs2hh0TYw3BmT/p4eDPRKVmFuBU2p1ab7ewd0ariO2wsG+OklupyNg6SaPjlisFnEq7g7SsArR1oznXmtqpXLgAXL9OjzGKdiqmwsaGOvqGh1OlQmgoZQSXL9esSbcueHlRxa9qi8DAQMOMQ0OlpbSsNTgYePttw42jvJwCvVmzqEHzt98C//kP/84w4yMI2gdvQt01iqyBOPgzUTvj0mtt5wIAMksrWNg3b9Sx5TIZJm9IR/N//Gptp/LGG0baTsVU+PoCx4/T7ixTptC2FMuXU/BliOhh4kTaZmbsWODMGekUpdRg5Ur6MvP774Yb5h9/0BLO+HiK4aOiAEdHw4yFMWZ6OPgzUcdTsupt59JYSkFA/M0sPJLshy5dKDuiaqfy8A4izIDkcqpWGDAA+PBDeqO2bgU2bKCIXJ+srGgK+plnqIT23Xf1e34NXb0KREZSrBoQoP/zFxYCH39Ms+MdOwKnT1MGkjFjxtO+0sPBnwm6V6JAek6RTs9h1bwIsSfVtoJj0uXmBuzYQVm/sWMpqpk5E5g+nfoG6svTT1MAOn06FYG4uenv3BqaMIG+wBiiL/WBAzTdfPs29fD+8EPOmDPTwMGf9Eh37oU12rXsQuh6eYQA4Gp2oY7PwkT14otUcTNlCu3B/MQTwIkT+h3D0qWUkfzoI/2eVwM//ADs30/1KfpsIXTzJrXMHDCA2jX+9Rctj+TAjzGmKxz8maBShX6+IunrPExETZtSWikhgbY8ef55agydk6Of87u4UO+UrVuBkyf1c04NFBZS1q9vX+CVV/RzTqWSNsfx9aWXIiYGOHSImpQzZkpUmT9tL0w8HPyZoCaW+nlbF0bKsXIlcOwY7avLjIifH3DqFK3/++9/KeW0Y4d+SureeYcWso0dS6W1ErBgAf0Mr1unn3qYxERqHD1+PPW+vniR9pzmSl5mijj4kx4O/kxQmxZ20PlniACk/22HOXNoNtHdHfDwoP+ePJkSO3/8QVv/MomSy6nw4uJF6gX45pvUWTstTffn/ewzICUFWLVKt+fSQFISsGIFLYN87DHdnquoiJY8PvkkkJ9P8ffGjUDzxhXeM8ZYo3DwZ4LsrC3h7Wyr03O0drHF+TOWyM+nthi7d1McYW9PzWjfeos+4OztKcn0+uvUruLAAer/xz2bJMTDA9i1Czh4kAK/Tp1oaliXWbknnqB51shI4No13Z2nHoJARRY+Prpfhnj4ML20q1dTQckff1ANDGOmjjN/0sOlmiaqV3s3bI+7Vme7l/z4/VAWF6L8Hq33up92DooCagzt0GUg5DZ2NT7OQi5Dr8epUtPCAmjXji5hYZX3KSio3KtXtbvHTz8BeXl0u5NTZR9A1cXPj4JFZiAvvURvWmQk9RuJiaF9gnUVocyfT52LJ06kbwwGsG0brbc7dkx3hc+ZmbS73a5dlGA9fJh+XxgzF1ztKz0c/JmoYUHe2HL2ap33yY/bi/L8ysV6RZfOAJfOAADs/XrVGvyVKwUM7+Fd57GbNaNlXeo9ygSBsn7qu4D8/DMtelf9Yj/2WPWg0MdH0j2BTYudHRVkvPEGpXKfeYa6DX/yifhzk82aURps6FAqsx04UNzj1yMnh/bvff113eyAp1QCmzZRRtHSkgLN4cN5XR9jzPA4+DNR7dyb4Zm2LjjzT3at2b9W4zY3+LgWchl6+rSo2NqtIWQywNubLgMGVF5//z6QnFw1KFy/HrjzYHc6OzuaLlMPCP39eZ2UTj3xBHUY/vxzYMYM6oOyejVVJ4gZvYSFAX360Oa1L7xAb7aezJxJO9OsWCH+sZOSKHY+fZpaGy5bRsXVjJkjzvxJDwd/JmzxEH+Erjoh6k4flnIZFg/xF+14AHUfefJJuqgIAk2XqU8bnz9PhSSqpWheXtUDwscf5/5oorGwoAVxgwfT+rzXX6c34NNPgUcfFeccMhmV2HbqRL0Ho6LEOW494uKo0GLNGqBlS/GOe/8+LZdcupReouPHqZsOY+aMgz/p4eDPhHk522L+ID9M35Mo2jEjB/nBS8fFJADFBB4edOndu/L6sjIqMFHPEm7fDvz7L93epAlti/Xw1LG7u86HbLo8PamiZ/9+6k3i50cVC5MmiRNpt21LabgFC6jiuGNH7Y9ZB4WC9ssNDKTYVizHjlH3mvR0YNYs/W+gwhhjmuLgz8SFd/PGnXslWH7kktbHmtq7PV7rVvdaP12zsqLYQ1VBrJKTU5khVF1276bWGgDtJPZwQOjrC9jYGOZ5GKWBA4FevagYZMYM6gu4cSPQo4f2x542jY43bhyly3S4MG79euDPPyn7Z2Gh/fFu36at2HbsAJ57jmLkDh20Py5jpkIQtM/ccYcIcXHwZwYierWDi701Pt6XBIVSaNA0sIVcBku5DJGD/Awe+NXF2Zk+eJ97rvI6pRL455+qAeEPPwArV9LtFhZA+/aVU8aqoNDLixfl18renhbJDRtGhSA9e1K6a/FiwNGx8ce1tqaorHdviqLefFO8Mau5eROYM4cyf926aXcsQQC2bKHd8gBg82ZqccQ/O4xVxdO+0iMThPrj6fz8fDg6OiIvLw8ODg76GBfTges5RZi5NxGn0u7AQi6rMwhU3f5MWxcsHuKvl6lefSkooAX56kHhhQuVbWgcHatnCTt14jY01ZSX03q92bOpcjc6mgo4tIl+wsOB2FhqAK1BRc/vvwNdugDx8VXXjNZ1+OPHqa+1NgVDKSlU0HHiBMWpK1YArq6NPx5j6kzlM1f1PF54IQ+Wlto9D4UiH7Gxxv+aSAVn/syIl7Mtto8KQmpmAXbGpeP4pSykZxdBPQSUAfBuYYtej7theA/vRlX1Sl2zZjRTqT5bWVMbmthY2v2svJzuw21oHmJhQT36XnmFqnWHDgX696cMXuvWjTvmypU0ZzpzJu0CIqKjR4FvvqGWK40N/EpKqCYlKoqq1o8d002bGMZMCWf+pIczf2ausESBq9mFKFUo0cRSjjYt7GBnzd8JVIqLq7eh+fNPWucFALa2NbehcXY27LgN4vvvgYgI4O5dKt6YMIEa3DVUdDTwwQfAb78B3bvXeVdNM3/FxfS+tGpFQX1jkpO//ELZvitXqHffrFlUqc6Y2EzlM1f1PJ59VpzM38mTunlNcnJy8P7772P//v2Qy+UICwvDmjVrYF/LdM/Vq1fxaC0dD7799lsMHToUACCr4Q/Nrl27EB4eLt7gG4mDP8YaQdWGRv3y99+VbWhataqeJTSLNjT5+bSobu1aoHNnKgjp2rVhx1AoKoO+c+fqDCA1Df7mz6cWLH/+SYU+DZGdTc2gv/oKeOopan3o59ewYzDWEKbymWsswd9LL72EW7du4fPPP0dZWRnefvttdOvWDTExMTXev7y8HLdVGYAHNm7ciGXLluHWrVsVQaNMJsNXX32Fvn37VtzPyckJNhKoNOQUD2ON4O4OvPgiXVRqakOzcydtjgGYSRsaBwdqnjd8OBWEBAVRNnDhQppv14SlJU35BgfTv++/r9WQ0tJomnbKlIYFfoJAtScffkjx6MaNwKhRZjzNz1gjiTntm5+fX+V6a2trWGvRUyk5ORmHDh3C+fPn0fXBF9W1a9eiX79+WL58OTw9Pas9xsLCAh4eHlWu27t3L1599dVq2UInJ6dq95UC/jPGmEhUbWhef52CjQMHqOdbTg4VBqxYQRWmKSnA3LlU2OrhQW1oQkMpyNiyhbJZxcWGfjZa6taNunIvXQp8+SVFXQ3ZvzcoiILH2bOBW7caPQxBoNjTw4MOpanUVArsR4ygfy9eBEaP5sCPscZQBX/aXgDAy8sLjo6OFZcoLRvDnz17Fk5OThWBHwCEhoZCLpcjLi5Oo2PEx8cjISEBo0aNqnbb+PHj4eLigu7du2Pz5s3QYLJVLzjzx5iONW8OPPssXVRqakOzbx+wahXdbmFB08QPZwmNqg2NpSUweTLwn/9Qc+ghQ2i3kLVraV68PlFRwJ49FBXv2tWoIezeDRw+TK+trQYF66WlFK8uXEi9rX/6CVCbsWGMGdj169erTPtqk/UDgIyMDLi5uVW5ztLSEs7OzsjIyNDoGJs2bYKvry969uxZ5frIyEi88MILsLW1xZEjRzBu3Djcu3cPEyZM0GrMYuDgjzEDkMtpY4u2balYVuXePeCvvyoDwsRECl5yc+n2h9vQ+PtTwYmmM6oG0bo1dT7evZuKQHx9aQHe+PF1d1lu3hxYvhwYORJ4552qc+ygYqUruYVo0lKJK7lytC+pWqyUn091Iy+/TP2p6/Prr5RsTE2lKeI5czQLGBljdRNz2tfBwUGjNX/Tp0/HkiVL6rxPcnKydoMCcP/+fcTExGDOnDnVblO/LjAwEIWFhVi2bJkkgj8u+GBM4gSBtq97uMAkJaWyDY2PT81taMTYwUJUeXmVbVy6dKGFdIGBtd9fEGhXkZs3gQsXkJpXRm2KUrKQnlNDmyJnW/Rq74ZhQd749JNm2LiRqrW96+hPfvcuVe9++SW1/9m4kYJqxgzFVD5zVc+je3dxCj7OndP8Nbl9+zays7PrvI+Pjw927NiByZMn4+7du2rnUsDGxgbfffcdhgwZUucxtm/fjlGjRuHGjRtwrafZ54EDBzBgwAAUFxdrnbHUFmf+GJM4mYyme728qI2eSk1taD77TOJtaBwdqQ/g8OHUN6VrV0rPzZ9fcxdtmQz49FNcf/ZFzFywF6eUDrU2KBcAXMspwva4a9hy9iqKb7lg0mx/eHvXnL4TBODrr+n0xcXAp5/SkHhdH2PGz9XVtd5gDACCg4ORm5uL+Ph4dOnSBQAQGxsLpVKJoKCgeh+/adMmDBo0SKNzJSQkoHnz5gYP/AAO/hgzWjY2lDR7OHGm3oYmMZHaoGzbVnMbGtW2du3b67kNTXAwDWzlSgr8du+m6Es9un3g60J7fPx/n0GhACBHvdsTqm63aZ2N74pOoNN5P4Q/tDXhP//QNsKHD1Nv6tWraY0fY0x8Um7y7Ovri759+2L06NHYsGEDysrKEBERgfDw8IpK3xs3biAkJATbtm1Dd7Xeo2lpaTh58iQOHjxY7bj79+9HZmYmevToARsbGxw9ehSLFy/GFNV+kAbGwR9jJqa2NjSpqdXb0Fy/Trc3aUJL8WpqQ6OzAhMrK2DaNIq+xo0DBgyg4pA1ayoisXXHU7H8yCVAZkHzug0hF1CiEDB9TyLu3CtBRK92KCujquv586nKev9+Oi1jTHcEQfvgTZdFsjt37kRERARCQkIqmjxHR0dX3F5WVoaUlBQUFRVVedzmzZvRqlUr9O7du9oxrayssH79ekyaNAmCIKBt27ZYuXIlRo8erbsn0gC85o8xM3b3LmUH1YPCxERA9TfO1bV6QNixI2UdRSUItPfaxIk0BxsVha+79MP075NEO8WYJ/yxa5E3kpMrZ5rt7EQ7PGOiMZXPXNXz6NIlDxYW2j2P8vJ8xMcb/2siFRz8McaqUG9Dox4YXr5MMZpcTtPE6tPGAQFUVKF1lvDuXWDaNFz/dh9Cx2xAiUX1ueiSW5dQmPgzitMTocjLhLypA6w928Pp2Tdh5fxIzccVAKVCDpe457Ap2rbOGhPGDM1UPnNVzyMwUJzg748/jP81kQqe9mWMVVFXG5qkpKpZwofb0KgHgwEBjWhD07w5sHEjZrZ/BYqs0hrvkv/bbpT8mwzbDk/Dyq0Nyu/dRcHvP+LWVxPhMWI5mri2qf4gGWBhJaDjyEQEBta/iJsxJh6lUvsvhrpa82euOPhjjGnE3p423lAvgKupDc0vv9D+t41tQ5OaWYBTd8oBec13aNZtCFwGTYVMLSto5/sMbm6KQP5vu+EysOYF1QIE/Hr5DtKyCtDWTcqNERljTLc4+GOMNVp9bWjUp40//5wqkYHKNjQPZwqdnYGdcem1tnMBAJtW1TfotXJ+BE1cvFF253qd47WQy7Djt3TMG+TX6OfMGGsYzvxJDwd/jDHR1dWGRj0g/P13YPv2yjY0jzwCNH01C+XWDSvtEwQB5UW5sHKpo5szqA3M8UtZmAcO/hjTFw7+pIeDP8aY3ri70yU0tPI6hQK4dImCwfg/FfhOKKr9ALUoTPoF5QXZcHp6WL33Tc8uQmGJospWcIwxZk64lz1jzKAsLal9THg48Nb7hQ3u51eWfR05Rz+D9SMdYOcfUu/9BQBXswsbN1jGWIOpmjxre2Hi4a++jDHJKFU07C98+b27yPpuPuTWdnAZPAOyWopEtD0PY6zxeNpXejj4Y4xJRhNLzScjlMWFyPz2YyiLC+E+fAksm7XQyXkYY8zUcPDHGJOMNi3sIANNzdZFUJQia3ckFHdvwD18IZrUU+ihTvbgPIwx/eDMn/Tw11/GmGTYWVvC29m2zvsIynLc/n4JSm5ehOvg6bB+pHrrl7p4t7DlYg/G9IjX/EkP/wVkjElKr/Zu2B53rdY+f3djN+F+Whyatu2O8vv3cO+v41Vut+/Uq9ZjW8hl6PW4m6jjZYwxY8PBH2NMUoYFeWPL2au13l6a+Q8A4H7aOdxPO1ft9rqCv3KlgOE9NJ8iZoxpTxC0z9wJDWv9yerBwR9jTFLauTfDM21dcOaf7Bqzfx7DPmnUcS3kMvT0acFbuzGmZ2JM2fK0r7h4zR9jTHIWD/GHpVzLFeIPsZTLsHiIv6jHZIwxY8TBH2NMcrycbTFf5P13Iwf5waueYhLGmPi44EN6eNqXMSZJ4d28cedeCZYfuaT1sab2bo/XuvFaP8YMgad9pYeDP8aYZEX0agcXe2t8vC8JCqVQawVwTSzkMljKZYgc5MeBH2OMqeHgjzEmaeHdvPHUYy6YuTcRp9LuwEIuqzMIVN3e06cFFg/x56lexgyMM3/Sw8EfY0zyvJxtsX1UEFIzC7AzLh3HL2UhPbuoyk4gMlAD516Pu2F4D2+u6mVMIjj4kx4O/hhjRqOdezPMG+SHefBDYYkCV7MLUapQoomlHG1a2PHOHYwxpgH+S8kYM0p21pbw83Q09DAYY/XgzJ/0cPDHGGOMMZ3h4E96uM8fY4wxxpgZ4cwfY4wxxnSGM3/Sw8EfY4wxxnRGELQP3gTNW3wyDfC0L2OMMcaYGeHMH2OMMcZ0RqkEZDLtjsGZP3Fx8McYY4wxneHgT3p42pcxxhhjzIxw5o8xxhhjOsOZP+nh4I8xxhhjOsPBn/TwtC9jjDHGmBnhzB9jjDHGdIYzf9LDwR9jjDHGdIaDP+nhaV/GGGOMMTPCmT/GGGOM6Qxn/qSHM3+MMcYY0xmlUpyLrixatAg9e/aEra0tnJycNHqMIAiYO3cuWrZsiaZNmyI0NBSpqalV7pOTk4Nhw4bBwcEBTk5OGDVqFO7du6eDZ9BwHPwxxhhjzGyVlpZi6NChGDt2rMaPWbp0KaKjo7FhwwbExcXBzs4Offr0QXFxccV9hg0bhqSkJBw9ehQ//vgjTp48iTFjxujiKTSYTBDqT6bm5+fD0dEReXl5cHBw0Me4GGOMMbNkKp+5qucB5AHQ9nnkA9Dta7JlyxZ88MEHyM3NrfN+giDA09MTkydPxpQpUwAAeXl5cHd3x5YtWxAeHo7k5GR07NgR58+fR9euXQEAhw4dQr9+/fDvv//C09NTJ89BUxqt+VPFh/n5+TodDGOMMWbuVJ+1GuRmjIQYsQMd4+E4xNraGtbW1iIcX3NXrlxBRkYGQkNDK65zdHREUFAQzp49i/DwcJw9exZOTk4VgR8AhIaGQi6XIy4uDkOGDNHrmB+mUfBXUFAAAPDy8tLpYBhjjDFGCgoKHmTOjFOTJk3g4eGBjAxxYgd7e/tqccjHH3+MefPmiXJ8TWVkZAAA3N3dq1zv7u5ecVtGRgbc3Nyq3G5paQlnZ+eK+xiSRsGfp6cnrl+/jmbNmkGmbckOY4wxxmolCAIKCgoMPjWoLRsbG1y5cgWlpaWiHE8QhGoxSG1Zv+nTp2PJkiV1Hi85ORkdOnQQZWzGRqPgTy6Xo1WrVroeC2OMMcYAo874qbOxsYGNjY3ezzt58mS89dZbdd7Hx8enUcf28PAAAGRmZqJly5YV12dmZqJz584V98nKyqryOIVCgZycnIrHGxL3+WOMMcaYSXF1dYWrq6tOjv3oo4/Cw8MDP//8c0Wwl5+fj7i4uIqK4eDgYOTm5iI+Ph5dunQBAMTGxkKpVCIoKEgn42oIbvXCGGOMMbOVnp6OhIQEpKeno7y8HAkJCUhISKjSk69Dhw7Yu3cvAEAmk+GDDz7AwoULsW/fPiQmJmLEiBHw9PTE4MGDAQC+vr7o27cvRo8ejXPnzuH06dOIiIhAeHi4JKbzOfPHGGOMMbM1d+5cbN26teL/AwMDAQDHjx/H888/DwBISUlBXl5exX0++ugjFBYWYsyYMcjNzcXTTz+NQ4cOVZni3rlzJyIiIhASEgK5XI6wsDBER0fr50nVQ6M+f4wxxhhjzDTwtC9jjDHGmBnh4I8xxhhjzIxw8McYY4wxZkY4+GOMMcYYMyMc/DHGGGOMmREO/hhjjDHGzAgHf4wxxhhjZoSDP8YYY4wxM8LBH2OMMcaYGeHgjzHGGGPMjHDwxxhjjDFmRv4f7RnsqpvYT3kAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Number of qubits\n", + "n_qubits = 7\n", + "\n", + "# Define fully-connected terms\n", + "terms = [(i,j) for j in range(n_qubits) for i in range(j)]\n", + "\n", + "# Assign coupling signs at random\n", + "rng = np.random.default_rng(42)\n", + "weights = [(-1)**np.round(rng.random()) for _ in range(len(terms))]\n", + "\n", + "# Define QUBO problem\n", + "problem = QUBO(n_qubits,terms,weights)\n", + "\n", + "# Plot geometry\n", + "problem_graph = nx.Graph()\n", + "weighted_edges = [tuple(list(term) + [weight]) for term, weight in zip(terms,weights)] \n", + "problem_graph.add_weighted_edges_from(weighted_edges)\n", + "\n", + "fig, ax = plt.subplots(1,1,figsize = (8,5))\n", + "\n", + "nx.draw_networkx(problem_graph, pos = nx.shell_layout(problem_graph), edge_color = weights, edge_cmap = plt.colormaps[\"bwr\"], ax = ax)\n", + "\n", + "sm = plt.cm.ScalarMappable(cmap=\"bwr\", norm=plt.Normalize(vmin=min(weights), vmax=max(weights)))\n", + "cbar = plt.colorbar(sm, pad=0.08, ax = ax)\n", + "cbar.ax.set_ylabel(\"Edge Weights\", rotation=270, labelpad=15)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "5746fe91-055b-490e-86cc-9df12002d74f", + "metadata": {}, + "source": [ + "## Run RQAOA on a local simulator " + ] + }, + { + "cell_type": "markdown", + "id": "73f38b8e-ddbc-4dad-bdca-b62e5757b8d3", + "metadata": {}, + "source": [ + " We now demonstrate the full RQAOA workflow and how to run it on Azure Quantum devices" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "4b799e98-7b6a-462d-acfa-70adf95c9db6", + "metadata": {}, + "outputs": [], + "source": [ + "# Define an instance of the RQAOA class\n", + "r = RQAOA()" + ] + }, + { + "cell_type": "markdown", + "id": "05960a08-dd6f-4e32-ac11-cccdef09830c", + "metadata": {}, + "source": [ + "Set up RQAOA properties" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "c7f9000d-220c-4130-afac-fa119a330dfb", + "metadata": {}, + "outputs": [], + "source": [ + "n_cutoff = 3 #size at which to solve things classically\n", + "\n", + "n_steps = 1 # Number of eliminations per step\n", + "\n", + "# Set instance parameters\n", + "r.set_rqaoa_parameters(n_cutoff = n_cutoff, steps = n_steps, rqaoa_type = 'custom')" + ] + }, + { + "cell_type": "markdown", + "id": "cddee917-d4d7-4318-8027-0d8e50b203ab", + "metadata": {}, + "source": [ + "Set up the QAOA properties" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "05b57abb-ed86-4a56-99a3-a6421c74149e", + "metadata": {}, + "outputs": [], + "source": [ + "# The device chosen here is a local simulator included in OpenQAOA\n", + "device = create_device(location='local', name='vectorized')\n", + "r.set_device(device)\n", + "\n", + "r.set_circuit_properties(p=1, param_type='standard', init_type='ramp', mixer_hamiltonian='x')\n", + "r.set_classical_optimizer(method='cobyla', maxiter=200)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "820d8982-26fa-4f31-815f-fcfac9ba3fc0", + "metadata": {}, + "outputs": [], + "source": [ + "# Compile problem instance \n", + "r.compile(problem)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "c2b41c5b-05d2-48b5-8ab6-5079a8e27156", + "metadata": {}, + "outputs": [], + "source": [ + "# Solve problem with RQAOA\n", + "r.optimize()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "09a67012-282a-45a9-a847-8805a5a07f2b", + "metadata": {}, + "outputs": [], + "source": [ + "# Extract results\n", + "result = r.result" + ] + }, + { + "cell_type": "markdown", + "id": "161b7aa9-a7c7-4256-8527-5988cd818d45", + "metadata": {}, + "source": [ + " The results show the final solution of the problem, the output from the classical solution on the reduced problem, the set of eliminations performed (on which pair and which correlation), the schedule followed (the number of eliminations at each step), the total number of recursive steps it took to reach the cutoff size and the all the information regarding the problem and QAOA run in the intermediate steps." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "c5cb0bc0-c3e8-4d35-9628-2ebb449fd809", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'solution': {'1100100': -9.0, '0011011': -9.0},\n", + " 'classical_output': {'minimum_energy': -4.0,\n", + " 'optimal_states': ['110', '001']},\n", + " 'elimination_rules': [[{'pair': (2, 4), 'correlation': -1.0}],\n", + " [{'pair': (2, 4), 'correlation': 1.0}],\n", + " [{'pair': (1, 4), 'correlation': -1.0}],\n", + " [{'pair': (0, 2), 'correlation': -1.0}]],\n", + " 'schedule': [1, 1, 1, 1],\n", + " 'number_steps': 4,\n", + " 'intermediate_steps': [{'counter': 0,\n", + " 'problem': ,\n", + " 'qaoa_results': ,\n", + " 'exp_vals_z': array([0., 0., 0., 0., 0., 0., 0.]),\n", + " 'corr_matrix': array([[ 0. , 0.15351551, -0.22415966, 0.06753463, 0.28993212,\n", + " -0.28993212, -0.15351551],\n", + " [ 0. , 0. , 0.15351551, -0.15351551, 0.28993212,\n", + " 0.22415966, 0.22415966],\n", + " [ 0. , 0. , 0. , 0.22415966, -0.36057627,\n", + " 0.36057627, -0.15351551],\n", + " [ 0. , 0. , 0. , 0. , -0.28993212,\n", + " 0.28993212, 0.15351551],\n", + " [ 0. , 0. , 0. , 0. , 0. ,\n", + " -0.28993212, 0.22415966],\n", + " [ 0. , 0. , 0. , 0. , 0. ,\n", + " 0. , 0.28993212],\n", + " [ 0. , 0. , 0. , 0. , 0. ,\n", + " 0. , 0. ]])},\n", + " {'counter': 1,\n", + " 'problem': ,\n", + " 'qaoa_results': ,\n", + " 'exp_vals_z': array([0., 0., 0., 0., 0., 0.]),\n", + " 'corr_matrix': array([[ 0. , 0.1595476 , -0.35002771, 0.03823884, -0.29664148,\n", + " -0.08613327],\n", + " [ 0. , 0. , 0. , -0.1595476 , 0.21283065,\n", + " 0.21283065],\n", + " [ 0. , 0. , 0. , 0.35002771, 0.42882567,\n", + " -0.26060145],\n", + " [ 0. , 0. , 0. , 0. , 0.29664148,\n", + " 0.08613327],\n", + " [ 0. , 0. , 0. , 0. , 0. ,\n", + " 0.16493123],\n", + " [ 0. , 0. , 0. , 0. , 0. ,\n", + " 0. ]])},\n", + " {'counter': 2,\n", + " 'problem': ,\n", + " 'qaoa_results': ,\n", + " 'exp_vals_z': array([0., 0., 0., 0., 0.]),\n", + " 'corr_matrix': array([[ 0. , 0.99999992, -0.99999992, -0.9999999 , -0.99999992],\n", + " [ 0. , 0. , -0.9999999 , -0.99999992, -0.99999993],\n", + " [ 0. , 0. , 0. , 0.99999992, 0.9999999 ],\n", + " [ 0. , 0. , 0. , 0. , 0.99999992],\n", + " [ 0. , 0. , 0. , 0. , 0. ]])},\n", + " {'counter': 3,\n", + " 'problem': ,\n", + " 'qaoa_results': ,\n", + " 'exp_vals_z': array([0., 0., 0., 0.]),\n", + " 'corr_matrix': array([[ 0. , 0.22076627, -0.37883018, 0.00745541],\n", + " [ 0. , 0. , 0.16551932, -0.22076627],\n", + " [ 0. , 0. , 0. , 0.37883018],\n", + " [ 0. , 0. , 0. , 0. ]])}],\n", + " 'atomic_ids': {0: '1618c298-1fe0-49a5-8982-26dbe93f0173',\n", + " 1: '1c41a899-36a5-4b05-bb84-ada01ab95e73',\n", + " 2: 'f68629e1-f381-43cb-af66-4209eef912d2',\n", + " 3: 'bad57db5-ac75-4e57-bf1d-54cf6d00057d'}}" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "result" + ] + }, + { + "cell_type": "markdown", + "id": "f9a92de4-fd49-494f-b313-60610491766d", + "metadata": {}, + "source": [ + " From the intermediate steps, we can extract useful properties such as the cost optimization, the shape of the system, or the correlation matrix at that step. The ``r.results`` object has some methods that help to get the intermediate steps: ``.get_qaoa_results(step)``, ``.get_problem(step)``, among many others (see https://openqaoa.entropicalabs.com/workflows/recursive-qaoa/)." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "e8a35071-12f5-40ab-ae33-9bfb626aee76", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB4kAAAKaCAYAAAAjwm9WAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUVf7H8c8kISG00EIPvXekCboiioIdXRHLqqBiWcCCrhoLig1dUVFkUVx7b1h+dkWx0kRBUVqkhZIQShJqgGR+f5y9TNokU+7MnZm8X88zz5l273zx2WdP7v2e7/e43G63WwAAAAAAAAAAAACAKiHO6QAAAAAAAAAAAAAAAOFDkhgAAAAAAAAAAAAAqhCSxAAAAAAAAAAAAABQhZAkBgAAAAAAAAAAAIAqhCQxAAAAAAAAAAAAAFQhJIkBAAAAAAAAAAAAoAohSQwAAAAAAAAAAAAAVQhJYgAAAAAAAAAAAACoQkgSAwAAAAAAAAAAAEAVQpIYAAAAAAAAAAAAAKoQksRAlPn999917rnnqlWrVqpevbqaN2+uk046STNmzCjxvQceeEDvv/++M0FK2rNnj+666y6NGDFC9evXl8vl0gsvvOBYPAAA2C1a5uTFixdrwoQJ6tatm2rWrKmWLVvqvPPO0+rVqx2LCQAAO0XLnPzHH39o1KhRatu2rWrUqKGGDRvquOOO0//93/85FhMAAHaLlnm5tPvvv18ul0vdu3d3OhQgbFxut9vtdBAAfPPTTz9p6NChatmypS699FI1adJEmZmZWrBggf766y9lZGQc+W6tWrV07rnnOpaYXb9+vdq0aaOWLVuqbdu2mjdvnp5//nmNGTPGkXgAALBTNM3J5557rn788UeNGjVKPXv2VFZWlp588knt2bNHCxYs4AIYABDVomlO/uSTT/TEE09o0KBBatasmfbt26d3331X33//vZ5++mldeeWVjsQFAIBdomleLm7Tpk3q1KmTXC6XWrdureXLlzsdEhAWCU4HAMB3999/v1JSUrR48WLVrVu3xGfbtm1zJigvmjZtqq1bt6pJkyb6+eef1b9/f6dDAgDANtE0J0+aNEmvvfaaEhMTj7w3evRo9ejRQw8++KBeeeUVB6MDACA40TQnn3rqqTr11FNLvDdhwgT17dtXjz76KEliAEDUi6Z5ubibbrpJRx99tAoLC7V9+3anwwHChnbTQBT566+/1K1btzITrCQ1atToyHOXy6W9e/fqxRdflMvlksvlKlHBu3nzZl122WVq3LixkpKS1K1bNz333HMlzjdv3jy5XC69+eabuu2229SkSRPVrFlTZ555pjIzMyuNNSkpSU2aNAn43woAQCSLpjl58ODBJRLEktShQwd169ZNK1as8O8fDgBAhImmObk88fHxSktLU25ubkDHAwAQSaJxXv7uu+/0zjvvaPr06f7+c4GoRyUxEEVatWql+fPna/ny5RW2hnz55Zd1xRVXaMCAAUdWIrdr106SlJ2draOPPloul0sTJkxQamqqPv30U11++eXKz8/X9ddfX+Jc1l4Mt9xyi7Zt26bp06dr2LBhWrp0qZKTk0P2bwUAIJJF+5zsdruVnZ2tbt26+fcPBwAgwkTjnLx3717t379feXl5+vDDD/Xpp59q9OjRgf9HAAAgQkTbvFxYWKiJEyfqiiuuUI8ePYL7xwPRyA0ganzxxRfu+Ph4d3x8vHvQoEHum2++2f3555+7Dx48WOa7NWvWdF966aVl3r/88svdTZs2dW/fvr3E++eff747JSXFvW/fPrfb7XZ/8803bknu5s2bu/Pz849876233nJLcj/++OM+x7148WK3JPfzzz/v8zEAAESyaJ2TLS+//LJbkvvZZ5/1+1gAACJJNM7JV111lVuSW5I7Li7Ofe6557p37tzpx78aAIDIFG3z8pNPPulOSUlxb9u2ze12u91Dhgxxd+vWzZ9/MhDVaDcNRJGTTjpJ8+fP15lnnqlly5bp3//+t4YPH67mzZvrww8/rPR4t9utd999V2eccYbcbre2b99+5DF8+HDl5eXpl19+KXHMJZdcotq1ax95fe6556pp06b65JNPbP/3AQAQLaJ5Tl65cqXGjx+vQYMG6dJLL/XrWAAAIk00zsnXX3+9vvzyS7344os65ZRTVFhYqIMHD/r3DwcAIAJF07y8Y8cOTZ48WXfeeadSU1MD+wcDUY4kMRBl+vfvrzlz5mjXrl1atGiR0tPTtXv3bp177rn6888/Kzw2JydHubm5mj17tlJTU0s8xo4dK0natm1biWM6dOhQ4rXL5VL79u21fv16W/9dAABEm2ick7OysnTaaacpJSVF77zzjuLj430+FgCASBVtc3Lnzp01bNgwXXLJJfroo4+0Z8+eIzfDAQCIdtEyL99xxx2qX7++Jk6c6P8/EogR7EkMRKnExET1799f/fv3V8eOHTV27Fi9/fbbuuuuu7weU1RUJEn6xz/+4bVyqGfPniGJFwCAWBUtc3JeXp5OOeUU5ebm6vvvv1ezZs1sPT8AAE6Lljm5tHPPPVdXXXWVVq9erU6dOoX0twAACJdInpfXrFmj2bNna/r06dqyZcuR9w8cOKBDhw5p/fr1qlOnjurXrx/0bwGRjCQxEAP69esnSdq6deuR91wuV5nvpaamqnbt2iosLNSwYcN8OveaNWtKvHa73crIyCCZDABAOSJ1Tj5w4IDOOOMMrV69Wl999ZW6du3q028CABCtInVOLs/+/fslmQVdAADEokiblzdv3qyioiJde+21uvbaa8t83qZNG1133XWaPn26TzEA0Yp200AU+eabb8ptP2Xtr1B8xXHNmjWVm5tb4nvx8fH6+9//rnfffVfLly8vc56cnJwy77300kvavXv3kdfvvPOOtm7dqlNOOSXQfwYAAFEvmubkwsJCjR49WvPnz9fbb7+tQYMGVfh9AACiSTTNyaXbY0rSoUOH9NJLLyk5OZlFXACAqBct83L37t313nvvlXl069ZNLVu21HvvvafLL7+80n8vEO1cbjY8AaJG9+7dtW/fPp199tnq3LmzDh48qJ9++klvvvmm0tLS9Ouvv6pu3bqSpNNOO03ffvut7rnnHjVr1kxt2rTRwIEDlZ2drYEDByonJ0fjxo1T165dtXPnTv3yyy/66quvtHPnTknSvHnzNHToUPXo0UMul0tjx45Vdna2pk+frhYtWmjZsmWqUaNGhfE++eSTys3N1ZYtWzRr1iydc8456tOnjyRp4sSJSklJCel/LwAAQiWa5uTrr79ejz/+uM444wydd955ZT7/xz/+EZL/RgAAhEM0zclnn3228vPzddxxx6l58+bKysrSq6++qpUrV+qRRx7RpEmTwvGfDACAkImmebk8xx9/vLZv315ughqISW4AUePTTz91X3bZZe7OnTu7a9Wq5U5MTHS3b9/ePXHiRHd2dnaJ765cudJ93HHHuZOTk92S3JdeeumRz7Kzs93jx493p6WluatVq+Zu0qSJ+8QTT3TPnj37yHe++eYbtyT366+/7k5PT3c3atTInZyc7D7ttNPcGzZs8CneVq1auSWV+1i3bp0d/0kAAHBENM3JQ4YM8TofczkAAIh20TQnv/766+5hw4a5Gzdu7E5ISHDXq1fPPWzYMPcHH3xg238PAACcFE3zcnmGDBni7tatW0DHAtGISmIA5bJWYr399ts699xznQ4HAIAqizkZAIDIwJwMAEDkYF4GgseexAAAAAAAAAAAAABQhZAkBgAAAAAAAAAAAIAqhCQxAAAAAAAAAAAAAFQh7EkMAAAAAAAAAAAAAFUIlcQAAAAAAAAAAAAAUIWQJAYAAAAAAAAAAACAKiTB6QDCqaioSFu2bFHt2rXlcrmcDgcAEKXcbrd2796tZs2aKS6O9VaBYE4GANiBOTl4zMkAADswJwePORkAYBdf5+UqlSTesmWL0tLSnA4DABAjMjMz1aJFC6fDiErMyQAAOzEnB445GQBgJ+bkwDEnAwDsVtm8XKWSxLVr15Zk/qPUqVPH4WgAANEqPz9faWlpR+YV+I85GQBgB+bk4DEnAwDswJwcPOZkAIBdfJ2Xq1SS2GrTUadOHSZaAEDQaP8UOOZkAICdmJMDx5wMALATc3LgmJMBAHarbF5mgwgAAAAAAAAAAAAAqEJIEgMAAAAAAAAAAABAFRJVSeLNmzfrH//4hxo0aKDk5GT16NFDP//8s9NhAQAAAAAAAAAAAEDUiJo9iXft2qVjjjlGQ4cO1aeffqrU1FStWbNG9erVczo0AAAAAAAAAAAAAIgaUZMkfuihh5SWlqbnn3/+yHtt2rRxMCIAAAAAAAAAAAAAiD5R0276ww8/VL9+/TRq1Cg1atRIffr00TPPPFPhMQUFBcrPzy/xAAAAwWMLCAAAAAAAPL777judccYZatasmVwul95//32nQwIAoEJRkyReu3atZs2apQ4dOujzzz/XNddco2uvvVYvvvii12OmTp2qlJSUI4+0tLQwRgwAQGyytoCoVq2aPv30U/3555965JFH2AICAAAAAFBl7d27V7169dLMmTOdDgUAAJ9ETbvpoqIi9evXTw888IAkqU+fPlq+fLmeeuopXXrppeUek56erkmTJh15nZ+fT6IYAIAgsQUEAAAAAAAlnXLKKTrllFN8/n5BQYEKCgqOvKYLJgAg3KKmkrhp06bq2rVrife6dOmijRs3ej0mKSlJderUKfGIZHPmSKefLuXkOB0JAADexdoWELt3S2edJb3yitORAACA0u6/Xxo7VnK7nY4EAAB7xVIXzKVLpeHDJXahAoDoEjVJ4mOOOUarVq0q8d7q1avVqlUrhyKy39//Ln38sfTQQ05HAgCAd7G2BcS0adKHH0oXX+x0JAAAoLiiIumOO6QXXpAWLXI6GgAA7JWenq68vLwjj8zMTKdDCtjo0dIXX0gnnOB0JAAAf0RNu+kbbrhBgwcP1gMPPKDzzjtPixYt0uzZszV79mynQ7NF8VXReXnOxQEAQGVibQuIDRucjgAAAJSneJetGFofDgCAJNMFMykpyekwbLF6tRl373Y2DgCAf6Kmkrh///5677339Prrr6t79+669957NX36dF100UVOh2aLLVs8z6+4wrk4AACoTKxtAXH99U5HAABA4DZv3qx//OMfatCggZKTk9WjRw/9HCO9Hq3r5CZNzAMAAESmatU8z9kiAgCiR9RUEkvS6aefrtNPP93pMEJixQozduwoDRzobCwAAFQk1raAaNbM87ywUIqPdy4WAAD8sWvXLh1zzDEaOnSoPv30U6WmpmrNmjWqV6+e06HZYvNmMxafqwEAQOR54QXJquXauJEOIAAQLaIqSRzLVq40Y+fOzsYBAEBlYm0LiJQUz/P8fClG7qsDAKqAhx56SGlpaXr++eePvNemTRsHI7KXVUm8dq20apXUqZOz8QAAUJE9e/YoIyPjyOt169Zp6dKlql+/vlq2bOlgZKF34YXSZ59JNWo4HQkAwB9R02461rVrJ516qlS7trR4sdPRAADgXaxtATF9uuc5+ycBAKLJhx9+qH79+mnUqFFq1KiR+vTpo2eeeabCYwoKCpSfn1/iEamsJHFurvSf/zgaCgAAlfr555/Vp08f9enTR5I0adIk9enTR5MnT3Y4svB46SXpqaeoIgaAaEIlcYQ45RTT4vKMM8wKaRLFAIBIFktbQDz9tBl//FGK8cXdAIAYs3btWs2aNUuTJk3SbbfdpsWLF+vaa69VYmKiLr300nKPmTp1qqZMmRLmSAPTsaPneU6Oc3EAAOCL448/Xu4quCHvhg2mS2bHjlIMNTQBgCqBSuIIUr++GXfudDYOAACqCrdbys42zxs3djYWAAD8VVRUpKOOOkoPPPCA+vTpoyuvvFLjxo3TU0895fWY9PR05eXlHXlkZmaGMWL/XHihqUqSSBIDABCpPvpIGjFCmjRJ2rfPs60iACDyUUkcAQoKpE2bPHsikiQGACA89uwxF7ESSWIAQPRp2rSpunbtWuK9Ll266N133/V6TFJSkpKSkkIdmm0aNjTj9u3OxgEAAMq3YYMZDx2SatUy+xLn50txlKcBQMTj/6ojwLJlUvv20oAB5nVurmk9DQAAQsuqIpak88+XPvnEuVgAAPDXMccco1WrVpV4b/Xq1WoVI5sB5uZKqanmOZXEAABEJitJPGSIlJAg7d0rbdzobEwAAN+QJI4AVguOo47yvJeb60goAABUKcWTxB9/LJW6zw4AQES74YYbtGDBAj3wwAPKyMjQa6+9ptmzZ2v8+PFOhxa0gwelevWk/v3N65wcs00EAACILFaSuF07qVMn8/zPP52LBwDgO5LEEWDFCjP26CHVrm2e03IaAIDQK54kllikBQCILv3799d7772n119/Xd27d9e9996r6dOn66KLLnI6tKBlZZV8ffCgtHu3M7EAAADvrCRxq1ZSt27m+R9/OBcPAMB37EkcAaxK4i5dpPr1zYUvSWIAAEKv9A1oksQAgGhz+umn6/TTT3c6DNtt2WLGli2lcePMtXJ8vLMxAQCAkg4c8FxXt2olde1qnpMkBoDoQJI4AlhJ4s6dpX/9y6yQbtHC2ZgAAKgKxoyRTjpJmjZNmj2bJDEAAJHCShI3aybdcYezsQAAgPJlZpqxRg2pQQMqiQEg2pAkdtihQ1JGhnneubO5UQ0AAMKjRg2pQwepXz+SxAAARBIrSdy8ubNxAAAA7xo2lF580XTGdLk8SeIVK6SiIimOzS4BIKKRJHbYX39Jhw9LNWtSPQwAgFPq1jUjSWIAACLD5s1mbNbM7HW4YYNpPd26taNhAQCAYurVky65xPO6fXtp7FizreKhQ1JSknOxAQAqR5LYYbVqmdZZBQVmtVVWlrR+vVmF1b6909EBABDbHnxQ2rfPU6W0b5+z8QAAAKN4u+nJk6WXXjLz9i23OBsXAADwLiFBeu45p6MAAPiKJLHDWrSQ7r3X8/rxx82F73XXSdOnOxYWAABVwuzZ0rp10rffSgcOsMoZAIBI0a+flJ8v9ewp5eSY96wRAABEhnnzTPHTUUdJqalORwMA8Be7AkSY+vXNuHOns3EAABDr3G4pO9s8b96cBDEAAJFk4kTpvfekU0/13HTevt3ZmAAAQEl33y2NGCF9+aXnvYMHpeXLpUWLHAsLAOAjksQOW7BA2rjR3KiWSBIDABAue/Z42ks3buxsLAAAwDsrSUwlMQAAkWXDBjO2auV576OPpB49pH/+05mYAAC+I0nsILdbOvlkM4n++ad5z0oS79rlXFwAAFQFVhVxzZpSjRrSxRdLp58u5eY6GhYAAFVeYaFZOG0tpiZJDABA5CkslDZtMs+LJ4m7dTPjihVSUVH44wIA+I4ksYO2bpV275bi46X27c17VBIDABAeVpK4cWMpLk6aM0f6+GPmYAAAnLZundSggSc5TJIYAIDIs2WLdPiwlJAgNW3qeb9dOykx0XTuWr/esfAAAD4gSeyglSvN2LatZx9EksQAAIRHVpYZrVbTdeuakUpiAACctWWLGa3rY5LEAABEHqvVdFqaKYKyJCRInTub51b3TABAZCJJ7KAVK8zYpYvnveJJYqu1FgAAsJ9VSdykiRlJEgMAEBmsJHGzZmZs2lSaMkX697+5TgYAIFKUtx+xxWo5/ccf4YsHAOC/BKcDqMqsSmJrZZVkWmrdcYdJFhcWmpVXAADAfmPHSiefLLlc5nW9emYkSQwAgLM2bzajlSSuWVOaPNm5eAAAQFkkiQEg+pGCdJCVJC5eSVy9unTvvc7EAwBAVZKcLLVv73lNJTEAAJHBqiRu3tzZOAAAgHd//7uZq8tLEnftakaSxAAQ2UgSO8hqN128khgAADiDJDEAAJGhdLtpSVq7VsrMlDp18mwVAQAAnNOpk3mUZ8AA6b77pN69wxoSAMBPJIkd4nabiXLFipKVxJK0fr2UlWWqmxo2dCQ8AABi3tSp0r59pu1027aeJHF+vqNhAQBQ5ZWXJL7ySmnuXOmll6SLL3YmLgAA4JvmzaXbb3c6CgBAZUgSO8TlksaMKf+zSy+VvvtOeustadSosIYFAECVMXu2WZh16qkmSfzQQ9Ijj0hJSU5HBgBA1XbiiVKDBiWrk1JTzZiTE/z5i4qkDz+U+venpTUAAIFwu6Vnn5XS0qQTTpCqVXM6IgBAIEgSR6D69c24c6ezcQAAEKvcbik72zxv3NiMNWs6Fw8AAPCYPLnse1aSePv24M//44/S2WdLxx4rff998OcDAKCq2b5dGjfOPD9woPzvbNkiLV5s5vDBg8MXGwDAd3FOB1BVLVwoffNN+YlgksQAAITW7t3S/v3muZUkBgAAkcvOSuJDh8y4Y0fw5wIAoCrasMGMTZt678b1wgvSyJHSrFnhigoA4C+SxA556CHTiuOVV8p+RpIYAIDQsqqIa9XyVBAvXWr2OLzlFsfCAgCgyisoMNfCbnfJ9+1MElsLxKy/BwAAgH+sJHGrVt6/062bGf/4I/TxAAACQ5LYIStXmrFz57KfkSQGACC0Srealkw10SuvSJ984kxMAADAtH9u0EDq27fk+3YmiRs0MOPOnZ6qYgAA4Dt/ksQrVkiFhaGPCQDgP5LEDjh0SFqzxjzv0qXs5/XqmZEkMQAAoZGVZcYmTTzv1a1rxtzccEcDAAAsmzeb0UoKWxo2NKMdSeLzz/c8t+N8AABUNb4kidu0kapXN3sWr1sXnrgAAP4hSeyAtWulw4dNe8vmzct+TiUxAAChVV4lMUliAACct2WLGZs1K/l+x47SPfdIt91m329ItJwGACAQviSJ4+M9XTRpOQ0AkSnB6QCqIqvVdKdOUlw5afqePaU77zQXwQAAwH6XXSaNGCG5XJ73rCTxnj1mMVcCfyUBABB23pLETZua6+Rgud2eamWJJDEAAIHwJUksmZbTS5eaJPFZZ4U8LACAn7j96YAVK8xYXqtpyaywuuee8MUDAEBVk5wstWtX8r2UFM/z3FxPW0sAABA+VpK4vK5bdsjPl/bt87wmSQwAgP9mzjTbKfbtW/H3rH2JqSQGgMhEktgBViWx1W4DAAA4LyFBqlXLVBKTJAYAwBneKokladUqaetWqXdvTwcQfxWvIl6xQmrZMrDzAABQlQ0ebB6VGTlSattW6tMn5CEBAAJAktgB110nHXOM1L9/+Z+73WYl1o4d5ju0uwQAwF4PPGCqiC67zFywWurW9SSJAQBA+FlJ3PKSxGefbRK7c+dKJ5wQ3Pm7dWPhNgAAodali/dumgAA55F+dECfPpWvnuraVSosNBew5V0cAwCAwD3zjLR+vXTaaSWTxMuWSTVrSklJjoUGAECVdu65Zp/D8ip8U1NNkjgnJ/DzW0niULWzBgAg1q1cKX3/vdS9uzRokNPRAACCEed0ACjL5ZLq1TPPd+50NhYAAGKN2+3Zf7Bx45Kf1a9PghgAACc9+qj07rtSkyZlP0tNNWMwSeLUVGn4cDPn33239MQTgZ8LAICqaO5c6corpYce8u378+dLjzwi/fJLaOMCAPgvapPEDz74oFwul66//nqnQ/HLmjXSs89WPinWr29GksQAANhr925p/37zvHSSGAAARC47ksSnnSZ99pl06aXSlCnm+hwAAPhuwwYztmrl2/f/8x/pppvM/AsAiCxRmSRevHixnn76afXs2dPpUPz25ZfSFVeYFcsVIUkMAEBoWFXEtWqZ1tLFvfyydPHF0nvvhT8uAACqut27pR07TNeP8tiRJLZYC8WsvwsAAIBv/E0Sd+tmxj/+CE08AIDARV2SeM+ePbrooov0zDPPqJ7Vk9mLgoIC5efnl3g4beVKM3buXPH3SBIDABAa3lpNS9LixdIrr0hLloQ3JgAAIL3xhtSwoXT22eV/3rChGYNJEhcUmNH6OyAnRyosDPx8AABUNf4miTt2NOPataGJBwAQuKhLEo8fP16nnXaahg0bVul3p06dqpSUlCOPtLS0MERYsRUrzEiSGAAAZ2RlmbG8vQ7r1jVjbm64ogEAwD7Rui2TZcsWM3rbDsKOSuI2baR69aRt28zroiKuuwEA8MfGjWb0NUncoIEZuc4GgMgTVUniN954Q7/88oumTp3q0/fT09OVl5d35JGZmRniCCtnVRJ36VLx90gSAwCiRbTdkK6okpgkMQAgWkXztkyWzZvN2KxZ+Z8fdZR0zz3SP/8Z2PkPHzZ/B+TmmsVi1nU3LacBAPBNQYG0dat57muS2LrO3rUrJCEBAIKQ4HQAvsrMzNR1112nL7/8UtWrV/fpmKSkJCUlJYU4Mt/t3i1t2mSed+pU8XeHD5dSUqQhQ0IfFwAAgYrGG9KXXy6dckr5n5EkBgBEo+LbMt13331OhxMwq5K4efPyP+/USbrzzsDPn5VlKocTEqRGjcyCsZ07TZK4e/fAzwsAQFVh1WAlJ3u2gaiMtWNkJF1nFxRIEZQ2AADHRE0l8ZIlS7Rt2zYdddRRSkhIUEJCgr799ls98cQTSkhIUGEUbCK0apUZGzXyrFj25tRTzQrpE08MfVwAAASi+A3petZVXxSoXl1q29Y8SiNJDACIRv5sy1RQUKD8/PwSj0hhJYm9VRIHy6pUbtpUiovzdBWhkhgAAN80ayZ98430yiuSy+XbMdZ1dkGBdOBAyELz2caNZguLa65xOhIAcF7UVBKfeOKJ+v3330u8N3bsWHXu3Fm33HKL4uPjHYrMd762mgYAIBoUvyFdWdVSQUGBCgoKjryOpBvSxZEkBgBEG2tbpsWLF/v0/alTp2rKlCkhjiowlbWblqQ//jD7CQ8aZBZ+BXJ+q1J51ixzgzstzf9YAQCoimrUkI4/3r9jateWPv7YVBQnREA24oknTMfPp54yfwsAQFUWAf+37JvatWure6n+TzVr1lSDBg3KvB+pTjtNmjvXrFiuTEGBtH69GaOogycAoIqI5hvS998v7dtn2k6XriZmryQAQDQJZFum9PR0TZo06cjr/Px8pUVAlvTQIZP8lSpOEh9zjJSXJ61YIXXu7N9vlE5C+3s8AADwn8tlumZGCuu6HwAQRUniWFCvnnTCCb59d+lS6eijpVatTLIYAIBIEe03pJ95RtqwQTrjjLJJ4h49TMvJlBRHQgMAwC/Ft2WyFBYW6rvvvtOTTz6pgoKCMl23kpKSlBSBm/AVFEgTJ0pbt1a8x2FqqkkS5+QEniT2tucxAACo2Jw50o4dZovE8rZwigbWdhNnnulsHAAQCaI6STxv3jynQwgZa8/inTudjQMAgNKi+Ya02y1lZZnn1oVhcdWqSY0ahTcmAAACFQvbMllq1TLtHyuTmiplZJgksb86dJBGjJD69DGvV6yQ3njDzP3jx/t/PgAAqpoZM6R588yexP4kiT/6yMzfp51m5mMn7d1rxpo1nY0DACJBVCeJo8nhw9LkyWal8wUXmJvQFbGSxLt3m7ZblX0fAIBwieYb0vn5plJJKj9JDABANImFbZn8lZpqxkCSxJdfbh6WjAzpnnukfv1IEgMA7DNz5kw9/PDDysrKUq9evTRjxgwNGDDA6bBssWGDGVu18u+4xx6Tvv7aLMyKlCRxQoK5Zx8J+yQDgFN82B0Xdli7Vpo6VbrmGsmXe+fF90ZgX0QAQCSxbkgXf0TLDensbDPWri3VqFH+d265Rbr4Yk9LSgAAEHo7d0rbt5uuHxWxWlFv3x78b1oLxqy/DwAACNabb76pSZMm6a677tIvv/yiXr16afjw4dq2bZvToQWtsFDKzDTP/U0SW/e6c3PtjCgwiYlmfPllaeFCZ2MBAKeRJA6TFSvM2KmTFOfDf/X4eM/kSctpAADsUVGracvrr5vWWVu2hCcmAADsNG/ePE2fPt3pMPw2bZqpEr7++oq/F0wl8b59JV8XTxJXlpwGAMAXjz76qMaNG6exY8eqa9eueuqpp1SjRg0999xzTocWtK1bPZW3zZr5d2y9emaMhCTxv/4lWYXddiw6A4BoRjOFMFm50oydO/t+TP36ZuIkSQwAiHTz5s1zOgSfWJVCTZp4/07dumZ1dCRcvAIAUFVYi7OaNq34e4EmifPzpZQU89i6VUpONi0vJengQSkvr2RHLwAA/HXw4EEtWbJE6enpR96Li4vTsGHDNH/+/DLfLygoUIG1H5Kk/Pz8sMQZKKvVdIsWvnXKLC6SKoklT2eSHTucjQMAnEYlcZhYlcRduvh+jLUvMe2mAQCwh5UkrqiSONIuXgEAqAqsbR4qq0w67jjp3nulCy8M7Pxut0kQS2asXds8j4EuoAAAh23fvl2FhYVqXOqCs3Hjxsqy2loVM3XqVKWkpBx5pKWlhSvUgAS6H7Hkuc6OlPvcdm5fAQDRjEriMAmkkvjSS6VTTpHatg1NTAAAVDVXXCGdeqrkcnn/TiS1wQIAoKqwKokrSxL3728e/rKSxM2bl3y/cWNp926zkKxjR//PCwBAoNLT0zVp0qQjr/Pz8yM6Ubx+vRmDSRJHwnX2pEnSSy+Z5ySJAVR1JInDwO32JIn9qSSeMCE08QAAUFVVr1754qtIungFAKCq8DVJHOz5y0sSZ2R4uo0AABCohg0bKj4+XtmlJpXs7Gw1KWfPo6SkJCUlJYUrvKBdcYU0eHBg2zNE0mLsZcs8z2k3DaCqI0kcBllZZn+juDipQwenowEAABUhSQwAQHjt2+eZd0sncUsrLDTbOeXkSMcfX3F3kOK8VRI/84zZVzGCC7cAAFEiMTFRffv21dy5czVy5EhJUlFRkebOnasJMVAN1KiReQTi+OOljz82+xn747PPTPHV9dcH9rvl2bvX85xKYgBVHUniMGjc2LTjWLdO8mdx2O7dZrVzUpLUunWoogMAoOq47z5zI/qKK7xXFJMkBgAgvLZuNWONGlKdOhV/t6BA6tHDPM/Lq/z7Fm97HvvT7QsAgMpMmjRJl156qfr166cBAwZo+vTp2rt3r8aOHet0aI5q3rzyhWDlOeUUM/bpIw0ZYk8sVpI4KUkaMMCecwJAtCJJHAZxcWavBn/3a3jmGenGG6ULL5RefTU0sQEAUJX897/Shg3SmWd6TxLfcIM0fnxgLbQAAID/kpKkiRNNlXBllcE1apjHvn2mmtjfJHEgN6gBAPDV6NGjlZOTo8mTJysrK0u9e/fWZ599psaNGzsdWtBmzjT3uUeNkho2DP3vFRV5nq9ebX+SeN486eij7TknAEQrksQRrH59M+7c6WwcAADEArfbbAEhSeVsB3UEyWEAAMKrRQvpiSd8/35qqln0lZMjtWvn2zH9+5sq5K5dS76/fLn01ltS06bSNdf4HgMAAN5MmDAhJtpLl3bHHabj1tCh/ieJCwqkN94wx197rW/bReTne54fOODf71Vkzx4z1qxp3zkBIFqRJA6D++6TDh2SLrnE9wtYyZMk3rUrNHEBAFCV5OebC1PJbAUBAACik5Uk9mcfwdtuK//9Vauke++VBg0iSQwAgDeFhWabB8lzz9rf48eMMc8vu0yqXbvyY2rWlPr2lZYssXfvYKuSuGZNk3xOSvItaQ0AsSjO6QCqgqeflu65R8rO9u84KokBALCPNQ/Xri0lJ3v/3rp1puXlLbeEJy4AAKq6rCxz89ft9u37VvVSTk7wv20tHPP3eh0AgKokL88zT9er5//xyclStWrmua8FUdWqSWedZZ5b20YEy+02yeGEBFPMlZzMvXcAVRtJ4hDbvVvatMk879zZv2NJEgMAYB+r1XRlVcS5udKTT0ovvxzykAAAgKQbbjDVwY895tv3U1PN6GuS+PBhT2vJ0kgSAwBQOev+dO3anmSvP1wuT3I5N9f34845R3rnHenGG/3/TW9xbNtmun7WqWPes7NKGQCiDUniEFu92oyNGvnfiqN4u+miInvjAgCgqrFu/la0H7Hk2ZPYnwtXAAAQuC1bzNismW/f9zdJ/Ouv5qZ2ly5lP7OSxHv3etpPAgCAkqwkcSCtpi3+Xmv/+qv06afe5/BgWZ1Jduyw/9wAEC1IEofYihVm9LeKWPKsrioqMvsoAgCAwFlJ4soqia0L1/37PXsYAwCA0LGSxM2b+/b9U0+V7rtPOu00375vtagsb//D2rXNXoSSqSwCAABlOZEk/vZb6V//kp5/PvDfrEiDBmakkhhAVZbgdACxbuVKMway2ikpSbr+etP6Io50PgAAQbniCnMz2eWq+HtWyynJ7LvUqFFo4wIAoCpzu/2vJD7xRPPwlZUkLi8J7XKZBWQbN5oFZW3a+H5eAACqCjuSxFZBlK97ElvJ22++kR5/XLr6as/CrkD99Zd0+eXmbwIqiQGAJHHIWUniQCqJJd/3ZAIAABWrXt23G7/x8SZRnJ9vVjiTJAYAIHTy86V9+8xzX5PE/qooSSyVTBIDAICyTj5ZmjfPXFcHyt9KYit5m51tCqnOPDP4xVzbt5sK5VatpOOO87wHAFUVSeIQCzZJDAAAwq9ePU+SGAAAhI6VwK1XT0pO9u2YgwelVavMXH3MMb7/hrck8QsvSNWqSWlpvv0+AABVTcOG0pAhwZ1j0iTpkkuk7t19+37pCt/Nm4NPEu/da8aaNWk3DQASSeKQW7TITGhW+wp/7dpl9kVq0CDwcwAAAOnee02l0rhxUtu2FX+3bl1pwwaSxAAAhJq/raYlU/Xbs6e5wbtnT+XfryxJ3LWr778NAAACM2CAf98vL0kcrOJJ4t69pdNPlzp1Cv68ABCtSBKHWI0a5hGoceOkd9+VZs6U/vlP++ICAKCq+e9/zU3lkSMrTxL/3/+ZvY6C2W8JAABUrkkT6dpr/VsUnZpqxr17pf37K69AthLR3pLEAACgYh9+aJK0Q4eGr2OmVeFbv77ZE9maz4NRPEl86aXmAQBVGUniCGfdnN6509k4AACIZm63lJVlnjdpUvn3aTcJAEB4dO8uPf64f8fUqWPaQx86ZG4gVzZvDx8utW7tvUXlsmXSO++Y81x5pX+xAABQFcyeLX38sfTss4EnidevN/sB168vnXFG5d+3Kol79DDH2VFJvG+fGWvWDP5cABAL4pwOIJZt3CiNGSPdfXfg5yBJDABA8PLyzP6FktS4sbOxAACA4LhcnsrjnJzKv//YY9Inn3jvJLJihXTffdJrr9kXIwAAscS6Nx1Mt61Fi8y98kce8e37H34offqpqV6W7G83bbHuFQBAVUSSOIQ2bJBefDG4C8169cxIkhgAgMBlZ5uxTh2pevXKv//pp6b15VtvhTYuAACquvXrpW3bpKIi/46zWk77kiSujLWAzPp7AQAAlGRHkrhuXTPu2uXb9486ShoxwlO5bEeSuLBQSkw0SeKVK83IdhQAqjKSxCFk7ZvQoEHg56CSGACA4PnTaloyK5xnzJC++SZ0MQEAAOmCC0yS9oMP/DvO1yTx/v3Snj0Vf4ckMQAAFbPuTVsFTYGwksS5uf4dd+yx0rvvSk88EfhvW66/XiookP77XyklxbSf3rnT/8VqABArSBKHkJUkttpgBYIkMQAAwbNu+vraajrQi1cAAOCfLVvM6G8Vj69J4nfekWrXrnjvQ+vvg127aDkJAEBpbre9lcS+XGdv3iw9/LD05pvmb4RzzpF69w78t0uLi/MUdhUVce0PoOpKcDqAWEaSGACAyECSGACAyFNU5EkSN2vm37GjRkk9epjqoopY56+o8qlePSk+3rSgzMmh7SQAAMXt3m3mSCm4JLE1F+fnm/PFx3v/7ooV0s03S926SaNHB/6bFUlMNAvJdu+WduwI7t8GANGKJHEI7dhhxmCSxG3bShMmSK1a2RMTAABV0ZVXmgoil8u376ekmJEkMQAAobN9u3T4sJmffV3IZTnnHN++Z+1fWFHiNy5OatRI2rrVLCwjSQwAgIdVvFS9upScHPh5rOtsScrLqzgpa91Xt6p9P/pIysiQzjvP/4VlxU2dKv30k3T11dJpp5n79rt3m79JOnQI/LwAEK1IEoeQHZXErVqZPREBAEDgkpKk1q19/z6VxAAAhJ5V5duokVStWmh+w5cksWSS1FaSGAAAeDRuLM2bJ+3dG9x5EhOlGjXMPsC5ub4lia376rfdJv3+u9S5c3BJ4oULTcL59NPN6wYNpHXrPL8HAFUNSeIQsiNJDAAAwo8kMQAAoRdoq2nJ3GDOyJAOHZL69vX+PV+TxK+8YhaVpaX5HwsAAJHmhx+kxx6TXn/dJGeDkZwsDRliT1wvv2wqkhs1qvh71n11q5K4eXOTJLb+dgiUleiuWdOM1n176/cAoKohSRxCb79tViHVrh3ceXJyzHlatzaTKAAA8M8995ibyVdeabZyqIyVJN61K6RhAQBQpVk3egNp7/zzz+aGdceO0qpVlf9GZYnobt38jwEAgEi0f7/0979L27ZJ991nrocjha/bRZRuN239rWAt/gpU6STxoEFSQoLUpElw5wWAaEWSOISSk6UWLYI/T48epuXV0qVSr17Bnw8AgKrmv/+VMjOls8/2LUncvLm0cqVJFrvdvu9lDAAAfNe1q3TddWb0V2qqGXNyvH+nqMi0kJbYZxgAUHUkJ0tPPmn2733gAemssyruulGZJUtMm+aePaVjj7UvzoqUThJbi73sriSePDm48wFAtCNJHAXq1zdJ4p07nY4EAIDo43Z79hf0dXVwtWpSp06hiwkAAEiDB5tHIKwk8a5dpuV0eXsaHzggjR1rqo4q+xvgl1+kOXOkNm2kyy8PLCYAACLFqFEmSfzWW9KYMaYDR1JSYOf6/HPp9tulyy4LPkm8YIHpANK3r9S9u/fvhauSGACqujinA4hVhw6ZCfimm8yFaTDq1zcjSWIAAPyXlycdPGieN27sbCwAANht6tSp6t+/v2rXrq1GjRpp5MiRWlVR/+UYUa+ep9OHdSO5tBo1pNmzpY8/Nq0kK7J8uXT//dIbb9gbJwAATpk50+z9u3x5cC2nrXvS1j3qYDz5pLln/tlnFX/v0UfNd046ybwOdZL40KHgzgsA0YokcYjs2CG9+KKZ0Mpb0ewPksQAAATOqiKuU0eqXt3346ZPl669VsrICElYAADY4ttvv9X48eO1YMECffnllzp06JBOPvlk7bXugkawVavMfolFRf4fGx/vqS6qqOW0r6yFZNbfDQAARLuGDaWnnjLPH3xQWrw4sPPYmSSuV8+MubkVf69LF2n4cM9WjlaSONh209YCcitJ/NFHZlHZiScGd14AiFa0mw6R7dvNWL++uXgNBkliAAACl5VlRl9bTVtefFFaulQ69VSpfXvbwwIAwBaflSrFeeGFF9SoUSMtWbJExx13nENR+WbIEJOU/fVXqXdv/49PTTXX3t6SxHl5UlycVLt25eciSQwAiEVnny1deKH02mvSK69I/fv7fw47k8R165qxsiRxaR06mG0hrKRxoHbsMIliq8NIzZrS/v2ee/kAUNVETSVxtLXQstpdNWwY/LlIEgMAEDjrZq+/raYDvXgFAMBJeXl5kqT6Xu7kFhQUKD8/v8TDCYcOmSpiSWrWLLBzWPsSe0sST5tmOolcf33l57L+Tti+XSosDCweAAAi0RNPSC+9ZLplBSLcSeLDh6WHH5aee87TBrpWLZPwDiTJXVpiollEJnm6kpAkBlBVRU2SONpaaFkTC0liAACcFWiS2Nc2WAAARIqioiJdf/31OuaYY9S9e/dyvzN16lSlpKQceaSlpYU5SiM7W3K7TSVPoNfNY8eafYS9/FOP7FtoJZMrYsVQVOR9j2MAAKJRgwbSxRdLLldgx4ei3fSuXd6/s2OHdPPN0hVXeJK5oWLN/zt3Brb9BQBEu6hpNx1tLbTsTBIffbQ0YYJ07LHBnwsAgKrmyiulM8/0/zh/K4nff9+0v5o1y7O/EQAA4TR+/HgtX75cP/zwg9fvpKena9KkSUde5+fnO5IothK4TZsGfgN4zBjffsPax7Ai1aqZm+g7dpgEdqNGgcUEAEAky801+xPfdZeUnOzbMeGuJLYWa9WtW3Ibx2++kZYtM/sH9+jh/29v22buD9SrJz3/vHnPqiQuLDTbVFhJbACoKqImSVxaZS20JNNGq6Cg4MjrcLbRsjNJPGyYeQAAAP8lJUmtWvl/nL9J4rPPNmOvXtKNN/r/ewAABGPChAn66KOP9N1336lFBRv2JSUlKSkpKYyRlW/LFjP6ksANlD9JYsl0HbGSxIHcfAYAIJK53dLw4dKiRaal87Rpvh331lvmXne7dsHH4EvHLm/bOP7nP9I775j22YHM0zt2SB98UDIRnJRkWlnv2WM+J0kMoKqJmnbTxfnSQktyto2WnUliAAAQfv4kiffv9zy39lcEACAc3G63JkyYoPfee09ff/212rRp43RIPrGSxIHuRyxJu3ebiqLffy//c3+TxG+9JWVkSH/7W+AxAQAQqVwu6fbbzfNnnvH9uGOPlUaOlOrUCT6G7t2lV1+VZszw/h3rvrpV5Wux/maw5nd/WbtWlu78Zd2/Z19iAFVRVCaJrRZab7zxRoXfS09PV15e3pFHZmZmmCI0bTs2bbKnkqioyNxwzsgI/lwAAARr6tSp6t+/v2rXrq1GjRpp5MiRWrVqldNheTVlinTLLdLatf4d50+SeN06z/NDh/z7HQAAgjF+/Hi98soreu2111S7dm1lZWUpKytL+4uvYIpA1g3eYJLEH38s9e4tXXtt2c/27fPM4b4mibt1M1VSEVBoDQBASJxwghnz880j3FJTpQsv9MRRHquSuHSS2JrP7U4Sn3CCdMYZvrffBoBYEnXtpn1toSU520YrKcm+tlnr15sL1Ro1PJMZAABO+fbbbzV+/Hj1799fhw8f1m233aaTTz5Zf/75p2pG4Ga8zz4rZWZKf/+71Lat78ddeKFpxZWaWvl3u3aVHnnELA7btCnwWAEA8NesWbMkSccff3yJ959//nmNqWzTXgf97W+mE8eQIYGfw5qjc3LKfmbdQK5Z057KJwAAYkGtWmZezM83XT0qmyOzsqQ5c8yirpEjwxKi1ySxtbDM6kbiL29J4mefDex8ABALoiZJ7Ha7NXHiRL333nuaN29e1LTQsoO17fK+fdKBA1L16s7GAwCo2j777LMSr1944QU1atRIS5Ys0XHHHedQVOVzu82+gpLZZ9AfDRv6t21E69ZmDGPjEgAA5Ha7nQ4hIKecYh7BsObp8pLEiYnSlVeavwVcLt/O9/PP0nvvSR06SBGcXwcAICjNm3uSxJ07V/zdlSul8ePN9+xKEn/4obRrl3TuuWUTtpL3PYntqiSuVSuw4wEgFkVNknj8+PF67bXX9MEHHxxpoSVJKSkpSo7AXhBWm+lJk4KvKK5TR4qLM22nd+2SmjYNPj4AAOySl5cnSapvrWoqR0FBgQoKCo68zg9TX6vcXOngQfPc3ySxv447Tvr+e0+yGAAAhJZVSbxjh7lejiu2oVarVtLTT/t3vmXLpAcekE49lSQxACB2NWsmrVjhW0Xuzp1mrOBy32+XXCLl5UlHHy116lT282uukU48USrdRDRU7aYthw9LCVGTLQEAe0TNnsSzZs1SXl6ejj/+eDVt2vTI480333Q6tHI984z06KOm+jdYcXFSvXrmuTUxAwAQCYqKinT99dfrmGOOUffu3b1+b+rUqUpJSTnySEtLC0t8/1tTprp1/e/EsX27NHmylJ5e8ffcbunYY6XrrjOrqyvZDQMAAEhautR0+wimENqqMCosNAuqg2UtKLO6kAAAEIv8SbaGIklct64Zc3PL/7xNG7P1U7duJd+32k3v2RPYfsrWffrSSeLp081+xP/8p//nBIBoFzVJYrfbXe4jEvdYKiiQdu82z/1pU1kRayImSQwAiCTjx4/X8uXL9cYbb1T4vfT0dOXl5R15ZIapJ7OVJG7SxP9j9+2T7r3XLPqq6Ab25s3Sjz9Kb70l1a4dWJwAAFQl+/ZJffqY+fl/DUkCkpgopaSY56VbTufkeK7LfUWSGABQFdxxh/Tbb74lRZ1IEntTq5b0/vvSwoUmqeuva66R9u+XXnih5PuJiWaLx+3b/T8nAES7qEkSRxNr34T4eM8Fa7BIEgMAIs2ECRP00Ucf6ZtvvlGLSspnk5KSVKdOnRKPcAgmSWxduB48aC4YvVm2zIydO0vvvGMqj1ev9v/3AACoKrZuNWNycvDXzFbL6dJJ4n/+02zdNHOm7+eyksTbtgVX4QwAQCTr0EHq0cO3Rc6hSBJbHTO9dQF59lnpuefKT9qedZY0YIBUrZr/v+tymQ5jpSuJrSIv654+AFQldNkPAWsCa9Cg5J5IwbAmYjtaaAEAEAy3262JEyfqvffe07x589SmTRunQ/IqmCRxrVpmHi8qMiucva1U/u03M/bsKT31lPTDD1Lv3lLHjoFEDABA7LP2QGze3NywDcbEiWaPwdI7WVgtNP35G6BRIzMePGgqnK0FYwAAVFXWvehwVhKnp5vFX7/9Zl+XzopYv0ElMYCqiCRxCFgTip2T2OmnS+3bc8MZAOC88ePH67XXXtMHH3yg2rVrK+t/mdiUlBQlB9LzKYTGj5fOPTewY+PiTHXTrl3m4rVp0/K/Z1US9+rlqToKUzdtAACikpXAtfYWDMa111b8G9a+i76oXt1UH+fnm5bTJIkBALFo+3Zp9myz/cN991X83XC3m3a7Pb/ZoEHZzxctMts99eolnXCCf787e7b0/ffS6NHmXrvF+h0qiQFURbSbDoFQJIn/+U/piSekwYPtOycAAIGYNWuW8vLydPzxx6tp06ZHHm+++abToZWRmGgqi0pXF/nKl72SrCRxz56e3yFJDACAd1YlsR1J4vIUFXlaWvuTJJbYlxgAEPv27ZNuv13697/NnFmRO+6Q3ntPGjHCvt+3rrPL65iZlycVFprn5SWJ339fmjTJxOSvH36QXnlFWrGi5PvF202z3QSAqoZK4hAIRZIYAIBI4a5CV0316knr1nlPEu/f79l/uFcvKSPDPN+0KSzhAQAQlexMEufmSuvXSzVqeDpvbd8uHTpkWln7u+XEnDlmi4lAF5gBABDprLnx0CGTGE1N9f7dXr3Mw04XXij172/2RS7Nuq9es6aUlFT2c2vxl/W3hD/27vWcuzgrGX34sOkmkpLi/7kBIFqRJA6BK66QRo60d+XR4cNm0i4sDN1qawAAYs3tt5s5dPx4qWVL/4+vrJI4O1vq0sXM0U2aUEkMAIAv7EwSP/usdNNN5obzq6+a96xW040aSdWq+Xe+7t2DjwkAgEiWmGjmyG3bzJxZUZI4FPr3N4/yWC2fy6siljxJYmuu94e3JHH16qZ1da1a0sGD/p8XAKIZSeIQSEy0P5H7+uvSJZdIJ50kffGFvecGACBWPfOMlJMj/eMfgR0/a5ZZ9NWiRfmft24tLV9uEtEul+d7JIkBAPDurLNMW+ejjw7+XNaN7Zwcz3uB7EcMAEBV0qyZSRJv2SL17u39e08/LdWpYwqikpNDH1dlSWLrnrudSWJJmjvX//MBQCwgSRwl6tc3Y3l7NQAAgLIOHfLcMPa31aTFaltZmYT//UVlVRJnZ5sVyImJgf0uAACxbPRo87BDeUnipk2lK6/0vsirIgsXSh9+KHXuLF18sT0xAgAQaZo1k5Yurbht88GD0tVXm+c7d9qXJN6xw+wPHB8vnX562c8k79s4WgvAtm41HTfj433/3YqSxABQVZEkDoGHHzYT1dix5e+tEAgrSbxzpz3nAwAg1m3bZsb4eO+rkIPldpsKYktqqvT99yZZnMBfWQAAhJx1E7l4krhvX1P5FIhff5UeeMBUO5MkBgDEKl/aNlvFSi6Xvfv0rlhhKpM7dCibJD75ZNNF01sit3FjKS7OJIhzcvxbEF5ZktjtNo+4ON/PCQDRjv/LC4E33pAee8zeVpMkiQEA8E9Wlhmti8hALFggTZ5s5vbS3G6pVStp4EBp0ybznsslHXuseZ8LSwAAynroITO/ut32nK94JbEd52zc2IzZ2cGfCwCASGW1ba6okti6D12vnr3Xt3XrmjE3t+xnjRub7RYHDy7/2IQET2LY35bTFSWJJ0yQatSQpk/375wAEO24fRkC27eb0VtbjEBYSeLcXLNSCgAAVMxKEgfaalqSfv5Zuvdeac6csp9t3mwWhC1Z4rlBDQAAvFu9Wrr1Vulvf/O0kwyWNQcfPCjt3m2eZ2ZK+fmBnY8kMQAgUPfff78GDx6sGjVqqK6VCY1QV1wh/f679O9/e/+OlSS27kvbxfpPs2tXYAu8Xn1VWrRI6tLFv+NWrTLze8+eZT+Li5MOHPDc1weAqoIkcQiEIklcr57neXmrrAAAQEl2JIkrWuH8229m7NxZSkryvD93rpSeLn30UeC/CwBALHr9dTOedJJ918s1a3r2SLRaTp92mmmL+eWX/p+vUSMzkiQGAPjr4MGDGjVqlK655hqnQ6lUixZS9+4Vt5EOdZL48GFp376Sn33wgfTss9Jff3k//vjjpf79TeWvP2rWNPN8tWplP7P+LrFrERsARAt2y7PZvn2eyc3OJHFCglSnjlkNvXNn6PZWBAAgVoQ6SbxsmRl79Sr5/ty50oMPmnZVpfdXAgCgqnK7PUniCy6w99zp6eaGb5065rXVfrJpU//PZVUS79tn2lJ627cQAIDSpkyZIkl64YUXnA3EJqFKEtesae51Hz5srrWLz7WPPy59842pFm7Xzt7frYh1H59KYgBVDUlim1mrjapVk2rXtvfcY8aYC2t/V0kBAFAV/etf0iWXBLd3ki+VxKVbVaWlmTEzM/DfBQAg1ixdato8Vq8ujRxp77nvvNPzfP9+z03t5s39P1etWqYyef9+U03ctq09MQIAUFpBQYEKCgqOvM4PdK+EABw8KD38sNmTePr08qtri+9JbCeXy1xrb99urrWLz9fWvfWKCqT+/FP6/HOzr/Lo0b795p490vjxJiH95JNl7xNYv0clMYCqhiSxzYq3mna57D3344/bez4AAGJZYqInYRsoXyqJSyeJW7QwI0liAAA8rCri00+3f0F1cVu2mDE52TOP+8PlMq0oN2wgSQwACK2pU6ceqT4Ot4QEacoU6dAh05HDuo4tbuRIqU0bT5cNO1lJ4l27Sr7vS5J40SJp0iTp5JN9TxLn5UkvvWT+3f/5T9nPqSQGUFWxJ7HNrImEdtAAAES/4klit9vz/oEDphpKKttumkpiAABKKiqS3njDPLe71bRkbij/+qu0fr2n1XTz5oEv3P7oI2ntWqlvX9tCBABEqVtvvVUul6vCx8qVKwM6d3p6uvLy8o48MsN4ERkX59mWwZo7S2vTxiSKBw2y//fvv1965RWpQ4eS71tJ4oq2cWzWzIze4i7P3r1m9LaNBHsSA6iqAkoS33PPPdpXeld5Sfv379c999wTdFDR7PjjzQT1/vv2n/vQIbOSufQKKwBA1cWc7N2NN0o33+zfhWNpVpL40CGzN6ElN1c64wzpqKPK7ndoJYlzckwyGQBQNTAne5eZKRUWmgriU0+1//wPPGDm5JkzSyaJA9W9u7kxnphoT3wAgPCyc06+8cYbtWLFigofbQNsO5GUlKQ6deqUeISTlWy1unCE03nnSRddVLJKed8+zzV0RQVY1hxvZ5K4cWPpmGOkY4/1/ZwAEAsCShJPmTJFe/bsKfP+vn37HGuRESmqVTMTbLt29p/72mulJk2kJ56w/9wAgOjEnOzd00+bPZb27w/8HDVrSvPnSytXmj0ULU2amAVhS5aUrVKqX9+0uJSCS1ADAKILc7J3rVpJGzdKixeXnE/tkppqxpwcz43uYJLEAIDoZuecnJqaqs6dO1f4SIzSVUXWXOktSfzhh2a7iHBd11pVvNWqSbVqef+eFXdubsnF3BWpLEncpIn0ww/S22/7dj4AiBUBJYndbrdc5fRtWrZsmerXrx90UCif9Z92505n4wAARA7m5PLt2eO5CGzSJPDzuFzS0UdLnTpJ8fG+H8O+xABQ9TAnVyw+3synoWC1iMzJkXr0kK66SjrppMDP99NPZn/GV1+1Jz4AQHg5NSdv3LhRS5cu1caNG1VYWKilS5dq6dKl5SasI0FlbZvvvVe68EJp6VL7f3vVKumDD6TffvO8V3w/4oq2jEhJkWrUMM99rYKuLEkMAFVVgj9frlev3pG9Fjp27Fhisi0sLNSePXt09dVX2x5kNHnpJbMX0siR0pAh9p67Xj0zkiQGADAnVywry4w1a1a8AjlQO3aYxVveLlznzJHq1PFcdAMAYhdzcsV27TJzoq+LrQJhVRJv3y6dfLJ5BOPnn6UHH5RGjTKtMAEA0cHpOXny5Ml68cUXj7zu06ePJOmbb77R8ccfH7LfDVRl7aate9ChyKs/+6zp/DVpkvTII+a9tm2lL74w2z1VxOUysWdkmAR3+/aV/56vSWK32/MbAFAV+JUknj59utxuty677DJNmTJFKSkpRz5LTExU69atNSgUO9lHkU8+kd58U2rd2v4kMZXEAAALc3LFrCRx6f2CA/Haa6bd9OjRUrdu5qKxUyczLlggdehQ9pju3YP/XQBAdGBOrtiNN5rr5BkzTNI1FIq3m7aDtT9idrY95wMAhIfTc/ILL7ygF154IWTnt1tl7aate9BW4ZKdrHPm5nreq1PH904gzZt7ksS+8CVJPGKENG+eWfR96qm+nRcAop1fSeJLL71UktSmTRsdc8wxSkjw6/AqYft2M1rtruwUaJK4sFD66COTtK5b1/awAAAOYE6umJUkDqbVtOW556S5c01iuFs3cwG9Y4epiEpLC/78AIDoxpzsXUGBudGal2fPnOxN8STxmjVSo0bmRnOgVUAkiQEgOjEn++e006Tlyz3J4uIKCz0J3FBUElv3qHftCuz4Rx6Riop838rivPMqT0AXFZm/Xay21wBQFQS0J3Ht2rW1YsWKI68/+OADjRw5UrfddpsOHjxoW3DRKBKTxHfcYdpfX3ut7SEBABzGnFw+O5PE1sWrdYG8bJkZO3eWqlcv/5g//pBuvdXTNgsAEPuYk8v69FOTIG7RQjrmmND9jpUk3rNH6tjRzN0bNwZ+PpLEABDdmJN9U7++WQhdXlFR8QrfUFQSl77OlqSffpL++1+zlWNl+vaV+vc3i8J8kZRk7g9UdI/Aup9v3d8HgKogoCTxVVddpdWrV0uS1q5dq9GjR6tGjRp6++23dfPNN9saYLSJxCTxgw+a8eWX7Y0HAOA85uTy2ZkkLt0G67ffzNizp/djNmyQHnpIeuWV4H8fABAdmJPLev11M44eLcUFdPfBNykp0k03mYclmC0nrCRxbq6pKAIARBfm5OBZ959r15aqVbP//OUlid96Sxo3zoxOaNDAjFQSA6hKArpMW716tXr37i1JevvttzVkyBC99tpreuGFF/Tuu+/aGV9Ucbs9SWJrUrFTkybSP/4hXXyx78cUn9TK2zMRABDdmJPLN3mylJkp3XZb8OfyVklcUZK4RQszZmYG//sAgOjAnFzSnj3S//2feX7BBaH9LZdLevhhc70smXbTiYmBn69uXcnqUGrXPscAgPBhTvbdI49I48eX3dvXShKHotW05FmMXbzdtD/31TMzpUcflWbM8O333n5bmjDBbMnoDZXEAKqigDZmcLvdKioqkiR99dVXOv300yVJaWlp2l6F/190717PKuNQVBI3bOh/NfDnn5uxe3fp99/tjwkA4Czm5PIlJnoStcEqnSS2Kol79fJ+jLVX8Y4d0r59Uo0a9sQCAIhczMklffCBtH+/Wax81FHh+U3rBnezZsGdJy7OJJq3bDEtp+36mwIAEB7Myb57+mlpzRqzZ2/xvYk7dJDef98URYVCeZXEVrGTr0niG2+UWreWJk6s/PvffivNnGmS0//7n0MZJIkBVEUBJYn79eun++67T8OGDdO3336rWbNmSZLWrVunxlZfpirImkCSkqSaNZ2NxWKtjjrjDGfjAACEBnNy6BW/eD1wQFq1yryuqJK4bl3zt8DeveaGtT/dPNauNTe3ve13DACITMzJJVmtpi+4wFT6htq2bZ7r3+I3uQP12WdSrVokiAEgGjEn+65ZM5Mk3rKl5Pv160tnnRW6323eXHryyZKVyv4kia25fssWk8iu7G+NvXvNWNE9e9pNA6iKAkoST58+XRdddJHef/993X777Wrfvr0k6Z133tHgwYNtDTCapKWZiWnXrtBdBB88aM6fkuLbzePUVLMKytsKKQBAdGNOLt+ECVJysvSvf5lKoGAUTxLv3y9df730118VVym5XObvgpUrzQpnX5PEixZJAweaedtq0QkAiA7MySVNmSJ16iRdeGF4fu/aa6U33zTP7UgS9+gR/DkAAM5gTvadNWeWbjcdarVrmzbXxVnJWV86dDZtasaDB81xlR3jS5K4VSvpmGMqXhAOALEmoCRxz5499Xs5vYsffvhhxcfHBx1UtIqPNxOUNUmFQt++0vLl0hdfSCedVPn3H3/c7M/wn/9IV18tXXKJdNNNoYsPABBezMllFRZKTz1lxhtuCP58J58szZ8vNW5sWlNNm+bbcS1aeJLEvnroITNWtE8SACAyOTknz5w5Uw8//LCysrLUq1cvzZgxQwMGDAjpb1amb1/zCJfUVM/zYNtNAwCiG9fJvrPmzNKVxIsXSxkZJmHarVt4YvFnT+LERDP35+SYBLcdSeJBg6QffvAtVgCIFQEliS1LlizRihUrJEldu3bVUeHaaKgKs1pw7Nzp+zHx8dLu3WZPYvYlBoDYxJzssWOHSRC7XCVvGAcqNTWw81j7EvuTJF63zv/fAQBElnDPyW+++aYmTZqkp556SgMHDtT06dM1fPhwrVq1So2CbacRRYrP1YMGBX++H36QPv5Y6tVLOv/84M8HAAg/rpMr5y1J/Mor0hNPSOnp0gMPhOa3Fyww20Ucc4xUp46Un2/e9yVJLJkqaCtJ3KtXxd/1JUkMAFVRQEnibdu2afTo0fr2229V9389GHNzczV06FC98cYbSrXjjmwU+vxzs2/RccdJZ58dmt/wJ0m8fLlZ6eVySf/rqqI1a0ITFwDAGczJZWVlmbFhQ6laNXvPvXSp1LJlyX2TvJkyRbr7bv86jHTpIv36q3leUCAlJQUSJQDACU7NyY8++qjGjRunsWPHSpKeeuopffzxx3ruued06623lvl+QUGBCgoKjrzOt+7I2mTLFumOO8xexL50v7KL9Z/3rLNMF5BgLVwoPfigaZdNkhgAogvXyb7z1m7auvfsy7VvoC67TFqxQvrmG+nYY03nzB07TAcvXzRrZq7RSye4y2MliWvVqvy7brcZQ7WdJABEkrhADpo4caL27NmjP/74Qzt37tTOnTu1fPly5efn69prr7U7xqjxww/S9OnS3Lmh+w1rYt61q+LvrV1r9lBq08bszWDthUiSGABiC3NyWVaSuEkTe863f7/02GPSXXdJw4aZVc3LllV+XFqaSSj7k6h++WXTAUTytNoCAEQHJ+bkgwcPasmSJRo2bNiR9+Li4jRs2DDNnz+/3GOmTp2qlJSUI480q/WFTd56S3r+ebNQKpys+/05Ofacr3FjM2Zn23M+AED4cJ3sO2+VxOFIEv8vf69du6SEBLO47PzzPdfElbEapvgy9+/ZY8bKKok7dJCSk+nyBaDqCKiS+LPPPtNXX32lLl26HHmva9eumjlzpk62Y8lulLJu5la2B0IwfK0k/vhjM7ZubfZosCqJt2+XcnM9kzAAILoxJ5dld5K4qEiaNMnzOj5e6tTJnnOXFhdnEtK1akm1a4fmNwAAoeHEnLx9+3YVFhaqsZXR/J/GjRtr5cqV5R6Tnp6uScUmtvz8fFsTxa+/bsYLLrDtlD6xrpUzMkwFULDVPySJASB6cZ3su6OOkv74o2wHrHAkia2K4dzcwI6/5RZp/HhTJFWZefNMO2urctqbggLz2LFDats2sLgAIJoElCQuKipStXLKYqpVq6aioqKgg4pWVpLY130TAuFrkvijj8x4+ulmrF3b3CzPyjLVxP37hy5GAED4MCeXZXeSuEYNs6r58GHzulMnqXr1yo/LzTVtKrdvl/7738q/v3ev+a2JE4MKFwDgkGiZk5OSkpQUov0M/vpLWrTILHoaNSokP+GVVRm0bZs957Oqk0gSA0D0iZY5ORLUqCF17Vr2/XBWEufmSqtXS999J3XsaLZy9EXnzr7/VuPGngVgFWnYUMrMpLMXgKojoHbTJ5xwgq677jptKdaHYvPmzbrhhht04okn2hZctImUSuLdu83qKMmTJJY8LaczMkISGgDAAczJZVlJYn/2Aq6Iy1WyA0fPnr4dFx8vPfSQ9OyzntZWFbnoInPROmdOQGECABzmxJzcsGFDxcfHK7tUJjM7O1tN7Fot5Yc33jDjiSf6diPWTgMGSDfeKM2aZc8eglb827d7FooBAKID18nBC3eS+LvvpHHjpH//O3S/5wur+GvHDmfjAIBwCShJ/OSTTyo/P1+tW7dWu3bt1K5dO7Vp00b5+fmaMWOG3TFGjXAkibt1k/7xD+mEE7x/56uvzD7E7dqVbIfZs6fUvbtZ1Q0AiA3MyWU99JC0aZO5UWyX4kniXr18O6Z2balOHfM8M7Py7y9ebPZSys+XPvtM8tIlFAAQoZyYkxMTE9W3b1/NnTv3yHtFRUWaO3euBg0aFJLfrIhTraYlkxieNk26+mp7ztewoTmn282NYgCINlwn++e//5WuuUb69Vfzuqgo/HsSW3OtPx06N282c/9jj1X8vcJC6brrpNtuk/bvr/i71n19KokBVBUBtZtOS0vTL7/8oq+++urIPkddunTRsGHDbA0u2oQjSXzsseZREWs/4tNOK7mC+sknQxcXAMAZzMllVatW+T5D/gqkkliS0tLM/k6bNknFtsMqY8sW84iLk775RnrpJWnyZGnKlIBDBgCEmVNz8qRJk3TppZeqX79+GjBggKZPn669e/dq7NixIf3d0pYvN3NeYqJ09tlh/emQSEgwN6q3bzctp8NdGQ0ACBzXyf555x3p88+lgQOlPn3MAqk5c0yiOJT3uYvvSWxt6eRPknjrVulf/5KaNZNuuMH79/bulZ54wjy/886Kz2n9e1kgBqCq8Kum9Ouvv1bXrl2Vn58vl8ulk046SRMnTtTEiRPVv39/devWTd9//32oYpUkzZw5U61bt1b16tU1cOBALVq0KKS/56viq4tDOXlWpqjIkyQu3moaABBbImFOrkqSkz3P/U0SS5VXEv/8sxm7dpVatzbPc3J8/x0AgHOcnpNHjx6tadOmafLkyerdu7eWLl2qzz77TI3DnNXMzjZbHJ16asnFVdHs66+l9evL36sRABB5nJ6To5W1yHrzZjPGx0tnnSWNHWsWf4XKiSeaoqbLLgvsvnqjRmbMyTH35r3Zu9eMLpcnGe2NlaSmkhhAVeFXknj69OkaN26c6li9E4tJSUnRVVddpUcffdS24Ep78803NWnSJN1111365Zdf1KtXLw0fPlzbtm0L2W/6Y8MG6bff7NsD0ZuCArPforfJ77XXpJtuko47rvzPK5o0AQDRwek5OZKNG2fmQas9lh2s/8wJCf5VKbdoYcbKksSLF5uxXz/aWwFAtImEOXnChAnasGGDCgoKtHDhQg0cODCkv1eeE0+UVq2SXnwx7D8dMj16SK1amfkfABD5ImFOjkbNmpmx2BbOYdGnjzR+vHT88Z7rX38qiVNTzXjokJSX5/17VpK4Zs2SXTfL07Gj6eLZtq3vcQBANPMrSbxs2TKNGDHC6+cnn3yylixZEnRQ3jz66KMaN26cxo4dq65du+qpp55SjRo19Nxzz5X7/YKCAuXn55d4hIrLZZLDPXqE9gJy926z4qlp0/L3UIiLk4YOlR5+WEpKKvnZoUPSUUeZG927doUuRgBA6Dk9J0eqAwfMfkqPPFL5xZ8/HnxQmj/fXDT7c15fK4mtJHH//p4LXSqJASA6MCd7uFyehVUAAIQbc3JgSieJN240RUg//hi+GALZkzg5WapVyzyv6Pq5eJK4MhdeKH3/vWljDQBVgV9J4uzsbFWrVs3r5wkJCcoJ0R3NgwcPasmSJSX2joiLi9OwYcM0f/78co+ZOnWqUlJSjjzSrDu1UaxWLU8S2t8KqWrVTAXynj3SmjX2xwYACB8n5+RIlp1txqQke1tddu8uHX20J4HrK+tPj02bvH/H7fa0myZJDADRhzk5ds2bJ91yi/T2205HAgDwBXNyYEq3m54/X7roIun220P7u/v2Sd9+a/ZDDiRJLPl2/bxvnxl9SRIDQFXjV5K4efPmWr58udfPf/vtNzUNUa/l7du3q7CwsMy+So0bN1ZWVla5x6SnpysvL+/II7OyMp4gLF0qXX+99OyzIfsJSWZldv365nnpJPHWrdJ110lffeX9+A4dzEiSGACim5NzciTbutWMTZrYW0kcqLPPNttRfPSR9+8UFEhjxphOID170m4aAKINc3Lsmj9f+ve/pU8+cToSAIAvmJMDU7qS2LrnbN2DDpWtW02r6XPPlZ5+Wnr9ddOl0x/WvsQV7UbpTyWxhe0aAVQVfiWJTz31VN155506cOBAmc/279+vu+66S6effrptwQUrKSlJderUKfEIld9+kx5/XHrrrZD9xBHeksSffCI98YR0223ejyVJDACxIdrm5HCx1o01aeJsHJa6daWWLSveiqJ6dWnaNOnrr00FtLUSevt2qagoLGECAILAnBy7rDXqVqcSAEBkY04OjJUkzsqSCgvDlyS2un/t2SMNGiSdf75n0bSvfKkk9idJnJVlKqtTUkgUA6ga/No994477tCcOXPUsWNHTZgwQZ06dZIkrVy5UjNnzlRhYaFuD1EfioYNGyo+Pl7Zpa7OsrOz1SQC7gRb1T7+tsQIhLcksVWlVNHfOlaSOCPD/rgAAOHj5JxsmTlzph5++GFlZWWpV69emjFjhgYMGBDS36xMpCWJA9GwofTww+Zit6hIivNrSR8AINwiYU5GaMRyknjtWtOFrF49adQop6MBAHswJwemSRPpjz9McjQuLnxJ4pQUz/O8PP8TxJI0dap0991Su3bevzNsmLRypW/X1nXreiqqd+0K/X8DAHCaX0nixo0b66efftI111yj9PR0uf+3nMblcmn48OGaOXNmmXbQdklMTFTfvn01d+5cjRw5UpJUVFSkuXPnasKECSH5TX9YSeJAJjN/WZPTrl2e9woKpC+/NM9PO837se3bm5FKYgCIbk7OyZL05ptvatKkSXrqqac0cOBATZ8+XcOHD9eqVavUyOr35IBITBLfd5+0YoV0771S27ZlP//lF3NBa10gJyZKN90U3hgBAIFzek5G6MRyknjRIumqq6TjjiNJDCB2MCcHJi5O6trV8zpcSeKEBKlWLVNJ/PDD0t/+VnHxU3m6d6/8OzVrSv9bL1Cp6tVNC+tt28zWUSSJAcQ6v5LEktSqVSt98skn2rVrlzIyMuR2u9WhQwfVq1cvFPGVMGnSJF166aXq16+fBgwYoOnTp2vv3r0aO3ZsyH+7Mk4kiYtXEn/7rWmd0bSp1KeP92NpNw0AscPJOfnRRx/VuHHjjszBTz31lD7++GM999xzuvXWW0P++95YexJH0jZTb70l/f67dPHFZZPEhYXSkCHmonjFCqlzZ2diBAAEx8k5GaFj5RG2bTMtJ10uZ+OxU6tWZtywwdk4AMBuzMnBswqTwpEgrVfPXA//+9/SG2/4nyQOhZYtzdy/cWPF99kBIBb4nSS21KtXT/3797czlkqNHj1aOTk5mjx5srKystS7d2999tlnEbECbMcOM4YjSXzssab9ZPEbyVar6dNOq7h1Rvv2UpcuZjxwwKyOAgBEt3DPyQcPHtSSJUuUnp5+5L24uDgNGzZM8+fPL/eYgoICFRQUHHmdn58fktiefFK66y5TjRsp0tJMknjTprKfrV5tLohr1PB0+5BMwnj9eqlbN3OBCgCIDk5cJyN0rH0ODx2ScnPNjexYMWeOGTdsMIvW4uOdjQcA7Mac7J+33pK++UY666zwVRJLpr1zZqZ5Hsg2jmvXSu++azpzXXll+d/56itTYDV4sHTKKZWfs1Ur6eefTZIYAGJd1O1yN2HCBG3YsEEFBQVauHChBg4c6HRIksJbSTxunPTyy9IZZ5jXbrdv+xFL5ib0n39KH35IghgAEJjt27ersLCwzCKtxo0bK8vq91zK1KlTlZKScuSRlpYWktiqVZOaNQvPfOwr659qXfgWt3ixGY86yrTasvzrX9Kpp0pffBH6+AAAQPmqV/dsBxFLLaeLiqTp0z2vrU4sAICqa9486amnpB9/lKZMkZ57TgpHjr1uXc/zQK7j16yRbr5ZmjnT+3fmzjXbQH3+uW/ntBZqkyQGUBVEXZI4UoUzSVzebx8+bKqmTjwx/L8PAEBl0tPTlZeXd+SRWV7GNEa1aGHGipLE/fqVfN+qXMrJCV1cAACgct99Z7p7FO/4Ee2yssw9BAstpwEAzZqZccsWaehQaexYz9YEoTRhgtSunXkeSCVxo0ZmrOjaee9eM9as6ds5SRIDqEpIEtvk669NK8kBA8LzewUFnv0hUlPNRd3KlVKtWr4d73abdtMAAPirYcOGio+PV3apkprs7Gw1adKk3GOSkpJUp06dEg+7ud1m398bb5R277b99AHzpZK49Apta9GZtQgNAAA4o2dPc5M8IeDNuiLP+vUlX3MTHABQPEkcTuedJ51/vnkeSJK4+AJrt7v87/ibJO7SxWz32KWL//EAQLQhSWyTxo2l7t19T9IG44svTNurE07wvOdySW3a+Hb8Sy+ZVh6XXRaS8AAAMS4xMVF9+/bV3Llzj7xXVFSkuXPnatCgQY7FlZsrvfKK9Oijpu10pLCSxKX3JD50SFq61DwvnSSmkhgAAIRK6SQxlcQAgObNzbhunfTaa9Jnn5ntCcJhxw4zBpMkPnzY3BMoj79J4uHDpe+/l+6+2/94ACDaxNBa2KrD2qth505zg9nl8m9Vc506Un6+lJERkvAAAFXApEmTdOmll6pfv34aMGCApk+frr1792rs2LGOxWRth1y3rllMFSmsJPGWLWZls8tlXi9fbjqD1K1btoUllcQAAESGr782exgOHCidc47T0djDSgr36iU9/jiVUgAATyXxqlXSRReZhdcFBaH/3awsac4c8zyQbRyTkjz3unNypHr1yn7H3yQxAFQlVBLbYOtW6frrpWnTwvN79eubcedO6d13TRXzHXf4frx1I3rNGu9tOAAAqMjo0aM1bdo0TZ48Wb1799bSpUv12WefqXHjxo7FZCWJmzZ1LIRytWljbsbu2OFJEEvmInzWLOn220u+L1FJDABApFiyRPr3v6XXX3c6EvtYlcQjR0pDhnj2cwQAVF1WkthSv37Z69RQeOMNads2KS7OVPAGwprHtm0r//NAk8SHD5sHAMQyksQ2WL/erL6dOTM8v2cliffsMSutdu70b8Jq186Mubmedh4AAPhrwoQJ2rBhgwoKCrRw4UINHDjQ0XisJLGXbZEdk5AgtWxZtutH48bS1VdLN91U9hiSxAAARIYBA8y4cKGzcdjJShK3bu1kFACASFK/vqnKLf46HKzK35NPljp2DOwclV0/B5IkPv5406Hsxx8DiwkAogXtpm1gtYIMpCVGIFJSzEout1t6+23z3umn+358crJpfZmZaaqJwxU3AAChtHWrGSMtSRyIdu2khx/27AsFAACc0bevqW7KzDRbR5SutIpGTz9ttp9q3VqaPdv8u+66KzwVYwCAyORySb//Lv3wg3TZZeFLElvbKnrbT9gXM2ea++QdOpT/+euvmyIrq3DKF/HxUmGhtHFj4HEBQDSgktgGVjVuuJKt8fGeCVQyk/bRR/t3juItpwEAiAWRWkksSS++KF14ofThh+b1/v3mpuyvv5a/9UNqqqkwvuCC8MYJAABKqlVL6t7dPI+VauLWraVhw8wWHVddJU2ZIuXlOR0VAMBpHTqYxKgU/iTxggWB74Hcp4901FFS7drlf962rdSvX/n7FXvTqpUZSRIDiHUkiW0Q7kpiqeSkNmJE2RaWlbFWVpEkBgDEikhOEi9caFYvL1pkXv/6q7kpe8opzsYFAAAqZy3KXrDA2TjsVrOm5z7Ghg3OxgIAiAw7d5oxXEni4i2uDx4Mz2/6omVLM5IkBhDrSBLbwIkk8RlneJ7702racvTR0qmnem/DAQBAtHnuOdMu8YornI6krLQ0M2ZmmvHnn83Yr5/31o7LlkmffurpWAIAAJwxcKAZY6GSeM0a01r63XfNa26CAwAsX34p3XKLeR6uJLG1n7BkuncE4o8/pIcekl59tfzP77tP+ve/pfx838/J/AigqiBJbAMnksTXX2/G+Hhp+HD/jx87Vvr4Y+mSS2wNCwAAxyQkmLaJ4bqY9YeVJN60yYyLF5uxf3/vx1xyiVnQtWRJaGMDAAAVs5LEmZnlbxMRTX7+WbrnHmnGDPPaaqdJJTEAYNkyz/PzzgvPb7ZrJz37rNmaydsC6sosXSrdeqv0/PNlPysqku680yS/9+/3/ZwkiQFUFX42KUZ5nEgSJyZKd9whZWdH5s1wAADgUbqS2JcksbWiOicndHEBAIDKdekirV1r9vIN9AZ2pFi/3oytW5uRm+AAAEuzZmY8/njPVgvhcNllwR3fqJEZt20r+1nxxHDNmr6fs/j86HZH//wPAN6QJLbBs89K99/vmZDCoVkz6d57gz/Pzp2mlUdiYvDnAgDAKYcPm8rbJk2kBx6Qqld3OqKSiieJ8/KkVavM64qSxNbiM2sxGgAAcEZcnNSmjdNR2IMkMQDAm+bNzbhli7Nx+KuiBdZ793qe16jh+znT0qTBg03HjYMHS+6dDACxhCSxDRo0MI9o07u3aSPyww/SMcc4HQ0AAIHLzpZef91swzBtmtPRlGVdbB84YPZ5kszFZvH9l0qjkhgAANitdJKYdtMAAItVSbx6tZSbK9Wt62Q0vrMKt3JyTHvpuGIbbFpJ4uTkku9XJjlZ+vFH+2IEgEjFnsRVmFWhtGaNs3EAABCsrCwzNm7s34VfuCQlmQvXuDiz15JUcRWxRCUxAACR5K+/pHPOkU480elIglM6STxkiDRvnvTmmw4FBACIGE2bep4vWeJcHP6yrp0LC01yuzgrSexPq2kAqEqoJA5SYaE0aZKZjG66yawyihYdOkhz50oZGU5HAgBAcKwkcZMmzsZRkd9+M51H9uyRLr7YbPdQESqJAQCIHLVrS++9Z/YkzMuTUlKcjsh/RUWeimErSdywoUkUAwBQ/Bq1bVvn4vBXYqKpes7NNfsS16/v+SzYJPHhw1JBAUlmALErAmttokturvTEE9LkyVJClKXcO3QwI5XEAIBoFw1J4saNzd8KdetKJ50kDRpU8fepJAYAIHI0amT2JXa7pcWLnY4mMNnZ5kZ3XJxnKwwAAIr77TdTVNSmjdOR+MfbImsrSVzZIu3y3HWX6Qp2zz3BxQYAkSzK0pqRx7pxm5IiVavmbCz+at/ejCSJAQDRzkoSF2+PFe369pUeecQzXwMAAGcdfbS0bp20YIE0bJjT0fivUSNz/b9lS8n7F2+/LS1bJl14odS1q3PxAQCc16OH0xEE5uWXTUVxx44l3+/Xz8zb8fH+nzMlxXTh2LjRnhgBIBJRSRwkK0lsVftEk+KVxG53YOc4cCDwYwEAsMvWrWaM5Erib781CV+XS/rii8q/366d2dLizDNDHxsAAKjcwIFmXLjQ2TgCFR9v/hY57riS78+eLd1/v/Tzz87EBQBAsAYOlPr0KdsWuk4d81m/fv6fs2VLM5IkBhDLSBIHKZqTxG3bmhvVe/aY/Rr8lZVl9jE69VTbQwMAwC/R0G56yxbpr7/M85dfdjYWAADgPytJvGBBbC2WbtXKjNZ+xQAA/61fv16XX3652rRpo+TkZLVr10533XWXDh486HRoCBBJYgBVAe2mgxTNSeKkJOkf//C0zvDX7NlmT6P9++2PDQAAf7zxhpmTk5OdjsS7tDTPc19XMS9ebBZyDR0q1agRmrgAAIBv+vQxrSy3bzdtp9u2dToi/7zwgrR+vXTWWebfYuEmOAAEb+XKlSoqKtLTTz+t9u3ba/ny5Ro3bpz27t2radOmOR1ezFuyRPrqK9Nu+uyzPe8vWiR9953Uq5d00kn+ndOaH7dskQ4flhLIpACIQVQSBymak8SS9NJL0owZge3h+NFHZhw1yt6YAADwV0KCqSJOSXE6Eu9atPA89zVJfPLJ0umnU9kDACiLiqXwS0oy+xIPGiTl5jodjf9ef12aMkVaurTk+9ZNcP7eAIDAjRgxQs8//7xOPvlktW3bVmeeeaZuuukmzZkzx+nQqoQffpBuvdUsIC9u7lzpX/8yc6C/GjUyi8OKikyiGABiEetfghTtSeJAZWSY6qa4OJLEAAD4onlzU+m8f7/Uu7dvx6SmmpvQOTlSly6hjA4AEG2oWHLGvHlm26ZotH69GVu3Lvm+1W6aSmIAsFdeXp7q16/v9fOCggIVFBQceZ2fnx+OsGJSo0ZmLL2l4t69Ziy9V7Ev4uJMR7C//jJzpLWoCgBiCUniIN1+uzR2rFS7ttORBC4vT9qxw79WWW++acY6daQXX5SOOko68cTQxAcAQEX27pWuuMJUEk+bJsXHOx1R+apVk9asMXsY+nqB2rChOcZalAYAgGXEiBEaMWLEkddt27bVqlWrNGvWLJLEIRStCWK325MELp0kLt5u2u2O3n8jAESSjIwMzZgxo8I5eerUqZoyZUoYo4pdqalmzMkp+X4wSWJJOu00cz1eq1bgsQFAJKPddJDq1pW6di25z2A0+ewz82845xz/jrNadCQnSzffLNE5BQDglK1bTUup//43chPElubNS7adroy3C10AAMpTWcWSZKqW8vPzSzzgvz17zP6E0SI7WzpwwFRFlf5bxHq9fz8L0wCgtFtvvVUul6vCx8qVK0scs3nzZo0YMUKjRo3SuHHjvJ47PT1deXl5Rx6ZmZmh/ufELKuS2O4k8eOPS6++6ns3MACINlQSV3Ft2pgxI8P3FcO//y798YfZk+Hmm6UbbpBWrw5tnAAAeLN1qxmbNHE2jlCwtrPghi0AoDK+VCxJVC3ZYdgw6ZtvpJ9+kgYOdDoa31itplu0MN1NiktKMns5Nm8uVbLGAACqnBtvvFFjxoyp8Dtti7Vn3LJli4YOHarBgwdr9uzZFR6XlJSkpKQkO8Ks8qwF1tu3mz2E4/5XGhdskhgAYh1J4iDdc48Zx42TmjZ1NpZAtGljJs29e6WsLN/+DVlZUrt2UvfuUv/+5r01a0IbJwAA3mRlmTEWk8RUEgNA1XPrrbfqoYceqvA7K1asUOfOnY+89rViSTJVS5MmTTryOj8/X2nR2hrLIcnJ5gb0ggXRlyQu3Wracswx4YoEAKJLamqqUq0Ls0ps3rxZQ4cOVd++ffX8888rLo4mnuFiLbAuKpJ27vS8tiNJfPiwlJvrOScAxBKSxEGaPl3atUsaNSo6k8SJieYice1ak+j15d9w0knmu/n5UkGBeW/jRtO6qnr1kIYLAEAZsZwkppIYAKqeUFYsSVQt2WHgQOmjj6SFC52OxHeVJYkBAMHZvHmzjj/+eLVq1UrTpk1TTrGVvk1i8WI1wlSrJtWrZ+7T5+TYlySeN890EOnSxXTXBIBYQ5I4CIcPm4lHiu6VRO3be5LExx3n2zEul5SSYlpU16ljEsZr15r9mQEACKdYThKfcIL0yCNSr15ORwIACBcqliLf0UebccECZ+Pwxw03SOee62m/WdqCBSbx3aWLdNFF4Y0NAGLBl19+qYyMDGVkZKhFqc3f3W63Q1FVLR9+KNWq5dleUZIee8zcM+jWLbBzNm4sFRaaAikAiEVcQQZh504zulxmpVK06tDBjL60jP7jD0/1sGT+7dbx7EsMAHBCLCeJjzpKmjRJOvFEpyMBAEQaq2KpZcuWRyqWsrKylGVNjAiZ/v3NtfC6ddK2bU5H45ukJLNAvFgRegmLF0v33y/NmRPeuAAgVowZM0Zut7vcB8Lj2GOl3r1Ldrrs3t1UAgfaAbRlSzPm50t5eUGHWK5du6TNm00yGgDCjSRxEKzWj/XqSQlRXJPta5K4sNC0mm7SRFq61P/jAQAIhexsM8ZikhgAAG+siqW5c+eqRYsWatq06ZEHQislxVTcStHVcroirVqZccMGZ+MAACCS1KwpNWhgnmdmhuY3nntOatHCLOQiUQwg3EgSB8FKEkdzq2lJGjRIuuYa6ZxzKv7e999LW7ea59YFsSTdcYf066/SP/8ZuhgBAPDmgw/M/DRqlNOR2O/wYXPz+ZNPnI4EABBpqFhy1sCBZoyGJLHbLV1xhTRlimdvxtKsSinaaQIAotWPP0oPPih9/rnnvaeflmbP9mwZGYhQz5FW8nnjxujpUAIgdkRx/avzYiVJPGCAeVTm9dfNeM45plWVJdA9HQAAsEN8fOxWER844Nn3cM8es4oZAAA475RTpIMHTevpSLdtm/Tss2Y/4vT08r9jVRLn5Ej79kk1aoQvPgAA7PDZZ9J995lCpuHDzXs33WSupU84IfDtIlu2NAVSoUoSF98pJDs78NbYABAIksRBsJLEVsuJWHbokPTOO+b5BRc4GwsAAFVFzZpmYVZBgblpS5IYAIDIMGpU9HQxWb/ejM2bS4mJ5X+nbl2pVi1zIz0zU+rUKVzRAQBgj0aNzGhV47rdng4awVxLh7qSeNMmz/PiCWMACAfaTQfhwgulP/6Qpk1zOpLg7d5tVkR5a2nx5ZfSzp1S48bS0KElPysslB591LSs3rcv9LECAGDZuVM6/3zphhvMBWCscbmk1FTz3FqcBgAA4A8rSdy6tffvuFzsSwwAiG7WtXNOjhkPHPDcJwgmSTx4sCma6tkzuPi82bzZ8zw7OzS/AQDekCQOQq1aUteuUseOTkcSvPPOk446Svrww/I/f+MNM44aZdp6Fhcfb1p5PPWUlJER2jgBAChu0ybpzTelV181NzdjUekLXQAAEBmKiszC8dWrnY6kYlaS2EoCe8O+xACAaGZdO1tFUFYVsRRckvj886XXXjOj3dxuacsWz2sqiQGEW1QkidevX6/LL79cbdq0UXJystq1a6e77rpLBw8edDq0mNG+vRnXrCn7WUGB9P775rm3VtMdOng/HgCAULEuoGJ1T2JJatjQjCSJAQCILHfeKXXvLj3yiNORVMyXSmJJevxxae1a6dJLQx0RAAD2s9pNW9fOVpI4Kals0VOk2L5dKp7ioJIYQLhFxZ7EK1euVFFRkZ5++mm1b99ey5cv17hx47R3715Nc7DX81NPmf/jPu88qUsXx8KwRUVJ3qQkaeFCU2V89NHej1+0iCQxACC8qkKSmHbTAABEpr59zbhwobNxVMbXJLF1XwAAgGhkXTvv2GG2R7RjP2LL4cOm4rd5c3sTzi6XdOONngVnVBIDCLeoSBKPGDFCI0aMOPK6bdu2WrVqlWbNmuVokvj5501itE+f2E4SS+bfV9G/kUpiAIATtm41Y9OmzsYRSlQSAwAQmaxF1L//Lu3ZY7akikS+JokBAIhm1rWz220SxXYliYuKpDp1pP37zZYMaWnBna+4hg2ladOkc8+VPvpI6tfPvnMDgC+iIklcnry8PNWvX7/C7xQUFKigoODI6/z8fFtjsCp6rAkomllJ3owMM/HF+dmInCQxAMAJVaGSeORIc1PXWzcPAADgjGbNpBYtpE2bpCVLpCFDnI6ofL/+KmVmmngrkp0tzZgh7dsnPfpoeGIDAMAuCQnS119L9etL9eqZ7piff26qdYMRF2fuOaxbZ3+S2HL00VzzA3BGVOxJXFpGRoZmzJihq666qsLvTZ06VSkpKUceaTb/P3gsJYlbtzYT6YED0ubNnvffeksaPVqaO7fi4zt2NCNJYgBAOFWFJPHQodINN0iDBjkdCQAAKM26obtggbNxVKR6dbOwu7JKqoIC6f77pSefNIvHAQCINkOHSr16SdWqSSkp0sknSyedFPx5W7Y048aNwZ+ruM2bzaOw0N7zAoCvHE0S33rrrXK5XBU+Vq5cWeKYzZs3a8SIERo1apTGjRtX4fnT09OVl5d35JGZmWlb7AcPSlZhciwkiRMSpDZtzPOMDM/7L75oEsU//FDx8VYlcVaWtHt3aGIEAKC07GwzxnKSGAAARK6BA80Y6fsS+6JZM7PP4qFD7IkIAEBxVpLYxvSCJGnyZNOVZOpUc0/+xx/N/scAEC6Otpu+8cYbNWbMmAq/07Zt2yPPt2zZoqFDh2rw4MGaPXt2pedPSkpSUlJSsGGWa8cOM8bFSXXrhuQnwm7iRLNy2EoW79ghffGFeX7++RUfm5Ji2mu1ayfVrh3aOAEAsHz5pensEeweQ5Fs/35p2TLT+vGEE5yOBgAAFGcliRcsMHsgBtvS0m7z5pnF30OGSJXcflFCgtS8uamS2rix8vbUAABEmrlzpUWLpL/9zbSd/uknU9wU7JYQoaok3rTJjM2aSZ07m4rizZuZgwGEj6NJ4tTUVKWmpvr03c2bN2vo0KHq27evnn/+ecX5u2muzaxW0/Xr+79/b6SaOLHk63ffNSuX+vSROnWq/PijjgpNXAAAeBMfLzVu7HQUobVunWk1Xa+etHOn09EAAIDi+vaV7rzTtJ2OxCTxokXSCy+Ya/vKksSSuQm+caO0YQN7IwIAos8770hPPWUqdBs1kiZMkP7+98hNElvbPqalSampppNHdjZJYgDhExXpzc2bN+v4449Xy5YtNW3aNOXk5CgrK0tZDvY/iqX9iL15/XUzVlZFDACoOtavX6/LL79cbdq0UXJystq1a6e77rpLBw8edDq0mGX9rbFrF22nAACINDVqSPfcI516amQuIF+/3oytW/v2/VatzGj3TXAAAMLBqkfbtk3au9c8t6PzWKgriZs392yjxZYPAMLJ0UpiX3355ZfKyMhQRkaGWrRoUeIzt9vtSExHHy39+afZmzhWHDworVhhJqIePaRvvzXvjx7t2/GLF5s2Vq1bSzfdFLIwAQAOWrlypYqKivT000+rffv2Wr58ucaNG6e9e/dq2rRpTocXkxo0MFVJbrfZCiLWK6cBAIB9/E0SWzfBN2wIRTQAAIRWo0ZmzMnxPLcjSdypk3ThhVKXLsGfy7J3r5SXZ563aOG51s/Otu83AKAyUZEkHjNmTKV7F4dbcrK9k0IkyMyUeveWqleX7r/f3IwePNizkrgy69dLM2eaBDpJYgCITSNGjNCIESOOvG7btq1WrVqlWbNmVZgkLigoUEFBwZHX+fn5IY0zlsTHm+0tduwwnUxIEgMAEFn27JG+/lraulW66iqnoykp0CQxlcQAgGhUvJLYmvvsSBK3aSO9+mrw5ynOajVdq5ZUpw6VxACcEYHNkOCUVq2khATpwAHp0CGzF/EFF/h+fIcOZlyzJjTxAQAiU15enurXr1/hd6ZOnaqUlJQjj7S0tDBFFxusC92cHGfjAAAAZW3aJJ11lnT99eZaOlK43f4nic87T1q7Vnr33VBFBQBA6BSvJLaz3XQoFG81LVFJDMAZJIkD9O670pQp0vz5Tkdin4QEqW1b87xfP+mXX6R//tP349u3N+OOHWbfRABA7MvIyNCMGTN0VSVlM+np6crLyzvyyMzMDFOEscHal5gkMQAAkadjR6luXbPg+rffnI7GIydH2r/fbFvh6/q8+vVNtVS1aqGNDQCAUAjVnsSSdPiw6cRp133vpk1NN86LLzavqSQG4ASSxAF67z3p7ruln35yOhJ7WdXAGRlmjPPjfyG1apnJTaKaGACiza233iqXy1XhY+XKlSWO2bx5s0aMGKFRo0Zp3LhxFZ4/KSlJderUKfGA76wL3e3bnY0DAACUFRcnDRhgni9c6GwsxRWvUEpMdDYWAADCwaok3rnTs9+vXUnic84x2zK89ZY95+vSRXr4Yen2283rwYOlO+6QRo+25/wA4Iuo2JM4Elk3aa3KnlhhJYl/+SXw47duNUli6yIZABD5brzxRo0ZM6bC77S12k1I2rJli4YOHarBgwdr9uzZIY4Ol1wiHXecdOyxTkcCAADKc/TR0hdfmCSxPx25Qumoo0wlsb+dSB56SPrjD7MwvtiffwAARLwGDaQvvzQLrQsKzLV07972nNvqyrFxoz3nK23gQPMAgHAiSRwgK0ncoIGzcdjNWlk1e7Y0fbqUnOzf8R06SN99RyUxAESb1NRUpVrlqpXYvHmzhg4dqr59++r5559XnD9tJxCQkSOdjgAAAFTEuqm7YIGzcZRWvbrvraYtb7whLV0qnX8+SWIAQHSJj5eGDfO8trOIqWVLM9q1e9aaNebee5MmZhtIAHACd3UDFKuVxBdfbNpQXXml/wliyVOJvHmzvXEBACLD5s2bdfzxx6tly5aaNm2acnJylJWVpSw2zQEAAFWYlSRevdq0uIxm1k3wDRucjQMAgEhizY92VRJfdJFZyPXxx+a12222gPzhB7P/MQCEA2tUAhSrSeJOncx+DdWqBXb8lVdK48ZJ9evbGxcAIDJ8+eWXysjIUEZGhlq0aFHiM7fb7VBUsS8/X/rzT3PROGiQ09EAAIDSGjSQ2rc3N3cXLZJGjHA6Iik9XcrOliZOlPr08f04u2+CAwAQTp98Ii1bJu3ZI/XsKZ10kj33qu2eH60iq+bNzeh2S507S4WF0qZNnvcBIJRIEgfgwAFp717zPNaSxJJpRxWoevXsiwMAEHnGjBlT6d7FsN/8+eZmc8+e5mIXAABEnuefN/cIOnZ0OhLjgw+kFSukCy/077hWrcxIkhgAEI1eeEF6+23P6yVL7E0Sb9pkErnx8YGf6/BhyWrIZq2/j4uTGjeWtmwxn5EkBhAOtJsOwI4dZoyPl1JSnI0FAADEPmtRmtXJBAAARJ5jjzUVQHERcKfF7ZbWrzfPW7f271jaTQMAollqasnXNWvac96mTU0+4NAh06kjGFlZUlGR2Yu4USPP+40bmzHY8wOAr6gkDkCjRqblY16e5HI5HU3kufdeU/F0//3+tbQCAADlsy5yc3LMTV/+/gAAABXJyZH27zd/M6Sl+XcslcQAgGhWPOkq2ZckTkgw+wi3aRNcJ07JVCNLJvFcfHEZSWIA4UaSOADVqkldujgdReSaN0/6+mvp/PNJEgMAYAerkvjQIWn3bqlOHWfjAQAA5XviCbNo+pFHpGbNnIvDqiJu1kxKSvLvWKuSOCvLtMNM4M4RACCKhKqSWJJefNGe85Tej9jSpIkZrVbUABBqEdAECbGmQwczrlnjbBxOyM42rUIAALBTjRrmIZnKIAAAEJmefVZ64w1p0SJn47BaRfvbaloyVUxr10p79pAgBgBEn1BVEtvJShJb+xFbqCQGEG4kiQPw3XfS3XdLn37qdCSRyUoSr17tbBzhdu21ZsX1l186HQkAIBaxLzEAAJGvXz8zLl7sbByB7kcsmbaXbdpIiYl2RgQAQHgUryROSLB/PsvKkj75JLhzHHWU9K9/SWeeWfJ9KokBhBtJ4gB88400ZYr0wQdORxKZqlol8W+/mUd8vHTwoPTYY05HBACIRcX3JQYAAJGpf38z/vyzs3FYi8oCSRIDABDNilcS211FvG+fqf497TRPNXAgjj1W+ve/pYsvLvn+4MHSHXeYbRwBIBxoHBQA62KrQQNn44hUHTuacc0aye2WXC5n4wm122+XPvrIVBK7XNLnn0t//il17ep0ZACAWDJhgpSbK3Xp4nQkAADAm+JJYievhx96yHRAO3QosOPnzJHef18aPly66CI7IwMAILRat5befVf69VepWzd7z12jhtS9u7RsmbRwoXTOOfaef8AA8wCAcKGSOABWkthq+4iS2rY17an27In9/RPWrpU+/tg8Hz9eGjnSPH/8ccdCAgDEqDFjpOuvl9q1czoSAADgTY8epq3lzp3SunXOxpKcLNWpE9ixy5ZJL79sttsCACCaJCeb5O2994amIvfoo824YEHg51i6VMrMlAoLbQkJAAJGkjgAJIkrlpgotWolpaRIW7c6HU1ozZplVoePGGEqqG+4wbz/0kvsGQkAAAAgPAoKCtS7d2+5XC4tXbrU6XCqtMREqVcv89zpfYmD0bKlGTdudDYOAAAizcCBZly4MLDj3W7TVrplS2nDhrKfrVkjff+9dPhwcHECgC9IEgdgxw4zkiT2bulSadcuqU8fpyMJnX37pGefNc8nTDDjscdKRx0lHTggPf20c7EBAGLPjh3S/PlmjgUAoLibb75ZzZo1czoM/E///lJ8vKkQcsL27dKJJ0pXXGFuNgeiVSszkiQGAESjxx4z96VffNH+c1uVxIsXB5bI3bVL2r/fPC/955vbbbYwPO44KSsruDgBwBckiQNAJXHl6tSJ/b2IX3vNTOpt25pKYsn8m61q4ueeC/yCHACA0t5916w2njzZ6UgAAJHk008/1RdffKFp06b59P2CggLl5+eXeMBeU6ZIu3dLN93kzO+vWyd9/bX06aeBX5dblcQbNnBdCwCIPpMmmQXWY8bYf+5OnUwHzf37pd9/9//4zZvN2KCBVL16yc/i4qTGjc1zksQAwoEkcQBIEsPtlp580jz/5z/NKnHLeedJDz9sWo7EeqIcABA+qalmzMlxNg4AQOTIzs7WuHHj9PLLL6tGjRo+HTN16lSlpKQceaSlpYU4yqqnYUOzH6JT1q83Y+vWgZ/D+p/F3r1mcTQAADDi4qQBA8zzQFpOW0ni5s3L/9xKEmdn+39uAPAXSWI/ud3SL79IP/zg/f/IIa1cKZ1xhjRypNORhMaWLWaiTk6Wxo4t+VliolkxziICAICdwp0kPnjQLIiK5v0UASCWud1ujRkzRldffbX69evn83Hp6enKy8s78sh0qicyQsaOJHFystSokXleer9EAACquuuuk156ydz/9temTWZs0aL8z5s0MSOVxADCgSSxn1wuqXNn6ZhjTDIQ5YuPlz76SPriC6moyOlo7Ne8ublQnjdPql+/4u9ae0wAABAMK0lsdTQJteuvlyZONHshBbI6GgAQmFtvvVUul6vCx8qVKzVjxgzt3r1b6enpfp0/KSlJderUKfGA/aZPN3sTv/Za+H/bjiSxZFpOu1zcpAYARJ8LLzTjsceG5vynnSZdfHFgRWRUEgOIJAlOB4DY1Lq1SRTv32+qbr2tjIpmiYme1iLlWbLE3GBPTZXmzAlbWACAGGV1qMjLM1W+oVys9vzz0qxZ5vmBA9Ijj0hvvRW63wMAeNx4440aU8kGem3bttXXX3+t+fPnKykpqcRn/fr100UXXaQXX3wxhFGiMhs3Sj//LP30k+dGdbhYSeJWrYI7z8cfS3XrskAeABB9Zs0yC57PPtvpSMoiSQwgkpAkRkhUqya1aSNlZEhr1sRWknj1aqldu5L7EJcnOdm0JXe5pLVrpbZtwxMfACA21atn5p7CQmnHDqlp09D8zpIl0jXXmOe33CJVry75WaQGAAhCamqqUq32ERV44okndN999x15vWXLFg0fPlxvvvmmBg4cGMoQ4YP+/c3oxLYNdlUSW+2mAQCINnXqSFddFdrf+OUX02XyhBOk3r19P+70080irOOOK/9z2k0DCCeSxAiZDh08SeKhQ52Oxh4HD0pDhkhJSdLnn0udOnn/bteu0sknm5bbM2ZIjz0WvjgBALEnLk5q0EDats3sSxyKJHFOjnTOOVJBgblwfeAB87vFFRZWvlAKABB6LVu2LPG6Vq1akqR27dqpRSyt0o1SVpJ42bLQdwApraDAjMEmiQEAgHePPiq9+qo0ZYp/SeIzzzQPbwYPliZPlo46KugQAaBS7EmMkOnQwYxr1jgbh53efdes4jp40LfK4BtuMOOzz0r5+aGNDQAQ+26/XXr8cU/7Kbtt3GjaS3foIL38cskEcVGRdOONZt+loqLQ/D4AALGiXTtTJVRQIC1fHt7fzsiQ9u2T2rcP7jwrVph5/+qr7YkLAIBYcvTRZlywwN7z9u9vEs9nnWXveQGgPCSJETIdO5px9erAjl+2zCRX8/LsiylYTz5pxquvNi21KzN8uNSli7R7t/Tcc6GNDQAQ+6691jxClSTu29e0m/7wQ3Nju7hly6QnnpBef126447Q/D4AIHCtW7eW2+1Wb39KWRAyLpfUr595/vPPgZ/nueekM86QPvnEvP7lF8ntrvy45OSy3UD8tX+/9Mor0gcfBHceAABikbW7x8KFvs3NknTokEkqZ2b6fgwAhBJJYoRMhw5SrVqBt9WaNUu64gpzI/y888wN64MH7Y3RH7/8Iv30k0kOX3mlb8e4XNJ115nnTzxhWnQCABBp9u/3PG/RQurcuex3+vSRnnnGPJ861fMcAACUz459id94Q/roI1ON/Pnn0oAB0tix4bk2tjqaZ2WZTiMAAMCjVy+zJeHOnaaLhy82bpQGDap4C0O32xRdffedSSoDQCiRJEbIDBtmWiy//XZgx3fvbqpwCwrMOc46S2rWTBo/Xpo/P/yrrWbONOOoUVKTJr4fd/HFUv360rp15uIeAIBAZWebBUurVtl3zj/+MFsovPtu5d8dM8bsjSRJ11wjffaZfXEAABBr+vc3idb69QM7ftcu6ZtvzPOzz5a2bjXPX3xROu208rc0eu456cQTpdmzA/vN4ho0kGrUMM83bQr+fAAAxJLERM++wQsX+nbM5s1mbNHCFBd50727NGSIWagFAKFEkhghExdX8WRXnr/+MqukJGnCBHPj+pdfpEmTTGJ2xw7pP/+Rzj8/vEniHTuk117zxOWPGjWkhx4yK8BPPdX+2AAAVceTT0rHHGO6U9ghN9fcdM7Kkp56yre59e67zQKowkKzcGrZMntiAQAg1owcKW3YYK4HA/HRR9Lhw+ZGcYcOZrHWhx9KNWtKX30l/e1vnpvNll9+kb7+Wlq/PsjgZa7nrWrijRuDPx8AxLozzzxTLVu2VPXq1dW0aVNdfPHF2rJli9NhIYSsltO+7ktszdvNm3v/jsvl2WKKJDGAUCNJjIhy991mldSdd5rXLpdpb/nII2avhs8/Nzemr7zSs7/SoUPSOedI27eHLq733zfttY46Sjr6aP+Pv+IKafRo3/YxBgDAm9RUM+bkBH+uoiLpkkukNWvMDeDXXvNtcZfLJf33v9LQodKePdLpp0v79gUfDwAAscbfRdOlzZljxnPO8bx36qnSt9+am8e//WauT3//3fO5lRxu3Tq437a0amXGDRvsOR8AxLKhQ4fqrbfe0qpVq/Tuu+/qr7/+0rnnnut0WAgh6z7xzz/79n2rM0dFSWLJkyTOzg4sLgDwVYLTASC2TZ0qvfKKdMMNJlFakdWrPdW6I0eW/TwhQTr5ZPMo7oMPpPfek9q1kx5+2Jawy7jsMqlbN9P6OtgLfbc7+HMAAKqmhg3NaMfCqPvvl/7v/8weSnPmeBLQvkhMNMcMGybdequnFSUAACjL7Zb27pVq1fL9mL17Pds6FE8SS1LfvqZi6ZRTpJUrpWOPlX791WwfYXeSmEpiAPDdDTfccOR5q1atdOutt2rkyJE6dOiQqlE5EpNOOkn68UdT5OQLXyqJJc9Wh1QSAwg1KokRUjt2SH/+adpGV+b++01V0+mnm4teX1mtMZ9+WsrLCyzOyrhcZmXYkCGBn6OoyCSxO3SQ6DQDAAiEXZXEH37o2Vv4qaf8m3ctdetKixZJLIwHAMC7l182i7yuuca/4z7/3HSzatNG6tmz7OetW5ub0n/7m5mL27Qx18ahSBK7XGaLCgCA73bu3KlXX31VgwcP9pogLigoUH5+fokHokv9+tLgwVJysm/fL74ncUWoJAYQLiSJEVIdOphxzZqKv5eRIb36qnlu3bT21d//bqp8d+82iWK72dVCMy7OVGz99Zc0c6Y95wQAVC12JIkzMqSLLjLPx483+xsGKq7YX5Jbt0rffx/4uQAAiEUNGkg7d0qLF/t3XM2a0nHHmQSwt05U9etLX3xhFny5XGaR9t695jOrAjhYN9xgktWPPWbP+QAg1t1yyy2qWbOmGjRooI0bN+qDDz7w+t2pU6cqJSXlyCMtLS2MkcIJ/rabppIYQKiRJEZI+Zokvv9+qbDQtMvq39+/34iLk/71L/N8+nTTEtouK1eaSXniRE/FcjCuv96MTz/N/o0AAP8Vbzcd6LzUurXZAmLoUPtu+P75p9S7t3TWWexZCABAcf36mXHVKsmfArHhw83eww89VPH3qleXrAK1detKvm+HmjXNNhMAUFXdeuutcrlcFT5Wrlx55Pv/+te/9Ouvv+qLL75QfHy8LrnkErm9XLylp6crLy/vyCMzMzNc/yzY6PffzQLs226r/LtXXy3dfHP5XUKKs9pNU0kMINTYkxghZSWJ166VDh82+wqXtnatacElSXfdFdjvXHCBdPvtpmXHq6+aPYTt8J//SHv2SJmZ9uwjfNZZpg3YunVmr+Yrrwz+nACAqsNKEhcWmraP9er5f46EBJMcLijw3FQOVvv2Jvm8aJE0erT03Xf+31AuKipZmQwAQCxo1MhU9W7cKC1ZYhZp+cOf69C9e81cWnoPYwBA4G688UaNqaT9Utu2bY88b9iwoRo2bKiOHTuqS5cuSktL04IFCzRo0KAyxyUlJSkpKcnukBFm27ebe8hpadIDD1T83Usv9e2cgweb++S+7nUMAIHiVhxCqnlzs4L58GHP3kilbd4stWplVkoPHBjY7yQmeqp0p00zN5qDtXu39MIL5vmECcGfT5Li46VrrzXPH3lEOnTInvMCAKqG6tWlKVOkxx/3P8H7zjvSwYOe13bei0hMlN580+xTvHChlJ7u3/Gvvy716iXl5dkXEwAAkcLqlvXzz759/8cfA9ta4vjjzfYPr7/u/7HeuN1ma4ohQ6Rt2+w7LwBEi9TUVHXu3LnCR6KXFbJF/7tBWWBn20NEnH79zCKtzExpyxb7znn33abgCABCKeqSxAUFBerdu7dcLpeWLl3qdDioRFycqS6SvLec/tvfTFvnF18M7reuvFKqU8es1N6xI7hzSWZfp927pU6dpBNPDP58lssuM5Vgq1dLzzxj33kBAFXD5MlmwVGtWr4f8/zz0qhR0sknm4VbodC6tWdx1aOPShVsvVVGgwYmrkA7igAAEMmsJLEv+xIXFkp//7tpM7lwof+/1ahR+R28AuVySV99ZbqEeFv4DQCQFi5cqCeffFJLly7Vhg0b9PXXX+uCCy5Qu3btyq0iRuyoXVvq1s08r2ju3rlTmj/fFEwBQKSIuiTxzTffrGbNmjkdBvzQu7fZZ6Gi6t5q1czev8GoU0dasUKaN09KTQ3uXBs2mEotSbrlFntaTVvq1PGc+957S1Z1AQBgt/nzzb5HkmlxaeeN49LOOku64QbzfMwY7zeTMzKk884rWTm8cqU0Y4bEGkAAQKzxJ0k8f77Zf7B27chpMdmqlRm/+ELav9/ZWAAgUtWoUUNz5szRiSeeqE6dOunyyy9Xz5499e2339JSugo4+mgzVpQk/u4700b67LMrP5/bLa1aJX37LZ0oAYRWVCWJP/30U33xxReaNm2aT98vKChQfn5+iQfC7+WXpWXLpNNOK/n+xo2mktbOJKkd6wfcbmn8eLOf03HH+b5XhD+uvNI8vvzS/z0bAQBV26ZN0k8/mXnUl++efbaZa//+d+nOO0Mf34MPSgMGmD2TS/+e222qmnv3lt5+W7r5ZvP+ySebSueiIumf/7Rn2wgAACJF377SCSdIo0ebSuGKvPeeGc84I3KuFTt0MOOdd5quWH//u7nOd7udjQsAIkmPHj309ddfa8eOHTpw4IDWrVunWbNmqXnz5k6HhjCwtlBcsMD7d6wKYl//J9Gzp2crCQAIlahJEmdnZ2vcuHF6+eWXVaNGDZ+OmTp1qlJSUo480tLSQhwl/DF1qkmUjh1r/7lzcqTXXgvs2A0bpB9+MBfkTz9tWmbbLSHBnLt7d/vPDQCIbXfcIR1zjPTYY2ZbBG/275dGjjTVSD17mlbQoZjTSktMlN56S7rmGmnWLM/7O3ea6uHLLjMLsYYMkW6/3fP5o49KNWuaCiqrbTUAALEgJUWaO9cspIqP9/49t1uaM8c896XKKFzuv1+aOFFKS5P27TMxPvRQyY5bO3c6Fx8AAE6zKol//tn7Fk9WkrhFi8rP53J5um5mZQUfHwB4ExVJYrfbrTFjxujqq69Wv379fD4uPT1deXl5Rx6ZmZkhjBKVKb7KODNTevZZ8/zKK+39ne3bzb6I//iHacvhr9atTdvq116TOne2NzZvWBEGAPBVkyZmnD7dbGHQrp10zjlmKwNr3nO7pcsvl5YsMfv9vv++f3sYB6tVK+k///H85tdfm0T1O++YhVJTp5qb5S1beo5p0cKzHcPNN0s7doQvXgAAIsHSpWarhuRkafhwp6PxaN5ceuIJs6B6yRJTUTx+vOfzfftMArlvX7Ol0urVzsUKAIATunQx1+cNG0pbtpT/HX8ria0kcXZ28PEBgDeOJolvvfVWuVyuCh8rV67UjBkztHv3bqWnp/t1/qSkJNWpU6fEA+GXlyf16mVWT1utpR96yOynMGSIedipYUNp2DBzg/yRRwI7R9OmpoVWqLndZkV2y5bSokWh/z0AQPQbN85UCFurj9euNa0p775bWrPG897HH5uE7DvvSG3aOBWtlP//7N13eFPl2wfwb9rSlpa20BZaCi2z7EKBsmUjUxDHT1BUUIYDVEREQGWJIC4coKgoKA4cL+BAluw9ykb2Kqtl0wFtaXPeP27TNB1p0iY5ycn3c125aNMnyZOTcO7zrPtJBh57TBrEtWrJSuGxYwteSfXii0D9+jJAPH684+tKRERkT9evA3v2FP53Q6rpbt0ku4az0emAJk2AKVMkY4jBrl2SwWT3bmDCBMmYtX69evUkIiJyNA8PmUx15ozpZOjczp+Xfy1ZSQwYJ4hzJTER2ZOqg8SvvPIKDh8+bPZWvXp1rFmzBlu3boWPjw+8vLxQs2ZNAEBcXBwG2mPDWLKpwEDg5ElJiXn6tHQSf/WV/G3iRPu8pmGPw2+/tTyQbtkiHeqOpNPJccnKAl55hXs6ERFR0WrUkE7kc+cke8bq1ZKqeeBA6bg1lNm+XeJghw6qVhfvvy8zn4cNk85jc0lhSpWSFcjNmgFDhjiujkRERPa2c6dk9+jZs/B235Il8u+DDzqsWjbRrp20u7/+GmjdWiaEP/UUkJqqds2IiIgcp2xZ48/Xr+ffHooriYnIGekUxfmHpRISEpCcnJzz+8WLF9GtWzf89ttvaNGiBSpbOP0mOTkZQUFBuHXrFlcVO1jjxpI6648/gFWrgE8/Bdq2ldnFufcxsqU2bWTgd9w4YNo082XT04HYWEnT+eWXskrLUS5cAKKjZeb1//2f63UIELkjxpOS4zF0H5mZkm6ralXLH6Mo9rs+ICJtYTwpOR5Dx7h9WyZQZ2fLRK+CujEuX5Y280MPAeXKOb6OtpCcDMTEAAkJwPPPA7Nnq10jInIUxpOS4zHUhrQ0yXKZmQksWwZUqCD3BwTIBKqjRyXLVlHeeAN4+23Z4mHWLPvWmYi0x9KY4hJ7EkdFRaFBgwY5t1r/nUVr1Khh8QAxqSs6Wv7dsEEGYQFZRWzPDuBXX5V/P/ss/8ytvKZPlwAdHg7873/2q1NBKlUCRo+Wn197zZiSm4jI2WVkZCA2NhY6nQ579+5VuzrkpLy9rRsgBkyvD27ftk09FAWYMwd49FHg0iXbPCcREZGl/PxkSwVA0jMXpEIFyaThqgPEgAyEf/21/PzZZ9xWiYiI3E9CgmTV3L1bFjGdPg3o9TLgO2aM5emmuZKYiBzBJQaJyfUZBon37JE9iFu3Bjp1su9r9ukjs7Ju3TKmty7Iv//KIDEgK5xzpwZxlFdflcB/4oQ0pImIXMGYMWMQERGhdjVIozIygDfflP2US9oovntX0l0/9xywcKHskZydbZt6EhERWcqw5cLOnerWw966dJGJ0LNnm99mgoiISIvq1gU2b5bJ0idOSD/4gQPAiy8CM2bIxDFLtG4NTJoEPP64feqpKMAvv0jbm4jcl0sOEletWhWKoiA2NlbtqpCFcqfQWLECWLnS/mkkPTxk8NXbG7hxo+Ayer10Gt+9C/TuLWm91BAQALz1lvw8ZYrsW0FE5MyWLVuGlStX4v3331e7KqRRXl7A339L6s0xY4r/PDduAN27A3PnyrVB6dLAunXA1Kk2qyoREZFFmjWTf/MOEp8/D3ToIKkknX9DMMu8956km/ZwyV4nIiKikomOloHimBggMRFo1062XbRG06aSifP++wsvs22bXD8UZxL04MFAv37A5MnWP5aItIOX6+QQhpXEx4/Lv/7+jnndJ54AzpwxDsDm9dVXErDLlJFZzmruf/j000CDBjJwvW+fevUgIipKUlIShg4digULFsDPwimwGRkZSE5ONrkRmePpCXz+ucTm776TLSuK46efgDVrJNb/8Ydx24ulS2WSGBERkaMYBol37TIdDF6yRDqOFy5Ut01qL6mpsoKKiIjInURESDu2bVsgOVkmhBn6xm3hyhWgRw/ghRckO6alNm+W7Q7vu09+nzED2L7ddvUiItfCQWJyiFq1gKgoWa2r1zvudX18gIoVC/7bjRvGlUlTpwKRkY6rV0E8PaUj+8QJoGNHdetCRFQYRVEwaNAgPPvss4izIn/g9OnTERQUlHOLVPukSy6heXNg6FD5+fnnizeo+9xzEu83bwZ69ZJUXd9/D2zcCJQqZdv6EhERmRMTY8x0deqU8f7Fi+XfBx5Qp172dOQI0LAh0LOnbAVFRETkTsqWlaya994rvxsmLVtCUSSOrltXcFv49deBmzfl5wkTgIsXi37O8+eBzp2B2rVlv+THHpO++oEDgTt3LK8bEWkHB4nJIUJDJa1zRIR66ab27AF27zb+Xq6cdBI/8AAwYoQ6dcqrQQM5VkREjjZ27FjodDqztyNHjuDTTz9FSkoKxo0bZ9Xzjxs3Drdu3cq5nTt3zk7vhLRm2jSJjYcOAc8+C8THF/2YRYtk1RIgK7JmzJAOaoMBA2QiGRERkSN5e0sn7pdfSnsUAK5dM6af1OIgcWSk9AGcPw+88oratSEiInK80qWBZctk4vKUKdY9tlEjWUyUdwA4NVUGnwGgWjUgJUW2XSzKW2/JHsRRUUCFCrICuWJF4OhR4I03rKsbEWmDTlG0suNN0ZKTkxEUFIRbt24hMDBQ7eqQA82ZIyuJOnaUlJPOTlGA5culU9yQkoyInIcW48mVK1dw7do1s2WqV6+ORx55BH/++Sd0uXIhZmdnw9PTEwMGDMC3335r0etp8RiS/cybJ9syAPLv11/Lz9nZwN69QGysZOTQ64Hx42VQuE8fGSz29Cz8ebOypJEeEgK89JK93wUR2QPjScnxGKpr/nzgqaekE3jvXrVrYx8bNwLt20s79++/JTUmEWkP40nJ8RhSXlWqAAkJsvdwixamf0tLk22UatSQ/mNFkX7vwjJUnjwJ1Kkj7eCNG4F77pH7//5bsm7pdDJxrW1b+74nInIMS2OKlwPrRKSaXr0ALy9g7Vq51asHhIWpXavCffQRMGqUpNnctk2b+1IRkXMpX748ypcvX2S5Tz75BFOnTs35/eLFi+jWrRt+/vlntMjbYiGykUGDZPb1okXGfZMA6UyPi5MUXh06AOnpMskKkM72ouLnkiUyk7pUKUm1ZUUGdSIiIptYtEj+ffBBdethT23bymSsjz4ChgwBDh40rqQmIiKiwoWFySBxUlL+v/n7A488Ij8//7ysJq5bt/DnmjRJBoi7dzcOEAOyJcTTTwPffAMMHgz8+6/0oxORe2C6aXILkZGyxwIgnct16gC//aZuncx59FEJ9Dt2AD//rHZtiIiMoqKi0KBBg5xbrVq1AAA1atRA5cqVVa4daZVOB/TvD/zyi2kqzjNngMBA2YdpyRIZIPb2BhYskBXCRW1x8dBDcrt7F+jXj3slEhGR/en1wM6dwOefS9xZuVLu1/IgMQC8/TYQHS3pMl9+We3aEBERuYbwcPk3MVH+vXUL+PZbuZ7I7ZNP5H5D+bwOHQJ++EF+fuut/H//8EOgUycZKOYAMZF74SAxuY3Ro+Xf27elMzkoSNXqmBUeDrz2mvw8dqysjCIiIiJTDz0kezlu3w5Mny6TrNauBR5/3LLH63TA3LmSwuvUKeCZZyRFFxERkb0oimS/eP55YNMmoEsXoEEDoH59tWtmX35+klpbp5NO7L/+UrtGREREzs+QCdOwknjSJMm09eSTpuXyTpDOyDD9fcIEuQZ54IGCM2gFBQGrV5uuMCYi98BBYnIbMTHGvY+eeAK4915161OUV14BKlUCzp4F3n1X9l0kInI2VatWhaIoiI2NVbsq5Ka8vGR7hrFjgR9/BFq3tu7xZcsCCxfK3sU//2zc75iIiMgePD2BJk3k56tXZbB071732GKodWtp5/bpAzRtqnZtiIiInF/ulcQHDwKffiq/5x0kNkhIkIHggQON92VmyqIpna7gVcQFOX4cSE4ufr2JyHVwkJjcyrx5wKxZktrL2fn5SUouAJg4UTqxz5wx/v3uXTVqRUREpD0tWxpj7osvSioue8vIAC5f5splIiJ31KyZ/Ltzp/zr6aleXRxt+nTZIqJiRbVrQkRE5PwMK4kTE6Wtmp0tg8BduxZc/vp14I8/ZAL06tVyn7c3sGwZcPiwZZlLvvsOaNRItsJYtYoLl4i0joPE5FbCwoDhw2W/X1fwxBPAc88BZcpI2pCoKOPfnn4aqFFDUmrOmgXs2uX4gWNFkU7ulBSZBX/xInD6NHDiBGebERGRa3n1VWND+8gR4/0nTgBZWcV/3sxMmfF94YLxvpUr5VokLAwoV05WVg0dCnz0kfztypXivx4RuZ+lS5eiRYsWKF26NMqVK4e+ffuqXSUqgmGQ+Lff1K2HGry8TFdNnzunXl2IiIicXevWwOTJQOnSsrWSr6/sH1yY2FhgxAj5efhwaY8a1K5t2WtWqSKPW71a2shVqwLjxwNHjxb3XRCRM9MpivusX0hOTkZQUBBu3bqFwMBAtatDZLHsbGk8V61qvK9WLUn9kZuvL9Cwody++sp4/5Ur0gnt5WX+dRRF9nY8eVJup04Zfz5/Xval+O47Y/kyZYC0tIKfq1EjSZtm8PrrMkO+cmUgMlL+rVxZVki7Q2o10hbGk5LjMSRnlJQkcbBePfk9K0vilKLIvk0tW8qtRQuJuZ6esncTIJOlvv9eHn/tmjzX4cMSq7OyZKXy+PFS9tgx8w303GX37QNmzgR8fAq+de0qHQGANOQzMoCAAHscHSLn5O7x5P/+7/8wdOhQTJs2DZ06dUJWVhYOHjyIRx55xOLncPdjqIbjx6U9B8jeghMnqlodVSQny77MP/wAVKgAREfnvzVqVHhbUa+XjBznzknsy72HYq9eMoG6fHkgNNT034oVrd+agogsw3hScjyGVJC0NKBOHembteS64eZNKZ+UJHFv925j2mpL7dsHfPkl8NNPwI0bxvtbtAD+/hsIDrb2XRCRo1kaU4oYMiIiZ+DpaTpADAA7dkh6sq1bgW3b5Hbjhtyfnm5atlMnWRUVFQVUrw5Uqyb/BgVJ5/ejj0q5rCy5aCgsjUiNGqa/lyqVv54+PtKQr1zZ9G+ffiorjvMqXVo6uJcsMd53771yAeTra9oR7usrnQVvvGEsO3u2vF9f3/y3smWBNm2MZf/+WzojsrPlptcbfw4IMB4HQPYGu3lT3pOHh/Hm6Sl17tbNWHbLFjn2Op3pDZCULh07GsvGx8vgAZA/xahOZ5ouZs8e86vJunSROgHA/v2SeqYwHTsaP69//zVd0ZZX27Zy/ACZJZiQUHjZNm0kNTognV25U6Ln1bKlceDCMAGhMM2ayecHyL7cx44VXrZJEyAkRH4+f14GZQrTqJF0QhERFSQszJjOC5Dzn4eHxK8NG+SW2+uvA1Onys83bgAvv1zw8wYESAe2QY0acr4KDZXz27//Soprw61hQ2PZM2eAb78tvM6BgcZB4u3bgXbtZBJXxYpARITcwsPlvN63r+zfDMjrL1kisaFUKYlBd+7IXlW3b0uca9FCyh44ALz5psStgADjrUwZ+feee4yr4m7elLiYO87m/rdBAyAmRsreugUsXWp8L4bYqdPJca9dW87bgNTtn3+Mf8sdawGZgGZInZaZCaxbV/gxi4iQegBSL0MatoJUqGA8voCkWytMSIhxn1EAWLOm8GuqsmWNxwwA1q83neWfW2Cg8bMAgE2b5HgUxN/fdPBjy5bCJ/T5+krMN9i+vfBMMKVKAR06GH/ftcu0syg3Dw+gc2fj73v2yCSKoupK1svKysJLL72E9957D4MHD865v55hpgs5rZo1jT/nPse4Ex8f47nh8mW5bd5s/Lu/v2n78bPPpM2bkCADw+fPG8+b9etL1g6Dc+ckdhWkWjVpixh07SpZQ4KC5Hyb+9+ICIn1Bhs2SPvM0IbMfStd2rQ9uWiRdM57ecnN09P4s6+v7MtsEB9vPBaKYmwnKorEuh49jGV37pR2X+62ZO6fe/c2thHj4+U45W2nGm5duhjbiIcOmW8jtmtnbCMeOVJ0G9GQve3ECck2VhhnayNeumT6XcqrQQNjqvTLl2UQpTB16xr7Ra5dk0GawtSqJSv3ALmWMqSiL0iNGtKfA8j/kW3bCi9brZrxfHP7tun/sbw6dix6YQERqWPaNDmXVa0KjBlTdPmyZYH33pN9iy9dkvNWaqp1mTUbNZI+1w8/BP78U9qky5ZJG65cOWO5mBg5bwUHG29BQRLnq1Uzre/nn0s9ANNYB8g5e8gQY9lvvpHYmDtuGfpmg4KAQYOMZf/4Q+Jz7nKGn319gf/9z1h29Wo5f+dmiL1eXkC/fsb7V62SrJm5+4UNfcMeHpL229Am3blTygLG+3LH9PvuM55jd+2SOJq3rrnjs4+PlD10yBhz87aBAYnPpUvLz0ePmu+XbdNG2vCAxOcTJwov26qVcUL8mTOFx1ydDmja1DhpICHBNDNbXo0by6Q9QI6Xua2+GjY09s8kJUnfd2Hq15frNkC+C7kXruVVp470HwCSnj0+vvCy0dHGMZlbt2TcpTDVqxvHTlJTZcymMFWqGCeM3rkjbfzccl/HOITiRm7duqUAUG7duqV2VYhsTq9XlCNHFOX//k9RFi82vT842BCW8t9atTJ9nho1FKVyZUVp105RnnpKUaZOVZQff1SUzZsV5dgx07JXrijKzZuKcvu2omRlmf4tM9P4c1aWPM+zzyrKffcpSmysooSGGutw772mjw0MtLy+ERGFl42NNS1bvXrhZWvWNC3bsGHhZSMiTMu2bFl42bJlTct26VJ42VKlTMvef3/hZQHTY/zoo+bL3rhhLDtkiPmyFy4Yy770kvmyub8T48aZL7tnj7Hs1Knmy27ebCw7c6b5sitXGst+8YX5srn/b5QE40nJ8RiSq8jOVpRDhxTl668VZdgwiQ8eHnJOefFFY7mbNxWlf39Fef55RXnzTUX5+GNFWbZMURISJBYX19GjivLOO4oyebKijB+vKK+8oigjRijK0KGK8uSTirJ2rbHsr7+aPwfOmWMsu2qV+bIzZxrLbtpkvuzbbxvL7thhvuyECcay//5rvuwrrxjLnj1rvuyzzxrLXrlivuwTTxjL3r5tvuxDD5l+Hjpd4WW7dzct6+9feNm2bU3LVqhQeNmmTU3LVqtWeNk6dUzL1q9feNnISNOyzZsXXjYkxLRsx46Fl/X1NS3bq5dldS0ud44n27dvVwAo33zzjRIbG6uEh4cr3bt3Vw4cOGD2cenp6cqtW7dybufOnXPbY6imVasUZdasksUILbh1S1F27VKUn35SlClT5BzdsqWcZ3Jr0CD/ecTDQ1EqVVKUrl1Ny27YoCjffqso77+vKGPHKsrgwdK2at06/3m9atXCz2fVq5uWbdKk8LIVK5qWbd268LJBQaZlXaGNeP68saw1bcTx482XtaaNuGmTsaw1bcQvvzRfNncb8fvvzZf9/ntj2cWLzZf98ktj2ZUrzZe15rpr6lRj2T17zJcdP95Y9tgx82VtEQLcOSbbCo8hFWTbNkWJi7OuT0uvl75dwLTdWhKXLkl7L7egoMLPK3FxpmWrVCm8bL16pmXr1i28bJUqpmXj4govGxpqWrZ9+8LL+vmZlu3Rw/x5M7eHHzZfNi3NWPbJJ82XvXzZWPa558yXPX3aWHb0aPNlDx0ylp040XzZ3J/zu++aL5u7T2LWLPNl//rLWHbePPNlf/nFWPaXX8yXnTfPWPavv8yXnTXLWHbtWvNl333XWLaovo6JE41lDx40X3b0aGPZ06fz/33FCsUmLI0pnCNGpBE6nay4yZu+UqeTGTSXLsnM3FOnZCbvqVMyAybvzPUjRyyfPRoaWvjfcq8y9vQ0nYFtkJ4us4Y8PU3v/+UXmUWTni4rrzIyjD/nTY/yyCMysyw93VgmPV0en3uGPiCzoKpUkdcz3AwzwPKufG7dWmYr6fXGm2EVVN6ZPHXryirs3KdzQP41zNAyqFGj4NU0QP7jXq2a5SsLqlQpvKyimB7jyEjjyqyi6lGpkvmy3t7GnytWNF/WMLMNkGNrrqxhdTIgM8zMlc19jENCzJc1zIIjIrKUh4ekn65XD3j6abnvzh253zC7F5Dzy08/2f71a9UCXnvNsrIPPywzVi9dkvhquCUmSnzMvUK5fHmZUX33rtz0ejn3+vvLv4aVtoDMnv3yS4knqamyaiUlxfhz7ucNCJDU3LlnWOf+t1o1Y1l/f5klDRhjJyB1URTTDCalSskqaENMzl0eMM4EBuR1zMWCqCjjzzqd+bJ5M7k0apT/tQ0Mq3oMYmIKX/Gb9xqlfn3jyqS8DDOMDerWlVVuBcl9fAG5Lizsui7vNVV0tOmK99wMK7cMatSQWdcFyf3/wlCngo5x3rqS9U79txxy0qRJ+PDDD1G1alV88MEH6NChA44dO4bgQvIATp8+HZMnT3ZkVakAXboYz4HuLDBQVqA0bWq+3BNPyPk3KkrO+ZGRsmIkb3YrQLIk5M6UYM6yZZIZITlZ2se5/83blouOlthliGm525R524gdOsh5PSvL9JadbdrWAYxtxNwZNQw/531/tWoZs0vkXk1UUFru6GhZqVtQ9yRgGh8iI823PXPXo1Il82Vzx4HwcNu1EXOvgLOmjRgcbHkbsVw582Vzr54LCjJfNvcpuEwZ82UNq6oAeZ/myubOelO6tPmyuWO9t7f5soYV6ETkfFq0kKw/1mzXp9MB//d/ktniySdtU4/w8PxtiD17pF1w7Zr8e/26xNG7d/OXffhhWcVbULyrVMm07AMPSPsvb/wqqF/2nnvk3FhQvMvbD9i0qcS/3H23uVcd59asmfE1C7rlVquW9Dvnfd6879NQtk0b0/eUu85547MhW1VB7dDc/bIREZbH54oVTbNg5ZX7WiVvdi0DQ31yx9zQUPOxJnc71pr4bE3MDQw0Xzb3eIY18dmamOvra76sYdUzUHB8dvQWYtyTmIiIyEqMJyXHY0hERLagxXgyduxYzJgxw2yZw4cPY/fu3RgwYAC++OILDBs2DACQkZGBypUrY+rUqXjmmWcKfGxGRgYycs0ISE5ORmRkpKaOIREROZ4WY7Kj8RgSEZGtcE9iIiIiIiIiIhfzyiuvYFDujdYKUL16dVy6dAmA6R7EPj4+qF69OhLMbBjq4+MDn7xLvomIiIiIiMjtcJCYiIiIiIiIyEmUL18e5XPnNitE06ZN4ePjg6NHj+Kee+4BANy9exdnzpxBlSpV7F1NIiIiIiIicnEcJCYiIiIiIiJyMYGBgXj22WcxceJEREZGokqVKnjvvfcAAP/73/9Urh0RERERERE5Ow4SExEREREREbmg9957D15eXnjiiSdw584dtGjRAmvWrEG5cuXUrhoRERERERE5OQ4SExEREREREbmgUqVK4f3338f777+vdlWIiIiIiIjIxXioXQEiIiIiIiIiIiIiIiIiInIcDhITEREREREREREREREREbkRDhITEREREREREREREREREbkRDhITEREREREREREREREREbkRDhITEREREREREREREREREbkRL7Ur4EiKogAAkpOTVa4JERG5MkMcMcQVsh5jMhER2QJjcskxJhMRkS0wJpccYzIREdmKpXHZrQaJU1JSAACRkZEq14SIiLQgJSUFQUFBalfDJTEmExGRLTEmFx9jMhER2RJjcvExJhMRka0VFZd1ihtN79Lr9bh48SICAgKg0+lM/pacnIzIyEicO3cOgYGBKtXQfrT8/rT83gC+P1em5fcGuPf7UxQFKSkpiIiIgIcHd24oDnMx2UDr3zG18fjaF4+v/fDY2perHV/G5JIrKia72nfCUnxfroXvy7XwfbkWW70vxuSSs6SdbKDV76Mt8RiZx+NjHo+PeTw+5jnD8bE0LrvVSmIPDw9UrlzZbJnAwEBNf6m1/P60/N4Avj9XpuX3Brjv++PM6JKxJCYbaP07pjYeX/vi8bUfHlv7cqXjy5hcMpbGZFf6TliD78u18H25Fr4v12KL98WYXDLWtJMNtPp9tCUeI/N4fMzj8TGPx8c8tY+PJXGZ07qIiIiIiIiIiIiIiIiIiNwIB4mJiIiIiIiIiIiIiIiIiNwIB4n/4+Pjg4kTJ8LHx0ftqtiFlt+flt8bwPfnyrT83gC+P7I/fgb2xeNrXzy+9sNja188vpSXVr8TfF+uhe/LtfB9uRatvi+t4+dWNB4j83h8zOPxMY/HxzxXOj46RVEUtStBRERERERERERERERERESOwZXERERERERERERERERERERuhIPERERERERERERERERERERuhIPERERERERERERERERERERuhIPERERERERERERERERERERuhIPEAGbPno2qVavC19cXLVq0wI4dO9Sukk1MmjQJOp3O5FanTh21q1VsGzZsQO/evREREQGdToclS5aY/F1RFEyYMAEVK1ZE6dKl0aVLFxw/flydyhZDUe9v0KBB+T7P7t27q1NZK02fPh3NmjVDQEAAKlSogL59++Lo0aMmZdLT0zF8+HCEhISgTJkyeOihh5CUlKRSja1jyfvr0KFDvs/v2WefVanGlvv888/RsGFDBAYGIjAwEK1atcKyZcty/u7KnxtQ9Ptz1c9NK7Qanx1N6/FTTVqPb2rSevxxNu+88w50Oh1GjhyZcx+PMQHai8VaaiNrNb5rsV2s1esFrbaDtXoNwrav9mgtRheXVuOhrWg1BtmKVs/59sJ2o6mi2haucmzcfpD4559/xqhRozBx4kTs3r0bjRo1Qrdu3XD58mW1q2YT9evXx6VLl3JumzZtUrtKxZaWloZGjRph9uzZBf793XffxSeffII5c+Zg+/bt8Pf3R7du3ZCenu7gmhZPUe8PALp3727yef70008OrGHxrV+/HsOHD8e2bduwatUq3L17F127dkVaWlpOmZdffhl//vknfv31V6xfvx4XL17Egw8+qGKtLWfJ+wOAoUOHmnx+7777rko1tlzlypXxzjvvID4+Hrt27UKnTp1w//3349ChQwBc+3MDin5/gGt+blqg9fjsSFqPn2rSenxTk9bjjzPZuXMnvvjiCzRs2NDkfh5j0mos1kobWavxXYvtYq1eL2i1HazVaxC2fbVFqzG6OLQaD21FqzHIVrR6zrcHthsLZq5t4TLHRnFzzZs3V4YPH57ze3Z2thIREaFMnz5dxVrZxsSJE5VGjRqpXQ27AKAsXrw453e9Xq+Eh4cr7733Xs59N2/eVHx8fJSffvpJhRqWTN73pyiKMnDgQOX+++9XpT62dvnyZQWAsn79ekVR5LMqVaqU8uuvv+aUOXz4sAJA2bp1q1rVLLa8709RFKV9+/bKSy+9pF6lbKhcuXLK3LlzNfe5GRjen6Jo63NzNVqOz2rSevxUm9bjm9q0Hn/UkJKSokRHRyurVq0yiXk8xqQo2ozFWm0jazW+a7VdrNXrBS23g7V6DcK2r+vSYoy2Ba3GQ1vSagyyJa2e80uC7caCmWtbuNKxceuVxJmZmYiPj0eXLl1y7vPw8ECXLl2wdetWFWtmO8ePH0dERASqV6+OAQMGICEhQe0q2cXp06eRmJho8lkGBQWhRYsWmvksAWDdunWoUKECateujeeeew7Xrl1Tu0rFcuvWLQBAcHAwACA+Ph537941+fzq1KmDqKgol/z88r4/gx9++AGhoaFo0KABxo0bh9u3b6tRvWLLzs7GwoULkZaWhlatWmnuc8v7/gxc/XNzRe4Qn52Fu8RPR9F6fFOL1uOPmoYPH45evXqZHEuA313Sdix2hzay1uO7q7eLtXq9oMV2sFavQdj2dW1ajtG2pvV4WBxajUG2oNVzvi2w3Vi4wtoWrnRsvNSugJquXr2K7OxshIWFmdwfFhaGI0eOqFQr22nRogXmz5+P2rVr49KlS5g8eTLatm2LgwcPIiAgQO3q2VRiYiIAFPhZGv7m6rp3744HH3wQ1apVw8mTJzF+/Hj06NEDW7duhaenp9rVs5her8fIkSPRpk0bNGjQAIB8ft7e3ihbtqxJWVf8/Ap6fwDw2GOPoUqVKoiIiMD+/fvx2muv4ejRo1i0aJGKtbXMgQMH0KpVK6Snp6NMmTJYvHgx6tWrh71792ricyvs/QGu/bm5Mq3HZ2fiDvHTUbQe39Sg9fijtoULF2L37t3YuXNnvr/xu0tajcXu0kbWcnx39XaxVq8XtNYO1uo1CNu+2qDVGG0PWo6HxaHVGFRSWj3n2wrbjYUz17ZwpWPj1oPEWtejR4+cnxs2bIgWLVqgSpUq+OWXXzB48GAVa0bF0b9//5yfY2Ji0LBhQ9SoUQPr1q1D586dVayZdYYPH46DBw+67N5fRSns/Q0bNizn55iYGFSsWBGdO3fGyZMnUaNGDUdX0yq1a9fG3r17cevWLfz2228YOHAg1q9fr3a1bKaw91evXj2X/tyIyLG0Ht/UoPX4o6Zz587hpZdewqpVq+Dr66t2dYgchm1k1+fq7WKtXi9orR2s1WsQtn2J3JtWY1BJafWcbwtsN5pnrm1RunRpFWtmHbdONx0aGgpPT08kJSWZ3J+UlITw8HCVamU/ZcuWRa1atXDixAm1q2Jzhs/LXT5LAKhevTpCQ0Nd6vMcMWIE/vrrL6xduxaVK1fOuT88PByZmZm4efOmSXlX+/wKe38FadGiBQC4xOfn7e2NmjVromnTppg+fToaNWqEjz/+WDOfW2HvryCu9Lm5MneLz2pyx/hpD1qPb2rRevxRU3x8PC5fvowmTZrAy8sLXl5eWL9+PT755BN4eXkhLCyMx9jNuUss1mob2Z3iuyu1i7V6vaDFdrBWr0HY9tUGd4nRtuBO8bAoWo1BtqDVc74tsN1ondxtC1f6/rj1ILG3tzeaNm2K1atX59yn1+uxevVqkz05tCI1NRUnT55ExYoV1a6KzVWrVg3h4eEmn2VycjK2b9+uyc8SAM6fP49r1665xOepKApGjBiBxYsXY82aNahWrZrJ35s2bYpSpUqZfH5Hjx5FQkKCS3x+Rb2/guzduxcAXOLzy0uv1yMjI8PlP7fCGN5fQVz5c3Ml7haf1eSO8dOWtB7fnI3W448jde7cGQcOHMDevXtzbnFxcRgwYEDOzzzG7s1dYrFW28juFN9doV2s1esFd2oHa/UahG1f1+QuMdoW3CkeFkarMcietHrOLw62G62Tu23hUt8fxc0tXLhQ8fHxUebPn6/8+++/yrBhw5SyZcsqiYmJaletxF555RVl3bp1yunTp5XNmzcrXbp0UUJDQ5XLly+rXbViSUlJUfbs2aPs2bNHAaB8+OGHyp49e5SzZ88qiqIo77zzjlK2bFnl999/V/bv36/cf//9SrVq1ZQ7d+6oXHPLmHt/KSkpyujRo5WtW7cqp0+fVv755x+lSZMmSnR0tJKenq521Yv03HPPKUFBQcq6deuUS5cu5dxu376dU+bZZ59VoqKilDVr1ii7du1SWrVqpbRq1UrFWluuqPd34sQJZcqUKcquXbuU06dPK7///rtSvXp1pV27dirXvGhjx45V1q9fr5w+fVrZv3+/MnbsWEWn0ykrV65UFMW1PzdFMf/+XPlz0wItx2dH03r8VJPW45uatB5/nFH79u2Vl156Ked3HmPSYizWUhtZq/Fdi+1irV4vaLUdrNVrELZ9tUWLMbq4tBoPbUWrMchWtHrOtye2G42Kalu4yrFx+0FiRVGUTz/9VImKilK8vb2V5s2bK9u2bVO7SjbRr18/pWLFioq3t7dSqVIlpV+/fsqJEyfUrlaxrV27VgGQ7zZw4EBFURRFr9crb775phIWFqb4+PgonTt3Vo4ePapupa1g7v3dvn1b6dq1q1K+fHmlVKlSSpUqVZShQ4e6zMVfQe8LgDJv3rycMnfu3FGef/55pVy5coqfn5/ywAMPKJcuXVKv0lYo6v0lJCQo7dq1U4KDgxUfHx+lZs2ayquvvqrcunVL3Ypb4Omnn1aqVKmieHt7K+XLl1c6d+6cc6GkKK79uSmK+ffnyp+bVmg1Pjua1uOnmrQe39Sk9fjjjPI29nmMSVG0F4u11EbWanzXYrtYq9cLWm0Ha/UahG1f7dFajC4urcZDW9FqDLIVrZ7z7YntRqOi2haucmx0iqIoxV+HTERERERERERERERERERErsSt9yQmIiIiIiIiIiIiIiIiInI3HCQmIiIiIiIiIiIiIiIiInIjHCQmIiIiIiIiIiIiIiIiInIjHCQmIiIiIiIiIiIiIiIiInIjHCQmIiIiIiIiIiIiIiIiInIjHCQmIiIiIiIiIiIiIiIiInIjHCQmIiIiIiIiIiIiIiIiInIjHCQmIiIiIiIiIiIiIiIiInIjHCQmzTtz5gx0Oh327t2rdlVyHDlyBC1btoSvry9iY2MLLKMoCoYNG4bg4GDV6++Mx7C41q1bB51Oh5s3b9r9tSZNmlTo50tE5I6cMZ4wJquHMZmISF3OGFMYl9XDuExEpB5njCeMyephTCZH4iAx2d2gQYOg0+nwzjvvmNy/ZMkS6HQ6lWqlrokTJ8Lf3x9Hjx7F6tWrCyyzfPlyzJ8/H3/99RcuXbqEBg0aOKRugwYNQt++fU3ui4yMdGgdXJFOp8OSJUtM7hs9enShny8RkRoYk/NjTNYexmQichWMy/kxLmsP4zIRuQLG5PwYk7WHMZkKwkFicghfX1/MmDEDN27cULsqNpOZmVnsx548eRL33HMPqlSpgpCQkELLVKxYEa1bt0Z4eDi8vLyK/Xol5enpqXodXFGZMmUK/XyJiNTCmGyKMdk9MCYTkbNiXDbFuOweGJeJyBkxJptiTHYPjMnEQWJyiC5duiA8PBzTp08vtExBqQ0++ugjVK1aNed3wyyhadOmISwsDGXLlsWUKVOQlZWFV199FcHBwahcuTLmzZuX7/mPHDmC1q1bw9fXFw0aNMD69etN/n7w4EH06NEDZcqUQVhYGJ544glcvXo15+8dOnTAiBEjMHLkSISGhqJbt24Fvg+9Xo8pU6agcuXK8PHxQWxsLJYvX57zd51Oh/j4eEyZMgU6nQ6TJk3K9xyDBg3CCy+8gISEBOh0upxjULVqVXz00UcmZWNjY02eQ6fTYe7cuXjggQfg5+eH6Oho/PHHHyaPOXToEO677z4EBgYiICAAbdu2xcmTJzFp0iR8++23+P3336HT6aDT6bBu3boC03WsX78ezZs3h4+PDypWrIixY8ciKyvL5Hi9+OKLGDNmDIKDgxEeHl7ge81r7ty5qFu3Lnx9fVGnTh189tlnOX9r3bo1XnvtNZPyV65cQalSpbBhwwYAwIIFCxAXF4eAgACEh4fjsccew+XLlwt9PUu+dzt37sS9996L0NBQBAUFoX379ti9e3fO3w1lH3jgAZPPK+9zF/XdMBznRYsWoWPHjvDz80OjRo2wdevWnDJnz55F7969Ua5cOfj7+6N+/fr4+++/zR5TIqLcGJMZkxmTGZOJyHkwLjMuMy4zLhORc2BMZkxmTGZMdkccJCaH8PT0xLRp0/Dpp5/i/PnzJXquNWvW4OLFi9iwYQM+/PBDTJw4Effddx/KlSuH7du349lnn8UzzzyT73VeffVVvPLKK9izZw9atWqF3r1749q1awCAmzdvolOnTmjcuDF27dqF5cuXIykpCY888ojJc3z77bfw9vbG5s2bMWfOnALr9/HHH+ODDz7A+++/j/3796Nbt27o06cPjh8/DgC4dOkS6tevj1deeQWXLl3C6NGjC3wOw8n40qVL2Llzp1XHaPLkyXjkkUewf/9+9OzZEwMGDMD169cBABcuXEC7du3g4+ODNWvWID4+Hk8//TSysrIwevRoPPLII+jevTsuXbqES5cuoXXr1vme/8KFC+jZsyeaNWuGffv24fPPP8fXX3+NqVOn5jte/v7+2L59O959911MmTIFq1atKrTeP/zwAyZMmIC3334bhw8fxrRp0/Dmm2/i22+/BQAMGDAACxcuhKIoOY/5+eefERERgbZt2wIA7t69i7feegv79u3DkiVLcObMGQwaNMiq45dXSkoKBg4ciE2bNmHbtm2Ijo5Gz549kZKSAgA5n8+8efPMfl5FfTcMXn/9dYwePRp79+5FrVq18Oijj+ZcwAwfPhwZGRnYsGEDDhw4gBkzZqBMmTIlen9E5F4YkxmTGZMZk4nIeTAuMy4zLjMuE5FzYExmTGZMZkx2SwqRnQ0cOFC5//77FUVRlJYtWypPP/20oiiKsnjxYiX3V3DixIlKo0aNTB47c+ZMpUqVKibPVaVKFSU7Ozvnvtq1aytt27bN+T0rK0vx9/dXfvrpJ0VRFOX06dMKAOWdd97JKXP37l2lcuXKyowZMxRFUZS33npL6dq1q8lrnzt3TgGgHD16VFEURWnfvr3SuHHjIt9vRESE8vbbb5vc16xZM+X555/P+b1Ro0bKxIkTzT5P3veuKIpSpUoVZebMmSb35X0uAMobb7yR83tqaqoCQFm2bJmiKIoybtw4pVq1akpmZmaBr5v78zIwHMM9e/YoiqIo48ePV2rXrq3o9fqcMrNnz1bKlCmT89m0b99eueeee0yep1mzZsprr71W6HuuUaOG8uOPP5rc99ZbbymtWrVSFEVRLl++rHh5eSkbNmzI+XurVq3MPufOnTsVAEpKSoqiKIqydu1aBYBy48YNRVEs+97llZ2drQQEBCh//vlnzn0AlMWLF5uUy/vcRX03DMd57ty5OX8/dOiQAkA5fPiwoiiKEhMTo0yaNKnQuhERmcOYzJhswJjMmExE6mNcZlw2YFxmXCYidTEmMyYbMCYzJrsbriQmh5oxYwa+/fZbHD58uNjPUb9+fXh4GL+6YWFhiImJyfnd09MTISEh+VI0tGrVKudnLy8vxMXF5dRj3759WLt2LcqUKZNzq1OnDgDZW8GgadOmZuuWnJyMixcvok2bNib3t2nTpkTv2VoNGzbM+dnf3x+BgYE5x2Pv3r1o27YtSpUqVeznP3z4MFq1agWdTpdzX5s2bZCammoyAy53PQCgYsWKhabOSEtLw8mTJzF48GCTz2Hq1Kk5n0H58uXRtWtX/PDDDwCA06dPY+vWrRgwYEDO88THx6N3796IiopCQEAA2rdvDwBISEgo9vtNSkrC0KFDER0djaCgIAQGBiI1NdWq57Tmu5H7uFWsWBEAco7biy++iKlTp6JNmzaYOHEi9u/fX9y3RURujjHZMRiTGZOJiCzBuOwYjMuMy0RERWFMdgzGZMZkcg4cJCaHateuHbp164Zx48bl+5uHh4dJGgZAUi/klTc46HS6Au/T6/UW1ys1NRW9e/fG3r17TW7Hjx9Hu3btcsr5+/tb/Jz2UJJjZDgepUuXtl8FrahHXqmpqQCAr776yuQzOHjwILZt25ZTbsCAAfjtt99w9+5d/Pjjj4iJicm5yEpLS0O3bt0QGBiIH374ATt37sTixYsBAJmZmQW+riXHdODAgdi7dy8+/vhjbNmyBXv37kVISEihz1lSuY+b4ULGcNyGDBmCU6dO4YknnsCBAwcQFxeHTz/91C71ICJtY0wuGcZkxmTGZCKyJcblkmFcZlxmXCYiW2FMLhnGZMZkxmTXwkFicrh33nkHf/75p8lm5oDMsklMTDQ54eXeaL6kcp+os7KyEB8fj7p16wIAmjRpgkOHDqFq1aqoWbOmyc2awBoYGIiIiAhs3rzZ5P7NmzejXr16JX4P5cuXx6VLl3J+T05OxunTp616joYNG2Ljxo0FBmcA8Pb2RnZ2ttnnqFu3LrZu3WryWW3evBkBAQGoXLmyVfUxCAsLQ0REBE6dOpXvM6hWrVpOufvvvx/p6elYvnw5fvzxR5NZWEeOHMG1a9fwzjvvoG3btqhTp06hM78MLPnebd68GS+++CJ69uyJ+vXrw8fHB1evXjUpU6pUKbPHzZbfjcjISDz77LNYtGgRXnnlFXz11VdWPZ6IyIAxufgYkxmTAcZkIrItxuXiY1xmXAYYl4nIdhiTi48xmTEZYEx2JRwkJoeLiYnBgAED8Mknn5jc36FDB1y5cgXvvvsuTp48idmzZ2PZsmU2e93Zs2dj8eLFOHLkCIYPH44bN27g6aefBiCbqV+/fh2PPvoodu7ciZMnT2LFihV46qmnigw4eb366quYMWMGfv75Zxw9ehRjx47F3r178dJLL5X4PXTq1AkLFizAxo0bceDAAQwcOBCenp5WPceIESOQnJyM/v37Y9euXTh+/DgWLFiAo0ePAgCqVq2K/fv34+jRo7h69WqBwfj555/HuXPn8MILL+DIkSP4/fffMXHiRIwaNcoklYq1Jk+ejOnTp+OTTz7BsWPHcODAAcybNw8ffvhhThl/f3/07dsXb775Jg4fPoxHH300529RUVHw9vbGp59+ilOnTuGPP/7AW2+9ZfY1LfneRUdHY8GCBTh8+DC2b9+OAQMG5JvRVrVqVaxevRqJiYm4ceNGga9li+/GyJEjsWLFCpw+fRq7d+/G2rVrcy4WiYisxZhcfIzJjMmMyURka4zLxce4zLjMuExEtsSYXHyMyYzJjMmuhYPEpIopU6bkS9tQt25dfPbZZ5g9ezYaNWqEHTt2YPTo0TZ7zXfeeQfvvPMOGjVqhE2bNuGPP/5AaGgoAOTMkMnOzkbXrl0RExODkSNHomzZslYHjRdffBGjRo3CK6+8gpiYGCxfvhx//PEHoqOjS/wexo0bh/bt2+O+++5Dr1690LdvX9SoUcOq5wgJCcGaNWuQmpqK9u3bo2nTpvjqq69yUkQMHToUtWvXRlxcHMqXL59v5hAAVKpUCX///Td27NiBRo0a4dlnn8XgwYPxxhtvlOj9DRkyBHPnzsW8efMQExOD9u3bY/78+SYzsQBJ2bFv3z60bdsWUVFROfeXL18e8+fPx6+//op69erhnXfewfvvv2/2NS353n399de4ceMGmjRpgieeeAIvvvgiKlSoYFLmgw8+wKpVqxAZGYnGjRsX+Fq2+G5kZ2dj+PDhqFu3Lrp3745atWrhs88+s/jxRER5MSYXD2OyYExmTCYi22JcLh7GZcG4zLhMRLbDmFw8jMmCMZkx2VXolLzJzImIiIiIiIiIiIiIiIiISLO4kpiIiIiIiIiIiIiIiIiIyI1wkJiIiIiIiIiIiIiIiIiIyI1wkJiIiIiIiIiIiIiIiIiIyI1wkJiIiIiIiIiIiIiIiIiIyI1wkJiIiIiIiIiIiIiIiIiIyI1wkJiIiIiIiIiIiIiIiIiIyI1wkJiIiIiIiIiIiIiIiIiIyI1wkJiIiIiIiIiIiIiIiIiIyI1wkJiIiIiIiIiIiIiIiIiIyI1wkJiIiIiIiIiIiIiIiIiIyI1wkJiIiFzGhg0b0Lt3b0RERECn02HJkiVFPmbdunVo0qQJfHx8ULNmTcyfPz9fmdmzZ6Nq1arw9fVFixYtsGPHDttXnoiISCOmT5+OZs2aISAgABUqVEDfvn1x9OjRIh/366+/ok6dOvD19UVMTAz+/vtvB9SWiIhI2z7//HM0bNgQgYGBCAwMRKtWrbBs2TK1q0VEROR2XDEmc5CYiIhcRlpaGho1aoTZs2dbVP706dPo1asXOnbsiL1792LkyJEYMmQIVqxYkVPm559/xqhRozBx4kTs3r0bjRo1Qrdu3XD58mV7vQ0iIiKXtn79egwfPhzbtm3DqlWrcPfuXXTt2hVpaWmFPmbLli149NFHMXjwYOzZswd9+/ZF3759cfDgQQfWnIiISHsqV66Md955B/Hx8di1axc6deqE+++/H4cOHVK7akRERG7FFWOyTlEURe1KEBERWUun02Hx4sXo27dvoWVee+01LF261KQDun///rh58yaWL18OAGjRogWaNWuGWbNmAQD0ej0iIyPxwgsvYOzYsXZ9D0RERFpw5coVVKhQAevXr0e7du0KLNOvXz+kpaXhr7/+yrmvZcuWiI2NxZw5cxxVVSIiIrcQHByM9957D4MHD1a7KkRERG7N2WOyl9oVcCS9Xo+LFy8iICAAOp1O7eoQEdmEoihISUlBREQEPDzUSRCRnp6OzMxMqx+nKEq+87GPjw98fHxsUq+tW7eiS5cuJvd169YNI0eOBABkZmYiPj4e48aNy/m7h4cHunTpgq1bt9qkDlQwxmQi0iJniMmA4+PyrVu3AEjjtzBbt27FqFGjTO7r1q2bRVtHkH0xJhORFrlrTM7Ozsavv/6KtLQ0tGrVyurXJXUxJhORVjlDXGZMLphbDRJfvHgRkZGRaleDiMguzp07h8qVKzv8ddPT01GtdGkkFuOxZcqUQWpqqsl9EydOxKRJk2xSt8TERISFhZncFxYWhuTkZNy5cwc3btxAdnZ2gWWOHDlikzpQwRiTiUjL1IrJgOPjsl6vx8iRI9GmTRs0aNCg0HKFxeTExOLUlGyJMZmItMxdYvKBAwfQqlUrpKeno0yZMli8eDHq1atXjFcmNTEmE5HWuUP/tavFZLcaJA4ICAAgX8TAwECVa0NEZBvJycmIjIzMOcc5WmZmJhIBnNPpYM2ZNRlAZGpqvnOyrVYRk3NjTCYiLVI7JgOOj8vDhw/HwYMHsWnTpmLVl9THmExEWuRuMbl27drYu3cvbt26hd9++w0DBw7E+vXrnbpTmvJjTCYirVI7LjMmF86tBokNS8IDAwMZaIlIc9RORRTo4YFAa+qgKEB2tl3PyeHh4UhKSjK5LykpCYGBgShdujQ8PT3h6elZYJnw8HC71IkEYzIRaZnaMRlwTFweMWIE/vrrL2zYsKHI2eCFxWTGW/UxJhORlrlLTPb29kbNmjUBAE2bNsXOnTvx8ccf44svvihOlUkljMlEpHVqx2XG5PzU25SDiIi0xcPD+pudtWrVCqtXrza5b9WqVTn7QHh7e6Np06YmZfR6PVavXu3Ue0UQEREVyY5xWVEUjBgxAosXL8aaNWtQrVq1Ih9TVEwmIiLSLBXaynq9HhkZGTaoPBERkYYwJufjViuJiYjIjjw8AGtnYlkpNTUVJ06cyPn99OnT2Lt3L4KDgxEVFYVx48bhwoUL+O677wAAzz77LGbNmoUxY8bg6aefxpo1a/DLL79g6dKlOc8xatQoDBw4EHFxcWjevDk++ugjpKWl4amnnrK6fkRERE7DjnF5+PDh+PHHH/H7778jICAgZ1/hoKAglC5dGgDw5JNPolKlSpg+fToA4KWXXkL79u3xwQcfoFevXli4cCF27dqFL7/80vI6EhERuSI7t5XHjRuHHj16ICoqCikpKfjxxx+xbt06rFixwsqKEhERaRxjcj4cJCYiIttwwCDxrl270LFjx5zfR40aBQAYOHAg5s+fj0uXLiEhISHn79WqVcPSpUvx8ssv4+OPP0blypUxd+5cdOvWLadMv379cOXKFUyYMAGJiYmIjY3F8uXLERYWZnX9iIiInIYd4/Lnn38OAOjQoYPJ/fPmzcOgQYMAAAkJCfDINeu6devW+PHHH/HGG29g/PjxiI6OxpIlS9CgQQPL60hEROSK7NxWvnz5Mp588klcunQJQUFBaNiwIVasWIF7773XyooSERFpHGNyPjpFKUYvvYtKTk5GUFAQbt26xX0diEgz1D635by+v79VezokKwqC0tJ4TnZTan9viYjswRnObYzLZC1n+N4SEdmaM5zbGJPJWs7wvSUisge1z2+MyYXjSmIiIrINB6wkJiIiIgsxLhMRETkHxmQiIiLnwJicDweJiYjINhhkiYiInAfjMhERkXNgTCYiInIOjMn5cJCYiIhsg0GWiIjIeTAuExEROQfGZCIiIufAmJwPB4mJiMg2dDoJtJbS6+1XFyIiInfHuExEROQcGJOJiIicA2NyPhwkJnIDaRlZOHMtDZlZenh7eaBqiD/8ffjfn4hI63j+J34HiIgoN8YFIiIi4vUAERnwfz6RRh1PSsEP2xOw9uhlJFy/jdyJEXQAooL90LF2BQxoEYXosAC1qkla4uFh3UwsIrILnv+J3wECwLhMRDkYF4hUxphMRE6A1wNEYEwuAAeJiTTm3PXbGL/4ADaeuApPDx2y9fnz5isAzl6/jQXbz2L+1jNoWzMU0x6IQWSwn+MrTNrBIEukKp7/id8BMsG4TOT2GBeInARjMhGpiNcDRLkwJufDo0GkIQt3JqDLzPXYcuoaABQY9HMz/H3LqWvoMnM9Fu5MsHsdScMMQdaaGxHZBM//xO8A5cO4TOTWGBeInAhjMhGphNcDRHkwJufDlcREGjFr7XG8v/JYsR6brVeQrVcwdtEBXE3NwIiO0TauHbkFNwmcRM6G53/id4AKxLhM5LYYF4icDGMyEamA1wNEBWBMzodHg0gDFu5MKHbQz+v9lcfwM2eJUXFwJhaRw/H8T/wOUKEYl4ncEuMCkRNiTCYiB+P1AFEhGJPz4UpiIhd37vptTPzjUIF/Sz+7H0k/jS/wb+FPvA+fSnUK/NuEPw6hdY1Q7jtB1nGTwEnkLHj+J3PfgbxubfkZNzcsQKnQKEQM+azQcvwOaAjjMpHbsSYuAJbFBsYFIhtgTCYiBzJ3PZB55SxubfoRmYknkJ12E7pSPigVEonAFg/CL7pFoc/J6wHSDMbkfDhITOTixi8+gKwi9pMIaNob3hVrmdznVa5ioeWz9ArGLz6ABYMLvzggyodBlsiheP4nS74DAJCVfBW3tv4CXSnfosvyO6AdjMtEbsfSuABYHhsYF4hsgDGZiBzI3PVAdvJl6DPvwD+mMzzLBEO5m4HbR7fgyv+9heDuIxAQ273Ax/F6gDSDMTkfDhITubDjSSnYeOJqkeV8IuvDv849Fj9vtl7BxhNXceJyCmpWCChJFcmdMMgSOQzP/2TpdwAAbqz9Gj4RtaHo9dDfSTZblt8BDWFcJnIr1sQFwPLYwLhAZAOMyUTkIEVdD5Su0QylazQzuS+g6X24NH8kkncsKXSQmNcDpBmMyfnwaBC5sB+2J8DTQ2dRWX3GbSj6bIuf29NDh++3cb8JsoJOZ91+DjrLvrtElB/P/2TpdyA94SBuH9mMcp2HWfzc/A5oBOMykVux5trA2tjAuEBUQozJROQg1lwPGOg8POEVEAp9RqrZcrweIE1gTM6HK4mJXNjao5eRbUE6sWt/fwwl8w6g84BPZH2U6/g0fCpGm31Mtl7B2mOXMQn1bVVd0jprZ2IplqXCI6L8eP4nS74Dij4b11fNQZlGXeFdoarFz83vgEYwLhO5FUuvDYoTGxgXiEqIMZmIHMTS6wF9ZjqUrAzoM27jzvHtuHMqHn5125p9DK8HSBMYk/PhIDGRi0rNyELC9dvmC3mWgl/t1ihdPQ4efkG4ezUByTsWI+mH1xD++HvwDq9h9uEJ124jLSML/j48VZAFGGSJHILnf7LoOwAgdc8yZCVfQdijb1v9GvwOaADjMpHbsDQuAMWPDYwLRCXAmExEDmDN9cCNNXORune5/KLzgF+tVgju+lyRj+P1ALk8xuR8+L+ZyEWdvZaGok5RvpXrwrdyXeMd0S3gV6cNLn39Am6s/xZh/aaYfbwC4My1NNSPCCpxfYmIyDYcdf7fdTQNtcrz/O+Mjl0p+juQfScZNzf+gLKt+8HTz/rPkdcARESuw5JrA6BksYFxgYiIyLlZej0AAIHN7odfnXuQnXINt49sgqLogey7RT6O1wNE2sNBYiIXlZmlL9bjSpWLQOnoFrh9bAsUfTZ0Hp52eR1yQ5yJReQQjjr///p/epS34r80Oc4VfdHfgZsbFsCjdBkExPUu9uvwGsDFMS4TuQ1Lz9cljQ2MC0TFxJhMRA5gTZwuFRKJUiGRAIAyMZ2RtPBNXP5tCsKf/BC6IvZg5fUAuTTG5Hw4SEzkYu7eBf79F1i2pfg9916BoUB2FpS7GdD5+Jkt6+3FEQKyEIMskUOU5Lxszfn/fw95oFb5Yr8U2dGxKx7466fC/373+gWk7l2Bcp2HIjvles79SvZdKPpsZN1Mgs7HD56lA8y+Dq8BXBzjMpHbsOR8bYvYwLhAVEyMyUTkACWJ03512uD68lnIun4BpUIq2+11iFTHmJwPB4mJnJhhQDg+3njbtw9ITwc8vP0R+TIA85O7CpR1MxE6L2/ovH3NltMBqBriX6y6kxtikCVyiKoh/tABFqeRys2a839cbX/4+xSnhmRvgcHmvwPZKdcARY8b/3yBG/98ke/vF+YMRkBcHwR3GVboa/AaQAMYl4nchiXXBraIDaWz/JGdDXiaT0ZCRHkxJhORA5Skr0C5mwEA0GekmS3HdiK5PMbkfDhITOQkzA0I63RAnTpA06bAo4/Kv7GxXuj1uR/OXr9d6HNm376Vb6+pzKRTuH18B0pXbwqdzvwJMSrED/4+PE2QhRhkiRzC38cLUcE8/7uzor4DpcpXQfkHX893/80NC6DPvIPgLsPgVbai2dfgd0ADGJeJ3IYl1wYljQ3lff0Qv90LezyA8uWBsDAgPBwIDJT2KhGZwZhMRA5gUV9B2k14+pc1uU/JzkLawTXQefmgVGiU2ddgO5FcHmNyPvwfTaSCrCwZEN61y9IBYaBMmfzP07F2BSzYfhbZ+oJPVleWzIBHKW/4VKoLD78g3L16Dqn7lkNXygflOgwyW0dPDx061qpQ8jdL7oNBlshheP4nc98BT78g+NVqle/+5J2/A0CBfzN5PL8D2sC4TORWiro2KEls8PTQoWfjCujWAUhMBJKSgIMHgf37gdKljQPGYWGAt7dN3g6RtjAmE5GDFHU9cG35LCiZt+ET2QCeASHITr2BtH/XIevaeZTrNBge3qULfW62E0kTGJPz4SAxkZ1ZOiDcvz8QF1f4gHBBBrSIwvytZwr9u1+tlkg7tA7JO5ZAn3n7v46B1gi651GUKhdh9rmz9Qoeb2l+9hiRCQZZIofh+Z8GVPPF/K32OY/yO6ARjMtEbqWoa4OSyNYreKJlFAIDZeVwrVpAdjZw5YoMGCcmAmf+e+ngYOOAcXCwdachIs1iTCYiBynqesC/bluk7l+FlD1/Q38nBR7epeEdXhPlOjwFv+gWZp+b7UTSBMbkfDhITGRDhgHh+HjjoHBhA8JNmwKNG1s+IFyQaD+gbWYStniGINsz/3/nwLg+CIzrY/0T63VoUikENSsEFL9y5H50OuuCrF5vv7oQaVx0WADa1gzFllPXCpwhXNzzvwd0CNeFYN/GAIR1BQIYBpzP7dvAP/8gevdutPVpgC2ZpZFtYZslfMA7RZbx9NChdXVeA2gC4zKRWynq2qAwRcWGwuKCp6cMBoeHA40aSXgyDBgfPy7t4lKlZLDYsNLYz69Yb43I9TEmE5GDFHU94F+vPfzrtbf6edlOJM1gTM6HczqJiikrS9JrzZsHjBgBtGwpnemNGgGDBwNr1wLR0cD06cCGDcCtW9JQXrAAGDkSaNu2ZAPE2LIFiI3FtJ/egpeXp63ellB0WDktBrNnu8VkGbIVw0wsa27FMHv2bFStWhW+vr5o0aIFduzYUWjZDh06QKfT5bv16tUrp8ygQYPy/b179+7FqhuRI017IAZeHrbdBLCUlw4Te8bg1Clg1iwJNdnZNn0JKi69XmagffIJcOgQ0L07pg3vBi9P217Oe3noMO2BGJs+J6nEznF5w4YN6N27NyIiIqDT6bBkyRKz5detW1dgTE5MTCzBmySi3OxxbWBpXPDzA6pVA1q1Au6/H+jUSdrDd+7I5OmlS4Hly4G9e2UgmdcX5FYc1FYmIgKAqffHwAPqXA8QOT3G5Hy4kpjIArlXCBtWCedeIVy7tqSKNqwQjo214+qru3eByZNl9Ll5c0QuWIDJN7wxdtEBm73ElD71sS3VDyNGAH/9BXzzDVCxos2enrTK2sBZjCD7888/Y9SoUZgzZw5atGiBjz76CN26dcPRo0dRoUL+fVEWLVqEzMzMnN+vXbuGRo0a4X//+59Jue7du2PevHk5v/v4+FhdNyJHiwz2w+Q+9W1+/u/WzA/t44A1a4B//pHO3B49pOOXVHLhggTkixflIuPee4EyZRAJ2OU7EBnMpV6aYOe4nJaWhkaNGuHpp5/Ggw8+aPHjjh49isDAwJzfC4rfRFQ89ro2sDYu6HRASIjc6tcHMjOBy5dlcPj8eVlp7OEBlC9vTE0dGCiPI9IkB7SViYgA6cM+d8QPfSPr49eztrseuMe3PsLKsJ1IGsCYnA8HiYnyyDsgHB8vHeS5B4Rzp4y264BwXkeOAI8/LhWaNAkYNw7w8kJ/AFdTM/D+ymMlfolXu9bGk/dE4cl7gPvuA55+GoiJAb78ErCi/4/ckQOC7IcffoihQ4fiqaeeAgDMmTMHS5cuxTfffIOxY8fmKx8cHGzy+8KFC+Hn55dvkNjHxwfh4eFW14dIbf2bRdn0/N+vmewv5OsL9OwJNGkC/P038N13QIMGMjaZa2yH7C0tDVi9Gti9W3rQBw8Gokz3gLLXd4A0wM5xuUePHujRo4eVlZJB4bJly1r9OCKyTP+mlXF1/xG8f+JuiZ/r1ZhAm8QFb2+gcmW5KQqQkiIDxomJwIEDMgG7dGljWuqwMHkMkWawQ5qIHCAjA9i0SbJZvtI3ClUO26ad+Gi92ji7LArTpgGvvgr4+9ugskRqYUzOh4PEZFZaRhbOXEtDZpYe3l4eqBriD38f7XxtChoQ3rdPUmLlHhDu10+FAeHcFAX47DOJxJGRwNatQLNmJkVGdIxGaBkfTFy0F1l6INvDihTUeh18vHWY0qe+SSdAz57SaB82DHjoIWDQIODjjzlAQLaVnJxs8ruPj0+BK3kzMzMRHx+PcePG5dzn4eGBLl26YOvWrRa91tdff43+/fvDP88V7bp161ChQgWUK1cOnTp1wtSpUxESElKMd0PkeIbz/+v/dwhZigKdh+X7BOigg7dX/vO/QXg48NRTEhtXrQJmzwbatwdatJC9CMlO9Hq5KFm9Wq4BevSQlCWFHPQRHaMR7OeDCUsOQQ8Felj+HfBU9PAq5VXod4Dcj6VxubhiY2ORkZGBBg0aYNKkSWjTpo3NnpvI7SkKEB+PEWVTEHpvXUxcexZZesWqPYo9PXTw8tBhSsvy6Hf7NHDqFFC9us2qqNNJezIwEKhVS9JOX7li3M/4zBkpFxxs3PO4XDm36J8jIiIqtrQ0YONGyd7RoYPE0RHh//UV/3Go+NcD/7UTjzQD3nkHmDgRGD9enp+ItEE7o31kM8eTUvDD9gSsPXoZCddvm3Qz6gBEBfuhY+0KGNAiCtFhrrNZvaUDwo88Iv2wqg0I53XpkiznXb4ceO454L33Cp2y1T9chzbfvIDxT0/DRpSFp4fO7AWA4e93zobg5S4x6Ncsf9qQ8uWBRYuA+fOBF18E1q2TfZXvucdG74+0o5gzsSIjI03unjhxIiZNmpSv+NWrV5GdnY2wsDCT+8PCwnDkyJEiX27Hjh04ePAgvv76a5P7u3fvjgcffBDVqlXDyZMnMX78ePTo0QNbt26FJ0fByEW0qhCFxG9C0XDIAVxSrlp8/o/wDMGLLQs+/xvodBIT69QB1q5lCmq7O39eNm7Mk1q6KDUQhQd8QpEQdgDbEyz/DrQ+sw/TXuiBSA4Qa4+d47K1KlasiDlz5iAuLg4ZGRmYO3cuOnTogO3bt6NJkyYlfn4iAnD0qIyyNm+O/lWqoE1sVYxffAAbT1gRF6qHYNoDMYgsVxrY4yHZLPz9ZXmvHXh6GgeDGzUCbt82DhgfPy5t+FKl5OUNK439mO2SXA1XLRGRHd28KQPEnp5Ap06mzcf+zaLQpkZo8a8H/ttyok4d4K23gLffBt54A3j9daBSJTu/MSJ7YEzOh4PElOPc9dtFBgwFwNnrt7Fg+1nM33oGbWuGmgQMZ5GVBRw+LHsHFzUg3LQp0LixkwwI57V4MTB0KODlJR3GPXuaL//mm4hU7mDBuN44fkcng/3HLiPhWgGD/SF+6FirAh5vGYWxzwfggynAsAGS5isvnU5WkrVvDzz5pPz72muS8ZppwChHMYPsuXPnTPYmtNd+wF9//TViYmLQvHlzk/v79++f83NMTAwaNmyIGjVqYN26dejcubNd6kJka+PHAwEeflg1vgUupaVYfP4/eyAA27YBt+4BgoLMv4avrwwMN27MFNR2YUFq6cLcuQOsXw+0beKHPn1aGCf8FfUdiItAzY6jgEnrgZUruRmk1jhZXK5duzZq166d83vr1q1x8uRJzJw5EwsWLLDJaxC5tfPnJQ1U3bpAlSoAZI/iBYOtiAsto1CzQq6GcWwskJoqmaw6dXJIwPfzk0lo1arJwujr142pqePjpUxgoHHAuHx5ZjchF8AOaSKyk8uXgc2bZWC4bVtpt+dV4usBw/NEyiDx228Db74JjB0rWUGIXApjcj4cJCYAwMKdCTmpJwAUmX7C8Pctp66hy8z1mNynPvqrtALFMCAcH28cFHbJAeHcUlKAl14C5s0D+vaVDYHLlzf/mH37pMd+1iwgMBDRgcCkPvUxCfWRlpGF5ZvT8Njjevz4vQe6tzFNGz59OlCvHvDJJzL4W5jq1aUTesYMSS+yYgXw/ffSD0FU3CAbGBho0hldmNDQUHh6eiIpKcnk/qSkpCL3E05LS8PChQsxZcqUIl+nevXqCA0NxYkTJzhITC5h507gxx8lVJQpA0SXCbD4/B95D7Bnj6wQ7tvXstczpKDev58pqG3CytTSBdm4Ua6HOnaU36PDTL8DZ46cQeZvi+D98IOoWqeq6dYh774rH/7y5fLapB12jsu20Lx5c2zatMkhr0WkadevAzt2SO9t/fr5/pwvLpxOROa27fBu2QJVq4UXvqWUhwfQqhWwZo1scti5M2CnCZ0F0emAkBC51a8vKTSTkuR2/rysNPbwkKayYTVyQADnPJETYoc0EdnB+fPA9u0SB1u1kswb5uS7Hth/DJkffwrvl15A1Ya1LNpiMiQEmDJFmpGTJwOjRkl/O5HLYEzOh4PEhFlrjxd7E/vs//YzGLvoAK6mZmBEx2gb185UUQPCtWpJv6pLDQjntWmTLNe9cgX4+mvpibeklTtmDBAdLSuP8/D38UK1skHIvARUKwv452nXR0cDzz4LTJsmC5dCQwt/GU9PWbHWrRvw+ONAkyZyYTBiBBvjbs/OQdbb2xtNmzbF6tWr0fe/0Sy9Xo/Vq1djxIgRZh/766+/IiMjA48//niRr3P+/Hlcu3YNFStWtKp+RGpQFGD0aFnR+/TT+f9e1Pnfx0f2K1q6VAZ5Lf3a63SSErJ2bWMK6j17JOEFU1BboZippXO7cUPGBdq2Lfiax9/HC/XL+wEeaUB5PyBvw79PHxnlHz1aXt+LzQPNcIHG7969exlviUrq9m1ZQhQUBDRrVmSjzN/HC/XD/AF/PRDmnz8u5FWqlOw1tHo1sGUL0K6darPCvL1lHDwyUq6BUlKMq4wPHJC+gdKlZbDYkJ6ama/IKbhATCYi13LihLTBo6Ik/Ft72vD38UL9EF8g4yoQ4lv09UAuZcpIuulPPpE+4WeekYQjRC6BMTkf9gK5uYU7E4o9QJzX+yuPoXwZH/Sz0Yri3APChkHhvAPCLrdC2JzMTMnfPGMG0LKl9LhXr27ZY1eulNuiRUVPGyvEhAmyEPmtt4CPPy66fNOm8rmMGSN7Ff/1lyx8jogo1suTFjggyI4aNQoDBw5EXFwcmjdvjo8++ghpaWl46qmnAABPPvkkKlWqhOnTp5s87uuvv0bfvn0REhJicn9qaiomT56Mhx56COHh4Th58iTGjBmDmjVrolu3blbXj8jRfv8d2LABWLas+P21TZrI7OOVK2WOkjUTfgpKQV2/PtC1K1NQm5WWZhxZtzK1dF6rV0uHeKtWxayLTge8/770LHzzDTBsWDGfiJyOneNyamoqTpw4kfP76dOnsXfvXgQHByMqKgrjxo3DhQsX8N133wEAPvroI1SrVg3169dHeno65s6dizVr1mDlypVWvS4R5XL3rkwy9vAA2rSx3+Ctv788/7p10jBv3lz1GcI6nVxrBAZK30B2tsyzTkyUlcanT0u54GDjKuPgYNWrTe6KHdJEZCOKAhw8CBw5IvGvYUN1YpuPj6wi/vpr4PPPZfLygw8yzpILYEzOh4PEbuzc9duY+Mchs2UyEk/g1qYfkXH+XyhZd+FVNgxlYrsjMK5PgeUn/HEIrWuEWr1Hcd4B4fh4YO9eDQ8I53X4sCzL3b9fcna89prlK3mys2Wktk0by3OFFqB8edlLYsIE4IUXgJo1i36Mn59kt77vPlnwHBMDfPEF8PDDxa4GuTKdzrrAWYwrx379+uHKlSuYMGECEhMTERsbi+XLlyMsLAwAkJCQAI88dTh69Cg2bdpUYCe0p6cn9u/fj2+//RY3b95EREQEunbtirfeestueyMT2crdu3L6v/deye5QXB4e8hw//SRpG4uzp1DeFNSzZsni1JYtmYLaREGppYsz7fs/588Dhw7JYuASrZSKiwMGDJCLgEcf1dhFlhuzc1zetWsXOhpynEMmcgHAwIEDMX/+fFy6dAkJCQk5f8/MzMQrr7yCCxcuwM/PDw0bNsQ///xj8hxEZAVFkVleaWmyfKegTQhtKSREBoe3bZM4Ua+efV/PSp6exsFgQBZYJyXJoPHx48C//8p8asNexmFh0p4lcggHtJWJSPsMzckzZ2RwuHZtdevj6SkJLUNCgIULZaD4qafYB0BOjjE5Hw4Su7Hxiw/k7EFckDund+Pyb1PgHVYDQa37Q+fti6ybichOuVroY7L0CsYvPoAFg1sUXsbCAeGHH5Y+S80NCOemKNKTPmYMUKUKsHWrvGlrfP+9LLHesqXEJ62XXpK9JcePB375xfLHde8u6b2eeQb43/9kJdonn0jGM3IjDpqJNWLEiELTS69bty7ffbVr14aiFHyuK126NFasWFGsehCp7YsvJMXUb7+V/Jo1OlrSRK9aJZOEivPfM28K6tWrJb736GF5YgxNy51aunFjoEsXq1NL56Yosvo7LEyOe4lNmyZfpvfekwlr5PrsHJc7dOhQaHwFgPnz55v8PmbMGIwZM8aq1yAiM/btkxHQe+5xXMMrMlJyPB86JDGsmFkwHMHPT65tqlWTTvUbN4ypqXftkjKBgcZB4/Ll2alNdsRVS0RUQllZ0m2clCRbRTlLCNbpgIceAsqWlT6Kmzcl4yS3eyCnxZicDweJ3dTxpBRsPFH4YK8+4zau/vUhStdohvIPjINOZ9l/hmy9go0nruLE5RTUrBBg1YCwYYWw26SnvHhRpletXAkMHy6bOFg7lfnOHeCNN+QAFjvPpJGfHzB1qlRr+3a56LBUaKj0LX/3naxEXr8eWLBA9kgkN8EgS+Qwt27JDgVPPSUziEtKp5PVxF9+KbG6WbPiP1fuFNTLlkkscOsU1IbU0rt3Sy/0kCHSyV5Chw8D585JIhKbnE6jooCXX5bU0888A1SqZIMnJVUxLhNp14kTsjy2SRPj0llHqVtXBop37pQ01Hm2c3FGHh5SzZAQuSbJzDSuMj5/Xg6lh4cMFBtWIwcEuMXCEXIUO8fk6dOnY9GiRThy5AhKly6N1q1bY8aMGait9jJDIrKJjAzZXSI5WfpZ/0um51Q6d5b2/syZ0rf82mtymUDkdBiT82FPgJv6YXsCPD0Kb/Gk/bsO+rSbKNfuSeh0HtBnpkNR9BY9twd0GDojAa1bS3Bo2FA6sVetklm8U6fKVkY3b8r+CT/8IHsYtG/vRp3Hv/0muZn375ce9Fmzipfr6uOPpWU7bZrNqvbEE1K10aNllZI1dDpg4ECZ1B4ZKZ/p2LHSCCc3YAiy1tyIqFimTZN5Qm+9ZbvnrFhRVqSuWyeN0JIKDwcGDZKdEM6ckVC3ebPskuAW9HrpQP/0U8lx2auXDL7aYIA4O1vGnWvWBGrUsEFdDcaOlZb8G2/Y8ElJNYzLRNqUmCgzr6OjbRwELKTTSfar4GAJ7Glpjq9DCXl7Szhu1kzCc9eu0gYGJEPWihWS/GPXLhlEZnuWSszOMXn9+vUYPnw4tm3bhlWrVuHu3bvo2rUr0lzw/ycRmUpLA9askX87dHDOAWKDZs2AiRNlMvOECcC1a2rXiKgAjMn5cCWxm1p79DKyzaSaTj+zFzofP2SlXsPlRVORdf0CdKV84d+gI4I7D4XOq/CcEXooOJ15GW2q1XfPFcLmJCdLzo1vvwUefFDycISGFu+5rlwBpk8HnntOOghsxNNTMk127w78/nvxtjmuVk0GGd57Ty4KVqyQrNj169usmuSMuGKJyCHOnJE5QmPHAhERtn3uTp0kg+SmTTITuKRyp6Bet86NUlCfPw/89Rdw6ZJNUkvntXOnTLbr399mTymCgoDJk4ERI2QPithYG78AORTjMpH23LoluSbDw22010AxeXoCrVtLYN+0SS4gSpVSrz4loNNJ+AsKkkxn2dnS1Dakpj59WsqFhBhTUwcHc5UxWcnOMXn58uUmv8+fPx8VKlRAfHw82rVrZ9VzEZHzuHkT2LhRwm6nTjZtUtpN7doymX3qVJl7/PrrQOXKateKKBfG5HzYE+CGUjOykHD9ttkyd69fBPTZuPJ/b6F0tSYo/8B4lGl4L1L3LMPVpR8V+Rq6Mrfx5TdZ7rdC2JyNG6Uhv2gRMG+erCYu7gAxINEWAN580zb1y6VbN0k7+tprwN27xXsOT08ZwNi+XVakNW0qgxp6yxakkyviiiUih3j9daBcOcn4YGuBgbJ7wbZt0g9tK76+MvnomWckccaCBRIGk5Nt9xpOIS1NZlh99ZX8PmSIzLayYWv+zh1gwwYZe65QwWZPazR0qPSSFyelCDkXxmUibUlPlwFZf3/ZF0jtUUofH9kP+c4dGbjWSEPP01MGgmNj5dqlVy9py5YuLWmp16yRUL91qwwg37mjdo3JJRQzJicnJ5vcMixM93Prvwv54OBgu70lIrKvy5eBtWsl/rjKALFB5crA229L3d98Ezh6VO0aEeXCmJwPewLc0NlraSiqy0+5mw7lbgb8G3RC8L3PwK92awTf+wzKxHbH7cMbcPf6BfOPB3DmmvMuoXeozExg3DgZLa9USXIxDxpUskb9iRPAZ5/JKGz58jaram7vviuN4LlzS/Y8jRvL/pbPPAOMHCkN7Qvmvz5ERFSIHTuAH3+Umbn2aiS2aSP9vmvW2P65w8I0moJar5cPJ3dq6WHDbJJaOq+NG4GsLKBjR5s/tShVSi4CVq+WLTGIiEh92dkSMPV6GZh1llW7htllly9LqhANTi7y85PsJ61aAX36SEd9dDRw+7ako/7rL8mctW+frDx2+WsaciqRkZEICgrKuU2fPr3Ix+j1eowcORJt2rRBgwYNHFBLIrK1c+ek3RcSIimmfX3VrpH1QkKk3yIyEpgyRWImkSvTckxmumk3lJlV9AxfQzpp/7rtTe73r9cBqXuXI+PCEZQKrlTi19G8Q4eAxx8HDh6UKVRjxsjU5JIaP16mN48cWfLnKkRsrOxPPGmSvIWAgOI/V+nSsoq4Vy8ZHIiJAebMAR55xEaVJefAtJZEdqUosrizQQPgqafs9zo+PtIQXboUaNlS9iq2Jc2loD53Tg6WIbX0vffKKi87uHFDxqLbtrXzTPLeveVL8OqrslGjF5sMLolxmUgbFEX2Gbh1S87Nfn5q18hUWBjQpInMDA4IsOlWSM7Gw0M6vUNCZCulzEwgKUkGh8+dA44dkzLly0tzPTxcDonai77JCRQzJp87dw6BuVLz+fj4FPnQ4cOH4+DBg9i0aZPV1SQi9R0/Lu3jqCjZ49eVL9H9/SXl9CefyJaEw4bZZlsrohJhTM7HhU8zVFzeXkV/7J5lQuRf/7Km9/sHAQD06alFPseRfz1w23xWa+3S62VUtGlTybW8fbusJrbFAPG2bcCvv0q66dKlS/58ZkydKn0R771nm+fr2hU4cEAuCPr1k0FoW6YzJZUxrSWRXf3+u8wmfv9924QTc5o0kR0RVq6036Igl09BbUgtbUi5YUgtbacBYkAG1P38ZDWTXel08kX791/gm2/s/GJkN4zLRNpw6JCMQDZvLpvhOqPq1WWrgr17gYsX1a6Nw3h7ywqpZs1kQnTXrjKZD5B274oVMo9s1y7g/HkZVCY3VcyYHBgYaHIrqkN6xIgR+Ouvv7B27VpU5iagRC5FUSR27N0rE6qbN9fG5bm3N/DyyzKXes4c4P/+T5OJR8iVMCbnw2UBbqhqiD90gNmU097hNZB+Zg+yUq6hVIjxS5yVch0A4OkXZPY1FAUY0McfumygXj0ZK42Lk38bNXK+yc82deGCLPFatQp44QVgxgzbDeYalpE1bCjLe+0sMlIWK3/wAfDss0BERMmfMyQE+OUX4PvvgREjZF/F776TbNzk4rhiichuMjMlGUXXrrJvvL15eEgj7qefZFVM7dr2ey1DCuoDB2RQetYsiQktW9p/MLxY9Hrp7V2zRuJyr15ykWPnc9q5czJO0KePNLTtrmlTudZ4803g0UdLllKE1MG4TOT6zp4FDh+WVExO3rmEhg2B1FSZ1NypE1C2rNo1ciidDggKklvt2rI1xNWrsso4MVH2LwakPRweLtc/wcFcZew27ByTFUXBCy+8gMWLF2PdunWoVq2alRUkIjUZmphnz0q/ea1aatfItjw9gcGDgXLlgIULgevXgaefdtL2PmkfY3I+HCR2Q/4+XogK9sPZ64Uv8/Wv0xbJ235D6v6VKF21Uc79qftXAh6e8ImKMfsaVUP8sHibF+LjJcjFx8seinfvSgCoW9c4aKypgeNffpHRVF9fYPly2/fk//677EW1YoXDIum4cbJIauJE4KuvbPOcOp2sIm7XDnjySdlXcfRo2avCgkwN5Kx0OusCJ3tEiCz2xRfAyZMy69ZRoqOBatVkzlPNmvYNOzqd9C3XquXkKahzp5Zu0gTo0sWuK4cNFEU+h7AwuWZymLffluXd774rQZpcC+MykWu7ckUa01Wr2ne2lq3odECLFsDatcCmTZI+ys6Zr5yZl5cx5TQgexgbBoyPHZOJX97eQIUKxnJufLi0z84xefjw4fjxxx/x+++/IyAgAImJiQCAoKAglOYXi8ipZWUBW7fK9gUtWkiaaS3S6YCHHpKB4i++kMySL77ooAnQRLkxJufDQWI31bF2BSzYfhbZ+oLXE3uH14B/w3uRtn8Vruj18I1qgPSEA7h9ZBMCW/0PXgEhhT63p4cOHWtXQJMm0n86dKjcn5kpW/MaBo3j44EffjAOHBtWHLvkwPGtW7Is9vvvgYcflvwZIYUfo2K5exd47TVZ2tW1q22f24ygIFlENGqUrCquX992z12liizE+uAD2aNi5Uo5hE68jzuZwxVLRHZx8yYwebIkqYgxP0fLpnQ6CTdffAHs3i2pFO3NkIK6cWPg778lBXW9ejLnKtfWL46XliajtHv2yCbNQ4ZIug0HOXxYxqefeMLBp86oKMkN9sEHkhfc2VexkSnGZSLXlZoKbNkibcqmTV1nEoeXF3DPPTLba/Nm2UOZ+9oDkL6N6tXlptfLKirDfsa7dkmZwEDjgHFoKFdYaYqdY/Lnn38OAOjQoYPJ/fPmzcOgQYOsei4icpyMDNlSKiUFaNtWJgVrXadO0tf84YeyzeGYMUCZMmrXitwKY3I+vFp3UwNaRGH+1jNmy4R0Gw6vwPJI3f8Pbh/bCq+g8ijXeSgCm91v9nHZegWPt8w/7cnbGzkDxwYZGTJwbBg0dsmB4w0bpNf2xg3g22/lZ3s04ufOBY4fl9XKDvbcc8Cnn8oY9V9/2fa5PT2NKVQff1xWmE+fDrz0EvsqXQ47o4nsYto04M4dYMoUx792eLjE3nXrZIDa19cxr5s7BfWqVZKCul072YvXoR2mhrxfq1dLbHdQauncsrOBf/6R1dyqrKoeO1auQd54A5g/X4UKULExLhO5psxMWYnr7Q20bu16/zdLlwbatJEVxTt2SPB2lUFuB/HwkEHg0FCZhJ2RAVy+LAPGCQmy0tjTEyhfXq6JwsNl1wceRhfmgNSWRORa0tKkS/nuXZlTVa6c2jVynKZNJWPl9OnAhAnA66/bfq0VUaEYk/PhILGbig4LQNuaodhy6lqhq4l1nl4oe89jKHvPYxY/r6eiR+saoahZwbJ963x8jAPABi4zcJyRIZHsvfdktvT69ZIKzB5SUoBJkyQ3s0PzTApvbwncjzwibf2OHW3/GrGx0g8/bpysWl66VPqiuWjJhbAzmsjmzpwBPv4YGD/eNvvCF0enTpIScfNmyRzpKIYU1LVryyD1mjWSgrpnTwcNlqqUWjqvnTtlNXn//g5/aREYKEvZhw+XGVyNG6tUEbIa4zKR69HrJedkRoYEYFfNwViuHNCypVw8HDggAZ0K5eMjCUoiI2WLieRkGTBOSpLDt2+f9HkYBowrVHDdr4bbYkwmolxu3JD5YF5eEu7dcSVtrVqyknjqVBkkfv11hybrInfGmJwPB4nd2LQHYtBl5vpCB4mtp8Ar6y6mfTMeaPVpsXMGl3TgOC5OxlHtmuL94EFZ9vrvvzJ6Onq0fZc2vfuutBRV3A/w4Ydlb4zRo6XD2h7nR19fYOZMWag1aJCsWvv8cxU7xsk6DLJENjd+vMyoHT1avToEBsoioK1bJcYGBTn29X18JN10bCywbJkxBXXXrnaqi8qppXO7c0fmoDVuLB3CqhkyBPjkE/ki/vMPlzK5CsZlIteiKLK/w5UrQPv2snTUlUVESMN83z55L9WqqV0jl6DTyfVNUJBMlMvKkq+EITX16dNSJjhYBozDwuRnhmYnx5hMRP9JSpIdJQICZM2Ro7J1OaNKlYC335bbm29KEqs6ddSuFWkeY3I+HCR2Y5HBfpjcpz7GLjpgo2fUYUrrcEQuv2LznMGWDBzv2lXwwHFcnHHFcYkHjvV6WdI1bhxQowawfbv9V9RcvCh7qGCaRAABAABJREFUAY4cqeqUKp1OFk23awcsXAg8ZvkCc6t16QLs3y9prh99FPjzT2D2bKBsWfu9JtkAgyyRTe3YAfz0k2T6VWEBq4k2baTfes0a4IEH1KlDWBgwcKAxBfXs2TZOQZ03tfR998kFhIrnqg0bpFr2yOBhlVKlZMJanz6yWXSvXipXiCzCuEzkWo4dkxHAZs0kz7AWREdLVqz4eLmYUXXGk2vy8pI5axUryu9pacYB42PHJNuLt7dcJxlWGtt1wnwJpGVk4cy1NGRm6eHt5YGqIf7w93GTbknGZCKCbCmwY4ecr1u1knO8uwsOlq213n1X/n35ZbkUIrIbxuR8eCpyc/2bReFqagbeX3kMUACUYPbpq11ro1/HmkDPXbL0yc45g4saON61q+AVx4ZBY6sHjs+fl+Wtq1fL4Pf06Y5pfU2YILmlxo61/2sVoW1b4P775eN98EH7znYLDpbB6D59JMPlxo2y5bPqHeVUOAZZIptRFOCVVySjwqBBatdGYm7HjrIvfYsW6qW+LiwFdY8eMner2JwktXRuN25IB0L79k6Sfuy+++RL8OqrsrSbPRrOj3GZyHVcuCCzZOvUsd8WRmrQ6WRSdVqaLJvq3Nn1V0irzN9ftt2oXl0mkl2/bkxNvWuXlAkMlMHi8HDZ99ieSc+KcjwpBT9sT8Dao5eRcP02cuex0wGICvZDx9oVMKBFFKLDNPzdYEwmcnvHj0vbtUoV6Zvmf3Mjf39JN/3pp7JAadgwaZIT2QVjcj7s3SGM6BgNXYYP3l19CB5eChRYnn7aEwq8vDwxpU999GsWJXf6+gIffiirTAYOdGjO4NwDx8OGyX0FDRx//71x4Lh+/fx7HOcb+124UJa1+vkBK1cC995r9/cCQCo+b57kYHZ0fs9CzJghx2zWLPunP9XpgAEDZHB64EDpUxg1StKQ+PjY97WpGBhkiWxmyRLZo2jFCnU79nJr3FgSaKxcKedkNdMaGlJQN24sC1u//76YKahTUyV98p49MvI9dKhdJrYVxz//SGO5VSu1a/IfnQ54/325WPr6a+CZZ9SuERWFcZnINdy4IQG2cuVib9nk1Dw8ZH/iNWtk5m/nzmzM2YiHhwwCh4bKVycjA7h8WQaNExJkpbGnpyxMN6SmDghwzDXcueu3MX7xAWw8cRWeHroCtzlTAJy9fhsLtp/F/K1n0LZmKKY9EIPIYD/7V9DRGJOJ3JaiSDaso0dlsnNMDLcIKIi3tyTRnDcP+OILuTx6+GEeK7IDxuR8tP8OySLbf4xC5uL2aFktBADg6WH+DGz4e+tLR/DP8FbGAeLcOneWKNi9u+QMHjAAuHnT1lUvkmHgeNgw4MsvZZA4JUUGjGfPlhVR+/ZJOotWraTR1KgR8PTTwOz3bmNbt4m48+hT0vN84IDjBogB4LXXZO+mZ5913GsWoXZtOZZvvy2zlh0hKkoWcL/7rswqa9ZMPgoiIi3KzATGjJFB0K5d1a6NkYeHhMCzZ6XT0RlUqCAD1g8+KJ2hs2fL4Hp2dhEP1OulQ/7TT4EjR2SVrBMNEJ87B/z7L9Cpk2R6dhpNmgBPPCFZTpKT1a4NEZHru31bAldQENC8uXZ7Qr29ZePFu3dlRXGRgZqKw8dHdqhq1kwubbp2lQneer0sVF+xQibX7dolidIyM+1Tj4U7E9Bl5npsOXUNAAocIM7N8Pctp66hy8z1WLgzwT4VIyJyML0e2LlTBohjYyUrllZDvS14egKDB8sWh7/8Anz1FS8ZiByBK4kJe/bICpzPP/fDM8NaGNMBHbuMhGsFpAMK8UPHWhXweJgeNdvcD8ToJCdmQcqVkw0Ve/cGnn/eaXIGF5aq+sAB4x7H8etS8P08H9zFZHh6TET9Izo0Ha0rXqrq4lizRlpwv/wijWonMnEisGCBDBR/8IFjXtPDQ1Yud+0q8w3i4oBp02Rw3w0m9LgGzsQisok5c4BTp4DFi9WuSX41a0p6w1Wr5GdnWOWs08ls7Fq1LExBbUgtnZgog56dO6ueWjo3RZHV2uHh0ongdN5+G/j1V5m5NXWq2rUhcxiXiZxbVhawebP832vTxjmCqj2VKSPvc/16aXA3a8aecjvS6WTuQVCQTPTOygKuXDHuZ3z6tJQJDjampi5XruQfyay1x2U7s2LI1ivI1isYu+gArqZmYETH6JJVxpkwJhO5nawsmRd1+bIk1IiMVLtGrkGnAx54AChbVvpGbt6UXR+ZhIRshjE5Hw4SuzlFka3lateWmToAEB0WgEl96mMS6iMtIwtnNscj8/En4f39d6japin8fXJ9bYYNkw7Cp56S1kVhHntMZg47cc5gHx8ZeIyLyQBOvAGc+AAZbTvjwKvfIf5ixZzB48JSVcfFSWeuTQaO9Xr5YFq0kNwaTiYsTFa5TZ0KjBghi50dpWFDmYX3+usyaLx0qcw74MWWE9DprAuc7BQiyufmTWDyZMlm4YwZJ3U6WU38xRcSE5s3V7tGRgWloK5bV+4LCkL+1NJDhjjNyuHc/v1XVvc88YSTtkUiI+U67oMPJNOJEx5D+g/jMpHzUhRg2zaJTZ06yZZN7iA0VAaHt2+XFF5166pdI7fh5QVUrCg3QLaJNgwYHz0KHDokc9PDwuQWHm5938bCnQnFHiDO6/2Vx1C+jE/BWetcEWMykVtJT5dEISkpQLt2kgGLrNOxIxAYKDtavvWWJNsM0PDW9eRAjMn5cJDYza1YIWl8f/9dGg15+ft4oX7ZUsClY0DZUoBPnkKGJaXTpsk+deYYcgbPnAmMHy/LZH74QZb/OIsDB4DHHwcOHwZmzIDPqFGI8/REXK4i+VYcFzJwHBcn/xZr4Pinn4Ddu2XltZOeiEaNkq2mX38d+PFHx762r6/0Tefe9vqzz2QuAqmIM7GISuzttyXOTJmidk0KFx4uqbLWr5cY52z92oYU1AcPyqXG7NkK2lY9j1ZnfoKXh17yLzZt6pTnoKwsuVSKjpYV207rtdeAuXPlIuDbb9WuDRWGcZnIee3fD1y6JBOpg4LUro1jRUVJr/nBg7K6mLN9VeHvL9ca1avLHPXr12XAODFRkq4A8tU0DBiHhppf7H7u+m1M/ONQgX/LvHIWtzb9iMzEE8hOuwldKR+UColEYIsH4RfdotDnnPDHIbSuEaqNPYoZk4ncRmqqdOdmZclAZ9myatfIdTVtCkyaBEyfLjsevf66xCOiEmFMzkf775AKlZ0ti1XbtZNs0MViWFL66aeSr6goHh6SmnrnTvk9Lk5G+/T6YlbARvR6mZoUFycHZudOOTgFtIIMK46fecZ0j+OdO417HO/dC4wcKelEDHscDx4sA5nbtwN37pipS3q6RL2+faXTwEn5+8sgxk8/yZ5GaujUSfpXevaUFNSPPgrcuKFOXQjGIGvNjYhynD4NfPKJhFXDKg9n1bGj7GO3aZPaNSmYIQX1iPvPoanXPqw9VglzPJ7Hyd4jZQWTk55/du6U1eT33qt2TYoQGChL3hcskElt5JwYl4mc08mTwLFjkvrC2QO+vdSrJ4PDO3YA166pXRu35+Ehne4NGgBdugB9+ki/RrlyQEICsGGDLCzYuBE4flz6P5Q82wyPX3wAWYXsPZydfBn6zDvwj+mMcl2GIqh1PwDAlf97Cyl7lxdaryy9gvGLD9jsfaqKMZnILdy4IdsfAdJnyQHikouOlpXEGRnAG28YJzIRFRtjcj5cSezGvvtOJu9u317CxaqGJaVvvCErgy3RsKE0CN94QwZj1cwZfO6cLDlau1Y2uJ02zeplUTmpqnMtOc694njXLvn3u+9kJpmnpzTADKmqDXsc+/oCmDVL8kyuWGHb92kHgwYBH30kaZ/XrlVn0XO5crKSuXdv4Lnn5Ks1f75kNScH40wsohIZPx4ICZG5VM4uMBBo3Vq2UoyLc8LGb2oqsGoVfPbuRbeICDTuHo6/d4fj+9+AuodypaB2InfuSCdskyZA+fJq18YCQ4YAH38sFwGrVztt5hO3xrhM5HySkmTbg5o15eaudDqZtHX7tlxMdO4ss5DJKfj4yILvqCgZDE5ONq4y3r9fJsX7+ckK47AwIFmXgo0nrhb6fKVrNEPpGs1M7gtoeh8uzR+J5B1LEBDbvcDHZesVbDxxFScup6BmBRfPMcqYTKR5SUmyB3FAANC2rVPtsOjyKlWSLQ+nTQPefBMYOxaoU0ftWpHLYkzOR/vvkAp0+7aMz/brZ4P9BA1LSn/80bolpb6+kqJ69WrgxAlZ8uPovMU//iive+yY7FP44Yc2y5uZe8XxV1/JQpvUVFklNGuWtIn37AFeesm44jg2JguDXw/DZ62/x/abtZGebpOq2I2XFzBjhqQcXbpU3bo8+qgMykdHy+znUaPg9MdPczgTi6jYtm8HFi6Uho+r9JG2bi0h0zBT2ilkZ8vB/PRT2WCvd29g6FBUaBiOgQOBBx+UuWGzZxtTgDmLDRsksUmHDmrXxEJeXsB778ksMbUvAqhgjMtEziU5WXqPw8JkhrC78/QE2rSReLJpk+zfRE5Hp5OJdbVrA+3bA/ffLwnPIiKAK1eArVuBaT8nwMPKyWI6D094BYRCn5Fqtpynhw7fb0soyVtwDozJRJqWkCDty9BQac9xgNj2goMlmVXVqjIMsWOH2jUil8WYnI/23yEVaOZMuaCfNs1GTzhokGzG++qr+fMOFaVjR5mO2quX43IG37ghrzNgANCjh4wuOmDpqWHg+Nln8w8cf/op0Ay7sCcrBi9t7WccOI41pqrescP5Bj579pSP8LXX1O9sj4yUsf4PPpABgGbNgH371K2TW2GQJSoWRZHVww0bSmILV+HjI+f/AweAixfVrg2kZf7ll8CyZXJN8uKLEnT/O9fkpKAeIXevXSuJUE6cULnekH0Ad+yQvvIyZdSujRV69ZI8aq++qv5FAOXHuEzkPNLTZSDUz09mCPP/m/DxkRHH27eBbdvU34aKiuTlJVnSGzcGuneX/oBT6Zeht6AfSJ+Zjuzbt3D3xiUk71iCO6fi4VvF/ISJbL2Ctccu26r66mFMJtKsY8dknnJUlHHuE9mHv7/s0BgXJ+vOVq1Su0bkkhiT89H+O6R8Ll+W1Z/DhwPVq9voSQ1LStetA/7+2/rHly0rqap/+glYvlx6yu21NGnNGnn+ZcuMr1munH1eywI5A8fdTuOrY+2xe/JfSEnRYceO/waOc604btHC+QaOdTpZSPTvv8C8eerVw8DDQ1YR79oldWveXOqXna12zdyAg4Ls7NmzUbVqVfj6+qJFixbYYWb64Pz586HT6UxuvnmyBSiKggkTJqBixYooXbo0unTpguPHjxerbkTFsXixZFp8/31ZVONKGjeW1MgrV1o/R8xmUlPlIH79tZxXhg6VzfT8/Aos7uMDdO0qE7YCA+VS4JdfgFu3HFzvXFavlgZvq1bq1aFYdDr54h49Csydq3ZtKC87x+UNGzagd+/eiIiIgE6nw5IlS4p8zLp169CkSRP4+PigZs2amD9/fvHeG5Eryc6WFcRZWTIgWqqU2jVyLoY9LJKSOMPXBSleWbiUctuisjfWzMX5Twbg4hdDcWPtN/Cr1QrBXZ8r8nEJ124jLcPFJ6OxQ5pIcxRFwta+fZL6uFkz/td1hFKlgJEjZaLSl19KW161vghyTYzJ+Wj/HVI+U6bId/uNN2z8xIYlpWPGFH81Sf/+sqq4Vi1Z2WvLnMHp6fJ8nTtLTuL9+4HHHrPNc9vC66/LZpQvvwxfX7m4yL3iOCUFFg0cf/654weOmzaVQzlhgvTVO4OYGFmh/eKLssq5c2fg7Fm1a6VxDgiyP//8M0aNGoWJEydi9+7daNSoEbp164bLlwufXR4YGIhLly7l3M7m+SK8++67+OSTTzBnzhxs374d/v7+6NatG9Kdbdk+aVJmppyjuncH7r1X7dpYz8ND6n32rIwTOlR2tqw6ypNaGpUqWfTwChWAJ58EHnpIUlDPmqVOCupz52SiVadOLjpu0Lgx8MQTchGQnKx2bSg3O8fltLQ0NGrUCLNnz7ao/OnTp9GrVy907NgRe/fuxciRIzFkyBCsWLGiOO+OyDUoijRKbtyQAWJX2VPC0cLCJJ6cOAFwsqZLOXstDZb2zQc2ux8V+k9FSK+XUbp6UyiKHsguOs24AuDMtbQS1VN17JAm0hS9Xvpejx2T/tiYGJk/S47h4QE89ZQkCP31Vxks5uIgshhjcj5MgOBmjh0DvvhC0kyHhNj4yQ1LSuPigPnzgSFDivc8kZGSL+Ljj4Fx4+Tn778v2b5N+/dL5Dh2TFa8vPyyc/0H37VLVjTPnVtox4Fh4LhZM+N96emS5jM+3nj77jvp4PbykmybcXEyiGvv/oi335Z9ij78UPqJnYGPj3wle/WSgYCGDSUN9YABvHizC2sDZzH+D3744YcYOnQonnrqKQDAnDlzsHTpUnzzzTcYO3ZsgY/R6XQIDw8v8G+KouCjjz7CG2+8gfvvvx8A8N133yEsLAxLlixB//79ra4jkTU+/xw4dUoWwrqqmjUlM8k//8gcLIeshk5IkH1wk5KAJk1kM/pCVg6bo9MBDRpIvdevl4Qoe/fKThQ1a9q81vkoiqzCDg938e0p335bpnDPmCE/k3Owc1zu0aMHevToYXH5OXPmoFq1avjggw8AAHXr1sWmTZswc+ZMdOvWzarXJnIZ//4rs4FatpTN9KhwNWrIjOO9e2XvhYoV1a4RWSAzy/IU4aVCIlEqJBIAUCamM5IWvonLv01B+JMfQldEA92a13FKDmgrE5Fj3L0r+7FfuSLhPTJS7Rq5J50O6NtXkpN+/rlkBnvpJe4HTRZgTM5H+++QTIwbB0REAC+8YKcXyL2kNK0EMz09PGQgd9cu+bm4OYOzs+VxzZpJ9Ni5UzZ+dKb/3IoCjB4tI7qDBln1UEtWHMfHy2pawz6Xjz0m4/e2XnFctap8r959F0hMtM1z2kqHDjJPoHdvWezUv7/s/0jOITk52eSWkZFRYLnMzEzEx8ejS5cuOfd5eHigS5cu2Lp1a6HPn5qaiipVqiAyMhL3338/Dh06lPO306dPIzEx0eQ5g4KC0KJFC7PPSWQLN25Ido/Bg2Wg0lXpdLKa+No1iTl2lTu1tKdnkamlLaVWCup//wXOn5fXdunJS5Ury/XVhx/KYAi5NEvjsrW2bt1qEm8BoFu3boy3pF1nz8qJvkED9iBbqmFD6bDYtg24eVPt2pAFvL2K37fiV6cNMi8dR9b1C3Z9HSIiW0lPl8nF164BbdsyvDuDDh2AsWOl3/ett6RfnIisw6ssN7J5M7BokSzwyLMlp229/bZEy/9WCZRIgwYykvnSS9bnDD57Vsq/9pqMXu7YIY1OZ7N0qVxhvPuuTZZf5R043rNHAuR338nf69QxDhwbUlU3bmybgePXXwe8vYHJk0v8NmyubFlZkL5woazaathQVr2RDel01qXq+G9EJDIyEkFBQTm36dOnF/j0V69eRXZ2NsLCwkzuDwsLQ2IhMxNq166Nb775Br///ju+//576PV6tG7dGufPnweAnMdZ85xEtvL220BGhgwUu7rwcEmztW6dnbY7KCi19JAhFqeWtlT58sYU1OfP2zcFdVaWcfV1tWq2f36He+01GWF//XW1a0IGdo7L1kpMTCww3iYnJ+POnTs2eQ0ip3H1qkx4rlJFGmBkGZ1OGqllygCbNjl2DyUqlvK+xU9ZptyVSUj6DPMLDHQAqoa4eKr2YsZkInIeqanAmjXAnTuy22KFCmrXiAwaNwYmTgQuXpR1a1evql0jcmqMyflwkNhNKArw6qty0rT7Nry5l5QmJZX8+Xx85LnWrgVOn5bRve+/L3xXekWRvzdsKDk8V6+WFNN2HRkvpqws2cO5UyfJbWknvr6yUBmQYGkYON6xA/jkE1kAbm7geOdOy9rn5crJXtdffQUcOWK3t1Mi/fpJiu46dWTl28iRcoFHNlDMPR3OnTuHW7du5dzGjRtnsyq1atUKTz75JGJjY9G+fXssWrQI5cuXxxdffGGz1yAqjlOnZLzztddkgFULOnaUsLZpk42f+OxZ2Stj+XKZPPbii7KXgp2yghhSUA8fLpOu1q2TWHjihG1fZ+dOWansintRFyggQGY8LFggqU1IfU4Yl4ncQmqqzNAODpZ45QYdSzbl5QW0aSPt+s2bucmgk7l7F7hwQUL9338D61d7IcTHfEaX7LSb+e5TsrOQdnANdF4+KBUaZfbxUSF+8Pdx8d3yuP8hkUu7cUMGiHU66cItW1btGlFe0dHA1KkyEf/112WHKqICMSbno/13SABkBfHWrZJ52SHfa8OS0kmTbPec7dtL7og+fQrPGXz9utz/xBPAffdJ+Y4dbVcHW/vmG+DwYRkEd3DngWHF8XPPyVbI5gaOmzc3HTieM6fwgePhwyXdymuvOfTtWKVyZVlNPHOmvJe4ONn6ikqomEE2MDDQ5OZTyAYioaGh8PT0RFKeySdJSUmF7jmcV6lSpdC4cWOc+G+0x/C4kjwnUXGMHw+EhgKjRqldE9sJDARatbJhhsjUVLmA+eYb6TAeOlRWEJcwtbSlCkpB/fPPtnlvt28DGzbIdsrly5f8+ZzG4MFA3bqSerqwyXzkOHaOy9YKDw8vMN4GBgaidOnSNnkNItVlZspsKW9voHVrt+hUsgs/P+Cee2Q21Y4djCkqUhQZHDl8WObt//47sGWLrAcID5fx/F6NK8DTo/D+jGvLZyHpp/G4uelHpOxbgZubF+LiNyOQmXQSZds9Dg/vwmOAp4cOHWtpYLkeO6SJXFZSkkwc9veXAWJ/F09soGUREZKxLTBQFkkdPqx2jcgpMSbno/13SLh7V3Lz9+gh2Zcdwl5LSoOCZIXKzz8Dq1aZ5gz+5x/5feVK4KefpDfXmad2paZKLowBA2RE1gkUNnC8fbvpwPELLxQ+cKwowLRpwB9/SAe4s/LwkFXEu3YBpUrJ+5kxgxPVS8TOQdbb2xtNmzbF6tWrc+7T6/VYvXo1WrVqZdFzZGdn48CBA6hYsSIAoFq1aggPDzd5zuTkZGzfvt3i5ySy1rZtEsamTtVeA7NNG6B0aZllXWyG1NKffAIcPy6Tw+yQWtpSuVNQX7gAzJ4t8a0kKag3bAD0etk/SVO8vGRG4rp1wF9/qV0bcrLGb6tWrUziLQCsWrWK8Za0Q6+Xmdnp6TLAaaMJFm6rXDlJc3X+PHDwoNq1cSvp6ZLIZft24M8/pavlyBGZ+xAbK31LPXrIZLeICOCJllHI1hc+kO9fty2g80DKnr9xfcVnSNm5BF4BoSj/0JsIbP6A2bpk6xU83tL8SmOX4GQxmYgsc/asbD8UGiprlxjanV+5crINYrVqskfx9u1q14icDmNyPi6er4Us8cUXktZy0SIHv/Dw4ZJLc+xYYMkS2z73I49IT/SgQZKnMTZWloJ26gTMny9LWZ3dBx/IyuepU9WuiVm+vjKA2ry58b70dFmkHR9vvH37rXSYe3lJms7QUGDgQBkIadTIeS+kGjSQC4YJE4Bx42SL6O++k6zpZCVrA2cxguyoUaMwcOBAxMXFoXnz5vjoo4+QlpaGp556CgDw5JNPolKlSjn7J06ZMgUtW7ZEzZo1cfPmTbz33ns4e/YshgwZAgDQ6XQYOXIkpk6diujoaFSrVg1vvvkmIiIi0LdvX6vrR1QURZFFlo0aycCj1nh7SwKPP/+Ufl2rx3XPnpUT8eXLMjOpc2eHrRw2x5CCOjpaBnjXrwf27ZMO0po1rXuu69dlUlWHDrLloub07Cmf26uvAt27y0wsUoed43JqampOZg4AOH36NPbu3Yvg4GBERUVh3LhxuHDhAr777jsAwLPPPotZs2ZhzJgxePrpp7FmzRr88ssvWLp0qVWvS+SUFEVm2F65ArRrJ7NpqeQqVZKJ4Pv3yzFlI80u9HrZvzEpCUhMNGZNKVtWOtnDw4GQkMLDRHRYANrWDMWWU9cKHCz2r9ce/vXaW10vTw8dWlcPQc0KGvj/5IC2MhHZ1tGjEn6qVpWmKf9bug4/P8neNmuWdL8PGSJZwogAMCYXgIPEGnfrlsyeGTQIiIlx8Iv7+MiS0scek2lXbdva9vkrVZKlnz17ygBxWJisXnGFAeLERKnriy+6ZEPXkoHjlBTg5EkZJPDyku9f06bGW8OGzjNw7ONj/Co9+aTUbdYsyVpenCzgaRlZOHMtDZlZenh7eaBqiL/r76FkCQcE2X79+uHKlSuYMGECEhMTERsbi+XLlyMsLAwAkJCQAI9cz3vjxg0MHToUiYmJKFeuHJo2bYotW7agXr16OWXGjBmDtLQ0DBs2DDdv3sQ999yD5cuXw9cZ9zEnl7dokaToW7UK8PRUuzb2ERsrk29WrZLJQhadR1NTJRPIvn0S34cOVW3lsDk+Psa5acuWSdKSOnWAbt0sT16yerUMDrdsac+aqkinA95/X5YXzZ0r6UlIHXaOy7t27ULHXNu6jPovf/7AgQMxf/58XLp0CQm5NgOrVq0ali5dipdffhkff/wxKleujLlz56Jbt25WvS6RUzp+XGZmx8UBFTSQGteZ1KoljctduyQFi6b2aVBPaqp0SyQmytyGrCy5zgkLk0MeFibtfktNeyAGXWauN7ui2FpeHjpMe8DRHVl2wg5pIpehKNK/eeyY7KRTv77DdwgkGyhVCnjpJWmnf/WVTNbu14+fJYExuQBuMGrh3t59F0hLA6ZMUakC/foBH34IjB4tqSNtdSbOzpapQG+8IRF7zhwZDW/ZUnJJjB7t3L3vkybJcqvx49Wuic0UNHDcs6f0948dK//u3CkLvbOyJFg3aOBcA8eGba9feEEGNv78U75aISFFP/Z4Ugp+2J6AtUcvI+H6beRuGusARAX7oWPtChjQIgrRYRqYCV0QBwXZESNGYMSIEQX+bd26dSa/z5w5EzNnzjT7fDqdDlOmTMEU1U6U5C4yM2W/9h49gC5d1K6N/Xh4yEDqDz/I7Os6dcwUzs6W4LBmjcTtPn1kHwMnvwgvX14mEh06JGPbs2fLXLjWrWViVGESEoB//wX69tX4AtvYWJl1ZdhWIzBQ7Rq5JzvH5Q4dOkAxs0/o/PnzC3zMnj17rHodIqd38aI0dmrXlmWXZFs6nUw8SkuTmXadOnGldjHcvSuDwYaB4bQ0ObShodKlEhYmHenF7bKJDPbD5D71MXbRAZvVeUqf+ogMVj+jjE2wQ5rIJej10jxNSJBmqbVZo8i5eHjIwrngYOD77yVTxtChzj1kQA7AmJwPB4k17Px5GZ995RUVF+N4eMiK2Y4dgV9/lTTRJXXmjIzgbdwog8FvvSUjiz16SGeks+cMPnxYVta8+65slKBh778vK4izs+UtA6YrjnftMj9wHBcnj3fkwHFQkHx1evcGnnlGXn/+/MLTkpy7fhvjFx/AxhNX4emhK3DmtALg7PXbWLD9LOZvPYO2NUMx7YEY7TR4DRhkicz67DPg9Gng99/Vron91awJ1Kghq4mjowtphDlpamlLFZaCunt3uS8vRZEB5fBwmRSleVOnAr/8ArzzjmSWIcdjXCayvxs3ZDJ0pUoqpO5yIx4eQKtWMqls0ya5ZvD2VrtWTk1RpDM8MVHSSF+9Kvf5+8u1SHi4THqz5aS1/s2iMO+nDBz1OVbi53q1a230a6aBvYgNGJOJnN7duzIX6epVCTmVK6tdI7IFnQ64/36ZCPX55xIbX37ZebJbkgoYk/PR/jt0Y2++KRNsx4xRuSIdOgD33SeDt5mZxX8eRZHRu4YNZaB47VoZaDWc1X18pCNy3TqZ8tWwoZQ3s8JBFWPHSkrs4cPVrond1asHDB4s4/iGfY0MK46few74+mvJFJ6SIqlJP/pIZurt3CmreZs1k+9wkyYy0+uLL2RgOSPD/nX/3/+AAwdkAKBbN8kMfueOaZmFOxPQZeZ6bDl1DQCKTK1l+PuWU9fQZeZ6LNyZYLa8yzEEWWtuRG7ixg3J6jFkiKSrcgf33ispneLj8/whJUXybn/zjSy7HTpUZua40ABxboYU1M8+KxONfvwR+PlnY9wz+Pdf4MIFmXTkFimuKleWmYozZ8p1GTke4zKRfd25A2zeLNkSmjd3k5O7iry9gXvukT6FLVtkuReZSE+XOXjbt0tWrH/+AY4ckYHg2FiZV9+zp7SvIyJsn9Xk00+BlTOj0TM0Bj5eHvD0sO7/hKeHDj5eHpjxYAyGd9TY8j3GZCKnlp4u3cnXr0uGKA4Qa0/79pLZ7eBB6ZtJSVG7RqQaxuR8tP8O3dT+/cC338rCWqfI8Ddjhgzsfv558R5/7ZqsQh44UKb/7N8vZ/eCtGsnS3keeEDKP/KIPN4ZbNgA/PGHrKhxkylLkyfLxdb06YWXMQwcP/+8+YHj4cMdO3BcqRKwfDnw8ceyf0XTpsDu3fK3WWuPY+yiA8jI0lu971K2XkFGlh5jFx3ArLXHbV9xteh01gVYdqSRG5k6VWYmT56sdk0cJyxMOiTXrZM4gOxsYOtW6UE8flxSSw8Z4pR7DxeHIQX1ww/LYPDs2RL2s7Lk9s8/ssefW2UiHTNGRs5ff13tmrgnxmUi+8nKkhWtANCmjfm9Bsh2ypSRvR2uXZNZaM42IdzB9HpJyHLggGRv+fNPYMcOIDlZrjfat5fukzZtJMtLmTL2q8vffwMjRwKjRgGfvRKFf15uj9bVZd+mogaLDX9vXT0E/7zcXlsriA0Yk4mcVmqqJKpIT5dEmBUqqF0jspfGjWUHyEuXZHHdlStq14hUwZicD1syGjVmjKQ6HDZM7Zr8x7CkdMoUGbgtW9byx65cKRsIpKfL0hxLUlYHBckouaU5gx1BUSQ9dlyc7NXsJipWlLc9Y4YMAlepYtnjCtrj+M4dY6rq+HgZOJ43T8YdDKmq4+KM6aptkaraw0NWEXfpItsqtmwJ9H89ARvSS55CCwDeX3kM5cv4aKMhzHQdRAU6dUrGRSdMkNR+7qRTJ9m3d+PSW7g36QfpyYyLkz+46Mphc3Q6WSkeHS3pp9evl4lPVasCt24Bjz2mdg0dLCBArv2eeUZ6jps2VbtG7oVxmcg+FEVms6amSm9y6dJq18i9lC8v1xI7dkicqVNH7Ro5VGqqMYX05csyX8HHRybn1aol//r6OrZO+/dLF8d990myN0D2KF4wuAWOJ6Xgh+0JWHvsMhKu3UbuYX0dgKgQP3SsVQGPt4xCzQoa3muaMZnIKV2/LnO+vL1lYo2/v9o1InurWRN4+22ZyP/663KztK+aNIIxOR8OEmvQqlXAihWSydHW6YNKZPJk4IcfJCX0O+8UXf7OHckD8emnMkI3f771q40eflhmGj/1lOQMfuEFGa1UoyH/yy8yqrl2rVucXHIbPVpW/L75pmQAL67SpYEWLeRmkHfgeMcOyWBqGDiOiTEOGpdk4LhePekLemXibfyecggeXpBWrRm3tvyMmxsWoFRoFCKGfFZouQl/HELrGqHa26OYiADIbgvly8vKCncTgBS0LnsOmw5Eo1lYOZQd1lfyG2qct7ekoI6NBf76C9izR+bHOdV1maM8/bSk5Bg9Wqbou8EsXCLSuP37gYsXJfWxNZOfyXaqVJHUUwcOyPJYDecFvXtXVjolJsotLU1CaWiojI+Hh8vXUK3wmpgog8M1a0p3j6en6d+jwwIwqU99TEJ9pGVk4cDpNGzepkeblh6IqeYPfx92SxKROhITZfeCoCAJ6W6S8JEgC5qmTpWslxMmyPBDvXpq14pIPbwa0xi9XlYRt2kD9O2rdm3yyLukNMrMysndu4HHH5flVx99JIO7xR1YjYgAli2TvI9jxki+x++/l3zFjpKRIaME990nezS7mYAASefx/PPAyy9Leg9bsWTgePt22wwce3sDN2segNdJBUVlmM5KvopbW3+BrlTR07iz9ArGLz6ABYNbFFnWqXEmFlE+W7fKHKF58zS5cLZw2dkya2ftWrT28EW8bzRWl++PhyLca4CwfHnpvL14UVb6zJ4tHRBulZnUywt47z2gVy/Jg9mnj9o1ch+My0S2d+oUcOyYzAKqWFHt2ri3+vVlWe2OHXKRFRysdo1sQlGAmzdlpXBiInD1qtzn7y/XFOHhcn3hDBPPbt+WdNbZ2RLii0pn7e/jhdphQTjnD9QOA/zdaUCGMZnIqZw9K+t4wsMlY6DbtM0oR7ly0lf9/vsyYPzii/JdIDfAmJwPT4Ea8/33ktZwyxYnXaiRe0npt9/m/3t2tuQnmjhRGn3x8fJvSXl4yEBz584y+NyihaQ/HDMm/1RXe/j8c7kC+esv+7+WkxoyRBYSvfqqrHa35/ezpAPHcXGSujrvwPHxpBRsPHHVojrcWPs1fCJqQ9Hrob+TbLZstl7BxhNXceJyimun2GKQJTKhKMArr0g/8hNPqF0bBzpzRjam+y+1tHenTuh4pBT+/BNo2UozWxBb5No1YNcumR/WooXsUbxhA7BvH9Cjh6Sldgs9ekhWmDFj5Gdn6Nl2B4zLRLaVlCSTmWvUkGWTpC6dDmjWDFi3Dti8Wdr6LjojLz3dOCiclCRzzD09ZV/M2FgZxLDnfsLFodfLTmIHD8q1jYYXc9sGYzKRU1AUmeu1f79sCdS0Kf+7uTM/P1nTNXs28OGHslNmt25q14rsjjE5Hw4Sa8idO8AbbwAPPQS0aqV2bQqRd0lpbKzxb6dPA08+KQ28MWNkENfb27avX68esG2b1OH116UT+7vvgGrVbPs6ud28Cbz1loySunHuCi8vWUR+//2SDr17d8e+flEDx7t2FT5wbNjneElCAjw9dMguYhlxesJB3D6yGRWf+gTXV82xqH6eHjp8vy0Bk/rYYFKEWhhkiUz83//JSuJ//nHMfCTVpaQAK1fKibVyZWDYsJzU0rGxco5duRIYNMhJJ7LZwerV0qnbsqXElS5d5FgsWwb8+CNQu7bEQ81nK9XpZDVxkybAV1/JdSDZH+Myke0kJ0tQN4zauUsgc3aenpKeY/Vq2VSyY0eXmIik18tEMkMK6Zs35f6yZaVrIixM0kk782n5zTflWnfRImkrUxEYk4lUpygyWff4caBuXVmTxHBOpUrJKuKyZYG5c2Wf6v79+d3QNMbkfDhIrCGffAJcuiT59J1a7iWlK1fKfd9+K2fk4GCZCdyunf1e39sbmDYN6NlTlnY1aiQHb+BA+0SA6dNlKvCkSbZ/bhfTuzfQtq189Pfeq/6gibmB41278q84rvTMZXiVMz9ArOizcX3VHJRp1BXeFapaXJdsvYK1xy5jEjhITKQFGRmyr03PnrKwRdNypZaGp6fMBoqNNfk/7uEh5/0ffgCOHJFGudYlJACHD8v2H7n7q0NDJanJv//KZZDbpKCOjZVrrYkTgQEDZPMvsi/GZSLbyMiQAcjSpWU2Nv+vOBdfXwmka9ZI461NG6fs2U1NNa4UvnxZtqHw8ZEB4Vq15F/foncqcgrz50uXynvvOeE2Z86KMZlIVdnZkl763DnZAo8JQSg3Dw+ZzB4cDCxYANy4ATzzjPr91mQnjMn5aLkryq1cvSoX6c895wKpC3MvKf31V+Dnn2X66ZNPymCtozoN77lHppC99BLw1FOyic4XX0jvra2cPSsD4mPHcs8qSFv9/fdlUPa77+SwO5vCBo637crCU3/fLvLxqXuWISv5CsIefdvq1064dhtpGVnw93HRUzODLFGOzz6TrMt//ql2TezszBlg6VLgyhVJu9CpU6GpHmvWlAyd//wjnaFabnApigwAV6wINGyY/+86ncxcj442TUHdvbscG82aOlWu+955xwVmNWoA4zJRyWVny15OWVlA+/YusUrVLQUFyQD+pk0SUHNnLFNJVpYMBhsGhlNTJf6HhgJ16kgK6bJlnXI826z16yVZzJAhsq0KWYgxmUg1d+9KKL96VUIF0+NTYfr0kdj82WeSRObll/NvRUgawJicj/bfoZuYOlX+ffNNdethsd69ZdPXAQNk5dGvv8pqYkevKgkMBObNkzxJ69dLfuHly233/G+8IdFl9GjbPaeLa94c6NdPDs3tosdcnULp0kCFGmlFlsu+k4ybG39A2db94Oln/XdZAXDmWtGv47QMQdaaG5EGXb8uuwwMHarhXQZSUiR2zpsnGTqGDQPuu6/IvQDvvVdm5e7a5aB6quTQIeDCBXm/5jp/vb0lBfVzzwHlygE//QQsXCjHSJMqVZJropkzZak12RfjMlHJKIoErOvXZXWqv7/aNSJzwsNlcPj4ceDECYe/vKJI/D5yRJKjLVkiO2klJsoq4datZZ58hw6SUaVcOdcbID5+HHjwQckO9tlnrld/VTEmE6kiPV3OyTduSNJKDhBTUdq1k32KDx4EJk+Wrg/SGMbkfLT/Dt3AyZNygT52LFC+vNq1scDt28ALL8jZNitLRrYffljdOj34IHDggDQqe/QARowo+Qjmnj3A999LRClTxibV1Ipp02TR2UcfqV0Ty2Vm6Yssc3PDAniULoOAuN52fR2nxSBLBEAmbt29K6d/zTGsqPr0U+mA7dsXGDw4Z+/hooSFSahdv14a7FqUlSVbI9aqJfsKWsKQgvp//5OtQz77TI5RVpZ966qKV1+VCXTjx6tdE+1jXCYqmcOHZUJL8+ZASIjatSFL1KwpaTr27pXRWTtLT5fkYTt2SPaYf/6R7SS8vIxdCz17Ak2ayDwpV16Ifv060KuX9Dn99ptrvxdVMCYTOVxKiuxEkJ4uW9a7RJ85OYVGjaQ/JylJFjlduaJ2jcimGJPz0f47dAPjxwMVKkjWZKcXHw80bQp8/bWklv7f/4APPnCOJaUVKwJ//w3MmiX1a9pU6lsciiKdoHXqSOc5maheHRg+XLJNXr6sdm2KlpEBnDhm/nR59/oFpO5dgYCmfZCdch1ZN5OQdTMJSvZdKPpsZN1MQvadoqefeXu58GlZp7MuwHLqOWnQyZMSRsaOlQFRTTlzBpgzR/IoN2oEvPiibOhk5QVzx44y+Llxo32qqbYdO4Bbt2QVsTV0Oll5Pny4bHmwYYMMFh87Zp96qiYgQJba//CD9peUq41xmaj4EhIkLUT9+kBkpNq1IWs0aiSrirdulYBsQ3q9dBQfOACsWiUDw4a4X7WqZCTv21d2tqpZUztzxTMzZV799euyy0i5cmrXyAXZOSZv2LABvXv3RkREBHQ6HZYsWWKf90HkIq5flwFiDw+gc2fHJ64k11ejhiwAyM4GXn9dJoWRRjAm5+PCoxEEANu3A7/8IietIjI8qis7G3j7baBly/9n77zjY77/OP66TBJCEpvE3mITe8aqDnSgtKpKS1XtvfcqWpQOqkZLW9WirRWxCWKrvZUkCDKQdff74/U72cldcnff7929n4/HPUJy9/2+b33fn897vN7U7g0JYTexPkuolpZSjYbR2ZMnKSfWoAHtNraVZ/t2thHNmcMyYiEN48fzOjt1qtKWpCQ2ljHr5cspFVu7NuPZXV9xh06X8eMSox4BOi0e7/oG/y3v8/IWd+8SEiL+w3/L++DpwZ8zPbcGQClvK5axk0osQcCYMSzcGjJEaUtMSHJpaVdX4OOP2UqSO3e2Dpc3LyUXg4OBJ09Ma6rSPHvG5G6dOuwOzg7pSVD//LONSVD37s3Ey/DhyNS5CjlD/LIgZI9Hj4BjxwBfX+oCC9aFRsNqK3d3zijOoXRJdDSLAA8eBP78k7Kl169zclX9+pyk1aYNUL0614C2dinV6YBPPmHO/Y8/GDQXsoGZfXJMTAxq1KiBpUuXmukJCIL1EBrKa3XevCxQVnW8XFA1RYsy55I/P4VQz59X2iLBJIhPToNkr6wYnY6xterVgffeU9qaTLh+nQYeOQKMGgVMnswIKJCypbRvX/Vof1SqRDnNqVOBiRPZYbxmDe3NisREdhE3a8Ydo5Au3t7sgh83js1oFSpY3obYWFaBh4QwMRwSQhX0+Hjm9qtWZaC/b1+gTh0nDN/jhtuP0+96dy5YEgW7jEvz+yf71kAb9xxeAf3glL9opvb4ervB3dWKL8vGOk5bi6AIds+hQ8CvvwKrVtnIRjQxkZncPXt4UezUid05JvjuNmrEa25gIPDmmzk+nGrYu5frsxYtcn4svQT1hQusPfv6a47EbNzYBiQenZyAefOowbl5M4c0CqZH/LIgGE9MDLOBXl5A3brSYW+tODuznTcwkO9nixaAo6NBD01IYB17aChlJqOj+THw9maYoEgRBovt5aMxdy7rBNes4UsqZBMz++QOHTqgQ4cORholCLbHrVus8ypShH0/0rcj5JT8+Sk9PW8eE8aDBgENGyptlZAjxCenQS6VVszmzSyM3bbN4P2OZdHpGCkfNIiRzr17099VjB/PXcfUqZxxqBZcXHj179CBSe4aNYAvv2T3S2Y7wh9/ZKYxONh+do7ZZNAgYOlSdt5t3GjecyVPCOuTwvqEsKMjUK0aE8IffcR4UPXqQK5cKY/RKrQQ1gTfQqI2bdeTo1s+uFVIu0qIPPYnAKT7txSPd9CgZYVC2X+CakCC0YIdo9MBw4Zx/pyqC7cM5eZN6gk+eADUqwe0apXtzuH0cHHhITdvZrNPiRImO7RiPHpE39KyJZuXTIFegrpcOXYo798PnDkDtG+vTHGVSWnfnq1XI0cyWWz1mW8VIn5ZEIwjPp4bbCcnVjOpcpMtGIybGyur9uxhxsDfP939uU5HuejQUN4ePuTv3N2ZZNB3CNujm9q4kSNUJkxg4ZqQA7LpkyMjI1P82tXVFa6urqa0TBBsAp0OuHSJcb/SpakKKEtbwVTkzs3Y9ddfAwsXUhHNynKAQnLEJ6dBksRWSnw8m3LbtAHatVPamnR48IBylJs2AR98wOSqh0f6903eUvrZZ+qLejZuDJw+DQwezPnCW7YA336bftfzs2fcQXXtSu0pIVNy5WIe/v33WeDduLFpjps6IRwSwv+nlxCuU4cbf0NyHz38fbHq8E3TGJmKRK0OPRv4muXYgiCYn99+o2BGYKCVb0YjIzlz+OxZzmD8+GNqLJmBGjX4mu3cyaWCtddVBQZy9qC/v+mPrZegrlkT+Ocfyk9XqMA8q9XOBdRoWI5dqxbXVZ9+qrRFgiDYM1ot9XSfP2cVk40EfOweLy/uyw8fppOuVg0A94v6TuHQUP7f0ZHJ4Jo1gcKFeXdrX5vkhGPHWPjYtSs7qARl8Ek1E33SpEmYPHmyMsYIgkrR6Ri2vXKFBbZVqtj39VswD87OTFt4egIrV3IcVPfu8lmzJ2zZJ0uS2EpZsQK4fBlYv15pS9Lh77+BDz+kTtPGjUCXLlk/5rPPgCVLmCz+7Tfz22gsefPyRX/1VaBfP8DPjx7hlVdS3m/hQibIZ85Uxk4rpEcPYMECKnQfPGi8czU0Idynj3EJ4fQo75ULTfEEhxLzINHRsMtnkR6zs7yPo4MGjcp4o1yhvNkzTC1Ix5Jgp8TGsnCrY0fGla0SvbR0UBB3PyaUls4IBwegbVtg7Vrg4kXrHvt46xZloTt3Nm+nUWoJ6qVLKdJitRLUNWqwQmDyZD6xfPmUtsi2EL8sCIah0wGnTlFjuGnTjIubBeukRAloq/nB4dxZ3HmSF5delMTjx/xTvnxAqVLsGPb2luZxPbdvA6+/Tjf9ww8SADcJ2fTJd+7cgUeya5KtdCwJgqlITGRRy5077B6WuemCOXFwYKOTpyewejU7ivv1E1lzq0N8chrkI2yFREUBkyaxqrNmTaWtScazZxySvGwZW1tWrjS8+yh3bmDGDF5pDx2ivJca6dyZgwc+/JDZgP79gfnzKWUVHg7MmcNOGENmFwsAeJ2dN49d8b//nvlsSksmhNNw8SLQsydm3ryPgL7LkWiiwwKAk4MGMzv7mfCICiHBaMFOWbqUwbS//lLakmxy4wYLvMwkLZ0ZZctSSnnXLnbGWmNwVqdj83XRoqwhMzfJJaj37+ft9GnKXalNjMUgpk0DNmwAZs0CZmddWCUYgfhlQTCMq1eBa9e4gShcWGlrBBMRHZ3UKRweVhE1EQXf+8cRVcgN5eoVRJEiaccLCYw3vfYam+n/+MNiS0LbJ5s+2cPDI0VAWhCEJOLjGUJ++JChWlsYYSRYB6+9xlnFS5cyUTx0qKwprArxyWmQJLEVMm8eZ+ZMn660Jck4dowdILdvsyN4wADjy02Tt5QeOKDectUiRZgJWL6cAygDA9kG9eOPvGiMH6+0hVZHQADrCkaPZsWyszMTwufOcb5jegnhqlU5O9gsCeHk6HQcOjFiBODrC59tf2KKrhBG/37WZKeY+npV+Hi5mex4iiHBaMEOiYhgjqtvXyvshLWgtHRmtGlDl3r8uHmkms3N+fPAvXtAr16WXbq4uACtW7PLZ9s2K5agLl6cRYZz5rD4rmRJpS2yHcQvC0LW3LvHLuKKFaXQ18pJSGDdtj4xHB1Nv+ztDVSqrEH+QnXgcDYGVZ4cAuq0BnLlUdpk1ZGYSOnMmzeZeJGaCRMiPlkQTMrz5yyWffYMaNYs/YmAgmBO9OIz8+cDU6cypm2j+UPbQ3xyGiRJbGXcuwd88QXH46aSQVeGhAR2fkydyijlyZNApUrZO1byltJNmwyTqVYKjYaBzFatmBxv1IhzrGbM4C5UMIrYWKpNdu8OtGgBvHiRNiFstg7hzLh/n13j27ax8GHePMDNDd0APIyOxfwdl3N8ihFtK6JrPRuZRSxOVrBDpk2jK7SqMSSJiRwGvGePxaSlM0M//2/vXgte301EQgK7oCtWpFylEhQowDq7ixfprqxSgnrECM4lHjsWWLdOaWtsB/HLgpA5T57QHxYrZhkpCMGk6HQsng8N5e3hQ/7O3Z3JzerVucZI8oUO3LcHBrIovVUrVlwJLxk2jGuJv/7iHlwwIWb2ydHR0bh69erL/9+4cQOnTp2Cl5cXfH1tJN4gCP8nKgrYt4/X/JYtZWKNoBw1ajAWNGsWe8bGj+faQ1A54pPTIEliK2PSJAZPx4xR2hJQkuu99zjDcMwYYOLEnG+ykreUvvaa+qObFSuyxLZ6dUZnN20C3n5bhmBkgr5DOCQkqUtYnxDWaPhx6taNudm6dRVMGPz+OwdLODtThrVDhxR/HtiyPArkccXYjeeRqNNB46Az+NCODho4OWgw9fWqtpMgBiQYLdgdV68yITd5shV1Wty4wcjfw4cWl5bOjJYt6Rv27+ecYmshOJgN2T17KmuHRsNO9rJlU0pQt2/PpYrqyZMnqSV/8GB+NoWcI35ZEDLm+XMmCvPmpYyFWlWshBTExiZ1CoeFsbjY0TGp4KxwYbqUDN9OFxdWUu3eDRw+zDYgufYBoHjWl1/yZ7t2Sltjg5jZJx8/fhwtW7Z8+f+hQ4cCAHr16oVVq1YZdSxBUDOPHtF9u7qyg9jNBkT5BOumbFmqvU6fDowbx5tSBeSCgYhPToMkia2I8+c55nfhQoWrpHQ6YMUKBvEKF2Yk0pQzhOfM4Q7v228531ftHD3KBPHEiex+qVEDWLSIba92HmyIi0s5Q/j48fQ7hPUJYS8vvnwlSyr41kdGAp9/DqxaxRnU337LNq10qJ3PF/e+L4C6/c/ibsJDODpokKjNOFms/3ujMt6Y2dnPNiSmkyPBaMHOGDOGbnDwYKUtMZBdu4CY/YpKS2dE3rzsfN2/n/lBa5BLfvaM9tatm6GbsDh6CeqaNYF//gHWr/+/BHUtR6j+Je3dm9Hp4cPZ5W7nayiTIH5ZENInIQE4eJD/btIEcJKwiFrRapkQ0CeFHz/m7/Pl456xSBEKeTk6GnHQvHkZv9i7FzhxghtSO/c527YBgwZxG9y/v9LW2Chm9sktWrSATmd44bogWCP377O+J39+um8RgxDUQpEiFBedOZPpgZEjgWrVlLZKyBDxyWmQ3ZAVMWoUULo08MknChrx4AG7PP78k5m9RYu4yTIl1atTe3jKFHYqq1nQX6ejRGKtWmzzHjECGDKEr9GWLcB339mNzkTqhHBICHDmTPoJ4Tp1mAxOr3ltyBCOpu7fHyhRwsJP4sABfuYePmRFxgcfZBowGDMGKOzuhl3j/HHnaRTWBd9G0OVw3H70DMldgQaAr7cbWlYohJ4NfFGukIm/M2pBozHOcdp5MEawbg4eBH77jePoVV29nJgInDoLoCbw339A7870sypMBjVsSN8RGAi89ZbS1mTN3r382by5snakh7d3kgT19u3A0t8KoYmmBRonAKrVaHF05FiHDh24zuzUSWmLrB/xy4KQFp2ORb6RkZSxUIGahpCSmJgkCenwcOb0XVxYmFeuHH/m+G0rWJBVXseOMZ5hFbIb5uHcOeCdd6g+8sUXSltjw4hPFoQccfMmG0+KFgUaNDCyOEgQLEC+fFSZ++ILJow/+8y0PXWCCRGfnAb1RQiFdAkKojrkrFkKVkrt388ymIMHKau8YoXpE8R6pk4FoqPZVaxmfv+dZWzz5vHikicPE8N//EEZaj8/vnE2RlwcA/nffstmtLp1+VGoW5eje48cYQ5i4UK+PFFRlL1cuZIdwg0aZLyxHzWKx5o40cJPaOxYRvqLF6exvXtn6gQOHeLbP306kCsXUL5wXkx+vSr2Dm+Jc5Pb4a82BbDpx6H4q00BnJvcDnuHt8Tk16vaboIYSKrEMuaWDZYuXYpSpUohV65c8Pf3x9GjRzO873fffYemTZvC09MTnp6eCAgISHP/Dz74ABqNJsWtffv22bJNsA90Os5sq1VLeZnhTLlxA1i2jJrIANC1K1tMVZggBri+admSyil37yptTeY8esQgRZMmnH2oRvQS1AMGAA39onEATfH1b4Vw6ZLSlmVC+/bUGx85klVmQs6wgF82xievWrUqjb/NlStXTp6hIBjP2bMsmmrQwDpkK+yAhAR2h508SRWMv//mv+PigEqVqJDx+ut8y0qVMmFev1QpnuDMGX4m7JCwMODVV9mM8PPPknQxKxbaKwuCraHTsfD12DFeqxo2lGuVoF5y52Zcu2FD9tX984/SFgnpIj45DdJJbAVotWxQ9fdXqLPm+XP+HDyY3R0rV1JHwZyUKKFwS6kBxMVxdnKHDty5JueNN7iL7dOHu66PP2YpkVojyZmQXofw2bP8vaMjUKUKk8O9e2feIWwoHh5syv7sM37kqlc32VNJnwsXmOU5c4bzEEeNynLFqdNRDbNmTXZqpcbd1QlV8zsD9y8D+Z0BVzu51FpA1nLDhg0YOnQoli9fDn9/fyxatAjt2rXDpUuXUCidrv09e/age/fuaNSoEXLlyoU5c+agbdu2OH/+PIoXL/7yfu3bt8cPP/zw8v+urq5G2ybYD7/+yrxrYKBK14qRkWwfPXcO8PUFurwOfAtWtKicGjX42u7YkWWtjqLs2pU0xlLtuLgAretFoeaJH/BPvn5Yv94J5cszH+vlpbR16TBvHh3sN98AAwcqbY11Y2a/bKxPBgAPDw9cSlapoFHrl1ywTW7cAC5dorMpVkxpa+wWnQ54+jRJQvrhQ8Y83NwYZqhenWJczpaQvqhWjcXpwcGsVLOjwoHnzxm2iI0Ftm41X/2/8H9kBIQgGI1OB5w6BVy9ythjlSrq3R8Kgh5nZ25jPT2ZQomIAN59Vz67qkJ8chrsJHNh3axfz8Tc/v0KXFCOHgW6d+e/R4+muL6ljBg1il25Eyfyqqo2vv0WuH6d7aTpUbgwJae//RYYOhTYvRtYuxaoX9+ydhpBXBxzCsePWyYhnBH9+nEs4ciRnI9kFnQ6YMkSnqRUKbY/16lj0EM3bWKH9M6dduEnDMcCTnbBggXo27cvevfuDQBYvnw5/vrrL6xcuRKjR49Oc/9169al+P/333+PjRs3IjAwEO+///7L37u6uqKIuYtfBJsgNpbu8NVXgVatlLYmFYmJvJbt2cOdSefOvFCftJ7diIMD0KYN3eWFC/Q7auPWLVazd+5soQC2ifDGI/RoH4GLkcWwfTvw9decA92kicqeR/XqXGhMnswirvz5lbbIejGzXzbWJwNMCou/FRQhPJybmzJlgPLllbbG7oiNZUJYnxh+8YL7y0KFeNkvUoSiXBaPd2g03J/v2cPRQ61bq3yOiGnQaulqz5wB9u0DfHyUtsgOkIC0IBhFYiJD0nfvArVrA2XLKm2RIBiOgwOnGXp6ckTZ48ccH+okmTh1ID45DfLRVDkvXlAFt1MnBvEsRkICBfSnTQMqVODv3n7bsru25C2lQ4ZQulktPH3KmckffJC5XRoNu4hbtqR3aNQImDABGDdOcc+gTwiHhCQlhVMnhOvUMX9COD2cnYHZs4E332Qitk0bE5/g3j0+sR07WN41Z47BwYD4eCaI2rcHAgJMbJedEhkZmeL/rq6u6XbyxsXFISQkBGPGjHn5OwcHBwQEBODw4cMGnevZs2eIj4+HV6r2uT179qBQoULw9PREq1atMH36dHh7e2fj2Qi2zpIlwO3bKpwkcOMGjXr4kMFOK56zWLYsZw7u2sURgWqSE9Pp6DqKFVPXssRQ9BLU5cqx+PDgQQaI27fnck811c3TprFKctYs9Y8esUEM8cvZ9cnR0dEoWbIktFotateujZkzZ6Jq1aqmfQKCkJqoKM6KKVSIsyJUc7GzXbRajmbQJ4YfP+bv8+UDSpZkUtjbWyU+3tGRVVOBgXSMLVsqvlc3N5MnAxs2ABs3sghcEARBTcTH83L86BHDqMlE4ATBqnj1VdY8L1lCwbehQ61C4E2wQ2w/DW7lLF3KqqnZsy140itXmJGeOpUZ6lWrLHjyVPTrx0jmyJHK2ZAec+YAMTF8jQyhQgVWJo8fz8Bn48Z8nS1EXBw7sgDm/vUzhOvUoZr34cMMdn/xBf8dGcmg8Q8/ZD1D2Fx07szF4MiRDDKYjN9+45M9e5ZtyosXG1Ut/s03lLqZO9eENtkK2Zzp4OPjg3z58r28zZo1K93DP3z4EImJiShcuHCK3xcuXBihoaEGmThq1CgUK1YMAcky/O3bt8fq1asRGBiIOXPmYO/evejQoQMSExOz+UIItsqjR5xD3q8fE22qIDKS+terVvFC/cknwCuvWG2CWE+bNsCTJ5w9pSbOnWOdUZs21p1jcHZmJ3z//gzSr1/PWYQREUpb9n+KFeOslS+/BG7eVNoa68WMfjk7PrlixYpYuXIl/vzzT6xduxZarRaNGjXCXbUPIResm9hYVsXkysVNjR10AihFTAxw7RoD+3/+yebca9fYIVyvHgOlbdsmyUmrIkGsJ1cuxkCio6nKotMpbZHZWLOGIYnZs4EuXZS2xo6Q+YeCYBDPnwNBQdwLNm8uCWLB+mnShOmVCxdYpPX0qdIWCeKT02Lb5ZFWTkREUjC6YkULnFCno7zzkCFA0aJMajZsCJw4YYGTZ0DyltJdu9TRunn3LrBwITBsmHGrFWdneoMOHSifWLMmj9O3r0kjzck7hPVdwvoOYYDJ3yZN2ASt7xBWo6KWRsOxhI0bA+vWsRE7Rzx9CgwaBKxezc/TN98wMm4EkZGGNZDbLdmU67hz5w48PDxe/tpc84Bnz56N9evXY8+ePciVrHSvW7duL//t5+eH6tWro2zZstizZw9ap543Ltg106ZR9mryZKUtQcbS0tacuUyGvtlr3z7LKllkRkICm4wqVuSUAlvA2xvo0YPy2aqToB4+nL567Fjgp58UNsZKUZlfbtiwIRo2bPjy/40aNULlypXxzTffYNq0aSY5hyCkIDGRHcTx8ZQRdnFR2iKbIiEBePCAncKhocyvajT0LRUrslvY09OKlib58rGQ4MABbppr1FDaIpOzfz/w0UfAhx+qrw7f5hFpS0HIkqgo7v90Ooo65MuntEWCYBqqV2ef2YwZSQKjqWptBUsiPjkNkiRWMTNncuM1aZIFThYezt3Cli38uXAhS37VgL6ldMQIZj2V/mJOmMA23Ozuqvz9gZMnmWT++GO+5t9/ny3vkDohHBLC/WxqyegPPuDb2bs3ZaVq186e6ZamUSPmc8eNA956KwdJgv37mWWOiGC33fvvZytaYWwDud2RTSfr4eGRIhidEQUKFICjoyPCwsJS/D4sLCzL+Ybz58/H7NmzsWvXLlSvXj3T+5YpUwYFChTA1atXJUksvOTKFap7TJ3KBKaiXL8O/P23TUhLZ0bLlixy2r+fnUdKExzMwEWOi5ZURkYS1O3aMcivWHA/Tx5WS370ETB4MD/rgnGY0S/nxCfrcXZ2Rq1atXD16lXDbRQEQ9HpuDmKiGArklr2tlaMTse6W72E9MOHVHxyc2NCWN8hrHiRUU4oWpRVaidP8jNjQ0Mwr15NCq0sW2ZFyXtbQQLSgpApjx6xRidXLqBpU3U2swhCTihdmkni6dMpNDp2LH8nKID45DTY/jO0Um7coAruyJEWqCzZsgWoVo0dSX/+yW5iNW2i9S2lp06xpVRJzpzhxPlJkzgzObvkycPumM2bGXX28+P7kAlxcWzq/u47qonWq5ckGf3JJyySr1aNktGHDqWUjB44kJt2a2TWLOD+feCrr7Lx4Lg4DhBu3hzw8eEL0qtXtnbEd+8CCxaw0b5EiWzYYg+YWa7DxcUFderUQWBg4MvfabVaBAYGpuhMSs3cuXMxbdo0bNu2DXUNGLp19+5dPHr0CEWLFjXKPsG2GTOGAdDBgxU0Qi8t/eOPNiUtnRF58rCr9ejRpFmGSvHsGROodeoYLUJhNSSXoC5QgEVliktQf/ABFzfDh9u09KfZMKNfzq5PTk5iYiLOnj0r/lYwDxcvArducdNUoIDS1lgtsbHA7dv0xVu3Ajt3AufP83JRvTpn2r/yCv1j8eJWniDWU64cbydPMiNuAzx+TLlvb2/OIZamegUQaUtByJD794G9exlmbdlSEsSC7VK4MJPE3t5MLZw9q7RFdor45DRIJ7FKGTeOF4yhQ814kuhonuC774COHYEVK9SrdZC8pfTtt5Wb8j5yJDeM/fqZ5nivvcZW4I8+Al5/ndLTCxYgziVPhh3CDg7sEK5bl/lONUtGm4Ly5ZkHmTkT6NPHiBjP+fOU9T5/ng8eMSJHg68mTmRSftSobB/C9rFAJdbQoUPRq1cv1K1bF/Xr18eiRYsQExOD3r17AwDef/99FC9e/OX8xDlz5mDixIn46aefUKpUqZdzEvPkyYM8efIgOjoaU6ZMwZtvvokiRYrg2rVrGDlyJMqVK4d27doZbZ9gmxw4wIDa6tUK5WMTEljItXcvo3pdujAyawctIA0b0gcGBlJRQin27OHP5s2Vs8FSeHsD774LXLoEbNumsAS1oyMwfz6zEH/8wRYowXDM7JeN9clTp05FgwYNUK5cOTx58gTz5s3DrVu38NFHHxl1XkHIkjt3uMeqUgXw9VXaGqtCq2VxkF5CWl+klS8fULIkwwUFCqhsnrA5qFGD8ZJDhyhVnpMCcYWJj+ca6sEDLie9vJS2yE6RriVBSJcbN7jfK1qUiv82718EuydfPiaIv/iCncWffcb9tmBBxCenQZLEKuT4cXZufPcd4O5uppMcOUK9xHv3gOXLmfRUe7B51ixu9L/6SpkBOjt3cmDfxo0mjZLG5S+E85P/RFT+71H/hyEIXx2EHolrcCChwcuEcJ069pEQzoiJE9k4N306sGhRFnfWatmGP2oUUKYMO7Vr1crR+c+coUr14sVWHR8wPxqNcY4zG9ecrl274sGDB5g4cSJCQ0NRs2ZNbNu2DYX/X+By+/ZtOCSzYdmyZYiLi8NbqbJLkyZNwuTJk+Ho6IgzZ87gxx9/xJMnT1CsWDG0bdsW06ZNM9tsZMG60Ok4HaB2bc5utTjXrwN//UX9LX9/llYrVSilAC4u7G79808+fR8fy9vw8CEDF61amXFdpjI0GqBSJaps6iWoT59mrtbiEtTt2vE2ciSLGqX9yXDM7JeN9cmPHz9G3759ERoaCk9PT9SpUweHDh1ClSpVjDqvIGTKo0dse/X15UZKyJKYGCaEw8J4S0jgpbZwYdZHFy5ss6IlGePgwGzF7t2sFmzdGrDCvYFOR4WQ/fuBXbtYgC0ohAX2yoJgTeh0FP04d46hu9q15WMv2A+5c1P4ctkyxrmfPOFWV7AQ4pPTIElilaHTseGxalXOjzU58fHMtM2YwYzjX38BFSqY4URmIHVLqSX1HrVavjGNG+eoiyUujo2tISEsBkjqENbAwaEv2pVticWPe2JvRBP89+E4eC8YD7d8tqDZlTMKFqTznDyZFVYZjob67z9+cXbuBAYNAmbPNklEY9Qo0zaQ2ywWqsQaOHAgBg4cmO7f9ujb/f7PzZs3Mz1W7ty5sX379mzZIdgHv/zCWPPu3RYuHnz6lIVJ588z0P3229S7tkOqV2dt286dvMRben0eGEglCX9/y55XDeglqGvUYFfxhg30hx06WLgTad48oGZNjur47DMLntjKsYBfNsYnL1y4EAsXLjT6HIJgMDExrGrx9KTskh0EdLJDQgLw+CFQEHy57j3nS+XtzUKgIkX4Etr9y+fsTBmNwEC+UM2bW12L2/z5FIxbtQpo1kxpa+wc6VoShJfodJwoePUq49+VK4vPEewPJyeOh/T0pJ9+/JiNCfJdsADik9MgSWKV8ffflDT86y8z7D8uX6b87okTnJA+bpz1DQ1K3lJqySDT2rVsoTl0yOCrdfKEsD4pnFoyuk4d4P33GcNgh3A5IOEAMHMmfKZOBc7+w3NbSyLfjAweTMnLsWMZpE7DL7+wiCB3bmDHDqBNG5Ocd9cuBsZN3EBum4iTFWyMFy9YoPLaa2zgtQh2LC2dEQ4OQNu2wJo1wIULlm0Mu3mTFe5dunATZ6+kJ0HdqBHQtKmFfKOfHysEpkyhEk7+/BY4qQ0gflmwJ+Lj2fHp5MTCXitL5pkTnY61Z2Fh7Bh++BDw0AJtAHh6ASV92S0se510cHdnojgoCDh2jBVjVrIm27SJxc5jx1KVTFAY8cmCAABITGQR9t27jImWKaO0RYKgHBoNUzX6RPGTJwxt23PswSKIT06DfORUREIClfRatmSHhsnQ6dh5MWwYUKwYq2CttR0meUvpwIGZtJSakOfPmVR/800OR0wHYxLCdeqwGSZDyWgnJybD27enp6hZE1iwAPj4Y6vZkJoDNzdg2jTgww85SvvlR/jpU34W1q5lp93y5SZrb9I3kDdqJGMQDUKcrGBjLFnCsYb//GOhE+qlpSMigPr17U5aOjPKlKGgyK5d7HKyROxfp2P3crFiQLVq5j+f2kkuQX3gAJeTZ85YUIJ62jTOY5k5E5g718wnsxHELwv2glbLAqvnzyl/YIWywKYmNjYpKRwWxsI3R0dup6tXB4rlBnAYqFIZgKfS1qocLy+uy44cobRI1apKW5QlISHsRnrrLbpPQQWITxYExMdzD/HoEeu5ihVT2iJBUAcdO7IOevFiJoqHDbPDUR+WRHxyGiRJrCJ++AH4919g9WoTBtrCwijN/Ndf1Mr94gsgTx4THVwh9C2l48YB69eb/3xffQXcv8+ZyOCi5ty5pIRwSAibjDNKCNeokc0ZhvXrAydPAsOHc5DQ1q3A99/brdwowNd04UImbvfuBTT79vKXT57wi9Ozp0mj1OvWUQLn4EG7zs8bjjhZwYZ49IiiFR9/zMSYWRFpaYMICGAd0LFjHBNobs6dA+7dAz74QHxAcpydWb9QowYLKCwmQV20KKspZ84EBgwASpUy48lsBPHLgr1w+jT3vU2bAh4eSlujCFota8xCQ3l7/Ji/z5ePS4siRYACBZIVWT1WzFTrxMcHiI7m4iBvXr6oKuXuXarg+PlRhE0u7SpBfLJg5zx/zvnoz55Rvb9AAaUtEgR10bgxl7Hz5lFAa8wYruMEMyA+OQ2SJFYJMTFsHn33XSYWTcKffwIffcQP8ubN3CnYAqlbSuvXN9up4u8/hMP0mbjYrD+WLCj/coZwbGzKhPB77+UwIZwR7u6cYv/qq3y+fn5MFL/xhglPYj04OtJZtm8PbO6yCm/8+SGDQatXAyVLmvRcz5+zDuHNN9lJLBiAOFnBhpg6lQHXSZPMeBKRljaKQoWAWrX4ctWoYd7K2vh4jiCsVMnk7sVm8PJSQIJ6+HCq44wZw65iIXPELwv2wJUrHGpYuzY1k+2ImJiU3cIJCVxOFC7M4p3ChaULxaRUqgRERbFazc1NlRmO6GiGfZydGQ6S919FiE8W7JjISCaIdToKfthpPZcgZImfHxPEM2dS1HT8eLtb3loG8clpkCSxSvjiC1b+zphhgoNFR7PbdsUK7hC+/56RVVtC31I6fPj/W0pzHlCPj2cT1/HjSR3C752YjvcTgVZBE1AwjLODzZYQzoyOHVm13Lcv0KkTu8MXLmQVs53Rttg5BOSJxqg/GuKVWfPgPGKwWXRHFy9O0UAuCIIdceUKE17TppnRfV67Bvz9t0hLG0nLlnSH+/YB7dqZ7zzBwYwDv/ee+c5hC1hcgtrdnS3+ffpwrWut41MEQTAN9+9T9qdCBcuMIVKYhATgwYOkpHBUFK+zXl685hYpwpl2UmtmJjQaBgJiYujwWrdWlUpbYiKLt65do3kiSiMIghp49Ij7hFy5WEya4eg9QRAAAKVLc8s7Ywabl8aN4+8EwZxIklgFhIZytNqgQSZQzjt8mJK7YWHAt9+yk9gWd4mOjnzROnQAtmwBXn/dqIenlxBO3iFcuTLQocI1DDjxNe5+PAXXvyhouYRwRhQsCGzaBKxcCXz+ORAUxDm8GcxJtjm0WuDLL6EZMwbzindE7ZjfsCL/MHxihrmUjx6xauuTTzgDUzAQqcQSbITRo6ls+/nnZjh4cmnpkiWBd96R0lAjyJOHMkx79zK37mmGOYoxMQxk1K0LeHub/vi2SHIJ6m3bkiSo27c3w2vYqxewaBELBffts811rqkQvyzYMk+eUI2jWDGqcNggOh27r/QS0g8fckvk5sYEYLVqLGZzcVHaUjvC0ZGyGbt3c7HQqpVq3oCRIzllbOtWdiIJKkN8smCH3LtHV+3pyT2cSi6XgqB6Chdm08KsWVS3Gz7cZpe7yiA+OQ22/wytgClT6CjHjs3BQeLjgQkTgCZNmEw8dYpdp7YcOGvXjgMKR41iWXUGxMfz5VixgqN969dnA26tWpw1uX8/k8Jz57LiNjKSXUrznMfCsUghlFzwufIJYj0aDbtnTp+mx2jShO97fLzSlpmXu3eBtm0pL96/P2qeX4f33tNg0iRW0JuaadMYgJk40fTHtmn0TtaYmyCojP37gd9/Z6GISSX6EhJ48CVLgFu3qGXfu7ckiLNBw4ZsKN21yzzH37uXP5s3N8/xbRkvL6B7d6BbNyYzli1jHN2kyxRHR2D+fAbnN20y4YFtEPHLgq3y4gWvAXnyUFHAhva8sbHA7dtUNN66Fdixg3VlDg4MDrZrB7zyChtaS5SQgLsiuLpyH/7iBYv0tVqlLcI33wALFgBffsk6ekGFiE8W7IwbN4BDh1jU1KyZ+CtBMJZ8+YDJk6ncNXMml76CiRCfnAbpJFaYixeB775jgjLb3TCXLrF7+ORJlpeMHQs42cFbq9HwhatTh5Lan3zyskNY3x18/HjaDuE6dfhy1a2biWR0cDDwyy/ADz+oUwulbFl2z8yezSqDbdvYVVyxotKWmZ7165ndd3cHdu5kYQCYyN2wgXHiKVNMd7pr1ygzO3ky6y0EI5BKLMHK0WqBYcPoJ95914QHTi4t7e8PtGgh0tI5wNmZjTt//gncuQP4+Jju2A8fcu3QurU63b81oNFwOVKmTEoJ6nbtuME1SS6nbVu2KY8aBbz6qkSdMkL8smCLJCTwwqLTsS3Jyve9Wi2XB/pu4ceP+XsPD8DXl8H1AgXMMl1HyAl587KjeN8+xmFq11asWGHnTuDTT4GBA3kTVIr4ZMFO0OkY6z53jqHLWrVsqpZLECxKrlxUClm+nIVgT55w+yvkEPHJabDuHZUNMHo0g5uffpqNB+t0bNEYPpxlxIcOsU3WToiPB85rasG9QU8UHjoJb3zfA4fP5U03IVynDlCzpoEzhHW6JB0HNQ8jdHLiBPv27fkka9UC5s0DBgywjRXYkyf8Yvz0E9C1KzO3Xl4v/+zry3GE8+ezI7xYMdOcduxYyrYNHmya49kVGo1xjtMWPqeCTfHLL+zcCQoy0RpQpKXNRvXqrOfasQP48EPTXU527WJgXkbd5pzUEtS//MJAUYcOJpKgnjePB1++nDNbhLSIXxZsDZ2OjvrpU15grLSaJyaG06FCQ4HwcO5rXVy4RChblolhk6qZCOahUCEGGo4fZ9K4QgWLm/Dvv8Bbb7F2auFCi59eMAbxyYIdoNOxbubaNY5EMFmBqCDYMU5ODI97eQE//siCwh497CJvaT7EJ6dBksQKsn8/u2B++omKRUYRGsqo6D//cHDq/PkGZkCtk9QdwiEhVFyOjQVKaqbjEn7B5/Hz0XnuFOMSwumxeTNbX7Zts46S7bp1gRMngBEjWDq8dSvnFhctqrRl2ScoiDMHIyPZIf3uu+lekEePZhP5pEnsyM8p+gbylSutNuakLFKJJVgxL17wmvL662z0zREJCZQf3LuXDv7NNzkczg4WlpbCwQFo0wZYs4YB0qpVc37MmzcpztKli9U3pqkKvQT15ctcWi1bRsnwpk1z2ABcrRrXwlOmsKjPHAOqrR3xy4Ktce4cx9A0amRV3/mEBODBg6TEcFQUlwReXswrFinCpyPLBCukdGm+oadPU/7cVJXLBhAezm4iX1+Kb8naReWITxZsnMRExtT++49hytKllbZIEGwHjYahcU9Pip4+fkzRTWdnpS2zUsQnp0GWkQqhb1atW5dNkkaxaRPnDTs5MSHYsaNZbFSKzBLCDg6sRKtbl1UzTAj7wnXq5+i0ZD7w9ic5S47Gx1O6sE0b6iJaC25uwNKl3CV++CGTEd99B3TurLRlxhEbC4wbx4FKzZuzRMrXN8O758/PkcxDh7LzNydJAp2OeXY/P+D997N/HLtGnKxgxSxezLjz9u05PJBIS1uMMmWA8uWBwEDKG+ckOKrTsSu5eHHmHgXTkp4E9dmzJpCgnjoV+PlnDmmaN8+kNtsE4pcFW+LmTepXVq/Oi7WK0elY66qXkH74kLLSbm7sFq5WjU2oopRvI/j5AdHRwJEj7HC3QAHDixdAp07As2esr/bwMPsphZwiPlmwYeLiuL5//JiTICxYLyMIdkWHDpxVvHgx15rDhon6TLYQn5wGSRIrxK+/AkePGilpGRUFfP45S0beeINJQCsfmhofzw6g48cNTQhn0CE8ZgywYgVbSr/9NvsGrVjBVpf167N/DCXp0IFR13792ArVuzeHFuTNq7RlWXP2LN/oS5cY6B0yxKAvR//+wFdfMbe/dWv2T795M7v7raWBXJWIkxWslIcPgRkzKMyR7dHuT5/yAvLvvyItbUHatGFn6rFj7E7NLmfPAvfvAx98IJ1c5sTkEtRFi3JI04wZHLchLQspEb8s2AoPHnDDWLq0IpK+hhAby85OfWL4xQvuKQoWZF67cGFuycTH2CAaDcd+7dnDLEnr1maN2Op0rAs/eZKiNSVLmu1UgikRnyzYKM+fczz7ixfs9TDJWBlBEDKkUSMWh82dS1GtMWOYOBaMQHxyGiRJrACxsfwCv/qqEZKWBw9SSi88nPq6phzAZyH0CeGQkKSkcOqEcJ06BiSE0yN5S+nnn2evpTQqiknm997jya2VAgWAjRuBVas4o2/PHupx5m6stGXpo9VygNLYsQz6HDvGSIqBuLgAs2axIz8oiMFnY0lIYJI5IIDznIRsIk5WsFKmTmXAbdKkbDxYpKUVpWBBoHZtBiZq1sxeTDY+nt3IlSpJoNVSeHlRLuvSJRNIUA8bBnzzDRfX1lrkZy7ELwu2QFQUcOhQ0gVfJf5Vq6VoSGgoZaQjIvh7Dw8KIRUpwm2ZFJ/aCU5ObJ8LDKRkRsuWZtN/njKFIhq//MLctGAliE8WbJDISO7DNBpe9kTVQBAsQ7VqXA/MnElBzvHjufYUDER8chokSawAy5dTLWvLFgPuHBfHb/3s2ZSt3LmTLRcqx9CE8LvvslM4RzOE9ehbSkePNvDFTcW8eewEmz49h4aoAI2GXcTNm1M7uVkzFPtgNJwxCYCKdM3u3OHs4aAgJvhnzMiWLOvbbwNffEG56KNHjb92f/89G8h//lk1cSfrRJysYIVcvswE1fTp2RDnuHqV0tKPH4u0tIK0aMFO4H37sjcpIjiYKpEBASY3TcgCvQT1wYOMqZ85A7Rvb6QEtbs7v8AffsjZEw0amNNk60L8smDtxMXx4uDqykoShT+jz54ldQqHh3PP6+zMLuEyZRicE8k/OyZ3bqBJE+5tg4PZ6mPizeW6dQwPzZjBPbBgRYhPFmyMhw/pot3cWOgp/k8QLEvp0lwPTJ/OJPHYsVyPCgYgPjkNkiS2ME+esGOpTx+gSpUs7nzhAtCzJyNmU6Yw+WmmatSckDwhrE8K6xPCGg1QuXJSQljfIZwnjxkMSd5SumePEW3aAO7dY5Zx8GDAx8cMxilEmTLsbpszB4UnTsJhbEOuG2uB2pWVtgz46SdKQ+bNy4rrVq2yfSiNBpg/H2jWjE1E775r+GP1DeQ9ewK1amXbBAEQJytYJaNHc2bS558b8aAnTzi8+N9/gVKl6HdEWlox8uRh887evUC9euxSNZSYGI4aqFtXpNGUwtmZS7bq1fm1ypYE9fvvA4sWAcOH8w1NFpSPiU3AzUcxiEvQwsXJAaW83eHuqr71tFkQvyxYM1otO4jj4ijfq8AA34QEKl2HhTExHBXF33t7UwCpcGH6HCkyFV6SPz8LBw8eZAWbEQpZWXHwIOuhevWieIZgZYhPFmyIe/c4ht3Tk/swBVy0IAgAChViknjWLMa2hw/naCdDsdu9svjkNNjBu255MvuCzZrFOQ1TpmRyAJ0OWLqUbZElS1LGsm5dyxifBakTwvoO4RcvLJwQzojkLaXBwYZ/iSdNYtmbLe62HB2BsWNxsWQ7uPXsiYo9agP35gIDByoT0Xj8mMnh9euB7t35Wff0zPFhmzblqO6xY6n26upq2OPmz7edBnLFEScrqJDMfPK+fcCmTezKMKgBOCGBAet9+/gAkZZWDQ0bskgtMNC4zpo9e/j2NW9uNtMEA/Hy4rJAL0H99ddswjJIgtrRkeu/Nm2A33/HlSZtsS74NoIuheN2xDPokt1VA8DXyw0tKxZCD39flC+c14zPSmHELwsqw+BAlE7HjeajR7xAW2hDqdNROlMvIf3gAXPVuXOzS7haNQbjJBguZEqxYgyEnDrFz64J2nquXwc6daJYxrffytLTKhGfLKiM7CaHrl+niy5enDUxMlZBEJTFw4NpjQULmHf69FPuoTPiSliU7JXFJ6dBksQmwpAvWN3ihbB8jS+GD8+LokUzONC9eywP3b6dibR586jdoQD6hPDNP4E3wIrVX66mTQh3765QQjg9kreUbthA47Li/Hlg5UpeTW140vvzynXQBCG42WkUCg0aBGzdCvzwAzexliIwEPjgA5bh//STYe+PEcyezeDNkiUcUZgV9+7x4zJ4MGeHCYJgGxjik1tULIQtC31Rt25edOtmwEFFWlrVODuz0eyPPzjJwBBRkIcPGeAICFBsqSWkQ3oS1O3acd2ZaVA8IAB33ngHY7fexP7j++DooEGiVpfmbjoAtyKeYU3wLaw6fBNNyxXAzM5+8PGSD4EgmINsBaIuXeJ8pvr1OdjXjMTFJXUKh4UBz58zDlSoEOvAihSh8JEk5QSjKFeOe94TJzgWIQeKM0+eAB07skn599+lSEEQhOyTk+SQTkfBy/PnqfpTq5b4RkFQC7lyASNHAt98w0mcT54Ar72W8j53Ip5h7Kaz2H/1oeyVhTRIkjiHGPMFu/XoFgr2uonLxQvgTkQ6X7CNG4F+/bjq//tv6uxZiMw6hGuDSWJfX2D2RypKCGdE8pbSLl2ybikdNYpC/v37W8Y+BXkON9wduRiFer/KmcV+fvQgb71l3hO/eMH3Y+FCykqvWmUWWe9KlYC+fdkV3Lt31pKjkyezM2D0aJObYp9IJZagMEYteg/fgrbBTVTzLoD/nmSy6BVpaauhenXKnu3YwXq7rIIWu3axNqx+fcvYJxiOXoK6Rg12Ff/6a9YS1OuP3cakar2QEBcPAOl+/5Oj//uh648QsHAvprxeFd3q2VjFmPhlQUGyHYhqWAA+58+yMqRkSZPbpdUCERFJieGICP7ew4PbkyJFmJeWzighR2g0DJpER1MZrlUrfsiMJD6eCilhYVzjyGgMK0Z8sqAgOU0O6XSsebl+nY0ZlSpJglgQ1IaTE/sNPT2B1avZ39CzJ93J+mO3MWnzeST8/7tv93tl8clpkCRxDjD2CwYN/370VqovWGQkMGgQ8OOPQOfO1A8yY8V0QgJj3cePpy8ZXalSyg7h2gDQFJg2Df//jxWgbylduhQYOjTj+wUFAX/9xQF49lSS264dZyR9/DF3nb16sdQoGxvXLDl9ml7pyhV2a3/+uVkvrpMnA2vXAjNnsks4I86fB1asoEn585vNHPtCozHuvZVdhWBCjPXJ2v/XTV94nMGiN7W09Ftv0a/I51a1aDRA27bcEP37L1C1asb3vXmTjWpvvsnNlKBOPD25Hr18Gfjnn4wlqJcEXcH8HZf5H0fj3tBErQ6JWh1G/34WD6NjMbBleRM+A4URvywoRLYDUdceIuDaA0ypURDdMruIG8mzZ0wIh4YC4eFMvDk7s+arTBn+FEUJweQ4OHAexu7dlMZo3drwmUhg195nn3E0xs6dnIMtWDHikwWFyGlyaNKrVVEq0Rf37nESYunSZjdZEIRsotFwBKinJ8VDHz8GUPUKFgZeztbxbHavLD45DRIWyyYpglFGkuILdu4yBk7tS83DH35gss6EHzx9QjgkJCkpnF5CuFs3Ovt0O4RPmMwcy5G6pTS9mbdaLWcX+/ubv5NWjXh7szVn9WruPvfu5b8zG1xgDImJzMCOH8/34/hxJljMTOHClNiYPp1zGDJawI4axaZAO2ggtxxSiSUohMl8sn7Rm1xaukEDzkMUaWmroHRpBlF37aJscXoJYJ2O3cbFi2eeSBbUQ4UKfG8PHuQtuQT1huO3s/39T838HZdRMI8rutpKlbT4ZUEBcuSTdUAiNBh9KgYPC13NdiAqMZHzhPWJ4ago/t7bGyhfnt3CXl52Ee8RlMbZGWjShGOXDh3iWCwD29QXLqTo18qVVNcQrBzxyYICmGKfPPaPs+hQPBYT3yyf8ehEQRBURYcObIgat/I2rofKXjkN4pPTIEnibLD+WMbBKF1CPJ7sX4uY80HQvoiGc8FSyN/sPeQuXSvd+8+/HIuCtTug67zhLGPOASZJCNsSkycDa9awpXTevLR/X7+eL9L+/fYbIdBoWJjQrBnw/vtMhIwaBUyZkrPO6lu3eNx9+4Dhw9mGbkTVdE4ZOhRYtoz56XXr0v5d30C+YYN9NZCbHXGyggKY1CfvuIyC/55B1/AzrCLp1o1DCQWrIiCAPuDYMTbwpObsWeD+fdaQ2av7t0bSk6D2LPEMS2+eT/f+cQ9u4emBnxAXehWJMU+gcXaFs7cPPPy7wK28f4bnmbj5PBqVLWAbc5fELwsWxuQ+2cBAlE5HcS79XOEHD1gPnDs3E8LVqtGdy7pfUAR3d6BxY7YEHz/OORdZLEA2b+Y2etQorlcEG0B8smBhTOmT//nvMlrcdUXXojaQHBIEO6FExWe4W/g8kAAOHU9G7P3LiDkbiBe3zyLhaRgccnvAtVhF5G/2Hpy9imd4TJvZK4tPToPtP0MTcyfiGSZtTj8YBQAP/1qIyGN/wL1KC3gG9IPGwQHhv07GizsZPUaHiVVew538RYyyIyGBXRQ//AAMHMhGp7x5GTjr04dJsPLlgVmzmKeLjGQCec0aYPBgFrPadIIYSGop/eor6komRz8jt1Mnvhj2TunS3LTOnAl88QU/UP/+a/xxdDpqPVevzmElu3cDc+daNEEMcB8+dSrw00/chydH30Bevz6VtgUToneyxtwEIQeYxSffdcGd9p2ADz6QBLGVUrAgULs21z/PnqX8W3w8m3kqVwZ8JcZhleglqLt3B367fRZxCelL5iVGhkMb9xzufq3hGdAX+Rp1BQA82DgNUae2ZXj8BK0OYzedNYvtFkf8smBBTO+TGYi6E/Es3b/FxQF37rAg6K+/qBBx7hz/5udHtYGOHVkcXaKEJIgFhfH25gb09m3gwoVM73ryJH1c587cngs2gvhkwYJY2icLgqA+xm46i0SdLk2CGAAij/yGZ5cOIVfJGvAM6Ic8NdrhxZ1zuP/D54h7cDPDY9rMXll8chps/xmamLGbzr6c45Ca2HuX8OzCPuRv3guerT5E3prtUbj7TDh5FMKTPT9kcERNll+w1Anhhg1TJoR3706ZEH76NGVCuGlTO0gIZ8SwYdQSGzcu5e+XLgXu3uXsYoE4OgKjRwPBwUyi16nDBLtWa9jjIyLYdffee8Brr/FDq6Au1gcfAFWqMCGsS/aV3bCBDeTz50sHmckRJytYGLP4ZAdHjP03Ti4QVk7LlnRf+/al/P2RI0B0NLuNBetGky8Kt+MeQof0rwG5y9ZD4a5Tkb/Ju8hbsz086r2Bwu/OhHOh0og8+keGx03U6rD/6kNcDY8yk+UWRPyyYEFM75NTBqK0WuDRI+D8eRb7/Pknr+kREYCPD/e8nTpRIKlCBcDDQ1y5oDJ8fDjn4vx5Vjikw3//cStdpQrjOXJZtiHEJwsWxNw+WRAEdXMlLAr7rz7McAZ53nqdUXzASni1+Rh5a7RD/sbdUKTHHOi0iYg88luGx7WZvbL45DTY/jM0IVl9wZ5dOghoHJC3ZvuXv9M4uSBPjTaI/e8iEiIfpPu45F+w9BLCHh5JCeHAQKBcucwTwnnzmuPZWynJW0pDQvi7iAgOrO3XjwMLhZTUqsXXql8/4PPPgfbtuVvNjF272D28YwdlvNeu5fADBXFyYhPznj0cLQoAsbFsIH/jDdONXhaSIU5WsCCW8MmC9eLuTqGQY8fo9gEgJgY4cACoV4/1Y4J1sy74NhwdjMsAaRwc4ZS3ALSx0Znez9FBg7VHbufEPHUgflmwEOb2yb/tiMLmzSyOvnIFcHNjh3DHjuwYrlGDstIGjnoVBOXQS5kcPcqqh2TExDBBrNFQbtrNypUchVSITxYshOyTBUHIaq+cq0RlaBydU/zO2as4XAr4Iv5h+oVsemxiryw+OQ22/wxNSFZfsLiw63D2Kg4H15SreZeiFV7+PSM0Og1eH3Y73YTwzJlJCeELFyQhbDS9e6dsKZ05k+3ZkyYpbZl6yZ0b+PJLJn3Pn6dm2y+/pL3f8+f8MLZpw6HXZ88CXbta3NyMeOUVdpONHMm3fMkSFm1LA7mZsJCTXbp0KUqVKoVcuXLB398fR48ezfT+v/76KypVqoRcuXLBz88Pf+urBv6PTqfDxIkTUbRoUeTOnRsBAQG4cuVKtmwTLIc5fbJNLHoFNGhAJZVdu/j/PXt42WnWTFGzBBMRdCk8w+BXcrRxL5D47CniH99H5NE/8Px6CHKVrJHpYxK1OgRdDjeVqcphAb9sap8sWCfm9MkO0OCfq7dRvjzQqhWLPRs25LQcSaIJVodGwwoHLy/g4EFmhgEkJgI9erAIYutWoGhRhe0UTI8KfbJgm8g+WRAEQ/fKydHpdEh89gQObh6Z3s8m9soqjV8riSSJjSCrL1hidAQc83im+b1jHq+Xf88InUYHbeFwSQibA31LaVAQsHIlsHgxs4aFCyttmfpp04aJ34AAJn/fe48fTgA4dYob3OXLgUWLmFAuUUJJa9Og0QDz5rHbfulSNpD37ct8tmAGLOBkN2zYgKFDh2LSpEk4ceIEatSogXbt2iE8PP0FyqFDh9C9e3f06dMHJ0+eRKdOndCpUyec0w+tAzB37lx89dVXWL58OYKDg+Hu7o527drhxYsX2X4pBPNjTp9sE4teAc7OTChcuECVlpAQrqckqWD9RMcm4LaBM9Ee7/4ed7/qgXvf9MXjoJVwq9AQXm37Z/m424+eISY2IaemKouZ/bI5fLJgnZjTJ2uhw9Vn4ahalWNdRUJasHocHYFGjRinOHAAiI/H6NHAli0U5aqReR2TYK2ozCcLtovskwXBvjFmr5ycmPN7kBj1CO6VspbetPq9sgrj10ojSWIDMeQLpkuIA1K16gOU7Xj590yIdX6Gvv0TJCFsDl55hfNxhw5l1e7QoUpbZD14eXGQ7+rV1L2qXh34+GOgfn3AxYVR988/V630Qp06wLvvcix1XBwwebLSFtkwFnCyCxYsQN++fdG7d29UqVIFy5cvh5ubG1auXJnu/b/88ku0b98eI0aMQOXKlTFt2jTUrl0bS5YsAcBKuUWLFmH8+PF44403UL16daxevRr37t3DH3/8kZNXQzAjlvDJVr/oFQDQZRUpAvzzD8d31K+vtEXWh07Hm1bLW2IibwkJvMXH8xYXx1tsLG8vXvD2/Dlvz57xFhPDW3Q0b1FRvEVG8vb0KW9PnvD2+DFvERG8PXoEnLkek8Ek4rR41HsDhbpNh3fHIchdpg50Oi2QGJ/18wZw81FMDl45FWBmv2xqnyxYJ+KTBSEbuLpyLsbz57j762EsXKDFggWUUBdsFJX5ZME2EZ8sCBZGv1HWb5D1G2P9hli/EdZvgPUbX/2GV7/RffQIePgQePAACA8HwsKA0FDg/n3g3j2Ogbx7l/KYt28Dt24BN28CN24A168D164BV68CV67g1okLBu+V9cQ/uoOIncvgWrwS3P1aZ/20YeV7ZRXGr5XGSWkDrIVbj7IORmmcXNINOukdrN7hZoT+C1a1WL5sWilkiEZD2ek9e4BOnTisUDAcjYZdxKVLc+f67beAvz+7hz0yl6FQA598wrHULVtKA7kaiYyMTPF/V1dXuLq6prlfXFwcQkJCMGbMmJe/c3BwQEBAAA4fPpzusQ8fPoyhqYpC2rVr9zIBfOPGDYSGhiIgIODl3/Plywd/f38cPnwY3bp1y+7TEsyIpXzyobMxKOdNn6z7/wmt8eelS/z36dPcoyhtjyE/TXmshATuz3LlSpqcoPTzs/TPQonAhwBWrATCHIx7H9TIA63W4Ps6e/vA2dsHAJDHrzXC1k9A+G9TUeT9BdBk0ZIYl2D4eWwJQ/yyOXyyYJ3IPlkQsomHB07kagi/5/ux+4tTaPpZLQDSKi+kxFw+WbBNLOaTt+9F1bwOSdWk1n4DlLdByefu4sLmH61WeXus6TOgUuKKVgB6LTD4/onRjxH+6xQ4uLqjQKcx0Dg4GnYeO9wrmzN+rTSSJDYQQz74jnm8kBj1KM3v9VIdeumOnJ5HyAY6HfDDD0C+fMDOnazgkUSx4eh01D4fOBDw9AS6d6d0d7NmwLp1QNWqSluYKcuX8+0+epTFWJIoNg86aKAzIrChv6+Pj0+K30+aNAmT02n5fvjwIRITE1E41RtYuHBhXLx4Md1zhIaGpnv/0NDQl3/X/y6j+wjqw1I++c8tWhRUp0gCgCTJzax+3rvHnydO8Bpo6ONs4adOx2JdBwcW7hYsyH+b6hxKPz9Df7pHAjgM1KsLPMuvvD05/XnloQO2bkS2cKvUGBHbliAh4j84e2c+JsPFScUXAAMwp182h08WrBPZJwtC9rhwAWjVrTAm96qNwU1CgGt5gfLllTZLMBNq88mCbWIxn/zJAOD+ZeMNtAQajfG37D7OFm76DklHR96Utkepmw19BlyitMCh5wZ9XbQvYhD2yyRoX8SgcM85cMrrbfBXzZr3ymqMXyuNJIkNxJAPvkuhMoi8dQba2GdwcE0aeBd3j47TpXCZLI/x63oHRDUAatUSyWmT8vff7CJesQLo3x9YsACYMEFpq6yDR4/Yivvbb+wmXryYyfZPPgF69qSe8+zZwKBBqpScPn6cXcSLFgFTplBuetkypa2yTfRSpMbcHwDu3LkDj2Qd6elVYQlCcizlk9/t5oBK/1/TJd83qOGnMZw4wbnsvXsDtWsb/3hr5vRpqi517gz88QdQqhTHANod9wAcpvw2iiltTM4pWNQdmo0wWkYLAHTxsQAAbWzm8lgaAKW8rbugUPyyYAks5ZOtORAlCKl5+BB49VWgRAmg99QywM0o4NQpVjYXswFHLaRBfLJgCSzmk3//DSiQW/FkWLqJPsE4rl8HRo1inLxM1u+9oH5KxSZAc2h7lntlXUIcwn+bioTH/6Fwt+lwKeBr8Dmsfa8sPjktkiQ2kFLe7tAg82CUW6XGiDz6O6JObUM+/y4AAF1CPKLP7oRLsYpw8iiY+Ul0wJcz3DErkr6tQgWgbl3m4OrUkcRxtklIAEaOBFq2ZIT833+BuXOBfv2kpTQrduwAPviAOp2//AK8/XbS32rWZAZ2zBhgyBBg61Zg1SrudFWCTgeMGAFUqQJ8+ik/CqNGUUWlUiWlrbM9sutkPTw8UjjZjChQoAAcHR0RFhaW4vdhYWEoUqRIuo8pUqRIpvfX/wwLC0PRokVT3KdmzZqGPhXBwljCJ2sA1CjjDnfbWfPZHfHxwO7dQOXKTI7euQPs30/35eaW5cMFFePu6gRfLzfcymTmWmLMEzi650/xO11iAmLO7YbGyRXOWWyCfb3d4O5q3Vslc/plc/hkwTqxiE/W6VDqmy+B9m2AevUAJ+v+bgr2TWwsi9eio4HAQNZfo3p1/uLIEaBVKyB/fqXNFEyM2nyyYJtYap9cqlZlwMrXyYJgqxiyV9ZpE/HgjzmIvXcRhd4cD9filY06h7XvldUYv1YaKcc1EP0XLDNci1WEW6UmeLL3RzwOWomoU9sQ9vNYJDwNh2eL3lmeo2QBNzx95IQzZ6jk26YNC3rGjQOaN+fmoXJlNm8uXAjs20cJRSELfviBieF585h9HzuWgYUpU5S2TL08f87O4HbtgGrVgLNnUyaI9eTKxQ/jzp3AxYuAnx+wfr3l7c0AfQP53Ll8ywcOBHx8gNGjlbbMNtE7WWNuxuDi4oI6deogMDAw2Tm1CAwMRMOGDdN9TMOGDVPcHwB27tz58v6lS5dGkSJFUtwnMjISwcHBGR5TUB5L+GRrX/QKjLNGRwP6keMtWvC6s2+fomYJJqJlxUJwdMi4Y+DRtiUI+3ksnhz4CVGnt+PJwfW4t3Ig4sKuIX+znnBwyZ3hYx0dNGhZoZA5zLYo5vTL5vDJgnViEZ8cHwX3xYsoBVGwIPcl33/P6h9BsCJ0OuCjj4Bjx4A//6TCCQDGKfz92RVw4AD344JNoTafLNgmsk8WBAHIeq/8ePcKPL8ajNxl6iDxeTSizwWluGWGLeyV1Ri/Vhq5qhtBy4qFsCb4FhK1GddkFXh1KJ7sW4uYc0FIfBENl0KlUOiticjlWy3TY+u/YE5OzLP5+bGBE2D344ULQEhI0m3jRjZ3ajRAxYpJ3cbScZyKmBhg4kTg3Xf54gCAlxcwfjxbSgcNkpbS1Jw4wUqEGzeAr75iC25WMtIBAcCZM8CAAZxXvGULtU0VrIDWN5C3aAG88gp/5+oKzJzJj8P+/UDTpoqZZ5NktxLLGIYOHYpevXqhbt26qF+/PhYtWoSYmBj07s3NzPvvv4/ixYtj1qxZAIDPP/8czZs3xxdffIGOHTti/fr1OH78OL799lsAgEajweDBgzF9+nSUL18epUuXxoQJE1CsWDF06tTJeAMFi2EJnyxYL9HRjLHWq0e3D1DBsUkTFg/Vqwd4Gz5uR1AhPfx9serwzQz/7l65KaLP7ETUyb+hfR4FB5fccClSDp4tesOtvH+mx07U6tCzgeFyW2rF3H7Z1D5ZsF7M7pObVwfmPmBmbds2YPt24OOP+aGtUoWFre3aAc2aAbkzLgARBKWZPh1Yu5Z11Q0apPqjkxMXKoGBwMGD3MhK17zNoLRPFuwH2ScLgpDVXjku7DoA4PnVo3h+9Wiav+ep1jLDx9rCXlkN8Wu1IStOI8jqCwYAGicXeLb6EJ6tPjTq2Jl9wQxJHB8/LonjdPniCyAiApgxI+XvP/2Us3XHjAE2bVLGNrWRmMiW24kT+WELCWHQxVC8vICffwZee42v7/79wI8/UuZbAVatYgP56tUpR5N07cqPxfDh7DKTsSWmwxJOtmvXrnjw4AEmTpyI0NBQ1KxZE9u2bUPh/0vH3759Gw7JihoaNWqEn376CePHj8fYsWNRvnx5/PHHH6hWLWnzM3LkSMTExKBfv3548uQJmjRpgm3btiFXrlzGGyhYDLP7ZH/rXvTaO3v2sL6pefOUv2/QgGumwEDgnXcUMU0wEeWf3ENTlxgcinNDItI6c/cqzeFepXk6j8wcRwcNGpXxRrlC1r9wNrdfNodPFqwTi+yTHR15EW/QAJg8mXu8wEAmjH/9lepGuXIxUaxPGlepIot9QTWsX8+t9tSp3JOmS+7cQOPGQFAQcPQo0LChfIZtBKV9smA/KBW7FgRBPZQvnBdNyxXAoeuP0i0YKdJjdraOayt7ZTXEr9WGJImNIKsvWHZx1CaikY+HUV+wrBLHx49n3nFcty4Tx3nymOxpqI+wMCY9Bw1KpuP0f3LlYktpjx7SUgqwa/j991mxPHo0Ay8uLsYfR6Pha9q0KdCrF9C6NTBsGEumLTjMPb0Gcj0ODlQeb9WK8SRJEpgOSzhZABg4cCAGDhyY7t/27NmT5ndvv/023k5PLv3/aDQaTJ06FVOnTs2eQYIimM0n67RodPMUynWdR0WEqlVNdmzBMjx4QFGMNm3SNpQ5O9M1bdoE3L4N+EqMw/qIiAD++Qe4fBkzfcoj4FYeJCaY7hrg5KDBzM5+JjuekljCL5vaJwvWidl8cmaBKC8vyk6//TY1fC9cSOoyHjeOe5ASJZISxgEBgKenyWwTBGM4fJhxm549KWqWKZ6eLIY4eJBjn6pXt4SJgplR2icL9oMiPlkQBNUxs7MfWn2xFwk6ncnqzWxlr6yG+LXakJnERjKzsx+cMtF0zw5O2kTMnPkhZ+fqsu/A9YnjDz4AlizhRiQqiirAK1YwKHrtGkfyNmsGeHgkzThetIi50uhokz0t5dEnOseOTf/v3boxgzhiRI5ed6tGp2PLbY0awN27HNQ4c2b2EsTJ8fVlZf/cuZSsrl+fG1wLsWAB8OhR2gZyPS1bAh07spE8NtZiZtk85p7pIAipMYtPdnbCzO71gfv3eW0cNgyIjDTpOQTzsmsXkC8fJaXTw88PKFoU2LHDft2/VRIfz86qpUtZCNi1K3z69MCU103bhTr19arwyWKWm7UgflmwJGbxyYYGojQadg0PHcokcUQEE8Zvv81N8TvvAAUKsCtz8mT+LjHRpLYKQkbcuAG88QbXJd9/b2BjcLFiXIdeusQDCFaP+GTBkpjcJ+sAR9hGckgQ7IUjgW54sK2qSQVJbGWvLD45LZIkNhIfLzdMed20XUVTX68Kn3bNgQ8/BN58ky0wJkKfOO7dO/PE8ZgxGSeOnz0zmTmW4+JF4LvvWKabUcW4vqU0OBj47TfL2qcGHj4E3nqLH4433wROn+YMJFPh4EBN52PHeDWtW5fZWzNfWfUN5J99lraBPDlz5wI3bwLLl5vVHLtCnKxgaczmk99oR0c5fTovEpUqAT/9JBlFK+DGDeDyZTaMZTTGT6MB2rYF/vsPOH/esvYJ2eTSJSaH9+9nkmfgwJcyst3q+WJ42womOc2IthXRtZ7ttJeLXxYsidl8cnYCUblzs3t4wQJe6G/fBr75hp3FX34JNGoEFCzI5PGKFSyWFQQz8PQp8OqrHP21aZOR4lrlywNlylAiLjzcbDYKlkF8smBJTO6TNUDxsKq4csr6k0OCYA8sXszRFq9W9sWQVrJXTo345LRIkjgbmDwY1bQCu4g3bmQnp58f8PffJjl+emSUOD59Ov3EsV6Jefx4K+o4Hj0a8PHhbNzMSN5SGhdnGdvUwLZt/BDs2cME+Q8/sELAHFSvzkTxwIHsyAsIAO7cMc+5wOYAJ6eMG8j1VKkC9OnDmVBPnpjNHLtCpzPOwUq+TTAFZksQubrSl1y4wNlwPXrQZ5w7Z5JzCaZHp2N3cIkSvMZnRqlSHMOxaxfHdQgqJSICWLeORRpeXsCAAVxHpFI8GdiyPGZ38YOrowM06cwnzgxHBw1cnRwwp4sfPm1ZzpTWK474ZcHSmNInv1/DhIEoHx/go484a+bBA+DQIY4kunMH6NePf69alZ3IO3YAz5+b5ryCXZOQwDqEe/eAv/5iM7tRaDScEVaoED+zUVFmsVOwDOKTBUtjSp88LKAi3vX3xbJlDF3L51MQ1IlOx3j4oEEMwa9eDXze5v97ZScHOBqpMGCre2XxyWmRJHE2eRmMysYXTIMMvmBdulCSt1YtJi4HDLBYG6+TE3N56SWOJ03ife7cTdlxXKUK8N57Kkwc798P/PknZZMNKdWdM4etR8uWmd82NTBnNtChA+Wrzp5lF7G5yZUL+OILSlBfucIE9U8/mfw0yRvIvbyyvv+UKZzZPXu2yU2xS6QSS1AKs/hkPb6+DCrv2EEJ6po1GUQWCWrVceYMEBrKLmFDJJUCAvg2Hj1qftsEI0lHWhrvvZdphL1bPV8MLNscPi7eAJDltUD/90ZlvLFrSHObqYpOjvhlQQly4pP1gajBjfzg51gOt26ZwUAnp5Sy0w8eABs2cAbsL7+wA9nLC2jfHli4EPj3X/uIDAkmRadjgHb3btZkV6qUzQM5OPCzmSsXcOCAzEqyYsQnC0pgCp88p4sfPmtdDh99xKl969ezwUimNgiCuoiPp0jtrFkMwc+bx2UEwL3yriHN0aiM7JUB8cnpIUniHJDdL1jsLW/81CODL1jRouwiXrKE3Z21arELUwH0iePXX+f/f1yVsuO4VSvg6lWVJY51Okoc163LgKIhVK3Kq+i0abbdUnrhX/7840/qTvzzD2cdWZJWrRjFf+UVduV17w48fmyyw+sbyA2dCV+0KD8uixZRhU4QBOsluz65qMYbS14xYNHbpk2SBPU337ANdd06CRyrhPh41iFVqUI/YAgFCgB16lDExSpHa9gqmUhLZ8a1a0DEbTcs7+qPnYOb4T3/kijp7Zamr1gDoKS3G97zL4ldQ5phTR9/m5irJAhqIqeBqM9f9UWpUsDx45yQY1a8vJJkp+/coWLIjBn072PGcK9YsmRSJ7IJ9y6C7fLVV6xBX7aMSm05wsWFY6Hi4thRLJkZQRCMwFTJIY2GPSaffML66YUL7UuQURDUTEwM8MYbDFGtW8e+htT4eLlhTR/ZKwvpk8G0NsFQ9F+wK2FRWBd8G0GXw3H70TMkDxlrAPh6u6FlhUJ4vYov2jbIi2/yAN9+m8FBNRrKJLduzeHAjRoBEydyk5rRgD0LoU8c67uOAcoo/fsvR+WEhHAz/9tv7NDUaFg1W6dO0q1WLSBPHjMZ+OuvbAkKCkoqlzGEKVPY2Tp7tu21lSYksFt60p8AjvJ5vllaOXs8PWnDa68B/fvzw/Tjj0wg5wB9A/m6dcbNeho+nCNHx4+nDIeQfYytrrKHSizBshjrk3s28EVIUF6cDwZa1AWcnbM4gV6CukcPrrp79qQzX7oUqFbNjM9MyIrDh7kxMjYQ26IFc/9791JkQ1CQiAgWsF2+DJQrx++XgdqcWi2wcycLBCpXBjSavJj8elVMRlXExCbg5qMYxCVo4eLkgFLe7nB3tY8tkPhlQUmy45PLFcr78m916vC6fvAgr+1m2z8mR6NhUlgvPf3sGSuJtm/nbcUK7jH9/dlx3K4dUK8e4OhoAeMEa2HrVmDIEGDECNYWmIQ8eTj+ZO9eBl3q1TNMNkVQDeKTBSXJqU9OTuvWQL58TBJPnw6MGgW4u1vkaQiCkA4PH1KQ9t9/2XcYEJD5/csXlr2y+OS02P67biGM+YJNmMA95+efc/+ZIZUqsVJ06lTKYf3zD7BmDVC2rNmfjzGklziOj+cYR33SOCQk48Rx3bpU78zxxj82lon0V19l1NcYihWjWP/cuZT59rURGYXr19nafeQI8MFXwEoApRVMECene3dWRPfqxVXmkCGUCM+Vy+hD6RvI69Sh/I0x5M3LGoEBA2hCrVpGn174P+JkBbVgjE/2DAC+/hoIDuYlySB8fFiUtHMn8NlndGKDBtFXm2u+u5Ah0dFMItSvb9iogeS4uwNNm7K2rH59wNvbPDYKmRAfz0qvgwf5hnTrxoWiEcHv06epSt2nT9qHubs6oWqxfCY22joQvyyogewGohwcWCsdGEiV3Vat0owjNz9ubpSdbt+e/799m+1T27czOj55MgtgAwJ4n7ZtgRIlLGykoCZOn6Ybe+MNM9SeFyjA5HBwMDexlSub+ASCORGfLKgBUyWH6tZlL9Ps2Yxxjxsn+yhBUIIbN7gEffKEdWS1axv3eHvdK4tPTovITZsB/Reslq8nqhbLl8bJ9u8PlCrFZqQscXFhadb+/Yx+1agBfP+96uUtnZ2TksZLlzJHGRnJTdP33wMtW3I07ZgxDM4ml6r+8ksGAoyWql6+HLh5k12z2WHECJbDTZiQvcerCZ0OWLmSn5f791kB/+mnSluVFh8fYNcuDktYupSb3jNnjD6MvoE8+bwFY/joI6BCBWDkSNV/tVSNzHQQ1EhWPtnbm5vcAwfYsWQUegnqGTNEglpB9uzhtb9Zs+w93t+fsdZdu0xqlpAVOh1w8SJHrBw4wGzQwIH6VmCDDxMXx5mPVatKbiY14pcFtZGVT06NXmU3NpaKEYp/Rn19k2SnHz5kcctnnzF53Lcv9zbVqrH4eMcOVkgLdsP9+6xXr1gRWLs2e/vSLPH1ZeDk3DnKowtWg/hkQW0Y65NTU7Eip/Y9f84k8d27ZjJUEIR0OXWKW2itlj2GxiaI7RnxyWmRJLECuLhwiPjWrQxsGkSjRvz2d+3KDWjnzsCDB2a00vToE8cffph54nj06JSJ4/ffNyBx/OQJO6779OGDsoO+pXTNGr7W1sqDB0CXLnwt3nmHL3DjxkpblTEODmytP36cQeF69YD58w2+AsfFsdigY0d+hrKDkxNrC3btYjxHyB7iZAVrpXlz/ty7NxsPdnGhxtbFi3RePXtSzeLsWVOaKGTAgwfAiRNMEOfOnb1jODuzQ+3iReDWLdPaJ2RARAQLKn7+mZ1R+jEr2WgTPHyYwakcz3y0QcQvC7ZA3rzcCuuv96qpw3JyomFTpnBj++ABsGEDK482bKAUtacn2zsWLaLMlmqMF0zNs2fA66/zLd6yxczSq1WqsCDh6FHg0SMznkgwJeKTBVukRAn2Nbm7c4TbpUtKWyQI9sHu3YyBlCjBmkWVic6qHvHJaZEksUK8/TZlDUeMMOKDljcv5yBt2sQrQLVqwF9/mdVOc5NR4vjUqaTE8eXLKRPHVaumkzieNYuV2lOm5MygPn2SWkqtkb//Bvz82Hn+++/8vORNf46I6vDzA44do2TryJGM9hoQrV+2LGcN5Hpef52fsREjgMTEnB3LXhEnK1grbm78/h8/zsagbOHjA/zyCyWow8KoXT9kCPD0qUltFVKycyeQPz/ri3KCnx9QtCgLhSSGb0b0bb9LlwLh4dTk7Nkz2/p0UVFJUuOenia21QYQvyzYCgULUvXjxg3uDVWJlxcLdFesYIfn2bOMnGu13MxWqQKULMmC799+Ax4/VtpiwURotVREu3CBCeJixcx8Qn1htacnnaDRUjiCEohPFmwVb2/27Pj68ufx40pbJAi2zS+/AB06sFYxKAgoVEhpi6wP8clpkSSxQmg0bJY8fpyFxkbRqRM3nXXqUM/ok09samPg7EyV5IwSxy1aMDgwahSD+lXz3kbsvC+xqdxwfPlL0exJVSc/+Zw5jDpv327CZ2Vmnj3jUN2OHakvcfYsu82tDVdXakbv3g1cu8YKgrVrM4zY6xvIP/wwi/neBqDR8NRnzwKrV+fsWPaKOFnBmvH3ZyFSjiWHAwIoQT1zJvDdd5ytmsl1TMg+169TgaR1azZ05QSNhqMk792jgqNgYvTS0kuX5khaOjVBQXzvmzY1oa02hPhlwZYoVYou9cwZ4L//lLYmCzSalLLTERHAP/8Ab77Ja+Dbb1NFQd+JHBwsVapWzNixrOP/+WfWCFoER0eqhTk58TMVH2+hEwvZRXyyYMvoO4lr1QLmzgUCA5W2SBBsk6++Yp31O+8AmzcDefIobZF1Ij45LZIkVpCmTYE33uCmIjbWyAcXKcIu4q+/ZkarVi3KDdko6SWOo6KYOA5sOB6xufLjK+fhLxPH+fKl7Tg2OI/++uscfjVypHVs1o8d4/u/ahVfnL/+YjuUNdOiBSNAr73Gsuxu3RhcScXs2WwgnzrVNKf196ejnTCBeXfBOMTJCtaMkxPzu5cuUZ0gR7i40IdcvEgNoPfeo6a1SFCbDK2WcfcSJbI/ZSI1pUpxtlZgIJCQYJpjCqAUpomkpZMTFsZ1YPPm2Zcat3XELwu2RrVqvO4HB1tZI66bG2WnFy5ku+mtW8Dy5Ww5XbgQaNCAbSBduwIrV1pBFlzQs3Ila8znz+fW1aK4ujJu8ewZAyRyEVc14pMFW8fFhUJabdvSxW3cKHXSgmAqdDqOWvz8cypg/vhjjrfTdo345LRIklhhZs+mGtXSpdl4sEYD9O8PnDzJrKi+EtlOIpvOzkAN7UmUO7IWHgsmI+h43peJ4+++Y57x0qWkjuPUUtUZKjPp27zPnOF8YrWSkABMm8b33cODn4MBA3LUkaMq8udn99369cwEVK+eosXv9m2O9xo+3LQ58ZkzqYC5aJHpjmkv6HTGOVjZMAhqo2pVoHhxE0oOlyhBuZCdOzmrUCSoTcaZM0wStm1rWrcXEED1kuBg0x3TbjGxtHRqdu2i0mbduiY5nE0iflmwNTQaysvny8ciYKst6vT1TZKdfviQG9OBA1ml9tFHXD9Uq8aNzs6drIoVVEdQEPDxx7wNGaKQER4ejAeEhQGnTytkhGAI4pMFe8DRkVP8undnKO+776yj90YQ1Ex8PPDBB8whLVzI4jQHyejlCPHJaZGPlMJUqsT94fTpOaiGrlgROHSILclTp7Ka9MoVk9qpSnQ6dmpVrMjNNNJ2HAcHI0XiuHnzpMRxkyYpE8dffZUscaxvKR0/Xp3Rh2vX2J02eTJLiQ4d4utgi3Ttyu67SpWANm2AwYOB588xYQIDRMOHm/Z0Zcsy1z57NnM6guFIJZZg7eglh+/fN3HTb0AAA3d6CeqKFUWCOgfExzP3WKUKR0GbkgIFmHTcv1+d7t8qSC0t3bixSaSlk3PtGnD1Kr9ajo4mOaRNIn5ZsEX0KrsODty7WX19tJNTStnpBw8YWa9fnwoMbdty3nGHDqxivXBB1g8q4NIlqoe3bAksXqxwnXbhwixEvHqVN0GViE8W7AWNBujShT1NgYHAggWsHRUEwXiioyl4+vPPvA0erLRFtoH45LRIklgFTJpEhzlzZg4O4uzMBPGBA6xGrlkT+PZb295Abt/ONpI5czIdRpg8cfz11ykTx99+m5Q4HjkyZeJ4eNxMJIaG4+bQL9Uz8lmn42DmGjXYlXPgAN93Z2elLTMvJUqwtW/hQmD5cjyvVhdnVp/ClClA3rymP92ECQw8mUrG2l4QJyvYAr6+zGUFBpp4vFtyCermzZMkqM+cMeFJ7IPDh1nQFRBgnuM3b86fe/ea5/g2TXJp6YIFTSYtnRytlksCX1/WjwkZI35ZsFVy5eK+LTqaKrs2teX19k6Snb57l1Vr06axFWv0aFZIlSrFSvONG4EnT5S22O549Ajo2JETwH75RSVb8bJlgQoVqC52/77S1gjpID5ZsDdateL299QpNkZFRyttkSBYFw8e8Ht08CDwzz8U5hJMg/jktEiSWAUUKULH+dVXJpiD2LAhPfC771L36I03mEy0NRIT+aI1bZqt4T/6xHGfPikTxydPJiWO998ri68xAF7fzEKZvA9QtSrQq1eqjmNLEh4OdOrEgED37nyfGza0sBEK4uAADB4M3bHjuBfujGDUR9/Hc82iXePtzcb85cuBy5dNfnibRZysYCu0bs1NrFkkh/US1Lt2cdVfuzbLQUWC2iCio1kfVb8+pYbNgbs7kw/HjzMQLBhAXBwrK5Yu5ee6e3egRw+TSUsn5/RpLonatLGdCRvmQvyyYMvky8dRvvfv23C9lUZD2elhw1gdExEB/P030LkzneFbb1ECo3FjVrcGB4uup5mJjeXL//QpsHUrJySphurVOef6yBFZV6oQ8cmCPVKnDhuj7twBJk6UvZUgGMr161ze3b7N4vXWrZW2yLYQn5wWSRKrhGHDqCI1bpwJDpYnD+Us//yTG4Rq1YAtW0xwYBWxejWrqufPN1mE0NmZDdjJE8ef3BkP9zwa7G45Dc2bswEsecdxtWoWShz/9Rfg50dZ6T/+4PubJ4+ZTqZudtyrhirRwbjVeQgcx41mWVWOqyvS8tlnnHU8dqzJDy0Igsrx9k6SHDbbdb11a2a7Zs2iQkTFisCaNTbWDmV6goIoNdqsmXnP06ABlSp27TLveawenY7Sp0uXciHUpAm7hytVMksGVz/muFo11lsIgmDfFC1Kld3LlylDb/O4uaWUnb55E1i2jFXnCxbQeRUqxE7kH34A/vtPaYttCp0O6NcPOHqUoZYyZZS2KBUaDcdm5cnDIgKZZS0IggqoUIGdxC9eMOZ9547SFgmCujl5kpNIAKYBatVS1h7BPpAksUpwd2fx708/ASEhJjro668zkVq/Pv/dr59t6Hs8e0Y94K5d+dzMiHPRAnAcPxZV9y3D10OupOk4btbMzInjmBjgk0+AV18F6tUDzp1jd7idkpgIjBgB+Dd1RbmNc5gtuHmTVdOrV5s0uZI7NzBjBlXcDh0y2WFtGqnEEmyJ5s0Za9uzx4wncXHhRe3iRaBFC+D99+lYbLYlKmeEh9P/Nm/Oa7Q5cXJiHv/iReDWLfOey2rRS0uvX58kLd2qlUmlpVNz6BDw/LlUUhuK+GXBHihXjreTJ4GwMKWtsTAlSybJTj98yMTgp59yf9SnD6tp/PyA4cOBnTslaZhDZs3ilnPlyqTgrepwcmLrkVbLYIR0lqsG8cmCPVO8OBPFefIwnHvxotIWCYI6CQxkvMPXl25cdQVpNoL45LRIklhF9O7NEUMjRpgw11W4MLuIly9nIK9WLXYXWzOLFjFSnKMhzkYwaBDL1MeMAZB+x3HqxPGFCyZIHB89yvdrzRq+f1u28P20Y/QN5PPm/b9BST/Ps1MnvsDvvGNS/ZoePfheDx8uzX2GIE5WsCXc3Hg9Dwlh3NWslCjBRNuuXbyG1a4NfP65SAWmYtcuyjrWq2eZ81WrRtXGHTvEB6TAgtLSyYmKYpLY319l8p4qRvyyYC/UqMFt0uHDQGSk0tYohD45qJedfvCAa4u6dTknvm1bSpe98grw5ZdmUWKyZX75hR1wkydzspeqcXNjIOLpU8YUZBGjCsQnC/aOlxcwZQpQqhRd1bFjSlskCOpi/XoKxjRuTPWsggWVtsh2EZ+cFkkSqwgnJ2DuXDZH/vOPCQ+s0XA+8cmT9MpNmnAoRHy8CU9iIcLDgdmzWSFtqXKa3LlZ8rZxIyMP6ZA6cXz0aMrEcdOmmSeODx1igzQAICGBK6dGjThw8eRJvn92PnhP30D+zjsMEL8kXz5mj3/5hUFrPz9G9E2AgwMT0ocPA5s2meSQNo04WcHWqF+fl5idOy10wtatOW9+1ixgxQpKUJtYJcFauX4duHIFCAig3LQl0GgYU793j0Iedk9yaelDh8wuLZ2aoCCulZs2NfupbAbxy4K94OBApeXcudlMGxurtEUqwNs7SXb67l0W1k6dyhjAyJHAm2/yfvp97pMnipqrZoKDuW9/913O1LQKPD25ab57VxYxKkF8siBQRXPsWM4qnjdPRvsIgp5Fi1h73b07sHmz3U6YtBjik9MiSWKV8corVJwcOZK5QpNSoQJ3zePHU0e3cWMOcLImpk1jFGD8eMuet2dPlqgb0VKaPHG8bFnmiePGjTn78JXyV3C1aBNop07DnV7j8WzHAb5vQtYN5G+/zTbjatWAdu3YAf78eY7PGxAAtG8PjB5tnXUVlkScrGBr6CWHL18Gbtyw0ElTS1D36sWW5tOnLWSA+tBqWfvj4wNUrmzZc5csyRxoYKAZ1mXWxKNHwNq1SdLSAwaYXVo6OWFhSVLjuXJZ5JQ2gfhlwZ5wdmbtSkKCqOymQaNJKTv9+DErlQHgxAngrbeAAgX4Ak6bxo2rvIAAOHLijTco8rJihZXVbRcvzrFMFy9K57gKEJ8sCMTFBRg8mGG7b74Bfv1VaqIF+0WrBUaNAoYMYdx51SquaQXzIj45LZIkVhkaDaupzp/nhcHkODtTI+ngQW4Oa9WilLE1eOTLl2nr2LFmlzRMg76l9NChHLWUZpg4PqHDnh7fYtPNmnCJeoRmDgfhu3Iy8no5o1o14IMPgMWLU3Uc2xEPHrCBfMAAoGzZTO5YvDiwbRsl1L77juWJJ07k+Pxz5gBXrzK5L2SMOFnBFqlalZeWnTst7Cr1EtSBgSklqO2w0+fMGSYJ27ZVJjgbEEBfHRxs+XMrTnJp6YcPLSYtnZqdOymGU7euRU9r9YhfFuwNd3cW3z5+TBlLa9jiKoKbG18oAPj9dyYQv/6amt3z57MDtVAhoFs3diLfu6eouUoRGQm8+ipfrj/+sNIipQoVgNKlgePHuakWFEN8siAk4egIfPghFRp++YXhO6lNEuyN+HjG++fNYxh71iwrK0azYsQnp0WSxCqkbl3G4CZONHB2bXbw92dLRs+eQP/+wGuvMQKrZsaO5XDAQYOUOX+bNix1M3FLqXNEGGpOfB1N13wM1w97wvfhSeyO8ceJE6yqa9oU+PdfFn7rO47tLXE8dSrz9BMmGHBnBwd+RkJCAFdXas/NmpWjFWf16ny9p0yx4zlnBqDTGedgJXAnWAN6yeH795mstDitWlGCes4cu5SgjovjPJ6qVZk3VwJvb9Yc7d9vxnWZ2tBLSy9ZkiQtPXCgxaSlk3P1KnDtmmWlxm0F8cuCPeLtzXERd+5wDyUYQMmSQL9+lJ1+9IjqYwMGcNZDnz6slvPzo9LJrl3AixdKW2x2EhKYI799G9i61YrnAmo0LDQsWJD+PCpKaYvsFvHJgpASjQbo3JnuJjAQ+OILGRch2A/R0UzFbNgA/PyzcqkOe0V8clokSaxSZs7k/mzBAjOeJE8eZiE3b2apdbVqwJ9/mvGEOeDQIW5ap09XtoR37lzTtpRu2cINd3Aw34dvvgHy5IGLC5u8P/ooZcdxZoljPz/bTBzrG8jHjDGycalKFb6uw4YB48ZRtjUHerFTp9KJz5mT7UPYPFKJJdgqvr6UOd69WyHZeRcXXvAvXWLSuFcvOgI7kKA+fJj+rHVrZe1o0YI/9+5V1AzLkFxaulAhzh1u1UoR3Sutll3Evr7MTwvGIX5ZsFd8fLi1/fdfJvkEI3By4gZTLzsdHs7oZd26wLp1LJz28uKcrC+/pJSxDUbOhgzhqIvffuO20qpxcAAaNmQB9YEDrMATLI74ZEFIn5YtKbd75gxdj9SyCLZOeDg/94cOAf/8A3TtqrRF9of45LRIklillCoFfPYZc5Jmb/B97TXOcm3YEOjUiZnJ6Ggzn9QIdDoGx2vWpMShklSvzuB8TltKo6NZrf366+x0PXeO70MmZJU4btIk88SxteYSxo4FihbNZlWViwu7iPfuZTtBjRrUcc9GIKNECQYLFiwA7t7Nhi12gNqcbEREBHr06AEPDw/kz58fffr0QXQm17aIiAh89tlnqFixInLnzg1fX18MGjQIT58+TXE/jUaT5rZ+/XrzPhlBcQICeOk+ckRBI4oXZ6B2924gIoKdIYMG2awEdXQ0p2PUrw94eipri5sb8/IhIVRdtkni4tghllpa2stLMZNOneImWimpcWtHTX7ZWJ8MAC1atEjjbz/55BPzGSnYFJUqsUH22DEbvm5bggIFkmSn//uPUfypU+kzRo5kFV3p0sDHH1O6OtW62RpZvJhCGkuXMiduE7i4MGAQF8eotD1EO1WGmnyyIKiN2rWBSZM43WDiRPHbgu1y/Tpj9nfvAvv2sRZbsDzik9MiSWIVM3YsC3mnTLHAyQoVYhfxt9+yc6RGDbbvqIFNm2jLvHmsglUafWnb3LnZe/yRI8z2rlvH1/vPP/n6ZwNDEsfnzzNx/OGHfMw77yQljvUdWmpF30A+YwaQO3cODtS0KQMaXboAvXsDb72VrVXnqFFswJ84MQe22DBqc7I9evTA+fPnsXPnTmzduhX79u1Dv379Mrz/vXv3cO/ePcyfPx/nzp3DqlWrsG3bNvTp0yfNfX/44Qfcv3//5a1Tp05mfCaCGvDyAurVYwOG4pLDLVuy8mfuXAZtK1YEfvzR5lauQUFcBzVtqrQlxN+fBVi7diltiYnR6VhltmQJFwYKSksnJy6On4Fq1VgfIRiPmvyysT5ZT9++fVP427nZXX8LdodGw1EBXl4sOFJTDbTVotGwCnn4cDrDiAjgr7+AN95gUe6bb1L6qUmTpE5kKxsy+fffwODBwNChzHvbFHnyAI0aUTEkJMQmO8DVjJp8siCokfLl6TpiY4Hx49nnIQi2xIkT7M/TaBjvrllTaYvsF/HJaVFBxk3ICC8vOsZvv6WKk9nRaIC+fdm2UbAgN3cTJnAgj1LEx3MGcPv2bONSA8lbSv/7z/DHxcezNK5JE26eT53i623iAGzqxPGxY0wcr1vHv9eokZQ4btQobcexWhLHOh3HXpmsgdzDg13Ev/0G7NnDJ71tm9GHmDSJhzl71gQ22RhqcrIXLlzAtm3b8P3338Pf3x9NmjTB4sWLsX79ety7dy/dx1SrVg0bN27Ea6+9hrJly6JVq1aYMWMGtmzZgoRU18H8+fOjSJEiL2+5lJTBFyxGs2asVdqzR2lLQOnfYcO4QGjdmhfxZs2sVzYiFeHhwMmTfEo5KhIyIU5OfKkvXQJu3lTaGhPx8CGlpTdsAAoXVlRaOjWHDgHPnysvNW7NqMUvZ8cn63Fzc0vhbz08PMxjpGCTODpyv+PiIiq7ZsHdPaXs9I0bwNdfswB6/nxWVxUuTGWKVavYIqZizpyh5OOrr2a/Hlz1FCxI6fCbN7mgESyGWnyyIKiZ4sXZJJInD8PRFy4obZEgmIZdu4Dmzakce/AgRVgE5RCfnBZJEqucTz9lTnLMGAuetFw57qInTaJU7wcfWPDkqfj2W84AVtsubdQobooNbSm9fJl6EjNm8DEHDrBMzkK4uCTN8hs3LilxrO84btw448SxvrHI0onjTZsYIDZ5A/mbbzLDW6MG0KEDu6WMeHIff8yvyMiRJrTJzomMjExxi42NzfExDx8+jPz586Nu3bovfxcQEAAHBwcEBwcbfJynT5/Cw8MDTk5OKX7/6aefokCBAqhfvz5WrlwJnVTi2wXJJYcfPFDamv9TvDjw00+UoH782GYkqHfuBPLnZ/e2mqhWDShWjPZZ9ddeLy399ddMFL/7ruLS0smJiuIawN+fnwPBspjaL+fEJ69btw4FChRAtWrVMGbMGDxTQyWjYFW4urJG98UL7mnsIcijGKVKcaTS77/Tt+zfD/TvD1y7Rlmr4sU5vmnECPogE6z5TUVoKJPD5cqxuNrRUWmLzEjJkpQJP3tW5igJgqA6PD2pqFmqVJIohSBYMz/9xJq6pk0ZtilYUGmLBCEtkiRWOblyATNnAn/8wT2WxXByYjLz0KEkba5ffrFsRDQykiuDDz5gxlJN5MvHJPoPP2TeUqrTAcuXs7X3yRO+nhMn8vVVmOQdx8uXp0wcL1+elDgeNoyJYw8Pvg29e5s/caxvIG/XzkwN5MWKAf/8w9bpFSuoRRcSYtBDnZ2B2bPZhGxzkqM5JLuVWD4+PsiXL9/L26xZs3JsS2hoKAqlknF3cnKCl5cXQkNDDTrGw4cPMW3atDRymFOnTsUvv/yCnTt34s0338SAAQOwePHiHNssWAf169MFqO7737IlFSpsQIL62jXWhwUEqC9Iq9FwPu69e1aqKJFaWrppUxZLVayotGUp2L1bXVLj1opa/HJ2ffK7776LtWvXIigoCGPGjMGaNWvQs2fPHNki2Cd583I/8+ABVSqsusjHWnB2Tik7HR7OKGnt2lSwaNOGhUkdOwJffcWuVoXemGfPqJidmAhs2cIONpunalXAx4fvTUSE0tbYBdK1JAiG4+7OBpe6dSlMsXOn0hYJQvZYsIC12D16cNqku7vSFgmA+OT0kCSxFdCtG3NYI0YosG+qXx/4+Wf+e84cbuIMTLDkmDlzmKCeOtUy5zOWfv2AsmXZVZweoaHAa6+xevr99xmRqF/fsjYaiT5x3LdvysRxSAilqxs3Bs6dS5k4rl7d9IljizSQazQMjJ84wfbABg3Y6W3A3KzOnfn8R4ywD0dhKNl1snfu3MHTp09f3sZkIp0wevRoaDSaTG8XTaDPHxkZiY4dO6JKlSqYPHlyir9NmDABjRs3Rq1atTBq1CiMHDkS8+bNy/E5BevAyYnJy8uXqaqoKvQS1JcuJUlQN21qVXKCWi2DAD4+bHJRIyVLUp1j924WNVkVf/+dUlq6ZUtVSEsnJyyM9Q4tWrBYUsg+5vbL5vbJ/fr1Q7t27eDn54cePXpg9erV2LRpE65du5btYwr2S6FC3FNfvw5cuaK0NXZIgQIpZadPnwYmT2Y38YgRdKylS1O26fffgadPLWKWVgv06sU97ubNVHGzCzQayrXky0fdS1FpMDsSkBYE43B25oz49u0ZI7R035Ig5AStlsubYcOoDrtypeq23XaN+OS0KN/OKGSJgwMld1u14jjVt9+2sAH6YYCLFlF+ulo14LvvmCkzF3fvstxm6FD17tRcXNhS+tZbQGBgyqF5f/7JFl0HB2DrVibXrRQXFxZ8167N5DFAlcpz55g81t9++om/d3QEqlRhEEZ/q1GDeVhDSN5AXr262Z5WEpUrM7s9ZQq7vP/+G1izBihTJsOHaDT8TjZuTDmy996zgJ1WgLGOU39fDw8Pg2cMDhs2DB9kIYFfpkwZFClSBOHh4Sl+n5CQgIiICBQpUiTTx0dFRaF9+/bImzcvNm3aBOcsVnL+/v6YNm0aYmNj4erqatDzEKybKlWomLhjB+uFTDxaPucUK8aLcr9+TAT26AHgOKt+kFdp6zLl9GkmCfv0UeHrmoyAACo1BwezUUrVxMUl6bQ9fUppaZV1Didn5042l9Wpo7Ql1o+5/bIlfHJy/P39AQBXr15F2bJlDX6cIOgpXZqu8PRpdosWK6a0RXaKRsONnl56OiYG2LuXUk3btzMb4OgINGxIaal27egUTDqDiEyYAGzcyLy03fkdR0duaAMDOQ5LhYVjtkR2fbIg2DMODmxK8fJi7C0ignFJtalNCUJy4uI4ZeOnnyiW8tlnSlskpEZ8clokSWwltGzJPOOYMZRCcnFRwIimTRlY7NsX6NKFnvrLL6nfZWomTuRxM+rSVQtdunDzOmIEcPw4N7hDhlDC+I03mEy3wWED5kwcK9JA7uLCLuJXXmHGt0YNfrZ7984wS9GoEd/+ceNYuJG82ykmNgE3n8QjrmgFuDyJR6nYBLi72v7l1hJOtmDBgihowHeqYcOGePLkCUJCQlDn/xGf3bt3Q6vVvgwyp0dkZCTatWsHV1dXbN68GbkMaGM7deoUPD09JUFsR2g0jFeuXAmcOcNLhipp0YItmaM2AAsBdOoELHyP6hZmCLTmlLg4dudWrare+jA93t6UPztwgAocqpSN0umACxcYdNePDnnnHcDXV1m7MuHqVcqNd+0qwR9TYG6/bG6fnJpTp04BAIoWLWqcoYKQDD8/XhKPHOEe29NTaYsEuLtzH/bKK/z/zZtMFm/fzsrcCRPoeNu0SUoam+A6sGoVR3vNm8clkl2SKxer3XbvZuVb48bqrtKzYiQgLQjZQ6PhNTp/fiocPn3KDmMJvwhqJCqKvWR79lDAy+KNfoJBiE9Oi/oihEKGzJlDacvlyxU0omBBYNMm4PvvqfVRowbliUzJmTPcsU2aRD1jNaPRcEDGyZPsRK1ZE1i/nq/Ppk02mSDOCH3iOCOp6kaNOL8xI6nqI0co/bZgAfPsiiQIGjdmQuXtt9nG1qULh5dlwOzZwP37rAy7EhaFyZvPo/m8IFSbvB0ddz5E514L0HHnQ1SbvB3N5wVh8ubzuBIWZbnnY2F0OuOkOswpFVS5cmW0b98effv2xdGjR3Hw4EEMHDgQ3bp1Q7H/t438999/qFSpEo7+v8MuMjISbdu2RUxMDFasWIHIyEiEhoYiNDQUif+XId+yZQu+//57nDt3DlevXsWyZcswc+ZMfCalgXaHjw+LX1QvOezsDOhneDZowItukyb0Wyrj8GHg+fOUwhxqpnlz/ty7V1k70uXhQ6pibNgAFCnC5DBAvXSVotWyO79kSVU3OlsVavHL2fHJ165dw7Rp0xASEoKbN29i8+bNeP/999GsWTNUt4jUjGCraDScAOThwW3s8+dKWySkoVSpJNnphw+BffuATz5hJdGHH7IFvEYNYORIdsHGxhp9ir17Kbjy0Ufcn9o1+fKx8D00lG32gllQi08WBGulRQtg9GjGFadN+79IliCoiLAwFiAeOcI6bUkQqxfxyWmRJLEVUbUq90RTpwJPnihoiEbDBNrp0ww8NmvGdsq4ONMcf9QooFw57tqsgXr1OENp6lQmhU+fVr9OpoVInTg+fjxl4rhhQy7whg7lvytWZLLl5k1g6VI6VosHbjw82B64cSOwfz/bDf7+O927li8PvN//Gb48E4w2i/ZhTfAt3Ip4htS+QwfgVsQzrAm+hTaL9uG9FcG4E2F7c5/UNtNh3bp1qFSpElq3bo1XXnkFTZo0wbfffvvy7/Hx8bh06RKe/X8G14kTJxAcHIyzZ8+iXLlyKFq06MvbnTt3AADOzs5YunQpGjZsiJo1a+Kbb77BggULMGnSJPM+GUGVtG6d1I1kFcyYAQQFUde/bl3OZX/8WGmrANA3HDzIwL21dHW5uVFk5fhxxrBVQVwcsGsXtbAjIqgA8+676i+6A2u0Hjxgo5gsoUyDmvyysT7ZxcUFu3btQtu2bVGpUiUMGzYMb775JrZs2WI+IwW7wcmJtaEAFSESEpS1R8gEZ2c62+nTWYUcHk65qlq1WAwVEEAd0o4dWbl7+XKWkbwrV1gL3LQp3aX4HDCuU7MmX5yrV5W2xiZRk08WBGulVi32E927R5GJTHo6BMGiXLvGteW9e6xta9lSaYuEzBCfnBb1thMI6TJlCvdEs2fzpihly/LKN3s2Ddu2DVi7ljNes8uuXTzOxo3WMQ/n0iV2aF25QunOzp35uggZkpFU9aZNQPfugL8/X9Zff2XCOLlUdd26SVLV+lHZZkMvJf7hhww69O/PrvFkGtnrj93GAY/zcMrNQESiNvOAhP7vh64/QsDCvZjyelV0q6de2U9jUZtch5eXF3766acM/16qVCnokgWRWrRokeL/6dG+fXu0b9/eZDYK1o2XF+uE9JLDefIobZEBtGjBLuLFi4HJk6kKMmcO0KuXohLUQUEM2jdtqpgJ2cLfnzHrXbuAbt0UNCS5tHRMDF/IJk2sYy0FrgOCgliXVby40tbYDmryy8b6ZB8fH+xVZZu+YCvkzs3LZFAQVXYbNZJkoVVQoAA3jd270/edOZMkTT1iBPD55+xE1stSt2rFTtn/ExHBrV3BgsBvv1mNm7QM5cqx+vHUKS5qjZgZL2SNmnyyIFgz5cuzbmj6dGD8ePYsqXiajmAHhIRwYoanJ3DoEJchgroRn5wW6SS2MooVoxzSokXA7dtKWwNGdMePp0ZkTAwzf0uWZK8PX6vlxq5RIyZb1YxOx7LjWrXY/nTkCJOIs2YBjx4pbZ3V4eJChfFy5Ti34fhx7k9DQvgy6zuOhwzhv/PmpVT1hx+aueO4aFF2ES9dSgNr1WI2AMCSoCsY/ftZxCZqoXEw7vOeqNUhNkGL0b+fxZKgK2YwXBmkEkuwR5o3Z251zx6lLTECZ2dKOFy8yLbNDz9UVII6LIzxyObNLVAAZGKcnNjEdOkSVTAUIbW09KefsnTZiiLfesnXVq2UtsS2EL8sCJmTPz+Lfe7d415DsDI0mpSy0xERwNatwGuvMfvfpQtnGf+/EznucAjefFOHiAjgr7+sR7nEotSowbXE4cMc/CmYDDX55BkzZqBRo0Zwc3ND/vz5zXciQTATxYpRJMvDA5g4Efj3X6UtEuyVnTtZh1+6NJsHJEFsHYhPToskia2QESNYDDthgtKWJKNuXeDECQaaP/sM6NCBu21jWLeOUeJ589Rdxh0ayvLjTz/lbMcTJ/j8J07kVWP6dKUttDr0DeSzZiXFtPUdx/36Ad98kyRVffx4UuL4zJmUieMaNcyQONZogAEDmDzx8AAaNcL6SV9j/o7LJjg4MH/HZWw4poaKj5yjJicrCJYid25OXThxwgrlrooVo+/ds0dRCepduxiorVvXoqc1GVWrsvt1xw4Lz6qJi+OuNLW0tJeXBY3IOZGRrLhu0IAJG8F0iF8WhKwpVowqu5cuAdevK22NkCPc3ZNkp/Vv6JIlQIEC0M2Zi08ancahPXHYVHMKyh74Ebh/X2mL1YdGw8oJd3dGu1+8UNoim0FNPjkuLg5vv/02+vfvb76TCIKZ8fSkqGXp0gzDBgcrbZFgb6xbxw7iZs1Yq1aggNIWCYYiPjktkiS2QvLmpSNcs4Y5VdXg5sbs3N9/cy6vnx9low3h+XNqhLz5JjuJ1cqmTUC1akwY6jtM9fLDhQpxnvLSpRJhMAJ9A3nDhiz2zgxXV8pNZ5Q4btDAjInjihWBQ4dwZ9QkTIopkm4mIO7BLTzYNAv/LeuD2/PfxJ0v30Xo2lF4diXz1erEzedtYkaxmpysIFiSevWY3Nq5U2lLsknz5vRr8+cDq1fzevfDDxb5kl67xtF3AQEcL2CNaDRA27aMNVukE02nA86fp2T4kSPclX76Kd83KyQoiIVhTZoobYntIX5ZEAyjXDlODDpxguoWgo1QujTwySfApk2YO+YxfsCHWPH6ZjR9upXF3sWKpexEjo1V2mJ14OxMp6zVUuojMVFpi2wCNfnkKVOmYMiQIfDz8zPfSQTBAri5AWPHAvXrA198wckDgmAJvviC0yffew/44w/WVgnWg/jktEiS2Erp0weoUIH7GdXRoQOjpM2bA2+9BXzwAdtEMmPxYkZXZ82yiIlGExXFTGOXLgzGnj3L55maIUM44GjsWMvbaKXoG8jnz89eA7khiePTp02UOHZ2xtjSbZDg4pqusYmR4dDGPYe7X2t4BvRFvkZdAQAPNk5D1KltGR42QavD2E3Wr3GnJicrCJbEyQlo3Zrj6a22RsjZmRfKS5eY8fzwQ6BxY0bMzYRWy+5bX1+gUiWzncYi+PoClSszxhwfb8YTPXjARP4vv3AkwsCB1LeyImnp5ISGJkmN58qltDW2h/hlQTAMjYbdxIUKUWU3q62rYF1s3AiMHueICROAnn++zfFBYWHciNasyer7gAAqcbz6KmMTly9bWB5EZbi5cR349ClfL3t+LUxEdn1yZGRkilusFDMIQgqcnYFBg9jR+f33wPr1cskSzIdWyzGgw4ez123FCqvdits14pPTIkliK8XZGZgzh11LqqyUKlCAu7EffuDPGjWA/fvTv++jR8DMmazyLV/esnYawsGDtP/XX4GVK/l8MtKQcHMDpk3jXMCjRy1rpxXy4gWdapcupm0gT504DgkxLnEcHJx+4vhKWBT2X32IxAwWnLnL1kPhrlORv8m7yFuzPTzqvYHC786Ec6HSiDz6R4b2Jmp12H/1Ia6GR5nmBRAEweJUqQKUKEG/bNWb0qJFgbVrKUEdHc026U8/NYsE9enTQHg4xyKrecqEobRuzZfMLFJnsbH8cC1bxveiRw9KS1vxQEWdjk/J25s+WxAEQUkcHLgvyJ2bKrs2FPOxa44dY5dP165UY3tJwYL0oz/+yDFZp04BkyZxEzh8ONU5ypRhjOKPP+yzcsDLi+15d+5QwURQBB8fH+TLl+/lbZZaGysEQUEcHIBevdjZuXEjsHy5iCAIpicujp+xhQs5zWL6dNuIYwiGY8s+WZLEVszrr1MFaORIlTo/jYZdxKdPc1hf8+bAmDG8qiZn+nSWZEycqIiZGRIXxwxms2aUojp9mrJUWXmAXr0otT1ihJVnCszPV19ZroE8q8Sxv39S4rhBg5SJ46+/ZtD/x0O34ehg3ApA4+AIp7wFoI2NzvR+jg4arD1i3bOJpWNJsGf0ksOhobyWWD3Nm7OL+Isv2GFToQILpUz0xY2LA3bv5gSHEiVMckjF8fbmXOX9+4GYGBMdVC8tvWRJSmnpChVMdALluHqVnffWLDWudsQvC4Jx6FV2ExI4K12Ve2zBYG7fZsykRg3Wrme4jddoUspOP3oEbNnCruLdu4HOnenkmzUDZszgBtJeLpglSjC2ceECcOuW0tZYNdn1yXfu3MHTp09f3saMGZPu8UePHg2NRpPp7eLFixZ8xoJgWTQa4I03KLS0dy8wb54UfAmmIyoK6NiRRQi//MItuWC9iE9Oi5PSBgjZR6OhRG+DBozffvCB0hZlQJky9NBz5rA6d/t2dilVqcJhhEuXApMns5pXLVy4wPKgM2fYGTxqlOERTEdHYO5cylFv2cKdqZAGfQP5xx8rF+vWJ471yWOAi8hz57j3Dwnhbe1ayocW/zgcTp5ZJ/61cS+gS4iFNvYZnl8JxvPrIXCr3DTTxyRqdQi6HI7JqGqKp6YIxgaY7SW2ItgPPj50bbt3A1Wr2oDskLMzMHgw229GjuSsi+++o9+uXTtHhz50iM06rVubxlS10Lw5iwT27OEmMkc8eAD8/TczqRUrcl1hxZ3DydFq2UVcsqTVjlK2CsQvC4LxuLtTZXfPHu4H6teXLhFrJCoKeO017vf++IMd4gaTJw8TxK++yv/fuMEYxvbtjGmMH09lsTZtgHbtWCVYtKg5noY6qFgxqbra3T1jVTUhU7Lrkz08PODh4ZHl/YcNG4YPsggKlilTxnADBMFKad4c8PBgrfPUqcDo0WwCEYTsEhZGOfOrVzkuq3lzpS0Scor45LRIktjK8fcH3nmH+5R33qHasSpxdOSc3nbtmHytU4cbrAMHOPxp8GClLSQ6HYPfI0YApUqxayc7Gojt2jHyPWoUPYmTfNVSo28gnzRJaUtSkjxxrCc2Fjh6IgHvbX5m0DEe7/4e0foZxBoHuFVoCK+2/bN83O1HzxATmwB3V+v8vEgwWhB46V+6lDMNmzVT2hoTUbQoq9H69mXJbN26QP/+vJBnI2kZFcUksb8/kD+/6c1VEjc3vu+7dvH5ZSuOGhsL7NvHD5GHB6WlbaBzODknTzIH3revJF/MifhlQcge3t5MDh85wsBylSpKWyQYQ2Ii0L07cPMm1xuFC+fwgKVLU3b6k09YOXz4cFLS+OefeZ8aNRgDaNeOVQaurjl9GupBo+HmOCaGo7hat2YiXTAKc/vkggULoqCaGi8EQUFq1WIv0qxZwIQJFImUr4eQHa5cAdq357jE/fuB6tWVtkgwBeKT0yJy0zbAzJmc6ffll0pbYgB16rA186OPgM8/55zfoUPVkd2+d49dOp99RvtCQrI/JE+jobbJxYucYi+kQN9APnq0dSzUXF0Br5KGa4d61HsDhbpNh3fHIchdpg50Oi2QGJ/l43QAbj4ylUap5dHpjJPqEDV2wRbRj287eJDzaW2KZs0oQb1gQY4kqIOCWDvVNHOBBaulfn0gXz52yhqFDUtLJyc2lp8BPz9O8xDMh/hlQcg+Pj5UBTl/niNZBeth2DBg2zbKQVY1tUiTs3NK2enwcGDdOiaJf/yRCVRvb3YhL1nC6LItXFwdHIBGjQAXFxb6px4hJmSJmnzy7du3cerUKdy+fRuJiYk4deoUTp06hWib27wI9ky5cqxpjo9nklgU8wVjOX6cdV8uLiw6kwSx7SA+OS2SJLYBypYFBgxghdSDB0pbYwBubhxGW60ao8TTpjFZrCQbNzJaeeYMd5SLF+c8cV2rFrumJ01i25TwknHj1NVAbghxCYYnQZy9fZC7VE3k8WuNQm9Pgi7uBcJ/mwqdAV7FmPOoDZl9KAikWTPG0vbsUdoSM6CXoL50iSW1ffowaHjihEEPDwtjF2nz5kCuXOY1VSmcnBgjvnyZCpUG8eABsHo1I9rFinGYVosWNqBZnpZDh1iJbWtS42pE/LIg5IzKlQFfX+DoUY7KEdTP11+zeH7xYjb1mp2CBYF332WC+N49LnImTACePWMxfIUKDNj070/d68hICxhlJlxcOLQ7Npbd1OI0jEJNPnnixImoVasWJk2ahOjoaNSqVQu1atXC8ePHzXdSQVCAokWZKM6fH5g4kYVfgmAI27dzO162LGujSpZU2iLBlIhPToskiW2ECRMYkJ42TWlLDGTLFg5+/eknRgnfeQd4/33g6VPL2hEZyWHOb70FtGwJnD1r2t3k9OnAkycchiEAYJBlwwZ+VtXQQG4Iz58Dly5k/3LpVqkx4u5fQULEf1ne18XJei/LanKygqAkuXMnNd1aRfFWdtBLUO/dy0Bo3bqsWIuIyPRhO3ey27puXQvZqRBVqwLFi/P5ZlofFBvLwUbLlnG90KMHNTJtZPZwaiIjmSRu0IDd1oJ5Eb8sCDlDo6G/8vKiQkiM9Qr+2AXbtwODBlGwrH/Wk35Mj4MDULMmR07t3s010ZYtQMeOQGAg0Lkzu4ybNaMcXEiI9V148+ZlceCDB1zo2kKXtIVQk09etWoVdDpdmluLFi3Md1JBUAhPT0pPly1LEYgjR5S2SFA7a9ZQEKRlS7pvb2+lLRJMjfjktFhvNkJIgbc3MGYMY4xXrihtTRYkJHDjFBDA5OyvvwKrVrGytkYNzuGzBPv383y//87z//qr6a/8JUtylzpvHnD/vmmPbYXodMDw4Wzafv99pa1Jn+fPuWhcsgTo3ZtyInnzAu++5p7tPbAuPhYAoI3NPLKkAVDK2z17J1EBanKygqA09eqxYtloyWFrQ58NX7iQcosVK3LMQjpf8KtXOW4gIABwdFTAVgui0QBt29L1nzmTzh10OhbLLVkCBAeztXrAAJuTlk5NUFBSI5JgfsQvC0LOcXRkTszJiZ0k8VlPkBEU4Nw51p23b6+i+uw8eRhlXryY8iLXrlFRzcsLmD2bFQhFirBAbPVqIDRUaYsNo2BB2n7jBp+XYBDikwVBOdzcGDOvX5+Tk7ZvV9oiQY3odAzfv/8+0KsXsGmT9TQ3CcYhPjktkiS2IQYNYmPPmDFKW5IF339Pmcp58xhF1Wh49T1zhsOfWrRgEjk21jznj4vji9S8OVCiBHD6NM+v0ZjnfGPGUFNz8mTzHN+K2LKFufm5c9WRINAnhJcuTZkQbtiQ6mBnz/Lfy5YBx484oaRX5quDxJgnaX6nS0xAzLnd0Di5wrmAb6aP9/V2g7urU06ekqKIkxWEJJycmAy9cgW4fl1pa8yMkxMLoi5dAjp0AD76iBH1kJCXd9FqmTD39QUqVVLQVgvi60up0t27UyUV9NLSv/6aJC3dvLlNSksnJzQUOHWKyzxblRpXG+KXBcE0uLqyuOX5c1HZVSNhYczFlioF/PyzOvaZ6VKmTJLs9KNHVGPp25frp169GMypWRMYPZpVVWqe+1uqFBd0Z84A/2WtliWITxYEpXF2Ztz8lVcYlv75ZxFDEJLQaoFhw4CRI4Hx44HvvmOYQ7BNxCenRT7uNkTu3FQ37tWLm9eGDZW2KB2iojij9733uAFKTqlSHOA4bx6HRWzfzq6kqlVNd/5//+Wc4HPnKPE0YoT5d5H581MPfNgwBtGrVDHv+VRK8gZyi8yHSsXz56wHCAnh7fhxfhwSE7lYrF6d35mBA1kYXa0au52S0+puIawJvoVEbforyUfblkAX9wyuPtXgmNcbidGPEfPvHiQ8ugvPVn3g4JI7Q/scHTRoWaGQKZ+yxTHWcdqDkxXsm8qVWYu0YwfQrx9VCG2aIkWY/OzbF/j0U7ZTf/wxMGMGTt30Qng488fmqslSIwEBLEQ6cgRoWj+WAeHDh7k26NkTKF9eaRMtgk7H74G3N1C7ttLW2A/ilwXBdHh4cK+wfz8LXmrVsi9/plaePwc6dWJ9+datLPi1CpydqcbSrBn1T8PDWU23fTtVzubMAdzdqXXZrh1v5cqp60NXrRoQHU1FlJYtbXZUhqkQnywIyuPgwImD3t7ctj5+zO2qaouLBIsQG8vPxYYN3LsPGKC0RYK5EZ+cFkkS2xg9e1LxcfhwymGpaQ8BAJg/n3OHMxqe7OjIytl27Si7VKcOpZgGDcpZdF2rpaTjqFFA6dLcyNSqlf3jGUv//pSWGjWK7bR2iL6B/KefzP+5TJ0QDgkBzp9PPyFcpw73t66uWR+3h78vVh2+meHf3Ss3RfSZnYg6+Te0z6Pg4JIbLkXKwbNFb7iV98/02IlaHXo2yLzTWO2IkxWElOglh1euZKNF6toom6VpU0pQL10KTJyIuD/+RtCAC6hWNTeKF1fbwsS8eHkB9erpcGCfFrWPrIB7bARbaRs1svnO4eRcvUpVym7dJAhjScQvC4JpKVyYhS4hIUxG2kmdj2rRaqkGdfo0a7B8fJS2KAcUKsT4R48efGJnzjBhvG0bJa7i4xnHaN+esZJWrZTPiGs01G7ds4fBp9atRZczE8QnC4J6eO011uwuXcoQ9dChhsUEBdsjMhLo0oVu7Lff+G/B9hGfnBZJEtsYDg5sxG3ThipGnTsrbVEy7t9nknjwYGowZkatWtx9jx4NDBnCsuBVq9iSZSz//cfd486dTDbPns22a0vi6grMmsXo6J49DBDbEfoG8p49TZ+bNyQh3KABm9qMSQinR0nPvCisK4BQ7SNoHNN2E7tXaQ73Ks2NPq6jgwaNynijXCFrKX1PH3GygpAWHx8KYuzezZ92kxfUS1B37YpDsw7jeZwDWi/tApQez4uxvfDgAZr9twun4zthj3sbdPyogN112uilxkuVsvmRy6pD/LIgmJ4yZbi3OXWKjZ7Fiiltkf0yeTK7fjZupHiJzeDgwMrCmjVZZB4dTfnp7dt5W7aM66xGjZK6jGvVUkayxtERaNwYCAwEDh5kR7Hoc6aL+GRBUBdNm1IlZN48YMoUhp89PJS2SrAkoaGclnXjBlWvmjVT2iLBUohPToutCx/aJXo531GjUs3AU5pJk5icHT3asPvnzg18+SWv1BcuAH5+3AUaw6+/8nHnz/M4X35p+QSxnnfe4e51xAj7uLokI6sGckNJPkP4ww+BGjWSZggPGcJkcYMGwNdfU046Koo/v/mGUq916mQ/QXz+PODvD5z53g9OjqbthHNy0GBmZz+THlMQBPXQujUQE0OVYXsjyr0IDhXuDP8yD5D/0TX6wf79gYgIpU0zL7GxXHd8/TXcosPRtHY0QiLL40GCfSWIAeDkSY5hbtNGhQo3giAI2aB6dSaHjxwBnjxR2hr7ZM0a7i1nz7aDrp88edj2tmQJcOUKcO0aVco8PVmIXrcuR3707MkXJizMsvblysWh3dHR/FJkMuQzJjYBl8Ke4nbMY1wKe4qY2AQLGioIgpCSGjWYIA4L45TA8HClLRIsxeXLrLV68ICjRCRBLNg7UuJno8ydy8LTb79lB6XinD8PrFgBLFhATQ9jaNMGOHsW+OQTduJu2cINUmbHefoU+OwzbpLefhtYvpyaj0qi0TBb2rw5k93duytrj4XQN5B//jlQsqThj3v+nCpbx4+n3yHs58ekrSk6hDNDqwUWL2bRRZkywKGdbriUUBWjfz9rsnNMfb0qfLysX5pLKrEEIX08PanGd+AAZSrz5FHaIsuxezcbSpp29wHeO8EqngkTWMQ1ezYrfmxpWLNOR2e1bRvw4sVLaen6GmccuwHs2mU37h8Ac+VBQUkJFcGyiF8WBPOg0XAfEhSUpLKrVB2yPbJ/P/DRR1xCjByptDUKUKYMC+769wfi4liFqO8yXreO96lZM6nLuHFjwMXFvDbly8dq7QMHuImvUePln66ERWFd8G0EXQrH7Yhn0KeQF18CNAB8vdzQsmIh9PD3RfnC1q2slRnikwVBnZQtC0yfzvHw48cD48YZF7sUrI9jx4BXXgEKFqTYZ1Zip4LtIT45LTYUlROSU7060KsXK6IiI5W2BuweLlWKG5ns4OXFxOrq1UwSV6/OK3l67NvHTcmff/L+GzYonyDW06wZ8PrrwNixjJzaAZMmsbh4zJiM7/P8OcdEf/11yg7hBg2SOoT9/dlBrO8QDglhEUROO4Qz47//OPZp8GDg4495zlq1gG71fDG8rWk0M0e0rYiu9WxjRaLTJTlaQ26ZFJkLgs3RrBkV+YKClLbEcoSFUY6zRQv6ATg5cezDpUtAx45A376Ugjh+XGFLTUR4OPDjj0yAlyjBwffNmwPOznByotLL5cuUs7IXDh7kcqdVK6UtsU/ELwuC+XByYvMkwGtdgjREWoSrVzlSq1Ejqi7bvUKFiwvXGjNncrMaFgasXcsK6h9+oAP28mIn8tKlfAHNRdGi3Cxfvgxcu4Y7Ec/w3opgtFm0D2uCb+FWsgSxHh2AWxHPsCb4Ftos2of3VgTjTsQz89moIOKTBUG9FC3KRHH+/KxnPn9eaYsEc7FtG+MT5cuzrkkSxPaJ+OS0SJLYhpk2jYo/c+cqbMiePZwpPGtWzipYNRrgvfdYmVq6NDc8I0YkJVtjY9nu2aIFy77OnOH91bZznD0buHOHmzQbR99APmFCUuN3ZgnhwYMzTwh//LH5EsKp+eWXzJXKB7Ysj9ld/ODq5ABHB+M+Y44OGrg6OWBOFz982rKciS1XDmMcrLFVW4Jg7eTOzRjeyZP2I2O1cyfjkmlGEBcpwmTq/v3stq1fn2ohjx4pYmeOiY1NmhH49CnlHrt1S6N4UqUKULw4fYo9bDIiI9nc1KABG4wEyyN+WRDMS+7cbNKMjASOHrWPa7uSPH4MvPoq4O3NOcTmbo61SgoVAnr0oKLa/fvAiRNsjYuOZvV1+fJsmxswgEX1UVGmPX+5ckC5cli/8wwCFuzBoetc2yVqM/9y6P9+6PojBCzci/XHbpvWLhUgPlkQ1E3+/Gy0Kl+eCWN7HBVl66xezZqpgAAqfKmln0ywPOKT0yJJYhumRAnuAxYsYEekImi1TOTWr0/ZZ1NQsiT1K+fMYeaufn1g0yZmFhcuZBJ292716oNUrkx9rOnTudO1YUaMYEWegwPQp0/mCeFjx5RLCCfn6VPWFnTtyoXD2bNUPE+PbvV8sWtIczQq4w0AWSaL9X9vVMYbu4Y0t5kOYj3iZAUhc+rV4+Zz506lLTE/V69yZF6bNuygTpcmTXjR//JL4OefgYoVge++s56Lg05HJ7F4MZ1YixacgVC+fLp312io+hgayjo2W2f3bgbw9Z12guURvywI5sfTk3ub//6jSxDMQ3w88NZbnB24dasEdg3CwYGdvaNHU8rm0SNg82ZKZe3YAXTqxBeyRQsW9J84YRJHsCTCHaNvuSA2UZtlcjg1iVodYhO0GP37WSwJupJjW9SE+GRBUD+5c/OS2bAhw8v//KO0RYIp0OnYQNerF9C7NwvN3Kx/4p+QA8Qnp0VmEts4I0cy4TZxIjs6Lc6GDWwH3bfPtB29jo7MQLZuTcnKLl3YmXTkCAc+qp3JkykDNXMmMG+e0taYBP0MYf384L17mSAAgOHDk2YIDxjA5K+fn+UTwFmxdy/w/vvAkyesMOvZM+uPrY+XG9b08U+atXQ5HLcfpZTS0gDw9XZDywqF0LOBL8oVss1ZS8Y6TntwsoKQHEdHFp/8+iuvj2XLKm2RedBqGXssWZJ530xxcgI++wx45x2qgfTrB3z/PauH6ta1iL3ZIjwc+PtvakdXrsyAa6rO4fTw8WFH8e7d/OnsbH5TleD+fRaCvfKK+ny9PSF+WRAsQ7FiLIY9fZoFsaVLK22RbaHTcWrV/v3s/MmgFkvIirx52UL12mv8/7VrSbOMZ87kSKxChVjh164d0LYtULiwUadYf+w25u/SJ3dzFv+Zv+MyCuZxtZnCavHJgmAdODtzalD+/MDKlezt6d5dfSKVgmFotcDQoaxLnziR4Xh5LwXxyWmRJLGNky8fZ8IOGsTOTT8/C548NpYbjTfeAJo2Nf3x795lFjw0lBWyJ08ycbxqFaOwaqZIEdo6cya7jkqVUtoio3jxgkEQfUI4JAQ4dw5ITOSCqmpVduSWKkXZ5urV1R0kjo2lJPb8+fyorl5tfCN6+cJ5Mfn1qpiMqoiJTcDNRzGIS9DCxckBpbzd4e5q+5dbcbKCkDWVK9NF7dzJILKDDWq6nDrFTp+PPjJiA1a4MP133770i/XrM2E8YwZ1JdVCbCzHaBw5wshBz55GR6tbt2YO/MgR8yyPlEan4+e7QAHrqNuzZcQvC4LlKF8+SRXJ3Z25NsE0zJ/PgvdVq4BmzZS2xobQy04PGADExVFbdft2Dmxct473qVWLCeN27TgIOhON7zsRzzBpc/qDPGPvX0bM2UC8uH0WCU/D4JDbA67FKiJ/s/fg7FU8w2NO3HwejcoWgI+X9bd8iU8WBOvBwYENJJ6ejA8+fky1QyfbD+vZFLGxfB9/+42ToT75RGmLBLUgPjktNhiaFFLz8cccDTNqlIVPvHQpZ+/Onm36Y2/YwIz3xYuMRJ44wZ+XLjEj+fPPpj+nqRk2jPJO48crbUmmvHiRNEO4Tx+gZs0kyejPP2duvl69lJLRI0cCDx9y5GS9eupOEJ87xw7nRYtMp1Tu7uqEqsXyoZavJ6oWy2cXCWJA5DoEwRA0GjZmhIWx2MbWiIujoqGfH+fvGk3jxlQg+fJLYP16oEIFdUhQp5aWbtkyU2npzPDyom88cIAjAm2NK1fYYB0QkInUuGARxC8LguXQaJhPK1QIOHTI9KNe7ZU//mAcY+xYykQKZsLFBWjenEXsJ06wEH/NGlZ/r1zJdY+3N/D669z4X72a5hBjN51FQgby0pFHfsOzS4eQq2QNeAb0Q54a7fDizjnc/+FzxD24maFZCVodxm6yDR138cmCYH289hqbrvbvp1zxixdKWyQYSmQkVa3+/JNJYkkQC8kRn5wWSRLbAc7OHDHzzz9AYKCFTvr4MWfu9u0LVKpkuuM+ecKunW7dWM165gyjkAB/njnD37/7Lm9qnvmbJw8wZQqrdENClLYGABc8R49mnRDWx8ijo7mH/O47FiPolUHHjuX+Uc2V3lotZ4zUrQskJPB5jxwpAe2coDYnGxERgR49esDDwwP58+dHnz59EJ1FRqZFixbQaDQpbp+kWk3evn0bHTt2hJubGwoVKoQRI0YgISHBnE9FsDFKlGDMLSiISVVb4uBBjh9o1SoHB9FLUF+6xJ15v350RMeOmcxOowgPZ9XTb7/xzRs4kA4uB6XkzZuzQn3PHtOZqQa0WtbslSrF/L6gLGryyzNmzECjRo3g5uaG/AZIswOATqfDxIkTUbRoUeTOnRsBAQG4csW2ZlQKtoWDA91VrlwsBIqNVdoi6yYkBOjRg7OIp01T2ho7o3Bhxl3WrOEMiRMnuMmPjKREXfny7ET+9FNg82ZcuR6K/VcfZjiDOG+9zig+YCW82nyMvDXaIX/jbijSYw502kREHvktQzMStTrsv/oQV8Otv+pCTT5ZEATDadoUGDMGuHCBIdzISKUtErLi/n1u10+c4JiKzp2VtkhQG+KT0yJJYjuhSxegYUMqHFvkgz1jBiPfkyeb7ph79rBLeOtWzvP9+We24yTHy4u/X7uWswKrV2drqFr58ENqj44YwS4lC6JPCC9bljIh7O+fdUL4k0+YXE2vQ1jfQD5njkWfjlHcvctOvqFDOd/q+HE+fyFnqM3J9ujRA+fPn8fOnTuxdetW7Nu3D/369cvycX379sX9+/df3ubOnfvyb4mJiejYsSPi4uJw6NAh/Pjjj1i1ahUmTpxozqci2CCtWwPPnlHZz1aIjGT3VIMGBo3nzRq9BPWBA1xT+PuzIunRIxMc3ABiYym7uGwZn9x777FIzQRPLnfupI3rgwc5N1UtnDhBJZG2bWXWkxpQk1+Oi4vD22+/jf79+xv8mLlz5+Krr77C8uXLERwcDHd3d7Rr1w4vpI1DUDEuLkCTJnRbhw5xHI9gPHfvsk6sWjXWadnieA6rwcGBbfJjxjAmExHB1qz27blOeuMNrOs/BY66jJ1IrhKVoXF0TvE7Z6/icCngi/iHdzI9vaODBmuP3DbFM1EUNflkQRCMo0YNJogfPKAYZHi40hYJGXH5MqcjPHzIDvAmTZS2SFAj4pPTIkttO0Gj4SyfkyeBn34y88lu3mRmceRIBnhzSmwsk6itWrFa9cwZlhRnFH3UaPj3M2eos926NaWd1RhQcnKiZklQEFu9zcSLF5RVBriwSZ4QHjQoZUL46FHKoxmSEE6NuRrITcn69SmVyhcuZLW/kHPU5GQvXLiAbdu24fvvv4e/vz+aNGmCxYsXY/369bh3716mj3Vzc0ORIkVe3jw8PF7+bceOHfj333+xdu1a1KxZEx06dMC0adOwdOlSxNlaS6hgVjw9OXb34EHbkaQMCqJ6ick3YnoJ6q++4riJChWAb781X+Q9PWnpAQO4pjAh9eoB+fLRF9kC+nHN1asDRYsqbY0AqMsvT5kyBUOGDIGfn59B99fpdFi0aBHGjx+PN954A9WrV8fq1atx7949/PHHH+YzVBBMQJ48dF0REeyGtXAtsNUTHc0EsbMzc5G5cyttkZCCvHlTyk5fuYKgeu2QqDEuvKjT6ZD47Akc3DwyvV+iVoegy9afkVGTTxYEwXjKlGG8U6cDxo1j6FtQF8HBXH+5ubEYv1o1pS0S1Ir45LRIktiOaNSIHcXjxpk5XzpuHOfVDBuW82OdPcso+ldfMZkaGAj4+hr2WF9f3n/ePGDJEh7nzJmc22RqOnak7uTIkdQ9ziHJO4Q/+igpIayf4XTpUuYJ4Xr1sp801TeQT5qU46dhcp48Ye1A9+5plcoFZYmMjExxizWBNt/hw4eRP39+1NVroAMICAiAg4MDgoODM33sunXrUKBAAVSrVg1jxozBs2fPUhzXz88PhZMVwLRr1w6RkZE4f/58ju0W7IumTVkrZAuSw6GhwKlTQIsWZiq8cXKizPOlSwxMfvyxeSSow8PZvfzbb4CPj0mkpTPCyYl+6MoV4Pp1kx/e4hw8yERxjqTGBVVgDr9sLDdu3EBoaCgCki3W8uXLB39/fxy2JQkGwWYpUID7qlu3WJwqGEZiIqdGXbtGAbEiRZS2SMiKaJ9SuJ3onPUdUxFzfg8Sox7BvVLTLO97+9EzxMTKeB9BEJSlSBEmir28gIkTk5pxBOX5+2/uQytWZAexj4/SFgmCdSFJYjtj1izg3j0mCM1CSAhbladOBdzds38crRZYsIAtrFotg8DDhxuvM+XgwMcdO8Zyr3r12FKtphIQfZv3+fPU0jKC1AnhWrVSdgiHhCQlhFev5mN++sk0CeHUJG8gV9tmPiiInU1//ZWxUrmQc3Q646qw9F0VPj4+yJcv38vbrFmzcmxLaGgoChUqlOJ3Tk5O8PLyQmhoaIaPe/fdd7F27VoEBQVhzJgxWLNmDXr27JniuIVTKSTo/5/ZcQUhPfSSwydPWrdklU7Hblhvb6BOHTOfrHBh4IcfmJFMSKDD69ePelI5Ibm0dFQUpaW7djWRbnbGVKnCMcc7d1p3p1lkJKu1GzRgd7SgDtTkl41F71PT87nibwVrwdeX1/lz5ziOR8iakSO5Z9uwgepPgvq59SgGxi5h4h/dQcTOZXAtXgnufq2zvL8OwM1HMdmyTy1k1ycLgqAu8uXjZMUKFdgoc+iQ0hYJq1axjrxNG+6rJd4rZIX45LSYvi1CUDUVKrD5ZsYMjsP19jbhwXU6ykJXqQJ88EH2j3PnDh+/ezeHxs6YkfNMZvXqTBSPG0cb//qLCVlDu5LNTd26bHGdMIHzDtNJsL94we7XkJCk27lzjJE7OVFGo04dvr916nBTnfxlO3HCvE9h3Dg64qFDzXseY4iNpV0LFrBZW01vuS1irASH/r537txJIensmom2+ejRozEni4HXFy5cMNyIVCSfWezn54eiRYuidevWuHbtGsqWLZvt4wpCRtSrR/e0cyfVDqyRq1fZCdu1K+DoaKGTNmrEF275cg6G2rgRmDmTFVPGGKHT0Zlu305H27Ilj22GzuH00Gg4v3flSuD0aap/WCO7d3Mshcx8Uhfm9suG+uRKap1BIggWoEoV1h4dPUr5Q5Puv22Mb77hvm3xYqBDB6WtEQwlLsG4AvzE6McI/3UKHFzdUaDTGGgcDFu3GXsetZFdnywIgvrInft/7d15WJTl+gfw7wwIioDILgpuuKKWuQGpiZiRmWVmWZpZpieTTnbUMnPPJdNfmubRSlOPR49tWmaWktKmiEtSZomiEoaCCwEKAsLM74/bYXFYZmCWd2a+n+viMpnhnWdofO/3fe7nvh/g1VdlffHy5UBODuOWNWi1wOLFwGuvybrxVassdhtPNo4xWR//6TigWbOkqnT+fNmP1WR27ZKSzZ07a39W/t//ZN8/d3dpFW3KnoX16wP/93/S3vnppyVxvGqV9LOqan9jS1qwQDbyXbYMBVNmGJQQHj9e8su3J4QtTVdA/v778r9OCY4fl4RLcrJ0Kv/Xv4wvRCfj1DbIenp6VpiMrs7kyZMxpoZFKK1atUJgYCAu3VaaWVxcjKysLAQaUereq1cvAEBKSgpat26NwMBAHDp0qMJzMjMzAcCo4xLpODlJy+GPP5bWira2FkGjkQR38+bS2smidC2oH3tM7tKffx5Yu1Zie8+eNf/8pUuyaCw1VWbx77vP7JXDlQkOlpfftw8IC5M9GG3JxYuS4H7gAUkUk3KYOy4bGpNrQxdTMzMz0aTcJteZmZm401ZXU5BDUqlkQVh+vjTBiI6uW8MtexUXB0ycKGE9NtbaoyFjuDgbfpOtKchD5sezoSnIQ8CoxXD2MHzVhDGvo0SckCayL/XqSbxq3FgW/GZlKWd62RGUlAAvvywLy+bMkVwHf/dkKMZkfUwSOyB/f5lLnTsXePFFoJZzNxUVF0tvqKgoYNAg43/+77/lrvB//5OK2lWrJNKaQ//+UpI7cSIwahTw5Zey/Mtcr1eDggJJaB450hKt28bi7tmL0XbOOFwoCdBLCHfrJrltayaEb1e+gPyZZ6w9GjlxL1sGTJ8ulfOHD8vvjMzPEkHWz88Pfn5+NT4vIiIC2dnZOHr0KLrd6n+7b98+aDSa0sSvIZKSkgCgdII6IiICCxYswKVLl0rbWcfFxcHT0xMdO3Y08t0QifbtJVEYFwe0bGlbC1qOHQMuXwbGjbPiTZm/v7SgHjdOYnt4uFQUL1wom0LerqBANoJOTJTY/9RTQGioxYddXnS0XPokJEgLcluh1QJ79siv+a67rD0aup2547KhMbk2WrZsicDAQOzdu7c0KZybm4vExERMmDDBLK9JZC5OTsDdd8sa6J9+kttRW1sQZE6//w48+qh01jDpInayCL8Ghq160BYX4dKn81D8dzoCRsyHi6/hLb5UAFr42PbqCk5IE9kftVpuJRs3ls6Ff/8t65ZZzWpehYXye//sM+lCUq4hIJFBGJP12dA0JJnSyy/LnOr06SY64IYNcne3ZInxs8T79kkWb9cuKUfdssX8CdvGjcte65tvpBR3717zviZkXlrXHbP8HsI9e8oewgvwOuDsjN2Rc5GYKK3Jjh2TwqgJE+R5SkoQA2UF5IsXW/9C6Px5qcibMkVW9DFBbFnG7OdgbEA2VocOHRATE4Nx48bh0KFD2L9/P2JjYzFixAgEBQUBANLT09G+ffvSyuAzZ87gjTfewNGjR5GamoodO3Zg9OjR6Nu3L7rc+iANHDgQHTt2xFNPPYVffvkFu3fvxowZMzBx4sRq22QTVUfXcjgzUyoybUVhoZz/O3cGbv2zsq7ISODIEVlO/PHHUtr83nuyzBiQjOavvwLvvivP699fupdYOUEMyHYNPXtKldn169YejeFOn5ZC7Hvvta3FDY5CSXE5LS0NSUlJSEtLQ0lJCZKSkpCUlITr5T7w7du3x/bt2wEAKpUKkyZNwvz587Fjxw4cP34co0ePRlBQEB5++GHzDZTITHQt+fPzgYMHHWOyyRCXLgGDB8uWQFu3Wv9+kmpWXCxdRI4dA77+Gvj+W2f4uLpV+zNaTQkuf74YhRdOwu/haXBt2sGo1wzxcUNDV9v+cCgpJhORaQ0eDEyaJAvB3npL5n7JPHJygJgYqffato0JYqodxmR9tn2VRbXm5ga88YbsS/yvfxnWlbFKeXnS1+HJJ6XU1VAFBWUbxkZFybKr4OA6DKQWnnhC7tafflqyi5MmAYsWmSQTq6sQPnpU5qKraxldViHsDSx9HZ2mTQMavQTUt3TvTuPoCsj79ZM2k9a0ZYvM9Xt4mL5TORlGaSuxNm/ejNjYWERHR0OtVmPYsGFYsWJF6eM3b95EcnIy8vPzAQAuLi749ttvsXz5cuTl5SE4OBjDhg3DjBkzSn/GyckJO3fuxIQJExAREYGGDRvi6aefxrx588z7ZsjuNWsmcUHXctjFxdojqtmBAxLrFHW+dXKSauLhw4Fp02Qp9wcfyEqmtDSrt5auTt++QFKSFDkPHmzt0dRM12q8ZUugTRtrj4Yqo6S4PGvWLGzcuLH07127dgUAxMfHo1+/fgCA5ORk5OTklD7nlVdeQV5eHsaPH4/s7Gz07t0b33zzDeorbcUkkYE8PWU9048/yqKwW/8MHFZBAfDww5I4j4+X3w8pj1Yrk/KZmUBGBnDlisQLNzcgMFDmMQbV88eWw3+iRKOt9Bh/71uHGymJaBDaEyU3ruP6b/EVHnfvFFXl6zupVYhq62/S92QNSorJRGR6d98tcWzJEml//NprQKNG1h6VfblwQfZ+Pn8e+PZb+Z0T1QZjsj4miR3Y6NHSzmnqVJmQrHWbyLffBq5elT11DfXrr9LqOTlZ9gmeNMl6JSjBwRJd3nlHonhcHLB5M3DHHQYforAQFfYQPnKkYkI4LEz2DjaoZXRsrFQ5TZsG3KqmUCpdAfnGjdZrM/r335Ic3rrV/J3KqXpKC7Le3t7YsmVLlY+3aNECWm3ZREZwcDC+//77Go/bvHlz7Nq1yyRjJCqvf/+ylsP33GPt0VQvN1eSxOHhisu1Cn9/2RzqmWekmvi77+SkM2yYYvsiN2ggieK4OKBXL8BMXXxN5uefZaL4kUe4/5NSKSkub9iwARs2bKj2OeVjMiDVxPPmzeNCLLIrAQGSHP75Z1ncqoBmFlah1cqC9WPHgO+/B5o3t/aIqLzCwrKkcGamJPSdnOTapEsXSQ67u5fF/9HOIdiUmFrl8YoyzwIAbqQcwo2UQ3qPV5ckLtFoMSrc8NbUSqWkmExE5tG5s2ztuGABMHOm1EUFBFh7VPYhOVnWeZeUyGK7sDBrj4hsGWOyPiaJHZiTk7TBuP9+adMwZEgtDpKZKQd58UWgRYuan6/RSFL59delDeSRIxJFrU2tlh7c994LjBwJ9OgBzJ8PTJ4sv6hybk8IHz0qFcPlE8J12kO4fn25ohg1SiJfnz6mfa8moisgf+IJSYBbw969wJgx0pZ7yxYZC1kPgyxR3TRuXNZy+K67ZPJYqeLjpdq5d29rj6QKWq0E54MHZdNnV1epJl69WvYqHjdOL74rQY8eslVCXJw0aFEqXavxO+4Abm3ZTgrEuEykTK1by9YCx44BDRs65nl07lzgf/+T3SHq1NWMTEKjAbKyJCmckSELsQGpgmveXJIcvr5VXzq1CfBAn1BfHDh7tdJq4sCRb9ZqXE5qFSJb+SDUX8EXxQZiTCZyDC1bypTu/PnAjBmyzWPLltYelW1LTJTulYGBsmNks2bWHhHZOsZkfdw9zMHdd590WX71VUlyGm3uXKBePUn61iQtDYiOlv7E//ynzIIqIUFcXqdOwKFDUtk8bRoK+92HwzsuYs0amU/WTdr37Fm2523XrlKErNtDOCkJWLeujnsIP/GEvNjUqTLRrUC1KSA3lYICaZM+YIC0uDx+nAliJeCeDkR117evLDiKj6/5udaSkSGx7p57TLI7g+llZgLr1wOffSabHL74osTT338Hhg6VAN2rlwRuhXF2lkul06eBs2etPZqq/fQTUFSksFbjpIdxmUi5unQBgoJkLVO5LusOYcuWskqr4cOtPRrHlZcHnDkjnWG++EKuPc+ckQrhHj1k64uBA+WzGhBQ89q6hUM7w1lt2tYizmoVFg5V2JxRLTEmEzmOgABJEvv4ALNny5wl1c5XX8kOlR06SB0VE8RkCozJ+pgkdnAqlRQCJydLYvN2eYXFOJF9E8eatMWJ7JvIKyyXST55Enj/fUkQV9ffV6uV9s1dushdx759skmDq6vp31AdFBZK0nfNeleM+/st3BWaA4+fdqHnQ00QO1GDw4e16NoVWL5cbubLJ4RfeKEOCeHKqNXyO0pMBD791EQHNR1dAXlsrOVXxP3yi9y0rlolncq//dbyW1lT5bRa4wKsQtc/EFlV/fqSfE1KknOt0mi1wJ49csPbrZu1R3ObggJZWrxmjcx8jh4NPP542WZQ/v4StA8ckJNQeLisALtyxbrjvk3HjnLzu2ePMm9GcnLkOigigvtHKh3jMpFyqVSyXsndXRbeFBRYe0SWsX+/7ATx9NOy0xNZTnExcPGiVLB//TWwa5f8d2GhNHmLjpbucuHh0iSuQQPjjh/s7Ya5Q0zb/3PekDAEe7uZ9JjWwphM5FgaNZIEcbt2sihq/35rj8j2rF8PPPQQEBMj98bcWpBMhTFZH9tNE7p2lc7Gs2dLp+WLedewOTEN8cmXkJaVDy0APP02EHcFqrjdCPF2Q1Q7f4zcvBRtgoMlU1iVv/+Wip2PPpKDv/uuIjYvLCyUlVxHjpS1jP7tN+DmTVkh26kT0K2PB54bn49u3y5Al91voUHbB4ElawBvb8sMsn9/YNAguXt+6CHp66kQc+dKtZMhBeSmUlIi1cszZiirUzmVYbsOItPo3l2aWsTFSXxWkpQU4Nw5YMQIBXVr1rWW3r1bAnz//pLBdK7iMjciQlaFvfeeBLLPPlNUC2qVSip3PvxQtre4805rj6iifftknd/dd1t7JFQTxmUiZXN2lnPp3r0yedyvnyLCkNmcPQs8/LAkId9/n/vZm5tWKwu7dHsLX7ki53k3N2nZ2bmzVLvVq2e61xzRIwRXrhdi6Z5TdT7W1IHt8HiPEBOMShkYk4kcT4MG0rlzzRopOMrOlrbJVD2tFli0SG7V//EPKRKy5+sjsjzGZH1MEhMA4I03gM++ycfAhcdxQXsFTmpVpXvJaAH8mZWPTQdTsaHVo+jT5SEszCtBcGVFwXv3yhLhvDxg61ap5rECXUL46NGypLBeQrgb8NxzZXsIl62adQOmzAU+6gg8/7zcSW3YIHsXW8LixbLh35o10qJbAXQF5G++abl8+Z9/ykfphx9km+j58xVXiE5EZDJOTtJO/+OPJSkbGmrtEQmNRhLXzZsDbdtaezS3ZGZKD6o//wTCwmQfDV3lcHWcnKQNyPDhwLRpsqDtgw+Af/9bSrusLDhYKor37ZO3ZcoJ3Lq4eFES1w88wDhMRGQKbm5A797S6vfQIUmg2mPyNDtb2hd7eQHbtilq/bNdKSyUSyNdYrigQC55/PxkniMwUKrXzfkZi41qA193V8zecQLFGm2l80pVcVKr4KxWYd6QMLtKEBOR43J2BiZOlPi3YYPUUj35pDSQJH0lJcBLL0lieN48KRSyx+siIqVhkpgAAAmX0hD47Amkl2ihUqPGC/mSWw8fyHfBgGXfY+6QMIzQXcQXFEj16/Ll0rNowwaLbRpQPiGsSwqXTwiHhUmFVuUJ4Wo8/rgs8x4zRsp7/vlPyZIa24PJWJ06ST+uefOkbaYCqrCnTZP/ndUVkJuKrlP5xIky579vn6ywJ2XiSiwi02nfXrbTjYsDWrVSxk3ksWPA5ctScGv1G7WCgrIZdW9viZGtWxt/HD8/aUH93HMSbMLDgbFjZemyn5/px22EAQOkAUtCguxVbW26VuO+vsBdd1l7NGQIxmUi29C4saxPOnBA7l3trVvSzZuyJisjQ2Kaj4+1R2Q/NBogK0t+txkZknwA5N45JESSwr6+lq/AGtEjBHe39sX07cfxY0rVRQg6uscjW/lg4dDOdtNiujzGZCLHpVJJh7DGjYGNG8uablbV+MpRFRQATz0li8k++EBu0YnMgTFZH09HhHfjT0s7IJXxk74lt1aGTtt2HFeuFyLWO1/aSqekAMuWSTLVTDPbhiSEq64QrgXdBoErVkim9Ntvgf/+V/p1m9O8ecCWLVJVvGiReV+rBj/+CHzxhSRuTbb/chWysqR4+5NPFNWpnKrBIEtkOrqWw2vXyv7E1k7KFRZKTrZLFyAoyIoD0WqllHXPHqCoSBajhYfX/Q5b14L6/feB6dPlznTBAmD8eKv1tmrcGOjZU/aqvOsuqfyxplOngNRU4IknlLFogWrGuExkO5o2lRj766+Ah4fsCWsPtFrgxReB776T0N2unbVHZPvy8soqhTMzZa9hFxdpHR0aKn+aey27IYK93bBpbC+czry1ndmpS0i7ems7s1tUAEJ83BDV1h+jwkMQ6u9hreGaHWMyET3wgMxrrlwp2wFMnqyM87USZGfLlhSJicD27cCQIdYeEdkzxmR9TBI7uK2H00yyXwwALN1zCn6738Xjzs6Sse3UySTHBfQTwkePyt9vTwiPHSuVwnVOCFdFrQYmTZLynlGjZMn3vHnA1Knmm0QOCpIrh6VLpTVmcLB5XqcGWq28zbvukr0ozenbb6W9dH6+VTuVk5EYZIlMq2lTCaXx8fKnNVsz7t9ftt2v1dS2tbShnJxkSfejj0pHlBdekCz9qlWSiLaCvn1lkUB8PPDgg1YZAgBp+xUXB7RsCbRpY71xkHEYl4lsS9u2wLVrcivdsKHVG1qYxLJlwHvvAR9+CERFWXs0tqm4WDq56JLC167JYkJvb0m6BwbKwjKrd3mpQpsAD8wZEoY5CENeYTFSr+ahqFgDF2c1Wvg0RENXx5iWZEwmIkCaVHp6AkuWAHPnym2nKW9pbVF6OnD//cBff8nOlZGR1h4R2TvGZH2OcTVGlTqflY/ZO05U+pim6AZyE7eh8EIyii6egqbgOnwGTYJ7lwFVH1CrxayBExA5qS+CA71qPS5DE8LPPit/3nGHFVZedeoky5tmz5aKo127gP/8x3xLvl95RaqbZs6U9t1W8Omn8pb37TNfBdGNG3KB9M47Fu9UTibAIEtketHR0knhwAHrtdvPzZX2kOHhVrqBNVVraUP5+UlyWNeCOiJCLjrefNPiM/YNGgD33CPVV716Af7+Fn35Uj//DFy9KvlzpU5Ckz7GZSLbolLJgty8PIn7/ftLVbGt2rEDmDIFePVV2UGJDKPVyrWXroX0lStyfnZzk4Rwp05yPWCL+zo3dHVGWJBjZkMYk4lIp3NnSRAvXCh77s6YIV0gHNHJk7L2W6uVhekdOlh7ROQIGJP1sVmcA5u+/TiKq9gXRpOfi5z9/8PNq+dRz7+lYQdUqVDs5IzpXyUbPIbCQlkp/d570tGxWze5Ee7RQ+ZlExMlCbxsmUxQX7sG/PKLrETWbR1otdYcrq4yYfzdd0BampQvb9wokc3UPDyAOXMkEf3LL6Y/fg2KiiR5+8AD5lsBnpQkVeBr1sj/7z17mCC2Nboga8wXEVXPy6tsn8Jr16wzhn37ZCKyd28Lv7BWKzFv5UrJUkZHS6WvORPE5YWHS2L63/+Wnldt28p/l5RY5vVv6dFDPgdxcRZ92VKFhXKpc8cdMjlNtoNxmcj2qNWyNsnVVbYbKCqy9ohq59gx2Z5g6FCZBKfqFRbKlMLhw8DOnXIvfOKEfB66dJEJ9EGDZL6kWTPbTBA7OsZkIiqvZUtg/nxZIPb668DZs9YekeUlJJRVVickMEFMlsOYrI+VxA7qdOY1/JhypcrHndy90Sx2E5zcG6Pw4mlkbHzZoOOWaLT4MeUKUi5d09tPprBQ9gw+ckTBFcK10bevTGK/+CIwZgzw5ZeS9fbxMe3rPPccsHy59Hzes8e0x67B6tXAuXOyH7GplZRIJ+2ZM4GOHU3eqZwsiCuxiMyjTx+ZbI2Pt/zePBcvSogbNEgmrC0mI0O6dJirtbShbm9BPXEisG6dRVtQOznJLheffAKcOWO5HLmOLklh1VbjVCuMy0S2Sbcwa+9eWSTWt69t7QWfni5bJHTsCGzaZFtjtxSNBsjKKmshnZUl3/f0BEJCZFGWr6/5drQiy2NMJqLbBQQAb7wBLFokjSqnTpWFQY5g507gscekWOiLL2TbBCJLYUzWxySxg9qcmAYntQolVVQSq5zrwcm9dmdoJ7UKG/en4eGQMBw9WpYULp8Q7thRAoHNJYSr0qiRVPk++CDwj39I75D162VS21Tq1QMWL5bl2Hv2AAMHmu7Y1cjOlouWZ5+VeXpTSk2VrqE//SQXQ/PmWTgJQSbFIEtkHvXrS8vhb76RqmJLtaLSaqV61ddX2l9axO2tpZ9+GmjVykIvXg0rt6Du0AEIDi7bF9hSE+45OcDBg/J2PT0t85pkOozLRLbL3V325PvhB7mX7t7dNtr95+XJLbFKJe2m3dysPSLlyMuThHBGBnDpksyNuLjIdV2rVpIYtuk5EaoWYzIRVaZRI2kc+fbb0nkjNtYKHbwsbN06mTp/6CFg82aZ7yCyJMZkfVzT6aDiky9VmSCuqxKNFut3X0L37sALL8jkYpcuFVtG//qrQlpGm9rw4ZIN79QJiImR6uL8fNMd/6GHpBfH1KkWa3f55puyV/DcuaY7plYrOfUuXaRILD5e8t9MENs2rda4Vh3m6MxOZK+6d5ecqSVbDp8+LV0kBgywQCVLVa2llZAgLk/Xgnr1aou2oFapZG1YZqZld53Yt09i8913W+41yXQYl4lsm5+fxP/UVCDZ8B2drKakBBg5Uq4fdu4EmjSx9oisq7hYOrIkJclCv127JOFfUCCXD9HR0iEmPFwWgNnNnAhVSikxOTU1FWPHjkXLli3RoEEDtG7dGrNnz0aRrfa2J7ID9esDr7wiyeF33pEYao+0Wmmx/dxzsuXkxx8zQUzWwZisj5XEDuh6YTHSskyYuKyEc+N8xP9YjJ53OTve6uGmTeUu8N13gVdfBb79VpZGmaIMS6WS3swREcB//ysVVmaUliYdrl95BQgKMs0xr16VFWOffQY89ZTkA6zRQZRMjyuxiMzHyQm4917go4+AlBQgNNS8r6fRSEK6RQuZyDSrjAzgq68k6HTqJNlQJQcGJyfg+ecrtqBeu1ZaUEdEmO1lmzWTjh7x8fKnufcjvHBBFvUNHsxFXLaKcZnI9jVvLousjx+X6uJmzaw9oqpNmyY7L+3YIZ3CHI1WC+TmymVNRgZw5YqcV93cpFq4UyfA35/7CTsqpcTkkydPQqPR4L333kNoaCh+++03jBs3Dnl5eVi6dKl5XpSIauTsLLeV3t7Axo2yDcGoUfazZUNJidRRrV4tieLp022jQwrZJ8ZkfUwSO6A/r+bBEoUCfq3y4Oam4Elec1KrgX/+U8qvRo6U/qBz50rSuK7lWOHhUrE8Y4Zs4GDGJcczZ8o8/dSppjne7t3AM8/I6umPP5a3QfZDKUGWyF61ayf71MXFSYGtOW8Yf/5ZJjcfecSMN28FBVKqeviwslpLG8rXF/jgA2DsWLmjj4yUIPfmmzILbAbR0ZKLTkiQFuTmoms17ucHdO1qvtch82JcJrIPYWHA9evSyMLNTUKm0qxdK2uZly8HHnjA2qOxnMJCaR2tSwwXFMjtvp+fdM0KCAA8PDgRTsqJyTExMYiJiSn9e6tWrZCcnIzVq1czSUxkZSoV8OSTsj/v+vWy/d+ECbL7oC0rKJCp8S++kOuFsWOtPSJydIzJ+uxkPQoZo6jYMjNAlnodRevYEUhMlCzrjBkyo3vuXN2Pu3Ch9Jxcvrzux6pCUhKwaZPsjeHhUbdj3bghOfOYGFlBffw4E8T2yJhWHcYGZCIqazl86ZKco82lsBD47juZ3DRLq0itVt7AypXAsWPKbS1tqPItqD//XLL5q1aZpQV148ZAz57A/v1SWWYup05Je9N777Wf1euOiHGZyD6oVECPHrJ4d/9+0+5mZAp790oYf+EFueezZxqNLKL77Td53zt2yPZaWVmykK9vX9khqk8foE0bwNOTCWIStY3Jubm5Fb4KCwtNPracnBx4K3H1CZGDuv9+YNIkWRi8eLHMqdqq7GzgvvuAr7+WW2UmiEkJGJP1cdrHAbk4W+Z/u6VeR/FcXCSp+8MPQHq6zLqvX1+3hvahoXInvmgRcPmy6cZaziuvSIvR556r23F+/hno1k2Krd55RzpxN21qmjESETmapk2Bzp2l5bC5tinZv18Sxf37m+HgGRnAhx/Kfr4tWgCxsbL5krONN7fRtaA+dUraUMfGyox+QoLJX6pPH/l1ffedyQ8NQHLbump1c7c1JyIiwzg5yf7wajXw00/AzZvWHpE4eRIYNkzWe73zjn0mRPPzgbNngQMHJCkcHy9bf7i5yZ7RgwfLBPgdd0jlcF0bhxGVFxwcjEaNGpV+LVq0yKTHT0lJwcqVK/GPf/zDpMclorqJjARef11uL+fMkWSrrfnrL7l31S2sGjzY2iMiqht7jsnM4jmgFj4NYfZ7Ny0wb2pD/N//ySRmbq65X9AG9O4N/PKLTB4/+6zcTV+5UvvjzZwpd+FvvGG6Md6ye7dMEL/5Zu3bmpSUSA67Vy/Zy/DoUVlZzook+8WKJSLL6N9fVhMfOGD6Y+fmSl4zPNzE2wLfuAHs2gWsWSP//fTT0lJCyXsP14auBfXBgxLwIiMl5l+6ZLKXaNBAKpWOHTPpYUv9/DNw9apUEdvjZL8jYVwmsi/168stZV6eNKuqy5pjU7hyRVpLN20KfPSR7a/30ikuljVtSUmywPmrr+RetqBAFlH37y/VwhERQMuWZt39iexIbWPy+fPnkZOTU/r12muvVXr8adOmQaVSVft18uTJCj+Tnp6OmJgYDB8+HOPGjTP3r4CIjNSpEzBvHvD339KcMiPD2iMy3B9/yK1wbq4sQo+IsPaIiMowJuuzk8t4MkZDV2eEeLvhzyzz9alqqHXDX6nO2BoaX4MAACYVSURBVPl5WTustm2lolT3dddd0n7JoXh6ShXx4MHA+PFSDvbhh9JLxFi+vsBrr0my+MUXpZ+VCZSUSHfs3r3l5rc2zp0DRo+WC4FXX5XtmF1cTDI8UjCl7OlAZO+8vGQBzoEDEk/ruiVAefv2yfm6d28THVCrlQVSe/ZI2dOAAZKBtpeZ5Kr06iUz+GvXSqzevh2YP1+qjU1QYtSjh3S4jouT/Z1MpaBAFvfdeScQGGi645J1MC4T2Z9GjWSi9aefJLzeead1xlFYCAwdKnsl791r22u+tFqZxM7IkB2dLl+W82GDBhILO3UC/P15P0t1U9uY7OnpCU8DJs4mT56MMWPGVPucVuW2drlw4QKioqIQGRmJ999/3/CBEZFFtWght5Hz50ui+LXXgNatrT2q6h04INPezZrJYqugIGuPiKgixmR9dj5DR1WJauePTYl/okRT9fLj3KNfQlOQh5LrWQCAGymHUHxNKl89uz0Idf2Glf6ck1qF4RH+mLNYVuGePCkrb3Vfn39etp+CwyaOhw2Tu/tnnwUGDZINnJYskZ5VxnjpJdn3cPp04JNPTDK0TZtkz+CDB42vINJqgY0bpWLY2xv4/ntpLUKOgZPRRJbTp49Uku7bV/sFPbe7eFEmnAcNkg4QdZaRIeU3aWkywzpwoG3PIhvLyQn4xz8k5k+fLgu61q6VuB0ZWedDDxggof/MGdNNFPz0k7Qxj4oyzfHIuhiXiexTYKAkh48dA9zdLb81gFYrWxIdPiytl1u0sOzrm0JRkSSEdYnhGzekAYi/v6zjDgyURXjsqEGmYu6Y7OfnBz8/P4Oem56ejqioKHTr1g3r16+Hmu3eiBTN31+SxG++Ka2np0yRLQ6UaMcO4PHHZc3055/LAncipWFM1scksYMa2SsEGxJSq31ObuJ2lOSW9THMP3UAOCW9Ld3DoqpMEpdotBgVHgJACoU6dZKvp5+Wx41JHHfvDnTtaqeJ46Ag4OuvZbJ46lRZgv3f/8qbNlSDBnKlMGaM9AetY/+O/HxZmTZ8uAR0Y1y5InPh27bJ/+sVK+z0/xtViZPRRJZTvz7Qr5+EkfBw2QOvLrRaKfb19ZX4Wyc3bsis8aFDcsCnn5YNbh2Vry/w/vsyoz5xomwqOWYMsHix3PHXUocOQHCwVBO3bFn37RxycmSB2N13M37bC8ZlIvsVGipVvElJkii2ZPeH+fPltnXrVttpH6nRAFlZZYnhLFkHD09PiaWBgRKuuZ8wmYtSYnJ6ejr69euH5s2bY+nSpbh8+XLpY4FsI0OkWJ6ewKxZwNtvy9Z+Eycqryhn7VqZF37kESlAql/f2iMiqhxjsj4miR1UmwAP9An1xYGzV6usJm72wodGH9dJrUJkKx+E+lfd+9KQxPGRI5Unjrt3lz/tJnGsUgGxsUB0NDBqlNxlz54NTJtmeCvOUaOAZcsk0fzjj3Va7vzOO7K/obH7rn/9tRRFFxUBn34qRVPkeJQSZIkcRbdu0tF4zx4JBXWpdjl9GkhNBZ54og7JRo0G+PXXstbS994rK47svbW0oXr2lCzs2rVSWVy+BXUtfkcqlRRnr1snFeBdu9ZteHv3yo18HYucSUEYl4ns2x13SKI4IUH2ybVEs46tW2WSet48qRRSsvx8SQhnZMg97s2bQL16srCuVSv509hGXkS1pZSYHBcXh5SUFKSkpKBZs2YVHtNae6NzIqpW/frAK6/I+uMVK4DsbODBB609KllwPn++XB9MnChzy1x0RUrGmKyPPUUc2MKhneGsNm3/JGe1CguHdjb+55zLksYrVsj+Bbm50vZ4wwbgvvtk8nrGDKmcatQIaNdO9uF7+21pa5yba9K3YlkdOsjd/SuvSJK4b1/pH2kIJydpVb1/v2TWa+nyZUkOT5hgeNvK/Hy5ABg0SCYpjh9ngtiRabVlgdaQL96DEtWNk5PkYc+eNTxkVEajkWrUFi3qsL19Rgawfr0kPlu2lNbKd9/NBPHtdC2ok5OBxx6T/Rm6d5cYXgvNmgFhYdJ2vKio9sO6cEFieFSUiVqNkyIwLhPZN5VK1mI1bCjbBRQUmPf1EhKkEcaoUXJfrjQlJXI5kpQkeyB+9ZUsQC8okOub/v1li46ICLlUYYKYLEkpMXnMmDHQarWVfhGR8jk7y7ztI48A//mPbPlnzYWeJSWyg+KsWcCCBcDKlUwQk/IxJuvjzJ0DC/Z2w9whYZi27bjJjjlvSBiCvU1zt1VTxfGRI/Ln9u0VK4511cY2V3Hs4iIRddAg4KmnZKOp5culRLem8rB775VyoldfBQYPliXSRpo3T15m5kzDnn/0qCTp//xTLgImTuSeTY5OKSuxiBxJu3ZA8+ZSvNuqVe2qgH/+WbYMeOSRWpzHb28tPWaMzLxS9W5vQd27t1zsLF5sdO/w6GjZuSIhAbjnHuOHoms17udX92pkUhbGZSL7V6+ehJC9e2W9Ub9+5pmcPXdOEqw9ekhDDCXc92m1slBc10L68mU5jzVoIO2jO3WSXR1cXKw9UiLGZCIyHZVKOoA1bgx8+KFUFL/wQq2mguvkxg3gySeBL7+UcTzzjGVfn6i2GJP1sZLYwY3oEYIpA9ua5FhTB7bD4z1CTHKsqpSvOF65smLF8fr1kic9d66s4tjLC2jf3sYqju++W/pGPvaYTB4/8ojc8dbkrbeAlBTggw+MfsnTp4E1a6T7pa9v9c8tLpZcdni4rFr/+WfpmK2EiQKyLmNWYRkbkGsjKysLI0eOhKenJ7y8vDB27Fhcv369yuenpqZCpVJV+vXJJ5+UPq+yx7du3WreN0NUBZVK1gldvgwcO2b8zxcWSo73jjuAJk2M+EGNRkp1Vq6UF773XlnSzASxcXQtqN97T+6u27WT32lxscGHaNxYDrN/P3DtmvFDSE6WBV/33lv3fY1JWZQUlxcsWIDIyEi4ubnBy8vLoJ8ZM2aMXryNiYkx3yCJbJSbm9xC5uQAhw+bvtohJ0fWIXt4yAJta3acKCoCzp+X9/nVV7LI6fitNe+dO0sHsgcekIXjzZoxQUzKoaSYTET2ISYGePlluZ1ctKisgMoS/v5b5uB37wa++IIJYrItjMn6WElMiI1qA193V8zecQLFGm2VexRXxkmtgrNahXlDwsyeIK5K+YrjMWPke7qKY121cfmKY5WqbI9jxVYce3jIJoODBwPjxskd74cfSpVxVe64Axg9GpgzR3qAlXtDeYXFOJedB5cmGpzLVqNdYUM0dC375//aa5Ic+Oc/qx/W2bNS5HzwoGybPHs2b7ypjNJWYo0cORIXL15EXFwcbt68iWeeeQbjx4/Hli1bKn1+cHAwLl68WOF777//PpYsWYL777+/wvfXr19fYaLa0AlvInNo2lTCRHy8/Fn+vFzT+f+nn2TCNSrKiBe8eFFmZs+flxccOFBhQdTGODkB48fLfg3TpwMvvSTXAKtWyay/Afr0kZx9fDwwZEjFx/IKi5F6OR9FmoZwuZyPFj7FpZ+BkhLg22+lCj001MTvi6xOSXG5qKgIw4cPR0REBNatW2fwz8XExGD9+vWlf3dlP3SiSnl7y4KhhATA3V3ujauSV1iM1Mw8FOWp4ZKZhxZuHhWuDcorLpa1yxcuyLFrWlBsahqNTETr9hbOypLve3oCwcHSfMPPj60tSfmUFJOJyH5EREhMXLxY5minT5eCKUPkFRYj9WoBilx94XK1AC2aFld5PVDe+fPA/fdLXN63T4qIiGwJY7I+JokJgFQU393aF9O3H8ePKVfgpFZVmyzWPR7ZygcLh3Y2WYtpU6kqcfzHH2VJ4+oSx927S+LYw8OqbwMYOlSi7dixsiT6+eeBpUulhLcy8+cDH30ELFmC07GvYHNiGuKTLyEtKx9aAE2eBibHAVPigBBvN0S180dY/RB89pkHNm6U1lyV0WqlUvull+Qm/IcfDJ63JgeipCD7xx9/4JtvvsHhw4fRvXt3AMDKlSsxaNAgLF26FEFBQXo/4+TkhMDAwArf2759Ox577DG4u7tX+L6Xl5fec4msqX9/4PffpZq0WcdrBp3/h4SF4OBBD0REAI0aGfAiN27IXeDhw2wtbQ4+PlJR/Nxz0i/MiBbUDRpIq+ndu2V/ylzofwaAMGBrMlRILv0MdHELwdWrHnj0UXYEsUdKistz584FAGzYsMGon3N1dWW8JTJQs2ayduv4cbmPbd687LHTmZXFhfpA8i9Q4ZfSuDCyVwjaBMhNsFYri4j37ZM9ftu3t8z7yM+XiefMTPm6eVNaaAYEyKKmgADuJ0y2R0kxmYjsS1gY8MYb0vVxxgzg9der7hJW6fVA8GBg2zmotp2r9HqgvN9/l64dTk4y99CunVnfGpFZMCbrY5KYSgV7u2HT2F5lAePUJaRd1d1AChWAEB83RLX1x6jwEIT6WzuLajhnZ7lp7tzZ+MSxbp9jqySOmzSRiq3Vq4EpU2TDqf/+V5aK365ZM5yfNA3Tz9TDj8t/qDLZrwXwZ1Y+NiX+iRJNKlqP9cU9gzoD0L/bvnxZCpw+/1zahyxfzoIxMq3c23rAu7q61rlSKCEhAV5eXqUJYgAYMGAA1Go1EhMTMXTo0BqPcfToUSQlJWHVqlV6j02cOBHPPfccWrVqheeffx7PPPMMVMywkBV5eQGt78jHjL3Hkb6n6sVe5c//GxJSEVzPF493rPz8X0qjkW0Q4uJkpvbee2UBE8t2zKNHD2nZsW6dtPr4/HO5658wQS5mqtC9OxB3IB9PfnAcZ/IM+Awc/BMl2lS0a+SLZ11q+AyQQzFHXK6t7777Dv7+/mjcuDH69++P+fPnw8fHxypjIbIF7drJ1gNHjsi64hvq/BoXgt9+bdAn1BcLh3bGtk1uWL1adjOKjjbfmEtK5J5TVy2s2zrBxwdo00b2F/b25mImIiKiqjRvLkni+fMlUTx9OtC6ddnj57Nqfz2gKwzbvx948EHp5PH110AltRdEZKOYJCY9bQI8MGdIGOYg7FbriTwUFWvg4qxGC5+GBrWesBWGJo63bQMKCsoSx7qkscUSxyqVVBVFR0sr6chIYNYsifrlJoy3Hk7DbOeeKA6+CQA1tg7XPa7xu4qB73yPuUPCMKJc2/Bdu4Bnn5XfyWefyfbIRFWp7Uqs4ODgCt+fPXs25syZU6exZGRkwN/fv8L3nJ2d4e3tjYyMDIOOsW7dOnTo0AGRkZEVvj9v3jz0798fbm5u2LNnD1544QVcv34d/6ypXzuRGW09nIY5h06gqETO64ae/9OLr+KBVfrn/1JsLW0dlbWgXrtWWlD37l3pj3zycxr+c/UEbhr6Gbi1aWVK7lUMWFbNZ4BslpLicm3ExMTgkUceQcuWLXHmzBlMnz4d999/PxISEuDERSpElVKp5B41Lw9Yuj0N29NkSynA8GuDA2evov//fY/MXWGYMiUEzz1n2jFqtUBurlQJZ2RIglijka4YgYFSERUQwG2NyL6waomIzM3PT5LEixZJ6+kpU4A777w1V7yjdtcDuvvE+ukheOIJWSv++ecGdiIjUijGZH32k+0js2jo6oywIMc68xuSOD5yRJKmFk8ct2sHHDgAzJsHzJ0rS7c2bQJCQ/Fu/Gks3XNKnqc2buJMAy0Ki7WYtu04rlwvxDM922DKFGDNGiAmRrZDrqpVCZFObYPs+fPn4Vku6VRdtdK0adOwePHiao/7xx9/GD6IKty4cQNbtmzBzJkz9R4r/72uXbsiLy8PS5YsYZKYrKbC+d9IGm3F839sVBt5gK2llaF8C+qJE2Xz4dGjgbfeqtCCui6fgRKtFiWVfQbI5pk7Lhsak9vXskftiBEjSv+7c+fO6NKlC1q3bo3vvvsO0eYsaySycWo18MvN09h6tpZxQaNFsVYL75jjCB5QCKDucaGoqKx9dEaGXGao1TKh3bmzJIc9PFgtTPaLE9JEZAkeHpIgXrYMePNNoNnA0/j0dO2vB0o0cp+Y/UMhHnywDTZtAqzUYIjIZBiT9TFJTGSAmhLHR47In+UTx+3alSWNTZo4rldP2k7efz/w1FPAnXdi69z3sPSKlwkODizdcwrLF7niwk8hWLVKulvyZp0MUdsg6+npWWEyujqTJ0/GGN0/wiq0atUKgYGBuHTpUoXvFxcXIysry6C9DT/99FPk5+dj9OjRNT63V69eeOONN1BYWGi1dpzkuLYeTqt1cvB2S/ecgl9DFzxeL6ustfTAgbLJLav2rKt8C+pp08paUL/wArYeu2Daz4C7Kx5nRbFdMHdcNjQmm0qrVq3g6+uLlJQUJomJqrH1cBqW7atbXNDd/7397SkEeBofF7RaICurrIV0VpZ839NT9k4ODJQEMS8vyFFwQpqILMXVFZg6FXjh/9JqnSC+nVffUxg61BWurrxPJNvHmKyPSWKiWrJ64jgyEkhKwvkpMzD7YgPAWauXzS28eAp5x/eiIO04inMyoW7gCdegdvDq+xTqeTet9LBaLVB85wnsWuCLfj24PyEZzhJB1s/PD35+fjU+LyIiAtnZ2Th69Ci6desGANi3bx80Gg169epV48+vW7cOQ4YMMei1kpKS0LhxYyaIyeLOZ+Vj9o4TVT6uKbqB3MRtKLyQjKKLp6ApuA6fQZPg3mVAlT8z6/PjiHT+BcFd2rG1tNKo1cC4cbL3w+uvA5Mm4fyWbZgdPbXSp9fmGgAAZu04gcjWvqV7T5HtMndcNjQmm8pff/2Fq1evognb2xBVySzXBgbGhfz8skrhzExZa1avnjS+aNVK/nRjaCEHxQlpIrKkCzn5+O6aaa8H5nx5Ar1DeZ9Ito8xWZ/a2gMgsie6xPGYMcC77wIJCcC1a8Cvv0rxT3Q0cOaMbC94zz2yh0OHDrLN8LJlwI8/AtevG/GCHh6Y3vNJFNdzqbTcN/fgp8hPPoD6ze9A4wHj4X7HfSg4/xsurn8JRZdTKz2kSgU41dNi3a/Ha/U7IMel1ZYFWkO+tNVvg1InHTp0QExMDMaNG4dDhw5h//79iI2NxYgRIxAUFAQASE9PR/v27XHo0KEKP5uSkoIffvgBz1WyAduXX36JtWvX4rfffkNKSgpWr16NhQsX4sUXXzTfmyGqwvTtx0v3FaqMJj8XOfv/h5tXz6Oev2Gtoou1wHT/u4FHH2WCWKl8fGQ/iEOHML3LIyi+WVzp02pzDQAAxRotpm/nNYA9UFJcTktLQ1JSEtLS0lBSUoKkpCQkJSXherkL3/bt22P79u0AgOvXr2Pq1Kk4ePAgUlNTsXfvXjz00EMIDQ3FfffdZ76BEtk4s1wbVBEXSkokIZyUBOzeDXz1lSyUzs8H2rQB+vcHhgwBIiJkxwomiMmRKSkmE5H9s+T1AJGtYUzWx0piIjMrX3H8zDPyveJi4Pffy/Y4rqriWLfPcdeugLu7/rFPZ17DjylXAFTeD9qjx1D4DpkKlVO90u817NAHF9bFIvfgp/B9cEqlP1ei0eLHlCtIuXQNof7m2FyZ7JFGY1xrcnOvxNq8eTNiY2MRHR0NtVqNYcOGYcWKFaWP37x5E8nJycjPz6/wcx9++CGaNWuGgQMH6h2zXr16WLVqFV5++WVotVqEhobi7bffxrhx48z7ZohuU3b+r5qTuzeaxW6Ck3tjFF48jYyNL9d43BKo8GN6Hs//NuB0cDv86JNZ5eO8BiAlxeVZs2Zh48aNpX/v2rUrACA+Ph79+vUDACQnJyMnJwcA4OTkhF9//RUbN25EdnY2goKCMHDgQLzxxhvs3EFUBbNdG9yKC6czryGggUdpC+nLl+W80aCBtI/u2FGqhV1cTPWOiOyHkmIyEdk3c18P8D6RbB1jsj4miYmswNkZ6NJFvoxJHOuSxrrE8ebENDipVSipYnVY/WYd9L5Xz7spXHxDcPPK+WrH6KRW4b8H0zBnSFid3y85BqUFWW9vb2zZsqXKx1u0aAFtJcvBFi5ciIULF1b6MzExMYiJiTHZGIlqq6bzPwConOvByb2x0cfm+d828BqAaqKkuLxhwwZs2LCh2ueUj8kNGjTA7t27zTcgIjtkzmsDtUqF+R+lYXCTMKjVsp9w586SFPb0NO5cQ+SIlBSTici+ca6AqHqMyfqYJCZSCEMTx59+WpY4bj7xErTuxvU80Gq1KMnPRj3fkGqfV6LRIv7UJcwBAz8ZhkGWyHLiky9Ve9NXFzz/24bafAZ4DeBYGJeJHIs5rw00Wi1OXbuEPo+Fwc8PcHIyy8sQ2S3GZCKyFM4VEFWPMVkfk8REClZd4vjA4WK8eTq/+gNUIu/Edyi5dhVevUfW+Ny0q/nIKyxGQ1eeKqhmDLJElnG9sBhpWcaf/43B87+y1fYzwGsAx8K4TOQ4LHFtkHE9Hx6Ni+HkxLhAZCzGZCKyBM4VENWMMVmf2toDICLj6BLHfe7Pq2or4irdvHoeWXGr4dq0PRp2jq7x+VoAqVfzajdQcjgajfFfRGS8P6/mwTzrgsvw/K9stfkM8BrA8TAuEzkOXhsQKRtjMhFZAq8HiGrGmKyPSz6IbFRRsXFnqJLrf+PSJ3Ohdm0I34dfg0ptWI8wY1+HHBdXYhFZhqXOyzz/KxevAcgQjMtEjoPXBkTKxphMRJbA6wGimjEm62OSmMhGuTgb3ghAU5CHzI9nQ1OQh4BRi+Hs4WOW1yEiIvOz1HmZ53/l4jUAERGVx2sDIiIi4vUAEdUGk8RENqqFT0OogBrbiGiLi3Dp03ko/jsdASPmw8U3xODXUN16HSJDcCUWkWUYev6vC57/lY3XAGQIxmUix8FrAyJlY0wmIkvg9QBRzRiT9XHZB5GNaujqjBBvt2qfo9WU4PLni1F44ST8Hp4G16YdjHqNEB83NHTlWhIyDPd0ILIMQ87/dcXzv7LxGoAMwbhM5Dh4bUCkbIzJRGQJvB4gqhljsj7+iyayYVHt/LEp8U+UaCpfI/b3vnW4kZKIBqE9UXLjOq7/Fl/hcfdOUVUe20mtQlRbf5OOl+ybVmtc4NSac2kjkZ2r6fyvk3v0S2gK8lByPQsAcCPlEIqvXQEAeHZ7EOr6+iuAef63DbwGoJowLhM5Fl4bECkXYzIRWQqvB4iqx5isj0liIhs2slcINiSkVvl4UeZZABLob6Qc0nu8ugniEo0Wo8INb0tJZOzKKkdYiUVkLjWd/3VyE7ejJPdS6d/zTx0ATh0AALiHRVV648fzv23gNQDVhHGZyLHw2oBIuRiTichSeD1AVD3GZH1MEhPZsDYBHugT6osDZ69WukIscOSbtTquk1qFyFY+CPX3qOsQyYEwyBJZTk3nf51mL3xo1HF5/rcdvAagmjAuEzkWXhsQKRdjMhFZCq8HiKrHmKyPexIT2biFQzvDWW3EbusGcFarsHBoZ5Mek+wf93Qgsiye/4mfAaoO4zKR42FcIFImxmQisiReDxBVjTFZH5PERDYu2NsNc4eEmfSY84aEIdjbzaTHJPvHIEtkWTz/Ez8DVB3GZSLHw7hApEyMyURkSbweIKoaY7I+JomJ7MCIHiGYMrCtSY41dWA7PN6D+0uQ8RhkiSyP53/iZ4CqwrhM5JgYF4iUhzGZiCyN1wNElWNM1sc9iYnsRGxUG/i6u2L2jhMo1mir3Xfidk5qFZzVKswbEsagT7VmbNB0hCBLZAk8/xM/A1QZxmUix8W4QKQsjMlEZA28HiDSx5isj0liIjsyokcI7m7ti+nbj+PHlCtwUquqvQDQPR7ZygcLh3Zm2xCqEwZZIuvh+Z/4GaDbMS4TOTbGBSLlYEwmImvh9QBRRYzJ+pgkJrIzwd5u2DS2F05nXsPmxDTEn7qEtKv5KB/+VQBCfNwQ1dYfo8JDEOrvYa3hkh1hkCWyLp7/iZ8BKo9xmYgYF4iUgTGZiKyJ1wNEZRiT9TFJTGSn2gR4YM6QMMxBGPIKi5F6NQ9FxRq4OKvRwqchGrrynz8RkT3i+Z/4GSAiovIYF4iIiIjXA0RUGf7LJ3IADV2dERbUyNrDIDun1Rq3ukpr+FYoRFRLPP8TPwOOi3GZiCrDuEBkeYzJRKQ0vB4gR8WYrI9JYiIiMgmNBlCpDH++IwRZIiIia2FcJiIiUgbGZCIiImVgTNbHJDEREZkEgywREZFyMC4TEREpA2MyERGRMjAm62OSmIiITIJBloiISDkYl4mIiJSBMZmIiEgZGJP1MUlMREQmwSBLRESkHIzLREREysCYTEREpAyMyfqYJCYiIpNgkCUiIlIOxmUiIiJlYEwmIiJSBsZkfUwSExGRSTDIEhERKQfjMhERkTIwJhMRESkDY7I+tbUHQERE9kGjMf7LnBYsWIDIyEi4ubnBy8vLoJ/RarWYNWsWmjRpggYNGmDAgAE4ffp0hedkZWVh5MiR8PT0hJeXF8aOHYvr16+b4R0QERHVnlLicmpqKsaOHYuWLVuiQYMGaN26NWbPno2ioqJqf66goAATJ06Ej48P3N3dMWzYMGRmZppnkERERGaklJgMAEOGDEFISAjq16+PJk2a4KmnnsKFCxfM94JEREQKwpisj0liIiIyCSUFWQAoKirC8OHDMWHCBIN/5q233sKKFSuwZs0aJCYmomHDhrjvvvtQUFBQ+pyRI0fixIkTiIuLw86dO/HDDz9g/Pjx5ngLREREtaaUuHzy5EloNBq89957OHHiBJYtW4Y1a9Zg+vTp1f7cyy+/jC+//BKffPIJvv/+e1y4cAGPPPKIeQZJRERkRkqJyQAQFRWFjz/+GMnJyfjss89w5swZPProo+Z7QSIiIgVhTNan0modoWBa5ObmolGjRsjJyYGnp6e1h0NEZBLWPrfpXh/IAWDM6+cCMP+4N2zYgEmTJiE7O7va52m1WgQFBWHy5MmYMmUKACAnJwcBAQHYsGEDRowYgT/++AMdO3bE4cOH0b17dwDAN998g0GDBuGvv/5CUFCQ2d6HvbH255aIyByUcG5TelwGgCVLlmD16tU4e/ZspY/n5OTAz88PW7ZsKb1JPnnyJDp06ICEhASEh4ebdXyORgmfWyIiU1PCuc0WYvKOHTvw8MMPo7CwEPXq1TPra1HNlPC5JSIyB2uf3xiTq+ZQexLr8uG5ublWHgkRkenozmnWX/Nj7LlVnn/7OdnV1RWurq4mGpPhzp07h4yMDAwYMKD0e40aNUKvXr2QkJCAESNGICEhAV5eXqUJYgAYMGAA1Go1EhMTMXToUIuP21YxJhORPVJOTAaUHJdzcnLg7e1d5eNHjx7FzZs3K8Tk9u3bIyQkhEliM2BMJiJ7xJhcs6ysLGzevBmRkZFMECsEYzIR2SvlxGXG5Ns5VJL42rVrAIDg4GArj4SIyPSuXbt2a0WUZbm4uCAwMBAZGcafW93d3fXOybNnz8acOXNMNDrDZWRkAAACAgIqfD8gIKD0sYyMDPj7+1d43NnZGd7e3qXPIcMwJhORPbNWTAaUH5dTUlKwcuVKLF26tMrnZGRkwMXFBV5eXhW+Xz4mk+kwJhORPWNM1vfqq6/i3XffRX5+PsLDw7Fz5846H5NMgzGZiOwd568rUkJMdqgkcVBQEM6fPw8PDw+oVCprD4eIyCS0Wi2uXbtmtVbH9evXx7lz51BUVGT0z2q1Wr3zcXWrsKZNm4bFixdXe8w//vgD7du3N3osZFmMyURkj6wdkwHLxeXaxOT09HTExMRg+PDhGDdunNHjI/NgTCYie8SYXFH5mDx16lSMHTsWf/75J+bOnYvRo0dj586djAEKwJhMRPbK2nGZMblqDpUkVqvVaNasmbWHQURkctZaGa1Tv3591K9f3+yvM3nyZIwZM6ba57Rq1apWxw4MDAQAZGZmokmTJqXfz8zMxJ133ln6nEuXLlX4ueLiYmRlZZX+PBmGMZmI7JW1YzJgmbhsbEy+cOECoqKiEBkZiffff7/anwsMDERRURGys7MrVBNnZmYy3poBYzIR2SvG5DLlY7Kvry98fX3Rtm1bdOjQAcHBwTh48CAiIiLMOk6qGWMyEdkza8dlxuTKOVSSmIiIbJufnx/8/PzMcuyWLVsiMDAQe/fuLU0K5+bmIjExERMmTAAAREREIDs7G0ePHkW3bt0AAPv27YNGo0GvXr3MMi4iIiIlMiYmp6enIyoqCt26dcP69euhVqurfX63bt1Qr1497N27F8OGDQMAJCcnIy0tjRPYREREt6nLfbJGowEAFBYWmnJIREREDskWYzKTxEREZJfS0tKQlZWFtLQ0lJSUICkpCQAQGhoKd3d3AED79u2xaNEiDB06FCqVCpMmTcL8+fPRpk0btGzZEjNnzkRQUBAefvhhAECHDh0QExODcePGYc2aNbh58yZiY2MxYsQIq7YxIyIiUqr09HT069cPzZs3x9KlS3H58uXSx3RVwenp6YiOjsZ//vMf9OzZE40aNcLYsWPxr3/9C97e3vD09MSLL76IiIgIhIeHW+utEBER2bTExEQcPnwYvXv3RuPGjXHmzBnMnDkTrVu35iIsIiIiC1JSTGaSmIiI7NKsWbOwcePG0r937doVABAfH49+/foBkKqknJyc0ue88soryMvLw/jx45GdnY3evXvjm2++qdCKZPPmzYiNjUV0dDTUajWGDRuGFStWWOZNERER2Zi4uDikpKQgJSVFr32iVqsFANy8eRPJycnIz88vfWzZsmWlcbawsBD33Xcf/v3vf1t07ERERPbEzc0N27Ztw+zZs5GXl4cmTZogJiYGM2bMqHJvRSIiIjI9JcVklVZ3Z05ERERERERERERERERERHav+s2giIiIiIiIiIiIiIiIiIjIrjBJTERERERERERERERERETkQJgkJiIiIiIiIiIiIiIiIiJyIEwSExERERERERERERERERE5ECaJiYiIiIiIiIiIiIiIiIgcCJPEREREREREREREREREREQOhEliIiIiIiIiIiIiIiIiIiIHwiQxEREREREREREREREREZEDYZKYiIiIiIiIiIiIiIiIiMiBMElMRERERERERERERERERORAmCQmIiIiIiIiIiIiIiIiInIg/w9JaC7sByK+YgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Retrieve intermediate problem and QAOA optimization progress\n", + "\n", + "# Number of recursive steps\n", + "num_steps = result['number_steps']\n", + "\n", + "fig, ax = plt.subplots(2,num_steps, figsize = (24,8))\n", + "\n", + "for i in range(num_steps):\n", + " \n", + " # Get the QUBO problem and QAOA result object for the last step\n", + " qaoa_results = result.get_qaoa_results(step = i)\n", + " qubo_problem = result.get_problem(step = i)\n", + " terms = [term.qubit_indices for term in qubo_problem.hamiltonian.terms]\n", + " weights = [weight for weight in qubo_problem.hamiltonian.coeffs]\n", + " \n", + " # Extract problem graph\n", + " qubo_graph = nx.Graph()\n", + " weighted_edges = [ tuple(list(term) +[weight]) for term,weight in zip(terms,weights)]\n", + " qubo_graph.add_weighted_edges_from(weighted_edges)\n", + " \n", + " # Plot cost optimization\n", + " qaoa_results.plot_cost(ax = ax[0][i])\n", + " ax[0][i].set_title(f'Step {i+1}')\n", + " ax[0][i].get_legend().remove()\n", + " \n", + " # Plot problem graph\n", + " nx.draw_networkx(qubo_graph, pos = nx.shell_layout(qubo_graph), ax = ax[1][i], edge_color = weights, edge_cmap = plt.colormaps[\"bwr\"])\n", + " sm = plt.cm.ScalarMappable(cmap=\"bwr\", norm=plt.Normalize(vmin=min(weights), vmax=max(weights)))\n", + " cbar = plt.colorbar(sm, pad=0.08, ax = ax[1][i])" + ] + }, + { + "cell_type": "markdown", + "id": "a8a47fa7-8113-416a-898f-5647e8167268", + "metadata": {}, + "source": [ + "In these plots we can appreciate an important aspect of RQAOA: the topology of the problem will evolve unpredictably throughout the recursive process. In this case, where we only consider quadratic terms, the only constraint that will be imposed is that of fixing one qubit with respect to a second one. In the language of graphs, this can be understood as merging two nodes, where the remaining node inherits all the edges from the merged one. From the point of view of the Hamiltonian, the couplings associated with qubits that were connected to both of the merged qubits will add up. For example, if we merge qubit $i$ into qubit $j$, and both where connected to qubit $k$ through couplings $J_{ik}$ and $J_{jk}$, the resulting connection between the remaining qubit $j$ and qubit $k$ will be $J_{jk} \\mapsto J_{jk} + J_{ik}$. You can easily check this by yourself by defining some generic Hamiltonian and imposing the constraint defined in the introduction! As a result, some edges will acquire values beyond the initial definition $|J_{ij}| = 1$. Furthermore, sometimes the couplings will cancel each other, resulting in certain edges disappearing from the graph. This can be observed on the second step of the process above, where the connection between qubits 1 and 2 has disappeared. Through the same mechanism, new connections can emerge between previously disconnected qubits, e.g. in the third step all qubits are again connected with each other. \n", + "\n", + "If we had also included linear terms in the problem and the constraints associated will single-spin expectation values were to be imposed, the change of topology would correspond to removing a node from the graph along with all edges incident in it. " + ] + }, + { + "cell_type": "markdown", + "id": "9d99c9ae-b221-479f-a73b-3b545cfba62f", + "metadata": {}, + "source": [ + "Finally, to check the quality of our results, we compute the exact solution, which can be done for any Hamiltonian of reasonable size using the OpenQAOA utility function ``ground_state_hamiltonian``. To use this function we define the problem as an instance of the ``Hamiltonian`` class, using the ``classical_hamiltonian`` method (given that our Hamiltonian is only composed of $Z$ operators). This class is widely used across OpenQAOA to generate mixer and cost Hamiltonians that define the QAOA structure." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "8c8fd6a8-97dc-4a62-9823-5d68ace489fd", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The solution found by RQAOA has energy = -9.0 and ground states = ['1100100', '0011011']\n", + "\n", + "The exact energy is -7.0 and the solutions are ['1100', '0011']\n" + ] + } + ], + "source": [ + "# Get RQAOA solutions\n", + "solutions = result.get_solution()\n", + "states = list(solutions.keys())\n", + "energy = list(solutions.values())[0]\n", + "\n", + "# Obtain exact solution for comparison\n", + "\n", + "# Define Hamiltonian object from terms and weights\n", + "hamiltonian = Hamiltonian.classical_hamiltonian(terms,weights,constant = 0)\n", + "\n", + "# Compute the exact result\n", + "exact_energy, ground_state_strings = ground_state_hamiltonian(hamiltonian)\n", + "\n", + "print(f'The solution found by RQAOA has energy = {energy} and ground states = {states}\\n')\n", + "\n", + "print(f'The exact energy is {exact_energy} and the solutions are {ground_state_strings}')" + ] + }, + { + "cell_type": "markdown", + "id": "c2325780-509a-42e9-8647-0ee265e04011", + "metadata": {}, + "source": [ + "As we can see, for this simple problem, RQAOA was able to to find two out of the four ground states!" + ] + }, + { + "cell_type": "markdown", + "id": "2266b941-8ee5-405b-9dfe-8fdbff7e7f92", + "metadata": {}, + "source": [ + "## Run RQAOA on a QPU" + ] + }, + { + "cell_type": "markdown", + "id": "69355e37-ab36-4a3b-987f-2848693dd8f7", + "metadata": {}, + "source": [ + "To run RQAOA using OpenQAOA, now on a real quantum device, one simply needs to change the device parameters when defining the RQAOA instance, and voilà!" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "f9999c24-a924-4126-9514-a0d2d9189e9b", + "metadata": {}, + "outputs": [], + "source": [ + "# Define an instance of the RQAOA class\n", + "r_qpu = RQAOA()\n", + "\n", + "# Set instance parameters\n", + "r_qpu.set_rqaoa_parameters(n_cutoff = 3, steps = 1, rqaoa_type = 'custom')\n", + "\n", + "# Set the properties you want - These values are actually the default ones!\n", + "r_qpu.set_circuit_properties(p=1, param_type='standard', init_type='ramp', mixer_hamiltonian='x')\n", + "\n", + "r_qpu.set_backend_properties(n_shots=500)\n", + "\n", + "# Set the classical method used to optimiza over QAOA angles and its properties, note that to make the computation leaner we set a tollerance of 0.05\n", + "r_qpu.set_classical_optimizer(method='cobyla', maxiter=20, tol=0.05, optimization_progress=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "a5e416ae", + "metadata": {}, + "outputs": [], + "source": [ + "# Here are some of the simulators available through Azure Quantum, replacing the device with a real qpu\n", + "ionq_sim = 'ionq.simulator'\n", + "quantinuum_sim = 'quantinuum.sim.h1-1e'\n", + "rigetti_sim = 'rigetti.sim.qvm'\n", + "\n", + "# Set the backend you want to use here.\n", + "# WARNING: Quantinuum simulator usage is not unlimited. Running this sample against it could consume a significant amount of your eHQC quota.\n", + "backend_to_use = ionq_sim" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "4e0c0346-575c-4e32-96a4-dfd8deb14b36", + "metadata": {}, + "outputs": [], + "source": [ + "# Connect to the Azure Quantum workspace through OpenQAOA\n", + "resource_id = ''\n", + "az_location = ''\n", + "\n", + "# Set a quantum device to run our instance\n", + "device = create_device(location='azure', name=backend_to_use, resource_id=resource_id, az_location=az_location)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "af73063b-6710-4b3e-a8cf-9d113e5a7520", + "metadata": {}, + "outputs": [], + "source": [ + "r_qpu.set_device(device)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "bc5265d1-fdd1-42c3-bea1-43ea1147205e", + "metadata": {}, + "outputs": [], + "source": [ + "r_qpu.compile(problem)" + ] + }, + { + "cell_type": "markdown", + "id": "f5dc395e", + "metadata": {}, + "source": [ + "Job submission to the Azure backend is made internally in the optimization loop in OpenQAOA.\n", + "\n", + "This cell can take a few minutes to execute (note that executing on real QPUs can take longer run time)." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "2ef2a984-e1c7-43b5-9501-c669a9d26944", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "......." + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "................................................................................................................................................................................................................................................................................................................................................................................................................." + ] + } + ], + "source": [ + "# Job submission to Azure Quantum is done internally\n", + "r_qpu.optimize()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "24512456-8bc7-4820-9ac7-fd678a43b1a2", + "metadata": {}, + "outputs": [], + "source": [ + "result_qpu = r_qpu.result" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "69c33b4f-fa6a-4737-ba53-acbbd2b1d3c8", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB4kAAAKaCAYAAAAjwm9WAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxU9foH8M8AgoiIG+6ouAu4a+auae6apWalNzUzK7XMNrHSq5XY71rZ4nUrlzLT3MrMJfd9S0XFHVfUcBfcAIX5/fHc40gCwsw5850z83m/XvP6HmHmnEdvly/nPN/v81isVqsVRERERERERERERERERETkEbxUB0BERERERERERERERERERM7DJDERERERERERERERERERkQdhkpiIiIiIiIiIiIiIiIiIyIMwSUxERERERERERERERERE5EGYJCYiIiIiIiIiIiIiIiIi8iBMEhMREREREREREREREREReRAmiYmIiIiIiIiIiIiIiIiIPAiTxEREREREREREREREREREHoRJYiIiIiIiIiIiIiIiIiIiD8IkMRERERERERERERERERGRB2GSmMhk9u/fj27duqFMmTLInTs3SpYsiSeffBLffPNNuveNGTMGv/76q5ogAdy8eRMjR45E27ZtUbBgQVgsFsyYMUNZPERERHozy5y8c+dODBo0COHh4QgICEDp0qXx7LPP4ujRo8piIiIi0pNZ5uQDBw6ge/fuKFeuHPLkyYPChQujadOm+P3335XFREREpDezzMv/9Omnn8JisSAiIkJ1KEROY7FarVbVQRBR9mzZsgUtWrRA6dKl0bt3bxQrVgxxcXHYtm0bjh8/jtjY2PvvzZs3L7p166YsMXvq1CmEhoaidOnSKFeuHNatW4fp06ejT58+SuIhIiLSk5nm5G7dumHz5s3o3r07qlevjvj4eHz77be4efMmtm3bxhtgIiIyNTPNyUuXLsXXX3+NBg0aoESJErh9+zYWLFiAjRs3YvLkyXjllVeUxEVERKQXM83LDzp79iwqV64Mi8WCsmXLIiYmRnVIRE7hozoAIsq+Tz/9FEFBQdi5cyfy58+f7nsXL15UE1Qmihcvjr///hvFihXDX3/9hXr16qkOiYiISDdmmpOHDh2K2bNnw9fX9/7XevTogWrVqmHs2LGYNWuWwuiIiIgcY6Y5uX379mjfvn26rw0aNAh16tTBF198wSQxERGZnpnm5Qe98847ePzxx5GamorLly+rDofIaVhumshEjh8/jvDw8IcmWAAoUqTI/WOLxYJbt25h5syZsFgssFgs6Xbwnjt3Di+99BKKFi0KPz8/hIeHY9q0aenOt27dOlgsFsydOxfDhw9HsWLFEBAQgM6dOyMuLu6Rsfr5+aFYsWJ2/12JiIhcmZnm5IYNG6ZLEANAxYoVER4ejkOHDuXsL05ERORizDQnZ8Tb2xshISG4fv26XZ8nIiJyJWaclzds2ID58+dj/PjxOf3rEpkedxITmUiZMmWwdetWxMTEZFka8scff8TLL7+Mxx577P5K5PLlywMALly4gMcffxwWiwWDBg1CcHAwli1bhn79+iExMRFDhgxJdy6tF8P777+PixcvYvz48WjVqhWio6Ph7+9v2N+ViIjIlZl9TrZarbhw4QLCw8Nz9hcnIiJyMWack2/duoU7d+4gISEBixcvxrJly9CjRw/7/xGIiIhchNnm5dTUVAwePBgvv/wyqlWr5thfnsiMrERkGn/++afV29vb6u3tbW3QoIH1vffes65YscKakpLy0HsDAgKsvXv3fujr/fr1sxYvXtx6+fLldF9/7rnnrEFBQdbbt29brVarde3atVYA1pIlS1oTExPvv++XX36xArB+9dVX2Y57586dVgDW6dOnZ/szRERErsysc7Lmxx9/tAKwfv/99zn+LBERkSsx45w8YMAAKwArAKuXl5e1W7du1qtXr+bgb01EROSazDYvf/vtt9agoCDrxYsXrVar1dqsWTNreHh4Tv7KRKbGctNEJvLkk09i69at6Ny5M/bu3Yv/+7//Q5s2bVCyZEksXrz4kZ+3Wq1YsGABOnXqBKvVisuXL99/tWnTBgkJCdi9e3e6z7z44osIDAy8/+du3bqhePHiWLp0qe5/PyIiIrMw85x8+PBhDBw4EA0aNEDv3r1z9FkiIiJXY8Y5eciQIVi5ciVmzpyJdu3aITU1FSkpKTn7ixMREbkgM83LV65cwYgRI/DRRx8hODjYvr8wkckxSUxkMvXq1cPChQtx7do17NixA5GRkbhx4wa6deuGgwcPZvnZS5cu4fr165gyZQqCg4PTvfr27QsAuHjxYrrPVKxYMd2fLRYLKlSogFOnTun69yIiIjIbM87J8fHx6NChA4KCgjB//nx4e3tn+7NERESuymxzcpUqVdCqVSu8+OKLWLJkCW7evHn/YTgREZHZmWVe/vDDD1GwYEEMHjw4539JIjfBnsREJuXr64t69eqhXr16qFSpEvr27Yt58+Zh5MiRmX4mLS0NANCrV69Mdw5Vr17dkHiJiIjclVnm5ISEBLRr1w7Xr1/Hxo0bUaJECV3PT0REpJpZ5uR/6tatGwYMGICjR4+icuXKhl6LiIjIWVx5Xj527BimTJmC8ePH4/z58/e/npSUhLt37+LUqVPIly8fChYs6PC1iFwZk8REbqBu3boAgL///vv+1ywWy0PvCw4ORmBgIFJTU9GqVatsnfvYsWPp/my1WhEbG8tkMhERUQZcdU5OSkpCp06dcPToUaxatQphYWHZuiYREZFZueqcnJE7d+4AkAVdRERE7sjV5uVz584hLS0Nb7zxBt54442Hvh8aGoo333wT48ePz1YMRGbFctNEJrJ27doMy09p/RUeXHEcEBCA69evp3uft7c3unbtigULFiAmJuah81y6dOmhr/3www+4cePG/T/Pnz8ff//9N9q1a2fvX4OIiMj0zDQnp6amokePHti6dSvmzZuHBg0aZPl+IiIiMzHTnPzP8pgAcPfuXfzwww/w9/fnIi4iIjI9s8zLERERWLRo0UOv8PBwlC5dGosWLUK/fv0e+fclMjuLlQ1PiEwjIiICt2/fxtNPP40qVaogJSUFW7Zswdy5cxESEoI9e/Ygf/78AIAOHTpg/fr1GD16NEqUKIHQ0FDUr18fFy5cQP369XHp0iX0798fYWFhuHr1Knbv3o1Vq1bh6tWrAIB169ahRYsWqFatGiwWC/r27YsLFy5g/PjxKFWqFPbu3Ys8efJkGe+3336L69ev4/z585g4cSKeeeYZ1KpVCwAwePBgBAUFGfrvRUREZBQzzclDhgzBV199hU6dOuHZZ5996Pu9evUy5N+IiIjIGcw0Jz/99NNITExE06ZNUbJkScTHx+Onn37C4cOH8fnnn2Po0KHO+CcjIiIyjJnm5Yw0b94cly9fzjBBTeSWrERkGsuWLbO+9NJL1ipVqljz5s1r9fX1tVaoUME6ePBg64ULF9K99/Dhw9amTZta/f39rQCsvXv3vv+9CxcuWAcOHGgNCQmx5sqVy1qsWDFry5YtrVOmTLn/nrVr11oBWH/++WdrZGSktUiRIlZ/f39rhw4drKdPn85WvGXKlLECyPB18uRJPf5JiIiIlDDTnNysWbNM52PeDhARkdmZaU7++eefra1atbIWLVrU6uPjYy1QoIC1VatW1t9++023fw8iIiKVzDQvZ6RZs2bW8PBwuz5LZEbcSUxEGdJWYs2bNw/dunVTHQ4REZHH4pxMRETkGjgnExERuQ7Oy0SOY09iIiIiIiIiIiIiIiIiIiIPwiQxEREREREREREREREREZEHYZKYiIiIiIiIiIiIiIiIiMiDsCcxEREREREREREREREREZEHMdVO4nPnzqFXr14oVKgQ/P39Ua1aNfz111+qwyIiIiIiIiIiIiIiIiIiMg0f1QFk17Vr19CoUSO0aNECy5YtQ3BwMI4dO4YCBQqoDo2IiIiIiIiIiIiIyG5WqxU3btxAYGAgLBaL6nCIiMjEsjunmKbc9LBhw7B582Zs3LjR7nOkpaXh/PnznGiJiMgh2iRbokQJeHmZqiiHy+CcTEREeuCc7DjOyUREpAfOyY5LSEhA/vz5ERcXh3z58qkOh4iITCwxMREhISG4fv06goKCMn2faZLEYWFhaNOmDc6ePYv169ejZMmSeP3119G/f/9MP5OcnIzk5OT7fz537hzCwsKcES4REXmAuLg4lCpVSnUYpnT27FmEhISoDoOIiNwE52T7cU4mIiI9cU62H+dkIiLS26PmZdOUmz5x4gQmTpyIoUOHYvjw4di5cyfeeOMN+Pr6onfv3hl+JioqCqNGjXro61yNRUREjtBWYgUGBqoOxbS0fzvOyURE5AjOyY7jnExERHrgnOw4zslERKSX7M7LptlJ7Ovri7p162LLli33v/bGG29g586d2Lp1a4af+edOYu0fJSEhgRMtERHZLTExEUFBQZxPHMB/QyIi0gPnE8fx35CIiPTA+cRx/DckIiK9ZHdOMU2DiOLFiz9UKrpq1ao4c+ZMpp/x8/NDvnz50r2IiIiIiIiIiIiIiIiIiDyZaZLEjRo1wpEjR9J97ejRoyhTpoyiiIiIiIiIiIiIiIiIiIiIzMc0SeK33noL27Ztw5gxYxAbG4vZs2djypQpGDhwoOrQiIiIiIiIiIiIiIiIiIhMwzRJ4nr16mHRokX4+eefERERgY8//hjjx49Hz549VYdGRETkcc6dO4devXqhUKFC8Pf3R7Vq1fDXX3+pDouIiIiIiIjIJYwdOxYWiwVDhgxRHQoREVGGfFQHkBMdO3ZEx44dVYdBRETk0a5du4ZGjRqhRYsWWLZsGYKDg3Hs2DEUKFBAdWhEREREREREyu3cuROTJ09G9erVVYdCRESUKVMliYmIiEi9zz77DCEhIZg+ffr9r4WGhiqMiIiIiIiIiMg13Lx5Ez179sTUqVPxySefqA6HiIgoU6YpN01ERESuYfHixahbty66d++OIkWKoFatWpg6dWqWn0lOTkZiYmK6FxEREREREZG7GThwIDp06IBWrVpl+T7eJxMRkWpMEhMREVGOnDhxAhMnTkTFihWxYsUKvPbaa3jjjTcwc+bMTD8TFRWFoKCg+6+QkBAnRkxEROS+zp07h169eqFQoULw9/dHtWrV8Ndff6kOi4iIyCPNmTMHu3fvRlRU1CPfy/tkIiJSjUliwuHDQIcOwM6dqiMhIiIzSEtLQ+3atTFmzBjUqlULr7zyCvr3749JkyZl+pnIyEgkJCTcf8XFxTkxYiIiIvd07do1NGrUCLly5cKyZctw8OBBfP755yhQoIDq0EzPagXeew8YOVJ1JEREZBZxcXF488038dNPPyF37tyPfD/vk7Nv6lSgVy8gOVl1JERE7oU9iQkNGwLXrgEnTwIHD6qOhoiIXF3x4sURFhaW7mtVq1bFggULMv2Mn58f/Pz8jA7NNCIjgSVLgP/8B2jbVnU0RERkVp999hlCQkIwffr0+18LDQ1VGJH7OHRI5mkAeP11oGhRtfEQEZHr27VrFy5evIjatWvf/1pqaio2bNiAb7/9FsnJyfD29r7/Pd4nZ8/t28Arr8hx+/bACy+ojYeIyJ1wJ7GHu3xZEsQAcOyY2liIiMgcGjVqhCNHjqT72tGjR1GmTBlFEZnP6dNATAywb5/qSIiIyMwWL16MunXronv37ihSpAhq1aqFqVOnZvkZ9j/Mns2bbcd796qLg4iIzKNly5bYv38/oqOj77/q1q2Lnj17Ijo6Ol2CmLJv+XLb8alTysIgInJLTBJ7uJ9+sh3nygWkpamLhYiIzOGtt97Ctm3bMGbMGMTGxmL27NmYMmUKBg4cqDo009A2Yh84oDYOIiIytxMnTmDixImoWLEiVqxYgddeew1vvPEGZs6cmeln2P8wezZtsh0zSUxERNkRGBiIiIiIdK+AgAAUKlQIERERqsMzrd27bccxMeriICJyR0wSe7hcuYDgYDlOTgbOn1cbDxERub569eph0aJF+PnnnxEREYGPP/4Y48ePR8+ePVWHZgr//jcwe7Ycs80DERE5Ii0tDbVr18aYMWNQq1YtvPLKK+jfvz8mTZqU6WfY/zB7tCRxhw7yIiIiIjU++QT49ls5ZpKYiEhf7Ens4V5/XXo6HDwIVKoE5M6tOiIiIjKDjh07omPHjqrDMB2rFZg4Ebh4Uf586JBU8fDisj0iIrJD8eLFEaaVp/ifqlWrYsGCBZl+hv0PHy0tTe6TN22S6lv58qmOiIiIzGrdunWqQ3ALHTsCQ4fKs2urFbBYVEdEROQe+EiS4OMDVK/OBDEREZHRjh2TBLHWiurWLYAbuIiIyF6NGjXCkSNH0n3t6NGjKFOmjKKI3IOXF/D++8DvvzNBTEREpFJKioylSwM3bwI7djBBTESkJyaJPVRyMrB8OZCaqjoSIiIiz7Fhg4yNGgHh4XLMktNERGSvt956C9u2bcOYMWMQGxuL2bNnY8qUKRg4cKDq0NzGgQPAzJnAmTOqIyEiIvIsSUlAyZKyi/jqVWmbSERE+mKS2EP9/jvQrh3QsKH8+cgR4OWXgddeUxsXERGRO9OSxE2bAjVrAhERwL17SkMiIiITq1evHhYtWoSff/4ZERER+PjjjzF+/Hj07NlTdWim9scftkofgwYBffoAa9YoDYmIiMjjrFwJXL4MREcDBQqojoaIyD2xJ7GHmj5dxpYtZUxKAr7/Xibc//6XZTuIiIiMoCWJmzQBRo/mfEtERI7r2LEjOnbsqDoMt5GQAHTqJP0O//4bqFEDWLcO2LtXdWRERESeZd48Gbt2lVYQK1dKO4hKlYA5c9TGRkTkLpgk9kDnz0upaUBWRAMyuVoswLVrwIULQLFiysIjIiJyS2fOAKdPSz/iBg2YICYiInJFW7ZIgrh8ebkvrlFDvs4kMRERkfMkJwOLF8tx9+4y+vgAe/bIgi4iItIHy017oB9/BNLSpB9ipUryNX9/IDRUjg8dUhcbERGRuzpxQip21K4NBAbavp6WJg+jiYiISL1Nm2Rs3FjGB5PEnK+JiIicY9UqSQYXL25rlxgRIeOJE8CtW+piIyJyJ0wSexir1VZqum/f9N+rWlVGJomJiIj017y59FNaskT+nJYGPP64JIzPnVMaGhEREf3Pxo0yNmkiY1iYVAG5epXzNRERkbPMny/jM89IqWkACA4GihaV4wMH1MRFRORumCT2MFu3AkeOAHnyAM8+m/57TBITEREZy8sLKFLEdpyQANy+DRw8qDYuIiIiktKWO3bIsbaTOHdu270yS04TEREZLyUF+PVXOdZKTWu03cQxMU4NiYjIbTFJ7GG0XsTduqUvdQnICmmASWIiIiK9paVl/PXwcBmZJCYiIlJv1y5JFAcH21ozAexLTERE5EypqcDo0UDnzrZFW5pq1WRkkpiISB9MEnuYUaOAnTuBYcMe/p62OvrGDefGRERE5O5+/RUoUwb48MP0X9cWaDFJTEREpJ5WarpxY8BisX198GDgjz+Al19WExcREZEn8feXufe336Tlw4O0ncT79zs/LiIid+SjOgByLosFqFs34+/VqSMJ4rx5nRsTERGRu9uwAThzBrh2Lf3XtSQx+ykRERGp16cPEBoqO4kfVL++knCIiIjoH2rUkGof5cqpjoSIyD0wSexBkpMBP7/Mv58rl7yIiIhIXxs2yNikSfqvP7iT2GpNv2uJiIiInKtoUeDZZ1VHQURE5Ln++gvYvRt4+umHF20BsvnpyBHnx0VE5K5YbtpDnDoFFCkC9O8vfR2IiIjIORISgOhoOf5nkrhSJcDLC7h+HYiPd3ZkRERElF3LlgEjRvDBNBERkZGmTgUGDAA++EB1JEREnoFJYg8xcyaQmAicPPlwL4cH/fIL0KIFEBXlvNiIiIjc2ZYtsku4fHmgZMn038udG3jySaBLF+DOHSXhERERESQJPGYMsG9fxt8fPx74+GNbdRAiIiLS1717wMKFcty9e9bvtVqB27eNj4mIyN0xSewB0tKAGTPkuG/frN97+TKwbp080CYiIiLHaQ+TmzbN+PvLlwOLFrGnEhERkUqzZsmupUWLMv5+jRoy7t3rvJiIiIg8yYYN8my6UCGgefPM3zd5MpA/P/DWW86KjIjIfTFJ7AHWr5dy0/nyST+HrFStKuOhQ4aHRURE5BEelSQmIiIi9TZtkrFx44y/zyQxERGRsebNk7FLFyBXrszfFxQkFTNjYpwSFhGRW/NRHQAZb/p0GZ97DsiTJ+v3aknikyeBpCQpg0lERET2a9hQymD9sx/xg6xW4OpVWTFNREREznXmjLy8vYHHH8/4PQ8midPSAC8uuSciItJNamr2S01HRMgYEyP30haLsbEREbkz3ta4ucREYP58OX5UqWkAKFpUynWkpQFHjxoaGhERkUf4z3+APXukJ3FGjh4FChQAKlWSG1wiIiJyro0bZaxdGwgIyPg9lSsDvr7AjRtSqYuIiIj0s2kTcPGi3Bs/8UTW761USXYaJyYCcXHOiY+IyF0xSezmfvkFuHNHdgjXr//o91ssQFiYHB88aGxsREREBISEyM3t1avApUuqoyEiIvI8WqnprKp+5MoFhIfLMUtOExER6WvfPqno8dRTWZeaBmTRVuXKcsyS00REjmGS2M21aQOMGgW8+272S2+wLzEREZE+9u6VxVpZ8fcHypWT4wMHjI+JiIiI0tN2EmfWj1ijlZzev9/YeIiIiDzN4MHA33/Lc+zsqFZNRs7JRESOYU9iNxcSAowYkbPPVK0KFCvGHktERESOSEkBGjSQ3kqHDwOhoZm/NywMOH5cqni0aOG8GImIiDzdrVu28tGPShIPHw5ERmbeQoKIiIjsFxyc/fc+2JeYiIjsxzQgPeStt2Tl1siRqiMhIiIyr927ZRdxYCBQpkzW72WrByIiIjUCAoBr12TeftTD6YoVpQ+it7dzYiMiIvIEt2/n/DP16wPt2gGPPaZ/PEREnoRJYjd17x7wr38BCxbIcU5wBzEREZHjtNKVTZo8em5lkpiIiEidXLmAWrVUR0FEROR50tKAKlWApk1tlT2yo2VLYOlSKVNNRET2YzrQTf35JzBrFjBggEy2RERE5FwbNsjYtOmj38skMRERkTlMmQK88ILsPCYiIiLHbNsGxMUB0dHS/pCIiJyLSWI3NX26jL16Ab6+Of/8oEHSz3jxYn3jIiIi8gSpqel3Ej9KlSpA27ZSBSSnFUCIiIjIPnfuADVqAK+8IsfZsXgx8PPPwNatxsZGRETkCebPl7FTJyB37px//uJF4NIlfWMiIvIkTBK7oStXbMndvn3tO8fVq8DZs9zRREREZI+YGCAhAcibF6hZ89Hvz5sXWLYMGDcO8PExPDwiIiICsHMnsG8fsGRJ9h9M16gh4969xsVFRETmNHHiRFSvXh358uVDvnz50KBBAyxbtkx1WC7LarUlibt3z/nn33wTKFoU+PZbfeMiIvIkTBK7odmzgZQU6amk3cDmlFb28tAh/eIiIiLyFNou4kaNmPQlIiJyVZs2ydi4MWCxZO8zTBITEVFmSpUqhbFjx2LXrl3466+/8MQTT+Cpp57CgQMHVIfmknbskFLTefMCbdrk/POhoTLu369vXEREnoSPLd2QVmra3l3EAFC1qoxMEhMREeVc69bA558DZcrk7HOXLwOJiUC5csbERURERDY5aQ2h0SqE7N8v7SW8vXUPi4iITKpTp07p/vzpp59i4sSJ2LZtG8LDwxVF5bq0XcQdOwL+/jn/fLVqMsbE6BcTEZGn4U5iN7N3L7Bnj/QhfuEF+8+jJYkPH5bSH0RERJR9lSoBQ4cCXbtm/zOzZgHBwdIXkYiIiIyVmgps2SLHjRtn/3PlywN58kgP49hYY2IjIiLzS01NxZw5c3Dr1i00aNAgw/ckJycjMTEx3ctTWK3AvHly3K2bfeeIiJAxNha4fVufuIiIPA2TxG7m5k3gsceAzp2BQoXsP0+FCrIi+sYN4Nw5/eIjIiKijFWsKOPBg2rjICIi8gT790v1jsBAoHr17H/O29u2c4klp4mI6J/279+PvHnzws/PD6+++ioWLVqEMK2v3z9ERUUhKCjo/iskJMTJ0aqTmgqMGgU8/TTQrp195yhaVBZaW62shklEZC/TJonHjh0Li8WCIUOGqA7FpTRqBGzfDvz4o2Pn8fW1PazmJEtERJR9GzcCM2dKb6Wc0Kp4/P03cO2a/nERERGRjdaPuGHDnJeMrlED8PEBzp/XPy4iIjK3ypUrIzo6Gtu3b8drr72G3r1742AmK4EjIyORkJBw/xWX05tIE/PxAXr3BhYulAod9tJ2E7MvMRGRfUyZJN65cycmT56M6jlZ7uthcud2/BwNG0rS2cuU/5UQERGp8d13QJ8+wJQpOftcvnyAtnCcC7SIiIiM5esr7SFyUmpaExUlVby4Zp2IiP7J19cXFSpUQJ06dRAVFYUaNWrgq6++yvC9fn5+yJcvX7oX5QyTxEREjjFd+u/mzZvo2bMnpk6digIFCqgOx6X88Ye+O4++/15WV7dsqd85iYiI3N2GDTI2bZrzz2pVyFhymoiIyFivvAIcOQIMH57zzxYsCPj56R8TERG5n7S0NCQnJ6sOw6UcOgSMGwecPOn4udq0AQYPBlq1cvxcRESeyHRJ4oEDB6JDhw5olY2f/MnJyUhMTEz3clfx8cBTTwElSsgxEREROd+ZM8CpU1K2skGDnH9eSxIfOKBrWERERJQJVs4iIiK9REZGYsOGDTh16hT279+PyMhIrFu3Dj179lQdmkv58Ufg3XeBd95x/FwdOgBff21/X2MiIk9nqtuhOXPmYPfu3YiKisrW+6OiohAUFHT/FaLVcHRDP/4IpKYCtWoBxYrpe+6kJH3PR0RE5K42bpSxdm0gb96cf547iYmIiIx3/Tpw755j5/joI6BePdvcT0REdPHiRbz44ouoXLkyWrZsiZ07d2LFihV48sknVYfmMqxWYN48Oe7eXW0sRERkoiRxXFwc3nzzTfz000/Inc2Gu5GRkUhISLj/iouLMzhKNaxWYPp0Oe7bV7/zpqQAFSsCefIAly/rd14iIiJ3pT0otqfUNAA8/riUyurdW7+YiIiIKL333gPy5wcmT7b/HAcOAH/9JS9yf5cuAVu3qo6CiFzd999/j1OnTiE5ORkXL17EqlWrmCD+h/37gdhYadvQoYM+50xMBLZsAc6f1+d8RESexDRJ4l27duHixYuoXbs2fHx84OPjg/Xr1+Prr7+Gj48PUlNTH/qMn58f8uXLl+7ljnbskF4O/v5Ajx76ndfXVxLFVqucn4iIiLLmSD9iAIiIkFJZL7ygX0xEROQ5xo4dC4vFgiFDhqgOxaVt3AjcugUUL27/OWrUkHHvXn1iItfWsiXQsCGwZo3qSIiIzE3bRdy2LRAYqM85e/YEGjUCFi3S53xERJ7ENEnili1bYv/+/YiOjr7/qlu3Lnr27Ino6Gh4e3urDlEZbRdx166A3nnwqlVlZJKYiIgoa1ev2ubLRo3UxkJERJ5n586dmDx5MqpXr646FJd26RJw+LAcOzJfM0nsOZKTZecbAMyerTYWIiIzM6rUdESEjDEx+p2TiMhTmCZJHBgYiIiIiHSvgIAAFCpUCBHaTOCB7twB5syRYz1LTWuYJCYiokfhriVRsCBw4QKwfDlQqJD950lMBLZvB44e1S82IiJybzdv3kTPnj0xdepUFChQIMv3JicnIzExMd3Lk2zeLGNYmGPztZYkPngQuHvX8bjIdR05Yju+c0ddHEREZnfggPxM9fUFOnbU77xMEhMR2c80SWLK2LZtwM2bQNmyQPPm+p8/LExGJomJiCgj3LWUXpEiQJs2jp3jww+lN/GUKfrERERE7m/gwIHo0KEDWrVq9cj3RkVFISgo6P4rJCTECRG6jk2bZGzSxLHzlC0rlbxSUmw7k8k9Va8OzJ0rx9qOYiIiyrmYGCB3brlnDgrS77zVqsm4f7/sViYiouwzdZJ43bp1GD9+vOowlGrRAjh7Fpg1C/Ay4H9N7iQmIqLM5GTXEmVfeLiMBw+qjYOIiMxhzpw52L17N6KiorL1/sjISCQkJNx/xcXFGRyha9m4UcbGjR07j8UiyUOAJac9Qf36Mh46JAsDiIgo5557Tto+fPONvuetXBnw9gYSEoBz5/Q9NxGRuzN1kphEsWLG9T7UksRnzsiOZSIiIk1Odi25e2nLhATgySeBUaOA1FTHzqVV8WCSmIiIHiUuLg5vvvkmfvrpJ+TOnTtbn/Hz80O+fPnSvTzFrVvA7t1y7OhOYgCoWRMIDQXu3XP8XOTaSpcGSpYE6tQBLl9WHQ0RkXnlzQuUKaPvOf38JFEMsOIDEVFO+agOgOx3+zaQJ4+x1yhUCGjdGiheXK6XN6+x1yMiInPQdi3t3LkzW++PiorCqFGjDI5KnS1bgFWrgJMngZEjHTuXliQ+fVoWaHHuJSKizOzatQsXL15E7dq1738tNTUVGzZswLfffovk5GR4e3srjNC13L0r8/TBg5L0c9RXX+m/G4pcy6lTQLdu0t4rLk52kBMRUc7duAEEBhp3/ogImd9jYoB27Yy7DhGRu2GS2KTS0oAaNYCQEOD772X1slFWrDDu3EREZD7arqWVK1dme9dSZGQkhg4dev/PiYmJbtUDUStd2bSp4+cqVEh6G1+8KD0O69Z1/JxEROSeWrZsif3/2DLTt29fVKlSBe+//z4TxP+QPz/w4Yf6nc+Ilk/kWrZsAXbtAnx8mCAmInJE48byc/SHH2ztGvT04otSabNlS/3PTUTkzpgkNqmNG4HYWODCBaBoUdXREBGRJ7Fn15Kfnx/8/PycHarTbNggox5JYkD6El+8KCuhmSQmIqLMBAYGIiIiIt3XAgICUKhQoYe+TsaxWuXFpLH72bJFxgYNbF9LTZXel0RElD1HjwL79smCm1KljLlGhw7GnJeIyN3xFsakpk+XsUcP40tOA1KW69w5469DRESuT9u1FB0dff9Vt25d9OzZE9HR0R63a+nOHWDHDjnWK0nMvsRERET6uncPmD8fiI/X97x9+0oVkJUr9T0vuQYtSdywIXDkiPyOVqmS2piIiMxm/nwZW7UCChZUGwsREaXHncQmdOMGMG+eHPfta/z1Nm+W/jvly0vZSyIi8mzctZTe9u2ymKpECf3aP3TrBlSsqF/SmYiIPMe6detUh+CSoqOB7t2l5PSVK/rt+r19G7h2Ddi7F2jTRp9zkmu4eVP+dwVkJ3HevMChQ/Ln69flvyUiIno07Tl2t27GXmffPpnvW7cGihUz9lpERO6CO4lNaN48uRGtXDl9ySOjlCkjq65jY4GUFOOvR0REZCYPlprWq1dd8+bAm28CtWrpcz4iIiJPt2mTjI0a6VsWukYNGbVkIrmPHTuAtDSgdGkpj5o/vxwDwD9agRMRUSZiYyVx6+0NPPWUsdfq1w/o3Vs2PBERUfYwSWxCWqnpPn30exidlZIlgcBA6bsTG2v89YiIyHzWrVuH8ePHqw5DieRkmSe565eIiMh1bdwoY+PG+p63Zk0ZmSR2Pw+WmtZUqyYjk8RERNmjlZpu0QIoXNjYa2mFzWJijL0OEZE7YZLYZI4elRXQXl7Aiy8655oWC1ClihxrpZWIiIhIfPqplJnUuwVETAzw00/A2bP6npeIiMjTWK22ncRNmuh7bm0n8eHDQFKSvucmtXLlAkJCmCQmInKEliTu3t34a/FnNBFRzjFJbDIlSwIzZgDvvy+9D50lLEzGgwedd00iIiKz8PYGcufW95wDBwK9egHr1+t7XiIiIk9z7Bhw8SLg5wfUravvuUuUAAoVkspbBw7oe25S6/33gTNngNdft32tenUZ9+1TExMRkZlYrcCHHwIvvAB06WL89biTmIgo55gkNpmAAOmtMGaMc69btaqM3ElMRERkk5xs3Lm1BVp84ExEROQYbRfxY49JolhPFgv7Ers7b2/bsbZLLSZGkh9ERJQ5i0WSwz/9BBQpYvz1tJ/Rx44Bd+4Yfz0iInfAJDFlC5PERERED+vWDahQAVixQv9zs4oHERGRPozqR6xp3hx48knZUUzu4ebNjJPAlSsDtWoBnToBt245Py4iIspcsWJAwYJAWpq0gSAiokfzUR0AZd8HH8hNZ+/ezr/5rFEDeP55uRkiIiIiKSu5cSOQkGDMvBweLiOTxERERI4ZPRpo2dK241dvH31kzHlJnTfeAH77DfjiC3kGo8mVC9i9W11cRERmceYM8N130otY2+FrNItFrrV+vVR84HNsIqJHY5LYJK5dAz7/XMpaNm/u/CRxmTLA7NnOvSYREZEri4mRBHHevEDNmvqfX9tJfPw4kJSkf89jIiIiTxESAvTqpToKMpMtW4CrV4HChVVHQkRkTvPnAx9/DGzYAKxb57zrfvAB8N57QP36zrsmEZGZMUlsEj//LAni6tW5CoqIiMgVbNggY8OGgI8Bv1EVLQoUKCALxY4cMW73ExEREenj6lXA319eZF5XrsjvXgDw+OMZvyc1Fbh0SUqbEhHRw+bPl7F7d+de98knnXs9IiKzY09ik5g2Tca+faV0hgqpqUBsLHDihJrrExERuRKtv2HTpsac32JhX2IiIiJHTZsGjBsnlTmM1Lq1VPxatcrY65Dxtm2TsUqVjKu4bdoklWRatnRuXEREZhEXB2zdKve0zzyjOhoiIsoKk8QmsH8/sGuX7FLq2VNdHJ98AlSsCHz6qboYiIiIXIHVattJbFSSGJAeh0uWcDU0ERGRvSZMAN59F9i509jrFC0q4969xl6HjLdli4wNGmT8/bJlpRXIkSNS8Y2IiNJbuFDGxo2B4sWde22rFZg3DxgxQtpDERFR1pgkNoHp02Xs1AkIDlYXR5UqMh46pC4GIiIiV3DsGHDhAuDnB9SrZ9x12rQBOnRgPzwiIiJ73LgBREfLcePGxl5LawvBJLH5aUnihg0z/n7JktISJDWVz0eIiDIyb56M3bo5/9oWC/D229IPef9+51+fiMhsmCR2cXfvArNmyXHfvmpjqVpVxkOHZFUWERGRp/L2Bl59FXj+eSB3btXREBERUUa2bQPS0mTnZ6lSxl6LSWL3cPcusGOHHGeWJLZYgGrV5JgJCCKi9M6dAzZvluOuXdXEoP2MjolRc30iIjNhktjFXbsGNG8OlCkDtGunNpZKlQAvL+D6ddk9RURE5KnKlwcmTrRV+zBKaiowfz4wahTLGRIREeXUxo0yNmli/LW0JHFsLHDrlvHXI2MkJQFvvinPX7RqahlhkpiIMhIVFYV69eohMDAQRYoUQZcuXXDkyBHVYTnVoUNA/vyy0KZkSTUxRETIyJ/RRESPxiSxiytSBPjlFylr6eOjNpbcuYFy5eSYJZWIiIiM5+UF9OsH/Pvf8rsAERERZd+mTTIaXWoakHv3YsWk6hYfSptXYCAwZgywdKn8HpYZLUm8b59z4iIic1i/fj0GDhyIbdu2YeXKlbh79y5at26NWx60eqhVK9lc9PPP6mLQksTcSUxE9GhMEptErlyqIxAPlpwmIiLyRFevAlu3Aikpxl/LYgHCwuT44EHjr0dEROQuUlKk3DTgnCQxwJLTnqR6dRm5IICIHrR8+XL06dMH4eHhqFGjBmbMmIEzZ85g165dqkNzKl9foHRpddd/sNoDWyYSEWWNSWIXtnEjcPiw6ijSY5KYiIg83bJlUjrriSeccz0miYmIiHLu2DHpR1yokO0+1mhdugCvvw6EhzvneqS/Vauk7dejREQATz8N9O8v7UGIiDKSkJAAAChYsGCG309OTkZiYmK6l5ldu+YaSdkqVaQaxLVrwN9/q46GiMi1KS5gTFmJjAQ2b5Zy0927q45GtGsnq8FatFAdCRERkRpaf8P69Z1zPSaJiYiIci48HEhIAE6ckMoczvDqq865Dhnj7FngySel1VdCApAnT+bvDQwEFi50XmxEZD5paWkYMmQIGjVqhAit/vE/REVFYdSoUU6OzDhduwKnTgHTpwPNmqmLI3duoGJF4MgR2U1cooS6WIiIXB2TxC7KarX1ttEeDruC5s3lRURE5Kk2bJCxaVPnXI9JYiIiIvv4+TlvFzGZ39atMkZEZJ0gJiLKjoEDByImJgabNm3K9D2RkZEYOnTo/T8nJiYiJCTEGeHp7uJFYP16qeJRpozqaIAZM4CCBYHy5VVHQkTk2pgkdlGnTwM3bkgv4kqVVEdDREREgNz4ai0XnNXfUEsSHz0K3L0rvxsQERGRa7p9W3YtVaoEFCigOhrKiS1bZGzYMHvvt1qBuDjZdaz1vyQiAoBBgwZhyZIl2LBhA0qVKpXp+/z8/ODn5+fEyIyzaJEkiOvWBcqWVR0N8PjjqiMgIjIH9iR2Udou4qpVXe9h8NmzwIoVwPnzqiMhIiJyLm0ReHi49Dh0htKlgbx5JUF8/LhzrklERGRmhw8DNWoA77zj/Gs3ayYPpteudf61yTE5TRIvWCC75fr3Ny4mIjIXq9WKQYMGYdGiRVizZg1CQ0NVh+Q08+fL6CotE4mIKHuYJHZR+/fLWL262jgy0qcP0LYtsHy56kiIiIicy9mlpgHpo/jrr7KDuUIF512XiIjIrDZulIXXu3Y5/9rajtK9e51/bbLfnTvA7t1ynN0kcXi4jDExsnuOiGjgwIGYNWsWZs+ejcDAQMTHxyM+Ph537txRHZqhLl+2LY7q2lVtLJo7d4CoKODFF4HUVNXREBG5LiaJXZSWJHbFkkVa2Uut3CYREZGn2LhRRmcmiQGgZUugShXAh41CiIiIHkmbr53VGuJBNWrIyCSxuezaBdy7BxQrlv0yqRUrSt/rW7eAU6eMjI6IzGLixIlISEhA8+bNUbx48fuvuXPnqg7NUL/+KonYWrVcpwewry8wejTw44/AiROqoyEicl181OiitHLTrpgkrlpVRiaJiYjI00yYAKxfDzRvrjoSIiIiyozWHqJJE+dfm0lic3qw1LTFkr3P+PjIIvo9e+QZTrlyxsVHROZgtVpVh6CEK5aa9vaWn9G7d0vFh4oVVUdEROSamCR2UWPHAtHRQJ06qiN5GJPERETkqR5/XF7OduECMH06cOMG8Omnzr8+ERGRWZw7B5w8CXh5qZmztSTxqVPA9etA/vzOj4Fyrnt3oEABICQkZ5+rVk2SxPv3A126GBIaEZHLGzYMCA11rSQxAERE2JLETz+tOhoiItfEJLGL6txZXq5ISxKfPCn9Hfz91cZDRETk7m7fBiIjpaThqFEsO01ERJQZbRdxzZpAvnzOv76WaIyLk92lzm5RQfYJDQX698/557Tqb1rLMCIiT9S8uWtW2+LPaCKiR2NPYsqxIkWAggUBqxU4elR1NERERM7xn/8As2cDiYnOv3aZMrIoKzlZFmkRERFRxlT2I9aw5LTnqF5dRq1lGBERuY6ICBljYtTGQUTkypgkdkGrVwOLFwMXL6qOJGMWC0tOExGRZ7lzB/jgA6BnT+DyZedf38vLNvceOOD86xMREZlFoUKyK1RFP2JN377AF18ALVuqi4Gyb+NGYMIE4PDhnH+2Vi3gvfeAkSP1j4uIyNUlJgJDhkgVD1dsx6wliY8elQXXRET0MCaJXdB//gM89RTw66+qI8ncW29Jb8SGDVVHQkREZLzt24G7d4GSJeXBswphYTIePKjm+kRERGYwahRw4gTQtau6GJ55Ru6ZtbmbXNtPPwGDBgHff5/zzwYHA599Bjz/vP5xERG5uq1bga++Anr3lk1FrqZkSSB/fjk+cUJpKERELosd7VyQVqZIK1vkilTecBMRETnbhg0yNmmi7uY3PFxGlUniS5eAa9eASpXUxUBERJQdrviwmlzTli0ychE8EVHOaD8/GzVSG0dmLBZg504gJATw81MdDRGRa+JOYhdz5Qrw999yrD0MJiIiIrW0JHHTpupiUL2TODVV/v7VqgHHj6uJgYiIKCsXL8p85QoOHZIdqtr9PbmmhARbr8oGDew7x/XrwJo1tn7YRESeYvNmGV15kU2FCkwQExFlhUliF7N/v4yhoUBgoNpYspKaCqxdK3177t5VHQ0REZFx7t6VMlqAaySJjx0D0tKcf/0VK6RXX0oKsHix869PREQZi4qKQr169RAYGIgiRYqgS5cuOHLkiOqwlOjWTXoSr1ihOhLgpZeAXr2A9etVR0JZ2b5d+miGhgLFitl3jvnzpf/06NH6xkZE5Mru3ZOfoYDr7iQmIqJHM02S2FNufLVS09WqqY3jUSwWoGNH6dvDng5EROTOdu8Gbt+Wh85Vq6qLIzQU2LtXSj57KfgNbvJk2/Hy5c6/PhERZWz9+vUYOHAgtm3bhpUrV+Lu3bto3bo1bt26pTo0p0pOBnbskJ2hoaGqowFq1JBx7161cVDW9Cg1rbUK0xb9ExF5gv37gZs3gXz5bAuaXdH580C/fkDnzqojISJyTabpSazd+NarVw/37t3D8OHD0bp1axw8eBABAQGqw9ONdlPhyv2IAXk4XbkysGePlNGqXFl1RERERMbYvVvGJk3UJGc13t7qfj84exZYssT25w0bgDt3AH9/NfEQEZHN8n+s3JkxYwaKFCmCXbt2oWkGJTCSk5ORnJx8/8+JiYmGx+gMf/0lieIiRYCKFVVHwySxWeiRJA4Pl4X0Fy7IYr7gYH1iIyJyZVqp6QYN5F7VVeXODUybJseJiZLUJiIiG9PsJF6+fDn69OmD8PBw1KhRAzNmzMCZM2ewa9cu1aHpSksSu/pOYsC2m+rQIbVxEBERGem11yRJOnas6kjUKVhQdhK//jrwxRfApk3s60RE5KoSEhIAAAULFszw+1FRUQgKCrr/CgkJcWZ4htH6wTZuLAk71Zgkdn1pabK4AHAsSRwQAJQrJ8fcTUxEnkJ7JO/K/YgBuZctUUKODxxQGwsRkSsyzU7if3rUjS9gzhXS06YB0dGyW8nVaaVEmCQmIiJ3V7Kk6gjE9u3Ad98BZcsCH3zgvOvmyQO8/LLzrkdERPZJS0vDkCFD0KhRI0RERGT4nsjISAwdOvT+nxMTE90iUbxpk4yuci+tLfw+fx64fBkoXFhtPPQwLy/g9Gn5/SqT/7tkW/XqwPHj0kLsiSf0iY+IyJV9/z3wzjtAUJDqSB6tWjWZj/fvl53PRERkY5qdxA/Kzo0vYM4V0mFhwAsvAMWLq47k0biTmIiIyLnOnZMk8a+/qo6EiIhc0cCBAxETE4M5c+Zk+h4/Pz/ky5cv3cvs0tJsZS8bN1YbiyYwEChfXo65m9h1BQYCrVoBPg5uodAWBXAnMRF5Ci8vKbdfqpTqSB5NSx/ExKiNg4jIFZkySZydG19AVkgnJCTcf8XFxTkpQs+gJYkPHwasVrWxEBERGWHaNKBdO+CXX1RHIsLDZTx4UB6IO8OQIcCECcCNG7avzZ8P9O0ru2+IiMg1DBo0CEuWLMHatWtRygxPbHV04ABw/bqU/a1ZU3U0Niw57TmYJCYicl38GU1ElDnTlZvWbnw3bNjwyBtfPz8/+JmoYd7vvwOxscCTTzpe6sgZKlSQ1bY3b0qvRhNs1CYiIsqR5cvl5Sq7ksqXB3LlAm7fBs6ckbLTRjp1Cvj6a1kM1rq17LYBgPHjZcfW448DAwYYGwMREWXNarVi8ODBWLRoEdatW4fQ0FDVITldUBAwYgRw547jO0L1NGQI0KcP8NhjqiOhjDz7LFC6NPDuu0DRoo6dq1EjYPJkoFYtfWIjInJlUVGyK/fVV12nzUNWtOfs+/fLva3FojYeIiJX4kK3T1nzhBvfH36QnTnjxpkjSZwrFzBrlvRpDA5WHQ0REZG+rFZgwwY5btpUbSwaHx+gcmW5IT940Pgk8Xffyb9Dy5ZAxYq2r7dtK0niFSuYJCYiUm3gwIGYPXs2fvvtNwQGBiI+Ph4AEBQUBH9/f8XROUfp0sCoUaqjeJgZHpx7qosXgXnz5PjDDx0/X/HiwCuvOH4eIiIzWLQI2LkT6NhRdSTZExYGeHsD+fIBiYnm6KNMROQspik3PXDgQMyaNQuzZ8++f+MbHx+PO3fuqA5NN1rJC60Ehhn06CG7q3LnVh0JERE5S1RUFOrVq4fAwEAUKVIEXbp0wZEjR1SHpbvYWODCBcDPD6hXT3U0NmFhMh48aOx17t4Fvv9ejv+ZCG7bVsZVq+R9RESkzsSJE5GQkIDmzZujePHi919z585VHRqRy9q6VcbwcCB/fqWhEBGZyu3bwJ49ctywodpYssvfX5LDJ04wQUxE9E+mSRK7+43vnTvAsWNyXL262liIiIiysn79egwcOBDbtm3DypUrcffuXbRu3Rq3bt1SHZqutF3E9eu71mIoZyWJFy8G4uOBIkWAp55K/73atYHChaVP8bZtxsZBRERZs1qtGb769OmjOjSnuHQJ+O034PJl1ZFkbPly2eV84oTqSOhBW7bIqGeC49gxYMoUYOlS/c5JRORqdu4E7t2TypKlS6uOJvvy5FEdARGRazJVuWl3dvAgkJYmD1wd7YXjTBcvykPkO3eAwYNVR0NERM6wfPnydH+eMWMGihQpgl27dqGpq9Rl1oGWJHa1UpHh4TJeuWLsdSZPlrFfP8DXN/33vLykR/Hs2fLw29X+jYiIyHP8+SfQq5f0/d2+XXU0D4uKkt8pypWTF7kGbSexnkni338H3n4beOYZoH17/c5LRORKNm+WsWFD9vYlInIHptlJ7O4eLDVtpgn27Fmgf39g9GjVkRARkSoJCQkAgIIFC2b6nuTkZCQmJqZ7uTKrFVi3To5dLe/doYPs4P3tN+Oucfw4sHKl/E7Sv3/G72nTRsYVK4yLg4iI6FE2bpSxcWO1cWSmRg0Z9+5VGwfZpKTITjgAaNBAv/NqVeH27dPvnERErkarxNCokdo4cio6GmjWzNY6iYiIhGl2Ers77SbCbKWmK1eW8fJleRUurDYeIiJyrrS0NAwZMgSNGjVCREREpu+LiorCqFGjnBiZY27elDkuIcH1bn79/Y2/RkoK0KWL9BsODc34Pa1b296blORaJbmJiMhzbNoko6tWtdCSxNHRSsOgB0RHy+8uBQsClSrpd95q1WQ8fhy4dQsICNDv3EREriAtzVaJwdXukx8ld26p7BEQIH8PL26dIyICwJ3ELuPBncRmEhAAlC0rx4cOKQ2FiIgUGDhwIGJiYjBnzpws3xcZGYmEhIT7r7i4OCdFaJ/AQClfefmyZz7gq1oVWLQo693KxYpJz+J9+5ggJiIiNa5eBQ4ckGNXfVj94E5iN++iZRoXLkibL71LpRYtChQpIv87Hzyo33mJiFzFlSvShzgw0Da/mUWFCoCfnyziOXVKdTRERK6DSWIX8euv0j+pY0fVkeRc1aoy8iaIiMizDBo0CEuWLMHatWtRqlSpLN/r5+eHfPnypXuZgY+L1lz5/nugRQvgu++MvY63d9bfL1rU2OsTERFlReuLWKUKEBysNpbMhIfLbqXLl4G//1YdDQFAp07yv8XPP+t/bm3hP0tOE5E7Cg4G9uyRxTa5cqmOJmd8fGzPsLXNWkRExCSxywgIAB57zJwPW7UJljuJiYg8g9VqxaBBg7Bo0SKsWbMGoZnVIzap1FTZIevKzpyRnsnbt+t/7smTgRMncvaZO3ekZBcREZEzaaWmXbUfMSBtIrSSxuxL7DosFiBvXv3Pq7UQYwKCiNyZM1ogGUHrkBUTozYOIiJXwiQxOYxJYiIizzJw4EDMmjULs2fPRmBgIOLj4xEfH487d+6oDk0Xe/YAxYvLA2dXLQsZFiaj3lU8jh4FXn1V+jFfupS9z/ToIT392GuRiIicbeNGGV05SQykLzlNaqWmGvv7nbaTmEliInJHKSmqI3AMf0YTET2MSWIXMH8+MHCg9D40IyaJiYg8y8SJE5GQkIDmzZujePHi919z585VHZouVq+WsXBhffvU6UlLEh84oO+DzilTZGzbNvtlO5OTgaQkYPly/eIgIiLKjh9/BKZNA558UnUkWRs5UhZ2vfOO6kho3jxZDDhsmDHnb9cOWLMGcJNfi4kohzZs2IBOnTqhRIkSsFgs+PXXX1WHpJtLl4B8+YBGjcybLOZOYiKihzFJ7AKWLgX++19gyxbVkdinZk15oG5EyUsiInI9Vqs1w1efPn1Uh6aLVatkbNlSbRxZqVRJ+hsmJOjX3zApCZgxQ44HDMj+59q2lZFJYiIicrby5YG+fYESJVRHkrWqVeXl46M6EtqyRXppGlUAp1gxoEULWWxIRJ7n1q1bqFGjBiZMmKA6FN1t3SoLhK9dA3x9VUdjn4gIWShUpozrVg0jInI23qK4AK3EhVbywmwCAoAnnlAdBRERkePu3LGVrmzVSm0sWfHzAypUkPLQBw/q83B8wQLgyhUgJER2wWRXmzYybt0qSeugIMdjISIiIjKCtji/YUO1cRCRe2rXrh3a5eRmykS0n5+NGqmNwxGlSwPnz6uOgojItXAnsWKpqbYSF2ZNEhMREbmLLVtkdXSJEkCVKqqjyZrefYknT5axf3/A2zv7nwsNlZ3N9+5JeUUiIiJn+PRTYPx4ID5edSTZM2UK8K9/SasIUuPWLSA6Wo6NTBJv2AC89x6wcKFx1yAi95CcnIzExMR0L1e1ebOMXGRDRORemCRW7PhxKe/o7y+lssxq2zbp6TNrlupIiIiI7PdgqWlX7UesCQuTkob37jl+roMHZQe1tzfQr1/OP6/tJmbJaSIicobUVOD//g946y392i4Y7Zdf5H552zbVkXiunTvlv51SpaRyilHWrgX+8x9g8WLjrkFE7iEqKgpBQUH3XyFG/nByQEqK/AwFzL2T+EFm7atMRKQ3JokV00pNh4fnbNeOq9m5E/jsM2D+fNWREBER2W/1ahldudS0ZvRoeTA+dKjj5zp0SMpEd+pkX+lqrS/xihXs7URERMbbvx9ITAQCA4Hq1VVHkz01asi4d6/aODyZs0pNa/9N7ttn7HWIyPwiIyORkJBw/xUXF6c6pAzt3i0VtwoXBipWVB2NYxYvBkqWBLp1Ux0JEZFrYE9ixbSbBrOXmq5aVcZDh9TGQURE5IihQ4E//5SdxK5Oz8VlXbtKovfaNfs+36yZ7CZu1Up2NufKpV9sRERE/7Rxo4wNG5pnsTWTxOpt3Sqj0Uli7fnOwYPye5EPn7wRUSb8/Pzg5+enOoxHenCRjatX3HqUoCDpS2yCf3YiIqfgr6qKnT0ro1lWP2dG64t4/LiU6/D1VRsPERGRPZ57Tl6eKCBAXvZ+lqWmiYjIWTZtkrFJE7Vx5MSDSWKr1fwP2c3osceAK1eAxo2NvU65ckCePMDt20BsLFClirHXIyIyWoUKwNNPA61bq47EceHhMp48Cdy4IVVJiIg8GctNK/b998Dly0CfPqojcUzx4kC+fNLf59gx1dEQERF5hpdfBkqXBtats/8cu3ezRDQREZmH1WrbSWx0sk9PVatKpY2EBODMGdXReKaPPpLdcHXqGHsdLy8gIkKOtRZjROQZbt68iejoaERHRwMATp48iejoaJwx+Q/+zp2BhQuBV19VHYnjChcGihWT44MH1cWRmgrMmQOcPq0uBiIigElil1CoEJA/v+ooHGOxsOQ0ERGZ28SJwK5dQFqa6kiy7+JFIC4OOHDAvs/v3SsPSmvXBu7edTyev/8GZs4E7txx/FxEREQZ2b9f5ptcuWRnqFn4+trumVly2v2xLzGRZ/rrr79Qq1Yt1KpVCwAwdOhQ1KpVCyNGjFAcGT1IawugciHPmDHA888D3buri4GICGCSmHTEJDEREZnVmTPA66/Lw+YbN1RHk31auwd7V0BPnixjhQqO9xG2WoH69aU6yoYNjp2LiIgoM0FBQHCw9EX091cdTc7UqCG7TE2+ocyUDh927u94WgKCldaIPEvz5s1htVofes2YMUN1aHY7eRI4ccK9qk9p1R5iYtRc//BhQFs3cPw4kJSkJg4iIoBJYqXmzpVeDlOnqo5EH1qSmDdBRERkNqtXy/jYY/Lw2Sy0fkr2JIlv3gRmzZLjAQMcj8VisfWoWrHC8fMRERFlpEwZ4NdfpQKI2YwbJ/PvoEGqI/E8XbtKBbc1a5xzvZ49ZTHAzz8753pEREb5v/8DypeXkv3uQmVLgLQ04JVX5LhFC2lDmTu38+MgItIwSazQli3AypWyesgd9O0rfRRMvDiOiIg8lJYkbtVKbRw55chO4jlzZEdNhQrAE0/oE0/btjIuX67P+YiIiNLSgA8/lMSwpmFD2yJlMylSxHy7n93BtWvyu1Jamm2Hr9EKFQJCQmQRHRGRmW3ZIuP/Kmi7hdq1gSZNpBKWs02dCmzcCAQEANOnc54gIvV8VAfgybTVSs66STFacLDqCIiIiHLOagVWrZJjsyWJq1SR8eJFWYFcuHD2P6uVmn7lFSl9qYeWLeVchw7J7pnSpfU5LxEReaaEBNmR+ccfQN68UpKxSBHVUZHZbNsmY8WKfG5BRJQTCQm259eNGqmNRU81a6ppkXTuHPDee3I8ZoxURwGk7HVKiiSviYicza5HgqNHj8bt27cf+vqdO3cwevRoh4PyBFYrsG+fHLtLkpiIiJyPc7LjDhwALlwA8uQBHn9cdTQ5ExAAlC0rxznZTbxrF/DXX4Cvr/QQ1kuBArZ/Q5acJiJPwzlZX0eOyA6fP/6QMowTJ7pHgvjDD4EGDYAdO1RH4jm0XXANGjj3urNmAc88A8yb59zrEhHnZL1s3y7PsMuVA4oVUx2N+W3YANy+Lb/fDBwoX5swQXIDw4erjY2IPJddSeJRo0bh5s2bD3399u3bGDVqlMNBeYL4eODKFdlto5WKdAeTJgHdu6tZjfWgn36SWIiI3B3nZMdpu4ibNAH8/NTGYo+GDWVVt9Wa/c9oDyufeUb/HTVt2sjIJDEReRrOyfr54w/gscckUVyqFLBpE9Crl+qo9LF7t+xs3bVLdSSeQ0sSN2zo3OtGRwOLFql/PkLkiTgn62PzZhmd/fPTWW7dkqpczvL88zL/T58OeHvL17SWTX/+KdW4iIicza4ksdVqhSWDgvl79+5FwYIFHQ7KE2ilOipWdK+eRGvXAvPny0ozVf76Sx4gvPaalOsgInJnnJMdpz24M1upac1PP8nD82bNsv+ZMWPkJjQyUv94tJvc1auB1FT9z09E5Ko4JzvOapU5qlMnIDERaNxY7u/q1FEdmX5q1JBx7161cXiKe/dszyecneTQqsZpz3+IyHk4J+tDW2TjTqWmNZ9/DgQGAh984NzrVq8OVK1q+3P58kDz5vI70MyZzo2FiAjIYU/iAgUKwGKxwGKxoFKlSukm29TUVNy8eROvvvqq7kG6I3frR6zRdkUfOqQuhgeT7kuXAhER6mIhIjIK52T9/Pyz7OgpX151JM7j5QU8+aQx565TRxLXrVrZVkerdOaMlEbz9VUdCRG5K87J+rFYpOqW1Qq8+irw1Vfu9/ObSWLn2r9fdorly+f8Km7Vq8u4b5/8N51BvoqIdMY5WT/37tl6urvjTuJSpeRnszM2GH32mVTcqlkz4++/9BKwbh0wbZokrb3s2tZHRGSfHCWJx48fD6vVipdeegmjRo1CUFDQ/e/5+vqibNmyaODsJi8mlZwM5M/vfklibSWUyiRxeDjw7bfAoEFSpuy999TFQkRkFM7J+vHzy9kuXFeVlCQ9G7NitQJ37xr7wN3bG3jhBePOnxNWq7TBiI+XxQD16gG5cqmOiojcDedkfX3+OfDEE0CXLqojMYaWJN6/H0hL44Ngo5UoIf0eExOdv3italW55rVrwPnzQMmSzr0+kSfinKwfbWfr9u3yrNXdaM/kY2KMnY/XrAGGDQM++gg4fhwICXn4PV27ynPsU6ckWfzEE8bEQkSUEYvVmpMOdmL9+vVo1KgRfHxylGNWLjExEUFBQUhISEC+fPlUh+OUB7XOtn+/rJYNCpIbIVUrZU+dAkJD5Ybs0iWgQAE1cRCRe3Kl+YRzMiUnS9WMEydkzsuqetqOHUCHDtKSYfRo58Woyp9/2nok58oFPPcc8MMPamMiIn250nzCOdk+a9YA//2vLObxhIU89+5JecukJODoUWlBRe4rLEwW0S9bZmvJQeSuVM8nD+KcTI9y9y4QECDjyZNA2bL6X+POHUlGHz8OvP66LFrKzKuvApMnAz17ArNm6R8LEXme7M4pdq2RCQwMxKEHtor+9ttv6NKlC4YPH46UlBR7TumRLBb3ShADQKVKsvIqIUF27TjTuHHA0KHA9esysYeFSS/ElSudGwcRkTNxTnZMnz7AG2/I4iKz8vOTRHFa2qMreUyaBFy+bPzf12oF/vMfWQF96ZKx18oqhlGj5LhCBbn537NHTSxE5Bk4J+eM1SrlpFu3BhYsAMaPVx2Rc/j42FoiseS0+2NfYiI1OCfTo+TKZauIaVTJ6X//WxLEJUsCUVFZv7dfPxk3bpR7VyIiZ7ErSTxgwAAcPXoUAHDixAn06NEDefLkwbx58/Aea/t6ND8/W09HZ5ac/vtveRD85ZfShxgA2reX8Y8/nBcHEZGzcU62340b0jv3m2/kQbWZaT32Dh7M/D3XrwNz5sjxgAHGxmOxyL/t2rXqFmutXQts2SK/m/z8s3zt4EHg9m018RCR++OcnH1JSUDfvsCQIbKw91//kjKLnqJmTaB0afl3IONcvgxMmZL170dGq15d2oEkJqqLgcgTcU523BdfAKtXA+6cU9cWbRmxkGf3bmmhAUjFlEdtDK9bV6pOHDvmGZVViMh12JUkPnr0KGr+r9P6vHnz0KxZM8yePRszZszAggUL9IzPLc2fL4nU999XHYkxqlaVB7J//+28a374IXDzJlC/vpSSBIAePeTrb7zhvDiIiJyNc7L9NmyQko+hofIyM61HVFYPQWfNknJXERFAw4bGx6SVVFy+3PhrZeTjj2Xs3x+oUwcoWlR2W3MnDxEZhXNy9pw7BzRrJn0Ovbxkoe/MmYC/v+rInGfSJOD0aaBXL9WRuLcNG2Rh3PPPq4vhrbfkWYX2ewkROQfnZMecOwe8/bZU+0hOVh2NcR7sS6yne/eAl1+WhXDPPgt07vzoz1gscg/tblVHicj12ZUktlqtSEtLAwCsWrUK7f+3ZTMkJASXL1/WLzo3tXev9A28elV1JMaYMQO4dUt6KDjDnj3A9OlyPH68PGgAZAXWxx/Lg2EiInfFOdl+q1fL2KqV2jj0oO0kPnAg4+9brdLfCJCHpRaL8TFpvYD//FOSs860YQOwbp2swH7vPfn71qol32PJaSIyCufkR9uxQ+7TduwAChYEVqyQ3cTOmJdcibe36gg8w5YtMjpjcVxm8uTh/95EKnBOdoz287N6dSAwUG0sRmrcWCqbtGun73lnzZL7zgIFgK+/zvnn09JkgRERkTPYlSSuW7cuPvnkE/z4449Yv349OnToAAA4efIkihYtqmuA7mjfPhm11UrupkAB590EWa2yMtdqldXBjz/unOsSEbkKzsn2W7VKRndKEme2k3jLFlkd7e/vvF1LjRoBAQHAhQvO77mo7V5+6SUgJESOa9eWcfdu58ZCRJ5D5Zw8YcIElC1bFrlz50b9+vWxY8cOQ69nr7x55aFntWrAzp3uMQc7wmo1f8sLV+YKSWIiUoP3yY7ZvFnGRo3UxmG0xo2BadP0v0f+178kOfzNN1LRKicWLADKlQM++EDfmIiIMmNXknj8+PHYvXs3Bg0ahA8++AAVKlQAAMyfPx8N+dv3I2llDt01SexMixYB69dLj5+xYx/+flIS8OuvwOjRTg+NiMgpOCfbJz7eNh8/8YTaWPRQtaqM584BCQkPf1/bRfz880D+/M6JydfX9m/r7JLTY8bIg+EHb6yZJCYio6mak+fOnYuhQ4di5MiR2L17N2rUqIE2bdrg4sWLhl0zJx5MgoaFSa/6LVvkAagn690bKFJEql+Q/pKTgV275Fj1r8SjR8tuvPnz1cZB5El4n+wYLrJxjLc3MHiwfVU2AwKkJcWsWe5d6puIXIfFatVv3WpSUhK8vb2Ry0W7qycmJiIoKAgJCQnI96hu8Qa5ccPWqP7SJaBwYSVhGCo1FXjxReDQISnlWaCAMdexWuWBb3Q08NFHGSeCL1wAihWT4/PngeLFjYmFiDyLK8wnj8I5OWuzZ8sNW82a7lN+uH17edgcFfXwfHfwIDBliqxodmYbhv/+Fxg4UHpPrlvnvOtm5NQp4IUXpOrIF1+ojYWI9KN6PskOo+fk+vXro169evj2228BAGlpaQgJCcHgwYMxbNiwh96fnJyM5AeeOiYmJiIkJMSQf8OLF2WB0ogRMheQzVNPAYsXA199Bbzxhupo3M/WrZLcKFJEFgeqLGk+YID8HhYZKQvZiNwV52THucK/4e3bQFCQ9NU9dQooU0ZJGE6TkgIcPSrP60uXduxcO3cC4eHSasBeqanyb37uHDB3rvQ0JiKyR3bnFB9HLrJr1y4cOnQIABAWFoba2hYNylRMjIzFi7tnghiQ1VLr18tkduiQcavOLBZg2TLgs8+k32BGihYF6tWTSXrpUqBfP2NiISJSjXNyzqSkyA2gO5W5XLo08++FhQHjxzstlPvatJEb5AIFpK+Sl101bLLvxAlZeZ1RSa+yZW0r4omIjOTMOTklJQW7du1CZGTk/a95eXmhVatW2Lp1a4afiYqKwqhRowyLSbNrF/D000BcnOyIOXwY8HHoCYR7qVFDksTObsngKbQ5v0ED9T2vtSpyWhUbInIe3ifn3M6dkiAuUcLxpKkZDB4sC3k+/BD4+GP7z3Phgtz/Figgra1CQ+07j7c30KcP8OmnUgqbSWIiMppdt2gXL15Ejx49sH79euT/X83C69evo0WLFpgzZw6Cg4P1jNGtaDcF1aurjcNoYWHGJ4kB2SX85ZdZv6dDByaJich9cU62T58+UuYxJUV1JO6tfHng6lXAz8851xsyRMqYfv+97BomInImFXPy5cuXkZqa+lB/xaJFi+Lw4cMZfiYyMhJDhw69/2dtJ7GeZs+We6+kJKBSJeC335gg/qcaNWRkktgYrlQqVXv+wyQxkfPwPtl+2hqzRo3UL7JxhvBwGbWNXfZ64w3g2jVJDjv6a1XfvpIk/vNP4MwZz0jWE5E6du3nGDx4MG7evIkDBw7g6tWruHr1KmJiYpCYmIg3WCcpS3nzys7Wxx5THYmxtN6I/1usp7tMnndkqH17GVeuZDKAiNwP52T7WSzOS146y927smNLs2kT8NxzwMaN6mJy1r/xnj3A779L36asSmrfvi072oiI9GaWOdnPzw/58uVL99JLairw7rvS0iEpSe7Ftm8HqlTR7RJuQ0sSx8TIji3S13ffSeWx7t1VR2LbSXz6NJCQoDYWIk9hljnZFb3zDrB7N/DBB6ojcQ49qj0sXgz88ovsAv7uO8cXxpUvDzRvLq0WZ8507FxERI9iV5J4+fLl+O9//4uqWiYQUrJjwoQJWLZsmW7BuaMXXgB27Mi4f647MTJJvHevrPLq3Dl7Sd86daTs5I0bah+SExEZgXNyzl25Ig+x3c1ff0lp5yZNbF/773+lj9GsWeri0pw9Kze5RvnkExmfew6oXDnj9/z2GxAYyF3GRGQMFXNy4cKF4e3tjQsXLqT7+oULF1CsWDFDrpmZO3ekitO4cfLnyEh5aPq/DVz0D+XKySLy5GTgyBHV0bifAgWAtm3tL/epdyylSsmxozvViCh7eJ9sPx8foFYt22ImdxcRIeOJE8CtWzn/fGIi8PrrcvzOO/JvpwetGua0adK6iYjIKHYlidPS0pArV66Hvp4rVy6k8acWwbgksdUKvPWWTI7+/oCv76M/4+UFtGsnx1n1ayQiMiPOyTk3YABQuLCs9HUnoaGyE+n0aeDmTeDSJWD+fPnegAHq4kpLkxvlkBDg6FFjrhETAyxcKLvDs1rxXrGixLN3r3suFCAitVTMyb6+vqhTpw5Wr16dLo7Vq1ejQYMGhlwzM7lzAwULyoKluXOBMWNkRw1lzMvLtnuJJafdH/sSEzkX75Mpu4KDgSJF5JnzwYM5/3xkpLRcLF8eGDlSv7ieeQZ49VXgp588o+w3EaljV5L4iSeewJtvvonz58/f/9q5c+fw1ltvoWXLlroF525SUmSVsCfQksSnTklZR70sXgysXSulKz/7LPuf69BBRq7QJiJ3wzk5Z1JTgTVrgOvX3a+vT6FCUjkDkEVaM2ZI+em6dYHatdXF5eUlsQHAihXGXEPbRdy1q62nVEYqV5ZFZrduAceOGRMLEXkuVXPy0KFDMXXqVMycOROHDh3Ca6+9hlu3bqFv376GXTMjFouUWNy+HXj2Wade2rSaNQOeeALQseI3AfjqK3lo70q7dmvXBsLCgAxyVkRkAN4n22fhQumH62mbbLSFPDmdNzZvlupdADB1qtxr6iVPHmDiRKBhQyaJichYdiWJv/32WyQmJqJs2bIoX748ypcvj9DQUCQmJuKbb77RO8Z0JkyYgLJlyyJ37tyoX78+duzYYej19LR6tZST6tJFdSTGCw6WB9WVKgH/qHxmt5QUKdsBAEOHAmXLZv+z7doBsbHAkiX6xEJE5CpUzslmtGcPcO2aPIytW1d1NPoLC5MxJgaYMkWOX31VXTyaNm1kXL5c/3MfOmTbFf7hh1m/19sbqFlTjnfv1j8WIvJsqubkHj16YNy4cRgxYgRq1qyJ6OhoLF++HEW1lUNOlCePrWwjPVpUlDwn6NhRdSTuZcYMYOxY4PBh1ZHYfPIJcOCArXwoERmL98n2WbJEfoZu2qQ6EufSfnfJaZK4TBmZw/v1A1q00D8uIiJnsKuNekhICHbv3o1Vq1bh8P9+665atSpatWqla3D/NHfuXAwdOhSTJk1C/fr1MX78eLRp0wZHjhxBkSJFDL22HvbvlzKQfn6qIzGexSKlNvQsL/btt5LoLVpUVgXnRECAlP0gInI3quZks1q1SsbmzaXXkrsJD5eKG9qcmS+f9OhVrW1b4L33gHXrgKQkKUmql127pP1Eu3bZ65tVqxawdassGGBvYiLSk8o5edCgQRg0aJDh1yFydTduAPv2yXHDhmpjISJ1eJ9sny1bZGzUSG0czvbUU1JyOqeJ3lKlpOrl3bvGxAXInDZpElC/PtC7t3HXISLPlaOdxGvWrEFYWBgSExNhsVjw5JNPYvDgwRg8eDDq1auH8PBwbNy40ahY8cUXX6B///7o27cvwsLCMGnSJOTJkwfTpk0z7Jp60m5UqldXG4ez6JkgvnQJGD1ajj/9FAgMtP9c7EFIRO5A9ZxsVlrLRnd9NqDtJNZ2yfbqJQulVIuIAEqUAO7cAfT+z7JXL+DkSeCLL7L3fq30NncSE5FeOCeTo65f95zWVEbbsQNIS5PdXSVKqI7mYWlpsnmAiIzhKnOyGSthXr5sa9PXoIHaWJytRQtg+PDs/73v3LEdWyyyaNkoa9ZI2WlugCcio+QoSTx+/Hj0798f+TJomBMUFIQBAwbgi+w+ocuhlJQU7Nq1K92KLy8vL7Rq1Qpbt27N8DPJyclITExM91Jp/34ZtT4HlH2nTwMFCkiJyD597DvHzZtS6rtoUTkmIjIzlXOyWT2YoHT3JDEAVKwIDBigLpYHWSzGlpwuXhwIDc3eex9MElut+sdCRJ6HczI5omVLudfdsEF1JO5B2wXniruIe/aUBe8rVqiOhMh9ucKcrFXCHDlyJHbv3o0aNWqgTZs2uHjxoqHXdZT2eL1qVaBgQbWxuLLUVEkq9+4NXLli/PV69ZJ+9rt2AXv3Gn89IvI8OUoS7927F23bts30+61bt8auXbscDiojly9fRmpq6kN9lYoWLYr4+PgMPxMVFYWgoKD7r5CQEENiy467d6VnHuA5O4ljYqQUhh43Z3Xryr/fwoX271AOCJDd3Feu2HaSERGZlco52ay2bJFdOiVKAFWqqI7GGOHhUl76k09kFbgr/c6h/eeqV5L4zBnZLZRT4eHAiy8CI0caWxaMiDwH52RyhPYgng9+9eHKSWKrFbh921Zljoj05wpzslkrYW7eLKMr/vx0hlOngF9/lTEr334LbN8u701KMj6uwoWlHDYAuPh/QkRkUjlKEl+4cAG5cuXK9Ps+Pj64dOmSw0HpJTIyEgkJCfdfcXFxymI5ckQeRAYGStkjTxAYKA9v//pLn3JKuXNnf5dQRiwWoEMHOV661PF4iIhUMtuc7ArKlpXE4MCBMie4o8KFgZ9/Bj74wPX+jq1aAf36AaNG6bOD95NPZDHaiBE5+5yvLzBzJjBkiLFlwYjIc3BOJkfUqCEjk8SOS0uz7YRzxSSHVlVOqzJHRPpTPSfntBKmK1XB9NR+xJo33gCefhpYsiTz95w6JffaAPB//weULOmU0PDSSzLOmsX2FESkvxwliUuWLImYmJhMv79v3z4UL17c4aAyUrhwYXh7e+PChQvpvn7hwgUUK1Ysw8/4+fkhX7586V6qPFhq2tUe2holJER27969Cxw/bt85Vq4EJk/Wr2fPg0lilpgkIjNTOSebVfnywL//Lb2GyPkKFgS++w7o1s3x34XOnAFmzJBjrYw1EZEqnJPJEUwS6+f8ecDHB8iTx7WqqWiYJCYynuo5OaeVMF2lCqbVauuz64qLbJxB+xmd2X8+Vivw6qvArVtAkyZA//7Oi611a0lIX70K/Pab865LRJ4hR0ni9u3b46OPPkJSBrUU7ty5g5EjR6Jjx466BfcgX19f1KlTB6sfqBOclpaG1atXo0F2u8orVKIE8PzzQPv2qiNxHi8vWzlPrdR2Tty9CwweLBPwl1/qE1Pz5oC/P3D2LEs8EZG5qZyTNRMmTEDZsmWRO3du1K9fHzvsqf1LZIfPPpPfE1q0sG+le2oqcPAgsGaN/rERkedxhTmZzEtLEh86xN1BjipVCrh0CTh8WJLFrkZLXB8+DKSkqI2FyF2ZbU52lSqYFguwc6ckIStVUhKCchERMma2kGf2bOkp7+sLTJ0qz72dxdsb6NNHjr//3nnXJSLPkKNfmz/88EMsXLgQlSpVwqBBg1C5cmUAwOHDhzFhwgSkpqbiA63mggGGDh2K3r17o27dunjssccwfvx43Lp1C3379jXsmnpp1kxenqZqVWDXLnkQ26VLzj47caKU6Q4OBgYM0Cee3LmBli2ldMgff9huyImIzEb1nDx37lwMHToUkyZNQv369TF+/Hi0adMGR44cQZEiRQy7rr327JHSUM2bAwUKqI7Gc6WlSRuKlSuB99+37wHuuXOyIxnIealpzY4dskK+eHHZdURE5AjVczKZW0gIkD8/cP068PvvUnGD7GexyL+pKwoJAYKCgIQESRS74m5nIrNTPSfntBKmn58f/Pz8DIsnpzz5XllLEsfEyK7hB6tfXboEvPmmHI8YAfzvPyun6ttX2iY99tjD8REROSJHj+aKFi2KLVu24LXXXkNkZCSs/6vXa7FY0KZNG0yYMOGhchp66tGjBy5duoQRI0YgPj4eNWvWxPLlyw29JjmmalUZc7qT+OpVKQkKSM9BPSuFd+ggSeKlS1lylIjMS/Wc/MUXX6B///73F2pNmjQJf/zxB6ZNm4Zhw4Y99P7k5GQkP7A9xtm9lr77Dvjvf4FBg4BvvnHqpekBVivQrp3M8y1a2FfK7D//kd03jRvbvwCvenVZ+f333/JiFVgicoTqOZnMzWIBOncGfvgB+PRT6Yfo7a06KjKCxSLlTDdtkp1qTBIT6U/1nPxgJcwu/9sto1XCHDRokGHXdRSTjpL49fEBEhOBuDigdGnb906cAHLlkp/h772nJr7y5YHTp527g5mIPEOO92+UKVMGS5cuxbVr1xAbGwur1YqKFSuigJOWGg0aNMilJ9WMJCXJ5FKunOfd7NmbJB41Crh2TW6a+vXTN6b27aU0ZefO/CWIiMxN1ZyckpKCXbt2ITIy8v7XvLy80KpVK2zdujXDz0RFRWHUqFGGxpWVVatkfPJJZSEQ5PegJ58E5s4Fli/PeZI4Ph6YPFmOR4ywfw4PCJCWGAcPyi5zJomJyFGq75PJ3CZPlt3EgwZ53jMDvVy5AtSqJb9bzJrlmuWmAaBVK9mpV7iw6kiI3JfqOdlslTCtVqBiRel5+8MPQJkyqiNSw9dXEsUHDshu4geTxPXry73jpUuSLFaFCWIiMoLdvzYXKFAA9erV0zMWt/XXX9LQvlIlKZ/sScLCgNBQSZBn1+HDwIQJcvzll/rfJJcuLSt3iYjchbPn5MuXLyM1NfWhFdhFixbF4cOHM/xMZGQkhg4dev/PiYmJCHFSLcAzZ4CjR2U+8cTWD66mbVtJEq9YAYwenbPPHj8uD1VLlpSHrI6oVUtu9HfvlgVkRER64H0y2SN3buCrr9J/bcIEoGZNWeBMj7Z1qyzO37vXdRPEADBypOoIiDyHqjnZbJUwT52S+6wzZwAX7BzlVNWqSZJ4//6H7xELFHCNctz37smC61Kl5PcEIiJHufCvzu5Da3hfvrzaOFSoXFlKcuTEu+8Cqamy0/eJJ4yJi4iInEtlr6XVq2WsV0/6wJFarVvLuHMncPlyznbSNGoExMbKjmJHK4HUrg389JPsJCYiInIlGzYAb7whO4Y++wx46y1WwHqULVtktKeVBRGR3sxUCXPzZhlr1wb8/dXGotqrr0rbh8cflz+PGiXP83v2dJ15eNgw4PPPJaZZs1RHQ0TugEUKnEBLErPfTPb8+99Ay5bAuHHGXufKFWDOHElIExFR9hUuXBje3t64cOFCuq9fuHABxYoVUxRV5rQksaM7T0kfJUrI70RWq60MeE74+elTAq12bRl373b8XERERHqqXRt49lnZLfT220DXrsD166qjcm1mShJbrcD580BysupIiIjM9fPTaM2ayfxbujSwfbskif/1L2DHDtWR2fToIeOCBfzdgIj0wSSxE+zbJ2O1amrjUMlqBVJSsvfeOnXkoXHFisbFk5Ymu5yff14mfSIiyj5fX1/UqVMHq7XsK4C0tDSsXr0aDRo0UBjZwx5MRDJJ7DratpVx+fLsvf/qVeDHH+VhuV600lynTsn5iYiIXEXevMDs2VJy2tcXWLRI7pNZ/SJjd+/aHuC72K+iGapdW1pnuFLSgYg8l7aTmO0NbFJSgP795XlCr17Sk9hV1K0rOYakJODnn1VHQ0TugElig1mt0uwe8Nwk8dSpQHAw8KgqK3fuOCceQMp2acmCP/5w3nWJiNzF0KFDMXXqVMycOROHDh3Ca6+9hlu3bqFv376qQ0vn8GHgwgUgTx5byShSr00bGbdty977x48HXnwR6N5dvxjy5we+/BL4/XeWVSMiItdjsQCvvy4P78uUkTZODRoA06apjsz17N0rzxPy5weqVFEdzaOVLCmjVnWOiEiVxETbzyLuJBZr1gBFi8q/S+HCcs/oSiwW4KWX5Pj779XGQkTugUlig8XFAQkJgI+POW5WjBAQIKWdDx3K/D3XrkmPh3feAW7fdk5cHTrIyCQxEVHO9ejRA+PGjcOIESNQs2ZNREdHY/ny5ShatKjq0NKpWhU4fhz45RcpU0yuoVEjYOPG7D0cvX4d+PprOe7VS984hgwBOnZkkpiIiFxX3brSGqFjRylPrGdVDXehlUpt0EAWhLs6bQOBVnWOiEiVbdtkg1NoKFC8uOpoXMMzz9jKOH/1lSSKXU2vXkCuXMCuXbJQiojIESb49dnctF/6q1SRMlGeqGpVGbNKEn/8MfD338CyZc77d2rbVlZf7d0LnD3rnGsSEbmTQYMG4fTp00hOTsb27dtR35VqMD2gXDnbwiByDX5+QOPGcmP7KN98IwvuwsOBp582PjYiIiJXU7Ag8Ntv8urf3/b11FR1MbmSoCBJpjdtqjqS7KleXUbuJCYi1fz9ZRES75dtnn1WxkqVpE2hKypcGHjqKTmePl1tLERkfkwSG6x8eeDDDwEXq77pVJUrSzL2yhXg0qWHv3/0qDwABoAvvpBd184QHGzrKbF0qXOuSURERNmXmGgr7/Xhh/rvDrp9G1i8WFaIExERuTIvL6BzZ7m3BoCrV4GaNYE5c5SG5RJ69wZ27gSGDVMdSfZoO4n375cdfEREqjRpIu13tOeyBIwcCYwZI1UqtDnXFfXrJ6PW5pKIyF5MEhusalXZJTt0qOpI1MmTByhbVo4z2k38zjtSMqt9e1uPQmfRVsoxSUxE5H527AC6dAFmzlQdCWUkOVl6LVapAty4kfF7JkyQlhSVK+vbj1hz44aswH7rLeDmTf3PT0REZJTx4+XB8PPPA4MHy7xK5lC5slRTuXEDOH1adTRERPSgkiWByEigUCHVkWTtySelHcWqVaojISKzY5KYnCKzktOrVsmKNW9v4PPPnR+XliRevRpISXH+9YmIyDjLl0tZRi4Eck1+fsCffwJHjgBr1z78/Zs3pcIIILuIvb31j6FoUaBECdnFw15ORERkJiNGAMOHy/G338puME9MOF6+LJVBzCRXLtszEvYlJiJVrl4F4uJUR0H28vYGatVSHQURuQMmiQ2UkiI9ds+eZQkh7Qbo4EHb1+7dk507gG0nkbPVrAnMmCEPqD21ZzQRkbvSVtS2aqU2DsqcVkFk+fKHv3fpEhAWBlSoADz3nHEx1K4t4+7dxl2DiIhIbz4+wKefAkuWAAUKSLnlWrU8b3Hcp59KT+LPPlMdSc688IJUnCtTRnUkROSp5swBSpcGevZUHQk56sYN4Pp11VEQkVkxSWygw4elhHJEhOpI1KtfX8pgPJgI3r8fOHlSbmhHjlQTl8Ui/YtKlFBzfSIiMsbNm8DWrXLcsqXaWChzbdvKuHz5wwvqQkOB9evlf0cfH+Ni0FZfM0lMRERm1KGDzGH16kmLhg4dgFmzVEflPFu2yAL0kBDVkeTM++9LNbUaNVRHQkSeavNmGStVUhsHOebzz4FixdhXmojsxySxgfbvl7FaNddudO8M3btLScnXXrN9rVYt4NgxYO5c1+/zQERE5rJhgzwwDA0FypVTHQ1lpkULKbl48iQQG5vxewoXNjYGbSfxnj3GXoeIiMgoZcsCGzcCgwbJztT27VVH5Bw3b9oWeTVsqDYWIiKz2bJFxkaN1MZBjilaVNouTJsGpKWpjoaIzIhJYgM9mCSmjBUvLjuMVZs4EWjdGjh6VHUkRESkh9WrZWSpadeWNy/QuLEcayWnk5KkdOSVK86JQUsSHzgg1yYiIjIjPz/ZRRQdDRQsKF+zWqXCmbtauVIWBZYvb86yzdeuycLGlBTVkRCRpzl/Hjh1CvDykuqPZF7PPAPkyyf/e65bpzoaIjIjJokNtG+fjEwS21y/LsnzNWtUR5LewoVyg/nHH6ojISIiPbAfsXloJadXrJBx2jTgww+Bpk0fLkFthJAQqWhy7x4QE2P89YiIiIyUP7/teNo0IDwcGDvWPXcXLV4sY+fO5qveZrUCFSoAzZoBBw+qjoaIPI22i7h6dSAwUG0s5Jg8eaTPPQB8/73aWIjInJgkNpC2k7h6dbVxuIquXaX/cNOm0h/yk09UR2TToYOMTBITEZlfSoo8IPX1BZ54QnU09Cht20pJ8KpV5X+7sWPl66+/7pwHvhaLtL44dMjWn5iIiMgd7NghyeHISOCpp4CrV1VHpJ/UVGDJEjnu1EltLPawWICICDnWnh0RETmL1o+Ypfrdw0svybhggVSpICLKCSaJDXLtGnD2rBxrv/h7umLFZLx+HfD2Bp5+Wmk46Wg9mzZsAG7cUBsLERE5xtcXWL9e5mKj+9mS46pVA44fB/7zH2DmTCAuTtpR9OvnvBhatgSqVJHfT4iIiNzFpEnAlClSinrJEmmxsHOn6qj0sX07cPmyLAzUWleYjVZ1TqtCR0TkLFqSmP2I3UPdujKnJCcDc+aojoaIzIZJYoNoK0FLlwaCgtTG4iqqVrUdDxggZa9cRaVKUurp7l1biVIiIjK3PHlUR0DZoe0WvnsXGDNGjt9/H8idW11MRERE7sBiAfr3B7Zulaodp09LQnX1atWROa5iRWDCBNklnSuX6mjso1Wd405iInK2998HBg8GmjRRHQnpwWKxLbKePl1tLERkPkwSG6RyZdkNM2KE6khcR40aMgYFAaNGqY0lIyw5TURkflYryyuZ1YwZwKlTQNGi8kDbmZKTgS++AHr3lt7ERERE7qRWLWDXLqBdO2nt8MUXqiNyXHCwtKZ47z3VkdiPO4mJSJWuXYGvvwZCQlRHQnrp2RMYPVpKThMR5QSTxAYpWhR48UXnlkp0dY0bA//9L7BihWuW/9SSxEuXSpKBiIjMJzYWKFRIeiulpamOhrLr9m3glVfkePBg5+8Cz5UL+Pe/gR9+AI4cce61iYiInCF/fuDzz6W9wuOPq46GAFtrsr//ltLZRERE9ipcGPjoIyb+iSjnmCQmp7FYgNdeA+rXVx1Jxpo2lcRCtWrchUZEZFarV8tCH19fwIu/5ZhGnjzAsGFAx47AkCHOv76XF1Czphzv3u386xMRETlD1arAoUPyENnMfv1V+i3//bfqSBwTGAiEhsoxS04TkbPMmwds2AAkJamOhIiIXAEfnxrAagW+/RZYt44lC83Ezw84f152OhcsqDoaIiKyh9ZXvlUrtXFQzkVFAb//DgQEqLl+7doyMklMRETk2saPlwXov/yiOhLHvfeeVFyrVEl1JETkCdLSgFdfBZo1Y6l7d7V8ubSXmD9fdSREZBZMEhvg9Gkpldi6NcsWm42vr+oIiIjIXqmpwJo1cswkMeVUrVoy7tmjNg4iouw6deoU+vXrh9DQUPj7+6N8+fIYOXIkUlJSVIdGLu7OHeC334Bbt1RHknNXrwKbNslxp05qY9HDq69KwrtkSdWREJEnOHpUfo76+9vuf8i9bN4sieKpU1VHQkRmwSSxAbSVWGFh0uOOzOf8eeDGDdVRPIyLDoiIMrdnj7QLyJcPqFtXdTRkNtpO4j172M+aiMzh8OHDSEtLw+TJk3HgwAF8+eWXmDRpEoYPH646NHJxjz8OdOkCLFumOpKcW7ZMFgZGRADlyqmOhojIXDZvlrFePT6zdld9+si4ciVw5ozSUIjIJJgkNoDWS6ZaNbVxkH169ZJVvL/+qjoS8eGHwI4d0jeqQgVZ9UdERA9bvVrG5s0BHx+loZAJVa0K5M4NJCYCJ06ojoaI6NHatm2L6dOno3Xr1ihXrhw6d+6Md955BwsXLlQdGrm41q1lXLBAbRz2WLxYxs6d1cahl9RUYOdOYNo0LlIjIuNt2SJjo0Zq4yDjlC8vz0SsVmDGDNXREJEZMElsAG0nMZPE5lSmjIx//KE2DkAS1Z9+CjRpIuXATpwA5s1THRURkWtiP2JyhI+P/O7m7c0FWURkXgkJCShYsGCW70lOTkZiYmK6F3mWrl1lXLIESEpSG0tOpKTYdj+7S5LYapX7/X79gJMnVUdDRO5OSxI3bKg2DjJWv34yTp/OBUhE9GhMEhuAO4nNrUMHGVesAO7dUxfH5cvAgAFyPHQoMGSIHP/yi7KQiIhcWu/ewPPP23bHEOXUvHnSbqJ9e9WREBHlXGxsLL755hsM0G4iMhEVFYWgoKD7r5CQECdFSK7isceketbNm1KO0iw2bJB5umhRKZXqDnx8pFUZYHuWRERkhCtXgMOH5bhBA7WxkLGeeUbacJ06BaxbpzoaInJ1TBLrLCnJtvukenW1sZB96tcHChUCrl+3rbBTYfBg4OJFuWH897+lZ5SPj+xUP3JEXVxERK6qVy9g9mygcmXVkZBZlSkD+PurjoKIPN2wYcNgsViyfB3WnvL+z7lz59C2bVt0794d/fv3z/L8kZGRSEhIuP+Ki4sz8q9DLsjLSx4gA+YqOX3woFT86NhR/g7uQttgwCQxkfl9+umnaNiwIfLkyYP8+fOrDiedrVtlrFJFnnuS+8qTB3jhBTn+/nu1sRCR62PHPp0dOiQ9ZQoUAEqUUB0N2cPbG2jbFvjpJ2DpUqBpU+fHsGABMGeOxDJjBuDnJ69WrYDly2Wn04cfOj8uIiIiIiIy1ttvv40+ffpk+Z5y5crdPz5//jxatGiBhg0bYsqUKY88v5+fH/z8/BwNk0yua1fgm2+kx+/du0CuXKojerQ33gD+9S/g1i3VkehLSxJrrcvcSVoa0L07cOeO/Lfmw6eQ5OZSUlLQvXt3NGjQAN+7WHaudWtgxw7ZFEPu76WXgD17WGmNiB6Nv57prEoVYPNm4NIlwGJRHQ3Zq317SRL/8Qcwdqxzr33pEvDaa3L8/vvpy2g9+6wkiX/5hUliIqIHzZ4N1Kgh1Rc4/5K9rFbgzTfl4cn8+UCpUqojIiJPFBwcjODg4Gy999y5c2jRogXq1KmD6dOnw8udtleSoRo3BooUkepVW7eqWRxtjwIF5OVOtCp07riT+MQJYOFCOV63Tha+E7mzUaNGAQBmzJihNpAM+Pq6T6l+erR69YBt21RHQURmwDtInfn7Aw0bAk89pToSckTbtlK+KiYGOHPGudf+7jtJFEdEACNGpP9ely6ywnv/flsfESIiT3ftmpSajogAzp9XHQ2ZmcUiDzC3bwd271YdDRFR1s6dO4fmzZujdOnSGDduHC5duoT4+HjEx8erDo1MQKtadeSIORLEKSmqIzCOtpP42DHZcetOKlSQ39MBWYBHROklJycjMTEx3YuIiMiZmCQmykDBgpKg/eknOXamYcOAyZNtZaYfVKAA8NxzQP/+LNNERKRZt052gFapApQsqToaMrvatWVkkpiIXN3KlSsRGxuL1atXo1SpUihevPj9F1F2tGsHVKqkOorsadYMaNAA2LtXdST6K1ZM+oOmpUnfZXfz4osyLlwo7dmIyCYqKgpBQUH3XyEhIYZcZ98+eZY4b54hpycXdvUq8O230iKTiCgjTBLr7IMPZCfozZuqIyFHjRwJvPACkDevc69rsQCvvALUqZPx93/4AZgyRVbkEhERsGqVjCxfR3pgkpiIzKJPnz6wWq0Zvojcyd9/S8nMbduAokVVR6M/iwWYMAFYscI8SfvsuH5dFnI2by6L7y9dAjZsUB0VUc4NGzYMFosly9dhO8v9RUZGIiEh4f4rLi5O5+jF6tXyvPrHHw05PbmwgQOBwYOBiRNVR0JErop7EXV0+TIwZowc9+ihNhYyF6tVEr/PPw/ky6c6GiIic2GSmPRUq5aMe/aojYOIiMgZtm4Fxo0DKlYExo5VHU3GliyR8bHHZNetO3LHZ0jPPAPEx0ti6umnge+/l5LTLVqojowoZ95++2306dMny/eUK1fOrnP7+fnB759lBA2wZYuMjRoZfilyMb17A3PmAN98AyxbJgt3mjWTsVQp1dERkSvgTmId7d8vY2goEBioNhbSx8GDQFSU3Dgb6ZdfgFdfld3DSUmPfn9amsT055/GxkVE5OrOnAGOHpU+8s2aqY6G3EHNmjKePQtcvKg0FCIiIsNduiRlgGfNkvtMV7R4sYydO6uNg7Lv9Glg7Vopb1qyJNCtm3ydJafJjIKDg1GlSpUsX76+vqrDzJTVCmzeLMcNG6qNhZzvySdl/vTyAmJjZeHOv/4FhISk31nuqr8DEJHxmCTWkZYkrl5dbRykn6+/BoYPl97ERrlwQUp/AEDPnkDu3I/+zNy58ovd0KHGxUVEZAarV8tYrx6QP7/SUMhNBAbaSj1yNzEREbm71q2lxdK5c8COHaqjedjt27aqMe6cJL5zB/j5Z+Djj1VHoo8ffpDxiSeAMmVk7N8fmDpVbVxERjtz5gyio6Nx5swZpKamIjo6GtHR0bipsC/hqVNStj9XLqBuXWVhkCLe3sBvv0lv4iVLgHfflecnXl5SoUMzaRJQvjzQr5/8DD9zRl3MRORcLDetIy1JXK2a2jhIPx06AJMnA3/8IWU5LBZ9z2+1Aq+9Bly5AtSoIQnp7GjXTn65O3BAXuHh+sZFRGQWa9bIyFLTpKdataSyx40bqiMhIiIyVu7cQMeOUopywQLg8cdVR5TeqlUyJ5ctC0REqI7GOGlpsmjcagUGDACKFFEdkf2sVmDGDDnWKvT6+kqLLSJ3N2LECMycOfP+n2v9r5fN2rVr0bx5cyUxaaWma9cG/P2VhEAuIChInnN36CB/TkxMXwl1wwbgxAl5TZsmXwsNtZWn7tYNCAhwethE5ATcSayjfftkZJLYfTzxBODnJ6vuDh3S//xz5gCLFgE+PsDMmXLjlB358wNt2sjxvHn6x0VEZBaTJgHLlwMvvqg6EnInP/4oZRK10oiUfcnJ0j6jXj05JiIi19e1q4wLFkiCz5U8WGpa70XbriQgANBammobEMxq0yZJMuTNK32JiTzJjBkzYLVaH3qpShADLDVNGcuXL/28OnWq9Cx+/32gfn3ZgXzyJDB9uuwufrAc9a5d8qyciNyDKZLEp06dQr9+/RAaGgp/f3+UL18eI0eOREpKiurQ7ktLA2Ji5JhJYvcRECArpgDZTayn+Hhg0CA5/ugj2UmcE88+KyOTxETkyQICZNGMVh6YSA+5cqmOwLzmzgV27wb++it9jysiInJd7drJ7rKTJ4G9e1VHk1779pLE9oRko9a6zOxJYm0X8bPPPrzrbO9eIDJSEgxE5BznzsnYqJHaOMi1BQYCbdsCY8cC27YB167ZksZ9+qTfdTxwoOwyLltWvjdjBpPGRGZmiiTx4cOHkZaWhsmTJ+PAgQP48ssvMWnSJAzPbm1eJzh5Unrl+PkBFSuqjob0pJXhWLpU3/MOGyb9IGrVkpuknOrcWXYeHzwoJaeJiIhIX1Zr+hXT9GhdukjvQUAeMNy7pzQcIiLKhoAAeTAMyG5iV/LMM8D8+VLq0t1pGw60KnVmdOsW8MsvcqyVmn7Q55/L7wezZjk1LCKP9ttvwMWLtp/zRNnxYNL4u+9sX09NlefRPj5SfWvmTKBvX0kalykjCWS2bSIyF1Mkidu2bYvp06ejdevWKFeuHDp37ox33nkHCxcuVB3afeXLy87QdevkhyS5Dy1JvGkTkJCg33n/7/+AHj1ktZU9O5aCgmy/4Gk3YURERKSPPn2A4GBg40bVkZhLvnyyeK1QIeD4cVY8ISIyi27dgMceAypUUB2J59KSxGbeSZw7tyw0GDwYaNz44e9rrTzmz+dCPCJnCg5mP1nSh7e39C++dg1YsUI2PjVsKPmQM2eA2Fh5DxGZhymSxBlJSEhAwYIFs3xPcnIyEhMT072MVLQo8Pjjhl6CFChXDqhcWXaJayXF9VCkiPQk1kpK2aN7dxk3bNAnJiIiIhIJCcCVK8CePaojMZ+AAGDIEDkeM4YPgYmIzOD554Ht24HevVVHYvPdd8DRo6qjcB7t2UBMjOzUMiNvb6B1a+DrrzPuId26texOO3sW2LHD+fEREZE+8uaVn+ljxkjf6+vXgSVLZOd6njyqoyOinDBlkjg2NhbffPMNBgwYkOX7oqKiEBQUdP8VEhLipAjJ3fz+uzwodrR/h9Wq746kp56SBPHq1fqdk4iIiIDatWXcvVttHGZx4gRQr56tD/GgQfIQOCZGHhYQEZFryyihp9KJE0D//kBYmDx49gTly0tv6KQkqcbhjnLnBjp1kmNWGyEyXteuQKtWwM6dqiMhdxcQINU4c+eWP1utwE8/AXfvqo2LiB5NaZJ42LBhsFgsWb4OHz6c7jPnzp1D27Zt0b17d/Tv3z/L80dGRiIhIeH+Ky4uzrC/yyuvSI/Z+HjDLkEKVawoO4kd9eOPQNOmsjrbanX8fIGBQJMmgJcpl3sQERG5rlq1ZGSSOHu++Qb46y9g9mz5c/78wBtvAM89J79HERGROVy/LruAVPv9dxmbNJE5xRN4ewNLl0qC3IxlvydMAN59Fzh2LOv3PVhyWo/nIkSUsdRUYOVK2Vji66s6GvI0H3wA9Oolr3v3VEdjv5QUzlXk/pR2z3377bfRp0+fLN9Trly5+8fnz59HixYt0LBhQ0yZMuWR5/fz84OfHpm9R7hzB/j+eymlp5XWI/d17559fafPnZOHpQBQpYr+K7VTUyVZ7GorwInIvZw6dQoff/wx1qxZg/j4eJQoUQK9evXCBx98AF/eeZIb0XYSHzoE3L7NkllZSUyU34WB9L8Lf/wxfy8hIjKTmzeBEiXkGcfx49J6SRUtSdy5s7oYVGjeXHUE9rFagS+/lP9uqlfPeoFY27ay4+zMGVlgVq+e8+Ik8iQxMcCNG7LBJCJCdTTkaRo3BnLlAn75RXYXT59uvk1O06YBgwcDL7wATJ2qOhoi4yj9v2ZwcDCqVKmS5Ut74Hzu3Dk0b94cderUwfTp0+HlQj9VDh6UBHHhwtKXmNzTDz9IcveTT3L+WatVdpsnJMgN0Lvv6hvb228DJUsC+/fre14ion86fPgw0tLSMHnyZBw4cABffvklJk2ahOHDh6sOjUhXxYsDRYrI73icX7M2fbo8gKpaVfpSaZggJiIyl7x5gYYN5XjBAnVxXL8OrF8vx1ppYk9jtZqrROfmzZIgzpsXeOaZrN/r7y8lSQsXBk6fdk58RJ5o82YZH39cKhUQOVP79sCcOfLf3g8/AK+/bq4duaNHA/36yYLx774Dtm1THRGRcVwn05oFLUFcunRpjBs3DpcuXUJ8fDziXaS2s/bgsFo1PgxzZ/fuAUeOSPmnnJoxQz7n6yvH9uxEzsqJE8CFC7I6i4jISG3btsX06dPRunVrlCtXDp07d8Y777yDhQsXqg6NSFcWC/sSZ0dqKvD113L85psZ/y587Bjw8su8sSYiMgMtwacySbx8udx/V61qzrLLjlq+XNpefPut6kiyb8YMGbt3l13CjzJhAvD337bS00Skvy1bZGzUSG0c5LmeeUYSxBYLMHkyMHSoeRLF4eESt1YZY/hw88ROlFOmSBKvXLkSsbGxWL16NUqVKoXixYvff7mCfftkrF5dbRxkrPbtZdy5UxKy2RUXZyu9+PHHQFiY7qHh2WdlnDePExYROV9CQgIKFiyY5XuSk5ORmJiY7kXk6po1A554AggOVh2J61qyRBarFSgA/OtfGb9n7FgpR/3pp86NjYiIcu7pp+Wh6PbtwNmzamJYvFhGTys1rTl7Fti7F/jPf4CkJNXRPNqtW7YF64/oKHdf4cL6L54novS0ncRahQgiFV54QXbiAsD48cBHHykNJ9u6dpWNgatWyaavtWvlmMgdmSJJ3KdPH1it1gxfruDBncTkvooVA+rUkeNly7L3Ga3MdGKilHd5+21jYuvYUfo7HD1qW7RAROQMsbGx+OabbzBgwIAs3xcVFYWgoKD7r5CQECdFSGS/YcOA1au5yyUr48fLOGBA5n2b339f+k8tWSIPvYmIyHUVL25LKCxa5Pzrp6UB69bJsacmiV98EShVSnbaTp+uOppHW7RI2k6UKyc9KHPCagXOnTMmLiJPdv48cOqU/A5ev77qaMjTvfSSVMfw8gLKl1cdTcaOH5cF4nFxtq+FhwOlSwOvvSZ/jozk5ixyT6ZIErs6Jok9R4cOMv7xR/beb7HILuKKFeXmzqgeIIGBtp3OLDlNRPYYNmwYLBZLlq/Dhw+n+8y5c+fQtm1bdO/eHf3798/y/JGRkUhISLj/invwN28iMq2hQ4FWraTHVGYqVZLykwAQFeWcuIiIyH5du8qoouS0lxcQGwv8/rvnJjZ8fWWBFSDVOFy9N7FWarp3b/nfL7uio4EyZYDmzfnQnUhvCQlA69aycCNfPtXREAEDBwIHDgB9+6qO5GFbt8rmrrVrbQnhBw0fLnMV72XJXVmsrrId1wkSExMRFBSEhIQE5NNphrx+XVaU3LwpKyez03uFzGv7dpk08uUDLl8GcuXK3udSU41LEGvmzAGef14S0keOsD82kZGMmE9Uu3TpEq5cuZLle8qVKwdfX18AwPnz59G8eXM8/vjjmDFjBrxy8kQI7vlvSO7r2jUpiRgYqDoS89q3D6hRQ34/OXxYEsdEeuB84jj+G9I/nT4NlC0r97CXLklLAXKuO3eA0FBpdTVtmms+VAdk5/fbbwM//QTs2CH/3WTXjRtAkSJSUjs6Wn5PIHPjfOI4/huSp7h4EVizBnjuObVxLFgA9Oolc1Ht2lL9ykU6nBI5LLtzCncSOyh/flmddeYME8SeoF496UuYmAhs2pT5+6xWID7e9mejE8SAreT0sWMs5UhEORccHIwqVapk+dISxOfOnUPz5s1Rp04dTJ8+PccJYiIzeeEFoGBBYN481ZGYW/Xq8ruK1Qp89pnqaIiIKCtlygA//yzPOZggVsPfH3jnHTmOipKF567Iywv48kspbZuTBDEgi+/atpXj+fN1D42IiFzU9etAs2ay2WnmTDUxWK3AuHFS8SopCejUCVi/PnsJ4rQ04+MjciY+1dWBxSL9Ysj9eXkBffoAL78MFC6c+fumTgUqVwZ++MFpoSFvXul//M47sniBiMgIWoK4dOnSGDduHC5duoT4+HjEP7gyhsiNaDeJe/aojcPVfPUVMHJk+kVxj/LBBzL+8IMkHoiIyHU99xxQooRzr3nggLTxGj3audd1Va++KgvVjh3LfssrVXx87Puc1o5i3jyWnCYi8hRBQVIOHZB+xXPnOvf69+5J+et335W5Z9AgYNEiebaeldu3gVGjZAF0UpJzYiVyBjt/jSPyXP/3f1l//9QpKbd08ybwiMqtuvvqK+dej4g8z8qVKxEbG4vY2FiU+scKKQ/qYEEepHZtGXfvVhuHK0lKAsaMkRJh4eHAs89m73OPPw506waEhbF0NxERPWzxYiAmRlp6kTys/vJLSRR36KA6mocdOiTlsJs2zVkv4gd17Aj4+UnLrAMHgIgIfWMkIiLXY7EA48dLa4WpU6Xcc+7cwFNPOef6SUnSh9hiAb74Anjzzey1bbRYJN5z54BJk4AhQwwPlcgpuJPYQd27y8OuQ4dUR0KuIC0N6NdPEsSNGwNvvKE6IiIiffXp0wdWqzXDF5E70pLE0dGuW+rR2ebMkQRxSAjwzDM5++y8ebL6muVLiYhc38KFwJNPSr9ZZ/j9dxk7dXLO9czgxRclkZqdh9fO9sUXQIsWshPLXvnyAW3ayDFLThMReQ6LBZg4URLE9+7JwuMVK5xz7bx5pffwb79Joje7c6y/PzBihBx/+ilw44ZhIRI5FZPEDkhNlR8oCxbYX1qHzCk1Fdi2Ddi+Pf3XJ08G1qyRSWP6dOf0Iv6nu3dlUl2wwPnXJiIicjeVKgF58khpqWPHVEejntUqq74BKcvF34GJiNzX/v3AqlXOKQN54YLcYwOSFKWH3brlOiWZb9+2/Xfh6M6vbt1knDfPsfMQEZG5eHvL8/Nu3YCUFKBLF2DDBmOutX+/JKU1JUvatyitb1+gQgXg8mWp9kHkDpgkdsDx41KewN8fKFdOdTTkTF9/DTRoIDthNCdP2lbQjh0rE4YKv/4KtG0LvPee69xAEhERmZW3N1Cjhhyz5DSwfj2wd68kzl9+2b5zWK3AsmXy+8q1a/rGR0RE+unaVcY//zR+t8wff8j8UKcO8I+OJgTg88+lDLezdlk9yqJF8t9EuXJSRc0RnToBgwfLw3s+wyAi8iw+PlKxpGNHSdyWKaP/Nf78E2jUCHj9dWlt4YhcuYCPP5bjceMkWUxkdkwSO2D/fhnDw9XsGCV1WreWce1aWUGblga89JKs7G3aVHbWqNK+vSxcOHGCD7OJiIj0wL7ENtou4t69pUeiPaxWWcy2YgXw7be6hUZERDoLD5eKGsnJksQ1klZqunNnY69jVufPA1evyoNpV0ikzpghY+/e9vcj1uTPLwvxmzZ1zbLaRERkLF9fqSaxaZP+SeLvvpNn5TduAM2aAU2aOH7OZ58FataUc44d6/j5iFRjktgB+/bJWL262jjI+cLCZNJKSpLy0vfuAXXrAoGBwLRpjt8kOSIgwFaei+WaiIiIHNemDfDKK0Dz5qojUSs21rby+o037D+PlxcwfLgcjx8P3LzpcGhERGQAi8W2m9jIdkZ37sguH4BJ4sy8/Tbg5wds2SJVPVQ6cwZYvVqOX3xRbSxEROQecucGihWz/fm332wb9OyRlgZ88AHQv7+0jezVSxYpFyjgeKxeXtKTGACmTGFvYjI/JokdoP2gqlZNbRzkfBaLrEICZEW1ry/wn//I7t3y5dXGBgDdu8v4yy+uscqYiIjIzDp1AiZPZo9EX18pMf3MM0CVKo6d69lnpTXH1atyY01ERK7pmWdkXLpUqmgZITFR7mFr17a1eKD0SpQA+vWT408+URvLjz/Kc4bmzYGyZfU778aNUpXt6FH9zklEROazdKksUnvySeDIkZx/PikJ6NkTGDNG/jxiBPDDD7LYSi/t2kkbyj17ZNMYkZkxSewAJok9W4cOMv7+uy0RW7iwunge1L699Ao8eRLYtUt1NEREROQOSpeWhO78+Y6fy9sbeP99OR43TkqZEhGR66lTR6po3b5tXD/cokWlfPGuXSw3nJX33pPejatXA9u2qYtj40YZ+/TR97xjxgATJrAiGhGRp2vQQPItFy4ALVvK8+2cWLoUmDNH5szp0yWZq/fvFxaLJJ9dYbMYkaOYJLbTvXtAUJCsQGGS2DO1aCHjuXOON73X24Mlp3/5RW0sRERE7iApCfjrr5zfoLojvW6wX3wRKFUK+PtvW29DIiJyLRYL0KMH0KoVkC+f6mg8W5kytvLOWplLFZYtk0SxVopcL926yajHYjQiIjKvAgWkDUVYmDx3f+IJIC4u+59/5hlJDC9frv+CpszkJD4iV8MksZ18fORB4c2bQJEiqqMhFfLkkVKJABAfrzaWjGglp6OjlYZBRETkFgYNAurVA77/XnUkzpeaCgwZon91El9f4J135Pizz2QRJhERuZ6xY4GVK2U3j97i4oDdu9kmKbuGDZNeiEuXAqdPq4nBYgEaNwby5tX3vF26SKWR6GggNlbfcxMRkbkEBwOrVkmLolOn5HeQrJ6/79gBXLli+/OIEcb83vJPWr/jsmWl9DSRGTFJ7CAfH9URkErffSc3tAMGqI7kYe3bA3v3GlcSjIiIyJPUqiWjJ974LV4MfPUV0Lq17KjWU//+Up3l009ZYpSIyFUZ+fN56lQpad2/v3HXcCcVKwL//S9w4IDsLHamlBT9fw94UKFCslsM4G5iMqdTp06hX79+CA0Nhb+/P8qXL4+RI0ciJSVFdWhEplS8uLRYKFMGOHZMqpokJDz8vvnzgWbNZLGRkfNURry9gbQ0eX3wgXOvTaQXJontxFWuBEhjeu2hsavJkweoXp0PXImIiPRQu7aMu3erjUOF8eNlHDAAyJ1b33PnyQOsWQM8/7zcYBORfZKTk1GzZk1YLBZEs5QQGeT8efmZrSetdVPTpvqe150NGABUqeL8686bB5QoYWypa5acJjM7fPgw0tLSMHnyZBw4cABffvklJk2ahOHDh6sOjci0SpeWRHGJEvK7QmCg7XtWKzBunFTTTEqSMtWpqc6PcfRo2UiotWMgMhsmie3UoQNQsyb/j0/mkJTEhQ1ERESOqF5dyjvGx0sPXU+xezewYYPc9L7+uupoiCgz7733HkqUKKE6DHJjO3cCJUtKyyW92gOcOSPVr7y8pBIW5dzly8671owZwLVrxraHePpp+e9h1y7g5EnjrkNkhLZt22L69Olo3bo1ypUrh86dO+Odd97BwoULM/1McnIyEhMT072IKL3y5WVemDBB5ghA5qKBA4F335U/DxoELFoEBAQ4P74KFYB+/eQ4MpLP4Ml8mCS2g9Uqde737pXdD0Su7LXXpG/2zp2qIyEiIjKvgACgcmU59qSS0199JWP37kCpUsZd5/ZtuVaXLrypJsqpZcuW4c8//8S4ceNUh0JurFYtKQd85Qqwfr0+5/z9dxkbNQIKF9bnnJ7i7l3pgViyJHD8uPHXi4uTnVwA8OKLxl0nOBho3lx2jp06Zdx1iJwlISEBBQsWzPT7UVFRCAoKuv8KCQlxYnRE5lGsmK1a5u3bQK5cwMSJ8rUvvwS+/lptZaqPPpKqW5s3A0uXqouDyB5MEtshPl5ujLy8gLAw1dEQZe36deDGDeCXX1RHQkREZG6eVnI6Ph74+Wc5HjLE2Gvdvg0MHw789huwcqWx1yJyJxcuXED//v3x448/Ik82VzBz1xLZw8dHFvIAwIIF+pxTKzXdubM+5/MkuXIBV69Kn+CxY42/3o8/yiKu5s2B0FBjr/XLL5IgbtHC2OsQGS02NhbffPMNBgwYkOl7IiMjkZCQcP8VFxfnxAiJzEn7v5S/v/xOMmSI+naLJUsCgwfL8QcfSI9iIrNgktgO+/fLWLGi/DAicmXPPivjL7+41s6cK1ekvBgREZFZeFqSeOJE2anUsCHw2GPGXqtwYeCVV+TYyF6HRO7EarWiT58+ePXVV1G3bt1sf467lsheXbvKuGiR4w8/ExOBtWvlmEli+3z4oYwzZxp7b221SqlpAOjTx7jraAoVUv+wn+hBw4YNg8ViyfJ1+PDh/2fvvuObqt4/gH/SlQ7aQgu0FFr2plD2lr0FcQEKCg4UvyAgIksRBAQRFFRQHCgK4mYpsmTvvfcuq2zoAFra3N8fzy9NS1eSJrm5yef9euXVNk3uPTdN89x7nnOek+k5ly5dQvv27fHss8+ib9++OW5br9cjKCgo042IcjdwINC7t1Q2efJJtVtjMnw4EBQEXL4MnDqldmuIzMcksRWMSeLoaHXbQWSO9u2BAgWkPNT27Wq3RsTGAlWrAqVKAS+8wDJSRESkDe3aAR9/DAwdqnZLHKNYMSkxbe9ZxEZDh8rMqA0bgE2bHLNPImdkbmf0F198gYSEBIwcOdKi7XPWElmrVSsgOFgqTWzZkr9trVwpA5EqVJAbWa5RI5lt+/AhMGWK/fazdStw8qQsvWEcKOAIDx9KPwaR2t5++20cPXo011uZMmXSH3/58mW0aNECjRo1wjfffKNiy4lcU926Mnipbl21W5JZaCjwzz+yDIS7n9usWwd07gysWaN2S8gcXmo3QIsOHJCv1aur2w4ic/j5ycjs+fOBP/4AGjRQu0UyWygmBlixApg3D/jtN+B//5NyHEWKqN06IiKi7FWtKjd30a8f8MorssSKIxQvLjOUvv0WmDiRazmR+3r77bfRJ4/pemXKlMGaNWuwdetW6PX6TL+rU6cOevbsiR9//DHb5+r1+izPITKHj490+M2bJ+UdmzSxfltPPCEdhwkJtmufO3rvPZmR/e23cj0dHm77fRhnET/7rAxAd4Q1a2R/FSvmf0ACUX4VKVIERczsrLp06RJatGiB2rVr44cffoCHo06kicgpNG2qdgvUl5YmpbcPHZK+/yVLZBIbOS+dojhTAVr7io+PR3BwMO7evZuv8h21agF790qJJeOaPETObNEiKb8RGSmzdp3hHFVR5MLvo4+A//6T+wIDZRbRkCGOu/gksoat4ok742tIRNkxjro2GKSsd82aareInJ07x5PY2NhM6wlfvnwZ7dq1w59//on69eujRIkSZm3HnV9DstzChcBTTwFly8rsUpYFVpeiAI0by2zfoUPtM6P4+HEpad25M9Cwoe23n53Ll6WaiaJIJTJWxdcGd48nly5dQvPmzVGyZEn8+OOP8PT0TP9duJkjONz9NSRyFYoi/fHt27vncqVnzwLGAgs+PsCCBUCnTuq2yR2ZG1OcIFWkPdWqAZUqcSYxaYezlJxevdq0dpVOJ+XKVq2SW+3aMop8zBi5CCUiInJGFy4Av/4q6x+5qp07gd9/B1JTHb/vsmWBHj3k+4kTHb9/Ii2JiopCtWrV0m8V/r+uXdmyZc1OEBNZqn174KefgF27mCB2BjqdaW3iX36REs22VrGixGRHJYgBICJCkt+AdCwTacGqVatw6tQprF69GiVKlECxYsXSb0TkXp59VgbVzZihdksc584d0/elSwMpKbJMRUqKTF5bskS1plEemCS2wk8/AUePmkZDEDk7X19ZT3DcOPVG4M6fD7RuDXTvLmUnMmrdGtixQ8pOv/OOJIyNdu82JZaJiIjUNm8e8NxzwNdfq90S+xk/XuK1sdPZ0UaOlIvI4cPV2T8REeXMzw944QWgYEHrtzFlCjBoEHDwoM2a5dY6dABmzQIOHwa8vdVuje08+6x8/eMPddtBZK4+ffpAUZRsb0TkXh5/XL5OmpQ5eeqqtm2TXNmvv5ru8/aWAWzduskgtqefloo05HyYJCZyE+PHA6NHS8kmR9u+HXj5Zfm+XDkgQ8WddB4eEjQ+/th037lzQKNGUuJ92TIp1UFERKQmY/njPXvUbYe9nDwJ/POPfP/SS+q0oVo1mTVUp446+yfSqlKlSkFRFMTExKjdFKIcKQrwzTfA55+zgpSt6HTA668DwcG23e6FC3KNvmyZbbdrrqeekq+bNwOXLqnTBiIiImu88AJQuTJw+zYwdararbGvnTuBdu3kWGfPztx/7+0N/PyzDLRPTWU8d1ZMEhORXV28KGt3JyfLGkYffmj+cw8elFnQ+/cDHTsCLVqoWy6biIjImCQ+cQJITFS3LfbwxRdyUdexo5SXJCIiys7nnwP161s+G/j4ceDUKVmfrl07+7TNnSkKcP68bbY1d67M4p082Tbbs1SJEqYS15x5REREWuLpCUyYIN9Pnw5cvapqc+xmzx6gbVsgPh5o2lTWYX50ORIvLzmnWLYMGDBAlWZSHpgkJnIjSUmyxuCPPzpmf/fuAU88AcTFyaygn3+WGcPm6twZOHMGePttQK+X9R8bNJDyFMeO2a/dREREOQkLA4oXl07Y/fvVbo1t3bkDfP+9fP/WW6o2BQAQGwu88QYwZIjaLSEioketXi1LBv31l2XP+/tv+dq8ORAYaPNmubVLlyRxX7t2/geyKQowZ45836dPfltmPZacJiIirXrySaBuXemPt2TSlFbs3w+0aSP9CI0aAUuXAgEB2T/W0xNo3970861bpnNCUh+TxERuZM0aWWNw1Cj7r/OrKHIxuWcPULiwLE5vTSdAaKiU5ThxQspeenhICcoGDSTIEhEROZqrlpz+/nuJrVWrAq1aqd0aGSg2axbw5ZfAlStqt4aIiDJ6+mn5ammSeMkS+dqli23bQzKQ7fZt4OZNKemdH1u3yhIUAQHAM8/Ypn3WeOYZ4N13ZeY6ERGRluh0siYxINe1586p2hybOnQIaN1akr3168ssYXP7/RMSJLnctSvw0092bSaZiUliIjfSti0QFARcvgxs2WLffe3fDyxeLGsPLFgAlC6dv+1FRUnn9YEDMjt54MDMo5MSEvK3fSIiInPVqiVf9+5Vtx22lJpq6oAdPDhriSg1NGsmZSaTk4FPP1W7NURElFHnzlI+8NAhGdBrjuvXTdehnTvbr23uyssLGDFCvp8yBXjwwPptGWcRP/MMUKBAvptmtchIKddZo4Z6bSAiIrJWq1Zyq1ZNBnK5il9+AW7cAOrUAZYvl3yDuQIC5HkGg0ww++EHuzWTzMQkMZEb0etllA5g/3JNMTHA2rXyQd+0qe22W7WqrG8wdqzpvnXrJIn80UdS4pqIiMiejEliV5pJfO2alNEODQV69lS7NUKnk9lDAPDVVzJKmYiInEOhQqaqE+bOJv73X+kQrFFDrt/I9l54QRKrcXGmJSQsdf8+8Ntv8r2apaaJiIhcwW+/Abt2mSqSuYIJE6Ty58qVQMGClj3Xw0Ou7994QyqRvvwy8N13dmkmmYlJYiI3k3FNH3uUnFYU0/eNGtmvoznj2sZz5sj6ByNHAuXLS2mt1FT77JeIiKhJE6mSsXix2i2xnYgIYPNmmRHm56d2a0w6dpSBZ0lJLDVJRORsLC05nZoqCUyWmrYfHx9g+HD5fvJk4OFDy7exaBEQHw+UKgU89pgtW2cdRZEy5S++KIPaiIiItCQ0NHM/tlZduACkpMj3Oh3w9tsyaNAaHh7AzJnAm2/Kz337Al9/bZt2kuVc4O1JRJZo0wYIDpa1/TZvtu22r1yRWcMHDth2u3mZPVvWMChZUkppv/66zDj+66/MSWsiIiJbCA0FnnxS4o6rCQ9XuwWZ6XTAqFHy/eefc3kJIiJn0rWrdPLt3m3eOnuvvAKcP2/6XCf7ePllieexscC8eZY/39cXiI4Gevd2jk5tnQ4YNw6YO1cS2ERERFqUmAh8+CGwc6faLbHcmTMyGezZZ2U5KFvQ6YDPPpPlrgCgXz/rq6BQ/jjB6R4ROVLGktO//2677T54IB3mmzfLxb8jk7OenlJW6/hxYPp0oHBhWRfrmWeAHj0c1w4iIiItWrIEuHlT7Vbk7KmngIoVZQ2nWbPUbg0RERkVKQJ06CCf0/fvm/ccnU6SkGQ/fn7A0KHy/cKFlj//ySeB/ftNSz44g2eeka/2XjaLiIjIXkaMAN57Typhasm5c0CLFsDFi8DJk7YduK3TAZ9+KuctERG2XbKSzMckMZEb6tZNvpoz2tscigK8+iqwfbuUmfjlF/mQdzS9Hhg0CDh9Ghg9GggIYCkzIiKyj6NHZR2eb75RuyX5c+WKdLxGRkr5KGfk6Ql88IFcTPfurXZriIgoo7//lgpOlSvn/rjTp7kkkCO9/rr8XaydeavTAd7eNm1SvhiTxGvXAjduqNsWIiIiawwdKrF19Wq5acGFC0DLllKdpEIFaXfhwrbdh04HfPwxsHevLCNJjsckMZEbat1aykT8/bdttjd5MvDzz4CXF/Dnn0C5crbZrrWCgqQc1ZkzwHPPme5fuhRYsUK9dhERkes4cEAGJM2erXZL8uerr2S9wlq1JFHsrLp3ByZOBIoWVbslRESUkTmDgxUFaN4cCAsD9u2zd4sIAAoUkBnelpSLVhSpNpaYaL92WatcOSAmBkhLAxYvVrs1RERElitVSkoqA7L0hrMvkXjpkswgPntW4vCaNUCxYvbZl06X+Vr/33+BTz6xz74oKyaJidyQjw9QurRttrV4sWlNqS++kNFFzqJoUdNF8bVrQJ8+QPv2MqqaaxoSEVF+1KwpXw8c0O7MqPv3JUkMmNYB0oJjx4B169RuBRERZXTihKxNnJ19+6RE4YMHsnwAOdb9+8CpU3k/bvt2GZRVtqwMIHM2zz4rX//8U912EBERWevdd6Xy5Y4d1lf7cIQrVyRBfPq05BDWrAGKF3fMvk+floFuQ4cCkyY5Zp/ujkliIjd3966MxrXGoUNAz54y8ql/f9NoKGcUEGCaVfzNN0D16sD69eq2iYiItKtcOZml8+CBJC21aP58KdkYFQV07ap2a8yTmgq8+KJcsA4eDNy7p3aLiIho9mxJ/r7zTva/X7JEvrZtK+vlkuNs3Cgzl7p3z3vG0pw58rV9e+cqNW1kLDn933/ArVvqtoWIiMgaYWGmAdrvvmt9n7y9nT0LXL4MlCwpSz04supY2bLy2gAyMW38eMft210xSUzkxnr3ltm2Gzda9/zixYHGjYFWrYBp02zbNlsLCAA+/1zWTihZUtZjbt6cHcxERGQdDw/TbOI9e9RtizUUBZg+Xb5/801ZMkILUlJMr/tnn8n327ap2yYiIndnrCa1fj1w/XrW3xuTxF26OK5NJCpXBpKS5Fxl+fKcH3f/PvDrr/J9nz4OaZrFKlSQwd6VKskaiURERFo0dChQqBBw9Cgwd67arcleo0bAypUyg7hkScfvf/RoWW4KAN5/Hxg71vnLc2uZ5pLEycnJiImJgU6nwz4uZkOUL56e0tn6xx/WPb9QIVnnd8EC5xxpnJ2WLaU06Kuvys+ffSbrMLL8NBERWcqYrNy7V912WGPNGqkIEhAAvPKK2q0xn78/8PXXwLJlQESElDdt3FhGGCcnq906IiL3VLq0xESDIet6sRcvSoJSpwM6dVKnfe6scGHgjTfk+/Hjc+5gXbxYqoyVLAk0a+a49llqwwbg4EGgRg21W0JERGSdggXl+rVHD7mWdRY3bgBHjph+btQIKFNGvfaMHAlMnizff/CBJIuZKLYPzSWJhw0bhoiICLWbQeQSunWTr3/+aX55C0WR8k7GD2UvLyAoyD7ts5egIODbbyXBXawY8NhjQGCg2q0iIiKtqVVLvmplJrGiSAc+IB2s3t4yW6hQIVWbZZX27SXJ3auXHNOkSUDdusClS2q3jIjIPT39tHz966/M9//zj3xt2FCqWJHjvf02oNcDW7cC69Zl/xhjqenevaVairMKDla7BURERPn39tvAL78A5cur3RJx6xbQpo30kTvTvMxhw4BPPpHvJ0yQHAbZnhOf+mW1bNkyrFy5ElOnTlW7KUQuoVUr6Ri+dk1G5Jpj+nQJGgMG2LVpDtGxo3QwG4MNIGWrtDgjjIiIHM+YJD561DR4Ki7OlIhV04MHkrz+/ntg4EC52CtY0HTBN3gwcP68aa0fLSpUSMpzLVgAFCkC+PrKGk9EROR4xiTx6tXAnTum+42lpjt3dniT6P+Fh5sqaU2YkPX3ly4Bq1bJ9y++6Lh25ce9e0BsrNqtICIiso5Ol/lnNWfI3rkDtG0rfQWenjKwzJkMGSL5iF69gKeeUrs1rkkzSeKrV6+ib9++mDt3Lvz9/c16TnJyMuLj4zPdiMjE29v04fr773k/ftkyWTcBkPWAXEFIiGkWsaIAL78M1KsnpbgePlS3bURE5NwqV5YlDC5dkos8RZH46O8PVK0KdO0KvPMO8M03wNq1wOXL9mlHxgvKf/4BoqMlttWuLaWkv/gC2LgRiI/PPBCqWDG5ad2TTwKHD8taisa1lZOTgePH1W0XEZE7qVQJqFJFrqH+/tt0//jxsq4cO/XUNWyYxMg1a4AtWzL/bt06GeDWtClQtqwqzbPIb7/J4LA331S7JURERPlz9qwM0ProI3X2f/cu0K4dsHu3LFGxZo30czibQYOAn36SJDYgFVFZetp2NJEkVhQFffr0Qb9+/VCnTh2znzdp0iQEBwen3yIjI+3YSiJtevZZ+frXX0Bqas6PO3JE1kowGGQU8sCBjmmfI927J6WoU1NlnYOGDTOvxUBERJSRl5ckZL295edbt2QGb3KyxI/Fi4GpU4HXXwdatgReey3z80ePluUP1q2TRHNeFzkGA3DqlJRYeu894PHHgRIlgD/+MD3Gx0eqZKSmykColi1l5O1PP0lCWyszhCxVpEjm9ZLGjpX1Cj/5xPwlNbTq9Gng+nW1W0FEZJpNbJw9DMiApXHjXGeQsVZFRUkpaSBryemePYFz54DPPnN0q6xTtapcu69YIQPgiIiItGrrVqmO9dFHwM2bjt13QgLQoQOwY4f0HaxeLTHWWRlnX6elAS+9JNXRmCi2DVWTxCNGjIBOp8v1duzYMXzxxRdISEjAyJEjLdr+yJEjcffu3fTbhQsX7HQkRNrVsqUEguvXcy45ffMm0KWLXIA1bQrMnJm1LIYrCAiQjvd586Qk5+7dUkp06lTX72AmskZycjJiYmKg0+mwz5kWLSFSSWiodFqeOSMdlzNmyIjXjh1lraEqVUyPvXlTSj6+9hrQooUkewsUkMTmM8+Y1gYEpOxT48ayDl/58jLA68MPgaVLJbmc8d+vfn3pnI+NBW7ckAu9Tz4BXnghc0LblRkMMrM4OVkqoDRrJsl1V3TtmlzIly0L/PgjL5KJSF19+gCLFsnAJHI+778vA8ZGjcr6u5IlgZo1Hd8ma1StClSsKHHeuOY1ERGRFvXoAVSvLn3uw4YB27ZJf0Jion33m5go/RRbt0of+H//STu0YNMm6bv//HNZDtMZlvvSOp2iqNeVcP36ddzMY4hEmTJl0K1bN/z999/QZchKpaWlwdPTEz179sSPP/5o1v7i4+MRHByMu3fvIigoKF9tJ3IlU6fKzKMePYCiRTP/7uFDKTuxdi1QqpSMLipSRJVmOtSlS0DfvlJiG5DO+T/+cI2ynJR/jCdi0KBBOHnyJJYtW4a9e/ciJibG7OfyNSR3d/WqJHpPnpTbuXOZByS9+aZc9AAyU7RcOfler5dkb0yM6Va9umnpBBKKIusxDx4sF8D+/sCUKUC/foCHJmopme/pp2VdZkDKuX79tZQKcxeMJ/nH15DsIS1NBkq1aSOdkO4wSEmLkpJksLTWjB4tg+26dgUWLlS7NWTEeJJ/fA2J3M/SpVIl7FFxcUBYmHz/7bfA9u3Sb5/TzZLr3IQEOT87eFASxBYU73UKP/wgS2spilRu+/JL17vOtwVzY4qqSWJzxcbGZlpP+PLly2jXrh3+/PNP1K9fHyVKlDBrOwy0RJZbvVou7AMCZHRRtWpqt8hxFAWYPRt46y2Z4bVnD+Dnp3aryBkwngDLli3DkCFD8Ndff6Fq1apMEhPlU0qKJIqNSeOYGKB5c/mdwSDr7daoITNnjOvuUt7OnZNSVMbSmq1bywWlmZcPTufQIRlAMHWqlHAFpLT4lCkyQyw1FQgPlwR5hw7qttVRGE/yj68h2cOWLTLQtmBBqXrAJLFziY0F7t+Xv1H9+jL7OzRU7VaZb/9+OVfS66UqGgfLOQfGk/zja0jkfhQFGDlS1gO+dk0GlCcnSx+B8dr/ueekTyAnV6+aJn7NmCGzbXNKJpcuLWv7JibKrGWtzCB+1E8/SRUbRZEk++TJmau3kfkxRRNdTFFRUZl+LlCgAACgbNmyZieIicg6rVpJCSeDwb0SxICU1H71VelQTkgwJYjT0mQ0V/Hi6rZPy9LS5IQEADZuNJVXadBAbvXqAYUKqdtGytnVq1fRt29fLFq0CP7+/mY9Jzk5GcnJyek/x3MBMaJMfHxkvcbs1mz08ACef97xbXIFpUrJgLcZM4ARI6R818OHarfKcomJsqbntGmSCB46VKq8ANJxMHKkVH7p1Qs4elRGhb/xhpQa5wA3InKk+/elUsaHH8rPnEXsfGbNkgFH4eGy/MXhw9q79qpeXaqsnDoF/Psv0L272i0iIiKyjk4naxIbKYpU+sg4OLxXL+mXNyaRr10z3W7fzjzQa9Mm4Lffct7ftWtSJbRAAe0miAHgxRelb7l3b8ld/PuvXPe/8YbaLdMeTSSJicj+bt+WUoX37skFo6KY1h3u2FHdtqmtVKnMP3/6KTB+PDB9usxOcsX1mW0pNVVmPm3ZYrr16iWd3QBQuTJw+bLcli83Pa9SJUkYv/CCrJ1NzkFRFPTp0wf9+vVDnTp1cO7cObOeN2nSJHzwwQf2bRwRUTY8PICBA4H27YFjx2TktFFiolwcOytFkfU9Bw0CLlyQ+558Us5BHlWrFrB7tySMP/sM2LmTs86JyPF8fTOvSdyli3ptoezVry/XaBcvys8vvqi9Eo06HfDss8CkSbIsFJPERETkKnS6rNeonTrJLTsZJ+IAwGuvAQ0bmpLIGZPKN24AISH2a7uj9ewpFdfefx9YsgRo0ULtFmmTJrsNSpUqBQ1UySbSlN27ZdZs4cIye/j114EffwTKlFG7Zc7FYJBEZkKCrH2wYIGsC8G1ijO7d09GwW3ZImtmJCZm/v2WLabvCxcGNm8G9u6VGV7btsmI8GPH5Fa7tilJfPo08N13kjyuX19Gv5NtjBgxApMnT871MUePHsXKlSuRkJCAkSNHWrT9kSNHYsiQIek/x8fHIzIy0qq2EhFZ49GZ2qtXS6fyzJnO2bl85owkt5culZ9LlQK++CL79aqM/Pwkgfz440BkpGn2XkqKdDZwNh8R2ZtOJ+fqxoEt7dur2x7KqmZN6Wg2xpfevdVtj7V69ZJy5k8/rXZLiEy6dOmCffv24dq1ayhUqBBat26NyZMnIyIiQu2mEZGLypggBqQP1Z0m21SrJv3z588DJUua7n/jDcDfXyqKFSmiXvu0QBNrEtsK13UgyllqqiQ6b9yQUlO3b0sH499/q90y55OWJuUbR4+WTtdChYAvv5QOZnebVawowIkTsl51WpokzgFJpoeEAHfvys+BgTKKrVEjudWvD+T2MXzjhiSXt22TEquVK8v9s2fLYAajkiVNJaobNJAOD73ePseakSvGk+vXr+PmzZu5PqZMmTLo1q0b/v77b+gyvNnT0tLg6emJnj174scffzRrf674GhKRtnTtCixeLN936ybJ4sKFVW1SJl9/DfTrJ4ndYcOAUaPkItcao0YB//0HzJuXfUlzLWM8yT++hmRr+/bJ+f5TTwG//KJ2ayg7O3cCTZsCbdrwmp9sh/EEmDZtGho2bIhixYrh0qVLGDp0KABgS8aR8rnga0hElH9nzgDly0v/dIECwODBwNtvy+Ayd2JuTGGSmIjS9esnHZKAzD7ZsYMzNXNz+LCU5tqzR35+5hngm2+0t56TJe7dkw4FY9norVtlHStAyneeOWN67NSpkhxu1AioUiXryDZrbNwo5eu2bZPX/9EI9u+/QIcO8v2lSzL4ISrK9sl7d44nsbGxmdYTvnz5Mtq1a4c///wT9evXR4kSJczajju/hkTkHB4+lDUzJ0yQgU5hYVK28vHH1RtpfOeO6cLVYADeegv43/+AihXzt81y5SRe+/nJQLd+/VxnYBvjSf7xNSR7uH5dBoU6YgAnWefaNfkb+fqq3RJyFYwnWS1ZsgRdu3ZFcnIyvM0o6cLXkIgo/xQFWLECeO89qZ4KSH/9O+9Ita6AAHXb5yhMEmeDgZYod+vWSe1+f39Z5L5mTbVb5PwePgQmTpQOZp1OZsAaP14uX5YOZ1skR9Vy7RpQtKjp59q1TUlxI19foG5dmSk8caLjjjc+Hti1y1Sievt24MgRIDRUfv/uu9Ke8HCZydCgAdCsmbQz//tmPDE6d+4cSpcujb179yImJsbs5/E1JCJnsWuXlNo8csR030cfAcOHO64NV67IyOYtW2QQlK0vWi9cAF56SUpsAzKgavZsdZbLuH9fSoFVqmSb7TGe5B9fQyLSqtRUma2+eLEMJra24gbZBuNJZrdu3cIbb7yBS5cuYdOmTdk+Jjk5GcnJyek/G5dl4mtIRJR/igIsXCjVQI3X+0WLAosW2aZ/2NbS0iSpXasW4GWDhYLNjcse+d8VEbmK5s2B+fOBDRuYIDaXtzcwZowkKEeOzFxCuUsXICJCyiP//bd0ijq7ixfl4vqll6SUc2QkkOF6BfXryzE9+ywwbZoc99278p6ZPNmxCfGgIFljY9QoYMkSIC7OlCAGpGS6l5fcv3ix/H0mTXJc+4iISBvq1JELsfHjgRo15L7oaNPvN2yQNTU/+QQ4eDBrFYv8SE2VdYYrVZJO7gsXgDVrbLd9o8hIYOVKWa9YrweWLZNjXLDA9vvKTkIC8PvvsjRHkSJyjuQ+Q5WJiMhePD2l4/evv4Dly9VuDZEYPnw4AgICEBoaitjYWCw2rm+SjUmTJiE4ODj9FhkZ6cCWEhG5Np1Olj85cACYOxcoU0YmfFWponbLTM6elcqkzzwj18r160t1V0fiTGIiIju4excoVUpKPBr5+wNt2wJPPCGlLJ1l3cMNG4CffwbWrgVOnsz8O09P6Tg3dponJwM+PtopUXn/vsx8Nq5v3KIF8MYb+d8u40n+8TUkImd19SoQHGwqvzlihAyEMgoPlzUc27YFWre2fmmO7dslJu3dKz/XrQt89ZVU7bCnw4eBXr1kzdACBWSpCHuU1759WwZxLVggpb4yDjqLjJQZ3BmrlViL8ST/+BoSkZYNHSoDuZ57Tga9k3pcNZ6MGDECkzOeDGbj6NGjqPT/ZVJu3LiBW7du4fz58/jggw8QHByMf/75B7psOlI4k5iIyHEePpQZxcZ+bkWRa+NOnYAePQAPB06pPXJEBk+fPp35/uBgYNYsaU9+sdx0Nlz1ZIWInNPDh8D69TKLdfFimR1k1K0b8Ntvjm/TrVvSpqZNTUnqjz82ldT08JAZVS1bSkK1cWP3WafBEown+cfXkIi04sQJYOlSYNUqWZrj0cogR44AlSubv73UVGDAABktrCiyBvGkSUDfvo6ryJGSAowdK2sVv/yyffbRty/w3Xemn8uVA55+Wm516thuwBnjSf7xNSQiLdu2TUpGFigga2Hbco3l5GTg3DkZAG5cX/vbb+VWsiRQrZpU5qhWDShbVttLTdmCq8aT69ev4+bNm7k+pkyZMvDx8cly/8WLFxEZGYktW7agoRm1TV31NSQickb//AN07izfV6sm1cWeeMK2k6MePpQB4qtWyXJP/frJ/UlJQEiIlJhu2FAGordpI4PHbVFqGjA/pthod0RE9Chvb5lh1Lo18PnnMmPHmDDu2tX0uCNHJGn8xBNyq1PHdiOXEhKAjRuldOXatTJbSVGAefOAnj3lMR07yqypFi0keRwcbJt9ExERuYIKFeT21lvSWbxli5RuXrVKlmmoWNH02Ndfl5HAbdvKrXr1rDHdywu4dk3ice/eMljLFjNqLeHjA0ycmPm+NWukVOf48aaOcHNcuCCzhRcsAKZMAerVk/ufekouhp9+Wr6vVk07lUiIiEg76tUDSpSQmLxihVxTW+rcOYlZp0/L7cwZ+XrxosTrnTvlOh0A7t2Tn3fuBP7807QNX18pXzl7NhATI/elpEi/gNrxLyUFOHUKOH4cOHbM9DUmRmYrUe6KFCmCIlaWXTEYDACQabYwERE5h+bNgQkT5Dr20CHgySclSTthgiRsrYnfiiKVOo19BmvXSv88IMt7GpPEAQHA6tXSZ6D2mCDOJCYiUoGimALNxInAu++afhcRIeUmnnhCEreWdNQaHTwIvPaaXLimpWX+XeXKsj9jkpgsx3iSf3wNicgV3Lsny0kAEtsjIoC4ONPvixSRi8voaEkIFysm91+4IGsPPfaY49ucnfv3Jdl94YJcpM6bl3ld5kedPClJ4b/+knMNo3fekaQ3kPlcx54YT4ClS5di3LhxOHDgAHx9fdGsWTMsWrTI7OfzNSQirXvrLWD6dCkZOXdu5t+lpkp8MyZ/jQngceNMlUCmTQOGDMl+2wEBwB9/AB06yM9nz8rg63PnpEP54EFZysFYaeTsWZl5DMg+Pv0084xj4/chIbZ9DRRFZlLfuSOD2wDAYJB9HT+etV8AkM7qPXts1wZ3jyfbt2/Hzp070aRJExQqVAinT5/G6NGjcfXqVRw+fBh6Mzp33P01JCJSw+3bwNSpwGefyQxfQK7V//jD8gHd2a0pHBoqk8jatQP69HHc4DHOJCYicmIZg8Ebb8hF5KJFwLJlwOXLMpp31iwgMFDKQ9esmf12UlJkxPOaNXIh+Nxzcn+RIlJ2C5CyV8by0c2bmzqoiYiIKH+MCWKjtWtlxPDKlVKa+vp10/qIhw+bOq4jI+XmLPz8pOpJ377AgQMyW2riROl0zzgT+uJFqUBy8KDpPp0OaNLENGM44/1kf3/99Rf69u2LiRMnomXLlkhNTcWhQ4fUbhYRkUM984wkiVeulKofer3M8h0xAjh/XhLFj+rWzZQkjo6WWFa2LFCmTOavRYpkjmmlS8stI4NBksMHDwJRUab7Dx8G7t4FNm+WW0bFism1vPF84No1KZn96LlFdo4dA44ezTwz+Phx6eSuW9fUOe3hIcnhtDTpW6hYUW6VKsnXKlXy3heZz9/fHwsWLMCYMWOQlJSEYsWKoX379njvvffMShATEZE6ChUCPvwQGDRIloL66itZstG4VOOjMlYY27tX+vON5wrlykk10caNpbpYmzbSr+/I9Y4txZnEREROJDlZOpgXLwaWLJELyhs3TOsqzZ4NJCbKKOU1a4BNm0wjltu0keBk9NdfcoGY8SKVbIPxJP/4GhKRq0tJAbZuNa1lXKaMxHFvb7VblrOrV4FXX5W1mQCgdm1g4EDgxRfl57Q0mS1965YMQHvqKVlCIyxMtSa7dTxJTU1FqVKl8MEHH+CVV16xejvu/BoSkWswGCTZOn68lIosVAhYuNA0eEmvl8RuxuRvx45A+fL2bVdysiRvjTOODx2S27lzsvRDUpJp3cEXX5RKHmXLmmYcV61quv5/803TdsuWlRnRj9LppCLIvn2m+w4elBlMxYrZfwAX40n+8TUkIlLfhQsy4LtWLfn53j25Lq5cWUpEr18v9xkdOGCqxHX5sizlGBDg+HY/ijOJiYg0SK8H2reX28yZMhrZmCAGpITjiROZn1O0qMwSNpa/Mnr6afu3l4iIiLLn4wM0ayY3rQgLk0Fq334rs4h375ZZWL16ychnT0+pfFKxou3LZJLl9uzZg0uXLsHDwwM1a9ZEXFwcYmJiMGXKFFSrVi3H5yUnJ2daGzE+Pt4RzSUishsPD+CTT+RroUJy32OPySCtsmVlgJMaM3j0eknaVq+e+f74eLnW98rQK3vpkpSMPnVKbhlXDQgNzZwkrltX4nDGWcEVK0rS288v875yWz6CiIiIsnq08teXX8qA74zCwmTCVps2mR8bEeGYNtoSk8RERE7Kw0MuaI3S0oDXXweWL5cyVMYS0lWqsKQjERER2YZOB7z2mpxnjBkj5x9375o63Rs2VLd9ZHLm/6eRjR07Fp9++ilKlSqFTz75BM2bN8eJEycQkkMmf9KkSfjggw8c2VQiIrvr0SPzz6GhzjtQKygIqFEj832rV0vJaeNs44MHgSNHpEx0pUrAw4emaiS//ur4NhMREbmrDh1ktvCtW9IX36aNDMJylf54lpsmIiKyEONJ/vE1JCIiW3DFeDJixAhMnjw518ccPXoUe/bsQc+ePfH111/jtddeAyCzhEuUKIEJEybg9ddfz/a52c0kjoyMdKnXkIiIHM8VY7Kj8TUkIiJbYblpIiIiIiIiIo15++230adPn1wfU6ZMGVy5cgUAUKVKlfT79Xo9ypQpg9jY2Byfq9frodfrbdJWIiIiIiIi0i4miYmIiIiIiIicRJEiRVCkSJE8H1e7dm3o9XocP34cTZo0AQA8fPgQ586dQ8mSJe3dTCIiIiIiItI4JomJiIiIiIiINCYoKAj9+vXDmDFjEBkZiZIlS2LKlCkAgGeffVbl1hEREREREZGzY5KYiIiIiIiISIOmTJkCLy8vvPDCC7h//z7q16+PNWvWoFChQmo3jYiIiIiIiJwck8REREREREREGuTt7Y2pU6di6tSpajeFiIiIiIiINMZD7QYQEREREREREREREREREZHjMElMRERERERERERERERERORGmCQmIiIiIiIiIiIiIiIiInIjTBITEREREREREREREREREbkRJomJiIiIiIiIiIiIiIiIiNyIl9oNcCRFUQAA8fHxKreEiIi0zBhHjHGFLMeYTEREtsCYnH+MyUREZAuMyfnHmExERLZiblx2qyRxQkICACAyMlLllhARkStISEhAcHCw2s3QJMZkIiKyJcZk6zEmExGRLTEmW48xmYiIbC2vuKxT3Gh4l8FgwOXLlxEYGAidTqd2c/IUHx+PyMhIXLhwAUFBQWo3xyZc7Zhc7XgA1zsmVzsewPWOSYvHoygKEhISEBERAQ8PrtxgDS3EZC2+NwG229HYbsdiux1LC+1mTM4/LcTkR2nhvWkJVzsewPWOydWOB3C9Y3K14wG0d0yMyfnHmKw+VzsewPWOydWOB+AxaYEWj8fcuOxWM4k9PDxQokQJtZthsaCgIM288czlasfkascDuN4xudrxAK53TFo7Ho6Mzh8txWStvTeN2G7HYrsdi+12LGdvN2Ny/mgpJj/K2d+blnK14wFc75hc7XgA1zsmVzseQFvHxJicP4zJzsPVjgdwvWNyteMBeExaoLXjMScuc1gXEREREREREREREREREZEbYZKYiIiIiIiIiIiIiIiIiMiNMEnsxPR6PcaMGQO9Xq92U2zG1Y7J1Y4HcL1jcrXjAVzvmFzteMh1aPW9yXY7FtvtWGy3Y2m13eT6XO296WrHA7jeMbna8QCud0yudjyAax4TuR5Xe5+62vEArndMrnY8AI9JC1zteDLSKYqiqN0IIiIiIiIiIiIiIiIiIiJyDM4kJiIiIiIiIiIiIiIiIiJyI0wSExERERERERERERERERG5ESaJiYiIiIiIiIiIiIiIiIjcCJPERERERERERERERERERERuhEliJzRp0iTUrVsXgYGBKFq0KLp27Yrjx4+r3Syb+eijj6DT6TB48GC1m5Ivly5dQq9evRAaGgo/Pz9ER0dj165dajfLKmlpaRg9ejRKly4NPz8/lC1bFuPHj4eiKGo3zWwbNmxA586dERERAZ1Oh0WLFmX6vaIoeP/991GsWDH4+fmhdevWOHnypDqNNVNux/Tw4UMMHz4c0dHRCAgIQEREBF588UVcvnxZvQbnIa+/UUb9+vWDTqfD9OnTHdY+IiNXiMNai7VajKlaiZ1ajY9ajYFajXXmtPvo0aPo0qULgoODERAQgLp16yI2NtbxjSW35QrxOS9ai9/Z0WJMz41W4n1utHoukBOtniPkRqvnD+TeXD0uu0JMBlwrLjMmOx/GZNeIyUwSO6H169ejf//+2LZtG1atWoWHDx+ibdu2SEpKUrtp+bZz5058/fXXqF69utpNyZfbt2+jcePG8Pb2xrJly3DkyBF88sknKFSokNpNs8rkyZPx1VdfYcaMGTh69CgmT56Mjz/+GF988YXaTTNbUlISatSogZkzZ2b7+48//hiff/45Zs2ahe3btyMgIADt2rXDgwcPHNxS8+V2TPfu3cOePXswevRo7NmzBwsWLMDx48fRpUsXFVpqnrz+RkYLFy7Etm3bEBER4aCWEWWm9TistVir1Ziqldip1fio1Rio1ViXV7tPnz6NJk2aoFKlSli3bh0OHDiA0aNHw9fX18EtJXem9ficF63F7+xoNabnRivxPjdaPRfIiVbPEXKj1fMHcm+uHJddISYDrheXGZOdD2Oyi8RkhZzetWvXFADK+vXr1W5KviQkJCjly5dXVq1apTRr1kwZNGiQ2k2y2vDhw5UmTZqo3Qyb6dSpk/Lyyy9nuu+pp55SevbsqVKL8geAsnDhwvSfDQaDEh4erkyZMiX9vjt37ih6vV755ZdfVGih5R49puzs2LFDAaCcP3/eMY3Kh5yO5+LFi0rx4sWVQ4cOKSVLllSmTZvm8LYRPUpLcViLsVarMVWLsVOr8VGrMVCrsS67dnfv3l3p1auXOg0iyoGW4nNetBi/s6PVmJ4bLcb73Gj1XCAnWj1HyI1Wzx+IXCUuu0pMVhTXi8uMyc6NMVm7OJNYA+7evQsACAkJUbkl+dO/f3906tQJrVu3Vrsp+bZkyRLUqVMHzz77LIoWLYqaNWvi22+/VbtZVmvUqBFWr16NEydOAAD279+PTZs2oUOHDiq3zDbOnj2LuLi4TO+94OBg1K9fH1u3blWxZbZ19+5d6HQ6FCxYUO2mWMVgMOCFF17AO++8g6pVq6rdHKJ0WorDWoy1Wo2prhA7XSk+aiUGajHWGQwGLF26FBUqVEC7du1QtGhR1K9fP9eyW0SOoKX4nBctxu/saDWm58YV4n1uXOlcICdaOUfIjRbPH8j9uEpcdpWYDLheXGZM1j7GZOfkpXYDKHcGgwGDBw9G48aNUa1aNbWbY7Vff/0Ve/bswc6dO9Vuik2cOXMGX331FYYMGYJRo0Zh586dGDhwIHx8fNC7d2+1m2exESNGID4+HpUqVYKnpyfS0tLw4YcfomfPnmo3zSbi4uIAAGFhYZnuDwsLS/+d1j148ADDhw/Hc889h6CgILWbY5XJkyfDy8sLAwcOVLspROm0FIe1Gmu1GlNdIXa6SnzUUgzUYqy7du0aEhMT8dFHH2HChAmYPHkyli9fjqeeegpr165Fs2bN1G4iuSEtxee8aDV+Z0erMT03rhDvc+Mq5wI50dI5Qm60eP5A7sVV4rIrxWTA9eIyY7K2MSY7LyaJnVz//v1x6NAhbNq0Se2mWO3ChQsYNGgQVq1a5TLrlhkMBtSpUwcTJ04EANSsWROHDh3CrFmzNBlkf//9d/z888+YP38+qlatin379mHw4MGIiIjQ5PG4m4cPH6Jbt25QFAVfffWV2s2xyu7du/HZZ59hz5490Ol0ajeHKJ1W4rCWY61WYypjp3PQUgzUaqwzGAwAgCeeeAJvvfUWACAmJgZbtmzBrFmzmCQmVWglPudFy/E7O1qN6blhvNcuLZ0j5Ear5w/kXlwhLrtaTAZcLy4zJmsXY7JzY7lpJzZgwAD8888/WLt2LUqUKKF2c6y2e/duXLt2DbVq1YKXlxe8vLywfv16fP755/Dy8kJaWpraTbRYsWLFUKVKlUz3Va5cGbGxsSq1KH/eeecdjBgxAj169EB0dDReeOEFvPXWW5g0aZLaTbOJ8PBwAMDVq1cz3X/16tX032mVMcieP38eq1at0uxIrI0bN+LatWuIiopK/5w4f/483n77bZQqVUrt5pGb0lIc1nKs1WpMdYXYqfX4qLUYqNVYV7hwYXh5eWny/5Rck5bic160HL+zo9WYnhtXiPe50fq5QE60do6QG62eP5D7cJW47GoxGXC9uMyYrE2Myc6PM4mdkKIoePPNN7Fw4UKsW7cOpUuXVrtJ+dKqVSscPHgw030vvfQSKlWqhOHDh8PT01OlllmvcePGOH78eKb7Tpw4gZIlS6rUovy5d+8ePDwyjxnx9PRMnzmidaVLl0Z4eDhWr16NmJgYAEB8fDy2b9+ON954Q93G5YMxyJ48eRJr165FaGio2k2y2gsvvJBlvZd27drhhRdewEsvvaRSq8hdaTEOaznWajWmukLs1HJ81GIM1Gqs8/HxQd26dTX5f0quRYvxOS9ajt/Z0WpMz40rxPvcaPlcICdaPEfIjVbPH8j1uVpcdrWYDLheXGZM1h7GZG1gktgJ9e/fH/Pnz8fixYsRGBiYXnM+ODgYfn5+KrfOcoGBgVnWowgICEBoaKhm16l466230KhRI0ycOBHdunXDjh078M033+Cbb75Ru2lW6dy5Mz788ENERUWhatWq2Lt3Lz799FO8/PLLajfNbImJiTh16lT6z2fPnsW+ffsQEhKCqKgoDB48GBMmTED58uVRunRpjB49GhEREejatat6jc5DbsdUrFgxPPPMM9izZw/++ecfpKWlpX9WhISEwMfHR61m5yivv9GjJwre3t4IDw9HxYoVHd1UcnNajMNajrVajalaiZ1ajY9ajYFajXV5tfudd95B9+7d8dhjj6FFixZYvnw5/v77b6xbt069RpPb0WJ8zouW43d2tBrTc6OVeJ8brZ4L5ESr5wi50er5A7k3V4vLrhaTAdeLy4zJzocx2UViskJOB0C2tx9++EHtptlMs2bNlEGDBqndjHz5+++/lWrVqil6vV6pVKmS8s0336jdJKvFx8crgwYNUqKiohRfX1+lTJkyyrvvvqskJyer3TSzrV27Ntv/m969eyuKoigGg0EZPXq0EhYWpuj1eqVVq1bK8ePH1W10HnI7prNnz+b4WbF27Vq1m56tvP5GjypZsqQybdo0h7aRSFFcJw5rKdZqMaZqJXZqNT5qNQZqNdaZ0+7Zs2cr5cqVU3x9fZUaNWooixYtUq/B5JZcJT7nRUvxOztajOm50Uq8z41WzwVyotVzhNxo9fyB3Js7xGWtx2RFca24zJjsfBiTXSMm6xRFUbJkjomIiIiIiIiIiIiIiIiIyCV55P0QIiIiIiIiIiIiIiIiIiJyFUwSExERERERERERERERERG5ESaJiYiIiIiIiIiIiIiIiIjcCJPERERERERERERERERERERuhEliIiIiIiIiIiIiIiIiIiI3wiQxEREREREREREREREREZEbYZKYiIiIiIiIiIiIiIiIiMiNMElMRERERERERERERERERORGmCQml3fu3DnodDrs27dP7aakO3bsGBo0aABfX1/ExMRk+xhFUfDaa68hJCRE9fY742torXXr1kGn0+HOnTt239fYsWNz/PsSEbkjZ4wnjMnqYUwmIlKXM8YUxmX1MC4TEanHGeMJY7J6GJPJkZgkJrvr06cPdDodPvroo0z3L1q0CDqdTqVWqWvMmDEICAjA8ePHsXr16mwfs3z5csyZMwf//PMPrly5gmrVqjmkbX369EHXrl0z3RcZGenQNmiRTqfDokWLMt03dOjQHP++RERqYEzOijHZ9TAmE5FWMC5nxbjsehiXiUgLGJOzYkx2PYzJlB0mickhfH19MXnyZNy+fVvtpthMSkqK1c89ffo0mjRpgpIlSyI0NDTHxxQrVgyNGjVCeHg4vLy8rN5ffnl6eqreBi0qUKBAjn9fIiK1MCZnxpjsHhiTichZMS5nxrjsHhiXicgZMSZnxpjsHhiTiUlicojWrVsjPDwckyZNyvEx2ZU2mD59OkqVKpX+s3GU0MSJExEWFoaCBQti3LhxSE1NxTvvvIOQkBCUKFECP/zwQ5btHzt2DI0aNYKvry+qVauG9evXZ/r9oUOH0KFDBxQoUABhYWF44YUXcOPGjfTfN2/eHAMGDMDgwYNRuHBhtGvXLtvjMBgMGDduHEqUKAG9Xo+YmBgsX748/fc6nQ67d+/GuHHjoNPpMHbs2Czb6NOnD958803ExsZCp9OlvwalSpXC9OnTMz02JiYm0zZ0Oh2+++47PPnkk/D390f58uWxZMmSTM85fPgwHn/8cQQFBSEwMBBNmzbF6dOnMXbsWPz4449YvHgxdDoddDod1q1bl225jvXr16NevXrQ6/UoVqwYRowYgdTU1Eyv18CBAzFs2DCEhIQgPDw822N91HfffYfKlSvD19cXlSpVwpdffpn+u0aNGmH48OGZHn/9+nV4e3tjw4YNAIC5c+eiTp06CAwMRHh4OJ5//nlcu3Ytx/2Z877buXMn2rRpg8KFCyM4OBjNmjXDnj170n9vfOyTTz6Z6e/16Lbzem8YX+cFCxagRYsW8Pf3R40aNbB169b0x5w/fx6dO3dGoUKFEBAQgKpVq+Lff//N9TUlIsqIMZkxmTGZMZmInAfjMuMy4zLjMhE5B8ZkxmTGZMZkd8QkMTmEp6cnJk6ciC+++AIXL17M17bWrFmDy5cvY8OGDfj0008xZswYPP744yhUqBC2b9+Ofv364fXXX8+yn3feeQdvv/029u7di4YNG6Jz5864efMmAODOnTto2bIlatasiV27dmH58uW4evUqunXrlmkbP/74I3x8fLB582bMmjUr2/Z99tln+OSTTzB16lQcOHAA7dq1Q5cuXXDy5EkAwJUrV1C1alW8/fbbuHLlCoYOHZrtNowfxleuXMHOnTsteo0++OADdOvWDQcOHEDHjh3Rs2dP3Lp1CwBw6dIlPPbYY9Dr9VizZg12796Nl19+GampqRg6dCi6deuG9u3b48qVK7hy5QoaNWqUZfuXLl1Cx44dUbduXezfvx9fffUVZs+ejQkTJmR5vQICArB9+3Z8/PHHGDduHFatWpVju3/++We8//77+PDDD3H06FFMnDgRo0ePxo8//ggA6NmzJ3799VcoipL+nN9++w0RERFo2rQpAODhw4cYP3489u/fj0WLFuHcuXPo06ePRa/foxISEtC7d29s2rQJ27ZtQ/ny5dGxY0ckJCQAQPrf54cffsj175XXe8Po3XffxdChQ7Fv3z5UqFABzz33XPoJTP/+/ZGcnIwNGzbg4MGDmDx5MgoUKJCv4yMi98KYzJjMmMyYTETOg3GZcZlxmXGZiJwDYzJjMmMyY7JbUojsrHfv3soTTzyhKIqiNGjQQHn55ZcVRVGUhQsXKhnfgmPGjFFq1KiR6bnTpk1TSpYsmWlbJUuWVNLS0tLvq1ixotK0adP0n1NTU5WAgADll19+URRFUc6ePasAUD766KP0xzx8+FApUaKEMnnyZEVRFGX8+PFK27ZtM+37woULCgDl+PHjiqIoSrNmzZSaNWvmebwRERHKhx9+mOm+unXrKv/73//Sf65Ro4YyZsyYXLfz6LEriqKULFlSmTZtWqb7Ht0WAOW9995L/zkxMVEBoCxbtkxRFEUZOXKkUrp0aSUlJSXb/Wb8exkZX8O9e/cqiqIoo0aNUipWrKgYDIb0x8ycOVMpUKBA+t+mWbNmSpMmTTJtp27dusrw4cNzPOayZcsq8+fPz3Tf+PHjlYYNGyqKoijXrl1TvLy8lA0bNqT/vmHDhrluc+fOnQoAJSEhQVEURVm7dq0CQLl9+7aiKOa97x6VlpamBAYGKn///Xf6fQCUhQsXZnrco9vO671hfJ2/++679N8fPnxYAaAcPXpUURRFiY6OVsaOHZtj24iIcsOYzJhsxJjMmExE6mNcZlw2YlxmXCYidTEmMyYbMSYzJrsbziQmh5o8eTJ+/PFHHD161OptVK1aFR4eprduWFgYoqOj03/29PREaGholhINDRs2TP/ey8sLderUSW/H/v37sXbtWhQoUCD9VqlSJQCytoJR7dq1c21bfHw8Ll++jMaNG2e6v3Hjxvk6ZktVr149/fuAgAAEBQWlvx779u1D06ZN4e3tbfX2jx49ioYNG0Kn06Xf17hxYyQmJmYaAZexHQBQrFixHEtnJCUl4fTp03jllVcy/R0mTJiQ/jcoUqQI2rZti59//hkAcPbsWWzduhU9e/ZM387u3bvRuXNnREVFITAwEM2aNQMAxMbGWn28V69eRd++fVG+fHkEBwcjKCgIiYmJFm3TkvdGxtetWLFiAJD+ug0cOBATJkxA48aNMWbMGBw4cMDawyIiN8eY7BiMyYzJRETmYFx2DMZlxmUiorwwJjsGYzJjMjkHJonJoR577DG0a9cOI0eOzPI7Dw+PTGUYACm98KhHg4NOp8v2PoPBYHa7EhMT0blzZ+zbty/T7eTJk3jsscfSHxcQEGD2Nu0hP6+R8fXw8/OzXwMtaMejEhMTAQDffvttpr/BoUOHsG3btvTH9ezZE3/++ScePnyI+fPnIzo6Ov0kKykpCe3atUNQUBB+/vln7Ny5EwsXLgQApKSkZLtfc17T3r17Y9++ffjss8+wZcsW7Nu3D6GhoTluM78yvm7GExnj6/bqq6/izJkzeOGFF3Dw4EHUqVMHX3zxhV3aQUSujTE5fxiTGZMZk4nIlhiX84dxmXGZcZmIbIUxOX8YkxmTGZO1hUlicriPPvoIf//9d6bFzAEZZRMXF5fpAy/jQvP5lfGDOjU1Fbt370blypUBALVq1cLhw4dRqlQplCtXLtPNksAaFBSEiIgIbN68OdP9mzdvRpUqVfJ9DEWKFMGVK1fSf46Pj8fZs2ct2kb16tWxcePGbIMzAPj4+CAtLS3XbVSuXBlbt27N9LfavHkzAgMDUaJECYvaYxQWFoaIiAicOXMmy9+gdOnS6Y974okn8ODBAyxfvhzz58/PNArr2LFjuHnzJj766CM0bdoUlSpVynHkl5E577vNmzdj4MCB6NixI6pWrQq9Xo8bN25keoy3t3eur5st3xuRkZHo168fFixYgLfffhvffvutRc8nIjJiTLYeYzJjMsCYTES2xbhsPcZlxmWAcZmIbIcx2XqMyYzJAGOyljBJTA4XHR2Nnj174vPPP890f/PmzXH9+nV8/PHHOH36NGbOnIlly5bZbL8zZ87EwoULcezYMfTv3x+3b9/Gyy+/DEAWU7916xaee+457Ny5E6dPn8aKFSvw0ksv5RlwHvXOO+9g8uTJ+O2333D8+HGMGDEC+/btw6BBg/J9DC1btsTcuXOxceNGHDx4EL1794anp6dF2xgwYADi4+PRo0cP7Nq1CydPnsTcuXNx/PhxAECpUqVw4MABHD9+HDdu3Mg2GP/vf//DhQsX8Oabb+LYsWNYvHgxxowZgyFDhmQqpWKpDz74AJMmTcLnn3+OEydO4ODBg/jhhx/w6aefpj8mICAAXbt2xejRo3H06FE899xz6b+LioqCj48PvvjiC5w5cwZLlizB+PHjc92nOe+78uXLY+7cuTh69Ci2b9+Onj17ZhnRVqpUKaxevRpxcXG4fft2tvuyxXtj8ODBWLFiBc6ePYs9e/Zg7dq16SeLRESWYky2HmMyYzJjMhHZGuOy9RiXGZcZl4nIlhiTrceYzJjMmKwtTBKTKsaNG5elbEPlypXx5ZdfYubMmahRowZ27NiBoUOH2myfH330ET766CPUqFEDmzZtwpIlS1C4cGEASB8hk5aWhrZt2yI6OhqDBw9GwYIFLQ4aAwcOxJAhQ/D2228jOjoay5cvx5IlS1C+fPl8H8PIkSPRrFkzPP744+jUqRO6du2KsmXLWrSN0NBQrFmzBomJiWjWrBlq166Nb7/9Nr1ERN++fVGxYkXUqVMHRYoUyTJyCACKFy+Of//9Fzt27ECNGjXQr18/vPLKK3jvvffydXyvvvoqvvvuO/zwww+Ijo5Gs2bNMGfOnEwjsQAp2bF//340bdoUUVFR6fcXKVIEc+bMwR9//IEqVargo48+wtSpU3Pdpznvu9mzZ+P27duoVasWXnjhBQwcOBBFixbN9JhPPvkEq1atQmRkJGrWrJntvmzx3khLS0P//v1RuXJltG/fHhUqVMCXX35p9vOJiB7FmGwdxmTBmMyYTES2xbhsHcZlwbjMuExEtsOYbB3GZMGYzJisFTrl0WLmRERERERERERERERERETksjiTmIiIiIiIiIiIiIiIiIjIjTBJTERERERERERERERERETkRpgkJiIiIiIiIiIiIiIiIiJyI0wSExERERERERERERERERG5ESaJiYiIiIiIiIiIiIiIiIjcCJPERERERERERERERERERERuhEliIiIiIiIiIiIiIiIiIiI3wiQxEREREREREREREREREZEbYZKYiIiIiIiIiIiIiIiIiMiNMElMRERERERERERERERERORGmCQmIiLN2LBhAzp37oyIiAjodDosWrQoz+esW7cOtWrVgl6vR7ly5TBnzpwsj5k5cyZKlSoFX19f1K9fHzt27LB944mIiFzEpEmTULduXQQGBqJo0aLo2rUrjh8/nufz/vjjD1SqVAm+vr6Ijo7Gv//+64DWEhERubavvvoK1atXR1BQEIKCgtCwYUMsW7ZM7WYRERG5HWuvldXEJDEREWlGUlISatSogZkzZ5r1+LNnz6JTp05o0aIF9u3bh8GDB+PVV1/FihUr0h/z22+/YciQIRgzZgz27NmDGjVqoF27drh27Zq9DoOIiEjT1q9fj/79+2Pbtm1YtWoVHj58iLZt2yIpKSnH52zZsgXPPfccXnnlFezduxddu3ZF165dcejQIQe2nIiIyPWUKFECH330EXbv3o1du3ahZcuWeOKJJ3D48GG1m0ZERORWrLlWVptOURRF7UYQERFZSqfTYeHChejatWuOjxk+fDiWLl2aqQO6R48euHPnDpYvXw4AqF+/PurWrYsZM2YAAAwGAyIjI/Hmm29ixIgRdj0GIiIiV3D9+nUULVoU69evx2OPPZbtY7p3746kpCT8888/6fc1aNAAMTExmDVrlqOaSkRE5BZCQkIwZcoUvPLKK2o3hYiIyG2Zc62sNi+1G+BIBoMBly9fRmBgIHQ6ndrNISKyCUVRkJCQgIiICHh4qFMg4sGDB0hJSbH4eYqiZPk81uv10Ov1NmnX1q1b0bp160z3tWvXDoMHDwYApKSkYPfu3Rg5cmT67z08PNC6dWts3brVJm2g7DEmE5ErcoaYDDg+Lt+9exeAdEjnZOvWrRgyZEim+9q1a2fW0hFkX4zJROSK3DUmp6Wl4Y8//kBSUhIaNmxo8X5JXYzJROSqnCEuq9F/bc61strcKkl8+fJlREZGqt0MIiK7uHDhAkqUKOHw/T548ACl/fwQZ8VzCxQogMTExEz3jRkzBmPHjrVJ2+Li4hAWFpbpvrCwMMTHx+P+/fu4ffs20tLSsn3MsWPHbNIGyh5jMhG5MrViMuD4uGwwGDB48GA0btwY1apVy/FxOcXkuDhrWkq2xJhMRK7MXWLywYMH0bBhQzx48AAFChTAwoULUaVKFSv2TGpiTCYiV+dO/dfmXiurza2SxIGBgQDkjRgUFKRya4iIbCM+Ph6RkZHpn3GOlpKSgjgAF3Q6WPLJGg8gMjExy2eyrWYRk3NjTCYiV6R2TAYcH5f79++PQ4cOYdOmTVa1l9THmExErsjdYnLFihWxb98+3L17F3/++Sd69+6N9evXM1GsMYzJROSq1I7LavRfa+Va2a2SxMYp4UFBQQy0RORy1C5FFOThgSBL2qAoQFqaXT+Tw8PDcfXq1Uz3Xb16FUFBQfDz84Onpyc8PT2zfUx4eLhd2kSCMZmIXJnaMRlwTFweMGAA/vnnH2zYsCHP0eA5xWTGW/UxJhORK3OXmOzj44Ny5coBAGrXro2dO3fis88+w9dff21Nk0kljMlE5OrUjsuO6r+25FpZbeotykFERK7Fw8Pym501bNgQq1evznTfqlWr0tdm8vHxQe3atTM9xmAwYPXq1Vy/iYiItM2OcVlRFAwYMAALFy7EmjVrULp06Tyfk1dMJiIiclkqXCsbDAYkJyfboPFEREQuxM4x2ZprZbW51UxiIiKyIw8PwNKRWBZKTEzEqVOn0n8+e/Ys9u3bh5CQEERFRWHkyJG4dOkSfvrpJwBAv379MGPGDAwbNgwvv/wy1qxZg99//x1Lly5N38aQIUPQu3dv1KlTB/Xq1cP06dORlJSEl156yeL2EREROQ07xuX+/ftj/vz5WLx4MQIDA9PXFQ4ODoafnx8A4MUXX0Tx4sUxadIkAMCgQYPQrFkzfPLJJ+jUqRN+/fVX7Nq1C9988435bSQiItIiO18rjxw5Eh06dEBUVBQSEhIwf/58rFu3DitWrLCwoURERC7OzjHZnGtlZ8MkMRER2YYDksS7du1CixYt0n8eMmQIAKB3796YM2cOrly5gtjY2PTfly5dGkuXLsVbb72Fzz77DCVKlMB3332Hdu3apT+me/fuuH79Ot5//33ExcUhJiYGy5cvR1hYmMXtIyIichp2jMtfffUVAKB58+aZ7v/hhx/Qp08fAEBsbCw8Moy6btSoEebPn4/33nsPo0aNQvny5bFo0SJUq1bN/DYSERFpkZ2vla9du4YXX3wRV65cQXBwMKpXr44VK1agTZs2FjaUiIjIxdk5JptzrexsmCQmIiLbcECSuHnz5lByed6cOXOyfc7evXtz3e6AAQMwYMAAi9tDRETktOwYl3OLxUbr1q3Lct+zzz6LZ5991vw2ERERuQI7XyvPnj3bwgYRERG5KTvHZHOulZ0Nk8RERGQbDkgSExERkZkYl4mIiJwDYzIREZFzYEzOgkliIiKyDQZZIiIi58G4TERE5BwYk4mIiJwDY3IWTBITEZFtMMgSERE5D8ZlIiIi58CYTERE5BwYk7NgkpiIiGxDp5NAay6DwX5tISIicneMy0RERM6BMZmIiMg5MCZnwSQxkRtISk7FuZtJSEk1wMfLA6VCAxCg578/EZGr4+c/8T1AREQZMS4QERERzweIyIj/+UQu6uTVBPy8PRZrj19D7K17yFgYQQcgKsQfLSoWRc/6USgfFqhWM8mVeHhYNhKLiOyCn//E9wABYFwmonSMC0QqY0wmIifA8wEiMCZng0liIhdz4dY9jFp4EBtP3YCnhw5phqx18xUA52/dw9zt5zFn6zk0LVcYE5+MRmSIv+MbTK6DQZZIVfz8J74HKBPGZSK3x7hA5CQYk4lIRTwfIMqAMTkLvhpELuTXnbFoPW09tpy5CQDZBv2MjL/fcuYmWk9bj193xtq9jeTCjEHWkhsR2QQ//4nvAcqCcZnIrTEuEDkRxmQiUgnPB4gewZicBWcSE7mIGWtPYurKE1Y9N82gIM2gYMSCg7iRmIwBLcrbuHXkFtwkcBI5G37+E98DlC3GZSK3xbhA5GQYk4lIBTwfIMoGY3IWfDWIXMCvO2OtDvqPmrryBH7jKDGyBkdiETkcP/+J7wHKEeMykVtiXCByQozJRORgPB8gygFjchacSUykcRdu3cOYJYez/d2D8wdw9ZdR2f4u/IWp0BevlO3v3l9yGI3KFua6E2QZNwmcRM6Cn/+U23vgUXe3/IY7G+bCu3AUIl79MsfH8T3gQhiXidyOJXEBMC82MC4Q2QBjMhE5UG7nAynXz+PupvlIiTuFtKQ70Hnr4R0aiaD6T8G/fP0ct8nzAXIZjMlZMElMpHGjFh5Eah7rSQTW7gyfYhUy3edVqFiOj081KBi18CDmvpLzyQFRFgyyRA7Fz38y5z0AAKnxN3B36+/Qefvm/Vi+B1wH4zKR2zE3LgDmxwbGBSIbYEwmIgfK7XwgLf4aDCn3ERDdCp4FQqA8TMa941tw/a/xCGk/AIEx7bN9Hs8HyGUwJmfBJDGRhp28moCNp27k+Th9ZFUEVGpi9nbTDAo2nrqBU9cSUK5oYH6aSO6EQZbIYfj5T+a+BwDg9trZ0EdUhGIwwHA/PtfH8j3gQhiXidyKJXEBMD82MC4Q2QBjMhE5SF7nA35l68KvbN1M9wXWfhxX5gxG/I5FOSaJeT5ALoMxOQu+GkQa9vP2WHh66Mx6rCH5HhRDmtnb9vTQYd42rjdBFtDpLFvPQWfee5eIsuLnP5n7HngQewj3jm1GoVavmb1tvgdcBOMykVux5NzA0tjAuECUT4zJROQglpwPGOk8POEVWBiG5MRcH8fzAXIJjMlZcCYxkYatPX4NaWaUE7v572dQUu4DOg/oI6uiUIuXoS9WPtfnpBkUrD1xDWNR1VbNJVdn6UgsxbxSeESUFT//yZz3gGJIw61Vs1CgRlv4FC1l9rb5HnARjMtEbsXccwNrYgPjAlE+MSYTkYOYez5gSHkAJTUZhuR7uH9yO+6f2Q3/yk1zfQ7PB8glMCZnwSQxkUYlJqci9ta93B/k6Q3/io3gV6YOPPyD8fBGLOJ3LMTVn4cjvNcU+ISXzfXpsTfvISk5FQF6flSQGRhkiRyCn/9k1nsAQOLeZUiNv46w5z60eB98D7gAxmUit2FuXACsjw2MC0T5wJhMRA5gyfnA7TXfIXHfcvlB5wH/Cg0R0vaNPJ/H8wHSPMbkLPjfTKRR528mIa+PKN8SleFborLpjvL14V+pMa7MfhO31/+IsO7jcn2+AuDczSRUjQjOd3uJiMg2HPX5v+t4EioU4ee/MzpxPe/3QNr9eNzZ+DMKNuoOT3/L/448ByAi0g5zzg2A/MUGxgUiIiLnZu75AAAE1X0C/pWaIC3hJu4d2wRFMQBpD/N8Hs8HiFwPk8REGpWSarDqed6FIuBXvj7undgCxZAGnYenXfZDbogjsYgcwlGf/3/8ZUARC/6lyXGuG/J+D9zZMBcefgUQWKez1fvhOYDGMS4TuQ1zP6/zGxsYF4isxJhMRA5gSZz2Do2Ed2gkAKBAdCtc/XU0rv05DuEvfgpdHmuw8nyANI0xOQsmiYk05uFD4MgRYNkW63vuvYIKA2mpUB4mQ6f3z/WxPl7MEJCZGGSJHCI/n8uWfP4/+7QHKhSxeldkRyeue+CfX3L+/cNbl5C4bwUKteqLtIRb6fcraQ+hGNKQeucqdHp/ePoF5rofngNoHOMykdsw5/PaFrGBcYHISozJROQA+YnT/pUa49byGUi9dQneoSXsth8i1TEmZ8EkMZETMyaEd+823fbvBx48ADx8AhD5FoDcB3dlK/VOHHRePtD5+Ob6OB2AUqEBVrWd3BCDLJFDlAoNgA4wu4xURpZ8/tepGIAAvTUtJHsLCsn9PZCWcBNQDLj939e4/d/XWX5/adYrCKzTBSGtX8txHzwHcAGMy0Ruw5xzg/zGBh2AUqmJQFoBwDP3aiRE9AjGZCJygPz0FSgPkwEAhuSkXB/H60TSPMbkLJgkJnISuSWEdTqgUiWgdm3guefka0yMFzp95Y/zt+7luM20e3ezrDWVcvUM7p3cAb8ytaHT5f6BGBXqjwA9PybITAyyRA4RoPdCVAg//91ZXu8B7yIlUeSpd7Pcf2fDXBhS7iOk9WvwKlgs133wPeACGJeJ3IY55wb5jQ1RvgoCtm+Rz5UiRYCwMCA8HAgKkgtWIsoZYzIROYBZfQVJd+AZUDDTfUpaKpIOrYHOSw/vwlG57oPXiaR5jMlZ8D+aSAWpqZIQ3rXL3IQwUKBA1u20qFgUc7efR5oh+w+r64smw8PbB/rileHhH4yHNy4gcf9y6Lz1KNS8T65t9PTQoUWFovk/WHIfDLJEDsPPf8rtPeDpHwz/Cg2z3B+/czEAZPu7TM/ne8A1MC4TuZW8zg3yExs8PXRoUbMk0DwKiIsDrl4FDh0CDhwA/PxMCeOwMMDHxzYHRORKGJOJyEHyOh+4uXwGlJR70EdWg2dgKNISbyPpyDqk3ryIQi1fgYePX47b5nUiuQTG5CyYJCayM3MTwj16AHXq5JwQzk7P+lGYs/Vcjr/3r9AASYfXIX7HIhhS7v1/x0AjBDd5Dt6FInLddppBQa8GuY8eI8qEQZbIYfj5T61L5/4eyA++B1wE4zKRW8nr3CA/JC6UBIICZeZwhQpAWhpw/bokjOPigHP/v++QEFPCOCTEss8hIlfFmExEDpLX+UBA5aZIPLAKCXv/heF+Ajx8/OATXg6Fmr8E//L1c902rxPJJTAmZ8EkMZENGRPCu3ebksI5JYRr1wZq1jQ/IZyd8v5A05Sr2OIZijTPrP/OQXW6IKhOF8s3bNChVvFQlCsaaH3jyP3odJYFWYPBfm0hcnHlwwLRtFxhbDlzM9sRwtZ+/ntAh3BdKPZvDERYWyCQYcDp3LsHrF4N7NkTiFK+hXEh+SbSzLxoCe/5UZ6P8fTQoVEZngO4BMZlIreS17lBTvKKDTnGBU9PSQaHhwM1akiAMiaMT56UC2Nvb0kWG2ca+/tbc2hE2seYTEQOktf5QECVZgio0szi7fI6kVwGY3IWHNJJZKXUVKmu9cMPwIABQIMG0pleowbwyivA2rVA+fLApEnAhg3A3btynTx3LjB4MNC0af4SxNiyBYiJwcRfxsPLy9NWhyUUHVZOjMbMmW4xWIZsxTgSy5KbFWbOnIlSpUrB19cX9evXx44dO3J8bPPmzaHT6bLcOnXqlP6YPn36ZPl9+/btrWobkSNNfDIaXh62XQPQ20uHMR2jceYMMGOGhJq0NJvugqxkMMjgsxkzgMOHgfbtgR/7R8PL07bvAS8PHSY+GW3TbZJK7ByXN2zYgM6dOyMiIgI6nQ6LFi3K9fHr1q3LNibHxcXl4yCJKCN7nBuYHRf8/YHSpYGGDYEnngBatpQL4vv3JYAtXQosXw7s2yeJZJ5gkDtx0LUyERFgj/MBhdeJ5DoYk7PgTGIiM2ScIWycJZxxhnDFilIq2jhDOCbGjrOvHj4EPvhAss/16iFy7lx8cNsHIxYctNkuxnWpim2J/hgwAPjnH+D774FixWy2eXJVlgZOK4Lsb7/9hiFDhmDWrFmoX78+pk+fjnbt2uH48eMoWjTruigLFixASkpK+s83b95EjRo18Oyzz2Z6XPv27fHDDz+k/6zX6y1uG5GjRYb444MuVW3++d+urj+a1QHWrAH++0/6cjt0kH5fUselS8C//wKXL8tgtNatjQPN7PMeiAzhTC+XYOe4nJSUhBo1auDll1/GU089Zfbzjh8/jqCgoPSfs4vfRGQde50bWBwXdDogNFRuVasCKSnAtWuSHL54UWYae3gARYqYSlMHBcnziFyRA66ViYiMbH8+oMO4gjcRGehto+0RqYgxOQsmiYke8WhCePdu6SDPmBDOWDLargnhRx07BvTqJQ0aOxYYORLw8kIPADcSkzF15Yl87+KdthXxYpMovNgEePxx4OWXgeho4JtvAAv6/8gdOSDIfvrpp+jbty9eeuklAMCsWbOwdOlSfP/99xgxYkSWx4eEhGT6+ddff4W/v3+WJLFer0d4eLjF7SFSW4+6UTb9/O9eV9YX8vUFOnYEatWS5ORPPwHVqgFt2kgfLjmGqbS09J+/9BIQ9cgSUPZ6D5ALsHNc7tChAzp06GBhoyQpXLBgQYufR0Tm6VY7CjsOJGPBqfzHhV7RNooLPj5AiRJyUxQgIUESxnFxwMGDMgLbz89UljosTJ5D5CrYIU1EDmbT68ToIHTfsgz4/Crwv/9JzCbSKsbkLJgkplwlJafi3M0kpKQa4OPlgVKhAQjQu87bJruE8P79UhErY0K4e3cVEsIZKQrw5ZfAO+8AkZHA1q1A3bqZHjKgRXkULqDHmAX7kGoA0jwsKEFt0EHvo8O4LlUzdQJ07CjX7K+9Bjz9NNCnD/DZZ0wQkG3Fx8dn+lmv12c7kzclJQW7d+/GyJEj0+/z8PBA69atsXXrVrP2NXv2bPTo0QMBAQGZ7l+3bh2KFi2KQoUKoWXLlpgwYQJCQ0OtOBoix0v//F90EKkGBWkwfxaOp4cOXh5ZP/+NwsMlMbl/P7BqFTBzJtCsGVC/vixFSPZhMEhieM0a+b5DB6lYktO1yYAW5RHir8f7iw7DAAUGmL9WhAd08PbK+T1A7sfcuGytmJgYJCcno1q1ahg7diwaN25ss20TuTtFkWvaxgXLo0obPaasPSznBhasUWw8N+jfoCqK3YvCmTNAmTI2bKROJxeUQUFAhQpSdvr6ddN6xufOyeNCQkxrHhcq5BYddERERLaU3lewxPrzgfTrxHrFpENg6lTgzTcBDvokchmuk+0jmzl5NQE/b4/F2uPXEHvrXqZuRh2AqBB/tKhYFD3rR6F8mHYWqzc3Idytm3TEqpYQftSVKzKdd/ly4I03gClTgEcSXEY9wnVo/P2bGPXyRGxEQXh66HI9ATD+/v75ULzVOhrd62YtI1akCLBgATBnDjBwILBunayr3KSJjY6PXIeVI7EiIyMz3T1mzBiMHTs2y8Nv3LiBtLQ0hIWFZbo/LCwMx44dy3N3O3bswKFDhzB79uxM97dv3x5PPfUUSpcujdOnT2PUqFHo0KEDtm7dCk9mwUgjepQPQmOfQxjlXx0bbxnM/vxvVCYUE5+MzrWMpE4nMbFSJWDtWpagtreMpaVjYoBWrYylpXNXFlF4Ul8YsWEHsT32htnvgXBdKGb0ikatiiwx7XLsHJctVaxYMcyaNQt16tRBcnIyvvvuOzRv3hzbt29HrVq18r19IgKOH5cca716QMmSUWgXUxijFh7ExlPmxwXjuUGJQv7Yu1cGLQUEyOReu/D0NCWDa9SQMhrGhPHJk3IR7+0tDTDONPZnzCKN4awlIlJJj7pRaFzW+vOB9L6CcuVk8tLnnwMffyydxKzIR1rEmJwFk8SU7sKte3kGDAXA+Vv3MHf7eczZeg5NyxXOs3NZDampwNGjsnZwXgnh2rWBmjWdJCH8qIULgb59AS8vYOlSmdqbm9GjEancx9yRnXHyvk6S/SeuIfZmNsn+UH+0qFAUvRpEYcT/AvHJOOC1ntlXDNHpZCZZs2bAiy/K1+HDpeI1q4BROiuD7IULFzKtTWiv9YBnz56N6Oho1KtXL9P9PXr0SP8+Ojoa1atXR9myZbFu3Tq0atXKLm0hsrn//kOkvwfmDmyJk3dSzP78L1fU/ODn6yuJ4Zo1WYLaHjKWlg4Pl/Fhj+TqcnT/PrB+PdC0lj+6dKlvGvCXx3vgubpRWPVXIA7vAGpW4FKQLsfJ4nLFihVRsWLF9J8bNWqE06dPY9q0aZg7d65N9kHkzi5elCpQlSsDJUvKfZEh/pj7ivlx4dFzg5gYIDFRClm1bOmgeO/vL6PQSpeWqdG3bplKU+/eLY8JCjIljIsUYXkTcn7skCYiFeX3fCBdRIR0CBsTxQMG2LjcCJEDMCZnwSQxAQB+3RmbXnoCQJ7lJ4y/33LmJlpPW48PulRFD5VKFBoTwrt3m5LCmkwIZ5SQAAwaBPzwA9C1qywIXKRI7s/Zv1967GfMAIKCUD4IGNulKsaiKpKSU7F8cxKe72XA/HkeaN84c9nwSZOAKlUkxg8fnvMuypSRTujJk4ExY4AVK4B586QjgsjaIBsUFJSpMzonhQsXhqenJ65evZrp/qtXr+a5nnBSUhJ+/fVXjBs3Ls/9lClTBoULF8apU6eYJCZtuHRJeoU7dwb0epQP02f6/D+3eTdSer0In3k/oVTj2vleNsJYgvrAAZagtgVLS0tnZ+NGOR9q0UJ+Lh8WmPk9cOwcUv5cAJ9nnkKpSqUyvQeU1sBvvwGnTgHly9v44Ehddo7LtlCvXj1s2rTJIfsicmW3bgE7dsjgoqpVs/4+S1w4G4eUbdvh06A+SpUOz/HcwMMDaNhQYtSmTVLdwk7jObOn0wGhoXKrWhVISZFZxlevSlb85ElpZJEiptnIgYEc9UTOhx3SROQEHj0fOHYpCSdOGVChnAcqFTdziclChYChQ2VZxE8/BV5/HYiOtn/jiWyFMTkLJokJM9aetHoR+7T/X89gxIKDuJGYjAEt7Nu7mFdCuEIF6VjVVEL4UZs2yXTd69eB2bOlJ96ci9xhw6R3t2/fLL8K0HuhdMFgpFwBShcEAh65sC9fHujXD5g4EXjlFaBw4Zx34+kJjBoFtGsH9OoF1KplGjzGa3E3Z+cg6+Pjg9q1a2P16tXo2rUrAMBgMGD16tUYMGBArs/9448/kJycjF69euW5n4sXL+LmzZsoVqyYRe0jUoWiyIidokXlA/kRAXovVC3oDVw5ART0BvKZIDbS6aQiZMWKphLUe/dKwQuWoDbfpUtSKOTKFZmt1bp1jitK5Oj2bUkMNG2a/TlPgN4LVYv4Ax5JQBH/LO+BihVlxtmqVUDZsm5x/eM+NHDxu2/fPsZbony6dw/YvBkIDgbq1s37mixA74WqYQFAgAEIC8jz3MDbW5YaWr0a2LIFeOwxFQeF+fhIJjwyUs6BEhJMs4wPHpTOAT8/SRYby1Oz9BU5Aw3EZCJyLwF6L1QODwZuA5XDAX9LBoEFBMjkptmzJVncqxfQuLHd2kpkU4zJWTBJ7OZ+3RlrdYL4UVNXnkCRAnpZzN4GMiaEjUnhRxPCmpshnJuUFKnfPHky0KCB9LibW7Jj5Uq5LVggV/FWeP99mYg8fjzw2Wd5P752bfm7DBsmy1D8849MfI6IsGr35AocEGSHDBmC3r17o06dOqhXrx6mT5+OpKQkvPTSSwCAF198EcWLF8ekSZMyPW/27Nno2rUrQkNDM92fmJiIDz74AE8//TTCw8Nx+vRpDBs2DOXKlUO7du0sbh+Rwx07Bpw/LxdlKpy4ZleCumpVoG1blqDOzb17psS6paWlH7V6tfSHN2xo3fN1Ovl7ffuttKd2beu2Q07IznE5MTERp06dSv/57Nmz2LdvH0JCQhAVFYWRI0fi0qVL+OmnnwAA06dPR+nSpVG1alU8ePAA3333HdasWYOVK1datF8iMnn4UMYYe3hI36y9krcBAbL9devkurxePScYIKzTyclGUJB0DqSlyUDruDiZaXz2rDwuJMQ0yzgkxAkaTm6JHdJE5Gp8fGQW8S+/SEfA3bvSOcA4S86OMTkLJond2IVb9zBmyeFcH5Mcdwp3N81H8sUjUFIfwqtgGArEtEdQnS7ZPv79JYfRqGxhi9cofjQhvHs3sG+fCyeEH3X0qHTwHzgAjBsnNZ+9zPz3TEuTTG3jxlKa2kpFigAjRkiy+M03gXLl8n6Ov79Ut378cZnwHB0NfP018MwzVjeDtEynsyxwWnHi2L17d1y/fh3vv/8+4uLiEBMTg+XLlyMsLAwAEBsbC49H2nD8+HFs2rQp205oT09PHDhwAD/++CPu3LmDiIgItG3bFuPHj7fb2shENpOWZpr+ac6Hth09WoJ6xgwpQd2gAUtQZ2QsLb16tUyAsqa0dEYXLwKHDwNduuRvolREhMTwtWtlnWl+/LkIO8flXbt2oYWxxjlkIBcA9O7dG3PmzMGVK1cQGxub/vuUlBS8/fbbuHTpEvz9/VG9enX8999/mbZBROZTFGD7diApSdYL9vW17/5CQyU5vG2bXItXqWLf/VnM09OUDAZkRNbVq5I0PnkSOHJEBlQb1zIOC5MLWiJHcMC1MhGRw3l4AM8/DxQsCCxeLIni7t3dIqlGGsaYnAWTxG5s1MKD6WsQZ+f+2T249uc4+ISVRXCjHtD5+CL1ThzSEm7k+JxUg4JRCw9i7iv1c36MmQnhZ56RjlOXSwhnpCjSkz5smNR63LpVDtoS8+bJFOstW/L9oTVokKwtOWoU8Pvv5j+vfXup7vX668Czz0q17M8/l5Jn5EYcNBJrwIABOZaXXrduXZb7KlasCEXJ/rPOz88PK1assKodRKrbtUsWIezWzSlOWh8tQb16tcT3Dh3ML4zhyi5elNnW+SktnZGiSBGRsDB53fOrVSvpP9+yxbS2MWmcneNy8+bNc4yvADBnzpxMPw8bNgzDhg2zaB9ElLP9+yX/2aSJ4667IiOlwvPhw0CBAkCUbYqI2Ye/v6yBUbq0jNK6fdtUmnrXLnlMUJApaVykCEe2kf1w1hIRuSqdDujUSU5G5s0D4uOlVJaVlS6J7I4xOQsmid3UyasJ2Hgq52SvIfkebvzzKfzK1kWRJ0dCpzPvnyHNoGDjqRs4dS0B5YoGWpQQNs4QdpvylJcvy7SrlSuB/v1lYV9LRzLfvw+89568gNbWmczA3x+YMEGatX07UD/nXH8WhQsDf/4pFUbefBNYvx6YO1fWSCQ3wSBL5DgPHkjNx5gY04wZJ5GxBPWyZRIL3LkEtS1LS2d09Chw4YLtKo0HB8vM7y1b5JzMHf9WLodxmchlnTolk2Nr1XL8aUDlypIo3rlTBjs9spqLc/LwkIaGhspJSUqKaZbxxYvyYnp4SKLYOBs5MNApBuGRi7BzTJ40aRIWLFiAY8eOwc/PD40aNcLkyZNRsWJFCxtKRGSlJk0kdn77raxj+L//sWIHOSdeJ2fBJLGb+nl7LDw9dEjLYSZx0pF1MCTdQaHHXoRO5wFDygPovH3MShZ7QIe+k2ORvLVqekIYkJlFbpsQftSff8q0Wx8f6UFv39667Xz2mVzYTpxos6a98ALw6afA0KHAhg2WXRfrdEDv3sBjj8ls4mbNZJL0uHH5K4NJGsEgS+Q4GzbIQoQtW6rdkhyFhwN9+rhvCeqMpaUBoGNHOf+xxUdfWpoknsuVk2rjttKkiSSz164FnnjCdtsllTAuE7mkuDgZeF2+vG1jgLl0Oil+de8esHmzVKLIT2UMVfj4yIityEgpzREfb0oaHzwo07T9/EwJ46JFeUFL+WPnmLx+/Xr0798fdevWRWpqKkaNGoW2bdviyJEjCNDcPygRaVaNGsBbb0mZyqlTZRZRoUJqt4ooM14nZ8EksZtae/xajgliAHhwbh90en+kJt7EtQUTkHrrEnTevgio1gIhrfpC55XzBZIBCs6mXEPj0lWZEH5UfDwwcCDw44/AU0/JAr6FC1u3revXgUmTgDfekB4CG/H0BKZMkbz14sXWLXNcurRMcJsyRdY4XrFCKo5UrWqzZpIzYpAlcozbt6XcQ5MmTh9cM5agXrfOfUpQ27q09KN27gTu3AF69LDdNgGZBd68ubS9fn2nm6ROlmJcJnI5d+/KCkXh4bZZasBanp5Ao0YS1zdtkjFrmq0qqdNJOY3gYCl1lpYm19rG0tRnz8rjQkNNpalDQjjLmCxj55i8fPnyTD/PmTMHRYsWxe7du/HYY49ZtC0ionwpj7w0TgABAABJREFUWxZ45x2Z2PTxx9IPXqyY2q0iMuF1chauf4SURWJyKmJv3cv1MQ9vXQYMabj+13j4la6FIk+OQoHqbZC4dxluLJ2e5z50Be7hm+9TMWSIzBpy8j5sx9i4Ua7kFywAfvhBZhNbmyAGpC40AIwebZv2ZdCuHdCmDTB8uExUs4anJzBihOQxkpNlsMBnn8nMKnJRxiBryY2ILLd6tWTzGjVSuyVm8/WVwUevvy4Vp+bOlTAYH692y2wrKQlYsgSYPVsmJr38sszItWWC+P59mUhes6ZMbLK1WrWkH3zlSjkG0jDGZSKX8uCBJGQDAmQgj9o5Sr1exqvdvy+Ja5e5zvP0lERwTIycvHTqJBezfn5SlnrNGhlNvXWrJJCNpdOIcmNlTI6Pj890S05ONmt3d+/eBQCEhITY7ZCIiHJUrJh0Kvv6ygyi06fVbhGRCa+Ts3D9I6Qszt9MQl59fsrDB1AeJiOgWkuEtHkd/hUbIaTN6ygQ0x73jm7Aw1uXcn8+gHM3k2zWZk1LSQFGjpRsefHiUrqqT5/8XdWfOgV8+aVkYYsUsVlTM/r4Y7kG/u67/G2nZk1Zi/r114HBg+U6+1Lubx8iIsrJxYtSBrFlS+md1ZiwMAmBXbsC585JCerNm2XSjpYZDDK7d8YMWSu4Y0egb1/brD38qI0bgdRUoEUL228bkL7xNm2k3/vUKfvsg4iILJOWJvHSYJDErLPM2g0KAho2BK5dk0ohLjm4yN9fyp80bAh06SLnYOXLS73tXbuAf/6R0ln798vMY62f1JBTiYyMRHBwcPpt0qRJeT7HYDBg8ODBaNy4MapVq+aAVhIRZaNQIZlRHBEBTJsmcZKInBLLTbuhlNS8h/gay0kHVG6W6f6AKs2RuG85ki8dg3dI8Xzvx+UdPgz06gUcOgR8+KEs0GuLhRhHjZLRzYMH539bOYiJkfWJx46VQwgMtH5bfn4yi7hTJ0kOREcDs2YB3brZqLHkHFiug8i+FEWmdxYtKiNwNMrVSlDbu7R0RrdvAzt2AE2bAgUK2GcfgFTbLFVK1pIuW5Yf15rFuEzkEhRFBiLdvStLAvj7q92izMLCpArF7t1yzWjDlZCcj4eHlNsIDZW1lFJSTGsZX7gAnDghjylSxLSecWCg+tO+SX1WxuQLFy4gKENpPr0Zg0T79++PQ4cOYdOmTRY3k4jIpvz9gUGDpNTWrFlAz54y2o1ITbxOzsL1j5Cy8PHK+8/uWSBUvgYUzHx/QDAAwPAgMc9tHDvigXu5V7V2XQaDZEVr15Zay9u3y2xiWySIt20D/vhDyk37+eV/e7mYMEE6I6ZMsc322raVCXCtWgHdu0sS+v+rIJErYLkOIvs6dgw4f17WBHCB/x+tl6B2RGnpR61eLa9Vw4b22wcgfdlt2siSjHv32ndfZEeMy0Qu4fBhyT/WqydL4TqjMmVkgNG+fcDly2q3xoF8fKRsSN26MiK6bVvAOHPz4EGZYbx0qcw4vnhRksrknqyMyUFBQZlueSWJBwwYgH/++Qdr165FiRIlHHFkRES58/YGXntNRjrPnStx0SVLj5Bm8Do5C84kdkOlQgOgA3ItOe0TXhYPzu1FasJNeIeaTixTE24BADz9g3Pdh6IAPbsEQJcGVKkiudI6deRrjRrON/rZpi5dAl56SabfvPkmMHmy7ZK5igIMHQpUry7Te+0sMlImK3/yCdCvn1QIya/QUOD334F584ABA2RdxZ9+kmrcpHEciUVkP6mppmmd5cqp3RqbMpagPnhQJkrPmCExoUED24ytsjWDQWZLrVkjP3fsKOc39v5Iu3BBEgVdukiftL1FRMjpxtq10t+twermxLhMpHnnz8syBtHRgLPne6pXBxITZUxzy5ZAwYJqt8jBdDogOFhuFSvKuduNGzLLOC5O1nEA5II4PFxOgEJCOMvYXdg5JiuKgjfffBMLFy7EunXrULp0aQsbSERkRx4ewHPPycnB4sUyY6hHD15/kDp4nZwFk8RuKEDvhagQf5y/lfM034BKTRG/7U8kHlgJv1I10u9PPLAS8PCEPio6132UCvXHwm1e2L1bBs3u3g3Mnw88fCgdvpUrm5LGLpU4/v13yab6+gLLl8tsL1tavFgWo1qxwmE95yNHyrrEY8YA335rm23qdDKL+LHHgBdflHUVhw4Fxo9nJ7Sm6XSWBU52iBCZb9cu4NYtKcPggnQ66VyuUMG5S1BnLC1ds6ZUxrDnzGEjRZExAmFhcs7kKC1bAkeOyKlHy5aO2y/ZCOMykaZdvy7hv1QpyTk6O50OqF9fBhdt2iQx0s6Fr5ybl5ep5DQgaxgbE8YnTsjILx8fWUbE+Di3fsFcnJ1jcv/+/TF//nwsXrwYgYGBiIuLAwAEBwfDj+8rInIGOp2MsA4OlplD8fHAK6/ITGMiR+J1chZMErupFhWLYu7280gzZD+f2Ce8LAKqt0HSgVW4bjDAN6oaHsQexL1jmxDU8Fl4BYbmuG1PDx1aVCyKWrVkbaK+feX+lBRZmteYNN69G/j5Z1Pi2DjjWJOJ47t3ZVrsvHnAM8/IOguhOb9GVnn4EBg+XOo/tm1r223nIjgYGD0aGDJEZhVXrWq7bZcsKTOxPvkEeO89mUE2b56pQhdpDEdiEdnH/fvA+vWSlQwLU7s1dmUsQV2zpiRj586V84N27YAMy7E5XFIS8N9/krguVkyuZR05o+voUZlJ/MILjv3oDA6WGd1bt8rgPjX/BmQFxmUizUpMBLZskUvK2rW10zfl5SVLDa5eLQOMmjeX+wjSuVGmjNwMBhn8Z1zPeNcueUxQkClhXLiwc5ZUIevYOSZ/9dVXAIDmzZtnuv+HH35Anz59LNoWEZFdNW4MBAYC33wDTJ8O/O9/jhl5TWTE6+QseLrupnrWj8KcredyfUxou/7wCiqCxAP/4d6JrfAKLoJCrfoiqO4TuT4vzaCgV4OoLPf7+CA9cWyUnCyJY2PSWJOJ4w0bpNf29m3gxx/le3tcxX/3HXDypMxWdrA33gC++EJy1P/8Y9tte3oCw4ZJ3rtXL+mEnjQJGDTILT6DXQuDLJF9bNwogbFFC7Vb4jAZS1CvWiUlqB97TNbidWR/qVqlpTNKS5MEdbly6syqbtIE2LNHXoOuXR2/f8oHxmUiTUpJkZm4Pj5Ao0ba+9f085P+37VrgR07JHZrJcntMB4ekgQuXFhGYScnA9euScI4NlZmGnt6AkWKyElReLh0qPOF1C4HlJsmItKM6tVlNtKMGcDUqcDAgUChQmq3ityFnWPyhg0bMGXKFOzevRtXrlzBwoUL0dXJO1OYJHZT5cMC0bRcYWw5czPH2cQ6Ty8UbPI8CjZ53uzteioGNCpbGOWKBpr1eL3elAA20kziODkZeP99YMoU6UFdv15qgdlDQgIwdqzUZnZkncn/5+Mjidtu3eRi3x55ipgYGUA9cqScJyxdCsyZ4/xrb1EG7Iwmsr3bt2Vxv6ZN3W4ap7EEdcWKUoJ6zRqZyduxo2OSpWqVln7Uzp3AnTuyZJMa9HqZCfbvv1JGtFgxddpBVmBcJtIcg0GqNyQnS5l/R6xBbw+FCkklis2bZcBX9epqt8jJ6fVAZKTcFEVKcMbFyUzjgweB/ful08OYMC5aVLtvDnfFmExElFmZMjJr6LPPgMmTJVEcEaF2q8gd2DkmJyUloUaNGnj55Zfx1FNPWdg4dTBJ7MYmPhmN1tPW55gktpwCr9SHmPj9KKDhF1bXDM5v4rhOHcmj2nXZlUOHZNrrkSOSPR061L5Tmz7+WC4Ux4+33z7y8Mwz0jk8dKh0WNvjmsXXF5g2DejUSWaQRUcDX32lXsc4WYgXvkS2t3q1dAo2bqx2S1Sj10u56ZgYYNkyUwnqtm2lHLKtqV1aOqOMlcaLFlWnDYBUgdmxQ2Z126tgCtkB4zKRpiiKVG64fh1o1kwmjmpZRIRcl+/fL8dSurTaLdIInU5OcIKDZaRcaqq8KYylqc+elceEhEjCOCxMvmdwdm6MyUREWYWHS9nKzz+XSVj9+0sJLSJ7snNM7tChAzp06GBho9TFJLEbiwzxxwddqmLEgoM22qIO4xqFI3L5dZvXDDYncbxrV/aJ4zp1TDOO8504NhhkhNPIkUDZssD27dJza0+XL8uivYMHy8hileh0Eq8fewz49VfgefMnmFusdWvgwAEpc/3cc8DffwMzZwIFC9pvn2QDvPAlsq2LF2X2SJcunC0C6QPt3dtUgnrmTNuWoH60tHSnTpIcVfOjasMGaZfalcY9PSU2//qrrHxRoYK67SEzMS4TacqJE5L/q1tXqgy7gvLlpSjW7t1SjUPNAU+a5eUlo9aMpTySkkwJ4xMngMOH5TwxLMw009iuI+atl5ScinM3k5CSaoCPlwdKhQYgQO8m3ZKMyURE2StYUGYkffWVrFHct68qVTTJjVgZk+Pj4zPdrdfrodfrbdky1bjJ2RjlpEfdKNxITMbUlScABUA+Bp++07YiurcoB3TcBYwaZfeawXkljnftyn7GsTFpbHHi+OJFmd66erUkvydNcszF1/vvyyyyESPsv688NG0KPPGE/Hmfekpm/tpLSIh0RnfpIgPJNm6UJZ/V7iinXPDCl8h2FAVYsUI6++w9GElDcipB3aGDjN2y1oULUk45Lk5e7tatVVrKIoPbt2X2brNmQIEC6rYFkMRwqVKSoC9Xjh/hmsC4TKQZly7JINlKley3gpEadDqJq0lJwJYtsnSD1mdIqy4gQEp0likjI8lu3TKVpt61Sx4TFCTJ4vBwWffYnlXP8nDyagJ+3h6LtcevIfbWPWSsY6cDEBXijxYVi6Jn/SiUD3PhNwdjMhFRzvz9pdz0999LsrhnT+mEJrIHK2Ny5COT98aMGYOxY8fasGHqYZKYMKBFeeiS9fh49WF4eClQYH75aU8o8PLyxLguVdG9bpTc6esLfPqpTMHp3duhNYMzJo5fe03uyy5xPG+eKXFctWrWNY6z5H5//VWmtfr7AytXAm3a2P1YAEjDf/hBajDbo6amFSZPltdsxgwZ6GVPOp3pvKB3b+lUGDIE+PBD+VuTk+GFL5HtHDsGxMZKbV/+r2RhLEFds6Ykd+fNs64EtTOVln7Uf/9JP3DDhmq3ROh08vp+842UQ61TR+0WUZ4Yl4k04fZtKVBVooTVKzY5NQ8PWZ94zRoZ+NuqFa/lbMbDQ5LAhQvLmyc5Gbh2TZLGsbEy09jTU6amG0tTBwY6pDT1hVv3MGrhQWw8dQOeHrpslzlTAJy/dQ9zt5/HnK3n0LRcYUx8MhqRISqP1LMHxmQiotx5e8ss4t9+kwv8u3clt8DlFMjWrIzJFy5cQFBQUPrdrjKLGGCSmP7f9vlRSNlSGM2HHcTWszmfxBsZf9/oyjFM/OhVRIYXzPqgVq2kJuT//qdqzeDcEsfGpHGOiePK91D7v8mosfJj+HXrIsnukBDHNX74cFm8qV8/x+0zDxUryuv44YfAyy875uWIipIJ3J9+Crz7ruTpf/5Zxh8QEbmc1FT5oCtXjuvx5KFoURlEdOiQvGTmlqA2GOQcYO1a+dkZSktndOECcOSIVO/w9la7NSbFislM7nXrJAa70DUREZEq7t0DNm2SAU716rluP6iPD9CkiVzTbdkisVrFya2uS6+XJaoiI6UqTXy8JIzj4mSqusEgA9+NZamLFrXLkia/7ozFmCWHkfr/fUq59S1l/P2WMzfRetp6fNClKnoYJyEQEZH78PCQSWYFCwKLFkmi+LnnnOdCndxaUFBQpiSxK2GSmLB3ryRIv/rKH6+/Vt9UDujENcTezKYcUKg/WlQoil5hBpRr/AQQrQPefjv7jRcqBPzyC9C5sySLnaRmcE6lqg8eNCWNd69LwLwf9HiID+DpMQZVj+lQe6jOulLV1lizRqZH/f67061FOWYMMHeuJIo/+cQx+/TwkJnLbdvK7OI6dYCJE4G33uK5gtPg6Ggi29i1S6YVOaAChyvQ6SRhWaGCeSWoM5aWrlVLxrSpXVo6I0WRhHd4uCRknU3LlpLA3rxZvicnxrhM5NRSU+Wz1MMDaNzY9ZOmBQrIca5fL9fbdeu6blLcKeh0MvogOFhGeqemAtevm9YzPntWHhMSYipNXahQvv8oM9aelOXMrJBmUJBmUDBiwUHcSEzGgBbl89UWp8KYTERkHp1OLuaDg6XzOT5eSn45Wd84aRhjchZMErs5RQHeeUeuGV55Re4rHxaIsV2qYiyqIik5Fec270ZKrxfhM+8nlGpcGwH6DG+b114DJkwAXnop9ymlzz8vQ4eduGawXi+JxzrRycCp94BTnyC5aSscfOcn7L5cLPcZx7XludWr2yhxbDDIH6Z+feCZZ2ywQdsKCwOGDZM//YABMtnZUapXB3bulBnFQ4fKstc//iiDpUllOp1lgZO9QkRZ3b8vmc6aNeXDlsyWXQnqypXlvuDgzKWlIyKAV18FihdXu9VZHTkCXLzovJXGg4OlbOjWrXLu46IDaV0D4zKR01IUYNs2IDFRBtz4+qrdIscoXFiSw9u3S9XjypXVbpEb8fKSkiDFisnPSUmmhPHx48Dhw9IBHxZmmmlsYefGrztjrU4QP2rqyhMoUkBvWtZM6xiTiYgs06iRnCx8/TUwfTrQv7+sx0SUX3aOyYmJiTh16lT6z2fPnsW+ffsQEhKCqCjnPK9hktjNrVghJZ8WL5ZrhkcF6L1QtaA3cOUEUNAb0D/yIOOU0okTgalTc9+ZsWbwtGnAqFHOWTP44EGgVy/g6FFg8mTohwxBHU9PZFx2L8uM4xwSx3XqyFerEse//CIL/m3c6LQXB0OGSPXtd98F5s937L59fWUGc8Zlr7/8UsYikIo4Eoso/zZsANLSOEUzH7IrQV26NHD+vHzsOFtp6YxSU+VUqXx5oEwZtVuTsyZNpBLNmjVA165qt4ZyxLhM5LQOHACuXJHP0+BgtVvjWFFRQEKCxOkCBTjYVzUBAXKyUaaMDFK/dctUmvrCBXlMcLApYVy4cK7T3S/cuocxSw5n+7uU6+dxd9N8pMSdQlrSHei89fAOjURQ/afgX75+jtt8f8lhNCpb2DXWKGZMJiKyXHS0VC/94gtgyhRg4EDHLgNJrsnOMXnXrl1okaGK7pAhQwAAvXv3xpw5cyzalqPwrMONpaXJZNXHHpNq0FYxTin94gspV5QXDw/5cN+5U36uU0eyfQaDlQ2wEYNBFrytU0demJ075cXJ5iLIOOP49deBb76RJHFCgjxl5kyZ/LtvHzB4sMy0CQyU0tSvvCKJzO3bZaJYjh48kMxr167Sa+CkAgKAceMkn71rlzptaNlSOlg6dpQS1M89JxVaSSXGIGvJjYhMbt+WING4sQQPspqxBHXXrrKm74n/n9TSqZPEcGf9+Nm5E7hzB2jTRu2W5E6vB5o3B/bvlyQHOSnGZSKndPq0xKWaNU2TOt1NlSqSHN6xA7h5U+3WEDw8JAlcrRrQujXQpYt0bBQqBMTGyiDGxYtlEPvJk9IBomReZ3jUwoPpaxA/Ki3+Ggwp9xEQ3QqFWvdFcKPuAIDrf41Hwr7lOTYr1aBg1MKDtjtONTEmExFZp3RpyT2kpAAffwxcvqx2i0jr7ByTmzdvDkVRstycNUEMcCaxW/vpJxm9u317PierGqeUvveezAw2R/XqckX43nuSjFWzZvCFCzLlaO1aWeB24kSL632ll6rOMOU444zjXbvk608/ySwhT0+5/jKWqjaucezrC2DGDKkzuWKFbY/TDvr0kYofQ4fKy6fGpOdChWQmc+fOwBtvyFtrzhypak4OxtHRRPnz33+yOG6jRmq3RPMeLS3dvr3E4T//lGqKxhLUzuT+femDrVULKFJE7dbkrVYtOYdcuRJ48UWnLXzi3hiXiZzO1atSiaFcObm5K51Oyk7fuyfrMrdqxQqSTkWvlynfUVGSDI6PN80yPnBATrD8/WWGcVgYTuoCsPHUjRw351e2LvzK1s10X2Dtx3FlzmDE71iEwJj22T4vzaBg46kbOHUtAeWKanwAJWMyEZH1wsNNk9SmTJHS0+58IkX5w5ichesfIWXr3j3Jz3bvDtSrl8+NGaeUzp9v2ZRSX18pUb16NXDqlEz5cXTd4vnzZb8nTkhv8qef2mxBqIwzjr/9VqpHJybKLKEZM+SieO9eYNAg04zjmOhUvPJuGL5sNA/b71TEgwc2aYrdeHkBkycD69dLnl9Nzz0nSfny5WXw85AhcPrXz+VwdDSR9S5elJFbLVvKenBkFYNBxqB98YUsr/f441LJIzpaxoM99ZSMDZs5UybDpKaq3WKTDRuk/c2bq90S83h4yIznc+dkUhE5IcZlIqcSHw9s2SLFuGrUULs16vP0lOIpXl7Apk2yfBM5IZ1ORtZVrAg0awY88YRUPIuIAK5fB7Zuxc+/bYCnhYPFdB6e8AosDENyYq6P8/TQYd622HwcgJNgTCYiyp+CBWWWUmSkzFjat0/lBpFmMSZn4fpHSNmaNk3O5ydOtNEG+/SRxXjfeSdL2aE8tWgho1E7dXJczeDbt2U/PXsCHTpIdtEBU0+NieN+/bImjr/4AqiLXdibGo1BW7ubEscxplLVO3Y4X+KzY0f5Ew4frn5ne2Sk5Po/+UQSAHXrSilMchAGWSLrKIpUjwgLkw99skpsrCwDsWyZnJIMGCCVOowfNcYS1AMGSCxeu1YKoZw6pW67AVkGcMcO6SwvUEDt1pivfHmp/rVqlforh1A2GJeJnMaDB5II9feXAcL8dxN6veQb790Dtm1jLNEELy+pk16zppRq6dgRax/4Ic2MbiBDygOk3buLh7evIH7HItw/sxu+JXMfMZFmULD2xDUbNV5FjMlERPnn5we8+aaUkZw1S0ZaE1mKMTkL1z9CyuLaNZn92b8/UKaMjTZqnFK6bh3w77+WP79gQSlV/csvwPLl8mG/Zo2NGveINWtk+8uWmfZZqJB99mWG9MRxu7P49kQz7PngHyQk6NJnQmWccVy/vvMljnU6qfRx5Ajwww/qtcPIw0NmEe/aJW2rV0/al5amdsvcgIOC7MyZM1GqVCn4+vqifv362LFjR46PnTNnDnQ6Xaab7yPVAhRFwfvvv49ixYrBz88PrVu3xklOiyNHOnpUMpzt2rnFyaetJSYCixZJDPL0BF59VZYg8PfP/vF6PdC2rQzYCgqSU4Hffwfu3nVoszNZvVoKszRsqF4brKHTyWziGzdk4Bs5GTvH5Q0bNqBz586IiIiATqfDokWL8nzOunXrUKtWLej1epQrV86p12UispW0NJlBnJoqCVFvb7Vb5FyCgmSljatXOcBXixK99IhNMG8a+O013+Hi5z1x+eu+uL32e/hXaIiQtm/k+bzYm/eQlOxE5V+swQ5pIiLb8PaWi/7mzeVi/u+/LZ+wRu6NMTkL1z9CymLcOHlvv/eejTdsnFI6bJj1U0p79JBZxRUqyMxeW9YMfvBAtteqlUx9OXAAeP5522zbFt59FwgNBd56C76+khzOOOM4IQFmJY6/+srxiePateWlfP996ax3BtHRMkN74ECZ5dyqFXD+vNqtcnEOCLK//fYbhgwZgjFjxmDPnj2oUaMG2rVrh2vXch5dHhQUhCtXrqTfzj/yRvj444/x+eefY9asWdi+fTsCAgLQrl07PHC2afvkmlJTZRpmuXJA2bJqt0ZTDAZZE3fGDFk1wlhaunhx855ftKispfv001KCesYMdUpQX7ggA61attRm4qBYMSmbunYtkJysdmsoEzvH5aSkJNSoUQMzZ8406/Fnz55Fp06d0KJFC+zbtw+DBw/Gq6++ihUrVlhzdESaoChyTXL7tiSIue5u9sLCZGLqqVNcwkBrzt9Mgrld80F1n0DRHhMQ2ukt+JWpDUUxAGl5J5gVAOduJuWrnapjhzQRke14eMgamk8+CfzzjySLOTuIzMWYnIWX2g0gxzpxAvj6aykzHRpq440bp5TWqQPMmSOjeqwRGSkd5p99BowcKd/Pm5e/hZsOHJDS0idOyDrIb73lXP/gu3bJjObvvsux58CYOK5b13TfgwdSKXv3btPtp5+kg9vLS8pt1qkjSVx7d0h8+KEsU/Tpp5IsdgZ6vbwlO3WSRED16lKGumdPebuSjVkaOK34H/z000/Rt29fvPTSSwCAWbNmYenSpfj+++8xYsSIbJ+j0+kQHh6e7e8URcH06dPx3nvv4YknngAA/PTTTwgLC8OiRYvQo0cPi9tIZBFjzzHfaxaJjZXCJVevArVqyUCgnGYO50anA6pVk7Fj69dLQZR9+2QlinLlbN3qrBQFWLkSCA/X9vqULVsChw9LKVUHrN5B5rJzXO7QoQM6dOhg9uNnzZqF0qVL45NPPgEAVK5cGZs2bcK0adPQrl07i/ZNpBVHjshgoAYNgJAQtVvj3MqWlQHH+/bJ0gvFiqndIjJHSqr5NcK9QyPhHRoJACgQ3QpXfx2Na3+OQ/iLn0KXxwW6JftxSg64ViYicis6nSx7EBwsneHx8ZKL8PFRu2Xk7BiTs3D9I6RMRo4EIiKkfL9dZJxSmpSPkZ4eHpLI3bVLvre2ZnBamjyvbl0JHjt3Am+/7Vz/3IoCDB0qGd0+fSx6qjkzjnfvltm0vXvLc55/XmKmrWcclyol76uPPwbi4myzTVtp3lzGCXTuDLzwguRibt1Su1VkFB8fn+mWnMNUtJSUFOzevRutW7dOv8/DwwOtW7fG1q1bc9x+YmIiSpYsicjISDzxxBM4fPhw+u/Onj2LuLi4TNsMDg5G/fr1c90mkU3cvy+ZyVq1ZAoN5cnS0tLmUqsE9ZEjwMWLsm8tD14KCpJS2du2qVu2m2zD3Lhsqa1bt2aKtwDQrl07xltyWefPy+d8tWoyDpryVr269Fds2wbcuaN2a8gcPl7W9634V2qMlCsnkXrrkl33Q0RELqxhQ1lT8+hRYPr0/OUjiNwUz7LcyObNwIIFMuPzkSU5bevDD4GbN4H/nyWQL9WqSSZz0CDLawafPy+PHz5cspc7dshVp7NZulSSBB9/LD3e+fRo4njvXkkc//ST/L5SJVPi2FiqumZN2ySO331XBmx98EG+D8PmChaUCem//iqztqpXB/77T+1WuRidzrJSHf+fEYmMjERwcHD6bdKkSdlu/saNG0hLS0PYI8m0sLAwxOUwMqFixYr4/vvvsXjxYsybNw8GgwGNGjXCxYsXASD9eZZsk8hmNmyQwUwtWqjdEqeXXWnpV181v7S0uYoUMZWgvnjRviWoU1MlDpUvD5QubfvtO1rjxpJsX7NG7ZZQOjvHZUvFxcVlG2/j4+Nx//59m+yDyFncuCHjnUuWlOsvMo9OJ9eoBQpIdQqu/uL8ivhaX7JMeSiDkAzJuXfo6wCUCtV4rXYrYzIREZmhWjVZYvLqVZksxplBlBvG5CxYbtpNKArwzjuSDLT7MrwZp5S+/nr+Z0fp9bItc2sGK4pMAerfX0pOrF7tvB3wqamyhnPLllLb0k58fWWiMiCTvGvVMpWq3rXLVKr6xx9NpaqrVZOJ4bVrS8nq6Oi8BxcUKiRrXQ8bJnl9Z+wQ6d5dOrL79AHatJF2TpoE+Pmp3TIXYGW5jgsXLiAoKCj9br1eb7MmNWzYEA0bNkz/uVGjRqhcuTK+/vprjB8/3mb7IbLYrVuS9XzsMRmtQznKWFq6dm0JmfmdOZwbR5Wg3rlTZt3a/bzMQfR6qdyxdKmUVWWZUCfghHGZyB0kJsoA7ZAQuY5yg34lm/Lykuu11avldWze3CZjqclGHj4Erl2T87K4OCApyQuhen/cTL6X43PSku7AM6BgpvuUtFQkHVoDnZce3oWjct1nVKg/AvQa775kaUsiIvsqXVo6pD/7DJg8WWZH2XpUObkGxuQsNH6WReZasADYulVmrDjkff3uu8D33wNjx8r0VFto1kxqBg8YIDWD//5btp1xcadbt4A33pAakc8/L8nkggVts397+P57KYcxd67Dew9yW+M4r8SxcZ3j7BLH/ftLqevhw4HFix16SGYrUUJmE3/+OTBihCx7/fPPQEyM2i3TOCuDbFBQUKbO6JwULlwYnp6euHr1aqb7r169muOaw4/y9vZGzZo1cerUKQBIf97Vq1dRLENG4+rVq4jhG4LsafVqyXQ2aqR2S5xWYqKct+zfL6Un+/aVr45iLEFds6YkqX/+WQY/tWuX/1OLe/dkInmtWjJ72VXUqiVjH1aulHF9TIyozM5x2VLh4eHZxvCgoCD4cbQeuYiUFJkB6+MjId4N+pTswt8faNIEWLtWKl01aMCYohZFkdLfcXFyu3lT7itQAAgPl1snn6L4ecd5pBmUbLdxc/kMKCn3oI+sBs/AUKQl3kbSkXVIvXkRhVq+Ag+fnGOAp4cOLSoUtdPRORA7pImI7C8sTDqkv/gCmDoV+N//ZPQ3UUaMyVm4/hESHj6URFiHDlJ92SGMU0q//RY4dsx22w0OloTqb79JZi9jzeD//pOfV64EfvlFenOdOUGcmAiMGSMzomvXVrs1AEyJ4zfeAL77zlSqevt2SajWri2J4zfflGWiM5aqnjVLZkUpCjBxIrBkiXSAOysPD2DwYEmIe3vL8UyebPmy15SBJaU6LA3IAHx8fFC7dm2sXr06/T6DwYDVq1dnmi2cm7S0NBw8eDA9IVy6dGmEh4dn2mZ8fDy2b99u9jaJLHbhAnDokARlHx+1W+N0Hi0t3bmzxBlHJogzyliC+tIlGX+2YUP+SlBv2CDH2by5zZrpFDw8pErHuXPytyOV2TkuW6phw4aZ4i0ArFq1ivGWXIbBIAOzHzyQBCcn4edPoUJSevriRTltIsd58EBW79q+Xcbm//efdOv4+MjA6g4d5FarlpyfvdAgKscEMQAEVG4K6DyQsPdf3FrxJRJ2LoJXYGEUeXo0guo9mWtb0gwKejXIfaaxJjhZTCYiclnBwcDbbwORkbJG8d69areInA1jchacSewGvv4aOHNGZhM7lHFK6YgRwKJFtt12t26ZawbHxEgtyJYtgTlzJBA4u08+kZnPEyao3ZJc+fpKArVePdN9Dx7IpG7jbOPsZhwXLgz07i35/Bo1nLeTpFo1ufh9/31g5Egpk/nTT1I1nSzkgJFYQ4YMQe/evVGnTh3Uq1cP06dPR1JSEl566SUAwIsvvojixYunr584btw4NGjQAOXKlcOdO3cwZcoUnD9/Hq+++ioAQKfTYfDgwZgwYQLKly+P0qVLY/To0YiIiEDXrl0tbh9RnhQFWLFCpl3UqKF2a5yOo0tLmytjCeoNG6QM9f791pWgvnVLBlU1by6zcFyNcY3lVavktWGJUBXZOS4nJiamV+YAgLNnz2Lfvn0ICQlBVFQURo4ciUuXLuGnn34CAPTr1w8zZszAsGHD8PLLL2PNmjX4/fffsXTpUov2S+SMFEX6IK9f50oStlS8uIwDP3BAXlNeo9mHwSDraBtLSN+5I/cXLCgxPTwcCA3NOUyUDwtE03KFseXMzWyTxQFVmiGgSjOL2+XpoUOjMqEoV9QF/qE4a4mIyHH8/GSG05w5khh57jmpUEoEMCZng0liF3f3LvDBB5JLjY528M71eplS+vzzwMaNQNOmtt1+8eIy9bNjR0kQh4XJ4vRaSBDHxUlbBw7U5JWuOYnjhATg9GkZ/e3lJe8/4xrHtWvLxb6zJI71etNbybjs9YwZUtXcmrJmScmpOHczCSmpBvh4eaBUaID211AyhwOCbPfu3XH9+nW8//77iIuLQ0xMDJYvX46w/1/7PDY2Fh4Ztnv79m307dsXcXFxKFSoEGrXro0tW7agSpUq6Y8ZNmwYkpKS8Nprr+HOnTto0qQJli9fDt+8FuEmssbRozKT+MUX3eJE01wZS0sXL+740tLm0utNY9OWLbOuBPXq1ZIcbtDAni1Vj04nZbq//hrYsyfzshbkYHaOy7t27UKLFi3Sfx4yZAgAoHfv3pgzZw6uXLmC2NjY9N+XLl0aS5cuxVtvvYXPPvsMJUqUwHfffYd27dpZtF8iZ3TypAzMrlMHKOoClXGdSYUKcm25axcQEOBayzSoKTHRVEL6+nUZ8K3XS7dKhQry1ZLLoYlPRqP1tPW5zii2lJeHDhOfdHRHlp2wQ5qIyLG8vYFXXgGCgoD58yVJ0rkz168gxuRsuEHWwr19/DGQlASMG6dSA7p3Bz79FBg6FNi2zXYfxGlpMhP3vfeAypWl1vEHH0iP6/jxsj9nnroydqzUaho1Su2W2Ex2ieOOHaXDf8QI+bpzpwziSk2VWG1c49hZEsfGZa/ffFNmQf/9t7y1QkPzfu7Jqwn4eXss1h6/hthb95Dx0lgHICrEHy0qFkXP+lEoH+YCI6Gz46AgO2DAAAwYMCDb361bty7Tz9OmTcO0adNy3Z5Op8O4ceMwTrUPSnIbqakyvbJ8eaBsWbVb4xQMBokNa9fKR0LnzrKMgbNftxUpIgOJDh+WVS5mzpSxcI0aycConMTGAkeOAF27Shx0VcaJ8uvWqR/b3Zqd43Lz5s2hKDknA+bMmZPtc/ay5Bu5mMuX5VqnYkWZdUm2pdNJWeOkJGDLFqkywpnalnv4UJLBxsRwUpK8toULS5dKWJgMeLP2HCwyxB8fdKmKEQsO2qzN47pURWSIE5SUsQV2SBMROZ6Hh1QjLVhQSqzevSuT2Zw5Z0D2x5icBZPELuziRcnPvv22zMpRhYeHzJht0QL44w/5YM6vc+ckg7dxoySDx4+X3scOHWSNX2evGXz0qCz4+/HHstCSC5s6VWYQp6XJIQOZZxzv2pV74rhOHXm+IzuXg4PlrdO5M/D667L/OXNkVlR2Lty6h1ELD2LjqRvw9NBlO3JaAXD+1j3M3X4ec7aeQ9NyhTHxyWjXueA1YpAlyt3OncDt21LqiHD+vMzGNZaWbtVKqkJpRU4lqNu3l/sepSiSUA4Pl8Spq2vZUpLomzbJ35ZUwLhMZHe3b8tY6OLFVajc5UY8PICGDYE1a0xxxcdH7VY5N0WRstFxcXKudeOG3BcQIOci4eEy6M2Wg9Z61I3CD78k47j+RL639U7biuhe1wXWIjZiTCYiUodOJ6W/goNlrcT4eCldxhMJ98WYnIXrH6EbGz1aRtgOG6ZyQ5o3Bx5/XJK3KSnWb0dRJHtXvbokiteulUSrMYOo1wMffSTTVmJj5XE//STPcyYjRkhJ7P791W6J3VWpIpU9xo83rWtknHH8xhvA7NlSKTwhQdYFnj5dZpDt3CmzeevWlfdwrVoSv7/+WhLLycn2b/uzzwIHD0oCoF07qQx+/37mx/y6Mxatp63HljM3ASDP0lrG3285cxOtp63Hrztjc3285hiDrCU3Indx/75kEWvVcvs6lImJwMKFMgDHy0s+3x9/XFsJ4oyMJaj79ZPrzvnzgd9+M8U9oyNHgEuXZNCRs8+UtoWgIOnQ37ZNBmyTChiXiezq/n1g82b5vKtXzz0+29Xk4wM0aSJdClu2SDUSyuzBAxmEt327VMX67z/g2DFJBMfEyLj6jh3ldDQiwvZVTb74Alg5rTw6Fo6G3ssDnh6W/VN4euig9/LA5Kei0b9FOds2Tm2MyURE6mrQQPrijx8Hpk2TjglyT4zJWXAmsYs6cEAGx3zxhVy0qm7yZBla/dVXwKBBlj//5k3pff3zT6BXL1kwNjg4+8c+9phM5Rk40PKawfa2YQOwZIn0ILtJ7cUPPpA1GydNkrdBdnJb43jXLpl1vHMn8MMPMis544zjOnXkqz1mHBcvDixfLm+34cPlInvePLmonrH2JKautG6EdJpBQZpBwYgFB3EjMRkDWmQz5UyLdDrLAid70sidrF8vH2AZ1u90NwYDsGOHjOXSUmlpcxlLUB85AqxYkbkENSAxpEKF/2PvvMObqr8w/qYTWlqghbbsvSnDAmXPskQRUQQFGSJThuwhey8RGTJUQBEFFFFxsPcqUDayEYoCZRTogq7k98f7C91t0ia5N8n5PE+eQprce5Im93y/Z7zHvqRIGzTgXOI9e4A331TaGjtE/LIgmI2EBHa0ArzWZTZqQDAdefLQrx44wD1irVr2fenSatkhHBbGjmF9gVq+fFxv+PpSTtoSsc0//wQ+/hgYPhz4dERx3AkvkKXilh797+uX9rZNxS1AfLIgCIIaqFqVjmrJEspfDhkCeHkpbZVgacQnp0G2MjbK6NGUOuzbV2lL/o++pXTaNCZu8+Uz/Lk7dgA9ezJruHGjYZLVegkJQzWDLYFOR3nsWrU4q9lOKFSIL3vuXGDgQKBECcOel17i+PnzJKnqjBLH+qSxqRLHDg5cMwQFAV27svCsyyehOPAi5xJaALBgx1UUzONqG1JaItchCOkTHs7saJMmdjtE7/ZtBg8fPOB1unlz6+0czgyNBqhShWuw/ft5O3OG0y/044/sCVdX1kX8/jsQGMiuJcGCiF8WBLOg07FTMyqK1zhb9GdqpmBBriWOH+eyqmJFpS2yLFFRSRLSDx6wYMHVlQnh8uX5M1cuy9p07hxDHK+9RrE3gDOK1/UOxLWwSKwPDsXeqw8Q+jgGyVPFGgDFvd3QrLwPutUtjrI+NrxOFp8sCIKgDkqWZOJk8WIGq4cMUXBOp6AI4pPTIEliG2TnTnaw/Pyz6eWDcoS+pXTOHN6y4vlztm8uWcIM3dq1xl+0336bpca9elEzePBgOgAldvKbNjGruXevXVxckjNyJKWiJ06kAnh2yZ2bQebAwKT7UieOjx8HVq9OShz7+ycljXOSOK5cmcGgEZNj8GvkRTg4gbvaTHh2ZCOeHlgH5wLFUfjDLzJ83KTfLqJ+mQK2WTEtCAJbSN3cqL1rZ0RFcV1y7hxdeJ8+9pEodHGhBHWNGkyQnj7N+jhVrcssRM2a9J87dwLdu9tFEa4gCDbOuXPA3buUPjam9lkwHSVKcGTR+fPsLi5aVGmLzEd8PPDwIRPD9+8D0dH0pQUKMEHu58fPoVL+9f59JofLlmW4x9Ex5e/L+XpgSvsqmIIqiI5NwPl/onH4mBYN6jrAv5Q73F0lLCkIgiBYGF9fJoqXLAHmz2dXU/nySlslCIohqzEbQ6vlNa5BA6BDB6WtSUXqltLimXROnjpFWembNzmodvDg7CdWCxcG/vqLuo+jR6fUDLYUsbGcyfzaa5zRbGd4eABTpvDPPmwYA8amwpDEcXCwaRLHLi7A07Ln4XRDhyzGDyMh4hGeHd0EjXPWZdwJWh3GbzmPdb0Ds3ysqpFKLEFIy507wMWLdMouLkpbYzGSS0s7OtqetLShFCzI4O3du+z0WbaMSQV7kiZ1cGDC/PvvgatXgQoVlLbIjhC/LAgm5+ZNXstq1OD2VlCOKlVYjHb8OGvxbEUtUqejbLReQvrRI97n7s41hZ8f1xdqKDyLiQHeeIP77K1bmbDPDHdXJ1TwzYs77kAFX8DdPiZwEfHJgiAI6iJvXmDECI6o/PxzKqBaMlcgKIf45DTYSXjKfvjuO8oaHjmi0kBs8pbSb75J+/vEROoTTZ7MXV9ICH/mFAcHJppbtGDyOTCQ0tejR6ctdTUHy5dTa/P3381/LpXy4Yf0uaNGsZvInJ/PnCaOa9WidHXqxPG1sEgcvP7IIBue7P0aroUrQKfVQvs8ItPHJmp1OHj9Ea4/iLRuiS1xsoKQEp2O0h5+fkD16kpbYzHsRVraEB4/Bk6eZH1YYCBnKB44AJw9C7RtS1lqe6BsWaB0afr/smUts/QSIH5ZEExMWBhrmcuU4bVMUBaNBqhdmwVphw9zq+9mpcJML14kJYXDwlhj7ugI+PiwIMHPL+sErKXRajlJ7MIFrm1suZvbJIhPFgRBUB+5czNfsHYtsGoV0KWLXTZ32R3ik9MgSWIb4vlzYMIE4K23VKxombqltEaNpN/98w91CA8fZvJ22jTTd11VrgwcO0YbPvmEUexvvwVKlTLteZLz9CkwfTqzpJUrm+88KsfJiU3kb7zBnEmbNpY9f1aJ45MnM04c6+cc/xIaCkcHDRKzaCN+EXoBMZcPo1CvxQjfucIg+xwdNPjuWCimtDdBUYRSiJMVhJT8/Tc7iXv0sIvPe2QkxTrsTVo6M3bvZlC3bl36laAgLn3++oudtRUq0B/aulypRsNu4pUrmWCpXVtpi+wE8cuCYDIiIoCjR5OSdqosyLZDHB2pzrF7N3DoEGdEq6HDNiu0WhaS6SWknz7l/fnyMTTh60s5aTVflidOBDZv5pizgAClrbECxCcLgiCoEycn4IMPAE9P4Icf6JTfeEMWe7aM+OQ0SJLYhli8GLh3D5g9W2lLsiB5S+mOHbzvm284KN7Li6XAjRub7/wuLsCsWcCrrwLvv8/ursWLGcQ3hwOYPZulwFOmmP7YVsbrrwONGvFP37Kl8p1EmSWOT55M23FcpN8DOOXPPEGs0yYifOcK5KneCi4+JQ22JVGrw96rDzAFkiQWBJsgIYFtk+XKsYXShtFLS+/dy/1V+/YSQAeA0FDg0iUqjScPWBcoQFGTv//mMsheJKj9/Pi52LePRVi5sp7GIOQU8cuCYBJiY5mAzJ2bxdjyVVEXuXLRj+7Zw71bgwbqXINERSV1Cj94wKWiqysTwuXL86e1+Ma1axlSmT9fhWPO1Ir4ZEEQBPXi4AC88w6rtTZvZnVg167KB64F8yA+OQ02HIqyLx494iJ9wAArkC5M3lL644/Axo0sP+3encnavHktY0fDhtR7HDoU6NWLQ3RWrmT01lTcvs2E+NixMrQK3KwvWMCk7Lff8m1XGxkljo+dTECvP2OyfH7U6b+QEPEQvu/ONPrcoY9jEB2bAHdXK700i5MVhCSOH2cF6nvvKW2JWRFp6fTR6ZgALlQIqFYt7e81Gk7TKFcupQR1mzYMFNsqzZpRlvLQIXZVC2ZG/LIg5JjERI5ySkgAmjSxji5VeyRvXibwDx2iP00uWKYUCQlcH+kTw1FR9P8FCgAVK7J4Kl8+dSa0M2P/fqBvX9b+jxihtDVWhPhkQRAE9dOqFTuKv/mGieK+fU2vciooj/jkNFhpJkJIzYwZ/DlxorJ2GMzrr3Poa9eulKD+8Ufg7bctb4enJ7BmDe3p25etLWvWmE4LecIE7vxGjjTN8WyAOnWAzp351nTubB1zo3LnBnzKRGf5uMTnEXh6cD3y1e8MRzfjix10AG49jkaVwhYqlDA14mQFgcTEMOsXEEBdShskMpKN0ufPcwZd375SC5WcixeB//5j/VtmwV8Xl5QS1D/8QAnq1q2B/PktZq7F8PQE6tfnZJHatS1XF2i3iF8WhByh01FdKDyc4+nc3ZW2SMgMvWLF6dMc9WDpudE6HesD9bOFHz3ife7utK1aNS4LrbnQ4No1oGNHqoN98YX1JbgVRXyyIAiCdVC3LjeuK1YACxcCgwZxYSHYDuKT02D7r9AOuHGDC/SxY4GCBZW2xgBiYjgU/sIFltdOnKhMgjg5HTsy0l2jBtC2LR1ATNZdo5ly+jTw3XfA1KniTFIxaxbw8CGwaJHSlhhOXII2y8c8PbAODrnzwKPW62Y9j2rRO1ljboJgixw4wNajZs2UtsTkJCZyJuPSpVx/tG/P8T2SIE4iIYGzEcuX51xBQ9BLUHfqxNEhX3zBTp2EBPPaqgT161NOc/dupS2xA8QvC0KOuHSJowPq1AG8vZW2RjCEsmWp0nHmDBO15ubFC6qqHD9OYbJduzhOwskpKbTw6qvAK68ARYpYd4I4PBxo144xp59+su7XogjikwVBEKyHypWB4cNZ8TVvHvD4sdIWCaZEfHIabP8V2gHjx7MidehQpS0xgJAQdlZ9/TWlpTt1Aj79NOcJWVNQqBA1M5cupX0BAbQ3O+h0HLxbsSLQu7dp7bQBSpcGPvoImDOHElxqJzYWuH4188tlfPh/iDqzHR4B7ZEYGY6Ep2FIeBoGXWI8dNpEJDwNQ+LzyCzP5eJkxZdljcY4Byul54ItEh7OSGHDhjZXIHT7NrBqFTuIq1dnPVXNmvJVTs3x48CzZ0DLlsY9T6PhXvSjjzjy4MABJouvXjWPnUrh6sr6ifPngbt3lbbGxhG/LAjZJjSUqhBVqgDFiiltjWAM1auzc/foUfpjU6LVstj5/Hmuh7ZuTfL7JUtSkrxDBy4Dy5a1naVgXBzr6sPDgT/+sE21E7NjZp984MABvP766yhcuDA0Gg1++eUX87wOQRAEe6FkSWD0aFbKz50L/Puv0hYJpkL2yWmw4myEAADBwcCmTZSbVrVsb2IiMHMmJRty52bydfDgpCyhWlpKNRpGZ0+fpi5U3bq029hWnu3b2SIzdy7LiIU0TJjA6+y0aUpbkpLYWMrKrVgB9OnDqm8PD6Dzq+7Q6TJ+XmLkY0CnxZNdK/Hfit4vb3F3ryAh/D/8t6I3nh3+IdNzawCU9LZiHTupxBIEtpC4u3Mwno0QGQn8/DOwdi3lkfv0YVeMzB5OS3Kl8QIFsncMvQT1gAEMwv7wA29PnpjWViWpWZOdSDt2IFPfKuQQ8cuCkC0ePwZOnACKFwcqVVLaGsFYNBoWW7m7c0bxixc5O15UFNVTDh8Gfv0V2LcPuHmTSpR16nByVcuWSXLStnYp1emA/v2ZdP/lF6BMGaUtslLM7JOjo6NRvXp1LFu2zEwvQBAEwQ7x8QHGjOGcpPnzgStXlLZIMAWyT06DZK+sGJ2Oo26rVQPef19pazLh5k0aeOwYL6xTpiQNfU/eUtqnj3r0sitWBI4cYQZz0iR2GK9bR3uzIjGRXcSNG3PHKKSLtze74D/5BBgyhLKcliY2llXgISFMDIeEUAU9Pp65/SpVGOjv0wcICHDCyH1uCH2Sfte7c8ESKNjxkzT3Pz2wDtq45/AK6gunfJnrsRb3doO7qxVflo11nHbgZAU7Q9929OabSX7OiklMZHfMvn28JrZvT+lEOyiizDb793N91rRpzo+ll6C+dIm1Z198ATRowJu1Szw6ODCg/v333GdXrKi0RTaK+GVBMJroaCYDvbyAWrXE51krzs7s5t29m3/Ppk0BR0fDnpuQwDr2+/c5Xzgqip8Db2/6Kz8/IF8++/lszJsHrFnDcEjDhkpbY8WY2Se3bdsWbdu2NdIoQRAEIUs8PYERI9hNtHgx520FBChtlZATZJ+cBivORgi//cbK2G3bDN/wWBSdjm1HQ4Yw0rl/f/q7igkTuOuYNg1YssTiZmaIiwtbtNu2ZZK7enXg88+BXr0y3xF+8w0zjcHB9rNzzCZDhgDLlgHjxgGbN5v3XMkTwvqksD4h7OgIVK1KH//hhwwIVavGmYnJaX7fB+uCbyNRm7btydEtL9zKp+0cjDjxKwCk+7sUz3fQoFl5n+y/QDUgTlawZ3Q6ZvL8/HgBsXJu3WJ91KNHvCY2ayadw1nx+DF9S7Nm7F4yBXoJ6rJl2aF88CBw7hzQpo0yxVWmpGxZ1t7t2sX5kapcy1o74pcFwSji47m/dnLi/HS5Llk3bm4srNq3j53hgYHpb891OspF37/P26NHvM/dPWlZ5+Nj/QVa2WHzZmDsWGDiRBauCTkgmz45IiIixd2urq5wdXU1pWWCIAhCVuTKxXlb33wDfPklEBHBjb9gncg+OQ2SJLZS4uPZlNuyJdC6tdLWpMPDh0C/fsCWLUDPnkyuenqm/9jkLaWDB6sv6tmgAXD2LPDxx5wvvHUrhzKm1/UcE8MdVOfO1J4SMiVXLubhu3dnhXeDBqY5buqEcEgI/59eQjgggBt/Q5IfXQOLY+3RW6YxMhWJWh261S1ulmMLgmAB/v6bM2p69LDqBWRkJGfsnT8PFC1KJYVCmYsgCP9n927OHgwMNP2x9RLUNWoAf/1F+eny5Zkstta5gBoN17ErV9JPy7JJEAQl0Wopp/v8OdC8OeenC9aPlxf9y9Gj9NFVq/L+2NikTuH79/l/R0cmg2vUAHx9+Xh7rvk+cYK18p07A1OnKm2N/VIs1VD0yZMnY8qUKcoYIwiCYM84ObFxLG9eYMMGVpi98YZ9LxYEm0GSxFbK118DV6/ymqQ6/vyT0gsJCSw97dgx6+cMHgwsXcpk8U8/md9GY/Hw4Jv+2mtA376Avz+wejWHMibns8+YIJ81Sxk7rZCuXYGFC6nQffiw8b7V0IRw797GJYTTo5xXLjTCUxxJzINER8Mun35d52T5GEcHDeqX9kZZH4/sGaYWpBJLsFcSEphZLV/esLEEKiS1tPQbb1BAQ/Y7hnH7NmWh33zTvJ1GqSWoly2jSIu1SlD7+TEYv39/+goeQg4RvywIBqHTAWfOUGK4UaOMa5sF66RoUe4JL1wAnj7ljOInT/i7vHmBkiXpj7y9pXtcT2gox4xUr07RN1kPmoBs+uQ7d+7AM9lFSbqIBUEQFMTBAXj7bS4gfvqJieJu3WQBYW3IPjkNkiS2QiIjgcmTWdVZo4bS1iQjJoZDkpcvZ2vL6tWGtx/lzg3MnMmW0iNHqO+lRt58E6hXj0nwdu2AAQOABQuoZfXgATB3LmcsW2mSQAkcHID589lN9PPPwFtvZfxYSyaE03D5MtCtG2bduoegPiuQaKLDAoCTgwaz3vQ34REVQpysYK8cP87NQdeuSluSLURaOmfodMCOHVzy+FvgUp5cgvrgQd7OnuV0DLWJsRhCs2Yc5X3oELulBRMiflkQDOL6deDGDe4ffH2VtkYwFVFRSZ3CYWG87949dgvXrs3EsBQnpSUyEnj9dXbT//KLrAlNRjZ9sqenZ4oksSAIgqACWrZkVeE331B6um9fkaGxJmSfnAZJElsh8+czFj1jhtKWJOPECVbOhIayI3jgQOPLTZO3lB46pN5yVT8/4I8/OLB+xAjqS373HR2DgwNnLAtGERTEuoKxY1mx7OzMhPCFC5zvmF5CuEoVJjPMkhBOjk4HfPEFP5fFi6PYtl8xVeeDsT+fN9kpprWvgmJebiY7nmKIkxXskZgYtkG+8kr6YwhUTGQkk5sXLgDFinFf4+entFXWx8WLwN27VBq35NLFxQVo0YJdPtu2Wa8Etacn6+8OH6Zfz5dPaYtsCPHLgpAld++yi7hCBanztXYSEli3rU8MR0XRL3t7A5UqMTl8/jy7iQMCJEGcHomJwLvvsoDwyBEpmjAp4pMFQRBsi8BAKo+uWEFl0UGDOKtCUD/ik9MgSWIr4+5d4NNPOR431WgSZUhIAGbPBqZNY5Ty9GmgYsXsHSt5S+mWLYbJVCuFRsMu4ubNmRyvX5+DrGbO5C5UMIrYWI6ufvddoGlTSoClTgibrUM4M+7dY9f4tm0sfJg/H3BzQxcAj6JisWDH1RyfYlSrCuhc20ZmEYuTFeyR/ft5/W/WTGlLDCYxEQgOpukiLZ0zEhKAXbuYXChZUhkbChRgnd3ly3RX1ihB3aABcOoUsGePupd/Vof4ZUHIlKdPgWPHgMKFLaMEIZgWnY7F8/fv8/boEe9zd2dys1o1JoaT+8L69VnjfegQt/IuLsrZr0ZGjOBa4o8/uAcXTIiZfXJUVBSuX7/+8v///PMPzpw5Ay8vLxQvbiPxBkEQBLVRuTKd55IlwLx5wJAh3KAL6kb2yWmQJLGVMXkyk2PjxiltCajJ9f77jDSPGwdMmpTzXVbyltLXX1d/dLNCBZbYVqvG6OyWLUCnTkCZMkpbplr0HcIhIUldwvqEsEbDj1OXLszN1qplwYRwan7+mW11zs7UYW3bNsWvBzUrhwJ5XDF+80Uk6nTQOOgMPrSjgwZODhpMa1/FdhLEgDhZwf54/JhKGk2bWk3FaGpp6ebNpZMmJwQHU12qWzdl7dBo2CVVpkxKCeo2bbhUUTsuLqyz2LqVBdlFiihtkY0gflkQMuT5cyYKPTx43ZFCKesgNjalhPSLFywq9vHhKC5fXy7JMvp7uriwkGrPHuDoUc6glksf+eIL4PPP+bN1a6WtsUHM7JNPnjyJZsmKVocPHw4A6NGjB9auXWvUsQRBEAQjKFECGDOGTnTuXCaKVdHZJ2SI7JPTIEliK+LiRY75/ewzzkdXDJ0O+PprtjP7+jISacoZwnPncoe3ahXn+6qd48eZIJ40CVi/nu1Yixax7dXOow1xcSlnCJ88mX6HsD4h7OXFt69ECQX/9BERwNChwNq1nEG9alWGVWCv5C2Ou18VQK0B5/FvwiM4OmiQqM04Waz/ff3S3pj1pr9tSEwnR5ysYG/s2sV2lbp1lbbEIHbvBg7FiLS0qYiJ4RKoVi31FAvrJahr1AD++gvYsOH/EtQ1HaF2BeoaNZh037nT8tLdNov4ZUFIl4QEStwDTBg6SVREtWi1rMnTJ4WfPOH9efNyz+jnRyEvR0fDj+nhwfDF/v1UsQgIEJ+zbRtj2kOHUjBNMANm9slNmzaFTmd44bogCIJgQgoWBEaPZkfxggVUo7SGam17RfbJaZDtkBUxZgxQqhTQv7+CRjx8CPTpA/z6KzN7ixZxl2VKqlWj9vDUqexU9vQ07fFNiU7HWbU1a7LNe9QoYNgwvkdbtwJffsmyZjsgdUI4JAQ4dy79hHBAAJPB6XUIDxvG0dQDBgBFi1r4RRw6xM/co0esyOjZM9OIwbhxgK+7G3Z9Eog7zyKxPjgUe68+QOjjGCTfnmkAFPd2Q7PyPuhWtzjK+pj4O6MWNBrjHKe9R2ME6yY0FPj7bxaTqFirMDERuHAWqA7g33+BN3qJtLSp2L+fP5s0UdaO9PD2TpKg3r4dWPaTDxpqmqJBAqBWjRYHB04cWb8euHIl+9NLhGSIXxaENOh0rPGNiKCCgSKKRUKmREcnSUg/eMCkvosL69PLluXPnP7dChZkkdeJEwxn2HMc98IF4J13qD7y6adKW2PDiE8WBEGwbTw9KT29ciWweDHQqxcXG4L6EJ+cBttPg9sIe/dyLszs2QrGog8eBKpWZdn1li3sJjZ1gljPtGlAVBS7itXMzz9Tp2r+fF5c8uRhYviXXyhD7e/PP5yNERfHJPCqVUC/fvR5Hh78OXAgZ3tVq8au96NHgchIyl6uXs0O4bp1M97YjxnDY02aZOEXNH48I/1FitDYXr0ydQJHjvDPP2MGpVrL+XpgSvsq2D+yGS5MaY0/WhbAlm+G44+WBXBhSmvsH9kMU9pXsd0EMZBUiWXMLRssW7YMJUuWRK5cuRAYGIjjx49n+Ngvv/wSjRo1Qv78+ZE/f34EBQWleXzPnj2h0WhS3Nq0aZMt2wQ7Qadj5q1QIV7sVMo//3B/EhzM/3fpwm5NO1jfmp3Hj6mO0bAhm8nViF6CeuBAoJ5/FA6hEb74yQdXrihtWcaULUvJ7J07WeAg5BAL+GVjfPLatWvT+NtconcvWJjz54H//uN+JL/aJRbshIQE4N494PRpqmD8+Sf/HRfHgqEWLYD27fk3K1nSdIn9kiV5/HPn+JmwR8LCgNdeYzPCDz8Y15EtGImF9sqCIAiCguTKxcD3K68AX33F+RaC+hCfnAbpJLYCtFo2qAYGAm+/rYABz5/z58cfcy7r6tXm16gsWlThllIDiIvj7OS2bblzTc4bb3AX27s3d139+rEsV62R5ExIr0P4/Hne7+gIVK7M5HCvXpl3CBuKpyebsgcP5kfO7PmXS5c4TPLcOWD6dGaps9gd63TAyJFMtnTtmvb37q5OqJLPGbh3FcjnDLjayaXWAnIdGzduxPDhw7FixQoEBgZi0aJFaN26Na5cuQKfdLr29+3bh3fffRf169dHrly5MHfuXLRq1QoXL15EkWRDL9u0aYM1a9a8/L+rq6vRtgl2xMWLbMvt0UOVi8WICCbZLlygtHT7jgBWAvKxNh27diXNsVQ7Li5Ai9qRqHFqDf7K2xcbNjihXDl2DHl5KW1dWlq2BFas4HqjTh2lrbFyzOyXjfXJAODp6YkrySoVNFK1IliQf/6hUkH16kDhwkpbY7/odMCzZ0kS0o8eMebh5sYwQ7VqFONytoD0RdWqrE0PDmZnuT0VDjx/zrBFbCzw++/mq/8X/o9IWwqCINgHTk4MkufLB2zcyEVPhw5Sra8mxCenwU4yF9bNhg0MlB08qMD15Phx4N13+e+xY4FZsyxnxJgx7MqdNImJabWxahVw8ybbSdPD15eS06tWAcOHs3rou+9UHfGMi2NS4eRJyySEM6JvX+DzzznOYds20x8fAKMTS5fyJCVLsv05IMCgp27Zwg7pnTvtwk8YjgWc7MKFC9GnTx/06tULALBixQr88ccfWL16NcaOHZvm8evXr0/x/6+++gqbN2/G7t270b1795f3u7q6wk8GtAqGkJDADGH58kDp0kpbk4LERAY59+9nYLVDBwZaNaeVtsy2uH2bMs5vvmmZALap8MZjdG0TjssRhbF9O/DFF0CDBuyGVtPr8PVlEda+ffz8SqNpDjCzXzbWJwNMCou/FZTgwQPubUqXBsqVU9oa+yM2lglhfWL4xQvuL318eK3386Mol6XjHRoNt+f79nHyUIsWTFbbOlot9/TnzgEHDrCoUDAzEpAWBEGwHxwcgLfeAvLmBX78kYni998XyQ61ID45DZIkVjkvXlAFt0MHBvEsRkICMHMmOyvLl+d9nTpZdteWvKV02DBKN6uFZ884M7lnz8zt0mjYRdysGZ1B/frAxInAJ5+wskhB9AnhkJCkpHDqhHBAgPkTwunh7AzMmUN/unMnu4pMyt27fGE7dgCDBlHW3MBoQHw86yXatAGCgkxsl50SERGR4v+urq7pdvLGxcUhJCQE48aNe3mfg4MDgoKCcPToUYPOFRMTg/j4eHilap/bt28ffHx8kD9/fjRv3hwzZsyAt7d3Nl6NYPMEB9MHpCcjoCD//EOJxkePgNq16XYkuWZ6dDq6jsKF1bUsMRS9BHXZsiw+PHyYAeI2bbjcU0txc/PmbNg/eNAMawAhSwzxy9n1yVFRUShRogS0Wi1eeeUVzJo1C1WqVDHtCxCEVERGclSMjw9Qs6Z6rnW2jFbL0Qz6xPCTJ7w/b16gRAkmhb291RErdXRk0dTu3fSLzZopvlU3O1OmsLlp82YZlygIgiAIZiMoiPmNtWu5IO3bVyTeBFVi40tf62fZMipabt9uwZNeu8aE5okTTGa+9ppyeorJW0r/+ksZG9Jj7lwgOpqzkw2hfHmWJusT73/+ya5iC5Wxx8VRVRmgCbdvp58Q7tmTm8Rq1ZSvoH7zTebUR49mAttkRTs//cTEvasr25Rbtzbq6StXAtevc0MtpCKblVjFUpWuT548GVOmTEnz8EePHiExMRG+vr4p7vf19cXly5cNOuWYMWNQuHBhBCXL8Ldp0wYdO3ZEqVKlcOPGDYwfPx5t27bF0aNH4aiGyJWgHmJi2G4REAAULKi0NQDSSkv37Wv+iRD2zIULrDPq0cO6kwzOzkzEVq/O5dWGDVCVBLWHB9cAhw6x6CFfPqUtslLM6Jez45MrVKiA1atXo1q1anj27BkWLFiA+vXr4+LFiyiqxtEygk0QG8uCk1y5OA3IDhoBFCM6mgnh+/fZuZ2QwJEHvr4sTvL1tVzRsbHkysWi/D17KDDVoIF1+/nMWLeOIYk5c4COHZW2xo6QriVBEAT7pE4dbnCXL+dYzUGDZMaD0ohPToMkiVVMeDgwYwYDvhUqWOCEOh3lnYcNAwoVYmSuXj3g1CkLnDwDkreU7tqljtbNf/8FPvsMGDECSDbTNEucnVmy27YtZ+DWqMHj9Olj0h1o8g5hfZewPiEMsGOoYUMmhPUdwkonhNNDowHmz+cGff161i3kiGfPgCFDgG+/5edp5UqWrxtBRIRhDeR2Szad7J07d+Dp6fnybnPNA54zZw42bNiAffv2IVeyFssuXbq8/Le/vz+qVauGMmXKYN++fWiRet64YN/s309f2bSp0pZkLC1towFNNZCQwC6jChU4pcAW8PZmU/zly1CdBHX9+lzH7N5Nty1kA5X55Xr16qFevXov/1+/fn1UqlQJK1euxPTp001yDkFITmIiO4jj4ykj7OKitEW2RUIC8PBhUmI4KorrEG9v+ko/P874tZa1Sd68LCQ4dIh75urVlbbI9Bw8CHz4IfDBByzGFiyIBKQFQRDsl0qVgJEjgSVLgHnzgKFDgQIFlLbKfhGfnAZJEquYWbO48Zo82QIne/CAu4WtW/nzs884FEgN6FtKR40ycUtpNpk4kRU/2d1VBQYCp08zydyvH9/zr75iabWRpE4Ih4RwQ5teh3CePFRY3rgReOWV7JluaerXZ2D4k0+At9/OQeX5wYPMMoeHU+Kje/dsRSuMbSC3O7LpZD09PVMEozOiQIECcHR0RFhYWIr7w8LCspxvuGDBAsyZMwe7du1CtWrVMn1s6dKlUaBAAVy/fl2SxEISjx8Dx49Tg1Bh//jPPxSkePxYpKUtSXAwFaJyXLSkMjKSoG7dmkF+pYL7Li78bG/dyqC9MXV5wv8xo1/OiU/W4+zsjJo1a+L69euG2ygIBqLTcW8UHg40aaK467YJdDrW3eolpB89oqy0mxsTwtWqUdJb6SKjnFCoECXJT5/mZ6ZMGaUtMh3XryeFVpYvt57kvc0gAWlBEAT7pnhx5hIWL2aAefBg3idYHvHJabD9V2il/PMPi0tGj85W7tA4tm4FqlalrtKvv7KbWE27aH1L6ZkzbClVknPngG++YebegKRWhuTJw07W335j1Nnfn3+HTIiLY1P3l18C/fszMeDhwSRw//6skq9aFfj0U/47IoLmrllDJYss8mKqZfZs4N49+lCjiYvjAOEmTajDeu5ctjVC//2XqiDDhgGiiJgBeidrzM0IXFxcEBAQgN27d7+8T6vVYvfu3Sk6k1Izb948TJ8+Hdu2bUMtA4Zu/fvvv3j8+DEKFSpklH2CjbNrF6/dmXzWzE1EBBXzv/2WAdm+fSlOIQli8xMTwwRqQIDRIhRWg16CesAAFjVv3Aj88AMTLEpRowYTDjt2MDkhGIkZ/XJ2fXJyEhMTcf78efG3glm4fJkjdmrXlkaNnBAbC4SGsk7u99854uLiRV4uqlXjmIJXX6V/LFLEuhPEesqW5e30aSbEbYEnTzhFzNubY5Okq14BzLxXFgRBEKyAggXZBOflxQC+gaPzBBNjIZ+8bNkylCxZErly5UJgYCCOHz9u4hdiOqSTWKV88gkX8MOHm/EkUVE8wZdfAu3aAV9/bYGMdDZJ3lLaqZNyEfHRo7lj7NvXNMd7/XW2An/4IdC+PaWnFy5EnEueDDuEHRzYIVyrFvOdapaMNgXlyjEJPmsW0Lu3EUGeixcp633xIp88ahTbq7PJpElMyo8Zk+1D2D4WqMQaPnw4evTogVq1aqFOnTpYtGgRoqOj0atXLwBA9+7dUaRIEcyePRsAMHfuXEyaNAnff/89SpYsifv37wMA8uTJgzx58iAqKgpTp07FW2+9BT8/P9y4cQOjR49G2bJl0drIedWCDXP7NvD33xzcpkD0MzGRdVz79zOoJ9LSlmffPv5s0kRRMyyCtzfw3nvAlSvAtm3KSlA7OAAtW7JG8PJldjwLRmBmv2ysT542bRrq1q2LsmXL4unTp5g/fz5u376NDz/80KjzCkJW3LnDLVblytKgYSxaLYuD9BLST57w/rx5gRIlGC4oUCBH2yqroHp1hkuOHKFUeU7qw5UmPp6qXA8fcj3p5aW0RXaKdC0JgiAIABcVw4axeWzxYsp+1q6ttFX2hQV88saNGzF8+HCsWLECgYGBWLRoEVq3bo0rV67Ax8fH6OOZG0kSq5CTJ9m58eWXgLu7mU5y7Bj1Eu/eBVasYNJT7dHm2bO501+8WJkBOjt3cmDf5s0mjZLG5fPBxSm/IjLfV6izZhgefLsXXRPX4VBC3ZcJ4YAA+0gIZ8SkSWzgnjEDWLQoiwdrtWzDHzMGKF2ando1a+bo/OfOUaV6yRLrDhCYHY3GOMeZjWtO586d8fDhQ0yaNAn3799HjRo1sG3bNvj+v8AlNDQUDslsWL58OeLi4vD222+nOM7kyZMxZcoUODo64ty5c/jmm2/w9OlTFC5cGK1atcL06dPNNhtZsDJ0Ol77CxVSZBj5zZvAX39RWrpOHY5Dls5hy/LoEYu1mjc347pMZWg0QMWKlNnUS1CfPcuOMUtLUJctSzt27QLKl7f9xIRJMbNfNtYnP3nyBH369MH9+/eRP39+BAQE4MiRI6hcubJR5xWEzNBPhyhenPsoIWuio5kQDgvjLSGBRWm+vrwG+/rmYOyPleLgwFEHe/ZwRnGLFoA1bg10OiqEHDxIP1qunNIW2TEW2CsLgiAIVkKuXJT9/PZbjqCMiOBiQ7AMFvDJCxcuRJ8+fV4WUK9YsQJ//PEHVq9ejbFjxxp9PHMjSWKVodOx4bFKFRaSmJz4eGbaZs5kxvGPPxhxswZSt5RaUu9Rq+UfpkEDDvLJJnFxbGwNCWExQFKHsAYODn3QukwzLHnSDfvDG+K/Dz6B98IJcMtrA5pdOaRgQapGT5nCkQ0Zzob67z9+cXbuBIYMAebMMUlEY8wY0zaQ2ywWqo4eNGgQBg0alO7v9unb/f7PrVu3Mj1W7ty5sX379mzZIdgJFy/y2tKzp0Ur+iMiKLF78SID3W+/rV6xD1tn924qSQQGKm2J5dFLUFevzq7ijRvpD9u2tWwnUsuWLLQ+edI+/w7ZxgJ+2Rif/Nlnn+Gzzz4z+hyCYCjR0SxqyZ+fqkuSY0mfhATgySOgIPh+3X3O98rbm4VAfn58D+39/XN2porG7t18n5o0sb5CpQULKBi3di3QuLHS1tg50kksCIIgJMfRkXGmvHmBTZuAZ8+Yc7D3BZglyKZPjoiISHG3q6trug1GcXFxCAkJwbhx45IdwgFBQUE4evRo9mw2M5IkVhl//klJwz/+MMMG5OpVyu+eOgVMmEDpZmsbGpS8pdSSQabvvmMLzZEjBl+skyeE9Unh1JLRAQFA9+4MYrBDuCyQcAiYNQvFpk0Dzv/Fc1tLIt+MfPwxJS/Hj2eQOg2bNrGIIHduZlZatjTJeXftYmDcxA3ktolsfAVbIz6eRScVKgClSlnklCItrS5u3aLMcceOgJMdr5rTk6CuXx9o1MgyvtHXl/OJ9+/nekm66Q1E/LJgR8THs+PTyYl1vdaWzDMnOh3jjmFh7Bh+9Ajw1AItAeT3AkoU53VW9jppcXdnonjvXuDECRYqWcuabMsWFjuPH09VMkFhxCcLgiAIqdFoGGxIniju3l0WsuYmmz65WLFiKe7Wq1Sm5tGjR0hMTHypsKXH19cXl1U6h9qOw13qIyGBKsrNmrFDw2TodGy/GDECKFyYZbDW2oaRvKV00KBMWkpNyPPnTKq/9RZQr166DzEmIRwQwEBnhpLRTk5Mhrdpw6R+jRrAwoVAv37WsyM1A25uwPTpwAcfcJT2y4/ws2f8LHz3HedVr1hhsvYmfQN5/fo5aiC3H2TjK9gax4+zpbdbN4ucTqSl1YVOxxqBwoWBqlWVtkZ5kktQHzrE5eS5c5aToG7WjDNGDx40WR2Y7SN+WbATtFoWWD1/TvUDa5QFNjWxsUlJ4bAw4MULxhsLFmTxWeHcAI4ClSsByK+0terGy4vrsmPHqCxSpYrSFmVNSAjQtSuVaKZPV9oaAYD4ZEEQBCFjWrTgfMM1axiD6tdPgkHmJJs++c6dO/BMNofSlsYUSpJYRaxZA/z9N+XoTRZoCwujNPMff1Ar99NPgTx5THRwhdC3lH7yCbBhg/nPt3gxcO8eZyKDVeoXLiQlhENC2GScUUK4evVszjCsUwc4fRoYOZKDhH7/nXMK/PxM+/qsiO7d2UA+ahS7iTQH9vPOp0/5xenWzaRR6vXrgTNnGAi34/y84cjGV7AlYmKAAwd4IS9Y0KynEmlpdXLhAnD3LhWgxAck4ezMhG316ixqsJQEtYcHi7YOHQJq1wby5TPfuWwG8cuCnXD2LLe9jRoxvmaPaLVAeDiTwvfvA0+e8P68ebm28PMDChRI1pjyRDFTrZJixYCoKK4NPDz4nqqVf/8FXn8d8PenCJtc2lWC+GRBEAQhM2rX5iJj+XIGvwcN4v8F05NNn+zp6ZkiSZwRBQoUgKOjI8LCwlLcHxYWBj+V5nUkSawSoqPZPPree4xHm4RffwU+/JAf5N9+407BFkjdUlqnjtlOFX/vERxmzMLlxgOwdGG5lzOEY2NTJoTffz+HCeGMcHenc3jtNb5ef38mit94w4QnsR4cHYH589m19FvHtXjj1w8YDfr2W6BECZOe6/lz1iG89RaD0oIByMZXsCX27WMradOmZjtFamnpN9/kZV4SksoTH88ZhBUrmty92AxeXpaXoK5fn8V5u3fTPwtZIH5ZsAOuXQOuXwdeecX+Cqyio1N2CyckcD3h68viHV9fTuIRTEPFikBkJGWn3dyYdFcbUVEM+zg7Mxwkf38VIT5ZEARByIqKFdkstngxMG8eMGSI2ZsW7BIz+2QXFxcEBARg9+7d6NChAwBAq9Vi9+7dGDRokFHHshSSJFYJn37Kyt+ZM01wsKgodtt+/TV3CF99Bfj4mODAKkLfUjpy5P9bSnMeUY+PZxfXyZNJHcLvn5qB7olA870TUTCMs4PNlhDOjHbtWLbcpw8HVPbuzddvhxVFrQpfQFCeKIz5pR5enT0fzqM+NsushiVLUjSQC4JgTzx+zAhg8+ZmU98QaWl1ExzMQPD77yttibqxtAS1iwu/lr/9xrETRYua9viCIFgX9+5R9ad8ectMIVKahATg4cOkpHBkJK+zXl685vr5AfnzS7GZudBoGAeIjqa/a9FCXSJtiYks3rpxg/aptFFFEARBEITMKFYMGDMG+PxzJooHD1a3hImQLsOHD0ePHj1Qq1Yt1KlTB4sWLUJ0dDR69eqltGnpIkliFXD/flJxSMmSOTzY0aOU3A0LA1atYiexLe4SHR35prVtC2zdCrRvb9TT00sIJ+8QrlQJaFv+Bgae+gL/9puKm58WtFxCOCMKFgS2bAFWrwaGDgX27uUc3gzmJNscWi3w+efQjBuH+UXa4ZXon/B1vhHob/r8MB4/BmbNAvr3B8qVM/3xbRapjhZshZ07WYRTt67JDx0RAWzfzvESIi2tTqKjmfCsVQvw9lbaGusguQT1tm1JEtRt2pj+PaxenR34O3eKFHiWiF8WbJinT3ktKFyYM3ZtEZ2O6wa9hPSjR9wSubkxAVi1KmvBXVyUttR+cHSkqsWePVwrNG+unvd/9GhOGfv9dyrTCCpDfLIgCIJgKAUK0LEvXcrOwv79mawQTIMFfHLnzp3x8OFDTJo0Cffv30eNGjWwbds2+Ko0AChJYhUwdSo3FuPH5+Ag8fHAtGnMbNWuzQh02bIms1GVtG4NBAWxuubVVwGn9D/O+oRwSEhSUjh1QjgggLn1WrWSdQh3Hg/4+aDEwqGAm2VfWoZoNOwibtqU7U0NG/KDM2mS+bQd1cC//zISvHs38PHHqDF7Nt7vp8HkyUDXrqZvqJ4+nQGYSZNMe1ybRza+gi1w+zZw6RLQsaNJr6uJiazjOnAAcHUVaWk1s38/fzZpoqwd1oiXF/Duu8DVq0wWL19ueglqBwegVSvWyV2+LHvlTBG/LNgoL14wQZcnD1UFbMmXxsay3lsvI/3iBROTBQsyGe7ry72PLb1ma8PVldvw3bu5tmvUSPnL58qVwMKFVMNq21ZZW4QMEJ8sCIIgGIOHB8dsrlpFB9+zp1lHbtoVFvLJgwYNUq28dGokSawwly8DX37Jptj8+bN5kCtXmOE8fRqYPJlJwwwSpjaFRsM3LiCAktr9+6dICOuTwgYlhFMTHAxs2gSsWcNSbbVRpgwzDXPmsMpg2zZGSytUUNoy07NhAzBgAP9QO3eyMABM5G7cCCxYwLfAVNy4wbmKU6bI2AejkY2vYO1otSyyKlzYpC0YN28Cf/7JsRKBgazzcXU12eEFE/LoEdcOLVqo0/1bAxoNlyOlS6eUoG7dmtLUpkhslCnDWshduygza4apE7aB+GXBBklI4HVFpwMaNLD+ba9Wy/WBvlv4yRPe7+lJxRE/PzaTyHVOXXh4sAjqwAGGYV55RbnE/c6dwEcfAYMG8SaoFPHJgiAIgrG4ugIDBwLr1nGsaETEy7i4kAPEJ6fByrdU1s/YsZSa/+ijbDxZp2OLxsiRHMp25IhdVZTExwMXNTXhXrcbfIdPxhtfdcXRCx7pJoQDAoAaNQycIazT8T2tVk3dwwidnIAJE6jl2K0bULMmMH8+nYctlJY/fcovxvffA507M3Pr5fXy18WLc/T2ggVAv37M6ZiC8eMp2/bxx6Y5nl2h0RjnOG3hcyrYFhcvAv/9xwpNEywCnz0DduygtHSJEkCnTiItrXZ27WJgPjBQaUusn9QS1Js2Mbnbtq1pJKhbtgRWrGBSX/5eGSB+WbAxdDrgxAn612bNrLeYJzo6qVP4wQPua11cuEYoU4aJ4dy5lbZSyAofH8YZTp5k0rh8ecvb8PffHF3SqhXw2WeWP79gBOKTBUEQhOzg6Aj06AHkzQv8+CMXwm++aReJS7MhPjkNkiRWkIMHgV9/ZQ7M6I6i+/eBDz4A/vqLuvQLFhiYAbVOUncIh4QAZ8+yQ7iEZgauYBOGxi/Am/OmGpcQTo/ffmPry7Zt1lGyXasWcOoUMGoUS4d//51ziwsVUtqy7LN3Lx1gRAQ7pN97L90L8tixbCKfPJkd+TlF30C+erX1Bp0URSqxBGsmPp4ZwgoVgFKlcnQokZa2Tm7dojhLx47W35mmJtKToK5Xj/KcOZnj6OPD9d7+/azrk4RKOohfFmyMCxc4haZ+/RyocClAQgLw8GFSYjgykmsCLy8mFv38+HpknWB9lCrFv+fZs5Q/N1XhsiE8eAC89hqLpzdskLWL6hGfLAiCIGQXjYaBpbx5Gbh+9gzo3l2cf3YRn5wG+SQphL5ZtVYtNkkaxZYtQJ8+vBD8/jvQrp1ZbFSKzBLCDg6UKqxVi7NomRAuDtdpQ9Fh6QKgU/+cJUfj4znjuGVL6iJaC25uwLJl3CV+8AGzEV9+SQdiTcTGAp98woFKTZoA33zDXW8G5MsHTJzIEQ0ffwxUqZL9U+t0zLP7+9PPCtlAnKxgzQQHszAlhwoSN26wfkukpa0LnY5d30WKAFWrKm2N7ZGeBPX58zmXoG7WjEmjgwfZRSWkQvyyYEPcusVRTdWq8VqtZnQ6Lin0EtKPHlFW2s2N3cJVq7LQJSeFMoJ68PcHoqKAY8folyxRwPDiBdChAxATw/pqT0/zn1PIIeKTBUEQhJzSvDmd/po1rFLr1w/IlUtpq6wP8clpkCSxQvz4I3D8OBf0Bn/OIiOBoUN5IXjjDSYBrXxoanw8JZJOnjQ0IZxBh/C4cdTmnzyZA92zy9dfs9Vlw4bsH0NJ2rZl1LVvX7ZC9eoFfP459a/Uzvnz/ENfuULZ7GHDDPpyDBgALF7M3P7vv2f/9L/9xiCztTSQqxJxsoK1Eh3NC0CtWhz8lw1SS0u/8w4DwIJ1cP48cO8elcalk8t8mFqC2sODM0kPHgRq17auzkKLIH5ZsBEePuR+sVQpZSR9DSE2lp2d+sTwixfcUxQsyMS2ry+vWeJjbA+NhlO/9u1jEVSLFuZVt9DpWBd++jTVNEqUMN+5BBMiPlkQBEEwBbVqcVH5xRdssho0SKrFjEV8chokSawAsbHMab72GjuMDOLwYXY3PXhAfd0PPrC6HaY+IRwSkpQUTp0QDggwICGcHslbSocOzV5LaWQkk8zvv8+TWysFCgCbNwNr1wJDhnC3um4dkLuB0palj1bLAUrjxzPqc+IEIykG4uICzJ7Njvy9exl8NpaEBCaZg4KkEylHiJMVrJX9+xlxM9gpJ5FaWrpjR3YIWZmLtmvi44Hdu7kOkUCrZfDy4iSJK1dyLkFdrx7XlLt3cy6jkAzxy4INEBkJHDnCZOsrr6jHv2q1VA25f58y0uHhvN/Tk0JIfn7clknxqX3g5MSipd27qZjRrJn5FCCnTgV++IGFVnXqmOccghkQnywIgiCYigoVKFG7eDEwbx5zIVbeSGhRxCenQZLECrBiBeWytm414MFxcdwFzJlD3cqdO9lyoXIMTQi/9x4LYHI0Q1iPvqV07FgD39xUzJ/PVrAZM3JoiArQaNhF3KQJtZMbN0bhnmPhjMkAVKRrducOZw/v3csE/8yZ2ZLJ6NQJ+PRTykUfP278tfurr9hA/sMP6gk8WSXiZAVr5NEjFqc0b260IxJpadsgOJgykUFBSltif+glqA8fZlD93DmgTRvjJKhdXBiM/+03oG5doGhR89psVYhfFqycuDheG1xdWRCi9Ec0JiapU/jBA+55nZ3ZJVy6NBPDMh/dfsmdG2jYkFvb4GDOzjb13nL9eoaHZs7kHliwIsQnC4IgCKakWDF2PC1eDMydy0axTEY2CskQn5wGSRJbmKdPgWnTgN69gcqVs3jwpUtAt26MmE2dyuSnCgeSJ08I65PC+oSwRgNUqpSUENZ3COfJYwZDkreU7ttnXEfY3bvMMn78MS+ytkLp0uyQmzsXvpMm4yi2Idc/3wGvVFLaMuD774GBAymRsXs3EzTZRKMBFiwAGjemUvh77xn+XH0DebduQM2a2TZBAMTJCtbJrl28DtWta/BTnj0Dtm+nmxZpaesmudJ4duSOhZzj7MwlW7Vq/F5lR4K6enUG5HfsYI1c8qB8dGwCbj2ORlyCFi5ODijp7Q53V/Wtp82C+GXBitFq2UEcF0f5XiXm9yYkUOo6LIyJ4chI3u/tTQEkX18qI0iRqaAnXz4WDh4+zFEWRghkZcnhwxSU69GDynSClSE+WRAEQTA1BQoAo0cDS5YwMN6/vwEJpyTsdq8sPjkNdvBXtzyZfcFmz+Z8oqlTMzmATgcsW8a2yBIlqGNZq5ZljM+C1AlhfYfwixcWTghnRPKW0uBgw7/Ekyez9NcWd1uOjsD48bhcojXcunVDha6vAHfncWaBEhGNJ0+YHN6wAXj3XX7WTTBEsFEjjuoePx546y3Du/kWLLCdBnLFEScrqJBMF723bjHT+9ZbzFRlQUICXfLBgyItbSvs28e/X5MmSlsieHlxWaCXoP7iC3ZhGSJB7eDAcRHr1vEr7ewdifXBodh75QFCw2OgS/ZYDYDiXm5oVsEHXQOLo5yvhzlflrKIXxZUhqGBKJ2O+8zHj3l9ttR+UqcDIiKSJKQfPmSyOndudglXrcqiMCUS1oL1ULgw4yBnzvCzW7p0zo958ybQoQNrGletkrWnVSI+WVAZdpscEgRbI08eqnOuWsVkcc+erFjLgGthslcWn5wWufqbCEO+YLWK+GDFuuIYOdIDhQplcKC7d1keun07E2nz5wNubhZ4BWnRJ4Rv/Qq8AVasbrqeNiH87rsKJYTTI3lL6caNNC4rLl4EVq/msPe8ec1vo0I8rxSAhgjBrQ5j4DNkCPD778CaNdzFWordu+msIiPZSWzI38cI5sxh8GbpUmDEiKwff/cuPy4ffyyKHIJgSxi26C2IrqHHUa5wYV44skCkpW2PR4+YhAgKUmypJaRDehLUrVtz3ZlZULx0acCreAz6bzyP0LhHcHTQIFGrS/M4HYDb4TFYF3wba4/eQqOyBTDrTX8U85IPgSCYg+wEoq5cYR1XnTpskDAncXFJncJhYcDz54wD+fgA/v5MDnt4SFJOMI6yZbnlPXWK00x8fbN/rKdPgXbt2KX8889SpCAIQvaR5JAg2CiurswjrVvHHEdEBNCyZYqH3AmPwfgt53HwuuyVhbRIkjiHGPMFu/34Ngr2uIWrRQrgTng6X7DNm4G+fbnq//NP6uxZiMw6hF8Bk8TFiwNzPlRRQjgjkreUduyYdRR/zBigVCnONLZxnsMN/45eAp9er1GP0d8fWLkSePtt8574xQv+PT77jLLSa9eaRda7YkWgTx92Bffqxa6kzJgyhZ0BY8ea3BT7RCqxBIUxatF77DbW6nzRqIg7Zj19keGiV6SlbZddu1gbVqeO0pYIqdFLUFevzq7iH3/MWoJ6w4lQLL1xEXGJ/N6n9/1Pjv73R24+RtBn+zG1fRV0qW1jFWPilwUFyW4ganA9f9y+6IZKleh3TY1Wy4IvfWI4PJz3e3pye+Lnx8S0o6Ppzy3YDxoNYyZRUVShad6cnzFjiY+nWFpYGHDsmIzGsGrEJwsKIskhQbADHB3Z4ZcvH/DTTwxmdewIODhgw4lQTP7tIhK0slcGID45HSRJnAOM/YJBw98fv53qCxYRweHi33wDvPkm5QHMWDKdkMCE8MmT6UtGV6yYskP4FQBoBEyfjv//xwrQt5QuW0bJhYzYuxf44w8OwLOnktzWrTkkqV8/7jp79OCg++zsXLPi7FkO/L12jd3aQ4ea9eI6ZQrw3XfArFnsEs6IixeBr7+mSfnymc0c+0KjMe5vKy0ZggkxetH7/18fuReT7qJXpKVtm1u32Kn21luAk6yGVUv+/FyPXr3KTv6MJKiX7r2GBTuuZusciVodErU6jP35PB5FxWJQs3Imsl4FiF8WFCLbgagbj3H0xn58UL0K3q5iukBUTAwTwvfvAw8eMPHm7MzuztKl+VMUJQRT4+AA1KsH7NlDZYwWLYxTodHpgMGDORpj507OwRasGPHJgkJIckgQ7AiNhvMp8ualwuqzZ1haoiEW7L6ercPZ7F5ZfHIaJCyWTUwWjLpwFYOm9aHm4Zo1TNaZ8IOnTwiHhCQlhdNLCHfpwrHH6XYInzKZOZYjdUtpejNvtVrOLg4MNH8nrRrx9mZrzrffcve5fz//3aiRaY6fmMgM7IQJ/HucPGmQpGtO8fUFRo/mn/6jj9gknh5jxgAlS9pFA7nlkEosQSFMnSC6fp0JqSdPOPutSRORlrYldDpgxw6gSBGgShWlrREMoXx5+vPDh3lLLkG98WRotr//qVmw4yoK5nFFZ1sJhIlfFhQgRz5ZpwOgw6oz5+Hpk/1AVGIi5wnrE8ORkbzf2xsoV47dwl5edhHvERTG2Rlo2JBTl44c4VQsQ7vUP/uMol+rV1NdQ7ByxCcLCiCFlIJgpzRrBnh6YsO6HVhwPXsJ4tTY1F5ZfHIaJEmcDTacyDgYpUuIx9OD3yH64l5oX0TBuWBJ5Gv8PnKXqpnu4xdcjUXBV9qi8/yRLGPOASZJCNsSU6ZQi3/WLM52Ts2GDXyTDh603wiBRsPChMaNge7dmQkZMwaYOjVnndW3b/O4Bw4AI0eyDd2CGZbhw4Hly5mfXr8+7e/1DeQbN9pXA7nZEScrKIBJffKOq7h12RUeD4qjZEmgc2eRlrZFzp8H7t1jDZm9un9rJD0J6vxFY7Ds1sV0Hx/38DaeHfoecfevIzH6KTTOrnD2LgbPwI5wKxeY4Xkm/XYR9csUsA1pPfHLgoUxtU82NBCl01GcSz9X+OFD1gPnzs2EcNWq9Oey7heUwN0daNCAHcEnT3LMRVbrj99+4zZ6zBiuVwQbQHyyYGGU8smCIKiDO6UqYXKeMCBBm2bhEXvvKqLP78aL0PNIeBYGh9yecC1cAfkavw9nryIZHtNm9srik9Ng+6/QxNwJj8Hk39IPRgHAoz8+Q8SJX+BeuSnyB/WFxsEBD36cghd3MnqODpMqv447+fyMsiMhgV0Ua9YAgwax08nDg4Gz3r2ZBCtXDpg9m3m6iAgmkNetAz7+mNWsNp0gBpJaShcvpq5kcvQzcjt04Jth75QqxV3rrFnAp5/yA/X338YfR6ej1nO1asDNm9TWmjfP4i147u7AtGnA999zI54cfQN5nTpU2hZMiN7JGnMThBxgep8MbAm9iAatY9C9uySIbZH4eHbzVKoEFJcYh1Wil6B+913gp9DziEtIXzIvMeIBtHHP4e7fAvmD+iBv/c4AgIebpyPyzLYMj5+g1WH8lvNmsd3iiF8WLIg5fPKk3y7iTnhMur+LiwPu3AFOnGDx544dwIUL/J2/P9UG2rVjcXTRopIgFpTF25v7z9BQ4NKlzB97+jR93Jtvcnsu2AjikwULYmmfLAiC+hi/5TwSdEi3Mi3i2E+IuXIEuUpUR/6gvshTvTVe3LmAe2uGIu7hrQyPaTN7ZfHJaZBOYiMZv+X8yzkOqYm9ewUxlw4gX7MPkDewIwAgT9XmuPvVR3i6bw383k9vQKrm5RdsXe/0uxqSdwjrb2fOpN8hHBDADmEPD9O8XqtnxAi2lH7yScqW0mXLgH//BbZvV842teHoCIwdy4hK1678MM2dyyoEQy6G4eHUbt60ic9fulTRYb89e1Kia9Qo5qr1PnHjRn6HDhyQDjKTI5VYgoUxvU8G4KDDNxfPI6huxp2GgvVy7BgQFQUEBSltiZBTNHkjERr3KMPf5y5TG7nL1E5xn0fAa7i39mNEHP8FHjXapPu8RK0OB68/wvUHkSjrY+ULavHLggUxh09Ovk/WajkGQi8hHR7Ox3h6AsWKsT64YEHDpXwFwdIUK0bp84sXGa8pViztY/77D3j9daByZRb4y2XZhhCfLFgQc/tkQRDUzbWwSBy8nvFe2aP2myjQfhQ0js4v73Ov1Ah3vx6EiGM/ocDrI9N9ns3slcUnp0GSxEaQ1Rcs5sphQOOQIuikcXJBnuot8XT/t0iIeAgnz4Jpnpf8C1bSyyNNQvjsWeD5cya0KlRgNXTnzpIQNgh9S2nfvtQgDghgRGHGDN5XoYLSFqqPmjX5wRs7Fhg6FPj9d7asF8lYbgK7djErGx1NGe/OnS1mbkY4ObGJ+bXXgD//ZCdBbCwbyN94w3Sjl4VkiJMVLIglfLJVL3qFNERHA4cOAbVrcxalYN2sDw6Fo4MGiRkEwNJD4+AIJ48CiL1/LdPHOTpo8N2xUExpb+VDq8UvCxbC3D75px2RcIrxQHw8ped9fTmpydcXcLNytTvBvqhUiYni48f52fX2TvpddDQTxBoN5abls21jiE8WLITskwVByGqvnKtopTT3OXsVgUuB4oh/dCfTY9vEXll8chps/xWaEP0XLCPiwm7C2asIHFxTruZdCpV/+fuM0Og0aD8iFJ6eSZLRu3cDZctSYujAAeDZM0oT6SWjGzWSBLFB9OrFUtxRoyiHPGsW27MnT1baMvWSOzfw+efUbbt4kZptmzalfdzz5/wwtmzJlvbz51WRINbz6qtAs2ZUHU9IYHPznTvAnDlKW2ajWEiuY9myZShZsiRy5cqFwMBAHD9+PNPH//jjj6hYsSJy5coFf39//Pnnnyl+r9PpMGnSJBQqVAi5c+dGUFAQrl3LPIEgKI85fbJ+0SvYFvv28bLTuLHSlgimYO+VBwYliLVxL5AY8wzxT+4h4vgveH4zBLlKVM/0OYlaHfZefWAqU5XDAn7Z1D5ZsE7M6ZMdoMFf10NRrhzQvDmLPevV47QcSaIJ1oZGw6J/Ly/g8GEmhgEgMZFiXNeusUa7UCFl7RTMgAp9smCbyD5ZEARD98rJ0el0SIx5Cgc3z0wfZxN7ZZGbToPtv0ITktUXLDEqHI558qe53zGP18vfZ4ROo4PW94EkhM2BvqV0715g9WpgyRJmDX19lbZM/bRsycRvUBCTv++/zw8nQM3zWrWAFSuARYuYUC5aVElr06DRAPPnU6592TI2kPfpw3y2YAYs4GQ3btyI4cOHY/LkyTh16hSqV6+O1q1b48GD9BcoR44cwbvvvovevXvj9OnT6NChAzp06IAL+qF1AObNm4fFixdjxYoVCA4Ohru7O1q3bo0XL15k+60QzI85fbJNLHqFFDx8SJGMRo0kqWALRMUmINTAmWhP9nyFfxd3xd2VffBk72q4la8Hr1YDsnxe6OMYRMcm5NRUZTGzXzaHTxasE3P6ZC10uB7zAFWqsOtSxsUI1o6jI1C/PsMUhw4B8fEU8dq6laJc1TOvYxKsFZX5ZMF2kX2yINg3xuyVkxN9cR8SIx/DvWLW0ptWv1eWJHEabP8VmghDvmC6hDggmZa7Ho2TS9LvMyHWOQZ9BiRIQtgcvPoq0LQpJae9vPhTMAwvLw7y/fZb6l5Vqwb06wfUqQO4uDDqPnSoai+YAQHAe+9xLHVcHDBlitIW2TAWcLILFy5Enz590KtXL1SuXBkrVqyAm5sbVq9ene7jP//8c7Rp0wajRo1CpUqVMH36dLzyyitYunQpAFbKLVq0CBMmTMAbb7yBatWq4dtvv8Xdu3fxyy+/5OTdEMyIJXyy1S96hRTs2gXkzUvXJRiHTgdotexySkhgMDsujiMcXrygqEhMDLuhoqIooxkRwZqyp085QzQ8HHj8GHj0iAn7Bw+AsDDOFb13D7h7l3MY//2Xih+hocDt28CtW8A//wA3bwI3bgDXr7PL6uCpaBhaF+1Z+w34dJkB73bDkLt0AHQ6LZAYn/XrBnDrcXQO3jkVYGa/bGqfLFgn4pMFwXhcXYGGDelDf/wRWLiQt3btlLZMMBsq88mCbSI+WRCE248N3yvriX98B+E7l8O1SEW4+7fI8vFWv1eWJHEaZCaxgRjyBdM4uaQbdNI7WL3DzQj9F6xK4bzZtFLIEI2GstP79gEdOnBWsWA4Gg27iEuV4s511SogMJDdw56Zy1Cogf79ge+/p/S0NJCrj4iIiBT/d3V1haura5rHxcXFISQkBOPGjXt5n4ODA4KCgnD06NF0j3306FEMT1UU0rp165cJ4H/++Qf3799HUFDQy9/nzZsXgYGBOHr0KLp06ZLdlyWYEUv55J+2R6O4R17odLDqW8E7QDew1idst/L2WPrm7g5UqMAkY4cOytujxK1aQeBgV6BBQ+BMmOHPUysuhbQo1MOwxzp7F4OzdzEAQB7/FgjbMBEPfpoGv+4LocmiJTEuQZtTU60SQ/yyOXyyYJ3IPlkQsoenJ5ArFxPFn34KDB6stEWCGjGXTxZsE/HJgiAYu4dNjHqCBz9OhYOrOwp0GAeNg6NZziOoG0kSG4ghH3zHPF5IjHyc5n69VIdeuiOn5xGygU4HrFnDNqKdO9nuIoliw9HpqH0+aBCQPz/w7ruU7m7cGFi/Hqii7mH1K1bwz338ODuXJFFsHnTQQAfDNQD1jy1WrFiK+ydPnowp6bR8P3r0CImJifBN9Qf09fXF5cuX0z3H/fv30338/fv3X/5ef19GjxHUh6V8ct/+WsTdM94+S6DRGH6roWWS+KuvgHNOxj3XFm5Fi7LD9elTSjwqbY8SN18tgGhg4ADgobPy9uT0FhrpgElHsvfdcavYAOHbliIh/D84e2c+JsPFyborhs3pl83hkwXrRPbJgpA9Ll0CunQBevRgV/GNG0C5ckpbJZgLtflkwTYRnywIgjF7WO2LaIRtmgzti2j4dpsLJw9vs5xHbWTXJ9sykiQ2EEM++C4+pRFx+xy0sTFwcE0aeBd39yp/71s6y2P8uMEBkXWBmjVFctqk/Pknu4i//hoYMIBaThMnKm2VdfD4MVtxf/qJ3cRLljDZ3r8/0K0b9ZznzAGGDFGl/MLJk+wiXrQImDqVctPLlyttlW2i1fJmzOMB4M6dO/BM1pGeXhexICTHUj75l58dUK6A8gmx1DejOQUgADhwAMAr2Xi+FXP2LPDLLxQTKV5caWsU5C6AlUDXrgAKK21MzomOdcfkIzBaRgsAdPGxAABtbObyWBoAJb2tu6BQ/LJgCSzlk605ECUIqXn0CHjtNRayTZvG8QpnzrCwubAN+GkhLeKTBUsgPlkQhJLe7tAg672yLiEOD36ahoQn/8G3ywy4FDA8YGLte+Xs+mRbRq7qBqL/gmWGW8UGgE6LyDPbXt6nS4hH1PmdcClcAU6eBTM/gA74fKY7mjRhDq5iRebgPvuMgd3IyJy/DrskIQEYPRpo1oxR4sGDgXnz2FIqZM6OHYC/P7B7N7BpE7VK8/5fUqZGDWZgBwwAhg0DWrXiMEEVodMBo0YBlSsDH33EucRffglIMa150DtZY24A4OnpmeKW0ca3QIECcHR0RFiq725YWBj8/PzSfY6fn1+mj9f/NOaYgvJYwidrADSu6Y6yZYEyZYDSpam4X7IkUKIEE47FijG4V6QIA3qFCgF+flQr8PEBChYEChQAvL053j1/fiBfPl5GPT1ZDJYnDwOCbm5A7tyUHXR15ch3Z2fAyYndrw4O2UwQ2zHx8cCePUClSnaeILZB3F2dUNzLLdPHJEY/TXOfLjEB0Rf2QOPkCucsNsHFvd3g7mrd9bTm9Mvm8MmCdWIRn6zToeTKz4GjR7m3EwQrJjYWePNNqpz8/jvXhdWqcS157BiVTwTbQ20+WbBNLLVPtubkkCDYOobslXXaRDz8ZS5i715GwQ5j4VqkklHnsPa9cnZ9si0jSWIDMeQL5lq4AtwqNsTT/d/gyd7ViDyzDWE/jEfCswfI37RXlucoUcANzx474dw5Kvm2bAncvMnElj5xXKmSJI6NZs0a4O+/gfnzGWEfP55R96lTlbZMvTx/zs7g1q2BqlWB8+eBTp3SPi5XLn4Yd+5k5tXfH9iwwfL2ZoC+gXzePP7JBw1iUmfsWKUts03M7WRdXFwQEBCA3bt3JzunFrt370a9evXSfU69evVSPB4Adu7c+fLxpUqVgp+fX4rHREREIDg4OMNjCspjCZ9s7YtegYHWqCgg2chxwYZoVsEHjg4Zh8Eeb1uKsB/G4+mh7xF5djueHt6Au6sHIS7sBvI17gYHl9wZPtfRQYNm5X3MYbZFMadfNodPFqwTi/jk+Ei4L1kE1K/PCqxOnThD4c4dE70KQbAMOh3w4YfAiRPAr7+y+BBgmCIwkAWEhw5xOy7YFmrzyYJtIvtkQRCArPfKT/Z8jefXg5G7dAASn0ch6sLeFLfMsIW9siSJ0yJXdSNoVsEH64JvI1GbccN+gdeG4+mB7xB9YS8SX0TBxackfN6ehFzFq2Z6bP0XzMmJeTZ/f6BnT/4uIYHzakJCkm6bNwMvXnAzUaECFX/1N5GqTkZ0NDBpEvDee3xzALZzTZgAjBnDRGjFisraqDZOnWIlwj//AIsXswU3KxnpoCDg3Dlg4EDOK966FVi2jC1zCqFvIG/aFHj1Vd7n6grMmsWPw8GDQKNGiplnk1hCrmP48OHo0aMHatWqhTp16mDRokWIjo5Gr17czHTv3h1FihTB7NmzAQBDhw5FkyZN8Omnn6Jdu3bYsGEDTp48iVWrVgEANBoNPv74Y8yYMQPlypVDqVKlMHHiRBQuXBgdOnQw3kDBYljCJwvWS1QUg6y1a9PtC7ZH18DiWHv0Voa/d6/UCFHndiLy9J/QPo+Eg0tuuPiVRf6mveBWLjDTYydqdehW1/rbz83tl03tkwXrxew+uUk1YN5DZta2bQO2bwf69eOHtnJlFra2bg00bkxZDkFQKTNmAN99x7rqunVT/s7JibOJd+8GDh/mPtZJInY2g9I+WbAfZJ8sCEJWe+W4sJsAgOfXj+P59eNpfp+narMMn2sLe2WRm06LLDmNIKsvGABonFyQv/kHyN/8A6OOndkXzJDE8cmTkjhOl08/BcLDgZkzU97/0UecrTtuHLBlizK2qY3ERLbcTprED1tICIMuhuLlBfzwA/D663x/Dx4EvvmGMt8KsHYtG8i//TalRGvnzvxYjBzJLjORbzUdlnCynTt3xsOHDzFp0iTcv38fNWrUwLZt2+Dr6wsACA0NhUOyoob69evj+++/x4QJEzB+/HiUK1cOv/zyC6pWTdr8jB49GtHR0ejbty+ePn2Khg0bYtu2bciVK5fxBgoWw+w+OdC6F732zr59rG9q0kRpSwRzoXvmgeIuBXAn7jF06Uxccq/cBO6Vjf8AODpoUL+0N8r6WP/C2dx+2Rw+WbBOLLJPdnRkVq1uXWDKFO7xdu9mwvjHH6lulCsXE8X6pHHlyrLYF1TDhg3cak+bxj1peuTODTRoAOzdCxw/DtSrJx9hW0FpnyzYD0rFrgVBUA/lfD3QqGwBHLn5ON2CEb+uc7J1XFvZK0uSOC2SJDaCrL5g2cVRm4j6xTyN+oJllTg+eTLzjuNatZg4zpPHZC9DfYSFMek5ZEiSjpOeXLnYUtq1q7SUAuwa7t6dJctjxzLw4uJi/HE0Gr6njRoBPXoALVoAI0awZDqDObPmIL0Gcj0ODlQeb96c8aR33rGYWTaPpZzsoEGDMGjQoHR/t2/fvjT3derUCZ3Sk0v/PxqNBtOmTcO0adOyZ5CgCGbzyTot6t86g7Kd51MRoUoVkx1bsAwPH1IUo2VLaSizRZ48YSPh1avA2yX8seyf/YhNMN01wMlBg1lv+pvseEpiCb9sap8sWCdm88mZBaK8vCg73akTNXwvXUrqMv7kE+5BihZNShgHBQH585vMNkEwhqNHGbfp1o2iZpmRPz9rIQ4f5tSnatUsYqJgZpT2yYL9oIhPFgRBdcx60x/NP92PBJ3OZAVntrJXliRxWmQmsZHMetMfTploumcHJ20iZs36gLNzddl34PrEcc+ewNKl3IhERlIF+Ouvma+7cYMjeRs3Bjw9k2YcL1rEXGlUlMlelvLoE53jx6f/+y5dmEEcNSpH77tVo9Ox5bZ6deDffznoetas7CWIk1O8OCv7582jZHWdOtzhWoiFC4HHj9M2kOtp1gxo146N5LGxFjPL5pGZDoKlMYtPdnbCrHfrAPfu8do4YgQQEWHScwjmZdcuIG9eSk0LtkN8PDvEly0D7t9nkdfgXm6Y2t60hRzT2ldBsSxmuVkL4pcFS2IWn2xoIEqjYdfw8OFMEoeHM2HcqRM3xe+8AxQowLbMKVN4X2KiSW0VhIz45x/gjTe4LvnqK8M6gwsX5jL0yhU+X7B+xCcLlsTkPlmngxO0NpEcEgR74dhuNzzcVsWkiiS2slcWn5wWSRIbSTEvMwWjWjcBPvgAeOsttsCYCH3iuFevzBPH48ZlnDiOiTGZOZbj8mXgyy9ZpptRxbi+pTQ4GPjpJ8vapwYePQLefpsfjrfeAs6e5RAkU+HgQE3nEyd4Na1Vi9lbM19Z9Q3kgwenbSBPzrx5wK1bwIoVZjXHrhAnK1gas/nkN1rTUc6YwYtExYrA99/bb0GRFfHPP+wwDQqSOX62xJUrwBdfcF1arx6nWlSqxEB7l9rFMbJVeZOcZ1SrCuhc23Yk9MQvC5bEbD45O4Go3LnZPbxwIXDxIhAaCqxcyc7izz8H6tcHChZk8vjrr1ksKwhm4Nkz4LXXOPpryxbjxLXKlQNKl6ZC3IMH5rNRsAzikwVLYnKfrNFg2p9LUeyXDaY7piAIZmPJEo62eK1ScQxrLnvl1IhPToskibOByYNRjcqzi3jzZnZy+vsDf/5pkuOnR0aJ47Nn008c65WYJ0ywoo7jsWOBYsUYRcyM5C2lcXGWsU0NbNvGD8G+fUyQr1nDCgFzUK0aE8WDBrEjLygIuHPHPOcCmwOcnDJuINdTuTLQuzdnQj19ajZz7AqdzjgHK/k2wRSYLUHk6kpfcukSh8N17UqfceGCSc4lmB6dDtixgzmAypWVtkYwBU+eAD/8wDmO3t7AwIFcp6YWPBnUrBzmdPSHq6MGjunMJ84MRwcNXJ0cMLejPz5qVtaE1iuP+GXB0pjSJ3evbsJAVLFiwIcfctbMw4fAkSMcSXTnDtC3L39fpQo7kXfsAJ4/N815BbsmIYF1CHfvAn/8wWZ2Y9BoOCLMx4cf2chI89gpWAbxyYKlMek+OagcOtcrzSDazJnyARUElaLTMR4+ZAhD8N9+Cwxt+f+9spMDHI1UGLDVvbL45LRIkjibvAxGZeMLpkEGX7COHSnJW7MmE5cDB1qsjdfJibm89BLHkyfzMXf+TdlxXLky8P77KkwcHzwI/PorZZMNKdWdO5etR8uXm982NTB3DtC2LfWrzp9nF7G5yZUL+PRTSlBfu8YE9fffm/w0yRvIvbyyfvzUqZzZPWeOyU2xS6QSS1AKs/hkPcWLM6i8YwclqGvUYBBZJKhVx7lzlCFu1cowKUdBvSSXlg4LY5C9a1cmijOiS+3i2FX6Keq7MLmT1bVA//v6pb2xa1gTm6mKTo74ZUEJcuKT9YGoj+v7w9+xLG7fNoOBTk4pZacfPgQ2buQQ2E2b2IHs5QW0aQN89hnw99/2ERkSTIpOxwDtnj2sya5YMXvHcXDgRzNXLuDQIRmVZM2ITxaUwBQ+eW5Hf3zUojwX5tOnM+A2aJCMbRAElREfT5Ha2bMZgp8/n+sI4P975WFNUL80N9T2vlcWn5wWSRLngOx+wWJve+P7rhl8wQoVYhfx0qXs7qxZk12YCqBPHLdvz/9/szZlx3Hz5sD16ypLHOt0lDiuVYu6CoZQpQqvotOn23ZL6aW/+fOXX6k78ddfHHZkSZo3ZxT/1VcZ7X33XbYJmQh9A/mgQYY9vlAhflwWLaIKnSAI1kt2fXIhjTeWvmrAordlyyQJ6pUrgQoVgPXrJXCsEuLjWYdUuTL9gGC96KWlDx1iHmfgwCRp6Uy5cQPFbl/Bus5VsPPjxng/sARKeLsh9dM0AEp4u+H9wBLYNawx1vUOtIm5SoKgJnIaiBr6WnGULAmcPMkJOWbFyytJdvrOHSqG6Lukxo3jXrFEiaROZBPuXQTbZfFi1qAvX04FjJzg4sKpUHFx7CiWvIwgCMZgsuSQRsME8ZdfciTTO++w60IQBMWJjgbeeIMhqvXr2deQmmJebljXO1D2ykK6yLS2HKL/gl0Li8T64FDsvfoAoY9jUgjdaQAU93ZDs/I+aF+5OFrV9cDKPMCqVRkcVKOhTHKLFhwOXL8+MGkSN6kKD9jTJ471XccAZZT+/puzckJCuJn/6SeuFTQaVs0GBCTdatYE8uQxk4E//ggcPw7s3ZtULmMIU6eys3XOHNtrK01IYLf05F8BHOfrfKuUcvbkz08bXn8dGDCAH6ZvvmECOQfoG8jXrzdu1tPIkVzfTphAGQ4h+xhbXWUPlViCZTHWJ3erWxwhez1wMRhoWgtwds7iBHoJ6q5dueru1o3OfNkyoGpVM74yISuOHuXGKKeBWEE5wsM5DePaNaBMGX69MuscToFWC2zfzs7/SpVQTqPBlPZVMAVVEB2bgFuPoxGXoIWLkwNKervD3dU+tkDilwUlyY5PLuvj8fJ3AQG8rh8+zGu72faPydFomBTWS0/HxHAc1PbtvH39NfeYgYHsOG7dGqhdG3B0tIBxgrXw++/AsGHAqFGsLTAFefJw+sn+/Yy51K4tqinWhvhkQUly6pNT8OGHgK8vG3Nat2YgLl8+C7wKQRDS49EjCtL+/Tf7DoOCMn98OV8Pu98ri09Oi+3/1S2EMV+wiRO55xw6lPvPDKlYkaWi06ZRDuuvv4B16xg5UxHpJY7j4znGUZ80DgnJOHFcqxbVO3O88Y+NZSL9tdeApk2Ne27hwhTrnzePLSvFbURG4eZNtnYfOwb0XAysBlBKwQRxct59lyXRPXow8jNsGCXCc+Uy+lD6BvKAAKBLF+Oe6+HBGoGBA2lCzZpGn174P+JkBbVgjE/OH8SuxeBgXpIMolgxFiXt3AkMHkwnNmQIfbW55rsLGRIVxSRCnTqGjRoQ1EV8PLuGDx/mWvCdd7hONCr4ffYsdan79EnzRHdXJ1QpnNe0RlsJ4pcFNZDdQJSDA2uld+/mNaJ587TzyM2Omxtlp9u04f9DQzl+Yvt2SlFPmcIC2KAgPqZVK6BoUQsbKaiJs2e5H33jDdPXnhcowORwcDD3sJUqmfb4gnkRnyyoAZMlh15/nQ76tdeARo1Y6VmkiHmNFwQhDf/8wyXo06csJHvlFeOeb697ZfHJaRG5aTOg/4LVLJ4fVQrnTeNkBwwASpZkM1KWuLhQ2vLgQQa/qlcHvvpK9fKWzs5JSeNly5ijjIjgpumrr4BmzdgpMm4c1xPJpao//5yBAKOlqlesAG7dYtdsdhg1Csibl1l8a0enA1av5ufl3j1WwH/0kdJWpaVYMWDXLg5LWLaMu95z54w+jL6BPPm8BWP48EOgfHlg9GjVf7VUjcx0ENRIVj7Z25vFSocOsWPJKPQS1DNnigS1guzbx2t/48ZKWyIYg06XJC19+DCTQR99ZKC0dHLi4hikqlpVkjOpEL8sqI2sfHJq9DK7sbFUjFD8M1q8eJLs9KNHvHgNHszkcZ8+3NtUrcri4x07RIbTzrh3j/mSChWA777L3r40K4oXZ9zkwgWqowvWg/hkQW0Y65PTUK8eN9EREfz3pUvmMVQQhHQ5c4Z7aK2WPYbGJojtGfHJaZEksQK4uHCI+O+/M7BpEPXr89vfuTM3oG++CTx8aEYrTY8+cfzBB5knjseOTZk47t7dgMTx06fsuO7dm0/KDvqW0nXr+F5bKw8fAh078r145x2+wQ0aKG1Vxjg4sLX+5ElGhWvXBhYsMPgKHBfHYoN27fgZyg5OTqwt2LWL8Rwhe4iTFayVJk34c//+bDzZxQUYMwa4fJnOq1s3qlmcP29KE4UMePgQOHWKCeLcuZW2RjCU8HDghx+ADRtYqDFgALsEs5R8T48jRygJm5Wulh0iflmwBTw8uBXWX+9VU4fl5ETDpk7lxvbhQ2DjRkpRb9xICc78+dnesWgRg+eqMV4wNTExQPv2/BNv3Qq4u5vvXJUrsx7h+HHg8WPznUcwLeKTBZukUiWuxfPlY9zxyBGlLRIEu2DPHsZAihZlzaLKRGdVj/jktEiSWCE6daIs4qhRRnzQPDw4B2nLFl4BqlYF/vjDrHaam4wSx2fOJCWOr15NmTiuUiWdxPHs2azUnjo1Zwb17p3UUmqN/Pkn4O/PzvOff+bnxSODOSJqw98fOHGCkq2jR1OC+vbtLJ+2fHnOGsj1tG/Pz9ioUUBiYs6OZa+IkxWsFTc3fv9PnmRjULYoVgzYtIkS1GFh1K4fNgx49syktgop2bmTMYnatZW2RDCE+Hhg7152Dz94wFq2rl2NmD2cmshIrokDA5mMEVIgflmwFQoWpOrHP/9wb6hKvLx4Ufv6a7Z4nj9PRTCtlpvZypWBEiVY8P3TT8CTJ0pbLJgIrZaKaJcuMUFcuLB5z6evq86fny7QaCUcQRHEJws2S5EiVC/092fR5tatSlskCDbNpk1A27asVdy7F/DxUdoi60N8clokSawQGg2bJU+eZKGxUXTowE1nQAD1jPr3t6mdgbMzVZIzShw3bcrgwJgxDOpX8QhF7PzPsaXsSHy+qVD2pKqTn3zuXEadt2834asyMzExHKrbrh31Jc6fZ7e5teHqSs3oPXuAGzdYQfDddxlW3esbyD/4IIv53gag0fDU588D336bs2PZK+JkBWsmMJCFSLt25fBAQUGUoJ41C/jySw5XzeQ6JmSfmzepQNKiBRu6BPWi07HZPsfS0qnZswdwdBSt8QwQvyzYEiVL0qWeOwf895/S1mSBRpNSdjo8HPjrL+Ctt1jl3KkTB8zqO5GDg6VK1YoZP551/D/8wBpBS+DoyKY9Jyd+pOLjLXNeIfuITxZsmnz5GEN99VXGrL/6SmmLBMEmWbwY6NKFdYm//QbkyaO0RdaJ+OS0SJJYQRo1At54g5uK2Fgjn+znxy7iL75gRqtmTeoN2SjpJY4jI5k43l1vAmJz5cNi55EvE8d586btODY4j96+PYdfjR5tHZv1Eyf491+7lm/OH38AhQopbVXOaNqUEaDXX2dZdpcuDK6kYs4cNpBPm2aa0wYG0tFOnMi8u2Ac4mQFa8bJifndK1eoTpAjXFzoQy5fZvLq/fepaS0S1CZDq2XcvWjR7E+ZECyDXlp640bmRHIkLZ2csDDg9GmuGURrPF3ELwu2hn70eHCwlTXiurlRdvqzz9huevs2sGIFW04/+wyoW5dtIJ07A6tXW0EWXNCzejVrzBcs4NbVkri6MmwRE8P4iFzD1Y34ZMHmyZWLC/4BA6iaMWOGFEoLgonQ6ThqcehQKmB+8w3DTkL2EJ+cFkkSK8ycOVSjWrYsG0/WaOh8T59mVlRfiZyQYHI71YizM1Bdexplj30Hz4VTsPekx8vE8ZdfMmZ45UpSx3FqqeoMpZn0bd7nznE+sVpJSACmT+ff3dOTn4OBA3PYkqMi8uVj992GDcwEVKuWosUvNJTjvUaONG1OfNYsSmAuWmS6Y9oLOp1xDlb2C4LaqFKFalk7dpjo81m0KDfKO3dyVqFIUJuMc+eYI2zVynbcnq2RWlq6c2fgvfdyIC2dmh07qLVZq5aJDmh7iF8WbA2NhiOb8uZlEbDVFnUWL54kO/3oETemgwaxSu3DD7l+qFqVG52dO1kVK6iOvXuBfv14GzZMGRs8PRkOCAsDzp5VxgbBMMQnC3aBoyOwZAkwcya7LwYOtI7mG0FQMfHxQM+ezCF99hmL0xwko5cjxCenRT5SClOxYlKBVbaroStUAI4cYUvytGksJ712zaR2qhKdjp1aFSpwM420HcfBwUiROG7SJClx3LBhysTx4sXJEsf6ltIJE9QZfbhxg91pU6awlOjIEb4Ptkjnzuy+q1gRaNkS+Phj4PlzTJzIANHIkaY9XZkyXMfOmcOcjmA4UoklWDsaDZOO9+6ZuOk3KIiRO70EdYUKIkGdA+LjqTJcuTJHQQvqQi8tvWxZSmnpihVNmNC/fp23li1FazwTxC8LtoheZtfBgdcYq6+PdnJKKTv98CGLZOvUoQxDq1acd9y2LatYL12S9YMKuHKF6uHNmjEfomTBmq8v6xD1rlFQJ+KTBbtBo2F8+uuvufft1EmKnQQhm0RFUfD0hx94+/hjpS2yDcQnp0WSxCpg8mQgLo6x42zj7MwE8aFDrEauUQNYtcq2N5Dbt7OzdO7cTAOEyRPHX3yRMnG8alVS4nj06JSJ45Fxs5B4/wFuDf9cPSOfdTrO9qhenW05hw7x755jzUaVU7QoO4Y++wxYsQLPq9bCuW/PYOpUwMPD9KebOJGBJ1PJWNsL4mQFW6B4cc5J3b3bxPPdkktQN2mSJEF97pwJT2IfHD3Kgq6gIKUtEVITHg58/z0b6AsWNKG0dHK0Wq4J9F9WIUPELwu2Sq5c3LdFRVFm16a2vN7eSbLT//7LqrXp09mJNXYsK6RKlmSl+ebNwNOnSltsdzx+DLRrxwlgmzapYytepgxQvjzFxe7dU9oaIT3EJwt2xwcfAL/+CmzbxoInq5oTIQjK8/Ah99KHDwN//cVJjIJpEJ+cFkkSqwA/P8aNFy82wRzEevWY/XzvPeoevfEGk4m2RmIi37RGjbI1/EefOO7dO2Xi+PTppMTxwbtl8AUGwmvlbJT2eIgqVYAePVJ1HFuSBw+ADh0YEHj3Xf6d69WzsBEK4uAAfPwxdCdO4u4DZwSjDvo8mWcW6RpvbxY+rlgBXL1q8sPbLOJkBVuhRQsGnoODzXBwvQT1rl1c9b/yCstBRYLaIKKiWB9Vpw6VhgV1oO/u/uILfqxNLi2dnDNnqKvZurVojWeB+GXBlsmbl6N8792z4XorjYay0yNGsDgmPBz480/gzTfpDN9+m8PeGzRgdWtwsMh6mpnYWL79z54Bv//OCUlqoVo1jrk+dkyWlWpEfLJgl7Rrx03CxYuM3/77r9IWCYJVcPMml3ehocD+/YxRCaZDfHJaJEmsEkaMoIrUJ5+Y4GB58lDS49dfuUOoWhXYutUEB1YR337LquoFC0wWIHR2ZgN28sRx/zsT4J5Hgz3NpqNJEzaAJe84rlrVQonjP/4A/P0pK/3LL/z75sljppOpmx13q6JyVDBuvzkMjp+MZVlVjqsr0jJ4MGcdjx9v8kMLgqByvL055vTgQTNe11u0oAT17NlUiKhQAVi3zsbaoUzP3r2UGm3cWGlLBCCltPSRI9zImlxaOjmxsQw0Va3KggtBEOyaQoUos3v1Kqfx2Dxubillp2/dApYvZ9X5woXMmvv4sFJnzRrgv/+Uttim0OmAvn2B48cZaildWmmLUqLRcGpWnjysIRB1V0EQVEHdugyYRkVxvMLffyttkSComtOn+VUBuMeuWVNZewT7QJLEKsHdncW/338PhISY6KDt2zORWqcO/923L52ytRMTQz3gzp352syIc6ECcJwwHlUOLMcXw66l6Thu3NjMiePoaKB/f+C114DatYELF9gdbqckJgKjRgGBjVxRdvNcZgtu3WLZ9LffmjS5kjs3MHMmVdyOHDHZYW0aqcQSbIkmTRhs27fPjCdxceFF7fJloGlToHt3OhabbYnKGQ8e0P82acJrtKAsqaWlBw7kbEazym4eOcJ1oGiNG4T4ZcEeKFuWt9OnKTJgV5QokSQ7/egRM4MffcT9Ue/eLKbx9wdGjgR27pSsYQ6ZPZtbztWrk4K3asPJiQVbWi1jEdJYrh7EJwt2TcWKXMfnz8/g6eHDSlskCKpk927GO4oX59dEbQVptoKafPLMmTNRv359uLm5IZ+CEjWSJFYRvXpxxNCoUSbMdfn6sot4xQpg/XqWnxw7ZqKDK8SiRYwU52iIsxEMGcIy9XHjAKTfcZw6cXzpkgkSx8eP8++1bh3/flu38u9px+gbyOfP/3+Hkn6eZ4cOfIPfeYdDokxE1678W48cKc19hqAmJysIOcXNjdfzkBDGXc1K0aLAhg2UoH78mBLUQ4eKVmAqdu2irGPt2kpbYt9kJC3t5WXmE0dGchFVt65ojRuI+GXBXqhenduko0eBiAilrVEIfXZQLzv98CHXFrVqAT/8wHmQXl7Aq68Cn39uFiUmW2bTJqq+TZlCn6dm3NwYh3j2jCEF2ceqA/HJgt1TuDBw4ACddlAQJRkEQXjJhg0UjGnQgPvtggWVtsh2UZNPjouLQ6dOnTBgwADzncQAJEmsIpycgHnz2Bz5118mPLBGw/nEp09zY9iwITB5MqN81saDB8CcOayQtlQ5Te7cwIwZrNA+ejTdh6ROHB8/njJx3KhR5oljfWMMACAhAZg6leXJ+fPzIP362f3cPX0D+TvvUEbrJXnzMnu8aRNLrvz9ObPLBDg4MCF99CiwZYtJDmnTqMnJCoIpqFOHl5idOy10whYtOG919mzg668pQW1ilQRr5eZN4No1xhMcHZW2xj6xuLR0avbs4YKrUSMLnMw2EL8s2AsODqwfyZ2bzbSxsUpbpAK8vZNkp//9l4W106YxBjB6NPDWW3ycfp/79Kmi5qqZ4GDu2997D5g0SWlrDCN/fu6Z//2XYmSC8ohPFgRwc/3XX1RL7NiRo/QEQcCiRcC77/L22292O2HSYqjJJ0+dOhXDhg2Dv7+/+U5iAJIkVhmvvkrFydGjmSs0KeXLc9c8YQJ1dBs04AAna2L6dEYBJkyw7Hm7dWO1mxEtpckTx8uXZ544btAA8PAAXi13DdcLNYR22nTc6TEBMTsO8e8mZN1A3qkT24yrVgVat2YH+PPnOT5vUBDQpg0wdqx11lVYEjU5WUEwBU5OzNtevQr884+FTppagrpHD7Y0nz1rIQPUh1bL2p9ixYBKlZS2xj55/DhJWtrHx0LS0sm5f1+0xrOB+GXBnnB2ZjFuQoLI7KZBo0kpO/3kCSuVAeDUKeDtt4ECBfgGTp/Ojau8gQCA27c57emVV1i/Z01120WKcCrT5cvSOK4GxCcLwv/JlYstkwMHcizitGlSFC3YLVotMGYMMGwY485r11pwj23HZNcnR0REpLjF2lBlqiSJVYZGw87Fixd5YTA5zs7USDp8mJvDmjUpZWwNDvnqVdo6fjwroy2JvqX0yJEctZRmmDg+pcO+rquw5VYNuEQ+RmOHwyi+ego8vJxRtSrQsyewZEmqjmM74uFDNpAPHAiUKZPJA4sUAbZto4Tal18CAQEMfOSQuXOB69eZ3BcyRja+gi1SpQovLTt3WthV6iWod+9OKUFth50+585xzmSrVtYVnLUF9NLSy5dTdr1LF1Y3m11aOjU7d/KktWpZ+MTWjfhlwd5wd2fx7ZMnwIkT1rHFVQQ3N75RAPDzz8wgfvEFNbsXLGALqo8PL/pr1gB37ypqrlJERLDZzc0N+OUX5jWsjfLlgVKlgJMnuacWlEN8siAkw9GRxUqzZlHpcsAAKU4S7I74eMb7589nGHv2bIl3WIrs+uRixYohb968L2+zZ89W9oWYEEkSq5BatRiAmzTJwNm12SEwkB0Z3brRGb/+OiOwamb8eM6wGDJEmfO3bMkOVRO3lDqHh6HGpPZotK4fXD/ohuKPTmNPdCBOnQJWrmTH8d9/s/Bb33Fsb4njadOYp5840YAHOzjwMxISAri6Untu9uwcLTirVeP7PXWqHc85MwCdzjgHK4E7wRrQaJicvHePyUqL07w5JajnzrVLCeq4OCYpq1Rh3lywDDod1U6SS0sPHMiPn8U3rtev89ayJdv7BYMRvyzYI97eHBdx5w73UIIBlCjBbq7Nm1mYdugQL/o3b7K6uUgRdiKPGgXs2gW8eKG0xWYnIYE58tBQ4PffrXcuoEbDOsOCBenPIyOVtsh+EZ8sCKnQaIBx41iM9NVXVLUwgRqgIFgDUVFMxWzcCPzwg3KpDnsluz75zp07ePbs2cvbuHHj0j3+2LFjodFoMr1dvnzZgq84ayRJrFJmzeL+bOFCM54kTx5mIX/7jaXWVasCv/5qxhPmgCNHuGmdMUPZEt5580zbUrp1KzfcwcH8O6xcCeTJAxcXNnl/+GHKjuPMEsf+/raZONY3kI8bZ2QDeeXKfF9HjAA++YSyrTnQi502jU587txsH8LmkepowVYpXpwyx3v2KCQ77+LCC/6VK0wa9+hBR2AHEtRHj9KftWihtCX2w+PHwPr1wKZNCklLJ0erBbZvZwKjYkUFDLBuxC8L9kqxYtza/v03k3yCETg5cYOpl51+8IDRy1q16BxatqSyw6uvsu3l8mWbzGYNG8ZRFz/9xG2lNePgANSrx/rpQ4dYgCdYHvHJgpABPXsyHrpjB31MeLjSFgmCWXnwgPvrI0c4ortzZ6Utsj+y65M9PT1T3FxdXdM9/ogRI3Dp0qVMb6VLl7bgK84aSRKrlJIlgcGDmZM0e4Pv669zlmu9ekCHDsxMRkWZ+aRGoNMxOF6jBtC1q7K2VKvG4HxOW0qjolit3b49O10vXODfIROyShw3bJh54thacwnjxwOFCmWzqsrFhV3E+/eznaB6deq4ZyOQUbQogwULFwL//psNW+wAtW18w8PD0bVrV3h6eiJfvnzo3bs3ojK5toWHh2Pw4MGoUKECcufOjeLFi2PIkCF49uxZiselVwG2YcMG874YQXGCgnjpPnZMQSOKFGGgds8ebp5feYUXRxuVoI6K4nSMOnWA/PmVtsb2iYujuvny5UwUKyYtnZzTp7mLFq3xbKEmv2ysTwaApk2bpvG3/fv3N5+Rgk1RsSLrS06coFy+kE0KFEiSnf7vP8qqTJtGpzF6NKvoSpUC+vWjdHWqdbM1smQJsHQp1TRatlTaGtPg4sJ4QVwcg9KSgLQ8avLJgqA6Xn2Ve9zLl1kMfeeO0hYJglm4eZMx+3//BQ4cYA+AYHnM7ZMLFiyIihUrZnpzcXExz4vLJpIkVjHjx7OQd+pUC5zMx4ddxKtWcQZi9eps31EDW7bQlvnzWQarNNOnMzs7b172nn/sGLO969fz/f71V77/2cCQxPHFi0wcf/ABn/POO0mJY32HllrRN5DPnAnkzp2DAzVqxIBGx45Ar16UsclGtGjMGDbgT5qUA1tsGLVtfLt27YqLFy9i586d+P3333HgwAH07ds3w8ffvXsXd+/exYIFC3DhwgWsXbsW27ZtQ+/evdM8ds2aNbh3797LW4cOHcz4SgQ14OUF1K7NDgyzjYIwlGbNWPkzbx6DthUqAN98Y3PRpL17uQ5q1EhpS2wbvbT0F19wXaCotHRyYmMZLPL3F63xbKImv2ysT9bTp0+fFP52XnbX34LdodEAAQH034cPq6sG2mrRaHhNHjmSstPh4cAffwBvvMGi3LfeovRTw4ZJnchWNmPyzz+Bjz8Ghg9n3tuWyJMHqF+fhWAhITbZAK5q1OSTBUGVBAbSYcfE8GJ18aLSFgmCSTl1iv15Gg3j3TVqKG2R/aImnxwaGoozZ84gNDQUiYmJOHPmDM6cOZNlQbWpUUHGTcgILy9gwgTmES0iU67RAH36cPZhwYLc3E2cyIE8ShEfzxnAbdqwjUsNJG8p/e8/w58XHw9Mnsz31dub73OfPiaPwKZOHJ84wcTx+vX8ffXqSYnj+vXTdhyrJXGs03HslckayD092UX800/Avn180du2GX2IyZN5mPPnTWCTjaEmJ3vp0iVs27YNX331FQIDA9GwYUMsWbIEGzZswN27d9N9TtWqVbF582a8/vrrKFOmDJo3b46ZM2di69atSEh1HcyXLx/8/Pxe3nIpKYMvWIzGjVmrtG+f0paA2r8jRnCB0KIFL+KNG1uvbEQqHjxgE2njxjksEhIyRVXS0qk5coRzL0VrPNuoxS9nxyfrcXNzS+FvPT09zWOkYJM4OnK/4+IiMrtmwd09pez0P/+w4sjHB1iwgAF/X1/KUqxdC2TxfVeac+co+fjaa9mvB1c7BQtSOfzWLU4xESyHWnyyIKiaChW4B9AXHB06pLRFgmASdu0CmjShcuzhwxRhEZRDTT550qRJqFmzJiZPnoyoqCjUrFkTNWvWxMmTJ8130nSQJLHK+egj5iQzmINtHsqWpSOePJlSvT17WvDkqVi1ijOA1bZLGzOGm2JDW0qvXmVrzsyZfM6hQ0C5cua1MRkuLkmj/D75JClxrO84btAg48Tx0qXKJI63bOHa0OQN5G+9xQxv9epA27bAoEFGvbh+/fgVGT3ahDbZORERESlusbGxOT7m0aNHkS9fPtSqVevlfUFBQXBwcEBwcLDBx3n27Bk8PT3h5OSU4v6PPvoIBQoUQJ06dbB69WropBTfLnBzY1drSAjw8KHS1vyfIkWA779nx+WTJzYjQb1zJ5AvH7u3BdOTnrT0e+8pLC2dnIgI7p4DA0VrXAFM7Zdz4pPXr1+PAgUKoGrVqhg3bhxi1FDJKFgVrq6MM794wT2NJF7MSMmSHKn0889UbTp4EBgwALhxg7JWRYpwfNOoUYyWmmDNbyru32dyuGxZFk85OiptkfkoUYIq4efPyxglQRBUSKFCVKeoWZOa/7/8orRFgpAjvv+eNXWNGjFsU7Cg0hYJamLt2rXQ6XRpbk2bNrWoHZIkVjm5cgGzZtEnHjxowRM7OTGZeeRIkjbXpk2W1SSKiKDWds+ezFiqibx5mURfsybzllKdDlixgoubp0/5fk6axPdXYZJ3HK9YkTJxvGJFUuJ4xAgmjj09+Wfo1cv8iWN9A3nr1mZqIC9cGPjrL7ZOf/01tehCQgx6qrMzMGcOm5B37TKDbVZMdiuxihUrhrx58768zZ49O8e23L9/Hz6pZNydnJzg5eWF+/fvG3SMR48eYfr06WnkMKdNm4ZNmzZh586deOuttzBw4EAsWbIkxzYL1kGdOnQBqvv+N2tGhQobkKC+cYP1YUFBth2kVQK9tPSyZfTjDRsmSUurij176HBFazxHqMUvZ9cnv/fee/juu++wd+9ejBs3DuvWrUO3bt1yZItgn3h4cD/z8CFVKqS2zwI4O6eUnX7wgFHSV14BvvuOgX8vL6BdO2DxYra1KvSHiYmhYnZiIrB1K2WZbZ0qVYBixfinCQ9X2hr7QE1dS4KgevLmZcyufXs2eqxcqbRFgpAtFi6kOmbXrpw26e6utEUCID45PZTPVAlZ0qULLyqjRjGgZ9H5cHXqAD/8wA3e3LnUYFq9GvDzM/+5585lgnraNPOfKzv07UtprTFjOLwoNffvMwP7xx9A//6U3FK5N9AnjmvWpBI2wG6jCxeYQ9Xfvv+e9zs6ApUrM8eqv1Wvzm67nKBvIP/pp5y/pgzRaNhF3KIF0K0bULcuMGUKs9NZZCXefJOBplGj+H6oYVS2GjDWceofe+fOnRTyka6urhk+Z+zYsZg7d26mx7106ZLhRmRAREQE2rVrh8qVK2PKlCkpfjdx4sSX/65Zsyaio6Mxf/58DBkyJMfnFdSPkxOTlz/9RFVFVckE6SWo332X0hA9e/KCOmiQ0pYZjFbLLuJixdjlIpiWv/4CTvwHlC/PQizVdA4n5/59Fjy0bSta4znE3H7Z3D45eZGWv78/ChUqhBYtWuDGjRsoU6ZMto8r2Cc+PtyrnDzJpHH58kpbZGcUKMD1ybvvMhl8/jywfTtvo0YBQ4eyxbV1a95atGCSwMxotUCPHtzvHjhAFTd7QKOhWsu+fRTuaNEi53t4IXOy65MFwW5xdWU82s+PMdV799isY9GguCBkD62W6YIFC6gOO3OmfHTVhPjktEiS2ApwcKDkbvPmDEp36mRhA/QBukWLKD9dtSrw5ZfMlJmLf/9lZnz4cPXu1Fxc2FL69tvUbEw+M+/XX5kgdnAAfv+dFdJWiosLC75fecUyiePkDeTVqpntZSVRqRKrL6ZOZZf3n38C69YBpUtn+BSNht/JBg0oR/b++xaw0wrIrpP19PQ0eMbgiBEj0DMLCfzSpUvDz88PDx48SHF/QkICwsPD4ZdFkUtkZCTatGkDDw8PbNmyBc5ZDOcMDAzE9OnTERsbm2mCW7AdKlemYuKOHawXUt1iv3BhXpT79uXcCv1g98hIZe0ygLNngbAwoHdvFb6vVkpcHHDmOFAHwNNnLD5UXedwcnbsYPY6mTSxkD3M7Zct4ZOTExgYCAC4fv26JImFbFGqFF3h2bPsFi1cWGmL7BSNhhs9vfR0dDSlRbdtY9J41SpuKuvVS0oaBwSYpTJ34kRg82YqZAcEmPzwqsbRkfvZ3bs5DatZM9YbCuZBAtKCkA0cHBiLLlyYDR137wJffKEKdUZByIi4OE7Z+P57iqUMHqy0RUJqxCenRa6qVkKzZswzjhtHKSQXFwWMaNSIA+v69AE6dqTu8OefsxTb1EyaxOOOGWP6Y5uSjh25eR01imXp0dHAsGGUMH7jDSbTbXDYgDkTx4o0kLu4sKzr1VeZ8a1enZ/tXr0yzFLUr88//yefsHAjV66k30XHJuDW03jEFSoPl6fxKBmbAHdX27/cWsLJFixYEAUN+E7Vq1cPT58+RUhICAL+H/HZs2cPtFrtyyBzekRERKB169ZwdXXFb7/9hlzJ/7AZcObMGeTPn18SxHaERsN45erVFNioXl1pizKgaVN2ZI4ZA3z2GdChA392765KCYS4OKoMV6mi3vowa0IvLb19O+ARxSRxp06Ac3GlLcuEa9eoN96li2iNmwBz+2Vz++TUnDlzBgBQqFAh4wwVhGT4+3OvcewY99gy9lwFuLtzH/bqq/z/rVtJXcbz5zOT6+1NiWp90tgE14G1aznaa/58LpHskVy5KBq3Zw8QHMyksRTpmQcJSAtCNtFouJ/182MlcVgYsGGDKA4JqiQykr1k+/YBGzcq0OgnGIT45LSoL0IoZMjcuZS2XLFCQSMKFgS2bAG++ooziqtXpz6RKTl3jju2yZM5CFfNaDTUjjh9mp2oNWpwsfLVV3yfbDBBnBH6xHGfPilnHIeEAMuXM6l6/nzKGcfVqiXNOD52jLHhhQuZZ1ckQdCgARMqnTpx8dmxI4eXZcCcOVS8WbwYuBYWiSm/XUST+XtRdcp2tNv5CG/2WIh2Ox+h6pTtaDJ/L6b8dhHXwtTfyZdddDrj5jmYc+xYpUqV0KZNG/Tp0wfHjx/H4cOHMWjQIHTp0gWF/9828t9//6FixYo4fvw4ACaIW7VqhejoaHz99deIiIjA/fv3cf/+fSQmJgIAtm7diq+++goXLlzA9evXsXz5csyaNQuDpTTQ7ihWjMUve/ZwjrpqcXampD5AWf1evRgNPH1aWbvS4ehR4PnzlMIcQvZ4/JhKFz/+yHjKO+/wfmc11yslJrKLuEQJoGJFpa2xCdTil7Pjk2/cuIHp06cjJCQEt27dwm+//Ybu3bujcePGqGYRqRnBVtFoOFHJ05Pb2OfPlbZISEPJkkC/fmzvffSIOtD9+3Me0QcfsKOsenVg9Gi2wcbGGn2K/fspuPLhh9yf2jN587Lu/f59dtkL5kEtPlkQrJYePTg4ftcuzn+SgeqCyggLYwHisWMUR5EEsXoRn5wWSRJbEVWqcE80bRrw9KmChmg0TKCdPcvIY+PGbKeMizPN8ceMAcqW5a7NGqhdm8HMadOYFD57VnQy/0/qxPHJkykTx/XqMXE8fDj/XaECky23bgHLltGxWjxw4+nJ9sDNm4GDB9lukN7MaQDlygHdB8Tg83PBaLnoANYF38bt8Bik9h06ALfDY7Au+DZaLjqA978Oxp3wGLO/FEtjjIM1tmorO6xfvx4VK1ZEixYt8Oqrr6Jhw4ZYtWrVy9/Hx8fjypUriInh3+LUqVMIDg7G+fPnUbZsWRQqVOjl7c6dOwAAZ2dnLFu2DPXq1UONGjWwcuVKLFy4EJMnTzbvixFUSYsWSd1IVsHMmcDevdT1r1WLs4qfPFHaKgD0DYcPM3AvXV3ZJy6O8fIvvmCiWD/+0dMMoi8m58wZ4MEDdojJGsokqMkvG+uTXVxcsGvXLrRq1QoVK1bEiBEj8NZbb2Hr1q3mM1KwG5ycWBsKUGY3IUFZe4RMcHamotmMGaxCfvCAclU1a3JEUFAQRxS0a8fK3atXs4zkXbvGWuBGjegvxeUwrFOjBt+b69eVtsY2UZNPFgSrpW1b7mevXmXhc2io0hYJAgCKYTVoQEX0AweYLBbUi/jktKi5n0BIh6lTuSeaM4c3RSlThle+OXNo2LZtwHffccZrdtm1i8fZvNk6BuJcucIOrWvXKN355pt8X4QMyUiqessWBrIDA/m2/vgjE8bJpapr1UqSqja7soxeSvyDDxh0GDCAXePJNLI3nAjFIc+LcMrNQESiNvOAhP73R24+RtBn+zG1fRV0qa1m3U/jUJtch5eXF77//vsMf1+yZEnokgWRmjZtmuL/6dGmTRu0adPGZDYK1o2XF+uEDh1irDJPHqUtMoCmTdlFvGQJMGUKVUHmzmVltoIS1Hv3MmjfqJFiJlg1yaWlY2L4PjZoYB1LKQDsAtuzh4VZRYoobY3NoCa/bKxPLlasGPbv328+gwS7J3duxpf37qXMbv36kiy0CgoUSKqA0umoQqaXph41Chg6lJ3Ielnq5s3ZKvt/wsO5tStYEPjpJyvykxagbFkWP545wzWtESPjBQNQk08WBKumTh1WF7duTee9bRtQtarSVgl2TEgIJ2bkzw8cOcJliKBuxCenRTqJrYzChSmHtGiRSgqmnJyACROoERkdzczf0qXZ68PXarmxq1+fyVY1o9Ox7LhmTbY/HTvGJOLs2WzdEYzCxYUK42XLcm7DyZPcoIaE8G3WdxwPG8Z/e3hQqvqDD8zccVyoELuIly2jgTVrsoIdwNK91zD25/OITdRC42Dc5z1Rq0NsghZjfz6PpXuvmcFwZZBKLMEeadKEudV9+5S2xAicnSnhcPky5/t98IGiEtRhYQxINmkio6Wyw6NHrNHTS0sPHMhaAKsKfB8+DLx4wY4wwWSIXxaEzMmXjwWqd+9yryFYGRpNStnp8HDg99+B119n9r9jR84y/n8nctzRELz1lg7h4cAff4hySXpUr861xNGjwLNnSltjW6jJJ8+cORP169eHm5sb8uXLZ74TCYK5KF+eF6qCBXmNP3BAaYsEO2XnTu69S5Vi84AkiK0DNflktSBJYitk1CgWw06cqLQlyahVCzh1ioHmwYMpAXL3rnHHWL+eUeL589Vdxn3/PsuPP/qIsx1PneLrnzSJV40ZM5S20OrQN5DPnp0U1NZ3HPftC6xcmSRVffJkUuL43LmUiePq1c2QONZoGHE/fZpS1PXrY8PkL7Bgx1UTHBxYsOMqNp5QQ8VHzhEnK9gjuXNz6sKpU5mOMFcnhQvT9+7bp6gE9a5dDNTWqmXR01o9cXF875Yv559M31hldUHviAiWXNety4yNYDLELwtC1hQuTJndK1eAmzeVtkbIEe7uSbLT+j/o0qVAgQLQzZ2H/vXP4si+OGypMRVlDn0D3LuntMWqQ6Nh4YS7O4PdL14obZHtoCafHBcXh06dOmHAgAHmO4kgmBs/Pw6Yf+UVoFUrzrEXBAuyfj07iBs3Zq1agQJKWyQYipp8sloQuWkrxMOD6s4DBzJBVqOG0hb9Hzc3Zudee42ZOn9/YNUq4K23sn7u8+eca/zWW+wkVitbtlAj2dmZHaZt2yb9zseH85SnTmWivHRp5ey0IvQN5PXqsdg7M1xdKTcdEJB0X2wscOECu471t+++S5KqrlIl6Tk5kqquUAE4cgR3ps7F5Gg/wEmXppgh7uFtPDv0PeLuX0di9FNonF3h7F0MnoEd4VYuMMNDT/rtIuqXKYBiXm4ZPsYaELkOwV6pXZsiAzt3Au+9p7Q12aBJExbCLF0KTJ5sUQnqGzc4++6dd3jNFrImtbR048aUlnay1lX9nj1JMycFkyJ+WRAMo2xZFqOeOsXkmK+v0hYJJqFUKaB/f6B/f8yblYg1nzhiXfsf0eju70CvEDrUatWSpKkbNuSG085xduZbsXs3hT6aNpU1milQk0+eOnUqAGDt2rXmO4kgWAJPT8Zme/YE3n6bMWkpfhAswKefAiNHsnds5UorU/ESVOWT1YJ0ElspvXtTXWP0aKUtSYe2banX1aQJnXTPnuwSyYwlS1jJO3u2RUw0mshIJr47dmQ09vz5lAliPcOGUe5k/HjL22il6BvIFyzIXgO5PnGcUcdx3brA2bMm6jh2dsb4Ui2R4OKarrGJEQ+gjXsOd/8WyB/UB3nrdwYAPNw8HZFntmV42AStDuO3WL/GnVRiCfaKkxPQogXH01ttF5KzMy+UV66wEvuDD5h5PHXKbKfUaoEdO4DixYGKFc12GpsiubR0oUIsGGzSxIoTxPfvcxHQtCmQK5fS1tgc4pcFwTA0GhZe+/hQvTKrratgXWzeDIz9xBETJwLdfu3Eyr6wMG5Ea9QA1q3juAMvLxa8L1kCXL2avRFaNoKbG5eBz57x7bLjt8JkZNcnR0REpLjFxsYq+0IEQW24uvJ6PnQoN0eTJslFSzAbWi3HgI4cyV63r7+WBLE1IvvktEiS2EpxdmaTz86d7CRRHQUKcDe2Zg1/Vq8OHDyY/mMfPwZmzWKVb7lylrXTEA4fpv0//gisXs3Xk5GGhJsbMH06sHEjcPy4Ze20Ql68oFPt2NG0DeSpE8chIcYljoOD008cXwuLxMHrj5CYwXozd5na8O08DfkavgePGm3gWfsN+L43C84+pRBx/JcM7U3U6nDw+iNcfxBpmjdAEASLU7kyULQo/bJV70kLFWIWct8+DoevXZvjFcwgQX32LPDgAcciq3nKhBpIT1q6SxcrlJZOjk7HRayXl2iNC4KgOA4O3Bfkzk2ZXcnD2AYnTgDvvw907kzBr5cULEj5l2++4ZisM2eopvL8OSO/FSpQGax/f+CXX+yycsDLC6hTB7hzB7h4UWlr7JdixYohb968L2+z1dpYIQhK4uAALFwIzJvHmGyfPkBCgtJWCTZGXBzQrRvw2WcUYZsxQ+IYgu0gSWIrpn17ygCNHg0kJiptTTpoNOwiPnsWKFKErS7jxvGqmpwZM1iSMWmSImZmSFwcM5iNG3NY1dmz1JHIygP06EGp7VGjrDxTYH4WL7ZcA3lWiePAwKTEcd26KRPHX3zBxPE3R0Lh6GDcCkDj4AgnjwLQxkZl+jhHBw2+O2bds4mlEkuwZzQaNuDev89ridXTpAm7iD/9lB025cuzUMpEX9y4OKoMV63K5LqQPjodA7P6AqbGjVkgX7680paZgOvX2XrfqpXoWJoJ8cuCYBx6md2EBI5KV+UeWzCY0FDGTKpXZ+16htt4jYYPGj2aGsuPHwNbt7KreM8e4M03AW9vOuGZM7mBtJMLZtGiDG1cugTcvq20NdZNdn3ynTt38OzZs5e3cePGpXv8sWPHQqPRZHq7fPmyBV+xIFgYjYZx2G+/ZQFQx46czSMIJiAyEmjXjn1jmzaxjl6wXmSfnBZrFacTQP+3YAETWuvWMR+rSkqXBvbvZ+vz5MnsGvnuO7Zd3bjByOeUKazmVQuXLrE86Nw5VqGNGWN4ANPRkdVrbdtyc9m+vXlttVL0DeT9+ikX7E4+47hvX96nn3F88mTaGcdF+j2AU/6sE//auBfQJcRCGxuD59eC8fxmCNwqZT5rMVGrw96rDzAFVUzx0hRBZjoI9k6xYnRte/ZwHrrVyw45OwMff8z2m9GjOeviyy/pt195JUeHPnKEzTotWpjGVFvk0SPgr7+YR61QgeMSrbpzODmJiVwPlizJFyeYBfHLgmA87u6U2d23j/uBOnWkS8QaiYwEXn+d+71ffmGHuMHkycME8Wuv8f///EOftX07YxoTJlBZrGVLOudWrajEYqNUqJBUXO3unrGompA52fXJnp6e8PT0zPLxI0aMQM8sgoKlS5c23ABBsFbef5/x5bff5iiBrVtZ6CMI2SQsDHj1VdY479jBenrBupF9clokSWzlBAYC77zDfco771DtWJU4OnJOb+vWTL4GBHCDdegQhz99/LHSFhKdjsHvUaMYuDx2jLYaS+vWjHyPGUNPYrXDAs2HvoF88mSlLUlJ8sSxnthY4PipBLz/m2FViE/2fIUo/QxijQPcyteDV6sBWT4v9HEMomMT4O5qnZ8XcbKCwEv/smWcadi4sdLWmIhChViN1qcPS2Zr1QIGDOCFPBtZy8hIJokDA4F8+UxvrrUTFwccOMDPUN68lJa2ic7h5Jw+DTx8yO4syb6YDfHLgpA9vL2ZHD52jOpClSsrbZFgDImJ9J23bnG94eubwwOWKkXZ6f79WTl89GhS0viHH/iY6tUZA2jdmlUGrq45fRmqQaPh3jg6mpO4WrRgHl0wDnP75IIFC6KgmhovBEFJ2rQB9u5l62fDhsC2bUCJEkpbJVgh167x4/TiBadoVqumtEWCKZB9clpEbtoGmDWLM/0+/1xpSwwgIICtmR9+CAwdyjm/w4erI7t99y67fwcPpn0hIdlLEAPcSc2fD1y+zCn2Qgr0DeRjx6qrgTwjXF0BrxLRBj/es/Yb8OkyA97thiF36QDodFogMT7L5+kA3Hps+HnUhk5nnFSHqLELtoh+ftvhwxzpa1M0bkwJ6oULcyRBvXcva6caZS6wYHfYtLR0cmJj+SGoVo3jSASzIX5ZELJPsWJUBbl4kTNZBethxAjmAzZt4t/QpDg7p5SdfvAAWL+eSeJvvmEG1dubXchLlzK6bAMXVwcHoH59wMWFdf6pJ4gJWaMmnxwaGoozZ84gNDQUiYmJOHPmDM6cOYMom9u8CHZN7drclMfG8gJ2/rzSFglWxsmTrPtycWHRmSSIbQc1+WS1IEliG6BMGQYRZ89mU4bqcXPjMNqqVRklnj6dyWIl2byZw3bOneOOcsmSnCeua9Zk1/TkyWybEl7yySfqaiA3hLgEw5Mgzt7FkLtkDeTxbwGfTpOhi3uBBz9Ng84Ar2LMedSGzHQQBNK4MYNp+/YpbYkZ0EtQX7nCktrevbnpPnXKoKeHhbGJtEkTIFcu85pqTTx6xLz7Tz+xcXvgQL5HNilEcvgwS7FFa9zsiF8WhJxRqRJQvDhw/DhH5Qjq54svWDy/ZAmbes1OwYLAe+8xQXz3Lhc5EydyDubw4az0KlOGCiy//AJERFjAKPPg4sKGvNhYNlOLzzAONfnkSZMmoWbNmpg8eTKioqJQs2ZN1KxZEydPnjTfSQVBCcqVS5KUaNSIoxAFwQC2bweaNqULP3RIGtFtDTX5ZLUgSWIbYeJEBqSnT1faEgPZupWDX7//nkHCd94BuncHnj2zrB0RERzm/PbbQLNmrCwz5W5yxgzg6VPg009Nd0wr5/hxYONGflbV0EBuCM+fA1cuZf9y6VaxAeLuXUNC+H9ZPtbFyXovy+JkBYHkzp3UdGsVxVvZQS9BvX8/A6G1ajGzGR6e6dN27mS3da1aFrJT5cTF8T1ZvpzLhffeA7p0saHZw6mJiGCgpm5d0Rq3AOKXBSFnaDT0V15erG+Jtl7BH7tg+3ZgyBAKlg3IetKP6XFwAGrU4MipPXu4Jtq6lXKnu3dzxIK3NxeJs2ZRuczKLrweHqwNfPiQ61x76KwxFWryyWvXroVOp0tza9q0qflOKghK4efH6u1atRjv3bxZaYsElbNuHQVBmjWj+5aR1raHmnyyWrDebISQAm9vYNw4BhmvXVPamixISODGKSiIydkffwTWrmVlbfXqHMRnCQ4e5Pl+/pnn//FH01/5S5TgLnX+fODePdMe2wrR6YCRI9m03b270takz/PnnD+2dCnQqxflRDw8gPded8/2JlgXHwsA0MZmHlnSACjp7Z69k6gAcbKCkETt2syB7dyptCVmRp8N/+wzyi1WqMAxC+l8wa9f57iBoCDA0VEBW1WEXlp66VIWTzVpwhx7uXJKW2Zmdu9mN7pojVsE8cuCkHMcHZkUc3JiJ0l81hNkBAW4cIF1523aqKg+O08eRpmXLAGuXuUiaPFiVh3MmcOEhZ8f0LUr8O23wP37SltsEAUL0vR//uHLEgxDfLIgKIinJ/Dnn0DHjkCnTpSdEIRU6HQM33fvDvToAWzZYj3NTYJxiE9OiySJbYghQ9jYM26c0pZkwVdfUaZy/nyWZ2s0vPqeO8fhT02bMokcG2ue88fF8U1q0gQoWhQ4e5bn12jMc75x46ipOWWKeY5vRWzdytz8vHnqSBDoE8LLlqVMCNerR3Ww8+f57+XLgZPHnFDCK/PVQWL00zT36RITEH1hDzROrnAuUDzT5xf3doO7q/Vqi4qTFYQknJyYDL12Dbh5U2lrzIyTEwuirlwB2rYFPvyQEfWQkJcP0WqZMC9eHKhYUUFbVcDDh0nS0kWKAB99xFy7TUpLJ+fePa65mjUTrXELIX5ZEEyDqytldp8/F5ldNRIWxlxsyZLADz+oY5+ZLqVLJ8lOP35MNZY+fbh+6tGDwZwaNYCxY4G9e1U9+LdkSa7nzp0D/staLEuA+GRBUBwXF+C77zg66aOPgAkTRA5BeIlWC4wYAYwezY/Gl1/awf7cjhGfnBb5uNsQuXNT3bhHD25e69VT2qJ0iIzkjN733+cGKDklS1ICZP58YNIk6kWtXw9UqWK68//9N+cEX7hAiadRo8y/i8yXj3rgI0YwiF65snnPp1KSN5BbZD5UKp4/Z2w6JIS3kyf5cUhMZFNTtWr8zgwaxMroqlW5hkxO8399sC74NhK16S8kH29bCl1cDFyLVYWjhzcSo54g+u99SHj8L/I37w0Hl9wZ2ufooEGz8j6mfMkWx1jHaQ9OVrBvKlViLdKOHUDfvlQhtGn8/NgJ06cPN961awP9+gEzZ+LMLS88eMD8sblqstROXBzjwceOAXnzUlra5juH9eh0/CJ4ewMBAUpbYzeIXxYE0+Hpyb3CwYPAmTNAzZr268/UxPPnQIcOrC///XcW/FoFzs6sEGvcGJg5E3jwgNV027dT5WzuXMDdnYVVrVvzVrasqj50VasCUVFAcDDNtNlRGSZCfLIgqAAHB2DhQlbqjhzJItaVKyUbaOfExnIS5caNbCIaOFBpiwRzIz45LXIVtDG6daPi48iRlMNS0R6CLFjAucMZDU92dGTlbOvWlF0KCKAU05AhOYuua7XUdBwzBihVijuZmjWzfzxjGTCA0lJjxrCd1g7RN5B//735P5epE8IhIZT1TC8hHBDADa6ra9bH7RpYHGuP3srw9+6VGiHq3E5Env4T2ueRcHDJDRe/ssjftBfcygVmeuxErQ7d6mbeaax2xMkKQko0GqBVK2D1anZapK6NslkaNaIE9bJlwKRJiPvlT+wdeAlVq+RGkSJqW5iYH52ORUnbt9M/NWmSJF1qN+hb6t99V8UtXraH+GVBMC2+vsArr3Bv4eFhR4U+KkWrpRrU2bMswipWTGmLcoCPD+MfXbvyhZ07x4XDtm2UuIqPZxyjTRvGSpo3VzwjrtEAdeqwzv/QIaBFC5HlzAzxyYKgIkaMYIFzz56Uo9i0SS5gdkpEBFXIDx2i0lfHjkpbJFgC8clpsafwlF3g4MBG3JYtqWL05ptKW5SMe/eYJP74Y+pNZkbNmtx9jx0LDBvGsuC1a9mSZSz//cfd486dTDbPmcO2a0vi6grMng106cJdVNOmlj2/wugbyLt1M31u3pCEcN26bGozJiGcHiXye8BXVwD3tY+hcUzbTexeuQncKzcx+riODhrUL+2Nsj7WUvqePuJkBSEtxYpREGPPHv50dlbaIguhl6Du3BlHZh/F8zgHtFjWESg1wa46SR8+BP76i3P7KlZkXDdfPqWtsjCJiewiLlmSM6sFiyF+WRBMT+nS3NucOcNGz8KFlbbIfpkyhV0/mzdTvMRmcHBgZWGNGiwyj4qi/PT27bwtX851Vv36SV3GNWsqIlnj6Ag0aADs3g0cPsyOYrsqgjMC8cmCoDK6duWQ9Y4dWeWydStQoIDSVgkW5P59Tsv65x9uVxs3VtoiwVKIT06LrQsf2iV6Od8xY1hwqhomT2ZyduxYwx6fOzfw+ee8Ul+6BPj7cxdoDD/+yOddvMjjfP655RPEet55h7vXUaPs4+qSjKwayA0l+QzhDz4AqldPmiE8bBiTxXXrAl98QTnpyEj+XLmSUq8BAdlPEF+8CAQGAue+8oeTo2k74ZwcNJj1pr9JjykIgnpo0QKIjuYoCHsj0t0PR3zfRGDph8j3+Ab94IABQHi40qaZldhY1qatWEH/9957QOfOdpggBoDTp5ktb91ahRI3giAIxlOtGpPDx44BT58qbY19sm4d95Zz5thB10+ePMDrr1MZ7do14MYNqpTlz89C9Fq12BHXrRvfmLAwi5qXKxdndkdF8TuR2YjP6NgEXAl7htDoJ7gS9gzRsQmWM1QQBCE1rVqxkefGDV7Ibt1S2iLBQly9ylqrhw85SkQSxIK9IzV+Nsq8eSw8XbWKHZSKc/Ei8PXXnP1gbIS0ZUvg/Hmgf3924m7dyg1SZsd59gwYPJibpE6dGKX18srJK8g5Gg2zpU2aMNn97rvK2mMh9A3kQ4cCJUoY/rznz6mydfJk+h3C/v5M2pqiQzgztFpgyRIWXZQuDRzZ6YYrCVUw9ufzJjvHtPZVUMzL+qVtpBJLENInf37K8R06RJnKPHmUtshy7NnDjpJG7xYD3j/FKp6JE1nENWcOK35saFizTpdUl2a30tLJiY3lh0CfUREsivhlQTAPGg33IXv3JsnsKlWHbI8cPAh8+CGXEKNHK22NApQuzYK7AQOAuDhWIeq7jNev52Nq1EjqMm7QAHBxMatJefOyWPvQIe7hq1dP+t21sEisDw7F3isPEBoeA30OeckVQAOguJcbmlXwQdfA4ijna93KWpkhPlkQVEqtWsCRI5Tzr1+fMv/VqiltlWBGTpwAXn2VjeT79mUtdirYHuKT02I7UTkhBdWqAT16AFOnUl9fccaOpczggAHZe76XFxOr337LJHG1arySp8eBA9yV/PorH79xo/IJYj2NGwPt2wPjxzNwagdMnszq4nHjMn7M8+ccE/3FFyk7hOvWTeoQDgxkB7G+QzgkhEUQOe0Qzoz//uM68eOPgX79eM6aNYEutYtjZKvyJjnHqFYV0Lm2baxIdLokR2vILbMqc0GwNRo3piTf3r1KW2I5wsIox9m0Kf0AnJw49uHKFaBdO6BPH0pBnDypsKWm4eFD1qZt3gwUKcIipsaN7ThBDDBaHBvLDIpgccQvC4L5cHJi0xFAmd0EaYi0CNevc6RW/fpUXbZ7gQoXF1akzZrFzWpYGPDdd6ygXrOGs4u9vNiJvGwZ30AzUagQ98pXr7Ip7054DN7/OhgtFx3AuuDbuJ0sQaxHB+B2eAzWBd9Gy0UH8P7XwbgTHmM2G5VEfLIgqJiyZenMCxUCGjXKON4sWD3btjE+Ua4ct6qSILZPxCenRZLENsz06ZT8mTdPYUP27eNM4dmzc1bBqtEA77/P0tRSpbjhGTUqKdkaG8t2z6ZN2bJ67hwfr7ad45w5wJ073KTZOPoG8okTkxq/M0sIf/xx5gnhfv3MlxBOzaZNmSuVD2pWDnM6+sPVyQGODsZ9xhwdNHB1csDcjv74qFlZE1uuHMY4WGOrtgTB2smdmzG806eBBw+UtsYy7NzJuGSaEcR+fsA337AV6MULtln37w88fqyInTklNpZ+Qi8t3bWrHUtLJ+fZM3Y31asnb4ZCiF8WBPOSOzebNCMigOPH7SOApCRPngCvvQZ4e7Mgy8zNsdaJjw8XIuvWUdLr1ClgwgQGhoYNY1S8TBlg4EAW1UdGmvT0ZcvytmJnKIIW7seRm1zbJWoz/3Lof3/k5mMEfbYfG06EmtQuNSA+WRBUjq8v49eBgVRh+OknpS0STMy337JmKigI2LVLPf1kguURn5wWSRLbMEWLch+wcCE7IhVBq2Uit04dyj6bghIlKF04dy4zd3XqAFu20JF/9hmTsHv2GKdtbEkqVaI+1owZ3OnaMKNGsRDPwQHo3TvzhPCJE8olhJPz7BlrCzp35sLh/HkqnqdHl9rFsWtYE9Qv7Q0AWSaL9b+vX9obu4Y1sZkOYj3iZAUhc2rXZq5s506lLTE/16+zi6RlS3ZQp0vDhrzof/458MMPQIUKwJdfWs3FQacDLlxI8mFNmlAwpazt1P7kjD17GMHXt9oJFkf8siCYn/z5ubf57z/uGwTzEB8PvP02VTt+/10Cuwbh4MDW3rFjKWXz+DHw22+UytqxA+jQgW9k06Ys6D91yiSO4FD4Nfx4+zxiE7VZJodTk6jVITZBi7E/n8fSvddybIuaEJ8sCFaAhwedTKdOwDvvcNShYPXodGyg69ED6NWLhWZu1j/xT8gB4pPTYs8CeHbB6NFMuE2axI5Oi7NxI9tBDxwwbUevoyMzkC1aULKyY0d2Jh07xoGPamfKFMpAzZoFzJ+vtDUmQT9DWD8/eP9+JggAYOTIpBnCAwcy+evvb/kEcFbs3w907w48fcoKs27dsv7YFvNyw7regUmzlq4+QOjjlFJaGgDFvd3QrLwPutUtjrI+tjlryVjHaQ9OVhCS4+jI4pMff+T1sUwZpS0yD1otY48lSjDvmylOTsDgwdyEjxnDGQJffcXMa61aFrE3Ozx8CPz5J3DrFlCxIovNpVk2GffusRLs1Vf/rzUuKIH4ZUGwDIULsxj27FnGl0uVUtoi20KnYxHWwYPs/ClXTmmLrBQPD7ZQvf46/3/jRtIs41mzOBLLx4cVfq1bA61asbPOCDacCMWnu66axNwFO66iYB5XmymsFp8sCFaCiwsDgn5+3Kfeu8cmH7WpVAoGodUCw4ezLn3SJIbj5U8piE9OiySJbZy8eTkTdsgQdm76+1vw5LGx3Gi88QZnOpiaf/9lFvz+fVbInj7NxPHatUCxYqY/nynx86Ots2ZxaGHJkkpbZBQvXjAIok8Ih4SwmyoxEXB2BqpUYUduyZKUba5WTX0J4eTExlISe8ECflS//db4RvRyvh6Y0r4KpqAKomMTcOtxNOIStHBxckBJb3e4u9r+5VacrCBkTaVKdFE7dzKI7GCDmi5nzjCJ+uGHRmzAfH3pv/v0oV+sU4cJ45kzqSupEmJjWVAUHMykcNeu0jmcBp2OAWdv73S0xgVLIn5ZECxHuXJJqkju7sy1CaZhwQIWvK9dCzRurLQ1NoRednrgQCAujiMitm/nwMb16/mYmjWZMG7dmoOgM9H4vhMeg8m/XUz3d7H3riL6/G68CD2PhGdhcMjtCdfCFZCv8ftw9iqS4TEn/XYR9csUQDEv62/5Ep8sCFaEgwOdT6FC7Hq5e5cdWM7OSlsmGEFsLBuBfvoJWL6cE64EARCfnB42GJoUUtOvHwOYY8ZY+MTLlnH27pw5pj/2xo3MeF++zEj7qVP8eeUKM5I//GD6c5qaESMo7zRhgtKWZMqLF0kzhHv3BmrUSJKMHjqUufnatVNKRo8eDTx6xJGTtWurO0F84QI7nBctMp1SuburE6oUzouaxfOjSuG8dpEgBkSuQxAMQaNhY0ZYGIttbI24OCoa+vsDRTKO+WVMgwZUIPn8c2DDBqB8eVVIUKeWlm7aVKSlM+TaNeCff/hBz1BrXLAE4pcFwXJoNMyn+fgAR46YfNSr3fLLL4xjjB9PmUjBTLi4cG7GrFmMrdy/z7nGVaoAq1cDzZqx+Kt9ey6Grl9Pc4jxW84jIQN56YhjPyHmyhHkKlEd+YP6Ik/11nhx5wLurRmKuIe3MjQrQavD+C22oeMuPlkQrJARI1g0s349Jfqjo5W2SDCQiAiKWv36K5PEkiAWkiM+OS2SJLYDnJ05Yuavv4Dduy100idPKMfRpw91GE3F06fUAO7ShdWs585RuxPgz3PneP977/Gm5pm/efIAU6dysRESorQ1AJgQPn4864TwkiUMkkdFcQ/55ZcsRtArg44fz/2jmiu9tVqOsK5VC0hI4OsePVri2TlBbU42PDwcXbt2haenJ/Lly4fevXsjKioq0+c0bdoUGo0mxa1/qtVkaGgo2rVrBzc3N/j4+GDUqFFISEgw50sRbIyiRRlz27uXSVVb4vBhjh9o3jwHB9FLUF+5QknEvn3piE6cMJmdxvC/9u48LMpy/QP4d4ZNARHZRcEN9y2PmULWETFFK8vMsrSy41ImrWq571qWvyzNY3o0NdNs046VqaRUrqgUZR5FMREDAZUQBQGZmd8ft8Mi2wzM8s7M93NdXCYz884Dje/9vs/93PeTlSUdJr76Sv7fTZggXSecHWP9j3E0Guk13qKFJPjJqpQUlxcuXIiIiAi4u7vD28De7DqdDrNmzULjxo1Rv3599OvXD2fO2NcelWRf1GoJV/XqAfv3SwUL1V5CgnTsePRRYP58a4/GwQQGyrzLxo3SavWXX+QmPzdXWtS1bi2VyBMmANu348yfGdiXfLnKPYgb9BiCJi98BJ/7nkODrgPgffdwBI1YDJ1Wg9zDX1Y5DI1Wh33Jl5GcZfurLpQUk4nICE8+CXz3nWyj2LevVMSQol28KPPRv/wi21QMGWLtEZHSMCZXxCSxg3jkESA8XDocW+SDvXChzHzPmWO6Y/74o1QJf/ut7Of76adSiVuWj498/5NPZLPALl2kNFSp/vUv6T06ebKUKVmQPiG8cmX5hHDPnjUnhJ9/XpKrlVUI6wvIFy+26I9jlL/+kgKn116TSrBjx+Tnp7pRWpAdMWIETpw4gdjYWHz77bf4+eefMW7cuBpfN3bsWFy8eLHk6+233y55TKPR4P7770dRUREOHjyIDRs2YP369Zg1a5Y5fxSyQ1FRQH6+dPazF7m5Uj3Vq5eJ9ufVt6Dev1+uKXr2lBVJV66Y4OA1KyyUfOeqVfKzjRghWydz7+Fq/PKL9Brv35+bPSmAkuJyUVERhg0bhvHjxxv8mrfffhvLli3Dhx9+iPj4eHh4eGDAgAEoKCgw30CJ6sjVFejdW8LWwYOydoaM99dfsk6sUyfpTmWP23PYDLVayuSnTpU5mexsKc2Kjpb21A89hE3j58JJV3UQqde0PVRO5du0uvg0gatfKG5evlDt2zupVfjkcKopfhKrUlJMJiIj3Xef7DmUkiKdr1JSrD0iqsLp07I7wuXLwL59ck1GdDvG5Ip4qe0gVCrZTuHXX4HNm838Zikpkll8/XWZ4K2rwkJJovbtK6tVf/9dZmqrmnxUqeTx33+XPpBRUdIiRIkTSs7OwNtvSznZ99+b7W0KCqRNJiDFy2UTwi+9VD4hfOSItEczJCF8O3MVkJvSli3lO5UvXSqr/anulBRkT548iZ07d2LNmjXo2bMnevfujeXLl2PLli1IT0+v9rXu7u4ICgoq+fLy8ip5bPfu3fjf//6HTz75BHfccQcGDhyI+fPnY8WKFSiyt5JQMqtGjWTb3QMH7KclZVycdC8x+Y2YvgX1smWy3USbNrInlJlm3nU64PhxtpY2WkGBfAi6dgWCg609GoKy4vLcuXPx6quvonPnzgY9X6fT4b333sOMGTPw0EMPoUuXLvj444+Rnp6Or7/+2nwDJTIBT08JXdnZUg1r4bXANu/6dUkQu7hILrJ+fWuPiMpp0KB82+kzZxDXYwA0KuOmF3U6HTT5OVC7e1X7PI1Wh7jTWXUZsSIoKSYTUS384x+y+kurlSose9w7ysbFx8v1l7u7LMbv1MnaIyKlYkyuiEliBxIRIRXF06ebOV86fbrsVzNxYt2Pdfy4zKIvWybJ1D17gNBQw14bGirPf+cd4IMP5Di//173MZna/ffL/j+vvy59j+uobIXwmDGlCWH9Hk5JSdUnhHv0qH3SVF9APnt2nX8Mk8vJkbUDTzxRsVM5WVdubm65r0IT9OY7dOgQvL29cae+BzqAfv36Qa1WIz4+vtrXbtq0CX5+fujUqROmTp2K/Pz8csft3LkzAsssgBkwYAByc3Nx4sSJOo+bHIu+ZfGPP1p7JHWXkQEkJkpC1SwLb5ydgZgYCWKDB0tFsRlaUOtbS2/dKq2lY2LYWtpgBw7Iwr6oKGuPhOrIHHHZWOfOnUNGRgb6lblYa9iwIXr27IlD9tSCgeyWn5/cV50/L4tTyTAajXT2PHtWGogFBVl7RFST6yHNkapxqfmJt8k78SM0167Ao909NT439Uo+8gq5vQ8RWVmrVnLP06SJ9DOOi7P2iOiWHTuktqxtW6kgDgmx9oiIbAuTxA7mzTeB9HRJEJpFQoKUKs+bB3h41P44Wi3w7rtSwqrVyiTwpEnG95lSq+V1R4/KEu4ePaSkWklLQPRl3idOSC8tI9yeEO7WrXyFcEJCaUL444/lNZs3myYhfLuyBeRKu5mPi5PO4999V3Wncqo7nc64VVj6qoqQkBA0bNiw5OvNN9+s81gyMjIQEBBQ7nvOzs7w8fFBRkZGla978skn8cknnyAuLg5Tp07Fxo0bMXLkyHLHDbytQ4L+79Udl6gy9evLveWvv0py0lbpdNKZwdcX6N7dzG8WGAisWyc358XFEvDGjavz3lBlW0tfuybb8D32GNCwoYnGbe+uXpWV9eHh/KUpiJLisrH0MbWymMt4S7YiNBTo0EE6Ol2ovqMu3fL663LP9tln0v2JlO/8lTwYWyx/88oFZMeuhFuTdvDoXPPiMh2AlCt5tRqfUtQ2JhORwgQEyCrvXr2k7f7nn1t7RA5v/XpZR37ffTIvwfleqgljckWsi3AwbdpI8c3ChbIdrq+vCQ+u00lb6A4dgFGjan+cCxfk9Xv3yqaxCxfWPZPZpYskiqdPlzF+950kZA2tSja3O++UEteZM4HhwytNsBcUSPVrQkLp1x9/yBy5s7O00ejeXf7/du8uN9Vlf22//GLeH2H6dAnEr71m3vcxRmGhjOvdd6VYW0n/y+2RsS049M+9cOFCuZbObtX0Np8yZQoW17Dh9cmTJw0fxG3K7lncuXNnNG7cGFFRUTh79ixatWpV6+MSVaVHDwlPsbHS7cAWJScDf/4JPP444ORkoTeNiJBf3IcfAjNmAF99BSxaJCumjBiETiexdPduiRl9+kiek5XDRtqzR/al4KZPimLuuGxoTG6n1D1IiCygQwdZfHTkiLQ/NOn9t51ZtUru25YvBwYOtPZoyFBFxcYtwNdc/xtZX8yF2s0Dfg9PhUpt2HWbse+jNLWNyUSkQJ6ewDffAKNHyxxuZibw4ovWHpXD0emAxYuBqVNl3fiKFbyPJ8MwJlfEfzoOaNYsqSpdsED2YzWZHTukZPPbb2t/Vv70U+CFFyTg7tkjvSJMpV494P/+T9o7P/OMJI5XrJB+VlXtb2xJCxfKRr5Ll6Jg0gyDEsLjxkl++faEsKXpC8hXr5b/dUpw/LgkXJKSpFP5a68ZX4hOxqltkPXy8io3GV2diRMnYlQNi1BatmyJoKAgZN1WmllcXIzs7GwEGVHq3rNnTwBAcnIyWrVqhaCgIBw5cqTcczIzMwHAqOMS6Tk5Sev7zz+X1oq2thZBq5UEd7Nm0trJovQtqB97DHjjDWmRsWaNxPa77qrx5VlZculy/jzQvr1sRcAi2FpIT5dVbPffb92LEarA3HHZ0JhcG/qYmpmZicaNG5d8PzMzE3fccUetjklkDSqVLAjLz5cmGFFRdWu4Za9iY4EJEySsx8RYezRkDFdnw2+ytQV5yPx8NrQFeQgcuRjODQxfNWHM+ygRJ6SJ7Iyrq1SiNG4srRzT02XRshLmlx2ARgO8+qosLJszR3Id/NWToRiTK2KS2AEFBMhc6ty5stCplnM35RUXS2+oyEhg0CDjX//333JX+OmnUlG7YgXQqJEJBlaJvn1lMnPCBOkn+c030q/ZXO9Xg4ICSWgeO9YCrdrE4O7Zi9FmzlikawIrJIS7d5fctpLmYMsWkD/7rLVHIyfupUuBadOkcv7oUfmdkflZIsj6+/vD39+/xueFh4cjJycHCQkJ6H6r/+3evXuh1WpLEr+GSExMBICSCerw8HAsXLgQWVlZJe2sY2Nj4eXlhQ4dOhj50xCJdu1kz5zYWKBFC9ta0PLrr8ClS8DYsVa8KQsIkBbUY8dKbO/VSyqKFy2STSFvU1goHcLi46UDxsiRtpecVwydTsqwfX2Bf/zD2qOh25g7Lhsak2ujRYsWCAoKwp49e0qSwrm5uYiPj8f48ePN8p5E5uLkBNx9t6yB3r9fbkddjN/C1W7973/Ao48C/fubeBE7WUTz+oAKqLHltK64CFlfzkPx32kIHL4Arn6Gt/hSAWjua9urKzghTWSH1GqpSmncWCpT0tNl0TKDvFkVFgJPPSXNxFatkvlyImMwJldkQ9OQZEqvvipzqtOmmeiA69fL3d077xg/S7x3r2TxduyQctTNm82fsG3UqPS9du6UUtw9e8z7npCEsL47Ztk9hO+6SxaeLcR0wNkZuyLmIj5eWpP9+qtcY4wfL89TUoIYKC0gX7zY+m09LlyQirxJk2QFOhPElmXMfg7GBmRjtW/fHtHR0Rg7diyOHDmCAwcOICYmBsOHD0dwcDAAIC0tDe3atSupDD579izmz5+PhIQEpKSkYPv27Xj66adx7733osutD1L//v3RoUMHPPXUU/jtt9+wa9cuzJgxAxMmTKi2TTZRdVQqmRjNzAR++83aozFcYaGc/zt3Bm79s7KuiAjg2DFZTvz551LavGqVLDOG5DOPHwc++EA6YPTtK8XHTBDXwenTwLlz8gG2WK9xMpSS4nJqaioSExORmpoKjUaDxMREJCYm4vr16yXPadeuHbZt2wYAUKlUeOWVV7BgwQJs374dx48fx9NPP43g4GA8/PDD5hsokZnoO/Ln5wOHDzvGZJMhsrKABx6QLYG2bLH+/SQZoLgYuHhRJiq+/x4eP+xGqFv1H2idVoNLXy9GYfop+D88BW5N2hv1lqG+7vBws+0Ph5JiMhGZ2KuvStHTp58CDz0E5Nn2HupKdvWqbAX9zTfA1q1MEFPtMCZXZNtXWVRr7u7A/PmyL/FrrxnUlbFqeXnS1+HJJ6XU1VAFBaUbxkZGSpuOkJA6DKQWnnhC7tafeUayi6+8Arz5pkkysfoK4YQEmbOurmV0aYWwD7BkOjpNmQI0fBmoZ+nencbRF5D36SNdJq1p82bpVN6ggek7lZNhlLYSa9OmTYiJiUFUVBTUajWGDh2KZcuWlTx+8+ZNJCUlIT8/HwDg6uqKH374Ae+99x7y8vIQEhKCoUOHYsaMGSWvcXJywrfffovx48cjPDwcHh4eeOaZZzBv3jzz/jBk95o2lbiwdy/QsaN0r1K6gwcl1inqfOvkJNXEw4YBU6ZIFvg//0HW4nXYcaEzzp+Xzhf9+7O1dJ1pNFJF3KKFtO4gxVFSXJ41axY2bNhQ8vdu3boBAOLi4tCnTx8AQFJSEq5evVrynNdffx15eXkYN24ccnJy0Lt3b+zcuRP1lLZikshAXl6ynmnfPlkUduufgcMqKAAeflgS53Fx8vshBdLpZFY+MxPIyAAuX5aA4e4OBAUBXbog0iUbG49egEZbeT3x33vX4kZyPOqH3QXNjeu4/kdcucc9O0VW+fZOahUi2wSY9EeyBiXFZCIyg+HDAX9/YMgQmeP+7jv5O5lMejowcKAUCP3wg3RpIaoNxuSKmCR2YE8/Le2cJk+Wtou1bhP57rvAlSuyp66hfv9d+jsmJck+wa+8Yr3+miEhEl3ef192u4+NBTZtArp2NfgQhYUot4fwsWPlE8IdO8rewQa1jI6JkTKnKVOAW9UUSqUvIN+wwXptRv/+W5LDW7aYv1M5VU9pQdbHxwebN2+u8vHmzZtDpyudyAgJCcFPP/1U43GbNWuGHTt2mGSMRGX17SvnsEOHgH/+09qjqV5uriSJe/UCvL2tPZpKBAQAH32Ewmefx4+rTyP+5/bw0WRg5ND6aNWN2WGT+OUXuf579FFuAKVQSorL69evx/r166t9TtmYDEg18bx587gQi+xKYKAkh3/5RRa3hoVZe0TWodPJgvVffwV++glo1szaI6JyCgtLk8KZmZLRd3KShEeXLpIc9vQsif8jnL2wPj61ysMVZf4JALiRfAQ3ko9UeLy6JLFGq8PIXoa3plYqJcVkIjKTqCgJagMHSgZz1y5ZUEt1lpQEDBgg65T37ZN5dqLaYkyuiEliB+bkJFsnDBwobRoGD67FQTIz5SAvvgg0b17z87VaSSpPny5tII8dkz6V1qZWS3uQ++4DRowAevQAFiwAJk6s0D7x9oRwQoJUDJdNCNdpD+F69SThPnKkRL577jHtz2oi+gLyJ56QBLg17NkDjBolbbk3b5axkPUwyBLVTaNG0tnjwAHZ3rVBA2uPqGpxcVLt3Lu3tUdSOX1r6dgjd6GwfQ/0dT2MXm89DOd/35S9iseOZXvkuigokA9Bly6yBxcpEuMykTK1agVcvy4JUg8PxzyNzp0rXTk//7yOXc3INLRaIDtbksIZGbISG5C2K82ayeoGP78qr51aBzbAPWF+OPjnlUqriYNGvFWrYTmpVYho6YuwAAVfFBuIMZnIQXTrJqupBwyQ9iE7drB1SB3Fx0v3yqAg2TGyaVNrj4hsHWNyRUwSO7gBA6TL8htvAIMG1WIPoLlzARcXSfrWJDVV2jr/9JMkXxcskM2ZlKRTJ+DIEWDmTGDKFBR+sxu/T96IhPTGJQnhP/4Abt6U+yN9y+gxYyRRanRCuCpPPCHJ9MmTpaRMgRU6tSkgN5WCAtlPe+lS63Uqp4oYZInq7t57gcREyb/VavGWBWRkyBgHDjRRzDOxrCy5Fy9tLa1Cw4bhwNPHpWPI+PHAmjVStt2zp7WHa5v275dVc1FR1h4JVYNxmUi5unSRRPHhw9JJxJG2QNi8WaYRFi6U3SHISvLySiuFMzNl1burqySEw8Lkz/r1DT7coiGd0W/pT1W2nK4NZ7UKi4YooKjABBiTiRxIy5ay8vuBB6RF2LZtvG+qpe++k2uF7t2B7dvZOZJMgzG5IiaJHZxKJYXA3bsDa9cCzz1X/vG8wmKk5NxEUeM2cM25ieaFxfBwu/WxOXUKWL0aWLy4+rO0Tid3ghMmyEZDe/fKJrYKU1oh7IaEv99GQthM/LHfDTf3u8JJrUWnzip0767CmDGlFcJG3DMZR60G3nlHLiK+/FJxd8/6AvKYGMt3TvntNymyPn3a+p3KqTydzrjAqTPd/AGR3ahXT+4jd+2S/GVgoLVHVJ5OJ9vQ+vpKLFSSwkLZPiM+HvDxkVjRqlWZJwQEyMXOmDFyTdKrl/z3m29KdQwZ5upVWcAWEeFYWQ0bxLhMpFwqlcT5uDhZdxMVpcyFV6Z24ADw7LOydnzqVGuPxsEUFwOXLpVWC1+/Lh9EX1/p8hYUJPM6tVygHuLjjrmDO2LK1uMmG/K8wR0R4uNusuNZE2MykYMJCJD572HDZHX1xx/LvsVksHXrpAHY4MGyK6TZ5uDJ4TAmV8QkMaFbN5lInT1bOi1fzLuGTfGpiEvKQmp2PnQA8My7QOxlqGJ3IdTHHZFtAzBi0xK0DgmRTGFV/v5bKnY++0wO/sEHiti8sLBQ2lAeO4aqK4TvaYAx4/LR/YeF6LLrbdRv8yDwzocy82wJfftKeffUqcBDD8mqXoWYO1eqzg0pIDcVjUaql2fMUFancirFlVhEpnHnndLUIjZW4rOSJCcD587J/a1SujWXtJaOlfjety8QHl7N+MLDgaNHgVWrJJB99RVbUBtjzx7pBKPUXuNUgnGZSNmcnWXLwj17JHnap499h6E//wQefljWaK1erchmWfZFp5OFXfq9hS9flhO9u7skhDt3ltWILi4me8vhPUJx+Xohluw+XedjTe7fFo/3sP29iPUYk4kckKenlL+OGSMdIzMzgZdftvaoFE+nk3Xc06dLMduKFfZ9fUSWp5SYnJKSgvnz52Pv3r3IyMhAcHAwRo4cienTp8PVwnkgJokJADB/PvDVznz0X3Qc6brLcFKrKm0TpANwPjsfGw+nYH3LR3FPl4ewKE+DkMq6Ru/ZI0uE8/KALVuAxx83+89RGX1COCGhNClcVcvoihXC7sCkucBnHYDnn5cbqfXrZe9iS1i8GOjaFfjwQ+CllyzznjXQF5C/9Zbl8uXnz8tH6eefldupnIjIVJycZCuIzz+XpGxYmLVHJLRaScQ2awa0aWPt0YjMTOD778u2ljawuNXJCXjhBVnZPWWKLGj7z3+Af/+bLairk54uLT0eeICBmIjIBNzdZc1NXJwsEOvVyz6Tpzk5Ejq8vYGtWxW1/tm+FBaWto/OyJB9mpycAH9/megICpKkhRk/ZDGRreHn6YbZ20+gWKszqv20k1oFZ7UK8wZ3tKsEMRE5MBcXmUdu3FhaIaanSwaULRErpdFIHn3FCmDePCkUssfrIiIAOHXqFLRaLVatWoWwsDD88ccfGDt2LPLy8rBkyRKLjoVJYgIAHMpKRdC/TiBNo4NKjRov5DW3Hj6Y74p+S3/C3MEdMVx/EV9QINWv770nfbPWr7fYrvJlE8L6pHDZhHDHjlKhZXTL6Mcfl2Xeo0bJDPRLL0mW1Ny9Ljp1kn5c8+YBTz+tiCrsKVPkf2d1BeSmotNJS5EJE2TSX6GdyukWpazEIrIH7doBoaGSlG3ZUhn3kL/+Kl0Kx461/o1aQYG0lj5yRBYsPfWU/J6M5u9fsQX16NFy4+7vb+ph2zadTvqg+/sD//iHtUdDBmBcJrINjRrJ+qSDB+Xe1d66Jd28KWuyMjJktwJfX2uPyI5otUB2dmkL6b//lu83bCgXkkFBsqWGhUuwhvcIxd2t/DBt23HsS666CEFP/3hES18sGtLZblpMl8WYTOTAVCqZQ27cGHj1VeDiRbkHNWEnB3tQUCD39Vu3yvrtMWOsPSKyV0qJydHR0YiOji75e8uWLZGUlISVK1cySUyW90HcGWkHpDJ+0ldza2XolK3Hcfl6IWJ88qWtdHIysHSpJFPNNLNtSEK46grhWmjaVDZiXLZMMqU//AB88on06zanefNkT+fFi2XS2or27QP++19J3Jp7z6zsbCne/uILRXUqp2ooJcgS2QOVStYkrVkDJCZaPydXWChVTl26AMHB1hvH7a2lo6Ikr1vnuU99C+rVq4Fp0+TOdOFCYNw49rbSO30aSEmRoMzfiU1gXCayHU2aSIz9/XegQQOgeXNrj8g0dDrgxRdlYdfu3bJtENVRXl5ppXBmpuw17OoqraPDwuRPBWzcGOLjjo2je+JM5q3tzE5nIfXKre3MblEBCPV1R2SbAIzsFYqwgAbWGq7ZMSYTEV5+WRbvPPUUkJUFfPmldHcg5OTIlhTx8cC2bbIPMZG51DYm5+bmlvu+m5sb3EzcYe3q1avwsVTr1jKYJHZwW46mmmS/GABYsvs0/Hd9gMednSVj26mTSY4LVEwIJyTI329PCI8eLZXCdU4IV0WtlvYg/frJRpE9e0oSd/Jk802YBgdLj+UlS6Q1ZkiIed6nBjqd/Jj/+IfsRWlOP/wg7aXz863aqZyMxBtfItNq0kRCaVyc/GnN1owHDpTu92stmZnAjh1AaqrE/f79AS8vE76Bk5O0nX70UemI8sILkqVfsUIy0Y5Mo5HZ/ZYtgdatrT0aMhDjMpFtadMGuHZNbqU9POyjocXSpcCqVcBHHwGRkdYejY0qLpZWLvqk8LVrsprQx0ey7kFBUo5u7TYvVWgd2ABzBnfEHHREXmExUq7koahYC1dnNZr7esDDzTGmJRmTiQiATHD6+0tGNDIS+O47ICDA2qOyqrQ0YOBA4K+/ZOfKiAhrj4jsXW1jcshtOZnZs2djzpw5JhtXcnIyli9fbvEqYoBJYod2ITsfs7efqPQxbdEN5MZvRWF6Eoounoa24Dp8B70Czy79qj6gTodZ/ccj4pV7ERLkXetxGZoQ/te/5M+uXa2wULZTJ1neNHu2VBzt2AF8/LH5lny//rpUN82cKe27reDLL+VH3rvXfG1Pb9yQefn337d4p3IyAd74EpleVJR0Ujh40Hrt9nNzpT1kr14G7vdrYmVbS/v61qG1tKH8/SU5rG9BHR4uFx1vvWUfM/a1kZAAXLkiCXSFTkJTRYzLRLZFpZIFuXl5Evf79pWqYlu1fTswaRLwxhuygxIZSKeTiy99C+nLl+UE7e4uCeFOnSShYIMbO3u4OaNjsBUuJhWAMZmISvTtC/z8s2RG775btvQx6w2ucp06BQwYIKHvwAGgfXtrj4gcQW1j8oULF+BVplKhqiriKVOmYPHixdUe8+TJk2jXrl3J39PS0hAdHY1hw4Zh7Nixhg/ORJgkdmDTth1HcRX7wmjzc3H1wKdw8vKHS0ALFKYer/mAKhWK1c6Y9l0SNo7uadAYbCIhXBU3N5kwHjRI9gvu0gVYvlz+29QTqA0aAHPmyGT1q6/KL8KCiookeXv//eZbAZ6YKB0sz541e6dyMhPe+BKZnrd36T6F3btbZ7J4716Zh+zd27Lvq28tvXu3xCGTtZY2VK9ekplevRqYPr20BfVzzzlWu2V9lr5rV9lHi2wG4zKR7VGrZW3S3r3A/v0S+2wwF4hffwWeeAIYMgRYtMjao7EBhYVSJaxvI11QINca/v4yzxAYKBeBXKhlsxiTiaicO+6Qm/wBA6R0dscO6+8xZWGHDgEPPCANNHfulE5qRJZQ25js5eVVLklclYkTJ2LUqFHVPqdlmYUh6enpiIyMREREBFavXm34wEyISWIHdSbzGvYlX67ycSdPHzSN2Qgnz0YovHgGGRteNei4Gq0O+5IvIznrWoX9ZAoLZc/gY8dsMCFcnXvvBX77TTZbGjUK+OYb6anl62va9xkzBnjvPen5vHu3aY9dg5UrgXPnZD9iU9NopJP2zJlAhw4m71ROFsQbXyLzuOcemWyNi7P83jwXL0qIGzRI1kZZitlbSxvq9hbUEyYAa9c6Vgvq/fslS2/NXuNUK4zLRLZJvzBrzx6ZP773XttaPJuWBjz4oNzbbdxoW2O3GK0WyM4ubSGdnS3f9/ICQkOlYtjPz7EWpdk5xmQiqqBFCymfvf9+4J//lM14+1XTwdOOfPst8NhjsmXkf/8ruyYQWYq5Y7K/vz/8DexCl5aWhsjISHTv3h3r1q2D2koXzkwSO6hN8alwUqugqaKSWOXsAifP2p2hndQqbDiQiodDOyIhoTQpXDYh3KGDBAKbSwhXpWFDaTf94INSYdS5M7BunawIMxUXF2DxYlmOvXu3zJhbQE4OMH++/L/q2NG0x05JkcLr/fsl9z1vnmWTEGRavPElMo969eSecedOqSoODLTM++p0QGyszFFaalGzxVtLG8pRW1Dn5MgS74gI6/QapzphXCayXZ6ecur9+We5l77zTtsoIs3Lk1tilUraTbu7W3tECpKXV1opnJUlkyOurnJh17KlJIZtelKEqsOYTESV8veX1eDDhsnK7A0bpBWHHVu7VqbOH3oI2LRJ5juILEkpMTktLQ19+vRBs2bNsGTJEly6dKnksaCgIPO8aRWYJHZQcUlZVSaI60qj1WHdriwsWNWxJCFskxXCtTFsmNzNP/ssEB0NxMRIYtdUd8cPPST7VUyeLL3HLLCy+K23ZK/guXNNd0ydTlaVx8TIarG4OEmAkG3T6YwLnDrznIKI7NKdd0riNDYWGDnSMu955ox0kRg+3PzhRqcDfv9dfj6rtJY2lL4F9X/+A0ybZv8tqPfskbt2S/caJ5NgXCaybf7+pfG/QQOgzLZliqTRyPZBZ87IImCH36GguBi4dKk0MXztmnzf1xdo00aSwo0a2Ub2n+pMKTE5JSUF8+fPx969e5GRkYHg4GCMHDkS06dPh6st9rYnsgceHlJOO3Ys8OSTEjNeNayjpy3R6eTWeeZMada1fLl93kKT8iklJsfGxiI5ORnJyclo2rTpbe9p2ZtzJokd0PXCYqRm55v1PZwb5SNuXzHu+oez460ebtJEyr0++AB44w3ghx9kaZQpyrBUKunNHB4OfPIJ8MwzdT9mNVJTpcP166/LHhGmcOWKzKV/9ZVUiC1fzuIke6GUlVhE9sjJCbjvPuCzz4DkZCAszLzvp9VKwrZ5c5nHNCfFtJY2lJMT8Pzz5VtQr1kjLajDw609OtNJT5fM/YMPss2HjWJcJrJ9zZpJbvH4cakuvm3+SFGmTJGdl7Zvl4XhDkenA3JzZXI/IwO4fFlOrO7uUi3cqRMQEGCbm0xTnSklJp86dQparRarVq1CWFgY/vjjD4wdOxZ5eXlYsmSJed6UiGrm4iIdKYODgddek3uxxYvtZs8GjUZ2aVy5EliwQNZbc40UWYtSYvKoUaNq3LvYUpgkdkDnr+TBEmsR/Fvmwd3dQbN/ajXw0kuyl8SIEdIfdO5cSRrXdZlUr15SsTxjhmzgYMay7JkzJYE7ebJpjrdrlxRZFxQAn38uPwbZD6UEWSJ71batbFMXGytdCc15v/jLLzK3+cgj5rt5KyiQThJHjyqstbSh/Pykonj0aEkU6zuJvPWWTALbMp1Ogra/P9Ctm7VHQ7XEuExkHzp2BK5fl4pid3fAx8faI6pozRpZy/zee7K1osMoLJTW0frEcEGB3O/7+wNdukhyuEEDzoSTYmJydHQ0oqOjS/7esmVLJCUlYeXKlUwSE1mbSgUsWiStOF5+Gbh4EfjoI5tfXFRQIFPj//2vXC+MHm3tEZGjU0pMVhL7WI5CRikqtswn21Lvo2gdOgDx8ZJlnTFDeiqfO1f34y5aJKVX771X92NVITFRWkLPmSP3tXVx44bkzKOjZQH18eNMENsjfZA15ouIDKdSSZVtVpaco82lsFD2Be7SxTytInU64LffpOHGr79Ka+nnn7exBHFZ+hbUK1cCX38t2fwVK2S5tK1KSgJSUuQDxx5gNotxmcg+qFRAjx6yePfAASDfvE3BjLZnj7SNfOEFueeza1qtrKL74w/5wbdvBw4fBrKzZSXfvffKFlH33AO0bi2tUZggJvfvHAoAACiZSURBVNQ+Jufm5pb7KiwsNPnYrl69Ch8lrj4hclQvvghs2QJ88YV0ddJvV2CDcnKAAQOA77+XW2UmiEkJeJ9cEZPEDsjV2TL/2y31Porn6ipJ3Z9/BtLSZNZ93bq6NbQPC5M78TfflH2OzOD116XF6JgxdTvOL7/IXtT/+Q/w/vvSibtJE9OMkYjI0TRpAnTuLBW4RUXmeY8DByRR3Lev6Y+dkQGsXy83iM2by970d99tB3lIfQvq06elDXVMjMzoHzpk7ZEZT6MpLVdv3draoyEiIkiYuftu6SKyfz9w86a1RyROnQKGDpUFX++/b6f50Px84M8/gYMHJSkcFyd7f7i7y6bRDzwgM+Bdu0rlsM1f1JCShISEoGHDhiVfb775pkmPn5ycjOXLl+O5554z6XGJqI4ee0wmUA8fBiIjpVDIxvz1l6yZ0q+reuABa4+IiKrCLJ4Dau7rAbPfu+mAeZM98H//J9VIubnmfkMb0Lu3lE49+ijwr3/J3fTly7U/3syZchc+f77pxnjLrl0yP/zWW7ItRm1oNJLD7tlTtjJMSJCV5XaynQZVgiuxiCyjb1/p0HDwoOmPnZsrec1evUy7X3xBgaweXr1a5lqfekrCoaL3Hq4NfQvqw4cl4EVESMzPyrL2yAyXkABcuSJVxHY52+84GJeJ7Eu9enJLmZcnzarqsubYFC5fltbSTZoAn30GONvLZmbFxbKqLTFRJui/+05iY0GBrKLu21eqhcPDgRYtzLr9E9mP2sbkCxcu4OrVqyVfU6dOrfT4U6ZMgUqlqvbr1KlT5V6TlpaG6OhoDBs2DGPHjjX3r4CIjBUZKQVH6emyUuzsWWuPyGAnT8qtcG6uLEIPD7f2iIhK8T65Inu5jCcjeLg5I9THHeezzdenykPnjr9SnPHt16XtsNq0kYpS/dc//mGHk8M18fKSKuIHHgDGjZNysI8+AgYONP5Yfn7A1KmSLH7xRZNV+2g00h27d2+5962Nc+eAp5+WC4E33pDtmG18Cw0yAPd0ILIMb29ZgHPwoMTTum4JUNbevXK+7t3bNMfT6YDff5eFR0VFUmnUq5cDFNn07Ckz+GvWSKzetg1YsECqjZX8w+s3iu7a1Ty9xsmiGJeJ7E/DhjLRun+/rD++4w7rjKOwEBgyRPZK3rPHtAvLLE6nk1nsjAyp1Lp0SU6I9esDQUGyX1JAAG9oqU5qG5O9vLzgZcDE2cSJEzFq1Khqn9OyzN4u6enpiIyMREREBFavXm34wIjIsrp2lRv/AQMk67pjh0wCKNjBgzLt3bSprLUKDrb2iIjK431yRUwSO6jItgHYGH8eGm3Vy49zE76BtiAPmuvZAIAbyUdQfE0qX726Pwh1PY9KX+ekVmFYeADmLJZFuKdOycJb/dfXX0sFFODAieOhQ+Xu/l//AgYNkg2c3nlHWlYZ4+WXZd/DadNkrwoT2LhR9gw+fNj4AiKdDtiwQSqGfXyAn36S1iLkGBhkiSznnntkP9+9e2u/oOd2Fy/KhPOgQdIBoq4yMuQe9sIFoGNHKUx1iBiv5+QEPPecxPxp02RB15o1ErcjIqw9usrt2yc9TKOirD0SMgHGZSL7FBQkyeFffwU8PWUnIkvS6WRLoqNHZV1R8+aWfX+TKCqShLA+MXzjhnQACQiQhdxBQbIKjx01yETMHZP9/f3h7+9v0HPT0tIQGRmJ7t27Y926dVCz3RuRsjVvLlU4DzwA9OkDbN0K3HeftUdVqe3bgccflzXTX38tC9yJlIb3yRUxSeygRvQMxfpDKdU+Jzd+GzS5pe0R808fBE5Lb0vPjpFVJok1Wh1G9goFIC2nOnWSr2eekceNSRzfeSfQrZudTioHB0vvzRUrpHR3zx7gk0/khzZU/fpSmTRqlPQHrWP/jvx8YMYMYNgwCejGuHxZ5sK3bpX/18uW2en/N6oSgyyR5dSrJ/eH338vlbmBgXU7nk4H7N4tTSrqujBZX4x69Cjg6yudJVq0qNsxbZqfn/TZHjMGmDBBWoWNGgUsXiyT0UqRkyMrxO6+mwHcTjAuE9mvsDCp4k1MlERxUJDl3nvBArlt3bLFhtpHarVAdnZpYjhbFsLDywsICZFfoJ+fsrt9kE1TSkxOS0tDnz590KxZMyxZsgSXLl0qeSzIkicSIjKOn5/MGz/2mKzqXr8eGDHC2qMqZ80amRd+5BEpQKpXz9ojIqqcUmKykjBJ7KBaBzbAPWF+OPjnlSqriZu+8JHRx3VSqxDR0hdhAVX3vjQkcXzsWOWJ4zvvlD/tJnGsUgExMVKxM3Kk3GXPng1MmWL4pk4jRwJLl0qied++Oq12fv992TbxzTeNe93330tRdFER8OWXUjRFjodBlsiyuneXjsa7d0soqEuxy5kzQEoK8MQTtd87XqeTSuQffpB40K+fLDjifOstd90lSdg1a6SyuGwLaiVs5Lhnj9zJ3323tUdCJsK4TGTfunaVRPGhQ7JNriVaPm/ZAsyaBcybJ5VCipafLwnhjAy5yb15E3BxkZV1LVvKn8Z28iKqJaXE5NjYWCQnJyM5ORlNmzYt95jO2hudE1H1PDxksvy552QCICMDmDjR2qOCTie3tbNmyZro99/nHAApm1JispIoYEaKrGXRkM7ot/SnaltOG8tZrcKiIZ2Nf10tE8f6pLHNJ47bt5e7+7lzJUm8Y4csu2rVqubXOjlJq+r+/eUXNGRIrYZw6ZIkh8ePN+xtAbnvnjwZ+Pe/ZXuMjz7iXhOOTKczLnDyHpSobpycpMvUZ58BZ8/Wvt2kVit7BjdvXvvt7cu2lu7UScZlszHZnG5vQf3SS6UtqK2ZnE1Lk82jH3zQNL3GSREYl4nsm0oli7Hi4mSP4qgo81btHDokjTBGjpTuU4qj0chNrT4xfO2afN/XVy5wgoJkTyS2kCYrUEpMHjVqVI17FxORgrm4AGvXyuTrpElAerrMCVupbbxGI7VPH34ILFwITJ3KMEvKp5SYrCRMEjuwEB93zB3cEVO2HjfZMecN7ogQH9Osxq0pcXzsmPy5bZudJI5dXSWiDhoEPPWUbDT13ntSoltThL3vPkkSv/GG7FHh4mL028+bJ28zc6Zhz09IkM4m588Dy5fLajFeCDg2rsQisry2bYFmzaSauGXL2t0b/vKLbBnwyCPGn8fZWrqWbm9B3bu3XOwsXlz33uHG0vcaDwiQCyeyG4zLRPbPxUVCyJ49sl1hnz7mqd45dw546CGgRw9Z26SI+z6dDsjNLW0hfemSnMjq15eEcKdOEttcXa09UiLGZCIyHZVKSncbNwZefFFi4Lp1Fo93N24ATz4JfPONFA09+6xF356o1hiTK7LOMhNSjOE9QjGpfxuTHGty/7Z4vEeoSY5VFX3i+JlnJDF58KDcFx4/LvGwf3+5gZ0xQ26Qvb2Bdu0kmfnuu8BPP8nzFe3uu6Vf52OPyeTxI4/IDW9N3n4bSE4G/vMfo9/yzBlZ9TVtmsxbV6e4WHLZvXpJp5NffpFVY4qYKCCr0gdZY77MKTs7GyNGjICXlxe8vb0xevRoXL9+vcrnp6SkQKVSVfr1xRdflDyvsse3bNli3h+GqAoqlawTunQJ+PVX419fWChJ3q5d5R7TUDqd7IP4wQfyZ79+0jWZCWIj6VtQr1old9dt28oFTnGx5caQlCS9xvv3Z18wO6OkuLxw4UJERETA3d0d3t7eBr1m1KhRFeJtdHS0+QZJZKPc3eUW8upVWbRl6mqHq1dlHXKDBrJA26oNJ4qKpG3J0aPAd9/JIqfjtxa9d+4s7a3uv19WjjdtygQxKYaSYjIR2YkJE4DPP5d9/+6/v7SDhgX8/bfcPu7aBfz3v0wQk21hTK6IlcSEmMjW8PN0w+ztJ1Cs1RnVftpJrYKzWoV5gzuaPUFclbIVx/quOfqKY321cdmKY5WqdI9jxVYcN2gg7UMeeAAYO1ZueD/6SKqMq9K1q5RwzZkjPcDK/EB5hcU4l5MH18ZanMtRo22hBzzcSv/5T50qyYGXXqp+WH/+KUXOhw/LtsmzZ/O+m0opbSXWiBEjcPHiRcTGxuLmzZt49tlnMW7cOGzevLnS54eEhODixYvlvrd69Wq88847GDhwYLnvr1u3rtxEtaET3kTm0KSJhIm4OPmz7Hk5r7AYKTk3UdS4DVxzbqJ5YXG58//+/TLfGhlp+PuxtbSJOTkB48aVtqB++WW5BjBRC+q8wmKkXMpHkdYDrpfy0dy3zGdAoyktQ69tv3JSLCXF5aKiIgwbNgzh4eFYu3atwa+Ljo7GunXrSv7uxnboRJXy8ZF1R4cOAZ6eEp+rkldYjJTMPBTlqeGamYfm7g3KXRuUVVwsa5fT0+XYNS0oNjmtVmai9S2ks7Pl+15eQEiIdN/w9+ciJ1I8JcVkIrIjjz4qwfmhh6RaascOgztT5RUW41RGHk5f0QIZarRr4lHl9UBZFy4AAwdKWN67V4qIiGwJY3JFTBITAKkovruVH6ZtO459yZfhpFZVmyzWPx7R0heLhnQ2WYtpU6kqcXzyZGnSuLrE8Z13SuK4QQOr/hiyv3CvXsDo0bIq7PnngSVLpIS3MgsWyOaU77yDMzGvY1N8KuKSspCanQ8dgMbPABNjgUmxQKiPOyLbBqBjvVB89VUDbNggnbkqo9NJpfbLL8s9+M8/W3frRFImJQXZkydPYufOnTh69CjuvPNOAMDy5csxaNAgLFmyBMGVbJ7t5OSEoKCgct/btm0bHnvsMXh6epb7vre3d4XnEllT377A//4nrSabdrhW4fyPZ94FYi9DFbur5Pw/uGMoDh9ugPBwoGHDmt+joEBuAo8dk/tQtpY2MV9fqSgeMwZ44YU6taA+k1nJZwAdgS1JUCGp5DMwon4OWmdnSwaALUHsjpLi8ty5cwEA69evN+p1bm5ujLdEBmraVBaLHT8u97HNmpU+VnlcqAck/QYVfiuNCz1D0TpQboJ1OllEvHcvsHOndOiyiPx8mXnOzJSvmzelr3ZgoCxqCgyU8mkiG6KkmExEdqZPH2DfPsncRkRIeW8VC4Arvx4AEAeogEqvB8r63/+kaYeTk8w9tG1rrh+KyHwYkytikphKhPi4Y+PonqUB43QWUq+UCRi4FTB83RHZJgAje4UiLMDaWVTDOTvLTXPnzsYnjvX7HFslcdy4sbTSWrkSmDRJNpz65BNZKn67pk1x4ZUpmHbWBfve+7nKZL8OwPnsfGyMPw+NNgWtRvvhn4M6A6h4s33pkhQ4ff21tA957z1WjJFp5d7WA97Nza3OlUKHDh2Ct7d3SYIYAPr16we1Wo34+HgMGTKkxmMkJCQgMTERK1asqPDYhAkTMGbMGLRs2RLPP/88nn32WaiYYCEr8vYGWnXNx4w9x5G2u+rFXmXP/+sPpSDExQ+Pd6j8/F/yGp3sghAbK3GzXz+gZ08W7ZhNjx7SsmPtWmn18fXXwPz5wPjxcjFTjQvZ+TUu+Cv5DBw+j/U6He7x6o5Frl4IMc9PQzbIHHG5tn788UcEBASgUaNG6Nu3LxYsWABfX1+rjIXIFrRtK90mjx2TdcU31EbEhVvXBveE+WHRkM7YutEdK1fKbkZRUWYctEYjN536amF9u0xfX6B1a9lf2MeHi5mIiIiq0qWL7Mk4YIAkinfskMnsW4y6T7ztekBfGHbgAPDgg9LI4/vvgUpqL4jIRjFJTBW0DmyAOYM7Yg46SiuqK3koKtbC1VmN5r6GtZ6wFYYmjrdulQoqfeJYnzS2WOJYpZKqoqgoaSUdEQHMmiVtKctMGG85morZznehOOQmANTYOlz/uNb/Cvq//xPmDu6I4WXahu/YAfzrX/I7+eor2R6ZqCq1XYkVElI+NTF79mzMmTOnTmPJyMhAQEBAue85OzvDx8cHGRkZBh1j7dq1aN++PSIiIsp9f968eejbty/c3d2xe/duvPDCC7h+/TpeqqlfO5EZbTmaijlHTqBII+d1Q8//acVXcP+Kiud/vYsXJRb89Zd05+jfXwFdNhxBZS2o16yRFtS9e1f6ki1HU0u2DgEM+Azc2rTy4DU1+i2t+jNAtktJcbk2oqOj8cgjj6BFixY4e/Yspk2bhoEDB+LQoUNw4ioVokqpVHKPmpcHLNmWim2pRsSFW48f/PMK+v7fT8jc0RGTJoVizBgTD1KnA3JzpUo4I0MSxFqttLUKCgI6dpRqYe5rRHaEVUtEZHbNmkkm94EHpLr4q6+AAQOMv08scz2gv0+slxaKJ56QZpdff21YJzIipWJMrsh+sn1kFh5uzugY7FhnfkMSx8eOSay1eOK4bVtZGTZvHjB3rizd2rgRCAvDB3FnsGT3aXme2riJMy10KCzWYcrW47h8vRDP3tUakyYBH34IREfLdsiNG5vh5yG7Utsge+HCBXiVKU+vrlppypQpWLx4cbXHPXnypOGDqMKNGzewefNmzJw5s8JjZb/XrVs35OXl4Z133mGSmKym3PnfSFpd+fN/TGRrANJRIy6utLX0M88AzZubcNBkmLItqCdMAO65R/p8v/12uRbUdfkMaHSAplhb4TNAts/ccdnQmNyulj1qhw8fXvLfnTt3RpcuXdCqVSv8+OOPiDJrWSORbVOrgd9unsGWP2sZF7Q6FOt08Ik+jpB+hQBMEBeKikrbR2dkyIWGWi17GXXuLMnhBg1YLUx2ixPSRGQRvr7SgfLxx4EHHsAHb3+KJVlV7C1YA41WB41W5gpyfi7Egw+2xsaNgJUaDBGZDGNyRUwSExmgpsTxsWPyZ9nEcdu2pUljkyaOXVyk7eTAgcBTTwF33IEtc1dhyWVvExwcWLL7NN570w3p+0OxYoV0t+S9OhmitkHWy8ur3GR0dSZOnIhR+n+EVWjZsiWCgoKQlZVV7vvFxcXIzs42aG/DL7/8Evn5+Xj66adrfG7Pnj0xf/58FBYWWq0dJzmuLUdTa50cvN2S3afh5+mGts6h+OEHiXP33Se7G7Boz8rKtqCeMqW0BfULL2DLr+km/Qz4e7rhcVYU2wVzx2VDY7KptGzZEn5+fkhOTmaSmKgaW46mYuneusUF/f3fuz+cRqBXLeKCTgdkZ5e2kM7Olu97ecnmyUFBkiDmBQY5CE5IE5HFuLsD27Zhy8tv1jpBfDvve09jyBA3uLnxPpFsH2NyRUwSE9WS1RPHERFAYiIuTJqB2RfrA866CtncwounkXd8DwpSj6P4aibU9b3gFtwW3vc+BRefJpUeVqcDiu84gR0L/dCnR9V7VBLdzhJB1t/fH/7+/jU+Lzw8HDk5OUhISED37t0BAHv37oVWq0XPnj1rfP3atWsxePBgg94rMTERjRo1YoKYLO5Cdj5mbz9R5ePaohvIjd+KwvQkFF08DW3BdfgOegWeXfpV+ZoZ207gYRc/RHR1x333sbW0oqjVwNixsvfD9OnAK6/gwuatmB01udKn1+YaAABmbT+BiFZ+JXtPke0yd1w2NCabyl9//YUrV66gMdvbEFXJHNcGBseF/PzSSuHMTODmTVngHBgItGwpf7oztpBj4oQ0EVnShdwizPa5EyjWAKhY+VOb64E535xA7zDeJ5LtY0yuSG3tARDZE33ieNQo4IMPgEOHgGvXgN9/l+KfqCjg7FnZXvCf/5Q9HNq3l22Gly4F9u0Drl834g0bNMC0u55EsYtrpeW+uYe/RH7SQdRr1hWN+o2DZ9cBKLjwBy6uexlFl1IqPaRKBTi56LD29+O1+h2Q49LpSgOtIV+66rdBqZP27dsjOjoaY8eOxZEjR3DgwAHExMRg+PDhCA4OBgCkpaWhXbt2OHLkSLnXJicn4+eff8aYSjZg++abb7BmzRr88ccfSE5OxsqVK7Fo0SK8+OKL5vthiKowbdvxkn2FKqPNz8XVA5/i5pULcAloYdAxNTodUvyP45FHmCBWLF9f2Q/iyBFM6/IIim8WV/q02lwDAECxVodp23gNYA+UFJdTU1ORmJiI1NRUaDQaJCYmIjExEdfLXPi2a9cO27ZtAwBcv34dkydPxuHDh5GSkoI9e/bgoYceQlhYGAYMGGC+gRLZOHNcG1QZFzQaSQgnJgK7dgHffScrpfPzgdatgb59gcGDgfBwoEULJojJoSkpJhOR/Su9Hqi8NaRJrweIbAxjckWsJCYys7IVx88+K98rLgb+97/SPY6rqjjW73PcrRvg6Vnx2Gcyr2Ff8mVUFfQb9BgCv8GToXJyKfmeR/t7kL42BrmHv4Tfg5MqfZ1Gq8O+5MtIzrqGsABmCcgwWq1xrcnNvRJr06ZNiImJQVRUFNRqNYYOHYply5aVPH7z5k0kJSUhPz+/3Os++ugjNG3aFP37969wTBcXF6xYsQKvvvoqdDodwsLC8O6772Ls2LHm/WGIblN6/q+ak6cPmsZshJNnIxRePIOMDa/WeFwddDiWxvO/LTgT0hb7fDOrfJzXAKSkuDxr1ixs2LCh5O/dunUDAMTFxaFPnz4AgKSkJFy9ehUA4OTkhN9//x0bNmxATk4OgoOD0b9/f8yfP5+dO4iqYK5rg5K4kHkNYfV1pS2kL12SE0f9+tI+ukMHqRZ2dTXVj0RkN5QUk4nIvpn9eoD3iWTjGJMrYpKYyAqcnYEuXeTLmMSxPmmsTxxvik+Fk1oFTRWrxes1bV/hey4+TeDqF4qbly9UO0YntQqfHE7FnMEd6/zzkmNQWpD18fHB5s2bq3y8efPm0FWyHGzRokVYtGhRpa+Jjo5GdHS0ycZIVFs1nf8BQOXsAifPRkYfm+d/28BrAKqJkuLy+vXrsX79+mqfUzYm169fH7t27TLfgIjskFmvDVTAJ5/9hDmNb8j2B/7+sgo6MFD2GTbmZEPkgJQUk4nIvnGugKh6jMkVMUlMpBCGJo6//LI0cdxsQhZ0nsb1PNDpdNDk58DFL7Ta52m0OsSdzsIcMPCTYRhkiSwnLimr2pu+uuD53zbU5jPAawDHwrhM5FjMem2gA+KuOWPOY/dIgtjJySzvQ2SvGJOJyFI4V0BUPcbkipgkJlKw6hLHB48W460z+dUfoBJ5J36E5toVePceUeNzU6/kI6+wGB5uPFVQzRhkiSzjemExUrONP/8bg+d/ZavtZ4DXAI6FcZnIcVjk2uC6BnmN/ODBBDGR0RiTicgSOFdAVDPG5Ir4r5nIxugTx05+eXgr2bjX3rxyAdmxK+HWpB08OkfV+HwdgJQreegY3LB2gyWHwiBLZBnnr+TBPOuCS+kA7DyQhxbePP8r0bkc4z8DvAZwPIzLRI7DUtcGjAtEtcOYTESWwOsBopoxJlfEJDGRjSoqNu4Mpbn+N7K+mAu1mwf8Hp4KldqwFeDGvg85LgZZIsuw1Hn5yZFaFF20yFuRkVwba9H4GcOfz2sAx8S4TOQ4LHW+Zlwgqh3GZCKyBF4PENWMMbkiJomJbJSrs9rg52oL8pD5+WxoC/IQOHIxnBv4muV9iIjI/Cx1Xt78iRotvC3yVmSkczlqTIw17Lm8BiAisn+WOl8zLhARESkXrweIqDaYJCayUc19PaACamwjoisuQtaX81D8dxoChy+Aq1+owe+huvU+RIbgSiwiyzD0/F8XKgDRd3vAw82Mb0K11rbQA5NieQ1A1WNcJnIclro2YFwgqh3GZCKyBF4PENWMMbkiLvsgslEebs4I9XGv9jk6rQaXvl6MwvRT8H94CtyatDfqPUJ93eHhxrUkZBit1vgvIjKeIef/uuL5X9l4DUCGYFwmchy8NiBSNsZkIrIEXg8Q1YwxuSL+iyayYZFtA7Ax/jw02srXiP29dy1uJMejfthd0Ny4jut/xJV73LNTZJXHdlKrENkmwKTjJfum0xkXOHXmXNpIZOdqOv/r5SZ8A21BHjTXswEAN5KPoPjaZQCAV/cHoa5XcQUwz/+2gdcAVBPGZSLHwmsDIuViTCYiS+H1AFH1GJMrYpKYyIaN6BmK9YdSqny8KPNPABLobyQfqfB4dRPEGq0OI3sZ3paSyNiVVY6wEovIXGo6/+vlxm+DJjer5O/5pw8Cpw8CADw7RlZ648fzv23gNQDVhHGZyLHw2oBIuRiTichSeD1AVD3G5IqYJCayYa0DG+CeMD8c/PNKpSvEgka8VavjOqlViGjpi7CABnUdIjkQBlkiy6np/K/X9IWPjDouz/+2g9cAVBPGZSLHwmsDIuViTCYiS+H1AFH1GJMr4p7ERDZu0ZDOcFYbsdu6AZzVKiwa0tmkxyT7xz0diCyL53/iZ4Cqw7hM5HgYF4iUiTGZiCyJ1wNEVWNMrohJYiIbF+LjjrmDO5r0mPMGd0SIj7tJj0n2j0GWyLJ4/id+Bqg6jMtEjodxgUiZGJOJyJJ4PUBUNcbkipgkJrIDw3uEYlL/NiY51uT+bfF4D+4vQcZjkCWyPJ7/iZ8BqgrjMpFjYlwgUh7GZCKyNF4PEFWOMbki7klMZCdiIlvDz9MNs7efQLFWV+2+E7dzUqvgrFZh3uCODPpUa8YGTUcIskSWwPM/8TNAlWFcJnJcjAtEysKYTETWwOsBoooYkytikpjIjgzvEYq7W/lh2rbj2Jd8GU5qVbUXAPrHI1r6YtGQzmwbQnXCIEtkPTz/Ez8DdDvGZSLHxrhApByMyURkLbweICqPMbkiJomJ7EyIjzs2ju6JM5nXsCk+FXGns5B6JR9lw78KQKivOyLbBGBkr1CEBTSw1nDJjjDIElkXz//EzwCVxbhMRIwLRMrAmExE1sTrAaJSjMkVMUlMZKdaBzbAnMEdMQcdkVdYjJQreSgq1sLVWY3mvh7wcOM/fyIie8TzP/EzQEREZTEuEBEREa8HiKgy/JdP5AA83JzRMbihtYdBdk6nM251lc7wrVCIqJZ4/id+BhwX4zIRVYZxgcjyGJOJSGl4PUCOijG5IiaJiYjIJLRaQKUy/PmOEGSJiIishXGZiIhIGRiTiYiIlIExuSImiYmIyCQYZImIiJSDcZmIiEgZGJOJiIiUgTG5IiaJiYjIJBhkiYiIlINxmYiISBkYk4mIiJSBMbkiJomJiMgkGGSJiIiUg3GZiIhIGRiTiYiIlIExuSImiYmIyCQYZImIiJSDcZmIiEgZGJOJiIiUgTG5IiaJiYjIJBhkiYiIlINxmYiISBkYk4mIiJSBMbkitbUHQERE9kGrNf7LnBYuXIiIiAi4u7vD29vboNfodDrMmjULjRs3Rv369dGvXz+cOXOm3HOys7MxYsQIeHl5wdvbG6NHj8b169fN8BMQERHVnlLickpKCkaPHo0WLVqgfv36aNWqFWbPno2ioqJqX1dQUIAJEybA19cXnp6eGDp0KDIzM80zSCIiIjNSSkwGgMGDByM0NBT16tVD48aN8dRTTyE9Pd18b0hERKQgjMkVMUlMREQmoaQgCwBFRUUYNmwYxo8fb/Br3n77bSxbtgwffvgh4uPj4eHhgQEDBqCgoKDkOSNGjMCJEycQGxuLb7/9Fj///DPGjRtnjh+BiIio1pQSl0+dOgWtVotVq1bhxIkTWLp0KT788ENMmzat2te9+uqr+Oabb/DFF1/gp59+Qnp6Oh555BHzDJKIiMiMlBKTASAyMhKff/45kpKS8NVXX+Hs2bN49NFHzfeGRERECsKYXJFKp3OEgmmRm5uLhg0b4urVq/Dy8rL2cIiITMLa5zb9+wNXARjz/rkAzD/u9evX45VXXkFOTk61z9PpdAgODsbEiRMxadIkAMDVq1cRGBiI9evXY/jw4Th58iQ6dOiAo0eP4s477wQA7Ny5E4MGDcJff/2F4OBgs/0c9sban1siInNQwrlN6XEZAN555x2sXLkSf/75Z6WPX716Ff7+/ti8eXPJTfKpU6fQvn17HDp0CL169TLr+ByNEj63RESmpoRzmy3E5O3bt+Phhx9GYWEhXFxczPpeVDMlfG6JiMzB2uc3xuSqOdSexPp8eG5urpVHQkRkOvpzmvXX/Bh7bpXn335OdnNzg5ubm4nGZLhz584hIyMD/fr1K/lew4YN0bNnTxw6dAjDhw/HoUOH4O3tXZIgBoB+/fpBrVYjPj4eQ4YMsfi4bRVjMhHZI+XEZEDJcfnq1avw8fGp8vGEhATcvHmzXExu164dQkNDmSQ2A8ZkIrJHjMk1y87OxqZNmxAREcEEsUIwJhORvVJOXGZMvp1DJYmvXbsGAAgJCbHySIiITO/atWu3VkRZlqurK4KCgpCRYfy51dPTs8I5efbs2ZgzZ46JRme4jIwMAEBgYGC57wcGBpY8lpGRgYCAgHKPOzs7w8fHp+Q5ZBjGZCKyZ9aKyYDy43JycjKWL1+OJUuWVPmcjIwMuLq6wtvbu9z3y8ZkMh3GZCKyZ4zJFb3xxhv44IMPkJ+fj169euHbb7+t8zHJNBiTicjecf66PCXEZIdKEgcHB+PChQto0KABVCqVtYdDRGQSOp0O165ds1qr43r16uHcuXMoKioy+rU6na7C+bi6VVhTpkzB4sWLqz3myZMn0a5dO6PHQpbFmExE9sjaMRmwXFyuTUxOS0tDdHQ0hg0bhrFjxxo9PjIPxmQiskeMyeWVjcmTJ0/G6NGjcf78ecydOxdPP/00vv32W8YABWBMJiJ7Ze24zJhcNYdKEqvVajRt2tTawyAiMjlrrYzWq1evHurVq2f295k4cSJGjRpV7XNatmxZq2MHBQUBADIzM9G4ceOS72dmZuKOO+4oeU5WVla51xUXFyM7O7vk9WQYxmQislfWjsmAZeKysTE5PT0dkZGRiIiIwOrVq6t9XVBQEIqKipCTk1OumjgzM5Px1gwYk4nIXjEmlyobk/38/ODn54c2bdqgffv2CAkJweHDhxEeHm7WcVLNGJOJyJ5ZOy4zJlfOoZLERERk2/z9/eHv72+WY7do0QJBQUHYs2dPSVI4NzcX8fHxGD9+PAAgPDwcOTk5SEhIQPfu3QEAe/fuhVarRc+ePc0yLiIiIiUyJianpaUhMjIS3bt3x7p166BWq6t9fvfu3eHi4oI9e/Zg6NChAICkpCSkpqZyApuIiOg2dblP1mq1AIDCwkJTDomIiMgh2WJMZpKYiIjsUmpqKrKzs5GamgqNRoPExEQAQFhYGDw9PQEA7dq1w5tvvokhQ4ZApVLhlVdewYIFC9C6dWu0aNECM2fORHBwMB5++GEAQPv27REdHY2xY8fiww8/xM2bNxETE4Phw4dbtY0ZERGRUqWlpaFPnz5o1qwZlixZgkuXLpU8pq8KTktLQ1RUFD7++GPcddddaNiwIUaPHo3XXnsNPj4+8PLywosvvojw8HD06tXLWj8KERGRTYuPj8fRo0fRu3dvNGrUCGfPnsXMmTPRqlUrLsIiIiKyICXFZCaJiYjILs2aNQsbNmwo+Xu3bt0AAHFxcejTpw8AqUq6evVqyXNef/115OXlYdy4ccjJyUHv3r2xc+fOcq1INm3ahJiYGERFRUGtVmPo0KFYtmyZZX4oIiIiGxMbG4vk5GQkJydXaJ+o0+kAADdv3kRSUhLy8/NLHlu6dGlJnC0sLMSAAQPw73//26JjJyIisifu7u7YunUrZs+ejby8PDRu3BjR0dGYMWNGlXsrEhERkekpKSardPo7cyIiIiIiIiIiIiIiIiIisnvVbwZFRERERERERERERERERER2hUliIiIiIiIiIiIiIiIiIiIHwiQxEREREREREREREREREZEDYZKYiIiIiIiIiIiIiIiIiMiBMElMRERERERERERERERERORAmCQmIiIiIiIiIiIiIiIiInIgTBITERERERERERERERERETkQJomJiIiIiIiIiIiIiIiIiBwIk8RERERERERERERERERERA6ESWIiIiIiIiIiIiIiIiIiIgfCJDERERERERERERERERERkQP5f6RT5OowWORqAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Retrieve intermediate problem and QAOA optimization progress\n", + "\n", + "# Number of recursive steps\n", + "num_steps = result['number_steps']\n", + "\n", + "fig, ax = plt.subplots(2,num_steps, figsize = (24,8))\n", + "\n", + "for i in range(num_steps):\n", + " \n", + " # Get the QUBO problem and QAOA result object for the last step\n", + " qaoa_results = result_qpu.get_qaoa_results(step = i)\n", + " qubo_problem = result_qpu.get_problem(step = i)\n", + " terms = [term.qubit_indices for term in qubo_problem.hamiltonian.terms]\n", + " weights = [weight for weight in qubo_problem.hamiltonian.coeffs]\n", + " \n", + " # Extract problem graph\n", + " qubo_graph = nx.Graph()\n", + " weighted_edges = [ tuple(list(term) +[weight]) for term,weight in zip(terms,weights)]\n", + " qubo_graph.add_edges_from(qubo_problem.terms)\n", + " \n", + " # Plot cost optimization\n", + " qaoa_results.plot_cost(ax = ax[0][i])\n", + " ax[0][i].set_title(f'Step {i+1}')\n", + " ax[0][i].get_legend().remove()\n", + " \n", + " # Plot problem graph\n", + " nx.draw_networkx(qubo_graph, pos = nx.shell_layout(qubo_graph), ax = ax[1][i], edge_color = weights, edge_cmap = plt.colormaps[\"bwr\"])\n", + " sm = plt.cm.ScalarMappable(cmap=\"bwr\", norm=plt.Normalize(vmin=min(weights), vmax=max(weights)))\n", + " cbar = plt.colorbar(sm, pad=0.08, ax = ax[1][i])" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "f768b64b-6092-4cfe-a8e0-f2a1721327fd", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The solution found by RQAOA has energy = -9.0 and ground states = ['1100100', '0011010']\n", + "\n", + "The exact energy is -5.0 and the solutions are ['1000', '0110', '1001', '0111']\n" + ] + } + ], + "source": [ + "# Get RQAOA solutions\n", + "solutions_qpu = result_qpu.get_solution()\n", + "states_qpu = list(solutions_qpu.keys())\n", + "energy_qpu = list(solutions_qpu.values())[0]\n", + "\n", + "# Obtain exact solution for comparison\n", + "\n", + "# Define Hamiltonian object from terms and weights\n", + "hamiltonian = Hamiltonian.classical_hamiltonian(terms,weights,constant = 0)\n", + "\n", + "# Compute the exact result\n", + "exact_energy, ground_state_strings = ground_state_hamiltonian(hamiltonian)\n", + "\n", + "print(f'The solution found by RQAOA has energy = {energy_qpu} and ground states = {states_qpu}\\n')\n", + "\n", + "print(f'The exact energy is {exact_energy} and the solutions are {ground_state_strings}')" + ] + }, + { + "cell_type": "markdown", + "id": "8c7d5dd9", + "metadata": {}, + "source": [ + "Congrats! You have run two instances of RQAOA locally and on an Azure backend to find the solution to a binary optimization problem.\n", + "\n", + "As a next step, you can modify the problem instance (see [OpenQAOA](https://el-openqaoa.readthedocs.io) for more examples), or run it on real QPUs." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "oq_stable_nb", + "language": "python", + "name": "oq_stable_nb" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 65a268e2a1c880060fbb27f83613727e1867c717 Mon Sep 17 00:00:00 2001 From: KilianPoirier Date: Tue, 12 Sep 2023 03:12:32 +0000 Subject: [PATCH 03/10] Added YAML header --- samples/azure-quantum/recursive-qaoa/README.md | 12 ++++++++++++ 1 file changed, 12 insertions(+) diff --git a/samples/azure-quantum/recursive-qaoa/README.md b/samples/azure-quantum/recursive-qaoa/README.md index b1f8f8c6e949..a68aa6250d9e 100644 --- a/samples/azure-quantum/recursive-qaoa/README.md +++ b/samples/azure-quantum/recursive-qaoa/README.md @@ -1,3 +1,15 @@ +--- +page_type: sample +author: +description: Introduction to RQAOA using the OpenQAOA library. +ms.author: +ms.date: +languages: +- python +products: +- azure-quantum +--- + # Solving Quadratic Unconstrained Binary Optimization (QUBO) problems using QAOA on Azure Quantum This sample shows how to solve quadratic unconstrained binary optimization problems using the Recursive Quantum Approximate Optimization Algorithm (RQAOA) on the Azure Quantum service. It demonstrate how to operate the RQAOA workflow for a general QUBO problem that can be taylored to more specific case like graph coloring or minimum vertex cover. From 9a0ddd149ef3f8b0e5f64ae822a9e9aa614f50a2 Mon Sep 17 00:00:00 2001 From: KilianPoirier Date: Fri, 15 Sep 2023 05:11:51 +0000 Subject: [PATCH 04/10] Updated import openqaoa-azure --- .../recursive-qaoa/RQAOA-introduction.ipynb | 50 ++++++++----------- 1 file changed, 22 insertions(+), 28 deletions(-) diff --git a/samples/azure-quantum/recursive-qaoa/RQAOA-introduction.ipynb b/samples/azure-quantum/recursive-qaoa/RQAOA-introduction.ipynb index 20101bc05d7d..331cc84364c3 100644 --- a/samples/azure-quantum/recursive-qaoa/RQAOA-introduction.ipynb +++ b/samples/azure-quantum/recursive-qaoa/RQAOA-introduction.ipynb @@ -93,9 +93,10 @@ "outputs": [], "source": [ "try:\n", - " import openqaoa\n", + " import openqaoa_azure\n", "except ImportError:\n", - " !pip -q install openqaoa" + " !pip -q install openqaoa-azure\n", + " import openqaoa_azure" ] }, { @@ -310,8 +311,8 @@ " 'schedule': [1, 1, 1, 1],\n", " 'number_steps': 4,\n", " 'intermediate_steps': [{'counter': 0,\n", - " 'problem': ,\n", - " 'qaoa_results': ,\n", + " 'problem': ,\n", + " 'qaoa_results': ,\n", " 'exp_vals_z': array([0., 0., 0., 0., 0., 0., 0.]),\n", " 'corr_matrix': array([[ 0. , 0.15351551, -0.22415966, 0.06753463, 0.28993212,\n", " -0.28993212, -0.15351551],\n", @@ -328,8 +329,8 @@ " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ]])},\n", " {'counter': 1,\n", - " 'problem': ,\n", - " 'qaoa_results': ,\n", + " 'problem': ,\n", + " 'qaoa_results': ,\n", " 'exp_vals_z': array([0., 0., 0., 0., 0., 0.]),\n", " 'corr_matrix': array([[ 0. , 0.1595476 , -0.35002771, 0.03823884, -0.29664148,\n", " -0.08613327],\n", @@ -344,8 +345,8 @@ " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. ]])},\n", " {'counter': 2,\n", - " 'problem': ,\n", - " 'qaoa_results': ,\n", + " 'problem': ,\n", + " 'qaoa_results': ,\n", " 'exp_vals_z': array([0., 0., 0., 0., 0.]),\n", " 'corr_matrix': array([[ 0. , 0.99999992, -0.99999992, -0.9999999 , -0.99999992],\n", " [ 0. , 0. , -0.9999999 , -0.99999992, -0.99999993],\n", @@ -353,17 +354,17 @@ " [ 0. , 0. , 0. , 0. , 0.99999992],\n", " [ 0. , 0. , 0. , 0. , 0. ]])},\n", " {'counter': 3,\n", - " 'problem': ,\n", - " 'qaoa_results': ,\n", + " 'problem': ,\n", + " 'qaoa_results': ,\n", " 'exp_vals_z': array([0., 0., 0., 0.]),\n", " 'corr_matrix': array([[ 0. , 0.22076627, -0.37883018, 0.00745541],\n", " [ 0. , 0. , 0.16551932, -0.22076627],\n", " [ 0. , 0. , 0. , 0.37883018],\n", " [ 0. , 0. , 0. , 0. ]])}],\n", - " 'atomic_ids': {0: '1618c298-1fe0-49a5-8982-26dbe93f0173',\n", - " 1: '1c41a899-36a5-4b05-bb84-ada01ab95e73',\n", - " 2: 'f68629e1-f381-43cb-af66-4209eef912d2',\n", - " 3: 'bad57db5-ac75-4e57-bf1d-54cf6d00057d'}}" + " 'atomic_ids': {0: 'c71b939d-aaa5-432d-bf8b-4a1cc6fd8292',\n", + " 1: 'b79019b1-e2f7-40b2-9b5b-a72294b8e8d8',\n", + " 2: 'b05291c1-873a-404c-88cc-e240ad19103f',\n", + " 3: 'c429de22-3235-4cce-9bb1-2e5d9628cad5'}}" ] }, "execution_count": 10, @@ -603,14 +604,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "......." - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "................................................................................................................................................................................................................................................................................................................................................................................................................." + "............................................................................................................................................................................................................................................................................................................................................................................" ] } ], @@ -637,7 +631,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB4kAAAKaCAYAAAAjwm9WAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxU9foH8M8AgoiIG+6ouAu4a+auae6apWalNzUzK7XMNrHSq5XY71rZ4nUrlzLT3MrMJfd9S0XFHVfUcBfcAIX5/fHc40gCwsw5850z83m/XvP6HmHmnEdvly/nPN/v81isVqsVRERERERERERERERERETkEbxUB0BERERERERERERERERERM7DJDERERERERERERERERERkQdhkpiIiIiIiIiIiIiIiIiIyIMwSUxERERERERERERERERE5EGYJCYiIiIiIiIiIiIiIiIi8iBMEhMREREREREREREREREReRAmiYmIiIiIiIiIiIiIiIiIPAiTxEREREREREREREREREREHoRJYiIiIiIiIiIiIiIiIiIiD8IkMRERERERERERERERERGRB2GSmMhk9u/fj27duqFMmTLInTs3SpYsiSeffBLffPNNuveNGTMGv/76q5ogAdy8eRMjR45E27ZtUbBgQVgsFsyYMUNZPERERHozy5y8c+dODBo0COHh4QgICEDp0qXx7LPP4ujRo8piIiIi0pNZ5uQDBw6ge/fuKFeuHPLkyYPChQujadOm+P3335XFREREpDezzMv/9Omnn8JisSAiIkJ1KEROY7FarVbVQRBR9mzZsgUtWrRA6dKl0bt3bxQrVgxxcXHYtm0bjh8/jtjY2PvvzZs3L7p166YsMXvq1CmEhoaidOnSKFeuHNatW4fp06ejT58+SuIhIiLSk5nm5G7dumHz5s3o3r07qlevjvj4eHz77be4efMmtm3bxhtgIiIyNTPNyUuXLsXXX3+NBg0aoESJErh9+zYWLFiAjRs3YvLkyXjllVeUxEVERKQXM83LDzp79iwqV64Mi8WCsmXLIiYmRnVIRE7hozoAIsq+Tz/9FEFBQdi5cyfy58+f7nsXL15UE1Qmihcvjr///hvFihXDX3/9hXr16qkOiYiISDdmmpOHDh2K2bNnw9fX9/7XevTogWrVqmHs2LGYNWuWwuiIiIgcY6Y5uX379mjfvn26rw0aNAh16tTBF198wSQxERGZnpnm5Qe98847ePzxx5GamorLly+rDofIaVhumshEjh8/jvDw8IcmWAAoUqTI/WOLxYJbt25h5syZsFgssFgs6Xbwnjt3Di+99BKKFi0KPz8/hIeHY9q0aenOt27dOlgsFsydOxfDhw9HsWLFEBAQgM6dOyMuLu6Rsfr5+aFYsWJ2/12JiIhcmZnm5IYNG6ZLEANAxYoVER4ejkOHDuXsL05ERORizDQnZ8Tb2xshISG4fv26XZ8nIiJyJWaclzds2ID58+dj/PjxOf3rEpkedxITmUiZMmWwdetWxMTEZFka8scff8TLL7+Mxx577P5K5PLlywMALly4gMcffxwWiwWDBg1CcHAwli1bhn79+iExMRFDhgxJdy6tF8P777+PixcvYvz48WjVqhWio6Ph7+9v2N+ViIjIlZl9TrZarbhw4QLCw8Nz9hcnIiJyMWack2/duoU7d+4gISEBixcvxrJly9CjRw/7/xGIiIhchNnm5dTUVAwePBgvv/wyqlWr5thfnsiMrERkGn/++afV29vb6u3tbW3QoIH1vffes65YscKakpLy0HsDAgKsvXv3fujr/fr1sxYvXtx6+fLldF9/7rnnrEFBQdbbt29brVarde3atVYA1pIlS1oTExPvv++XX36xArB+9dVX2Y57586dVgDW6dOnZ/szRERErsysc7Lmxx9/tAKwfv/99zn+LBERkSsx45w8YMAAKwArAKuXl5e1W7du1qtXr+bgb01EROSazDYvf/vtt9agoCDrxYsXrVar1dqsWTNreHh4Tv7KRKbGctNEJvLkk09i69at6Ny5M/bu3Yv/+7//Q5s2bVCyZEksXrz4kZ+3Wq1YsGABOnXqBKvVisuXL99/tWnTBgkJCdi9e3e6z7z44osIDAy8/+du3bqhePHiWLp0qe5/PyIiIrMw85x8+PBhDBw4EA0aNEDv3r1z9FkiIiJXY8Y5eciQIVi5ciVmzpyJdu3aITU1FSkpKTn7ixMREbkgM83LV65cwYgRI/DRRx8hODjYvr8wkckxSUxkMvXq1cPChQtx7do17NixA5GRkbhx4wa6deuGgwcPZvnZS5cu4fr165gyZQqCg4PTvfr27QsAuHjxYrrPVKxYMd2fLRYLKlSogFOnTun69yIiIjIbM87J8fHx6NChA4KCgjB//nx4e3tn+7NERESuymxzcpUqVdCqVSu8+OKLWLJkCW7evHn/YTgREZHZmWVe/vDDD1GwYEEMHjw4539JIjfBnsREJuXr64t69eqhXr16qFSpEvr27Yt58+Zh5MiRmX4mLS0NANCrV69Mdw5Vr17dkHiJiIjclVnm5ISEBLRr1w7Xr1/Hxo0bUaJECV3PT0REpJpZ5uR/6tatGwYMGICjR4+icuXKhl6LiIjIWVx5Xj527BimTJmC8ePH4/z58/e/npSUhLt37+LUqVPIly8fChYs6PC1iFwZk8REbqBu3boAgL///vv+1ywWy0PvCw4ORmBgIFJTU9GqVatsnfvYsWPp/my1WhEbG8tkMhERUQZcdU5OSkpCp06dcPToUaxatQphYWHZuiYREZFZueqcnJE7d+4AkAVdRERE7sjV5uVz584hLS0Nb7zxBt54442Hvh8aGoo333wT48ePz1YMRGbFctNEJrJ27doMy09p/RUeXHEcEBCA69evp3uft7c3unbtigULFiAmJuah81y6dOmhr/3www+4cePG/T/Pnz8ff//9N9q1a2fvX4OIiMj0zDQnp6amokePHti6dSvmzZuHBg0aZPl+IiIiMzHTnPzP8pgAcPfuXfzwww/w9/fnIi4iIjI9s8zLERERWLRo0UOv8PBwlC5dGosWLUK/fv0e+fclMjuLlQ1PiEwjIiICt2/fxtNPP40qVaogJSUFW7Zswdy5cxESEoI9e/Ygf/78AIAOHTpg/fr1GD16NEqUKIHQ0FDUr18fFy5cQP369XHp0iX0798fYWFhuHr1Knbv3o1Vq1bh6tWrAIB169ahRYsWqFatGiwWC/r27YsLFy5g/PjxKFWqFPbu3Ys8efJkGe+3336L69ev4/z585g4cSKeeeYZ1KpVCwAwePBgBAUFGfrvRUREZBQzzclDhgzBV199hU6dOuHZZ5996Pu9evUy5N+IiIjIGcw0Jz/99NNITExE06ZNUbJkScTHx+Onn37C4cOH8fnnn2Po0KHO+CcjIiIyjJnm5Yw0b94cly9fzjBBTeSWrERkGsuWLbO+9NJL1ipVqljz5s1r9fX1tVaoUME6ePBg64ULF9K99/Dhw9amTZta/f39rQCsvXv3vv+9CxcuWAcOHGgNCQmx5sqVy1qsWDFry5YtrVOmTLn/nrVr11oBWH/++WdrZGSktUiRIlZ/f39rhw4drKdPn85WvGXKlLECyPB18uRJPf5JiIiIlDDTnNysWbNM52PeDhARkdmZaU7++eefra1atbIWLVrU6uPjYy1QoIC1VatW1t9++023fw8iIiKVzDQvZ6RZs2bW8PBwuz5LZEbcSUxEGdJWYs2bNw/dunVTHQ4REZHH4pxMRETkGjgnExERuQ7Oy0SOY09iIiIiIiIiIiIiIiIiIiIPwiQxEREREREREREREREREZEHYZKYiIiIiIiIiIiIiIiIiMiDsCcxEREREREREREREREREZEHMdVO4nPnzqFXr14oVKgQ/P39Ua1aNfz111+qwyIiIiIiIiIiIiIiIiIiMg0f1QFk17Vr19CoUSO0aNECy5YtQ3BwMI4dO4YCBQqoDo2IiIiIiIiIiIiIyG5WqxU3btxAYGAgLBaL6nCIiMjEsjunmKbc9LBhw7B582Zs3LjR7nOkpaXh/PnznGiJiMgh2iRbokQJeHmZqiiHy+CcTEREeuCc7DjOyUREpAfOyY5LSEhA/vz5ERcXh3z58qkOh4iITCwxMREhISG4fv06goKCMn2faZLEYWFhaNOmDc6ePYv169ejZMmSeP3119G/f/9MP5OcnIzk5OT7fz537hzCwsKcES4REXmAuLg4lCpVSnUYpnT27FmEhISoDoOIiNwE52T7cU4mIiI9cU62H+dkIiLS26PmZdOUmz5x4gQmTpyIoUOHYvjw4di5cyfeeOMN+Pr6onfv3hl+JioqCqNGjXro61yNRUREjtBWYgUGBqoOxbS0fzvOyURE5AjOyY7jnExERHrgnOw4zslERKSX7M7LptlJ7Ovri7p162LLli33v/bGG29g586d2Lp1a4af+edOYu0fJSEhgRMtERHZLTExEUFBQZxPHMB/QyIi0gPnE8fx35CIiPTA+cRx/DckIiK9ZHdOMU2DiOLFiz9UKrpq1ao4c+ZMpp/x8/NDvnz50r2IiIiIiIiIiIiIiIiIiDyZaZLEjRo1wpEjR9J97ejRoyhTpoyiiIiIiIiIiIiIiIiIiIiIzMc0SeK33noL27Ztw5gxYxAbG4vZs2djypQpGDhwoOrQiIiIiIiIiIiIiIiIiIhMwzRJ4nr16mHRokX4+eefERERgY8//hjjx49Hz549VYdGRETkcc6dO4devXqhUKFC8Pf3R7Vq1fDXX3+pDouIiIiIiIjIJYwdOxYWiwVDhgxRHQoREVGGfFQHkBMdO3ZEx44dVYdBRETk0a5du4ZGjRqhRYsWWLZsGYKDg3Hs2DEUKFBAdWhEREREREREyu3cuROTJ09G9erVVYdCRESUKVMliYmIiEi9zz77DCEhIZg+ffr9r4WGhiqMiIiIiIiIiMg13Lx5Ez179sTUqVPxySefqA6HiIgoU6YpN01ERESuYfHixahbty66d++OIkWKoFatWpg6dWqWn0lOTkZiYmK6FxEREREREZG7GThwIDp06IBWrVpl+T7eJxMRkWpMEhMREVGOnDhxAhMnTkTFihWxYsUKvPbaa3jjjTcwc+bMTD8TFRWFoKCg+6+QkBAnRkxEROS+zp07h169eqFQoULw9/dHtWrV8Ndff6kOi4iIyCPNmTMHu3fvRlRU1CPfy/tkIiJSjUliwuHDQIcOwM6dqiMhIiIzSEtLQ+3atTFmzBjUqlULr7zyCvr3749JkyZl+pnIyEgkJCTcf8XFxTkxYiIiIvd07do1NGrUCLly5cKyZctw8OBBfP755yhQoIDq0EzPagXeew8YOVJ1JEREZBZxcXF488038dNPPyF37tyPfD/vk7Nv6lSgVy8gOVl1JERE7oU9iQkNGwLXrgEnTwIHD6qOhoiIXF3x4sURFhaW7mtVq1bFggULMv2Mn58f/Pz8jA7NNCIjgSVLgP/8B2jbVnU0RERkVp999hlCQkIwffr0+18LDQ1VGJH7OHRI5mkAeP11oGhRtfEQEZHr27VrFy5evIjatWvf/1pqaio2bNiAb7/9FsnJyfD29r7/Pd4nZ8/t28Arr8hx+/bACy+ojYeIyJ1wJ7GHu3xZEsQAcOyY2liIiMgcGjVqhCNHjqT72tGjR1GmTBlFEZnP6dNATAywb5/qSIiIyMwWL16MunXronv37ihSpAhq1aqFqVOnZvkZ9j/Mns2bbcd796qLg4iIzKNly5bYv38/oqOj77/q1q2Lnj17Ijo6Ol2CmLJv+XLb8alTysIgInJLTBJ7uJ9+sh3nygWkpamLhYiIzOGtt97Ctm3bMGbMGMTGxmL27NmYMmUKBg4cqDo009A2Yh84oDYOIiIytxMnTmDixImoWLEiVqxYgddeew1vvPEGZs6cmeln2P8wezZtsh0zSUxERNkRGBiIiIiIdK+AgAAUKlQIERERqsMzrd27bccxMeriICJyR0wSe7hcuYDgYDlOTgbOn1cbDxERub569eph0aJF+PnnnxEREYGPP/4Y48ePR8+ePVWHZgr//jcwe7Ycs80DERE5Ii0tDbVr18aYMWNQq1YtvPLKK+jfvz8mTZqU6WfY/zB7tCRxhw7yIiIiIjU++QT49ls5ZpKYiEhf7Ens4V5/XXo6HDwIVKoE5M6tOiIiIjKDjh07omPHjqrDMB2rFZg4Ebh4Uf586JBU8fDisj0iIrJD8eLFEaaVp/ifqlWrYsGCBZl+hv0PHy0tTe6TN22S6lv58qmOiIiIzGrdunWqQ3ALHTsCQ4fKs2urFbBYVEdEROQe+EiS4OMDVK/OBDEREZHRjh2TBLHWiurWLYAbuIiIyF6NGjXCkSNH0n3t6NGjKFOmjKKI3IOXF/D++8DvvzNBTEREpFJKioylSwM3bwI7djBBTESkJyaJPVRyMrB8OZCaqjoSIiIiz7Fhg4yNGgHh4XLMktNERGSvt956C9u2bcOYMWMQGxuL2bNnY8qUKRg4cKDq0NzGgQPAzJnAmTOqIyEiIvIsSUlAyZKyi/jqVWmbSERE+mKS2EP9/jvQrh3QsKH8+cgR4OWXgddeUxsXERGRO9OSxE2bAjVrAhERwL17SkMiIiITq1evHhYtWoSff/4ZERER+PjjjzF+/Hj07NlTdWim9scftkofgwYBffoAa9YoDYmIiMjjrFwJXL4MREcDBQqojoaIyD2xJ7GHmj5dxpYtZUxKAr7/Xibc//6XZTuIiIiMoCWJmzQBRo/mfEtERI7r2LEjOnbsqDoMt5GQAHTqJP0O//4bqFEDWLcO2LtXdWRERESeZd48Gbt2lVYQK1dKO4hKlYA5c9TGRkTkLpgk9kDnz0upaUBWRAMyuVoswLVrwIULQLFiysIjIiJyS2fOAKdPSz/iBg2YICYiInJFW7ZIgrh8ebkvrlFDvs4kMRERkfMkJwOLF8tx9+4y+vgAe/bIgi4iItIHy017oB9/BNLSpB9ipUryNX9/IDRUjg8dUhcbERGRuzpxQip21K4NBAbavp6WJg+jiYiISL1Nm2Rs3FjGB5PEnK+JiIicY9UqSQYXL25rlxgRIeOJE8CtW+piIyJyJ0wSexir1VZqum/f9N+rWlVGJomJiIj017y59FNaskT+nJYGPP64JIzPnVMaGhEREf3Pxo0yNmkiY1iYVAG5epXzNRERkbPMny/jM89IqWkACA4GihaV4wMH1MRFRORumCT2MFu3AkeOAHnyAM8+m/57TBITEREZy8sLKFLEdpyQANy+DRw8qDYuIiIiktKWO3bIsbaTOHdu270yS04TEREZLyUF+PVXOdZKTWu03cQxMU4NiYjIbTFJ7GG0XsTduqUvdQnICmmASWIiIiK9paVl/PXwcBmZJCYiIlJv1y5JFAcH21ozAexLTERE5EypqcDo0UDnzrZFW5pq1WRkkpiISB9MEnuYUaOAnTuBYcMe/p62OvrGDefGRERE5O5+/RUoUwb48MP0X9cWaDFJTEREpJ5WarpxY8BisX198GDgjz+Al19WExcREZEn8feXufe336Tlw4O0ncT79zs/LiIid+SjOgByLosFqFs34+/VqSMJ4rx5nRsTERGRu9uwAThzBrh2Lf3XtSQx+ykRERGp16cPEBoqO4kfVL++knCIiIjoH2rUkGof5cqpjoSIyD0wSexBkpMBP7/Mv58rl7yIiIhIXxs2yNikSfqvP7iT2GpNv2uJiIiInKtoUeDZZ1VHQURE5Ln++gvYvRt4+umHF20BsvnpyBHnx0VE5K5YbtpDnDoFFCkC9O8vfR2IiIjIORISgOhoOf5nkrhSJcDLC7h+HYiPd3ZkRERElF3LlgEjRvDBNBERkZGmTgUGDAA++EB1JEREnoFJYg8xcyaQmAicPPlwL4cH/fIL0KIFEBXlvNiIiIjc2ZYtsku4fHmgZMn038udG3jySaBLF+DOHSXhERERESQJPGYMsG9fxt8fPx74+GNbdRAiIiLS1717wMKFcty9e9bvtVqB27eNj4mIyN0xSewB0tKAGTPkuG/frN97+TKwbp080CYiIiLHaQ+TmzbN+PvLlwOLFrGnEhERkUqzZsmupUWLMv5+jRoy7t3rvJiIiIg8yYYN8my6UCGgefPM3zd5MpA/P/DWW86KjIjIfTFJ7AHWr5dy0/nyST+HrFStKuOhQ4aHRURE5BEelSQmIiIi9TZtkrFx44y/zyQxERGRsebNk7FLFyBXrszfFxQkFTNjYpwSFhGRW/NRHQAZb/p0GZ97DsiTJ+v3aknikyeBpCQpg0lERET2a9hQymD9sx/xg6xW4OpVWTFNREREznXmjLy8vYHHH8/4PQ8midPSAC8uuSciItJNamr2S01HRMgYEyP30haLsbEREbkz3ta4ucREYP58OX5UqWkAKFpUynWkpQFHjxoaGhERkUf4z3+APXukJ3FGjh4FChQAKlWSG1wiIiJyro0bZaxdGwgIyPg9lSsDvr7AjRtSqYuIiIj0s2kTcPGi3Bs/8UTW761USXYaJyYCcXHOiY+IyF0xSezmfvkFuHNHdgjXr//o91ssQFiYHB88aGxsREREBISEyM3t1avApUuqoyEiIvI8WqnprKp+5MoFhIfLMUtOExER6WvfPqno8dRTWZeaBmTRVuXKcsyS00REjmGS2M21aQOMGgW8+272S2+wLzEREZE+9u6VxVpZ8fcHypWT4wMHjI+JiIiI0tN2EmfWj1ijlZzev9/YeIiIiDzN4MHA33/Lc+zsqFZNRs7JRESOYU9iNxcSAowYkbPPVK0KFCvGHktERESOSEkBGjSQ3kqHDwOhoZm/NywMOH5cqni0aOG8GImIiDzdrVu28tGPShIPHw5ERmbeQoKIiIjsFxyc/fc+2JeYiIjsxzQgPeStt2Tl1siRqiMhIiIyr927ZRdxYCBQpkzW72WrByIiIjUCAoBr12TeftTD6YoVpQ+it7dzYiMiIvIEt2/n/DP16wPt2gGPPaZ/PEREnoRJYjd17x7wr38BCxbIcU5wBzEREZHjtNKVTZo8em5lkpiIiEidXLmAWrVUR0FEROR50tKAKlWApk1tlT2yo2VLYOlSKVNNRET2YzrQTf35JzBrFjBggEy2RERE5FwbNsjYtOmj38skMRERkTlMmQK88ILsPCYiIiLHbNsGxMUB0dHS/pCIiJyLSWI3NX26jL16Ab6+Of/8oEHSz3jxYn3jIiIi8gSpqel3Ej9KlSpA27ZSBSSnFUCIiIjIPnfuADVqAK+8IsfZsXgx8PPPwNatxsZGRETkCebPl7FTJyB37px//uJF4NIlfWMiIvIkTBK7oStXbMndvn3tO8fVq8DZs9zRREREZI+YGCAhAcibF6hZ89Hvz5sXWLYMGDcO8PExPDwiIiICsHMnsG8fsGRJ9h9M16gh4969xsVFRETmNHHiRFSvXh358uVDvnz50KBBAyxbtkx1WC7LarUlibt3z/nn33wTKFoU+PZbfeMiIvIkTBK7odmzgZQU6amk3cDmlFb28tAh/eIiIiLyFNou4kaNmPQlIiJyVZs2ydi4MWCxZO8zTBITEVFmSpUqhbFjx2LXrl3466+/8MQTT+Cpp57CgQMHVIfmknbskFLTefMCbdrk/POhoTLu369vXEREnoSPLd2QVmra3l3EAFC1qoxMEhMREeVc69bA558DZcrk7HOXLwOJiUC5csbERURERDY5aQ2h0SqE7N8v7SW8vXUPi4iITKpTp07p/vzpp59i4sSJ2LZtG8LDwxVF5bq0XcQdOwL+/jn/fLVqMsbE6BcTEZGn4U5iN7N3L7Bnj/QhfuEF+8+jJYkPH5bSH0RERJR9lSoBQ4cCXbtm/zOzZgHBwdIXkYiIiIyVmgps2SLHjRtn/3PlywN58kgP49hYY2IjIiLzS01NxZw5c3Dr1i00aNAgw/ckJycjMTEx3ctTWK3AvHly3K2bfeeIiJAxNha4fVufuIiIPA2TxG7m5k3gsceAzp2BQoXsP0+FCrIi+sYN4Nw5/eIjIiKijFWsKOPBg2rjICIi8gT790v1jsBAoHr17H/O29u2c4klp4mI6J/279+PvHnzws/PD6+++ioWLVqEMK2v3z9ERUUhKCjo/iskJMTJ0aqTmgqMGgU8/TTQrp195yhaVBZaW62shklEZC/TJonHjh0Li8WCIUOGqA7FpTRqBGzfDvz4o2Pn8fW1PazmJEtERJR9GzcCM2dKb6Wc0Kp4/P03cO2a/nERERGRjdaPuGHDnJeMrlED8PEBzp/XPy4iIjK3ypUrIzo6Gtu3b8drr72G3r1742AmK4EjIyORkJBw/xWX05tIE/PxAXr3BhYulAod9tJ2E7MvMRGRfUyZJN65cycmT56M6jlZ7uthcud2/BwNG0rS2cuU/5UQERGp8d13QJ8+wJQpOftcvnyAtnCcC7SIiIiM5esr7SFyUmpaExUlVby4Zp2IiP7J19cXFSpUQJ06dRAVFYUaNWrgq6++yvC9fn5+yJcvX7oX5QyTxEREjjFd+u/mzZvo2bMnpk6digIFCqgOx6X88Ye+O4++/15WV7dsqd85iYiI3N2GDTI2bZrzz2pVyFhymoiIyFivvAIcOQIMH57zzxYsCPj56R8TERG5n7S0NCQnJ6sOw6UcOgSMGwecPOn4udq0AQYPBlq1cvxcRESeyHRJ4oEDB6JDhw5olY2f/MnJyUhMTEz3clfx8cBTTwElSsgxEREROd+ZM8CpU1K2skGDnH9eSxIfOKBrWERERJQJVs4iIiK9REZGYsOGDTh16hT279+PyMhIrFu3Dj179lQdmkv58Ufg3XeBd95x/FwdOgBff21/X2MiIk9nqtuhOXPmYPfu3YiKisrW+6OiohAUFHT/FaLVcHRDP/4IpKYCtWoBxYrpe+6kJH3PR0RE5K42bpSxdm0gb96cf547iYmIiIx3/Tpw755j5/joI6BePdvcT0REdPHiRbz44ouoXLkyWrZsiZ07d2LFihV48sknVYfmMqxWYN48Oe7eXW0sRERkoiRxXFwc3nzzTfz000/Inc2Gu5GRkUhISLj/iouLMzhKNaxWYPp0Oe7bV7/zpqQAFSsCefIAly/rd14iIiJ3pT0otqfUNAA8/riUyurdW7+YiIiIKL333gPy5wcmT7b/HAcOAH/9JS9yf5cuAVu3qo6CiFzd999/j1OnTiE5ORkXL17EqlWrmCD+h/37gdhYadvQoYM+50xMBLZsAc6f1+d8RESexDRJ4l27duHixYuoXbs2fHx84OPjg/Xr1+Prr7+Gj48PUlNTH/qMn58f8uXLl+7ljnbskF4O/v5Ajx76ndfXVxLFVqucn4iIiLLmSD9iAIiIkFJZL7ygX0xEROQ5xo4dC4vFgiFDhqgOxaVt3AjcugUUL27/OWrUkHHvXn1iItfWsiXQsCGwZo3qSIiIzE3bRdy2LRAYqM85e/YEGjUCFi3S53xERJ7ENEnili1bYv/+/YiOjr7/qlu3Lnr27Ino6Gh4e3urDlEZbRdx166A3nnwqlVlZJKYiIgoa1ev2ubLRo3UxkJERJ5n586dmDx5MqpXr646FJd26RJw+LAcOzJfM0nsOZKTZecbAMyerTYWIiIzM6rUdESEjDEx+p2TiMhTmCZJHBgYiIiIiHSvgIAAFCpUCBHaTOCB7twB5syRYz1LTWuYJCYiokfhriVRsCBw4QKwfDlQqJD950lMBLZvB44e1S82IiJybzdv3kTPnj0xdepUFChQIMv3JicnIzExMd3Lk2zeLGNYmGPztZYkPngQuHvX8bjIdR05Yju+c0ddHEREZnfggPxM9fUFOnbU77xMEhMR2c80SWLK2LZtwM2bQNmyQPPm+p8/LExGJomJiCgj3LWUXpEiQJs2jp3jww+lN/GUKfrERERE7m/gwIHo0KEDWrVq9cj3RkVFISgo6P4rJCTECRG6jk2bZGzSxLHzlC0rlbxSUmw7k8k9Va8OzJ0rx9qOYiIiyrmYGCB3brlnDgrS77zVqsm4f7/sViYiouwzdZJ43bp1GD9+vOowlGrRAjh7Fpg1C/Ay4H9N7iQmIqLM5GTXEmVfeLiMBw+qjYOIiMxhzpw52L17N6KiorL1/sjISCQkJNx/xcXFGRyha9m4UcbGjR07j8UiyUOAJac9Qf36Mh46JAsDiIgo5557Tto+fPONvuetXBnw9gYSEoBz5/Q9NxGRuzN1kphEsWLG9T7UksRnzsiOZSIiIk1Odi25e2nLhATgySeBUaOA1FTHzqVV8WCSmIiIHiUuLg5vvvkmfvrpJ+TOnTtbn/Hz80O+fPnSvTzFrVvA7t1y7OhOYgCoWRMIDQXu3XP8XOTaSpcGSpYE6tQBLl9WHQ0RkXnlzQuUKaPvOf38JFEMsOIDEVFO+agOgOx3+zaQJ4+x1yhUCGjdGiheXK6XN6+x1yMiInPQdi3t3LkzW++PiorCqFGjDI5KnS1bgFWrgJMngZEjHTuXliQ+fVoWaHHuJSKizOzatQsXL15E7dq1738tNTUVGzZswLfffovk5GR4e3srjNC13L0r8/TBg5L0c9RXX+m/G4pcy6lTQLdu0t4rLk52kBMRUc7duAEEBhp3/ogImd9jYoB27Yy7DhGRu2GS2KTS0oAaNYCQEOD772X1slFWrDDu3EREZD7arqWVK1dme9dSZGQkhg4dev/PiYmJbtUDUStd2bSp4+cqVEh6G1+8KD0O69Z1/JxEROSeWrZsif3/2DLTt29fVKlSBe+//z4TxP+QPz/w4Yf6nc+Ilk/kWrZsAXbtAnx8mCAmInJE48byc/SHH2ztGvT04otSabNlS/3PTUTkzpgkNqmNG4HYWODCBaBoUdXREBGRJ7Fn15Kfnx/8/PycHarTbNggox5JYkD6El+8KCuhmSQmIqLMBAYGIiIiIt3XAgICUKhQoYe+TsaxWuXFpLH72bJFxgYNbF9LTZXel0RElD1HjwL79smCm1KljLlGhw7GnJeIyN3xFsakpk+XsUcP40tOA1KW69w5469DRESuT9u1FB0dff9Vt25d9OzZE9HR0R63a+nOHWDHDjnWK0nMvsRERET6uncPmD8fiI/X97x9+0oVkJUr9T0vuQYtSdywIXDkiPyOVqmS2piIiMxm/nwZW7UCChZUGwsREaXHncQmdOMGMG+eHPfta/z1Nm+W/jvly0vZSyIi8mzctZTe9u2ymKpECf3aP3TrBlSsqF/SmYiIPMe6detUh+CSoqOB7t2l5PSVK/rt+r19G7h2Ddi7F2jTRp9zkmu4eVP+dwVkJ3HevMChQ/Ln69flvyUiIno07Tl2t27GXmffPpnvW7cGihUz9lpERO6CO4lNaN48uRGtXDl9ySOjlCkjq65jY4GUFOOvR0REZCYPlprWq1dd8+bAm28CtWrpcz4iIiJPt2mTjI0a6VsWukYNGbVkIrmPHTuAtDSgdGkpj5o/vxwDwD9agRMRUSZiYyVx6+0NPPWUsdfq1w/o3Vs2PBERUfYwSWxCWqnpPn30exidlZIlgcBA6bsTG2v89YiIyHzWrVuH8ePHqw5DieRkmSe565eIiMh1bdwoY+PG+p63Zk0ZmSR2Pw+WmtZUqyYjk8RERNmjlZpu0QIoXNjYa2mFzWJijL0OEZE7YZLYZI4elRXQXl7Aiy8655oWC1ClihxrpZWIiIhIfPqplJnUuwVETAzw00/A2bP6npeIiMjTWK22ncRNmuh7bm0n8eHDQFKSvucmtXLlAkJCmCQmInKEliTu3t34a/FnNBFRzjFJbDIlSwIzZgDvvy+9D50lLEzGgwedd00iIiKz8PYGcufW95wDBwK9egHr1+t7XiIiIk9z7Bhw8SLg5wfUravvuUuUAAoVkspbBw7oe25S6/33gTNngNdft32tenUZ9+1TExMRkZlYrcCHHwIvvAB06WL89biTmIgo55gkNpmAAOmtMGaMc69btaqM3ElMRERkk5xs3Lm1BVp84ExEROQYbRfxY49JolhPFgv7Ers7b2/bsbZLLSZGkh9ERJQ5i0WSwz/9BBQpYvz1tJ/Rx44Bd+4Yfz0iInfAJDFlC5PERERED+vWDahQAVixQv9zs4oHERGRPozqR6xp3hx48knZUUzu4ebNjJPAlSsDtWoBnToBt245Py4iIspcsWJAwYJAWpq0gSAiokfzUR0AZd8HH8hNZ+/ezr/5rFEDeP55uRkiIiIiKSu5cSOQkGDMvBweLiOTxERERI4ZPRpo2dK241dvH31kzHlJnTfeAH77DfjiC3kGo8mVC9i9W11cRERmceYM8N130otY2+FrNItFrrV+vVR84HNsIqJHY5LYJK5dAz7/XMpaNm/u/CRxmTLA7NnOvSYREZEri4mRBHHevEDNmvqfX9tJfPw4kJSkf89jIiIiTxESAvTqpToKMpMtW4CrV4HChVVHQkRkTvPnAx9/DGzYAKxb57zrfvAB8N57QP36zrsmEZGZMUlsEj//LAni6tW5CoqIiMgVbNggY8OGgI8Bv1EVLQoUKCALxY4cMW73ExEREenj6lXA319eZF5XrsjvXgDw+OMZvyc1Fbh0SUqbEhHRw+bPl7F7d+de98knnXs9IiKzY09ik5g2Tca+faV0hgqpqUBsLHDihJrrExERuRKtv2HTpsac32JhX2IiIiJHTZsGjBsnlTmM1Lq1VPxatcrY65Dxtm2TsUqVjKu4bdoklWRatnRuXEREZhEXB2zdKve0zzyjOhoiIsoKk8QmsH8/sGuX7FLq2VNdHJ98AlSsCHz6qboYiIiIXIHVattJbFSSGJAeh0uWcDU0ERGRvSZMAN59F9i509jrFC0q4969xl6HjLdli4wNGmT8/bJlpRXIkSNS8Y2IiNJbuFDGxo2B4sWde22rFZg3DxgxQtpDERFR1pgkNoHp02Xs1AkIDlYXR5UqMh46pC4GIiIiV3DsGHDhAuDnB9SrZ9x12rQBOnRgPzwiIiJ73LgBREfLcePGxl5LawvBJLH5aUnihg0z/n7JktISJDWVz0eIiDIyb56M3bo5/9oWC/D229IPef9+51+fiMhsmCR2cXfvArNmyXHfvmpjqVpVxkOHZFUWERGRp/L2Bl59FXj+eSB3btXREBERUUa2bQPS0mTnZ6lSxl6LSWL3cPcusGOHHGeWJLZYgGrV5JgJCCKi9M6dAzZvluOuXdXEoP2MjolRc30iIjNhktjFXbsGNG8OlCkDtGunNpZKlQAvL+D6ddk9RURE5KnKlwcmTrRV+zBKaiowfz4wahTLGRIREeXUxo0yNmli/LW0JHFsLHDrlvHXI2MkJQFvvinPX7RqahlhkpiIMhIVFYV69eohMDAQRYoUQZcuXXDkyBHVYTnVoUNA/vyy0KZkSTUxRETIyJ/RRESPxiSxiytSBPjlFylr6eOjNpbcuYFy5eSYJZWIiIiM5+UF9OsH/Pvf8rsAERERZd+mTTIaXWoakHv3YsWk6hYfSptXYCAwZgywdKn8HpYZLUm8b59z4iIic1i/fj0GDhyIbdu2YeXKlbh79y5at26NWx60eqhVK9lc9PPP6mLQksTcSUxE9GhMEptErlyqIxAPlpwmIiLyRFevAlu3Aikpxl/LYgHCwuT44EHjr0dEROQuUlKk3DTgnCQxwJLTnqR6dRm5IICIHrR8+XL06dMH4eHhqFGjBmbMmIEzZ85g165dqkNzKl9foHRpddd/sNoDWyYSEWWNSWIXtnEjcPiw6ijSY5KYiIg83bJlUjrriSeccz0miYmIiHLu2DHpR1yokO0+1mhdugCvvw6EhzvneqS/Vauk7dejREQATz8N9O8v7UGIiDKSkJAAAChYsGCG309OTkZiYmK6l5ldu+YaSdkqVaQaxLVrwN9/q46GiMi1KS5gTFmJjAQ2b5Zy0927q45GtGsnq8FatFAdCRERkRpaf8P69Z1zPSaJiYiIci48HEhIAE6ckMoczvDqq865Dhnj7FngySel1VdCApAnT+bvDQwEFi50XmxEZD5paWkYMmQIGjVqhAit/vE/REVFYdSoUU6OzDhduwKnTgHTpwPNmqmLI3duoGJF4MgR2U1cooS6WIiIXB2TxC7KarX1ttEeDruC5s3lRURE5Kk2bJCxaVPnXI9JYiIiIvv4+TlvFzGZ39atMkZEZJ0gJiLKjoEDByImJgabNm3K9D2RkZEYOnTo/T8nJiYiJCTEGeHp7uJFYP16qeJRpozqaIAZM4CCBYHy5VVHQkTk2pgkdlGnTwM3bkgv4kqVVEdDREREgNz4ai0XnNXfUEsSHz0K3L0rvxsQERGRa7p9W3YtVaoEFCigOhrKiS1bZGzYMHvvt1qBuDjZdaz1vyQiAoBBgwZhyZIl2LBhA0qVKpXp+/z8/ODn5+fEyIyzaJEkiOvWBcqWVR0N8PjjqiMgIjIH9iR2Udou4qpVXe9h8NmzwIoVwPnzqiMhIiJyLm0ReHi49Dh0htKlgbx5JUF8/LhzrklERGRmhw8DNWoA77zj/Gs3ayYPpteudf61yTE5TRIvWCC75fr3Ny4mIjIXq9WKQYMGYdGiRVizZg1CQ0NVh+Q08+fL6CotE4mIKHuYJHZR+/fLWL262jgy0qcP0LYtsHy56kiIiIicy9mlpgHpo/jrr7KDuUIF512XiIjIrDZulIXXu3Y5/9rajtK9e51/bbLfnTvA7t1ynN0kcXi4jDExsnuOiGjgwIGYNWsWZs+ejcDAQMTHxyM+Ph537txRHZqhLl+2LY7q2lVtLJo7d4CoKODFF4HUVNXREBG5LiaJXZSWJHbFkkVa2Uut3CYREZGn2LhRRmcmiQGgZUugShXAh41CiIiIHkmbr53VGuJBNWrIyCSxuezaBdy7BxQrlv0yqRUrSt/rW7eAU6eMjI6IzGLixIlISEhA8+bNUbx48fuvuXPnqg7NUL/+KonYWrVcpwewry8wejTw44/AiROqoyEicl181OiitHLTrpgkrlpVRiaJiYjI00yYAKxfDzRvrjoSIiIiyozWHqJJE+dfm0lic3qw1LTFkr3P+PjIIvo9e+QZTrlyxsVHROZgtVpVh6CEK5aa9vaWn9G7d0vFh4oVVUdEROSamCR2UWPHAtHRQJ06qiN5GJPERETkqR5/XF7OduECMH06cOMG8Omnzr8+ERGRWZw7B5w8CXh5qZmztSTxqVPA9etA/vzOj4Fyrnt3oEABICQkZ5+rVk2SxPv3A126GBIaEZHLGzYMCA11rSQxAERE2JLETz+tOhoiItfEJLGL6txZXq5ISxKfPCn9Hfz91cZDRETk7m7fBiIjpaThqFEsO01ERJQZbRdxzZpAvnzOv76WaIyLk92lzm5RQfYJDQX698/557Tqb1rLMCIiT9S8uWtW2+LPaCKiR2NPYsqxIkWAggUBqxU4elR1NERERM7xn/8As2cDiYnOv3aZMrIoKzlZFmkRERFRxlT2I9aw5LTnqF5dRq1lGBERuY6ICBljYtTGQUTkypgkdkGrVwOLFwMXL6qOJGMWC0tOExGRZ7lzB/jgA6BnT+DyZedf38vLNvceOOD86xMREZlFoUKyK1RFP2JN377AF18ALVuqi4Gyb+NGYMIE4PDhnH+2Vi3gvfeAkSP1j4uIyNUlJgJDhkgVD1dsx6wliY8elQXXRET0MCaJXdB//gM89RTw66+qI8ncW29Jb8SGDVVHQkREZLzt24G7d4GSJeXBswphYTIePKjm+kRERGYwahRw4gTQtau6GJ55Ru6ZtbmbXNtPPwGDBgHff5/zzwYHA599Bjz/vP5xERG5uq1bga++Anr3lk1FrqZkSSB/fjk+cUJpKERELosd7VyQVqZIK1vkilTecBMRETnbhg0yNmmi7uY3PFxGlUniS5eAa9eASpXUxUBERJQdrviwmlzTli0ychE8EVHOaD8/GzVSG0dmLBZg504gJATw81MdDRGRa+JOYhdz5Qrw999yrD0MJiIiIrW0JHHTpupiUL2TODVV/v7VqgHHj6uJgYiIKCsXL8p85QoOHZIdqtr9PbmmhARbr8oGDew7x/XrwJo1tn7YRESeYvNmGV15kU2FCkwQExFlhUliF7N/v4yhoUBgoNpYspKaCqxdK3177t5VHQ0REZFx7t6VMlqAaySJjx0D0tKcf/0VK6RXX0oKsHix869PREQZi4qKQr169RAYGIgiRYqgS5cuOHLkiOqwlOjWTXoSr1ihOhLgpZeAXr2A9etVR0JZ2b5d+miGhgLFitl3jvnzpf/06NH6xkZE5Mru3ZOfoYDr7iQmIqJHM02S2FNufLVS09WqqY3jUSwWoGNH6dvDng5EROTOdu8Gbt+Wh85Vq6qLIzQU2LtXSj57KfgNbvJk2/Hy5c6/PhERZWz9+vUYOHAgtm3bhpUrV+Lu3bto3bo1bt26pTo0p0pOBnbskJ2hoaGqowFq1JBx7161cVDW9Cg1rbUK0xb9ExF5gv37gZs3gXz5bAuaXdH580C/fkDnzqojISJyTabpSazd+NarVw/37t3D8OHD0bp1axw8eBABAQGqw9ONdlPhyv2IAXk4XbkysGePlNGqXFl1RERERMbYvVvGJk3UJGc13t7qfj84exZYssT25w0bgDt3AH9/NfEQEZHN8n+s3JkxYwaKFCmCXbt2oWkGJTCSk5ORnJx8/8+JiYmGx+gMf/0lieIiRYCKFVVHwySxWeiRJA4Pl4X0Fy7IYr7gYH1iIyJyZVqp6QYN5F7VVeXODUybJseJiZLUJiIiG9PsJF6+fDn69OmD8PBw1KhRAzNmzMCZM2ewa9cu1aHpSksSu/pOYsC2m+rQIbVxEBERGem11yRJOnas6kjUKVhQdhK//jrwxRfApk3s60RE5KoSEhIAAAULFszw+1FRUQgKCrr/CgkJcWZ4htH6wTZuLAk71Zgkdn1pabK4AHAsSRwQAJQrJ8fcTUxEnkJ7JO/K/YgBuZctUUKODxxQGwsRkSsyzU7if3rUjS9gzhXS06YB0dGyW8nVaaVEmCQmIiJ3V7Kk6gjE9u3Ad98BZcsCH3zgvOvmyQO8/LLzrkdERPZJS0vDkCFD0KhRI0RERGT4nsjISAwdOvT+nxMTE90iUbxpk4yuci+tLfw+fx64fBkoXFhtPPQwLy/g9Gn5/SqT/7tkW/XqwPHj0kLsiSf0iY+IyJV9/z3wzjtAUJDqSB6tWjWZj/fvl53PRERkY5qdxA/Kzo0vYM4V0mFhwAsvAMWLq47k0biTmIiIyLnOnZMk8a+/qo6EiIhc0cCBAxETE4M5c+Zk+h4/Pz/ky5cv3cvs0tJsZS8bN1YbiyYwEChfXo65m9h1BQYCrVoBPg5uodAWBXAnMRF5Ci8vKbdfqpTqSB5NSx/ExKiNg4jIFZkySZydG19AVkgnJCTcf8XFxTkpQs+gJYkPHwasVrWxEBERGWHaNKBdO+CXX1RHIsLDZTx4UB6IO8OQIcCECcCNG7avzZ8P9O0ru2+IiMg1DBo0CEuWLMHatWtRygxPbHV04ABw/bqU/a1ZU3U0Niw57TmYJCYicl38GU1ElDnTlZvWbnw3bNjwyBtfPz8/+JmoYd7vvwOxscCTTzpe6sgZKlSQ1bY3b0qvRhNs1CYiIsqR5cvl5Sq7ksqXB3LlAm7fBs6ckbLTRjp1Cvj6a1kM1rq17LYBgPHjZcfW448DAwYYGwMREWXNarVi8ODBWLRoEdatW4fQ0FDVITldUBAwYgRw547jO0L1NGQI0KcP8NhjqiOhjDz7LFC6NPDuu0DRoo6dq1EjYPJkoFYtfWIjInJlUVGyK/fVV12nzUNWtOfs+/fLva3FojYeIiJX4kK3T1nzhBvfH36QnTnjxpkjSZwrFzBrlvRpDA5WHQ0REZG+rFZgwwY5btpUbSwaHx+gcmW5IT940Pgk8Xffyb9Dy5ZAxYq2r7dtK0niFSuYJCYiUm3gwIGYPXs2fvvtNwQGBiI+Ph4AEBQUBH9/f8XROUfp0sCoUaqjeJgZHpx7qosXgXnz5PjDDx0/X/HiwCuvOH4eIiIzWLQI2LkT6NhRdSTZExYGeHsD+fIBiYnm6KNMROQspik3PXDgQMyaNQuzZ8++f+MbHx+PO3fuqA5NN1rJC60Ehhn06CG7q3LnVh0JERE5S1RUFOrVq4fAwEAUKVIEXbp0wZEjR1SHpbvYWODCBcDPD6hXT3U0NmFhMh48aOx17t4Fvv9ejv+ZCG7bVsZVq+R9RESkzsSJE5GQkIDmzZujePHi919z585VHRqRy9q6VcbwcCB/fqWhEBGZyu3bwJ49ctywodpYssvfX5LDJ04wQUxE9E+mSRK7+43vnTvAsWNyXL262liIiIiysn79egwcOBDbtm3DypUrcffuXbRu3Rq3bt1SHZqutF3E9eu71mIoZyWJFy8G4uOBIkWAp55K/73atYHChaVP8bZtxsZBRERZs1qtGb769OmjOjSnuHQJ+O034PJl1ZFkbPly2eV84oTqSOhBW7bIqGeC49gxYMoUYOlS/c5JRORqdu4E7t2TypKlS6uOJvvy5FEdARGRazJVuWl3dvAgkJYmD1wd7YXjTBcvykPkO3eAwYNVR0NERM6wfPnydH+eMWMGihQpgl27dqGpq9Rl1oGWJHa1UpHh4TJeuWLsdSZPlrFfP8DXN/33vLykR/Hs2fLw29X+jYiIyHP8+SfQq5f0/d2+XXU0D4uKkt8pypWTF7kGbSexnkni338H3n4beOYZoH17/c5LRORKNm+WsWFD9vYlInIHptlJ7O4eLDVtpgn27Fmgf39g9GjVkRARkSoJCQkAgIIFC2b6nuTkZCQmJqZ7uTKrFVi3To5dLe/doYPs4P3tN+Oucfw4sHKl/E7Sv3/G72nTRsYVK4yLg4iI6FE2bpSxcWO1cWSmRg0Z9+5VGwfZpKTITjgAaNBAv/NqVeH27dPvnERErkarxNCokdo4cio6GmjWzNY6iYiIhGl2Ers77SbCbKWmK1eW8fJleRUurDYeIiJyrrS0NAwZMgSNGjVCREREpu+LiorCqFGjnBiZY27elDkuIcH1bn79/Y2/RkoK0KWL9BsODc34Pa1b296blORaJbmJiMhzbNoko6tWtdCSxNHRSsOgB0RHy+8uBQsClSrpd95q1WQ8fhy4dQsICNDv3EREriAtzVaJwdXukx8ld26p7BEQIH8PL26dIyICwJ3ELuPBncRmEhAAlC0rx4cOKQ2FiIgUGDhwIGJiYjBnzpws3xcZGYmEhIT7r7i4OCdFaJ/AQClfefmyZz7gq1oVWLQo693KxYpJz+J9+5ggJiIiNa5eBQ4ckGNXfVj94E5iN++iZRoXLkibL71LpRYtChQpIv87Hzyo33mJiFzFlSvShzgw0Da/mUWFCoCfnyziOXVKdTRERK6DSWIX8euv0j+pY0fVkeRc1aoy8iaIiMizDBo0CEuWLMHatWtRqlSpLN/r5+eHfPnypXuZgY+L1lz5/nugRQvgu++MvY63d9bfL1rU2OsTERFlReuLWKUKEBysNpbMhIfLbqXLl4G//1YdDQFAp07yv8XPP+t/bm3hP0tOE5E7Cg4G9uyRxTa5cqmOJmd8fGzPsLXNWkRExCSxywgIAB57zJwPW7UJljuJiYg8g9VqxaBBg7Bo0SKsWbMGoZnVIzap1FTZIevKzpyRnsnbt+t/7smTgRMncvaZO3ekZBcREZEzaaWmXbUfMSBtIrSSxuxL7DosFiBvXv3Pq7UQYwKCiNyZM1ogGUHrkBUTozYOIiJXwiQxOYxJYiIizzJw4EDMmjULs2fPRmBgIOLj4xEfH487d+6oDk0Xe/YAxYvLA2dXLQsZFiaj3lU8jh4FXn1V+jFfupS9z/ToIT392GuRiIicbeNGGV05SQykLzlNaqWmGvv7nbaTmEliInJHKSmqI3AMf0YTET2MSWIXMH8+MHCg9D40IyaJiYg8y8SJE5GQkIDmzZujePHi919z585VHZouVq+WsXBhffvU6UlLEh84oO+DzilTZGzbNvtlO5OTgaQkYPly/eIgIiLKjh9/BKZNA558UnUkWRs5UhZ2vfOO6kho3jxZDDhsmDHnb9cOWLMGcJNfi4kohzZs2IBOnTqhRIkSsFgs+PXXX1WHpJtLl4B8+YBGjcybLOZOYiKihzFJ7AKWLgX++19gyxbVkdinZk15oG5EyUsiInI9Vqs1w1efPn1Uh6aLVatkbNlSbRxZqVRJ+hsmJOjX3zApCZgxQ44HDMj+59q2lZFJYiIicrby5YG+fYESJVRHkrWqVeXl46M6EtqyRXppGlUAp1gxoEULWWxIRJ7n1q1bqFGjBiZMmKA6FN1t3SoLhK9dA3x9VUdjn4gIWShUpozrVg0jInI23qK4AK3EhVbywmwCAoAnnlAdBRERkePu3LGVrmzVSm0sWfHzAypUkPLQBw/q83B8wQLgyhUgJER2wWRXmzYybt0qSeugIMdjISIiIjKCtji/YUO1cRCRe2rXrh3a5eRmykS0n5+NGqmNwxGlSwPnz6uOgojItXAnsWKpqbYSF2ZNEhMREbmLLVtkdXSJEkCVKqqjyZrefYknT5axf3/A2zv7nwsNlZ3N9+5JeUUiIiJn+PRTYPx4ID5edSTZM2UK8K9/SasIUuPWLSA6Wo6NTBJv2AC89x6wcKFx1yAi95CcnIzExMR0L1e1ebOMXGRDRORemCRW7PhxKe/o7y+lssxq2zbp6TNrlupIiIiI7PdgqWlX7UesCQuTkob37jl+roMHZQe1tzfQr1/OP6/tJmbJaSIicobUVOD//g946y392i4Y7Zdf5H552zbVkXiunTvlv51SpaRyilHWrgX+8x9g8WLjrkFE7iEqKgpBQUH3XyFG/nByQEqK/AwFzL2T+EFm7atMRKQ3JokV00pNh4fnbNeOq9m5E/jsM2D+fNWREBER2W/1ahldudS0ZvRoeTA+dKjj5zp0SMpEd+pkX+lqrS/xihXs7URERMbbvx9ITAQCA4Hq1VVHkz01asi4d6/aODyZs0pNa/9N7ttn7HWIyPwiIyORkJBw/xUXF6c6pAzt3i0VtwoXBipWVB2NYxYvBkqWBLp1Ux0JEZFrYE9ixbSbBrOXmq5aVcZDh9TGQURE5IihQ4E//5SdxK5Oz8VlXbtKovfaNfs+36yZ7CZu1Up2NufKpV9sRERE/7Rxo4wNG5pnsTWTxOpt3Sqj0Uli7fnOwYPye5EPn7wRUSb8/Pzg5+enOoxHenCRjatX3HqUoCDpS2yCf3YiIqfgr6qKnT0ro1lWP2dG64t4/LiU6/D1VRsPERGRPZ57Tl6eKCBAXvZ+lqWmiYjIWTZtkrFJE7Vx5MSDSWKr1fwP2c3osceAK1eAxo2NvU65ckCePMDt20BsLFClirHXIyIyWoUKwNNPA61bq47EceHhMp48Cdy4IVVJiIg8GctNK/b998Dly0CfPqojcUzx4kC+fNLf59gx1dEQERF5hpdfBkqXBtats/8cu3ezRDQREZmH1WrbSWx0sk9PVatKpY2EBODMGdXReKaPPpLdcHXqGHsdLy8gIkKOtRZjROQZbt68iejoaERHRwMATp48iejoaJwx+Q/+zp2BhQuBV19VHYnjChcGihWT44MH1cWRmgrMmQOcPq0uBiIigElil1CoEJA/v+ooHGOxsOQ0ERGZ28SJwK5dQFqa6kiy7+JFIC4OOHDAvs/v3SsPSmvXBu7edTyev/8GZs4E7txx/FxEREQZ2b9f5ptcuWRnqFn4+trumVly2v2xLzGRZ/rrr79Qq1Yt1KpVCwAwdOhQ1KpVCyNGjFAcGT1IawugciHPmDHA888D3buri4GICGCSmHTEJDEREZnVmTPA66/Lw+YbN1RHk31auwd7V0BPnixjhQqO9xG2WoH69aU6yoYNjp2LiIgoM0FBQHCw9EX091cdTc7UqCG7TE2+ocyUDh927u94WgKCldaIPEvz5s1htVofes2YMUN1aHY7eRI4ccK9qk9p1R5iYtRc//BhQFs3cPw4kJSkJg4iIoBJYqXmzpVeDlOnqo5EH1qSmDdBRERkNqtXy/jYY/Lw2Sy0fkr2JIlv3gRmzZLjAQMcj8VisfWoWrHC8fMRERFlpEwZ4NdfpQKI2YwbJ/PvoEGqI/E8XbtKBbc1a5xzvZ49ZTHAzz8753pEREb5v/8DypeXkv3uQmVLgLQ04JVX5LhFC2lDmTu38+MgItIwSazQli3AypWyesgd9O0rfRRMvDiOiIg8lJYkbtVKbRw55chO4jlzZEdNhQrAE0/oE0/btjIuX67P+YiIiNLSgA8/lMSwpmFD2yJlMylSxHy7n93BtWvyu1Jamm2Hr9EKFQJCQmQRHRGRmW3ZIuP/Kmi7hdq1gSZNpBKWs02dCmzcCAQEANOnc54gIvV8VAfgybTVSs66STFacLDqCIiIiHLOagVWrZJjsyWJq1SR8eJFWYFcuHD2P6uVmn7lFSl9qYeWLeVchw7J7pnSpfU5LxEReaaEBNmR+ccfQN68UpKxSBHVUZHZbNsmY8WKfG5BRJQTCQm259eNGqmNRU81a6ppkXTuHPDee3I8ZoxURwGk7HVKiiSviYicza5HgqNHj8bt27cf+vqdO3cwevRoh4PyBFYrsG+fHLtLkpiIiJyPc7LjDhwALlwA8uQBHn9cdTQ5ExAAlC0rxznZTbxrF/DXX4Cvr/QQ1kuBArZ/Q5acJiJPwzlZX0eOyA6fP/6QMowTJ7pHgvjDD4EGDYAdO1RH4jm0XXANGjj3urNmAc88A8yb59zrEhHnZL1s3y7PsMuVA4oVUx2N+W3YANy+Lb/fDBwoX5swQXIDw4erjY2IPJddSeJRo0bh5s2bD3399u3bGDVqlMNBeYL4eODKFdlto5WKdAeTJgHdu6tZjfWgn36SWIiI3B3nZMdpu4ibNAH8/NTGYo+GDWVVt9Wa/c9oDyufeUb/HTVt2sjIJDEReRrOyfr54w/gscckUVyqFLBpE9Crl+qo9LF7t+xs3bVLdSSeQ0sSN2zo3OtGRwOLFql/PkLkiTgn62PzZhmd/fPTWW7dkqpczvL88zL/T58OeHvL17SWTX/+KdW4iIicza4ksdVqhSWDgvl79+5FwYIFHQ7KE2ilOipWdK+eRGvXAvPny0ozVf76Sx4gvPaalOsgInJnnJMdpz24M1upac1PP8nD82bNsv+ZMWPkJjQyUv94tJvc1auB1FT9z09E5Ko4JzvOapU5qlMnIDERaNxY7u/q1FEdmX5q1JBx7161cXiKe/dszyecneTQqsZpz3+IyHk4J+tDW2TjTqWmNZ9/DgQGAh984NzrVq8OVK1q+3P58kDz5vI70MyZzo2FiAjIYU/iAgUKwGKxwGKxoFKlSukm29TUVNy8eROvvvqq7kG6I3frR6zRdkUfOqQuhgeT7kuXAhER6mIhIjIK52T9/Pyz7OgpX151JM7j5QU8+aQx565TRxLXrVrZVkerdOaMlEbz9VUdCRG5K87J+rFYpOqW1Qq8+irw1Vfu9/ObSWLn2r9fdorly+f8Km7Vq8u4b5/8N51BvoqIdMY5WT/37tl6urvjTuJSpeRnszM2GH32mVTcqlkz4++/9BKwbh0wbZokrb3s2tZHRGSfHCWJx48fD6vVipdeegmjRo1CUFDQ/e/5+vqibNmyaODsJi8mlZwM5M/vfklibSWUyiRxeDjw7bfAoEFSpuy999TFQkRkFM7J+vHzy9kuXFeVlCQ9G7NitQJ37xr7wN3bG3jhBePOnxNWq7TBiI+XxQD16gG5cqmOiojcDedkfX3+OfDEE0CXLqojMYaWJN6/H0hL44Ngo5UoIf0eExOdv3italW55rVrwPnzQMmSzr0+kSfinKwfbWfr9u3yrNXdaM/kY2KMnY/XrAGGDQM++gg4fhwICXn4PV27ynPsU6ckWfzEE8bEQkSUEYvVmpMOdmL9+vVo1KgRfHxylGNWLjExEUFBQUhISEC+fPlUh+OUB7XOtn+/rJYNCpIbIVUrZU+dAkJD5Ybs0iWgQAE1cRCRe3Kl+YRzMiUnS9WMEydkzsuqetqOHUCHDtKSYfRo58Woyp9/2nok58oFPPcc8MMPamMiIn250nzCOdk+a9YA//2vLObxhIU89+5JecukJODoUWlBRe4rLEwW0S9bZmvJQeSuVM8nD+KcTI9y9y4QECDjyZNA2bL6X+POHUlGHz8OvP66LFrKzKuvApMnAz17ArNm6R8LEXme7M4pdq2RCQwMxKEHtor+9ttv6NKlC4YPH46UlBR7TumRLBb3ShADQKVKsvIqIUF27TjTuHHA0KHA9esysYeFSS/ElSudGwcRkTNxTnZMnz7AG2/I4iKz8vOTRHFa2qMreUyaBFy+bPzf12oF/vMfWQF96ZKx18oqhlGj5LhCBbn537NHTSxE5Bk4J+eM1SrlpFu3BhYsAMaPVx2Rc/j42FoiseS0+2NfYiI1OCfTo+TKZauIaVTJ6X//WxLEJUsCUVFZv7dfPxk3bpR7VyIiZ7ErSTxgwAAcPXoUAHDixAn06NEDefLkwbx58/Aea/t6ND8/W09HZ5ac/vtveRD85ZfShxgA2reX8Y8/nBcHEZGzcU62340b0jv3m2/kQbWZaT32Dh7M/D3XrwNz5sjxgAHGxmOxyL/t2rXqFmutXQts2SK/m/z8s3zt4EHg9m018RCR++OcnH1JSUDfvsCQIbKw91//kjKLnqJmTaB0afl3IONcvgxMmZL170dGq15d2oEkJqqLgcgTcU523BdfAKtXA+6cU9cWbRmxkGf3bmmhAUjFlEdtDK9bV6pOHDvmGZVViMh12JUkPnr0KGr+r9P6vHnz0KxZM8yePRszZszAggUL9IzPLc2fL4nU999XHYkxqlaVB7J//+28a374IXDzJlC/vpSSBIAePeTrb7zhvDiIiJyNc7L9NmyQko+hofIyM61HVFYPQWfNknJXERFAw4bGx6SVVFy+3PhrZeTjj2Xs3x+oUwcoWlR2W3MnDxEZhXNy9pw7BzRrJn0Ovbxkoe/MmYC/v+rInGfSJOD0aaBXL9WRuLcNG2Rh3PPPq4vhrbfkWYX2ewkROQfnZMecOwe8/bZU+0hOVh2NcR7sS6yne/eAl1+WhXDPPgt07vzoz1gscg/tblVHicj12ZUktlqtSEtLAwCsWrUK7f+3ZTMkJASXL1/WLzo3tXev9A28elV1JMaYMQO4dUt6KDjDnj3A9OlyPH68PGgAZAXWxx/Lg2EiInfFOdl+q1fL2KqV2jj0oO0kPnAg4+9brdLfCJCHpRaL8TFpvYD//FOSs860YQOwbp2swH7vPfn71qol32PJaSIyCufkR9uxQ+7TduwAChYEVqyQ3cTOmJdcibe36gg8w5YtMjpjcVxm8uTh/95EKnBOdoz287N6dSAwUG0sRmrcWCqbtGun73lnzZL7zgIFgK+/zvnn09JkgRERkTPYlSSuW7cuPvnkE/z4449Yv349OnToAAA4efIkihYtqmuA7mjfPhm11UrupkAB590EWa2yMtdqldXBjz/unOsSEbkKzsn2W7VKRndKEme2k3jLFlkd7e/vvF1LjRoBAQHAhQvO77mo7V5+6SUgJESOa9eWcfdu58ZCRJ5D5Zw8YcIElC1bFrlz50b9+vWxY8cOQ69nr7x55aFntWrAzp3uMQc7wmo1f8sLV+YKSWIiUoP3yY7ZvFnGRo3UxmG0xo2BadP0v0f+178kOfzNN1LRKicWLADKlQM++EDfmIiIMmNXknj8+PHYvXs3Bg0ahA8++AAVKlQAAMyfPx8N+dv3I2llDt01SexMixYB69dLj5+xYx/+flIS8OuvwOjRTg+NiMgpOCfbJz7eNh8/8YTaWPRQtaqM584BCQkPf1/bRfz880D+/M6JydfX9m/r7JLTY8bIg+EHb6yZJCYio6mak+fOnYuhQ4di5MiR2L17N2rUqIE2bdrg4sWLhl0zJx5MgoaFSa/6LVvkAagn690bKFJEql+Q/pKTgV275Fj1r8SjR8tuvPnz1cZB5El4n+wYLrJxjLc3MHiwfVU2AwKkJcWsWe5d6puIXIfFatVv3WpSUhK8vb2Ry0W7qycmJiIoKAgJCQnI96hu8Qa5ccPWqP7SJaBwYSVhGCo1FXjxReDQISnlWaCAMdexWuWBb3Q08NFHGSeCL1wAihWT4/PngeLFjYmFiDyLK8wnj8I5OWuzZ8sNW82a7lN+uH17edgcFfXwfHfwIDBliqxodmYbhv/+Fxg4UHpPrlvnvOtm5NQp4IUXpOrIF1+ojYWI9KN6PskOo+fk+vXro169evj2228BAGlpaQgJCcHgwYMxbNiwh96fnJyM5AeeOiYmJiIkJMSQf8OLF2WB0ogRMheQzVNPAYsXA199Bbzxhupo3M/WrZLcKFJEFgeqLGk+YID8HhYZKQvZiNwV52THucK/4e3bQFCQ9NU9dQooU0ZJGE6TkgIcPSrP60uXduxcO3cC4eHSasBeqanyb37uHDB3rvQ0JiKyR3bnFB9HLrJr1y4cOnQIABAWFoba2hYNylRMjIzFi7tnghiQ1VLr18tkduiQcavOLBZg2TLgs8+k32BGihYF6tWTSXrpUqBfP2NiISJSjXNyzqSkyA2gO5W5XLo08++FhQHjxzstlPvatJEb5AIFpK+Sl101bLLvxAlZeZ1RSa+yZW0r4omIjOTMOTklJQW7du1CZGTk/a95eXmhVatW2Lp1a4afiYqKwqhRowyLSbNrF/D000BcnOyIOXwY8HHoCYR7qVFDksTObsngKbQ5v0ED9T2vtSpyWhUbInIe3ifn3M6dkiAuUcLxpKkZDB4sC3k+/BD4+GP7z3Phgtz/Figgra1CQ+07j7c30KcP8OmnUgqbSWIiMppdt2gXL15Ejx49sH79euT/X83C69evo0WLFpgzZw6Cg4P1jNGtaDcF1aurjcNoYWHGJ4kB2SX85ZdZv6dDByaJich9cU62T58+UuYxJUV1JO6tfHng6lXAz8851xsyRMqYfv+97BomInImFXPy5cuXkZqa+lB/xaJFi+Lw4cMZfiYyMhJDhw69/2dtJ7GeZs+We6+kJKBSJeC335gg/qcaNWRkktgYrlQqVXv+wyQxkfPwPtl+2hqzRo3UL7JxhvBwGbWNXfZ64w3g2jVJDjv6a1XfvpIk/vNP4MwZz0jWE5E6du3nGDx4MG7evIkDBw7g6tWruHr1KmJiYpCYmIg3WCcpS3nzys7Wxx5THYmxtN6I/1usp7tMnndkqH17GVeuZDKAiNwP52T7WSzOS146y927smNLs2kT8NxzwMaN6mJy1r/xnj3A779L36asSmrfvi072oiI9GaWOdnPzw/58uVL99JLairw7rvS0iEpSe7Ftm8HqlTR7RJuQ0sSx8TIji3S13ffSeWx7t1VR2LbSXz6NJCQoDYWIk9hljnZFb3zDrB7N/DBB6ojcQ49qj0sXgz88ovsAv7uO8cXxpUvDzRvLq0WZ8507FxERI9iV5J4+fLl+O9//4uqWiYQUrJjwoQJWLZsmW7BuaMXXgB27Mi4f647MTJJvHevrPLq3Dl7Sd86daTs5I0bah+SExEZgXNyzl25Ig+x3c1ff0lp5yZNbF/773+lj9GsWeri0pw9Kze5RvnkExmfew6oXDnj9/z2GxAYyF3GRGQMFXNy4cKF4e3tjQsXLqT7+oULF1CsWDFDrpmZO3ekitO4cfLnyEh5aPq/DVz0D+XKySLy5GTgyBHV0bifAgWAtm3tL/epdyylSsmxozvViCh7eJ9sPx8foFYt22ImdxcRIeOJE8CtWzn/fGIi8PrrcvzOO/JvpwetGua0adK6iYjIKHYlidPS0pArV66Hvp4rVy6k8acWwbgksdUKvPWWTI7+/oCv76M/4+UFtGsnx1n1ayQiMiPOyTk3YABQuLCs9HUnoaGyE+n0aeDmTeDSJWD+fPnegAHq4kpLkxvlkBDg6FFjrhETAyxcKLvDs1rxXrGixLN3r3suFCAitVTMyb6+vqhTpw5Wr16dLo7Vq1ejQYMGhlwzM7lzAwULyoKluXOBMWNkRw1lzMvLtnuJJafdH/sSEzkX75Mpu4KDgSJF5JnzwYM5/3xkpLRcLF8eGDlSv7ieeQZ49VXgp588o+w3EaljV5L4iSeewJtvvonz58/f/9q5c+fw1ltvoWXLlroF525SUmSVsCfQksSnTklZR70sXgysXSulKz/7LPuf69BBRq7QJiJ3wzk5Z1JTgTVrgOvX3a+vT6FCUjkDkEVaM2ZI+em6dYHatdXF5eUlsQHAihXGXEPbRdy1q62nVEYqV5ZFZrduAceOGRMLEXkuVXPy0KFDMXXqVMycOROHDh3Ca6+9hlu3bqFv376GXTMjFouUWNy+HXj2Wade2rSaNQOeeALQseI3AfjqK3lo70q7dmvXBsLCgAxyVkRkAN4n22fhQumH62mbbLSFPDmdNzZvlupdADB1qtxr6iVPHmDiRKBhQyaJichYdiWJv/32WyQmJqJs2bIoX748ypcvj9DQUCQmJuKbb77RO8Z0JkyYgLJlyyJ37tyoX78+duzYYej19LR6tZST6tJFdSTGCw6WB9WVKgH/qHxmt5QUKdsBAEOHAmXLZv+z7doBsbHAkiX6xEJE5CpUzslmtGcPcO2aPIytW1d1NPoLC5MxJgaYMkWOX31VXTyaNm1kXL5c/3MfOmTbFf7hh1m/19sbqFlTjnfv1j8WIvJsqubkHj16YNy4cRgxYgRq1qyJ6OhoLF++HEW1lUNOlCePrWwjPVpUlDwn6NhRdSTuZcYMYOxY4PBh1ZHYfPIJcOCArXwoERmL98n2WbJEfoZu2qQ6EufSfnfJaZK4TBmZw/v1A1q00D8uIiJnsKuNekhICHbv3o1Vq1bh8P9+665atSpatWqla3D/NHfuXAwdOhSTJk1C/fr1MX78eLRp0wZHjhxBkSJFDL22HvbvlzKQfn6qIzGexSKlNvQsL/btt5LoLVpUVgXnRECAlP0gInI3quZks1q1SsbmzaXXkrsJD5eKG9qcmS+f9OhVrW1b4L33gHXrgKQkKUmql127pP1Eu3bZ65tVqxawdassGGBvYiLSk8o5edCgQRg0aJDh1yFydTduAPv2yXHDhmpjISJ1eJ9sny1bZGzUSG0czvbUU1JyOqeJ3lKlpOrl3bvGxAXInDZpElC/PtC7t3HXISLPlaOdxGvWrEFYWBgSExNhsVjw5JNPYvDgwRg8eDDq1auH8PBwbNy40ahY8cUXX6B///7o27cvwsLCMGnSJOTJkwfTpk0z7Jp60m5UqldXG4ez6JkgvnQJGD1ajj/9FAgMtP9c7EFIRO5A9ZxsVlrLRnd9NqDtJNZ2yfbqJQulVIuIAEqUAO7cAfT+z7JXL+DkSeCLL7L3fq30NncSE5FeOCeTo65f95zWVEbbsQNIS5PdXSVKqI7mYWlpsnmAiIzhKnOyGSthXr5sa9PXoIHaWJytRQtg+PDs/73v3LEdWyyyaNkoa9ZI2WlugCcio+QoSTx+/Hj0798f+TJomBMUFIQBAwbgi+w+ocuhlJQU7Nq1K92KLy8vL7Rq1Qpbt27N8DPJyclITExM91Jp/34ZtT4HlH2nTwMFCkiJyD597DvHzZtS6rtoUTkmIjIzlXOyWT2YoHT3JDEAVKwIDBigLpYHWSzGlpwuXhwIDc3eex9MElut+sdCRJ6HczI5omVLudfdsEF1JO5B2wXniruIe/aUBe8rVqiOhMh9ucKcrFXCHDlyJHbv3o0aNWqgTZs2uHjxoqHXdZT2eL1qVaBgQbWxuLLUVEkq9+4NXLli/PV69ZJ+9rt2AXv3Gn89IvI8OUoS7927F23bts30+61bt8auXbscDiojly9fRmpq6kN9lYoWLYr4+PgMPxMVFYWgoKD7r5CQEENiy467d6VnHuA5O4ljYqQUhh43Z3Xryr/fwoX271AOCJDd3Feu2HaSERGZlco52ay2bJFdOiVKAFWqqI7GGOHhUl76k09kFbgr/c6h/eeqV5L4zBnZLZRT4eHAiy8CI0caWxaMiDwH52RyhPYgng9+9eHKSWKrFbh921Zljoj05wpzslkrYW7eLKMr/vx0hlOngF9/lTEr334LbN8u701KMj6uwoWlHDYAuPh/QkRkUjlKEl+4cAG5cuXK9Ps+Pj64dOmSw0HpJTIyEgkJCfdfcXFxymI5ckQeRAYGStkjTxAYKA9v//pLn3JKuXNnf5dQRiwWoEMHOV661PF4iIhUMtuc7ArKlpXE4MCBMie4o8KFgZ9/Bj74wPX+jq1aAf36AaNG6bOD95NPZDHaiBE5+5yvLzBzJjBkiLFlwYjIc3BOJkfUqCEjk8SOS0uz7YRzxSSHVlVOqzJHRPpTPSfntBKmK1XB9NR+xJo33gCefhpYsiTz95w6JffaAPB//weULOmU0PDSSzLOmsX2FESkvxwliUuWLImYmJhMv79v3z4UL17c4aAyUrhwYXh7e+PChQvpvn7hwgUUK1Ysw8/4+fkhX7586V6qPFhq2tUe2holJER27969Cxw/bt85Vq4EJk/Wr2fPg0lilpgkIjNTOSebVfnywL//Lb2GyPkKFgS++w7o1s3x34XOnAFmzJBjrYw1EZEqnJPJEUwS6+f8ecDHB8iTx7WqqWiYJCYynuo5OaeVMF2lCqbVauuz64qLbJxB+xmd2X8+Vivw6qvArVtAkyZA//7Oi611a0lIX70K/Pab865LRJ4hR0ni9u3b46OPPkJSBrUU7ty5g5EjR6Jjx466BfcgX19f1KlTB6sfqBOclpaG1atXo0F2u8orVKIE8PzzQPv2qiNxHi8vWzlPrdR2Tty9CwweLBPwl1/qE1Pz5oC/P3D2LEs8EZG5qZyTNRMmTEDZsmWRO3du1K9fHzvsqf1LZIfPPpPfE1q0sG+le2oqcPAgsGaN/rERkedxhTmZzEtLEh86xN1BjipVCrh0CTh8WJLFrkZLXB8+DKSkqI2FyF2ZbU52lSqYFguwc6ckIStVUhKCchERMma2kGf2bOkp7+sLTJ0qz72dxdsb6NNHjr//3nnXJSLPkKNfmz/88EMsXLgQlSpVwqBBg1C5cmUAwOHDhzFhwgSkpqbiA63mggGGDh2K3r17o27dunjssccwfvx43Lp1C3379jXsmnpp1kxenqZqVWDXLnkQ26VLzj47caKU6Q4OBgYM0Cee3LmBli2ldMgff9huyImIzEb1nDx37lwMHToUkyZNQv369TF+/Hi0adMGR44cQZEiRQy7rr327JHSUM2bAwUKqI7Gc6WlSRuKlSuB99+37wHuuXOyIxnIealpzY4dskK+eHHZdURE5AjVczKZW0gIkD8/cP068PvvUnGD7GexyL+pKwoJAYKCgIQESRS74m5nIrNTPSfntBKmn58f/Pz8DIsnpzz5XllLEsfEyK7hB6tfXboEvPmmHI8YAfzvPyun6ttX2iY99tjD8REROSJHj+aKFi2KLVu24LXXXkNkZCSs/6vXa7FY0KZNG0yYMOGhchp66tGjBy5duoQRI0YgPj4eNWvWxPLlyw29JjmmalUZc7qT+OpVKQkKSM9BPSuFd+ggSeKlS1lylIjMS/Wc/MUXX6B///73F2pNmjQJf/zxB6ZNm4Zhw4Y99P7k5GQkP7A9xtm9lr77Dvjvf4FBg4BvvnHqpekBVivQrp3M8y1a2FfK7D//kd03jRvbvwCvenVZ+f333/JiFVgicoTqOZnMzWIBOncGfvgB+PRT6Yfo7a06KjKCxSLlTDdtkp1qTBIT6U/1nPxgJcwu/9sto1XCHDRokGHXdRSTjpL49fEBEhOBuDigdGnb906cAHLlkp/h772nJr7y5YHTp527g5mIPEOO92+UKVMGS5cuxbVr1xAbGwur1YqKFSuigJOWGg0aNMilJ9WMJCXJ5FKunOfd7NmbJB41Crh2TW6a+vXTN6b27aU0ZefO/CWIiMxN1ZyckpKCXbt2ITIy8v7XvLy80KpVK2zdujXDz0RFRWHUqFGGxpWVVatkfPJJZSEQ5PegJ58E5s4Fli/PeZI4Ph6YPFmOR4ywfw4PCJCWGAcPyi5zJomJyFGq75PJ3CZPlt3EgwZ53jMDvVy5AtSqJb9bzJrlmuWmAaBVK9mpV7iw6kiI3JfqOdlslTCtVqBiRel5+8MPQJkyqiNSw9dXEsUHDshu4geTxPXry73jpUuSLFaFCWIiMoLdvzYXKFAA9erV0zMWt/XXX9LQvlIlKZ/sScLCgNBQSZBn1+HDwIQJcvzll/rfJJcuLSt3iYjchbPn5MuXLyM1NfWhFdhFixbF4cOHM/xMZGQkhg4dev/PiYmJCHFSLcAzZ4CjR2U+8cTWD66mbVtJEq9YAYwenbPPHj8uD1VLlpSHrI6oVUtu9HfvlgVkRER64H0y2SN3buCrr9J/bcIEoGZNWeBMj7Z1qyzO37vXdRPEADBypOoIiDyHqjnZbJUwT52S+6wzZwAX7BzlVNWqSZJ4//6H7xELFHCNctz37smC61Kl5PcEIiJHufCvzu5Da3hfvrzaOFSoXFlKcuTEu+8Cqamy0/eJJ4yJi4iInEtlr6XVq2WsV0/6wJFarVvLuHMncPlyznbSNGoExMbKjmJHK4HUrg389JPsJCYiInIlGzYAb7whO4Y++wx46y1WwHqULVtktKeVBRGR3sxUCXPzZhlr1wb8/dXGotqrr0rbh8cflz+PGiXP83v2dJ15eNgw4PPPJaZZs1RHQ0TugEUKnEBLErPfTPb8+99Ay5bAuHHGXufKFWDOHElIExFR9hUuXBje3t64cOFCuq9fuHABxYoVUxRV5rQksaM7T0kfJUrI70RWq60MeE74+elTAq12bRl373b8XERERHqqXRt49lnZLfT220DXrsD166qjcm1mShJbrcD580BysupIiIjM9fPTaM2ayfxbujSwfbskif/1L2DHDtWR2fToIeOCBfzdgIj0wSSxE+zbJ2O1amrjUMlqBVJSsvfeOnXkoXHFisbFk5Ymu5yff14mfSIiyj5fX1/UqVMHq7XsK4C0tDSsXr0aDRo0UBjZwx5MRDJJ7DratpVx+fLsvf/qVeDHH+VhuV600lynTsn5iYiIXEXevMDs2VJy2tcXWLRI7pNZ/SJjd+/aHuC72K+iGapdW1pnuFLSgYg8l7aTmO0NbFJSgP795XlCr17Sk9hV1K0rOYakJODnn1VHQ0TugElig1mt0uwe8Nwk8dSpQHAw8KgqK3fuOCceQMp2acmCP/5w3nWJiNzF0KFDMXXqVMycOROHDh3Ca6+9hlu3bqFv376qQ0vn8GHgwgUgTx5byShSr00bGbdty977x48HXnwR6N5dvxjy5we+/BL4/XeWVSMiItdjsQCvvy4P78uUkTZODRoA06apjsz17N0rzxPy5weqVFEdzaOVLCmjVnWOiEiVxETbzyLuJBZr1gBFi8q/S+HCcs/oSiwW4KWX5Pj779XGQkTugUlig8XFAQkJgI+POW5WjBAQIKWdDx3K/D3XrkmPh3feAW7fdk5cHTrIyCQxEVHO9ejRA+PGjcOIESNQs2ZNREdHY/ny5ShatKjq0NKpWhU4fhz45RcpU0yuoVEjYOPG7D0cvX4d+PprOe7VS984hgwBOnZkkpiIiFxX3brSGqFjRylPrGdVDXehlUpt0EAWhLs6bQOBVnWOiEiVbdtkg1NoKFC8uOpoXMMzz9jKOH/1lSSKXU2vXkCuXMCuXbJQiojIESb49dnctF/6q1SRMlGeqGpVGbNKEn/8MfD338CyZc77d2rbVlZf7d0LnD3rnGsSEbmTQYMG4fTp00hOTsb27dtR35VqMD2gXDnbwiByDX5+QOPGcmP7KN98IwvuwsOBp582PjYiIiJXU7Ag8Ntv8urf3/b11FR1MbmSoCBJpjdtqjqS7KleXUbuJCYi1fz9ZRES75dtnn1WxkqVpE2hKypcGHjqKTmePl1tLERkfkwSG6x8eeDDDwEXq77pVJUrSzL2yhXg0qWHv3/0qDwABoAvvpBd184QHGzrKbF0qXOuSURERNmXmGgr7/Xhh/rvDrp9G1i8WFaIExERuTIvL6BzZ7m3BoCrV4GaNYE5c5SG5RJ69wZ27gSGDVMdSfZoO4n375cdfEREqjRpIu13tOeyBIwcCYwZI1UqtDnXFfXrJ6PW5pKIyF5MEhusalXZJTt0qOpI1MmTByhbVo4z2k38zjtSMqt9e1uPQmfRVsoxSUxE5H527AC6dAFmzlQdCWUkOVl6LVapAty4kfF7JkyQlhSVK+vbj1hz44aswH7rLeDmTf3PT0REZJTx4+XB8PPPA4MHy7xK5lC5slRTuXEDOH1adTRERPSgkiWByEigUCHVkWTtySelHcWqVaojISKzY5KYnCKzktOrVsmKNW9v4PPPnR+XliRevRpISXH+9YmIyDjLl0tZRi4Eck1+fsCffwJHjgBr1z78/Zs3pcIIILuIvb31j6FoUaBECdnFw15ORERkJiNGAMOHy/G338puME9MOF6+LJVBzCRXLtszEvYlJiJVrl4F4uJUR0H28vYGatVSHQURuQMmiQ2UkiI9ds+eZQkh7Qbo4EHb1+7dk507gG0nkbPVrAnMmCEPqD21ZzQRkbvSVtS2aqU2DsqcVkFk+fKHv3fpEhAWBlSoADz3nHEx1K4t4+7dxl2DiIhIbz4+wKefAkuWAAUKSLnlWrU8b3Hcp59KT+LPPlMdSc688IJUnCtTRnUkROSp5swBSpcGevZUHQk56sYN4Pp11VEQkVkxSWygw4elhHJEhOpI1KtfX8pgPJgI3r8fOHlSbmhHjlQTl8Ui/YtKlFBzfSIiMsbNm8DWrXLcsqXaWChzbdvKuHz5wwvqQkOB9evlf0cfH+Ni0FZfM0lMRERm1KGDzGH16kmLhg4dgFmzVEflPFu2yAL0kBDVkeTM++9LNbUaNVRHQkSeavNmGStVUhsHOebzz4FixdhXmojsxySxgfbvl7FaNddudO8M3btLScnXXrN9rVYt4NgxYO5c1+/zQERE5rJhgzwwDA0FypVTHQ1lpkULKbl48iQQG5vxewoXNjYGbSfxnj3GXoeIiMgoZcsCGzcCgwbJztT27VVH5Bw3b9oWeTVsqDYWIiKz2bJFxkaN1MZBjilaVNouTJsGpKWpjoaIzIhJYgM9mCSmjBUvLjuMVZs4EWjdGjh6VHUkRESkh9WrZWSpadeWNy/QuLEcayWnk5KkdOSVK86JQUsSHzgg1yYiIjIjPz/ZRRQdDRQsKF+zWqXCmbtauVIWBZYvb86yzdeuycLGlBTVkRCRpzl/Hjh1CvDykuqPZF7PPAPkyyf/e65bpzoaIjIjJokNtG+fjEwS21y/LsnzNWtUR5LewoVyg/nHH6ojISIiPbAfsXloJadXrJBx2jTgww+Bpk0fLkFthJAQqWhy7x4QE2P89YiIiIyUP7/teNo0IDwcGDvWPXcXLV4sY+fO5qveZrUCFSoAzZoBBw+qjoaIPI22i7h6dSAwUG0s5Jg8eaTPPQB8/73aWIjInJgkNpC2k7h6dbVxuIquXaX/cNOm0h/yk09UR2TToYOMTBITEZlfSoo8IPX1BZ54QnU09Cht20pJ8KpV5X+7sWPl66+/7pwHvhaLtL44dMjWn5iIiMgd7NghyeHISOCpp4CrV1VHpJ/UVGDJEjnu1EltLPawWICICDnWnh0RETmL1o+Ypfrdw0svybhggVSpICLKCSaJDXLtGnD2rBxrv/h7umLFZLx+HfD2Bp5+Wmk46Wg9mzZsAG7cUBsLERE5xtcXWL9e5mKj+9mS46pVA44fB/7zH2DmTCAuTtpR9OvnvBhatgSqVJHfT4iIiNzFpEnAlClSinrJEmmxsHOn6qj0sX07cPmyLAzUWleYjVZ1TqtCR0TkLFqSmP2I3UPdujKnJCcDc+aojoaIzIZJYoNoK0FLlwaCgtTG4iqqVrUdDxggZa9cRaVKUurp7l1biVIiIjK3PHlUR0DZoe0WvnsXGDNGjt9/H8idW11MRERE7sBiAfr3B7Zulaodp09LQnX1atWROa5iRWDCBNklnSuX6mjso1Wd405iInK2998HBg8GmjRRHQnpwWKxLbKePl1tLERkPkwSG6RyZdkNM2KE6khcR40aMgYFAaNGqY0lIyw5TURkflYryyuZ1YwZwKlTQNGi8kDbmZKTgS++AHr3lt7ERERE7qRWLWDXLqBdO2nt8MUXqiNyXHCwtKZ47z3VkdiPO4mJSJWuXYGvvwZCQlRHQnrp2RMYPVpKThMR5QSTxAYpWhR48UXnlkp0dY0bA//9L7BihWuW/9SSxEuXSpKBiIjMJzYWKFRIeiulpamOhrLr9m3glVfkePBg5+8Cz5UL+Pe/gR9+AI4cce61iYiInCF/fuDzz6W9wuOPq46GAFtrsr//ltLZRERE9ipcGPjoIyb+iSjnmCQmp7FYgNdeA+rXVx1Jxpo2lcRCtWrchUZEZFarV8tCH19fwIu/5ZhGnjzAsGFAx47AkCHOv76XF1Czphzv3u386xMRETlD1arAoUPyENnMfv1V+i3//bfqSBwTGAiEhsoxS04TkbPMmwds2AAkJamOhIiIXAEfnxrAagW+/RZYt44lC83Ezw84f152OhcsqDoaIiKyh9ZXvlUrtXFQzkVFAb//DgQEqLl+7doyMklMRETk2saPlwXov/yiOhLHvfeeVFyrVEl1JETkCdLSgFdfBZo1Y6l7d7V8ubSXmD9fdSREZBZMEhvg9Gkpldi6NcsWm42vr+oIiIjIXqmpwJo1cswkMeVUrVoy7tmjNg4iouw6deoU+vXrh9DQUPj7+6N8+fIYOXIkUlJSVIdGLu7OHeC334Bbt1RHknNXrwKbNslxp05qY9HDq69KwrtkSdWREJEnOHpUfo76+9vuf8i9bN4sieKpU1VHQkRmwSSxAbSVWGFh0uOOzOf8eeDGDdVRPIyLDoiIMrdnj7QLyJcPqFtXdTRkNtpO4j172M+aiMzh8OHDSEtLw+TJk3HgwAF8+eWXmDRpEoYPH646NHJxjz8OdOkCLFumOpKcW7ZMFgZGRADlyqmOhojIXDZvlrFePT6zdld9+si4ciVw5ozSUIjIJJgkNoDWS6ZaNbVxkH169ZJVvL/+qjoS8eGHwI4d0jeqQgVZ9UdERA9bvVrG5s0BHx+loZAJVa0K5M4NJCYCJ06ojoaI6NHatm2L6dOno3Xr1ihXrhw6d+6Md955BwsXLlQdGrm41q1lXLBAbRz2WLxYxs6d1cahl9RUYOdOYNo0LlIjIuNt2SJjo0Zq4yDjlC8vz0SsVmDGDNXREJEZMElsAG0nMZPE5lSmjIx//KE2DkAS1Z9+CjRpIuXATpwA5s1THRURkWtiP2JyhI+P/O7m7c0FWURkXgkJCShYsGCW70lOTkZiYmK6F3mWrl1lXLIESEpSG0tOpKTYdj+7S5LYapX7/X79gJMnVUdDRO5OSxI3bKg2DjJWv34yTp/OBUhE9GhMEhuAO4nNrUMHGVesAO7dUxfH5cvAgAFyPHQoMGSIHP/yi7KQiIhcWu/ewPPP23bHEOXUvHnSbqJ9e9WREBHlXGxsLL755hsM0G4iMhEVFYWgoKD7r5CQECdFSK7isceketbNm1KO0iw2bJB5umhRKZXqDnx8pFUZYHuWRERkhCtXgMOH5bhBA7WxkLGeeUbacJ06BaxbpzoaInJ1TBLrLCnJtvukenW1sZB96tcHChUCrl+3rbBTYfBg4OJFuWH897+lZ5SPj+xUP3JEXVxERK6qVy9g9mygcmXVkZBZlSkD+PurjoKIPN2wYcNgsViyfB3WnvL+z7lz59C2bVt0794d/fv3z/L8kZGRSEhIuP+Ki4sz8q9DLsjLSx4gA+YqOX3woFT86NhR/g7uQttgwCQxkfl9+umnaNiwIfLkyYP8+fOrDiedrVtlrFJFnnuS+8qTB3jhBTn+/nu1sRCR62PHPp0dOiQ9ZQoUAEqUUB0N2cPbG2jbFvjpJ2DpUqBpU+fHsGABMGeOxDJjBuDnJ69WrYDly2Wn04cfOj8uIiIiIiIy1ttvv40+ffpk+Z5y5crdPz5//jxatGiBhg0bYsqUKY88v5+fH/z8/BwNk0yua1fgm2+kx+/du0CuXKojerQ33gD+9S/g1i3VkehLSxJrrcvcSVoa0L07cOeO/Lfmw6eQ5OZSUlLQvXt3NGjQAN+7WHaudWtgxw7ZFEPu76WXgD17WGmNiB6Nv57prEoVYPNm4NIlwGJRHQ3Zq317SRL/8Qcwdqxzr33pEvDaa3L8/vvpy2g9+6wkiX/5hUliIqIHzZ4N1Kgh1Rc4/5K9rFbgzTfl4cn8+UCpUqojIiJPFBwcjODg4Gy999y5c2jRogXq1KmD6dOnw8udtleSoRo3BooUkepVW7eqWRxtjwIF5OVOtCp07riT+MQJYOFCOV63Tha+E7mzUaNGAQBmzJihNpAM+Pq6T6l+erR69YBt21RHQURmwDtInfn7Aw0bAk89pToSckTbtlK+KiYGOHPGudf+7jtJFEdEACNGpP9ely6ywnv/flsfESIiT3ftmpSajogAzp9XHQ2ZmcUiDzC3bwd271YdDRFR1s6dO4fmzZujdOnSGDduHC5duoT4+HjEx8erDo1MQKtadeSIORLEKSmqIzCOtpP42DHZcetOKlSQ39MBWYBHROklJycjMTEx3YuIiMiZmCQmykDBgpKg/eknOXamYcOAyZNtZaYfVKAA8NxzQP/+LNNERKRZt052gFapApQsqToaMrvatWVkkpiIXN3KlSsRGxuL1atXo1SpUihevPj9F1F2tGsHVKqkOorsadYMaNAA2LtXdST6K1ZM+oOmpUnfZXfz4osyLlwo7dmIyCYqKgpBQUH3XyEhIYZcZ98+eZY4b54hpycXdvUq8O230iKTiCgjTBLr7IMPZCfozZuqIyFHjRwJvPACkDevc69rsQCvvALUqZPx93/4AZgyRVbkEhERsGqVjCxfR3pgkpiIzKJPnz6wWq0Zvojcyd9/S8nMbduAokVVR6M/iwWYMAFYscI8SfvsuH5dFnI2by6L7y9dAjZsUB0VUc4NGzYMFosly9dhO8v9RUZGIiEh4f4rLi5O5+jF6tXyvPrHHw05PbmwgQOBwYOBiRNVR0JErop7EXV0+TIwZowc9+ihNhYyF6tVEr/PPw/ky6c6GiIic2GSmPRUq5aMe/aojYOIiMgZtm4Fxo0DKlYExo5VHU3GliyR8bHHZNetO3LHZ0jPPAPEx0ti6umnge+/l5LTLVqojowoZ95++2306dMny/eUK1fOrnP7+fnB759lBA2wZYuMjRoZfilyMb17A3PmAN98AyxbJgt3mjWTsVQp1dERkSvgTmId7d8vY2goEBioNhbSx8GDQFSU3Dgb6ZdfgFdfld3DSUmPfn9amsT055/GxkVE5OrOnAGOHpU+8s2aqY6G3EHNmjKePQtcvKg0FCIiIsNduiRlgGfNkvtMV7R4sYydO6uNg7Lv9Glg7Vopb1qyJNCtm3ydJafJjIKDg1GlSpUsX76+vqrDzJTVCmzeLMcNG6qNhZzvySdl/vTyAmJjZeHOv/4FhISk31nuqr8DEJHxmCTWkZYkrl5dbRykn6+/BoYPl97ERrlwQUp/AEDPnkDu3I/+zNy58ovd0KHGxUVEZAarV8tYrx6QP7/SUMhNBAbaSj1yNzEREbm71q2lxdK5c8COHaqjedjt27aqMe6cJL5zB/j5Z+Djj1VHoo8ffpDxiSeAMmVk7N8fmDpVbVxERjtz5gyio6Nx5swZpKamIjo6GtHR0bipsC/hqVNStj9XLqBuXWVhkCLe3sBvv0lv4iVLgHfflecnXl5SoUMzaRJQvjzQr5/8DD9zRl3MRORcLDetIy1JXK2a2jhIPx06AJMnA3/8IWU5LBZ9z2+1Aq+9Bly5AtSoIQnp7GjXTn65O3BAXuHh+sZFRGQWa9bIyFLTpKdataSyx40bqiMhIiIyVu7cQMeOUopywQLg8cdVR5TeqlUyJ5ctC0REqI7GOGlpsmjcagUGDACKFFEdkf2sVmDGDDnWKvT6+kqLLSJ3N2LECMycOfP+n2v9r5fN2rVr0bx5cyUxaaWma9cG/P2VhEAuIChInnN36CB/TkxMXwl1wwbgxAl5TZsmXwsNtZWn7tYNCAhwethE5ATcSayjfftkZJLYfTzxBODnJ6vuDh3S//xz5gCLFgE+PsDMmXLjlB358wNt2sjxvHn6x0VEZBaTJgHLlwMvvqg6EnInP/4oZRK10oiUfcnJ0j6jXj05JiIi19e1q4wLFkiCz5U8WGpa70XbriQgANBammobEMxq0yZJMuTNK32JiTzJjBkzYLVaH3qpShADLDVNGcuXL/28OnWq9Cx+/32gfn3ZgXzyJDB9uuwufrAc9a5d8qyciNyDKZLEp06dQr9+/RAaGgp/f3+UL18eI0eOREpKiurQ7ktLA2Ji5JhJYvcRECArpgDZTayn+Hhg0CA5/ugj2UmcE88+KyOTxETkyQICZNGMVh6YSA+5cqmOwLzmzgV27wb++it9jysiInJd7drJ7rKTJ4G9e1VHk1779pLE9oRko9a6zOxJYm0X8bPPPrzrbO9eIDJSEgxE5BznzsnYqJHaOMi1BQYCbdsCY8cC27YB167ZksZ9+qTfdTxwoOwyLltWvjdjBpPGRGZmiiTx4cOHkZaWhsmTJ+PAgQP48ssvMWnSJAzPbm1eJzh5Unrl+PkBFSuqjob0pJXhWLpU3/MOGyb9IGrVkpuknOrcWXYeHzwoJaeJiIhIX1Zr+hXT9GhdukjvQUAeMNy7pzQcIiLKhoAAeTAMyG5iV/LMM8D8+VLq0t1pGw60KnVmdOsW8MsvcqyVmn7Q55/L7wezZjk1LCKP9ttvwMWLtp/zRNnxYNL4u+9sX09NlefRPj5SfWvmTKBvX0kalykjCWS2bSIyF1Mkidu2bYvp06ejdevWKFeuHDp37ox33nkHCxcuVB3afeXLy87QdevkhyS5Dy1JvGkTkJCg33n/7/+AHj1ktZU9O5aCgmy/4Gk3YURERKSPPn2A4GBg40bVkZhLvnyyeK1QIeD4cVY8ISIyi27dgMceAypUUB2J59KSxGbeSZw7tyw0GDwYaNz44e9rrTzmz+dCPCJnCg5mP1nSh7e39C++dg1YsUI2PjVsKPmQM2eA2Fh5DxGZhymSxBlJSEhAwYIFs3xPcnIyEhMT072MVLQo8Pjjhl6CFChXDqhcWXaJayXF9VCkiPQk1kpK2aN7dxk3bNAnJiIiIhIJCcCVK8CePaojMZ+AAGDIEDkeM4YPgYmIzOD554Ht24HevVVHYvPdd8DRo6qjcB7t2UBMjOzUMiNvb6B1a+DrrzPuId26texOO3sW2LHD+fEREZE+8uaVn+ljxkjf6+vXgSVLZOd6njyqoyOinDBlkjg2NhbffPMNBgwYkOX7oqKiEBQUdP8VEhLipAjJ3fz+uzwodrR/h9Wq746kp56SBPHq1fqdk4iIiIDatWXcvVttHGZx4gRQr56tD/GgQfIQOCZGHhYQEZFryyihp9KJE0D//kBYmDx49gTly0tv6KQkqcbhjnLnBjp1kmNWGyEyXteuQKtWwM6dqiMhdxcQINU4c+eWP1utwE8/AXfvqo2LiB5NaZJ42LBhsFgsWb4OHz6c7jPnzp1D27Zt0b17d/Tv3z/L80dGRiIhIeH+Ky4uzrC/yyuvSI/Z+HjDLkEKVawoO4kd9eOPQNOmsjrbanX8fIGBQJMmgJcpl3sQERG5rlq1ZGSSOHu++Qb46y9g9mz5c/78wBtvAM89J79HERGROVy/LruAVPv9dxmbNJE5xRN4ewNLl0qC3IxlvydMAN59Fzh2LOv3PVhyWo/nIkSUsdRUYOVK2Vji66s6GvI0H3wA9Oolr3v3VEdjv5QUzlXk/pR2z3377bfRp0+fLN9Trly5+8fnz59HixYt0LBhQ0yZMuWR5/fz84OfHpm9R7hzB/j+eymlp5XWI/d17559fafPnZOHpQBQpYr+K7VTUyVZ7GorwInIvZw6dQoff/wx1qxZg/j4eJQoUQK9evXCBx98AF/eeZIb0XYSHzoE3L7NkllZSUyU34WB9L8Lf/wxfy8hIjKTmzeBEiXkGcfx49J6SRUtSdy5s7oYVGjeXHUE9rFagS+/lP9uqlfPeoFY27ay4+zMGVlgVq+e8+Ik8iQxMcCNG7LBJCJCdTTkaRo3BnLlAn75RXYXT59uvk1O06YBgwcDL7wATJ2qOhoi4yj9v2ZwcDCqVKmS5Ut74Hzu3Dk0b94cderUwfTp0+HlQj9VDh6UBHHhwtKXmNzTDz9IcveTT3L+WatVdpsnJMgN0Lvv6hvb228DJUsC+/fre14ion86fPgw0tLSMHnyZBw4cABffvklJk2ahOHDh6sOjUhXxYsDRYrI73icX7M2fbo8gKpaVfpSaZggJiIyl7x5gYYN5XjBAnVxXL8OrF8vx1ppYk9jtZqrROfmzZIgzpsXeOaZrN/r7y8lSQsXBk6fdk58RJ5o82YZH39cKhUQOVP79sCcOfLf3g8/AK+/bq4duaNHA/36yYLx774Dtm1THRGRcVwn05oFLUFcunRpjBs3DpcuXUJ8fDziXaS2s/bgsFo1PgxzZ/fuAUeOSPmnnJoxQz7n6yvH9uxEzsqJE8CFC7I6i4jISG3btsX06dPRunVrlCtXDp07d8Y777yDhQsXqg6NSFcWC/sSZ0dqKvD113L85psZ/y587Bjw8su8sSYiMgMtwacySbx8udx/V61qzrLLjlq+XNpefPut6kiyb8YMGbt3l13CjzJhAvD337bS00Skvy1bZGzUSG0c5LmeeUYSxBYLMHkyMHSoeRLF4eESt1YZY/hw88ROlFOmSBKvXLkSsbGxWL16NUqVKoXixYvff7mCfftkrF5dbRxkrPbtZdy5UxKy2RUXZyu9+PHHQFiY7qHh2WdlnDePExYROV9CQgIKFiyY5XuSk5ORmJiY7kXk6po1A554AggOVh2J61qyRBarFSgA/OtfGb9n7FgpR/3pp86NjYiIcu7pp+Wh6PbtwNmzamJYvFhGTys1rTl7Fti7F/jPf4CkJNXRPNqtW7YF64/oKHdf4cL6L54novS0ncRahQgiFV54QXbiAsD48cBHHykNJ9u6dpWNgatWyaavtWvlmMgdmSJJ3KdPH1it1gxfruDBncTkvooVA+rUkeNly7L3Ga3MdGKilHd5+21jYuvYUfo7HD1qW7RAROQMsbGx+OabbzBgwIAs3xcVFYWgoKD7r5CQECdFSGS/YcOA1au5yyUr48fLOGBA5n2b339f+k8tWSIPvYmIyHUVL25LKCxa5Pzrp6UB69bJsacmiV98EShVSnbaTp+uOppHW7RI2k6UKyc9KHPCagXOnTMmLiJPdv48cOqU/A5ev77qaMjTvfSSVMfw8gLKl1cdTcaOH5cF4nFxtq+FhwOlSwOvvSZ/jozk5ixyT6ZIErs6Jok9R4cOMv7xR/beb7HILuKKFeXmzqgeIIGBtp3OLDlNRPYYNmwYLBZLlq/Dhw+n+8y5c+fQtm1bdO/eHf3798/y/JGRkUhISLj/invwN28iMq2hQ4FWraTHVGYqVZLykwAQFeWcuIiIyH5du8qoouS0lxcQGwv8/rvnJjZ8fWWBFSDVOFy9N7FWarp3b/nfL7uio4EyZYDmzfnQnUhvCQlA69aycCNfPtXREAEDBwIHDgB9+6qO5GFbt8rmrrVrbQnhBw0fLnMV72XJXVmsrrId1wkSExMRFBSEhIQE5NNphrx+XVaU3LwpKyez03uFzGv7dpk08uUDLl8GcuXK3udSU41LEGvmzAGef14S0keOsD82kZGMmE9Uu3TpEq5cuZLle8qVKwdfX18AwPnz59G8eXM8/vjjmDFjBrxy8kQI7vlvSO7r2jUpiRgYqDoS89q3D6hRQ34/OXxYEsdEeuB84jj+G9I/nT4NlC0r97CXLklLAXKuO3eA0FBpdTVtmms+VAdk5/fbbwM//QTs2CH/3WTXjRtAkSJSUjs6Wn5PIHPjfOI4/huSp7h4EVizBnjuObVxLFgA9Oolc1Ht2lL9ykU6nBI5LLtzCncSOyh/flmddeYME8SeoF496UuYmAhs2pT5+6xWID7e9mejE8SAreT0sWMs5UhEORccHIwqVapk+dISxOfOnUPz5s1Rp04dTJ8+PccJYiIzeeEFoGBBYN481ZGYW/Xq8ruK1Qp89pnqaIiIKCtlygA//yzPOZggVsPfH3jnHTmOipKF567Iywv48kspbZuTBDEgi+/atpXj+fN1D42IiFzU9etAs2ay2WnmTDUxWK3AuHFS8SopCejUCVi/PnsJ4rQ04+MjciY+1dWBxSL9Ysj9eXkBffoAL78MFC6c+fumTgUqVwZ++MFpoSFvXul//M47sniBiMgIWoK4dOnSGDduHC5duoT4+HjEP7gyhsiNaDeJe/aojcPVfPUVMHJk+kVxj/LBBzL+8IMkHoiIyHU99xxQooRzr3nggLTxGj3audd1Va++KgvVjh3LfssrVXx87Puc1o5i3jyWnCYi8hRBQVIOHZB+xXPnOvf69+5J+et335W5Z9AgYNEiebaeldu3gVGjZAF0UpJzYiVyBjt/jSPyXP/3f1l//9QpKbd08ybwiMqtuvvqK+dej4g8z8qVKxEbG4vY2FiU+scKKQ/qYEEepHZtGXfvVhuHK0lKAsaMkRJh4eHAs89m73OPPw506waEhbF0NxERPWzxYiAmRlp6kTys/vJLSRR36KA6mocdOiTlsJs2zVkv4gd17Aj4+UnLrAMHgIgIfWMkIiLXY7EA48dLa4WpU6Xcc+7cwFNPOef6SUnSh9hiAb74Anjzzey1bbRYJN5z54BJk4AhQwwPlcgpuJPYQd27y8OuQ4dUR0KuIC0N6NdPEsSNGwNvvKE6IiIiffXp0wdWqzXDF5E70pLE0dGuW+rR2ebMkQRxSAjwzDM5++y8ebL6muVLiYhc38KFwJNPSr9ZZ/j9dxk7dXLO9czgxRclkZqdh9fO9sUXQIsWshPLXvnyAW3ayDFLThMReQ6LBZg4URLE9+7JwuMVK5xz7bx5pffwb79Joje7c6y/PzBihBx/+ilw44ZhIRI5FZPEDkhNlR8oCxbYX1qHzCk1Fdi2Ddi+Pf3XJ08G1qyRSWP6dOf0Iv6nu3dlUl2wwPnXJiIicjeVKgF58khpqWPHVEejntUqq74BKcvF34GJiNzX/v3AqlXOKQN54YLcYwOSFKWH3brlOiWZb9+2/Xfh6M6vbt1knDfPsfMQEZG5eHvL8/Nu3YCUFKBLF2DDBmOutX+/JKU1JUvatyitb1+gQgXg8mWp9kHkDpgkdsDx41KewN8fKFdOdTTkTF9/DTRoIDthNCdP2lbQjh0rE4YKv/4KtG0LvPee69xAEhERmZW3N1Cjhhyz5DSwfj2wd68kzl9+2b5zWK3AsmXy+8q1a/rGR0RE+unaVcY//zR+t8wff8j8UKcO8I+OJgTg88+lDLezdlk9yqJF8t9EuXJSRc0RnToBgwfLw3s+wyAi8iw+PlKxpGNHSdyWKaP/Nf78E2jUCHj9dWlt4YhcuYCPP5bjceMkWUxkdkwSO2D/fhnDw9XsGCV1WreWce1aWUGblga89JKs7G3aVHbWqNK+vSxcOHGCD7OJiIj0wL7ENtou4t69pUeiPaxWWcy2YgXw7be6hUZERDoLD5eKGsnJksQ1klZqunNnY69jVufPA1evyoNpV0ikzpghY+/e9vcj1uTPLwvxmzZ1zbLaRERkLF9fqSaxaZP+SeLvvpNn5TduAM2aAU2aOH7OZ58FataUc44d6/j5iFRjktgB+/bJWL262jjI+cLCZNJKSpLy0vfuAXXrAoGBwLRpjt8kOSIgwFaei+WaiIiIHNemDfDKK0Dz5qojUSs21rby+o037D+PlxcwfLgcjx8P3LzpcGhERGQAi8W2m9jIdkZ37sguH4BJ4sy8/Tbg5wds2SJVPVQ6cwZYvVqOX3xRbSxEROQecucGihWz/fm332wb9OyRlgZ88AHQv7+0jezVSxYpFyjgeKxeXtKTGACmTGFvYjI/JokdoP2gqlZNbRzkfBaLrEICZEW1ry/wn//I7t3y5dXGBgDdu8v4yy+uscqYiIjIzDp1AiZPZo9EX18pMf3MM0CVKo6d69lnpTXH1atyY01ERK7pmWdkXLpUqmgZITFR7mFr17a1eKD0SpQA+vWT408+URvLjz/Kc4bmzYGyZfU778aNUpXt6FH9zklEROazdKksUnvySeDIkZx/PikJ6NkTGDNG/jxiBPDDD7LYSi/t2kkbyj17ZNMYkZkxSewAJok9W4cOMv7+uy0RW7iwunge1L699Ao8eRLYtUt1NEREROQOSpeWhO78+Y6fy9sbeP99OR43TkqZEhGR66lTR6po3b5tXD/cokWlfPGuXSw3nJX33pPejatXA9u2qYtj40YZ+/TR97xjxgATJrAiGhGRp2vQQPItFy4ALVvK8+2cWLoUmDNH5szp0yWZq/fvFxaLJJ9dYbMYkaOYJLbTvXtAUJCsQGGS2DO1aCHjuXOON73X24Mlp3/5RW0sRERE7iApCfjrr5zfoLojvW6wX3wRKFUK+PtvW29DIiJyLRYL0KMH0KoVkC+f6mg8W5kytvLOWplLFZYtk0SxVopcL926yajHYjQiIjKvAgWkDUVYmDx3f+IJIC4u+59/5hlJDC9frv+CpszkJD4iV8MksZ18fORB4c2bQJEiqqMhFfLkkVKJABAfrzaWjGglp6OjlYZBRETkFgYNAurVA77/XnUkzpeaCgwZon91El9f4J135Pizz2QRJhERuZ6xY4GVK2U3j97i4oDdu9kmKbuGDZNeiEuXAqdPq4nBYgEaNwby5tX3vF26SKWR6GggNlbfcxMRkbkEBwOrVkmLolOn5HeQrJ6/79gBXLli+/OIEcb83vJPWr/jsmWl9DSRGTFJ7CAfH9URkErffSc3tAMGqI7kYe3bA3v3GlcSjIiIyJPUqiWjJ974LV4MfPUV0Lq17KjWU//+Up3l009ZYpSIyFUZ+fN56lQpad2/v3HXcCcVKwL//S9w4IDsLHamlBT9fw94UKFCslsM4G5iMqdTp06hX79+CA0Nhb+/P8qXL4+RI0ciJSVFdWhEplS8uLRYKFMGOHZMqpokJDz8vvnzgWbNZLGRkfNURry9gbQ0eX3wgXOvTaQXJontxFWuBEhjeu2hsavJkweoXp0PXImIiPRQu7aMu3erjUOF8eNlHDAAyJ1b33PnyQOsWQM8/7zcYBORfZKTk1GzZk1YLBZEs5QQGeT8efmZrSetdVPTpvqe150NGABUqeL8686bB5QoYWypa5acJjM7fPgw0tLSMHnyZBw4cABffvklJk2ahOHDh6sOjci0SpeWRHGJEvK7QmCg7XtWKzBunFTTTEqSMtWpqc6PcfRo2UiotWMgMhsmie3UoQNQsyb/j0/mkJTEhQ1ERESOqF5dyjvGx0sPXU+xezewYYPc9L7+uupoiCgz7733HkqUKKE6DHJjO3cCJUtKyyW92gOcOSPVr7y8pBIW5dzly8671owZwLVrxraHePpp+e9h1y7g5EnjrkNkhLZt22L69Olo3bo1ypUrh86dO+Odd97BwoULM/1McnIyEhMT072IKL3y5WVemDBB5ghA5qKBA4F335U/DxoELFoEBAQ4P74KFYB+/eQ4MpLP4Ml8mCS2g9Uqde737pXdD0Su7LXXpG/2zp2qIyEiIjKvgACgcmU59qSS0199JWP37kCpUsZd5/ZtuVaXLrypJsqpZcuW4c8//8S4ceNUh0JurFYtKQd85Qqwfr0+5/z9dxkbNQIKF9bnnJ7i7l3pgViyJHD8uPHXi4uTnVwA8OKLxl0nOBho3lx2jp06Zdx1iJwlISEBBQsWzPT7UVFRCAoKuv8KCQlxYnRE5lGsmK1a5u3bQK5cwMSJ8rUvvwS+/lptZaqPPpKqW5s3A0uXqouDyB5MEtshPl5ujLy8gLAw1dEQZe36deDGDeCXX1RHQkREZG6eVnI6Ph74+Wc5HjLE2Gvdvg0MHw789huwcqWx1yJyJxcuXED//v3x448/Ik82VzBz1xLZw8dHFvIAwIIF+pxTKzXdubM+5/MkuXIBV69Kn+CxY42/3o8/yiKu5s2B0FBjr/XLL5IgbtHC2OsQGS02NhbffPMNBgwYkOl7IiMjkZCQcP8VFxfnxAiJzEn7v5S/v/xOMmSI+naLJUsCgwfL8QcfSI9iIrNgktgO+/fLWLGi/DAicmXPPivjL7+41s6cK1ekvBgREZFZeFqSeOJE2anUsCHw2GPGXqtwYeCVV+TYyF6HRO7EarWiT58+ePXVV1G3bt1sf467lsheXbvKuGiR4w8/ExOBtWvlmEli+3z4oYwzZxp7b221SqlpAOjTx7jraAoVUv+wn+hBw4YNg8ViyfJ1+PDh/2fvvuObqt4/gH/SlQ7aQgu0FFr2plD2lr0FcQEKCg4UvyAgIksRBAQRFFRQHCgK4mYpsmTvvfcuq2zoAFra3N8fzy9NS1eSJrm5yef9euXVNk3uPTdN89x7nnOek+k5ly5dQvv27fHss8+ib9++OW5br9cjKCgo042IcjdwINC7t1Q2efJJtVtjMnw4EBQEXL4MnDqldmuIzMcksRWMSeLoaHXbQWSO9u2BAgWkPNT27Wq3RsTGAlWrAqVKAS+8wDJSRESkDe3aAR9/DAwdqnZLHKNYMSkxbe9ZxEZDh8rMqA0bgE2bHLNPImdkbmf0F198gYSEBIwcOdKi7XPWElmrVSsgOFgqTWzZkr9trVwpA5EqVJAbWa5RI5lt+/AhMGWK/fazdStw8qQsvWEcKOAIDx9KPwaR2t5++20cPXo011uZMmXSH3/58mW0aNECjRo1wjfffKNiy4lcU926Mnipbl21W5JZaCjwzz+yDIS7n9usWwd07gysWaN2S8gcXmo3QIsOHJCv1aur2w4ic/j5ycjs+fOBP/4AGjRQu0UyWygmBlixApg3D/jtN+B//5NyHEWKqN06IiKi7FWtKjd30a8f8MorssSKIxQvLjOUvv0WmDiRazmR+3r77bfRJ4/pemXKlMGaNWuwdetW6PX6TL+rU6cOevbsiR9//DHb5+r1+izPITKHj490+M2bJ+UdmzSxfltPPCEdhwkJtmufO3rvPZmR/e23cj0dHm77fRhnET/7rAxAd4Q1a2R/FSvmf0ACUX4VKVIERczsrLp06RJatGiB2rVr44cffoCHo06kicgpNG2qdgvUl5YmpbcPHZK+/yVLZBIbOS+dojhTAVr7io+PR3BwMO7evZuv8h21agF790qJJeOaPETObNEiKb8RGSmzdp3hHFVR5MLvo4+A//6T+wIDZRbRkCGOu/gksoat4ok742tIRNkxjro2GKSsd82aareInJ07x5PY2NhM6wlfvnwZ7dq1w59//on69eujRIkSZm3HnV9DstzChcBTTwFly8rsUpYFVpeiAI0by2zfoUPtM6P4+HEpad25M9Cwoe23n53Ll6WaiaJIJTJWxdcGd48nly5dQvPmzVGyZEn8+OOP8PT0TP9duJkjONz9NSRyFYoi/fHt27vncqVnzwLGAgs+PsCCBUCnTuq2yR2ZG1OcIFWkPdWqAZUqcSYxaYezlJxevdq0dpVOJ+XKVq2SW+3aMop8zBi5CCUiInJGFy4Av/4q6x+5qp07gd9/B1JTHb/vsmWBHj3k+4kTHb9/Ii2JiopCtWrV0m8V/r+uXdmyZc1OEBNZqn174KefgF27mCB2BjqdaW3iX36REs22VrGixGRHJYgBICJCkt+AdCwTacGqVatw6tQprF69GiVKlECxYsXSb0TkXp59VgbVzZihdksc584d0/elSwMpKbJMRUqKTF5bskS1plEemCS2wk8/AUePmkZDEDk7X19ZT3DcOPVG4M6fD7RuDXTvLmUnMmrdGtixQ8pOv/OOJIyNdu82JZaJiIjUNm8e8NxzwNdfq90S+xk/XuK1sdPZ0UaOlIvI4cPV2T8REeXMzw944QWgYEHrtzFlCjBoEHDwoM2a5dY6dABmzQIOHwa8vdVuje08+6x8/eMPddtBZK4+ffpAUZRsb0TkXh5/XL5OmpQ5eeqqtm2TXNmvv5ru8/aWAWzduskgtqefloo05HyYJCZyE+PHA6NHS8kmR9u+HXj5Zfm+XDkgQ8WddB4eEjQ+/th037lzQKNGUuJ92TIp1UFERKQmY/njPXvUbYe9nDwJ/POPfP/SS+q0oVo1mTVUp446+yfSqlKlSkFRFMTExKjdFKIcKQrwzTfA55+zgpSt6HTA668DwcG23e6FC3KNvmyZbbdrrqeekq+bNwOXLqnTBiIiImu88AJQuTJw+zYwdararbGvnTuBdu3kWGfPztx/7+0N/PyzDLRPTWU8d1ZMEhORXV28KGt3JyfLGkYffmj+cw8elFnQ+/cDHTsCLVqoWy6biIjImCQ+cQJITFS3LfbwxRdyUdexo5SXJCIiys7nnwP161s+G/j4ceDUKVmfrl07+7TNnSkKcP68bbY1d67M4p082Tbbs1SJEqYS15x5REREWuLpCUyYIN9Pnw5cvapqc+xmzx6gbVsgPh5o2lTWYX50ORIvLzmnWLYMGDBAlWZSHpgkJnIjSUmyxuCPPzpmf/fuAU88AcTFyaygn3+WGcPm6twZOHMGePttQK+X9R8bNJDyFMeO2a/dREREOQkLA4oXl07Y/fvVbo1t3bkDfP+9fP/WW6o2BQAQGwu88QYwZIjaLSEioketXi1LBv31l2XP+/tv+dq8ORAYaPNmubVLlyRxX7t2/geyKQowZ45836dPfltmPZacJiIirXrySaBuXemPt2TSlFbs3w+0aSP9CI0aAUuXAgEB2T/W0xNo3970861bpnNCUh+TxERuZM0aWWNw1Cj7r/OrKHIxuWcPULiwLE5vTSdAaKiU5ThxQspeenhICcoGDSTIEhEROZqrlpz+/nuJrVWrAq1aqd0aGSg2axbw5ZfAlStqt4aIiDJ6+mn5ammSeMkS+dqli23bQzKQ7fZt4OZNKemdH1u3yhIUAQHAM8/Ypn3WeOYZ4N13ZeY6ERGRluh0siYxINe1586p2hybOnQIaN1akr3168ssYXP7/RMSJLnctSvw0092bSaZiUliIjfSti0QFARcvgxs2WLffe3fDyxeLGsPLFgAlC6dv+1FRUnn9YEDMjt54MDMo5MSEvK3fSIiInPVqiVf9+5Vtx22lJpq6oAdPDhriSg1NGsmZSaTk4FPP1W7NURElFHnzlI+8NAhGdBrjuvXTdehnTvbr23uyssLGDFCvp8yBXjwwPptGWcRP/MMUKBAvptmtchIKddZo4Z6bSAiIrJWq1Zyq1ZNBnK5il9+AW7cAOrUAZYvl3yDuQIC5HkGg0ww++EHuzWTzMQkMZEb0etllA5g/3JNMTHA2rXyQd+0qe22W7WqrG8wdqzpvnXrJIn80UdS4pqIiMiejEliV5pJfO2alNEODQV69lS7NUKnk9lDAPDVVzJKmYiInEOhQqaqE+bOJv73X+kQrFFDrt/I9l54QRKrcXGmJSQsdf8+8Ntv8r2apaaJiIhcwW+/Abt2mSqSuYIJE6Ty58qVQMGClj3Xw0Ou7994QyqRvvwy8N13dmkmmYlJYiI3k3FNH3uUnFYU0/eNGtmvoznj2sZz5sj6ByNHAuXLS2mt1FT77JeIiKhJE6mSsXix2i2xnYgIYPNmmRHm56d2a0w6dpSBZ0lJLDVJRORsLC05nZoqCUyWmrYfHx9g+HD5fvJk4OFDy7exaBEQHw+UKgU89pgtW2cdRZEy5S++KIPaiIiItCQ0NHM/tlZduACkpMj3Oh3w9tsyaNAaHh7AzJnAm2/Kz337Al9/bZt2kuVc4O1JRJZo0wYIDpa1/TZvtu22r1yRWcMHDth2u3mZPVvWMChZUkppv/66zDj+66/MSWsiIiJbCA0FnnxS4o6rCQ9XuwWZ6XTAqFHy/eefc3kJIiJn0rWrdPLt3m3eOnuvvAKcP2/6XCf7ePllieexscC8eZY/39cXiI4Gevd2jk5tnQ4YNw6YO1cS2ERERFqUmAh8+CGwc6faLbHcmTMyGezZZ2U5KFvQ6YDPPpPlrgCgXz/rq6BQ/jjB6R4ROVLGktO//2677T54IB3mmzfLxb8jk7OenlJW6/hxYPp0oHBhWRfrmWeAHj0c1w4iIiItWrIEuHlT7Vbk7KmngIoVZQ2nWbPUbg0RERkVKQJ06CCf0/fvm/ccnU6SkGQ/fn7A0KHy/cKFlj//ySeB/ftNSz44g2eeka/2XjaLiIjIXkaMAN57Typhasm5c0CLFsDFi8DJk7YduK3TAZ9+KuctERG2XbKSzMckMZEb6tZNvpoz2tscigK8+iqwfbuUmfjlF/mQdzS9Hhg0CDh9Ghg9GggIYCkzIiKyj6NHZR2eb75RuyX5c+WKdLxGRkr5KGfk6Ql88IFcTPfurXZriIgoo7//lgpOlSvn/rjTp7kkkCO9/rr8XaydeavTAd7eNm1SvhiTxGvXAjduqNsWIiIiawwdKrF19Wq5acGFC0DLllKdpEIFaXfhwrbdh04HfPwxsHevLCNJjsckMZEbat1aykT8/bdttjd5MvDzz4CXF/Dnn0C5crbZrrWCgqQc1ZkzwHPPme5fuhRYsUK9dhERkes4cEAGJM2erXZL8uerr2S9wlq1JFHsrLp3ByZOBIoWVbslRESUkTmDgxUFaN4cCAsD9u2zd4sIAAoUkBnelpSLVhSpNpaYaL92WatcOSAmBkhLAxYvVrs1RERElitVSkoqA7L0hrMvkXjpkswgPntW4vCaNUCxYvbZl06X+Vr/33+BTz6xz74oKyaJidyQjw9QurRttrV4sWlNqS++kNFFzqJoUdNF8bVrQJ8+QPv2MqqaaxoSEVF+1KwpXw8c0O7MqPv3JUkMmNYB0oJjx4B169RuBRERZXTihKxNnJ19+6RE4YMHsnwAOdb9+8CpU3k/bvt2GZRVtqwMIHM2zz4rX//8U912EBERWevdd6Xy5Y4d1lf7cIQrVyRBfPq05BDWrAGKF3fMvk+floFuQ4cCkyY5Zp/ujkliIjd3966MxrXGoUNAz54y8ql/f9NoKGcUEGCaVfzNN0D16sD69eq2iYiItKtcOZml8+CBJC21aP58KdkYFQV07ap2a8yTmgq8+KJcsA4eDNy7p3aLiIho9mxJ/r7zTva/X7JEvrZtK+vlkuNs3Cgzl7p3z3vG0pw58rV9e+cqNW1kLDn933/ArVvqtoWIiMgaYWGmAdrvvmt9n7y9nT0LXL4MlCwpSz04supY2bLy2gAyMW38eMft210xSUzkxnr3ltm2Gzda9/zixYHGjYFWrYBp02zbNlsLCAA+/1zWTihZUtZjbt6cHcxERGQdDw/TbOI9e9RtizUUBZg+Xb5/801ZMkILUlJMr/tnn8n327ap2yYiIndnrCa1fj1w/XrW3xuTxF26OK5NJCpXBpKS5Fxl+fKcH3f/PvDrr/J9nz4OaZrFKlSQwd6VKskaiURERFo0dChQqBBw9Cgwd67arcleo0bAypUyg7hkScfvf/RoWW4KAN5/Hxg71vnLc2uZ5pLEycnJiImJgU6nwz4uZkOUL56e0tn6xx/WPb9QIVnnd8EC5xxpnJ2WLaU06Kuvys+ffSbrMLL8NBERWcqYrNy7V912WGPNGqkIEhAAvPKK2q0xn78/8PXXwLJlQESElDdt3FhGGCcnq906IiL3VLq0xESDIet6sRcvSoJSpwM6dVKnfe6scGHgjTfk+/Hjc+5gXbxYqoyVLAk0a+a49llqwwbg4EGgRg21W0JERGSdggXl+rVHD7mWdRY3bgBHjph+btQIKFNGvfaMHAlMnizff/CBJIuZKLYPzSWJhw0bhoiICLWbQeQSunWTr3/+aX55C0WR8k7GD2UvLyAoyD7ts5egIODbbyXBXawY8NhjQGCg2q0iIiKtqVVLvmplJrGiSAc+IB2s3t4yW6hQIVWbZZX27SXJ3auXHNOkSUDdusClS2q3jIjIPT39tHz966/M9//zj3xt2FCqWJHjvf02oNcDW7cC69Zl/xhjqenevaVairMKDla7BURERPn39tvAL78A5cur3RJx6xbQpo30kTvTvMxhw4BPPpHvJ0yQHAbZnhOf+mW1bNkyrFy5ElOnTlW7KUQuoVUr6Ri+dk1G5Jpj+nQJGgMG2LVpDtGxo3QwG4MNIGWrtDgjjIiIHM+YJD561DR4Ki7OlIhV04MHkrz+/ntg4EC52CtY0HTBN3gwcP68aa0fLSpUSMpzLVgAFCkC+PrKGk9EROR4xiTx6tXAnTum+42lpjt3dniT6P+Fh5sqaU2YkPX3ly4Bq1bJ9y++6Lh25ce9e0BsrNqtICIiso5Ol/lnNWfI3rkDtG0rfQWenjKwzJkMGSL5iF69gKeeUrs1rkkzSeKrV6+ib9++mDt3Lvz9/c16TnJyMuLj4zPdiMjE29v04fr773k/ftkyWTcBkPWAXEFIiGkWsaIAL78M1KsnpbgePlS3bURE5NwqV5YlDC5dkos8RZH46O8PVK0KdO0KvPMO8M03wNq1wOXL9mlHxgvKf/4BoqMlttWuLaWkv/gC2LgRiI/PPBCqWDG5ad2TTwKHD8taisa1lZOTgePH1W0XEZE7qVQJqFJFrqH+/tt0//jxsq4cO/XUNWyYxMg1a4AtWzL/bt06GeDWtClQtqwqzbPIb7/J4LA331S7JURERPlz9qwM0ProI3X2f/cu0K4dsHu3LFGxZo30czibQYOAn36SJDYgFVFZetp2NJEkVhQFffr0Qb9+/VCnTh2znzdp0iQEBwen3yIjI+3YSiJtevZZ+frXX0Bqas6PO3JE1kowGGQU8sCBjmmfI927J6WoU1NlnYOGDTOvxUBERJSRl5ckZL295edbt2QGb3KyxI/Fi4GpU4HXXwdatgReey3z80ePluUP1q2TRHNeFzkGA3DqlJRYeu894PHHgRIlgD/+MD3Gx0eqZKSmykColi1l5O1PP0lCWyszhCxVpEjm9ZLGjpX1Cj/5xPwlNbTq9Gng+nW1W0FEZJpNbJw9DMiApXHjXGeQsVZFRUkpaSBryemePYFz54DPPnN0q6xTtapcu69YIQPgiIiItGrrVqmO9dFHwM2bjt13QgLQoQOwY4f0HaxeLTHWWRlnX6elAS+9JNXRmCi2DVWTxCNGjIBOp8v1duzYMXzxxRdISEjAyJEjLdr+yJEjcffu3fTbhQsX7HQkRNrVsqUEguvXcy45ffMm0KWLXIA1bQrMnJm1LIYrCAiQjvd586Qk5+7dUkp06lTX72AmskZycjJiYmKg0+mwz5kWLSFSSWiodFqeOSMdlzNmyIjXjh1lraEqVUyPvXlTSj6+9hrQooUkewsUkMTmM8+Y1gYEpOxT48ayDl/58jLA68MPgaVLJbmc8d+vfn3pnI+NBW7ckAu9Tz4BXnghc0LblRkMMrM4OVkqoDRrJsl1V3TtmlzIly0L/PgjL5KJSF19+gCLFsnAJHI+778vA8ZGjcr6u5IlgZo1Hd8ma1StClSsKHHeuOY1ERGRFvXoAVSvLn3uw4YB27ZJf0Jion33m5go/RRbt0of+H//STu0YNMm6bv//HNZDtMZlvvSOp2iqNeVcP36ddzMY4hEmTJl0K1bN/z999/QZchKpaWlwdPTEz179sSPP/5o1v7i4+MRHByMu3fvIigoKF9tJ3IlU6fKzKMePYCiRTP/7uFDKTuxdi1QqpSMLipSRJVmOtSlS0DfvlJiG5DO+T/+cI2ynJR/jCdi0KBBOHnyJJYtW4a9e/ciJibG7OfyNSR3d/WqJHpPnpTbuXOZByS9+aZc9AAyU7RcOfler5dkb0yM6Va9umnpBBKKIusxDx4sF8D+/sCUKUC/foCHJmopme/pp2VdZkDKuX79tZQKcxeMJ/nH15DsIS1NBkq1aSOdkO4wSEmLkpJksLTWjB4tg+26dgUWLlS7NWTEeJJ/fA2J3M/SpVIl7FFxcUBYmHz/7bfA9u3Sb5/TzZLr3IQEOT87eFASxBYU73UKP/wgS2spilRu+/JL17vOtwVzY4qqSWJzxcbGZlpP+PLly2jXrh3+/PNP1K9fHyVKlDBrOwy0RJZbvVou7AMCZHRRtWpqt8hxFAWYPRt46y2Z4bVnD+Dnp3aryBkwngDLli3DkCFD8Ndff6Fq1apMEhPlU0qKJIqNSeOYGKB5c/mdwSDr7daoITNnjOvuUt7OnZNSVMbSmq1bywWlmZcPTufQIRlAMHWqlHAFpLT4lCkyQyw1FQgPlwR5hw7qttVRGE/yj68h2cOWLTLQtmBBqXrAJLFziY0F7t+Xv1H9+jL7OzRU7VaZb/9+OVfS66UqGgfLOQfGk/zja0jkfhQFGDlS1gO+dk0GlCcnSx+B8dr/ueekTyAnV6+aJn7NmCGzbXNKJpcuLWv7JibKrGWtzCB+1E8/SRUbRZEk++TJmau3kfkxRRNdTFFRUZl+LlCgAACgbNmyZieIicg6rVpJCSeDwb0SxICU1H71VelQTkgwJYjT0mQ0V/Hi6rZPy9LS5IQEADZuNJVXadBAbvXqAYUKqdtGytnVq1fRt29fLFq0CP7+/mY9Jzk5GcnJyek/x3MBMaJMfHxkvcbs1mz08ACef97xbXIFpUrJgLcZM4ARI6R818OHarfKcomJsqbntGmSCB46VKq8ANJxMHKkVH7p1Qs4elRGhb/xhpQa5wA3InKk+/elUsaHH8rPnEXsfGbNkgFH4eGy/MXhw9q79qpeXaqsnDoF/Psv0L272i0iIiKyjk4naxIbKYpU+sg4OLxXL+mXNyaRr10z3W7fzjzQa9Mm4Lffct7ftWtSJbRAAe0miAHgxRelb7l3b8ld/PuvXPe/8YbaLdMeTSSJicj+bt+WUoX37skFo6KY1h3u2FHdtqmtVKnMP3/6KTB+PDB9usxOcsX1mW0pNVVmPm3ZYrr16iWd3QBQuTJw+bLcli83Pa9SJUkYv/CCrJ1NzkFRFPTp0wf9+vVDnTp1cO7cObOeN2nSJHzwwQf2bRwRUTY8PICBA4H27YFjx2TktFFiolwcOytFkfU9Bw0CLlyQ+558Us5BHlWrFrB7tySMP/sM2LmTs86JyPF8fTOvSdyli3ptoezVry/XaBcvys8vvqi9Eo06HfDss8CkSbIsFJPERETkKnS6rNeonTrJLTsZJ+IAwGuvAQ0bmpLIGZPKN24AISH2a7uj9ewpFdfefx9YsgRo0ULtFmmTJrsNSpUqBQ1UySbSlN27ZdZs4cIye/j114EffwTKlFG7Zc7FYJBEZkKCrH2wYIGsC8G1ijO7d09GwW3ZImtmJCZm/v2WLabvCxcGNm8G9u6VGV7btsmI8GPH5Fa7tilJfPo08N13kjyuX19Gv5NtjBgxApMnT871MUePHsXKlSuRkJCAkSNHWrT9kSNHYsiQIek/x8fHIzIy0qq2EhFZ49GZ2qtXS6fyzJnO2bl85owkt5culZ9LlQK++CL79aqM/Pwkgfz440BkpGn2XkqKdDZwNh8R2ZtOJ+fqxoEt7dur2x7KqmZN6Wg2xpfevdVtj7V69ZJy5k8/rXZLiEy6dOmCffv24dq1ayhUqBBat26NyZMnIyIiQu2mEZGLypggBqQP1Z0m21SrJv3z588DJUua7n/jDcDfXyqKFSmiXvu0QBNrEtsK13UgyllqqiQ6b9yQUlO3b0sH499/q90y55OWJuUbR4+WTtdChYAvv5QOZnebVawowIkTsl51WpokzgFJpoeEAHfvys+BgTKKrVEjudWvD+T2MXzjhiSXt22TEquVK8v9s2fLYAajkiVNJaobNJAOD73ePseakSvGk+vXr+PmzZu5PqZMmTLo1q0b/v77b+gyvNnT0tLg6emJnj174scffzRrf674GhKRtnTtCixeLN936ybJ4sKFVW1SJl9/DfTrJ4ndYcOAUaPkItcao0YB//0HzJuXfUlzLWM8yT++hmRr+/bJ+f5TTwG//KJ2ayg7O3cCTZsCbdrwmp9sh/EEmDZtGho2bIhixYrh0qVLGDp0KABgS8aR8rnga0hElH9nzgDly0v/dIECwODBwNtvy+Ayd2JuTGGSmIjS9esnHZKAzD7ZsYMzNXNz+LCU5tqzR35+5hngm2+0t56TJe7dkw4FY9norVtlHStAyneeOWN67NSpkhxu1AioUiXryDZrbNwo5eu2bZPX/9EI9u+/QIcO8v2lSzL4ISrK9sl7d44nsbGxmdYTvnz5Mtq1a4c///wT9evXR4kSJczajju/hkTkHB4+lDUzJ0yQgU5hYVK28vHH1RtpfOeO6cLVYADeegv43/+AihXzt81y5SRe+/nJQLd+/VxnYBvjSf7xNSR7uH5dBoU6YgAnWefaNfkb+fqq3RJyFYwnWS1ZsgRdu3ZFcnIyvM0o6cLXkIgo/xQFWLECeO89qZ4KSH/9O+9Ita6AAHXb5yhMEmeDgZYod+vWSe1+f39Z5L5mTbVb5PwePgQmTpQOZp1OZsAaP14uX5YOZ1skR9Vy7RpQtKjp59q1TUlxI19foG5dmSk8caLjjjc+Hti1y1Sievt24MgRIDRUfv/uu9Ke8HCZydCgAdCsmbQz//tmPDE6d+4cSpcujb179yImJsbs5/E1JCJnsWuXlNo8csR030cfAcOHO64NV67IyOYtW2QQlK0vWi9cAF56SUpsAzKgavZsdZbLuH9fSoFVqmSb7TGe5B9fQyLSqtRUma2+eLEMJra24gbZBuNJZrdu3cIbb7yBS5cuYdOmTdk+Jjk5GcnJyek/G5dl4mtIRJR/igIsXCjVQI3X+0WLAosW2aZ/2NbS0iSpXasW4GWDhYLNjcse+d8VEbmK5s2B+fOBDRuYIDaXtzcwZowkKEeOzFxCuUsXICJCyiP//bd0ijq7ixfl4vqll6SUc2QkkOF6BfXryzE9+ywwbZoc99278p6ZPNmxCfGgIFljY9QoYMkSIC7OlCAGpGS6l5fcv3ix/H0mTXJc+4iISBvq1JELsfHjgRo15L7oaNPvN2yQNTU/+QQ4eDBrFYv8SE2VdYYrVZJO7gsXgDVrbLd9o8hIYOVKWa9YrweWLZNjXLDA9vvKTkIC8PvvsjRHkSJyjuQ+Q5WJiMhePD2l4/evv4Dly9VuDZEYPnw4AgICEBoaitjYWCw2rm+SjUmTJiE4ODj9FhkZ6cCWEhG5Np1Olj85cACYOxcoU0YmfFWponbLTM6elcqkzzwj18r160t1V0fiTGIiIju4excoVUpKPBr5+wNt2wJPPCGlLJ1l3cMNG4CffwbWrgVOnsz8O09P6Tg3dponJwM+PtopUXn/vsx8Nq5v3KIF8MYb+d8u40n+8TUkImd19SoQHGwqvzlihAyEMgoPlzUc27YFWre2fmmO7dslJu3dKz/XrQt89ZVU7bCnw4eBXr1kzdACBWSpCHuU1759WwZxLVggpb4yDjqLjJQZ3BmrlViL8ST/+BoSkZYNHSoDuZ57Tga9k3pcNZ6MGDECkzOeDGbj6NGjqPT/ZVJu3LiBW7du4fz58/jggw8QHByMf/75B7psOlI4k5iIyHEePpQZxcZ+bkWRa+NOnYAePQAPB06pPXJEBk+fPp35/uBgYNYsaU9+sdx0Nlz1ZIWInNPDh8D69TKLdfFimR1k1K0b8Ntvjm/TrVvSpqZNTUnqjz82ldT08JAZVS1bSkK1cWP3WafBEown+cfXkIi04sQJYOlSYNUqWZrj0cogR44AlSubv73UVGDAABktrCiyBvGkSUDfvo6ryJGSAowdK2sVv/yyffbRty/w3Xemn8uVA55+Wm516thuwBnjSf7xNSQiLdu2TUpGFigga2Hbco3l5GTg3DkZAG5cX/vbb+VWsiRQrZpU5qhWDShbVttLTdmCq8aT69ev4+bNm7k+pkyZMvDx8cly/8WLFxEZGYktW7agoRm1TV31NSQickb//AN07izfV6sm1cWeeMK2k6MePpQB4qtWyXJP/frJ/UlJQEiIlJhu2FAGordpI4PHbVFqGjA/pthod0RE9Chvb5lh1Lo18PnnMmPHmDDu2tX0uCNHJGn8xBNyq1PHdiOXEhKAjRuldOXatTJbSVGAefOAnj3lMR07yqypFi0keRwcbJt9ExERuYIKFeT21lvSWbxli5RuXrVKlmmoWNH02Ndfl5HAbdvKrXr1rDHdywu4dk3ice/eMljLFjNqLeHjA0ycmPm+NWukVOf48aaOcHNcuCCzhRcsAKZMAerVk/ufekouhp9+Wr6vVk07lUiIiEg76tUDSpSQmLxihVxTW+rcOYlZp0/L7cwZ+XrxosTrnTvlOh0A7t2Tn3fuBP7807QNX18pXzl7NhATI/elpEi/gNrxLyUFOHUKOH4cOHbM9DUmRmYrUe6KFCmCIlaWXTEYDACQabYwERE5h+bNgQkT5Dr20CHgySclSTthgiRsrYnfiiKVOo19BmvXSv88IMt7GpPEAQHA6tXSZ6D2mCDOJCYiUoGimALNxInAu++afhcRIeUmnnhCEreWdNQaHTwIvPaaXLimpWX+XeXKsj9jkpgsx3iSf3wNicgV3Lsny0kAEtsjIoC4ONPvixSRi8voaEkIFysm91+4IGsPPfaY49ucnfv3Jdl94YJcpM6bl3ld5kedPClJ4b/+knMNo3fekaQ3kPlcx54YT4ClS5di3LhxOHDgAHx9fdGsWTMsWrTI7OfzNSQirXvrLWD6dCkZOXdu5t+lpkp8MyZ/jQngceNMlUCmTQOGDMl+2wEBwB9/AB06yM9nz8rg63PnpEP54EFZysFYaeTsWZl5DMg+Pv0084xj4/chIbZ9DRRFZlLfuSOD2wDAYJB9HT+etV8AkM7qPXts1wZ3jyfbt2/Hzp070aRJExQqVAinT5/G6NGjcfXqVRw+fBh6Mzp33P01JCJSw+3bwNSpwGefyQxfQK7V//jD8gHd2a0pHBoqk8jatQP69HHc4DHOJCYicmIZg8Ebb8hF5KJFwLJlwOXLMpp31iwgMFDKQ9esmf12UlJkxPOaNXIh+Nxzcn+RIlJ2C5CyV8by0c2bmzqoiYiIKH+MCWKjtWtlxPDKlVKa+vp10/qIhw+bOq4jI+XmLPz8pOpJ377AgQMyW2riROl0zzgT+uJFqUBy8KDpPp0OaNLENGM44/1kf3/99Rf69u2LiRMnomXLlkhNTcWhQ4fUbhYRkUM984wkiVeulKofer3M8h0xAjh/XhLFj+rWzZQkjo6WWFa2LFCmTOavRYpkjmmlS8stI4NBksMHDwJRUab7Dx8G7t4FNm+WW0bFism1vPF84No1KZn96LlFdo4dA44ezTwz+Phx6eSuW9fUOe3hIcnhtDTpW6hYUW6VKsnXKlXy3heZz9/fHwsWLMCYMWOQlJSEYsWKoX379njvvffMShATEZE6ChUCPvwQGDRIloL66itZstG4VOOjMlYY27tX+vON5wrlykk10caNpbpYmzbSr+/I9Y4txZnEREROJDlZOpgXLwaWLJELyhs3TOsqzZ4NJCbKKOU1a4BNm0wjltu0keBk9NdfcoGY8SKVbIPxJP/4GhKRq0tJAbZuNa1lXKaMxHFvb7VblrOrV4FXX5W1mQCgdm1g4EDgxRfl57Q0mS1965YMQHvqKVlCIyxMtSa7dTxJTU1FqVKl8MEHH+CVV16xejvu/BoSkWswGCTZOn68lIosVAhYuNA0eEmvl8RuxuRvx45A+fL2bVdysiRvjTOODx2S27lzsvRDUpJp3cEXX5RKHmXLmmYcV61quv5/803TdsuWlRnRj9LppCLIvn2m+w4elBlMxYrZfwAX40n+8TUkIlLfhQsy4LtWLfn53j25Lq5cWUpEr18v9xkdOGCqxHX5sizlGBDg+HY/ijOJiYg0SK8H2reX28yZMhrZmCAGpITjiROZn1O0qMwSNpa/Mnr6afu3l4iIiLLn4wM0ayY3rQgLk0Fq334rs4h375ZZWL16ychnT0+pfFKxou3LZJLl9uzZg0uXLsHDwwM1a9ZEXFwcYmJiMGXKFFSrVi3H5yUnJ2daGzE+Pt4RzSUishsPD+CTT+RroUJy32OPySCtsmVlgJMaM3j0eknaVq+e+f74eLnW98rQK3vpkpSMPnVKbhlXDQgNzZwkrltX4nDGWcEVK0rS288v875yWz6CiIiIsnq08teXX8qA74zCwmTCVps2mR8bEeGYNtoSk8RERE7Kw0MuaI3S0oDXXweWL5cyVMYS0lWqsKQjERER2YZOB7z2mpxnjBkj5x9375o63Rs2VLd9ZHLm/6eRjR07Fp9++ilKlSqFTz75BM2bN8eJEycQkkMmf9KkSfjggw8c2VQiIrvr0SPzz6GhzjtQKygIqFEj832rV0vJaeNs44MHgSNHpEx0pUrAw4emaiS//ur4NhMREbmrDh1ktvCtW9IX36aNDMJylf54lpsmIiKyEONJ/vE1JCIiW3DFeDJixAhMnjw518ccPXoUe/bsQc+ePfH111/jtddeAyCzhEuUKIEJEybg9ddfz/a52c0kjoyMdKnXkIiIHM8VY7Kj8TUkIiJbYblpIiIiIiIiIo15++230adPn1wfU6ZMGVy5cgUAUKVKlfT79Xo9ypQpg9jY2Byfq9frodfrbdJWIiIiIiIi0i4miYmIiIiIiIicRJEiRVCkSJE8H1e7dm3o9XocP34cTZo0AQA8fPgQ586dQ8mSJe3dTCIiIiIiItI4JomJiIiIiIiINCYoKAj9+vXDmDFjEBkZiZIlS2LKlCkAgGeffVbl1hEREREREZGzY5KYiIiIiIiISIOmTJkCLy8vvPDCC7h//z7q16+PNWvWoFChQmo3jYiIiIiIiJwck8REREREREREGuTt7Y2pU6di6tSpajeFiIiIiIiINMZD7QYQEREREREREREREREREZHjMElMRERERERERERERERERORGmCQmIiIiIiIiIiIiIiIiInIjTBITEREREREREREREREREbkRJomJiIiIiIiIiIiIiIiIiNyIl9oNcCRFUQAA8fHxKreEiIi0zBhHjHGFLMeYTEREtsCYnH+MyUREZAuMyfnHmExERLZiblx2qyRxQkICACAyMlLllhARkStISEhAcHCw2s3QJMZkIiKyJcZk6zEmExGRLTEmW48xmYiIbC2vuKxT3Gh4l8FgwOXLlxEYGAidTqd2c/IUHx+PyMhIXLhwAUFBQWo3xyZc7Zhc7XgA1zsmVzsewPWOSYvHoygKEhISEBERAQ8PrtxgDS3EZC2+NwG229HYbsdiux1LC+1mTM4/LcTkR2nhvWkJVzsewPWOydWOB3C9Y3K14wG0d0yMyfnHmKw+VzsewPWOydWOB+AxaYEWj8fcuOxWM4k9PDxQokQJtZthsaCgIM288czlasfkascDuN4xudrxAK53TFo7Ho6Mzh8txWStvTeN2G7HYrsdi+12LGdvN2Ny/mgpJj/K2d+blnK14wFc75hc7XgA1zsmVzseQFvHxJicP4zJzsPVjgdwvWNyteMBeExaoLXjMScuc1gXEREREREREREREREREZEbYZKYiIiIiIiIiIiIiIiIiMiNMEnsxPR6PcaMGQO9Xq92U2zG1Y7J1Y4HcL1jcrXjAVzvmFzteMh1aPW9yXY7FtvtWGy3Y2m13eT6XO296WrHA7jeMbna8QCud0yudjyAax4TuR5Xe5+62vEArndMrnY8AI9JC1zteDLSKYqiqN0IIiIiIiIiIiIiIiIiIiJyDM4kJiIiIiIiIiIiIiIiIiJyI0wSExERERERERERERERERG5ESaJiYiIiIiIiIiIiIiIiIjcCJPERERERERERERERERERERuhEliJzRp0iTUrVsXgYGBKFq0KLp27Yrjx4+r3Syb+eijj6DT6TB48GC1m5Ivly5dQq9evRAaGgo/Pz9ER0dj165dajfLKmlpaRg9ejRKly4NPz8/lC1bFuPHj4eiKGo3zWwbNmxA586dERERAZ1Oh0WLFmX6vaIoeP/991GsWDH4+fmhdevWOHnypDqNNVNux/Tw4UMMHz4c0dHRCAgIQEREBF588UVcvnxZvQbnIa+/UUb9+vWDTqfD9OnTHdY+IiNXiMNai7VajKlaiZ1ajY9ajYFajXXmtPvo0aPo0qULgoODERAQgLp16yI2NtbxjSW35QrxOS9ai9/Z0WJMz41W4n1utHoukBOtniPkRqvnD+TeXD0uu0JMBlwrLjMmOx/GZNeIyUwSO6H169ejf//+2LZtG1atWoWHDx+ibdu2SEpKUrtp+bZz5058/fXXqF69utpNyZfbt2+jcePG8Pb2xrJly3DkyBF88sknKFSokNpNs8rkyZPx1VdfYcaMGTh69CgmT56Mjz/+GF988YXaTTNbUlISatSogZkzZ2b7+48//hiff/45Zs2ahe3btyMgIADt2rXDgwcPHNxS8+V2TPfu3cOePXswevRo7NmzBwsWLMDx48fRpUsXFVpqnrz+RkYLFy7Etm3bEBER4aCWEWWm9TistVir1Ziqldip1fio1Rio1ViXV7tPnz6NJk2aoFKlSli3bh0OHDiA0aNHw9fX18EtJXem9ficF63F7+xoNabnRivxPjdaPRfIiVbPEXKj1fMHcm+uHJddISYDrheXGZOdD2Oyi8RkhZzetWvXFADK+vXr1W5KviQkJCjly5dXVq1apTRr1kwZNGiQ2k2y2vDhw5UmTZqo3Qyb6dSpk/Lyyy9nuu+pp55SevbsqVKL8geAsnDhwvSfDQaDEh4erkyZMiX9vjt37ih6vV755ZdfVGih5R49puzs2LFDAaCcP3/eMY3Kh5yO5+LFi0rx4sWVQ4cOKSVLllSmTZvm8LYRPUpLcViLsVarMVWLsVOr8VGrMVCrsS67dnfv3l3p1auXOg0iyoGW4nNetBi/s6PVmJ4bLcb73Gj1XCAnWj1HyI1Wzx+IXCUuu0pMVhTXi8uMyc6NMVm7OJNYA+7evQsACAkJUbkl+dO/f3906tQJrVu3Vrsp+bZkyRLUqVMHzz77LIoWLYqaNWvi22+/VbtZVmvUqBFWr16NEydOAAD279+PTZs2oUOHDiq3zDbOnj2LuLi4TO+94OBg1K9fH1u3blWxZbZ19+5d6HQ6FCxYUO2mWMVgMOCFF17AO++8g6pVq6rdHKJ0WorDWoy1Wo2prhA7XSk+aiUGajHWGQwGLF26FBUqVEC7du1QtGhR1K9fP9eyW0SOoKX4nBctxu/saDWm58YV4n1uXOlcICdaOUfIjRbPH8j9uEpcdpWYDLheXGZM1j7GZOfkpXYDKHcGgwGDBw9G48aNUa1aNbWbY7Vff/0Ve/bswc6dO9Vuik2cOXMGX331FYYMGYJRo0Zh586dGDhwIHx8fNC7d2+1m2exESNGID4+HpUqVYKnpyfS0tLw4YcfomfPnmo3zSbi4uIAAGFhYZnuDwsLS/+d1j148ADDhw/Hc889h6CgILWbY5XJkyfDy8sLAwcOVLspROm0FIe1Gmu1GlNdIXa6SnzUUgzUYqy7du0aEhMT8dFHH2HChAmYPHkyli9fjqeeegpr165Fs2bN1G4iuSEtxee8aDV+Z0erMT03rhDvc+Mq5wI50dI5Qm60eP5A7sVV4rIrxWTA9eIyY7K2MSY7LyaJnVz//v1x6NAhbNq0Se2mWO3ChQsYNGgQVq1a5TLrlhkMBtSpUwcTJ04EANSsWROHDh3CrFmzNBlkf//9d/z888+YP38+qlatin379mHw4MGIiIjQ5PG4m4cPH6Jbt25QFAVfffWV2s2xyu7du/HZZ59hz5490Ol0ajeHKJ1W4rCWY61WYypjp3PQUgzUaqwzGAwAgCeeeAJvvfUWACAmJgZbtmzBrFmzmCQmVWglPudFy/E7O1qN6blhvNcuLZ0j5Ear5w/kXlwhLrtaTAZcLy4zJmsXY7JzY7lpJzZgwAD8888/WLt2LUqUKKF2c6y2e/duXLt2DbVq1YKXlxe8vLywfv16fP755/Dy8kJaWpraTbRYsWLFUKVKlUz3Va5cGbGxsSq1KH/eeecdjBgxAj169EB0dDReeOEFvPXWW5g0aZLaTbOJ8PBwAMDVq1cz3X/16tX032mVMcieP38eq1at0uxIrI0bN+LatWuIiopK/5w4f/483n77bZQqVUrt5pGb0lIc1nKs1WpMdYXYqfX4qLUYqNVYV7hwYXh5eWny/5Rck5bic160HL+zo9WYnhtXiPe50fq5QE60do6QG62eP5D7cJW47GoxGXC9uMyYrE2Myc6PM4mdkKIoePPNN7Fw4UKsW7cOpUuXVrtJ+dKqVSscPHgw030vvfQSKlWqhOHDh8PT01OlllmvcePGOH78eKb7Tpw4gZIlS6rUovy5d+8ePDwyjxnx9PRMnzmidaVLl0Z4eDhWr16NmJgYAEB8fDy2b9+ON954Q93G5YMxyJ48eRJr165FaGio2k2y2gsvvJBlvZd27drhhRdewEsvvaRSq8hdaTEOaznWajWmukLs1HJ81GIM1Gqs8/HxQd26dTX5f0quRYvxOS9ajt/Z0WpMz40rxPvcaPlcICdaPEfIjVbPH8j1uVpcdrWYDLheXGZM1h7GZG1gktgJ9e/fH/Pnz8fixYsRGBiYXnM+ODgYfn5+KrfOcoGBgVnWowgICEBoaKhm16l466230KhRI0ycOBHdunXDjh078M033+Cbb75Ru2lW6dy5Mz788ENERUWhatWq2Lt3Lz799FO8/PLLajfNbImJiTh16lT6z2fPnsW+ffsQEhKCqKgoDB48GBMmTED58uVRunRpjB49GhEREejatat6jc5DbsdUrFgxPPPMM9izZw/++ecfpKWlpX9WhISEwMfHR61m5yivv9GjJwre3t4IDw9HxYoVHd1UcnNajMNajrVajalaiZ1ajY9ajYFajXV5tfudd95B9+7d8dhjj6FFixZYvnw5/v77b6xbt069RpPb0WJ8zouW43d2tBrTc6OVeJ8brZ4L5ESr5wi50er5A7k3V4vLrhaTAdeLy4zJzocx2UViskJOB0C2tx9++EHtptlMs2bNlEGDBqndjHz5+++/lWrVqil6vV6pVKmS8s0336jdJKvFx8crgwYNUqKiohRfX1+lTJkyyrvvvqskJyer3TSzrV27Ntv/m969eyuKoigGg0EZPXq0EhYWpuj1eqVVq1bK8ePH1W10HnI7prNnz+b4WbF27Vq1m56tvP5GjypZsqQybdo0h7aRSFFcJw5rKdZqMaZqJXZqNT5qNQZqNdaZ0+7Zs2cr5cqVU3x9fZUaNWooixYtUq/B5JZcJT7nRUvxOztajOm50Uq8z41WzwVyotVzhNxo9fyB3Js7xGWtx2RFca24zJjsfBiTXSMm6xRFUbJkjomIiIiIiIiIiIiIiIiIyCV55P0QIiIiIiIiIiIiIiIiIiJyFUwSExERERERERERERERERG5ESaJiYiIiIiIiIiIiIiIiIjcCJPERERERERERERERERERERuhEliIiIiIiIiIiIiIiIiIiI3wiQxEREREREREREREREREZEbYZKYiIiIiIiIiIiIiIiIiMiNMElMRERERERERERERERERORGmCQml3fu3DnodDrs27dP7aakO3bsGBo0aABfX1/ExMRk+xhFUfDaa68hJCRE9fY742torXXr1kGn0+HOnTt239fYsWNz/PsSEbkjZ4wnjMnqYUwmIlKXM8YUxmX1MC4TEanHGeMJY7J6GJPJkZgkJrvr06cPdDodPvroo0z3L1q0CDqdTqVWqWvMmDEICAjA8ePHsXr16mwfs3z5csyZMwf//PMPrly5gmrVqjmkbX369EHXrl0z3RcZGenQNmiRTqfDokWLMt03dOjQHP++RERqYEzOijHZ9TAmE5FWMC5nxbjsehiXiUgLGJOzYkx2PYzJlB0mickhfH19MXnyZNy+fVvtpthMSkqK1c89ffo0mjRpgpIlSyI0NDTHxxQrVgyNGjVCeHg4vLy8rN5ffnl6eqreBi0qUKBAjn9fIiK1MCZnxpjsHhiTichZMS5nxrjsHhiXicgZMSZnxpjsHhiTiUlicojWrVsjPDwckyZNyvEx2ZU2mD59OkqVKpX+s3GU0MSJExEWFoaCBQti3LhxSE1NxTvvvIOQkBCUKFECP/zwQ5btHzt2DI0aNYKvry+qVauG9evXZ/r9oUOH0KFDBxQoUABhYWF44YUXcOPGjfTfN2/eHAMGDMDgwYNRuHBhtGvXLtvjMBgMGDduHEqUKAG9Xo+YmBgsX748/fc6nQ67d+/GuHHjoNPpMHbs2Czb6NOnD958803ExsZCp9OlvwalSpXC9OnTMz02JiYm0zZ0Oh2+++47PPnkk/D390f58uWxZMmSTM85fPgwHn/8cQQFBSEwMBBNmzbF6dOnMXbsWPz4449YvHgxdDoddDod1q1bl225jvXr16NevXrQ6/UoVqwYRowYgdTU1Eyv18CBAzFs2DCEhIQgPDw822N91HfffYfKlSvD19cXlSpVwpdffpn+u0aNGmH48OGZHn/9+nV4e3tjw4YNAIC5c+eiTp06CAwMRHh4OJ5//nlcu3Ytx/2Z877buXMn2rRpg8KFCyM4OBjNmjXDnj170n9vfOyTTz6Z6e/16Lbzem8YX+cFCxagRYsW8Pf3R40aNbB169b0x5w/fx6dO3dGoUKFEBAQgKpVq+Lff//N9TUlIsqIMZkxmTGZMZmInAfjMuMy4zLjMhE5B8ZkxmTGZMZkd8QkMTmEp6cnJk6ciC+++AIXL17M17bWrFmDy5cvY8OGDfj0008xZswYPP744yhUqBC2b9+Ofv364fXXX8+yn3feeQdvv/029u7di4YNG6Jz5864efMmAODOnTto2bIlatasiV27dmH58uW4evUqunXrlmkbP/74I3x8fLB582bMmjUr2/Z99tln+OSTTzB16lQcOHAA7dq1Q5cuXXDy5EkAwJUrV1C1alW8/fbbuHLlCoYOHZrtNowfxleuXMHOnTsteo0++OADdOvWDQcOHEDHjh3Rs2dP3Lp1CwBw6dIlPPbYY9Dr9VizZg12796Nl19+GampqRg6dCi6deuG9u3b48qVK7hy5QoaNWqUZfuXLl1Cx44dUbduXezfvx9fffUVZs+ejQkTJmR5vQICArB9+3Z8/PHHGDduHFatWpVju3/++We8//77+PDDD3H06FFMnDgRo0ePxo8//ggA6NmzJ3799VcoipL+nN9++w0RERFo2rQpAODhw4cYP3489u/fj0WLFuHcuXPo06ePRa/foxISEtC7d29s2rQJ27ZtQ/ny5dGxY0ckJCQAQPrf54cffsj175XXe8Po3XffxdChQ7Fv3z5UqFABzz33XPoJTP/+/ZGcnIwNGzbg4MGDmDx5MgoUKJCv4yMi98KYzJjMmMyYTETOg3GZcZlxmXGZiJwDYzJjMmMyY7JbUojsrHfv3soTTzyhKIqiNGjQQHn55ZcVRVGUhQsXKhnfgmPGjFFq1KiR6bnTpk1TSpYsmWlbJUuWVNLS0tLvq1ixotK0adP0n1NTU5WAgADll19+URRFUc6ePasAUD766KP0xzx8+FApUaKEMnnyZEVRFGX8+PFK27ZtM+37woULCgDl+PHjiqIoSrNmzZSaNWvmebwRERHKhx9+mOm+unXrKv/73//Sf65Ro4YyZsyYXLfz6LEriqKULFlSmTZtWqb7Ht0WAOW9995L/zkxMVEBoCxbtkxRFEUZOXKkUrp0aSUlJSXb/Wb8exkZX8O9e/cqiqIoo0aNUipWrKgYDIb0x8ycOVMpUKBA+t+mWbNmSpMmTTJtp27dusrw4cNzPOayZcsq8+fPz3Tf+PHjlYYNGyqKoijXrl1TvLy8lA0bNqT/vmHDhrluc+fOnQoAJSEhQVEURVm7dq0CQLl9+7aiKOa97x6VlpamBAYGKn///Xf6fQCUhQsXZnrco9vO671hfJ2/++679N8fPnxYAaAcPXpUURRFiY6OVsaOHZtj24iIcsOYzJhsxJjMmExE6mNcZlw2YlxmXCYidTEmMyYbMSYzJrsbziQmh5o8eTJ+/PFHHD161OptVK1aFR4eprduWFgYoqOj03/29PREaGholhINDRs2TP/ey8sLderUSW/H/v37sXbtWhQoUCD9VqlSJQCytoJR7dq1c21bfHw8Ll++jMaNG2e6v3Hjxvk6ZktVr149/fuAgAAEBQWlvx779u1D06ZN4e3tbfX2jx49ioYNG0Kn06Xf17hxYyQmJmYaAZexHQBQrFixHEtnJCUl4fTp03jllVcy/R0mTJiQ/jcoUqQI2rZti59//hkAcPbsWWzduhU9e/ZM387u3bvRuXNnREVFITAwEM2aNQMAxMbGWn28V69eRd++fVG+fHkEBwcjKCgIiYmJFm3TkvdGxtetWLFiAJD+ug0cOBATJkxA48aNMWbMGBw4cMDawyIiN8eY7BiMyYzJRETmYFx2DMZlxmUiorwwJjsGYzJjMjkHJonJoR577DG0a9cOI0eOzPI7Dw+PTGUYACm98KhHg4NOp8v2PoPBYHa7EhMT0blzZ+zbty/T7eTJk3jsscfSHxcQEGD2Nu0hP6+R8fXw8/OzXwMtaMejEhMTAQDffvttpr/BoUOHsG3btvTH9ezZE3/++ScePnyI+fPnIzo6Ov0kKykpCe3atUNQUBB+/vln7Ny5EwsXLgQApKSkZLtfc17T3r17Y9++ffjss8+wZcsW7Nu3D6GhoTluM78yvm7GExnj6/bqq6/izJkzeOGFF3Dw4EHUqVMHX3zxhV3aQUSujTE5fxiTGZMZk4nIlhiX84dxmXGZcZmIbIUxOX8YkxmTGZO1hUlicriPPvoIf//9d6bFzAEZZRMXF5fpAy/jQvP5lfGDOjU1Fbt370blypUBALVq1cLhw4dRqlQplCtXLtPNksAaFBSEiIgIbN68OdP9mzdvRpUqVfJ9DEWKFMGVK1fSf46Pj8fZs2ct2kb16tWxcePGbIMzAPj4+CAtLS3XbVSuXBlbt27N9LfavHkzAgMDUaJECYvaYxQWFoaIiAicOXMmy9+gdOnS6Y974okn8ODBAyxfvhzz58/PNArr2LFjuHnzJj766CM0bdoUlSpVynHkl5E577vNmzdj4MCB6NixI6pWrQq9Xo8bN25keoy3t3eur5st3xuRkZHo168fFixYgLfffhvffvutRc8nIjJiTLYeYzJjMsCYTES2xbhsPcZlxmWAcZmIbIcx2XqMyYzJAGOyljBJTA4XHR2Nnj174vPPP890f/PmzXH9+nV8/PHHOH36NGbOnIlly5bZbL8zZ87EwoULcezYMfTv3x+3b9/Gyy+/DEAWU7916xaee+457Ny5E6dPn8aKFSvw0ksv5RlwHvXOO+9g8uTJ+O2333D8+HGMGDEC+/btw6BBg/J9DC1btsTcuXOxceNGHDx4EL1794anp6dF2xgwYADi4+PRo0cP7Nq1CydPnsTcuXNx/PhxAECpUqVw4MABHD9+HDdu3Mg2GP/vf//DhQsX8Oabb+LYsWNYvHgxxowZgyFDhmQqpWKpDz74AJMmTcLnn3+OEydO4ODBg/jhhx/w6aefpj8mICAAXbt2xejRo3H06FE899xz6b+LioqCj48PvvjiC5w5cwZLlizB+PHjc92nOe+78uXLY+7cuTh69Ci2b9+Onj17ZhnRVqpUKaxevRpxcXG4fft2tvuyxXtj8ODBWLFiBc6ePYs9e/Zg7dq16SeLRESWYky2HmMyYzJjMhHZGuOy9RiXGZcZl4nIlhiTrceYzJjMmKwtTBKTKsaNG5elbEPlypXx5ZdfYubMmahRowZ27NiBoUOH2myfH330ET766CPUqFEDmzZtwpIlS1C4cGEASB8hk5aWhrZt2yI6OhqDBw9GwYIFLQ4aAwcOxJAhQ/D2228jOjoay5cvx5IlS1C+fPl8H8PIkSPRrFkzPP744+jUqRO6du2KsmXLWrSN0NBQrFmzBomJiWjWrBlq166Nb7/9Nr1ERN++fVGxYkXUqVMHRYoUyTJyCACKFy+Of//9Fzt27ECNGjXQr18/vPLKK3jvvffydXyvvvoqvvvuO/zwww+Ijo5Gs2bNMGfOnEwjsQAp2bF//340bdoUUVFR6fcXKVIEc+bMwR9//IEqVargo48+wtSpU3Pdpznvu9mzZ+P27duoVasWXnjhBQwcOBBFixbN9JhPPvkEq1atQmRkJGrWrJntvmzx3khLS0P//v1RuXJltG/fHhUqVMCXX35p9vOJiB7FmGwdxmTBmMyYTES2xbhsHcZlwbjMuExEtsOYbB3GZMGYzJisFTrl0WLmRERERERERERERERERETksjiTmIiIiIiIiIiIiIiIiIjIjTBJTERERERERERERERERETkRpgkJiIiIiIiIiIiIiIiIiJyI0wSExERERERERERERERERG5ESaJiYiIiIiIiIiIiIiIiIjcCJPERERERERERERERERERERuhEliIiIiIiIiIiIiIiIiIiI3wiQxEREREREREREREREREZEbYZKYiIiIiIiIiIiIiIiIiMiNMElMRERERERERERERERERORGmCQmIiLN2LBhAzp37oyIiAjodDosWrQoz+esW7cOtWrVgl6vR7ly5TBnzpwsj5k5cyZKlSoFX19f1K9fHzt27LB944mIiFzEpEmTULduXQQGBqJo0aLo2rUrjh8/nufz/vjjD1SqVAm+vr6Ijo7Gv//+64DWEhERubavvvoK1atXR1BQEIKCgtCwYUMsW7ZM7WYRERG5HWuvldXEJDEREWlGUlISatSogZkzZ5r1+LNnz6JTp05o0aIF9u3bh8GDB+PVV1/FihUr0h/z22+/YciQIRgzZgz27NmDGjVqoF27drh27Zq9DoOIiEjT1q9fj/79+2Pbtm1YtWoVHj58iLZt2yIpKSnH52zZsgXPPfccXnnlFezduxddu3ZF165dcejQIQe2nIiIyPWUKFECH330EXbv3o1du3ahZcuWeOKJJ3D48GG1m0ZERORWrLlWVptOURRF7UYQERFZSqfTYeHChejatWuOjxk+fDiWLl2aqQO6R48euHPnDpYvXw4AqF+/PurWrYsZM2YAAAwGAyIjI/Hmm29ixIgRdj0GIiIiV3D9+nUULVoU69evx2OPPZbtY7p3746kpCT8888/6fc1aNAAMTExmDVrlqOaSkRE5BZCQkIwZcoUvPLKK2o3hYiIyG2Zc62sNi+1G+BIBoMBly9fRmBgIHQ6ndrNISKyCUVRkJCQgIiICHh4qFMg4sGDB0hJSbH4eYqiZPk81uv10Ov1NmnX1q1b0bp160z3tWvXDoMHDwYApKSkYPfu3Rg5cmT67z08PNC6dWts3brVJm2g7DEmE5ErcoaYDDg+Lt+9exeAdEjnZOvWrRgyZEim+9q1a2fW0hFkX4zJROSK3DUmp6Wl4Y8//kBSUhIaNmxo8X5JXYzJROSqnCEuq9F/bc61strcKkl8+fJlREZGqt0MIiK7uHDhAkqUKOHw/T548ACl/fwQZ8VzCxQogMTExEz3jRkzBmPHjrVJ2+Li4hAWFpbpvrCwMMTHx+P+/fu4ffs20tLSsn3MsWPHbNIGyh5jMhG5MrViMuD4uGwwGDB48GA0btwY1apVy/FxOcXkuDhrWkq2xJhMRK7MXWLywYMH0bBhQzx48AAFChTAwoULUaVKFSv2TGpiTCYiV+dO/dfmXiurza2SxIGBgQDkjRgUFKRya4iIbCM+Ph6RkZHpn3GOlpKSgjgAF3Q6WPLJGg8gMjExy2eyrWYRk3NjTCYiV6R2TAYcH5f79++PQ4cOYdOmTVa1l9THmExErsjdYnLFihWxb98+3L17F3/++Sd69+6N9evXM1GsMYzJROSq1I7LavRfa+Va2a2SxMYp4UFBQQy0RORy1C5FFOThgSBL2qAoQFqaXT+Tw8PDcfXq1Uz3Xb16FUFBQfDz84Onpyc8PT2zfUx4eLhd2kSCMZmIXJnaMRlwTFweMGAA/vnnH2zYsCHP0eA5xWTGW/UxJhORK3OXmOzj44Ny5coBAGrXro2dO3fis88+w9dff21Nk0kljMlE5OrUjsuO6r+25FpZbeotykFERK7Fw8Pym501bNgQq1evznTfqlWr0tdm8vHxQe3atTM9xmAwYPXq1Vy/iYiItM2OcVlRFAwYMAALFy7EmjVrULp06Tyfk1dMJiIiclkqXCsbDAYkJyfboPFEREQuxM4x2ZprZbW51UxiIiKyIw8PwNKRWBZKTEzEqVOn0n8+e/Ys9u3bh5CQEERFRWHkyJG4dOkSfvrpJwBAv379MGPGDAwbNgwvv/wy1qxZg99//x1Lly5N38aQIUPQu3dv1KlTB/Xq1cP06dORlJSEl156yeL2EREROQ07xuX+/ftj/vz5WLx4MQIDA9PXFQ4ODoafnx8A4MUXX0Tx4sUxadIkAMCgQYPQrFkzfPLJJ+jUqRN+/fVX7Nq1C9988435bSQiItIiO18rjxw5Eh06dEBUVBQSEhIwf/58rFu3DitWrLCwoURERC7OzjHZnGtlZ8MkMRER2YYDksS7du1CixYt0n8eMmQIAKB3796YM2cOrly5gtjY2PTfly5dGkuXLsVbb72Fzz77DCVKlMB3332Hdu3apT+me/fuuH79Ot5//33ExcUhJiYGy5cvR1hYmMXtIyIichp2jMtfffUVAKB58+aZ7v/hhx/Qp08fAEBsbCw8Moy6btSoEebPn4/33nsPo0aNQvny5bFo0SJUq1bN/DYSERFpkZ2vla9du4YXX3wRV65cQXBwMKpXr44VK1agTZs2FjaUiIjIxdk5JptzrexsmCQmIiLbcECSuHnz5lByed6cOXOyfc7evXtz3e6AAQMwYMAAi9tDRETktOwYl3OLxUbr1q3Lct+zzz6LZ5991vw2ERERuQI7XyvPnj3bwgYRERG5KTvHZHOulZ0Nk8RERGQbDkgSExERkZkYl4mIiJwDYzIREZFzYEzOgkliIiKyDQZZIiIi58G4TERE5BwYk4mIiJwDY3IWTBITEZFtMMgSERE5D8ZlIiIi58CYTERE5BwYk7NgkpiIiGxDp5NAay6DwX5tISIicneMy0RERM6BMZmIiMg5MCZnwSQxkRtISk7FuZtJSEk1wMfLA6VCAxCg578/EZGr4+c/8T1AREQZMS4QERERzweIyIj/+UQu6uTVBPy8PRZrj19D7K17yFgYQQcgKsQfLSoWRc/6USgfFqhWM8mVeHhYNhKLiOyCn//E9wABYFwmonSMC0QqY0wmIifA8wEiMCZng0liIhdz4dY9jFp4EBtP3YCnhw5phqx18xUA52/dw9zt5zFn6zk0LVcYE5+MRmSIv+MbTK6DQZZIVfz8J74HKBPGZSK3x7hA5CQYk4lIRTwfIMqAMTkLvhpELuTXnbFoPW09tpy5CQDZBv2MjL/fcuYmWk9bj193xtq9jeTCjEHWkhsR2QQ//4nvAcqCcZnIrTEuEDkRxmQiUgnPB4gewZicBWcSE7mIGWtPYurKE1Y9N82gIM2gYMSCg7iRmIwBLcrbuHXkFtwkcBI5G37+E98DlC3GZSK3xbhA5GQYk4lIBTwfIMoGY3IWfDWIXMCvO2OtDvqPmrryBH7jKDGyBkdiETkcP/+J7wHKEeMykVtiXCByQozJRORgPB8gygFjchacSUykcRdu3cOYJYez/d2D8wdw9ZdR2f4u/IWp0BevlO3v3l9yGI3KFua6E2QZNwmcRM6Cn/+U23vgUXe3/IY7G+bCu3AUIl79MsfH8T3gQhiXidyOJXEBMC82MC4Q2QBjMhE5UG7nAynXz+PupvlIiTuFtKQ70Hnr4R0aiaD6T8G/fP0ct8nzAXIZjMlZMElMpHGjFh5Eah7rSQTW7gyfYhUy3edVqFiOj081KBi18CDmvpLzyQFRFgyyRA7Fz38y5z0AAKnxN3B36+/Qefvm/Vi+B1wH4zKR2zE3LgDmxwbGBSIbYEwmIgfK7XwgLf4aDCn3ERDdCp4FQqA8TMa941tw/a/xCGk/AIEx7bN9Hs8HyGUwJmfBJDGRhp28moCNp27k+Th9ZFUEVGpi9nbTDAo2nrqBU9cSUK5oYH6aSO6EQZbIYfj5T+a+BwDg9trZ0EdUhGIwwHA/PtfH8j3gQhiXidyKJXEBMD82MC4Q2QBjMhE5SF7nA35l68KvbN1M9wXWfhxX5gxG/I5FOSaJeT5ALoMxOQu+GkQa9vP2WHh66Mx6rCH5HhRDmtnb9vTQYd42rjdBFtDpLFvPQWfee5eIsuLnP5n7HngQewj3jm1GoVavmb1tvgdcBOMykVux5NzA0tjAuECUT4zJROQglpwPGOk8POEVWBiG5MRcH8fzAXIJjMlZcCYxkYatPX4NaWaUE7v572dQUu4DOg/oI6uiUIuXoS9WPtfnpBkUrD1xDWNR1VbNJVdn6UgsxbxSeESUFT//yZz3gGJIw61Vs1CgRlv4FC1l9rb5HnARjMtEbsXccwNrYgPjAlE+MSYTkYOYez5gSHkAJTUZhuR7uH9yO+6f2Q3/yk1zfQ7PB8glMCZnwSQxkUYlJqci9ta93B/k6Q3/io3gV6YOPPyD8fBGLOJ3LMTVn4cjvNcU+ISXzfXpsTfvISk5FQF6flSQGRhkiRyCn/9k1nsAQOLeZUiNv46w5z60eB98D7gAxmUit2FuXACsjw2MC0T5wJhMRA5gyfnA7TXfIXHfcvlB5wH/Cg0R0vaNPJ/H8wHSPMbkLPjfTKRR528mIa+PKN8SleFborLpjvL14V+pMa7MfhO31/+IsO7jcn2+AuDczSRUjQjOd3uJiMg2HPX5v+t4EioU4ee/MzpxPe/3QNr9eNzZ+DMKNuoOT3/L/448ByAi0g5zzg2A/MUGxgUiIiLnZu75AAAE1X0C/pWaIC3hJu4d2wRFMQBpD/N8Hs8HiFwPk8REGpWSarDqed6FIuBXvj7undgCxZAGnYenXfZDbogjsYgcwlGf/3/8ZUARC/6lyXGuG/J+D9zZMBcefgUQWKez1fvhOYDGMS4TuQ1zP6/zGxsYF4isxJhMRA5gSZz2Do2Ed2gkAKBAdCtc/XU0rv05DuEvfgpdHmuw8nyANI0xOQsmiYk05uFD4MgRYNkW63vuvYIKA2mpUB4mQ6f3z/WxPl7MEJCZGGSJHCI/n8uWfP4/+7QHKhSxeldkRyeue+CfX3L+/cNbl5C4bwUKteqLtIRb6fcraQ+hGNKQeucqdHp/ePoF5rofngNoHOMykdsw5/PaFrGBcYHISozJROQA+YnT/pUa49byGUi9dQneoSXsth8i1TEmZ8EkMZETMyaEd+823fbvBx48ADx8AhD5FoDcB3dlK/VOHHRePtD5+Ob6OB2AUqEBVrWd3BCDLJFDlAoNgA4wu4xURpZ8/tepGIAAvTUtJHsLCsn9PZCWcBNQDLj939e4/d/XWX5/adYrCKzTBSGtX8txHzwHcAGMy0Ruw5xzg/zGBh2AUqmJQFoBwDP3aiRE9AjGZCJygPz0FSgPkwEAhuSkXB/H60TSPMbkLJgkJnISuSWEdTqgUiWgdm3guefka0yMFzp95Y/zt+7luM20e3ezrDWVcvUM7p3cAb8ytaHT5f6BGBXqjwA9PybITAyyRA4RoPdCVAg//91ZXu8B7yIlUeSpd7Pcf2fDXBhS7iOk9WvwKlgs133wPeACGJeJ3IY55wb5jQ1RvgoCtm+Rz5UiRYCwMCA8HAgKkgtWIsoZYzIROYBZfQVJd+AZUDDTfUpaKpIOrYHOSw/vwlG57oPXiaR5jMlZ8D+aSAWpqZIQ3rXL3IQwUKBA1u20qFgUc7efR5oh+w+r64smw8PbB/rileHhH4yHNy4gcf9y6Lz1KNS8T65t9PTQoUWFovk/WHIfDLJEDsPPf8rtPeDpHwz/Cg2z3B+/czEAZPu7TM/ne8A1MC4TuZW8zg3yExs8PXRoUbMk0DwKiIsDrl4FDh0CDhwA/PxMCeOwMMDHxzYHRORKGJOJyEHyOh+4uXwGlJR70EdWg2dgKNISbyPpyDqk3ryIQi1fgYePX47b5nUiuQTG5CyYJCayM3MTwj16AHXq5JwQzk7P+lGYs/Vcjr/3r9AASYfXIX7HIhhS7v1/x0AjBDd5Dt6FInLddppBQa8GuY8eI8qEQZbIYfj5T61L5/4eyA++B1wE4zKRW8nr3CA/JC6UBIICZeZwhQpAWhpw/bokjOPigHP/v++QEFPCOCTEss8hIlfFmExEDpLX+UBA5aZIPLAKCXv/heF+Ajx8/OATXg6Fmr8E//L1c902rxPJJTAmZ8EkMZENGRPCu3ebksI5JYRr1wZq1jQ/IZyd8v5A05Sr2OIZijTPrP/OQXW6IKhOF8s3bNChVvFQlCsaaH3jyP3odJYFWYPBfm0hcnHlwwLRtFxhbDlzM9sRwtZ+/ntAh3BdKPZvDERYWyCQYcDp3LsHrF4N7NkTiFK+hXEh+SbSzLxoCe/5UZ6P8fTQoVEZngO4BMZlIreS17lBTvKKDTnGBU9PSQaHhwM1akiAMiaMT56UC2Nvb0kWG2ca+/tbc2hE2seYTEQOktf5QECVZgio0szi7fI6kVwGY3IWHNJJZKXUVKmu9cMPwIABQIMG0pleowbwyivA2rVA+fLApEnAhg3A3btynTx3LjB4MNC0af4SxNiyBYiJwcRfxsPLy9NWhyUUHVZOjMbMmW4xWIZsxTgSy5KbFWbOnIlSpUrB19cX9evXx44dO3J8bPPmzaHT6bLcOnXqlP6YPn36ZPl9+/btrWobkSNNfDIaXh62XQPQ20uHMR2jceYMMGOGhJq0NJvugqxkMMjgsxkzgMOHgfbtgR/7R8PL07bvAS8PHSY+GW3TbZJK7ByXN2zYgM6dOyMiIgI6nQ6LFi3K9fHr1q3LNibHxcXl4yCJKCN7nBuYHRf8/YHSpYGGDYEnngBatpQL4vv3JYAtXQosXw7s2yeJZJ5gkDtx0LUyERFgj/MBhdeJ5DoYk7PgTGIiM2ScIWycJZxxhnDFilIq2jhDOCbGjrOvHj4EPvhAss/16iFy7lx8cNsHIxYctNkuxnWpim2J/hgwAPjnH+D774FixWy2eXJVlgZOK4Lsb7/9hiFDhmDWrFmoX78+pk+fjnbt2uH48eMoWjTruigLFixASkpK+s83b95EjRo18Oyzz2Z6XPv27fHDDz+k/6zX6y1uG5GjRYb444MuVW3++d+urj+a1QHWrAH++0/6cjt0kH5fUselS8C//wKXL8tgtNatjQPN7PMeiAzhTC+XYOe4nJSUhBo1auDll1/GU089Zfbzjh8/jqCgoPSfs4vfRGQde50bWBwXdDogNFRuVasCKSnAtWuSHL54UWYae3gARYqYSlMHBcnziFyRA66ViYiMbH8+oMO4gjcRGehto+0RqYgxOQsmiYke8WhCePdu6SDPmBDOWDLargnhRx07BvTqJQ0aOxYYORLw8kIPADcSkzF15Yl87+KdthXxYpMovNgEePxx4OWXgeho4JtvAAv6/8gdOSDIfvrpp+jbty9eeuklAMCsWbOwdOlSfP/99xgxYkSWx4eEhGT6+ddff4W/v3+WJLFer0d4eLjF7SFSW4+6UTb9/O9eV9YX8vUFOnYEatWS5ORPPwHVqgFt2kgfLjmGqbS09J+/9BIQ9cgSUPZ6D5ALsHNc7tChAzp06GBhoyQpXLBgQYufR0Tm6VY7CjsOJGPBqfzHhV7RNooLPj5AiRJyUxQgIUESxnFxwMGDMgLbz89UljosTJ5D5CrYIU1EDmbT68ToIHTfsgz4/Crwv/9JzCbSKsbkLJgkplwlJafi3M0kpKQa4OPlgVKhAQjQu87bJruE8P79UhErY0K4e3cVEsIZKQrw5ZfAO+8AkZHA1q1A3bqZHjKgRXkULqDHmAX7kGoA0jwsKEFt0EHvo8O4LlUzdQJ07CjX7K+9Bjz9NNCnD/DZZ0wQkG3Fx8dn+lmv12c7kzclJQW7d+/GyJEj0+/z8PBA69atsXXrVrP2NXv2bPTo0QMBAQGZ7l+3bh2KFi2KQoUKoWXLlpgwYQJCQ0OtOBoix0v//F90EKkGBWkwfxaOp4cOXh5ZP/+NwsMlMbl/P7BqFTBzJtCsGVC/vixFSPZhMEhieM0a+b5DB6lYktO1yYAW5RHir8f7iw7DAAUGmL9WhAd08PbK+T1A7sfcuGytmJgYJCcno1q1ahg7diwaN25ss20TuTtFkWvaxgXLo0obPaasPSznBhasUWw8N+jfoCqK3YvCmTNAmTI2bKROJxeUQUFAhQpSdvr6ddN6xufOyeNCQkxrHhcq5BYddERERLaU3lewxPrzgfTrxHrFpENg6lTgzTcBDvokchmuk+0jmzl5NQE/b4/F2uPXEHvrXqZuRh2AqBB/tKhYFD3rR6F8mHYWqzc3Idytm3TEqpYQftSVKzKdd/ly4I03gClTgEcSXEY9wnVo/P2bGPXyRGxEQXh66HI9ATD+/v75ULzVOhrd62YtI1akCLBgATBnDjBwILBunayr3KSJjY6PXIeVI7EiIyMz3T1mzBiMHTs2y8Nv3LiBtLQ0hIWFZbo/LCwMx44dy3N3O3bswKFDhzB79uxM97dv3x5PPfUUSpcujdOnT2PUqFHo0KEDtm7dCk9mwUgjepQPQmOfQxjlXx0bbxnM/vxvVCYUE5+MzrWMpE4nMbFSJWDtWpagtreMpaVjYoBWrYylpXNXFlF4Ul8YsWEHsT32htnvgXBdKGb0ikatiiwx7XLsHJctVaxYMcyaNQt16tRBcnIyvvvuOzRv3hzbt29HrVq18r19IgKOH5cca716QMmSUWgXUxijFh7ExlPmxwXjuUGJQv7Yu1cGLQUEyOReu/D0NCWDa9SQMhrGhPHJk3IR7+0tDTDONPZnzCKN4awlIlJJj7pRaFzW+vOB9L6CcuVk8tLnnwMffyydxKzIR1rEmJwFk8SU7sKte3kGDAXA+Vv3MHf7eczZeg5NyxXOs3NZDampwNGjsnZwXgnh2rWBmjWdJCH8qIULgb59AS8vYOlSmdqbm9GjEancx9yRnXHyvk6S/SeuIfZmNsn+UH+0qFAUvRpEYcT/AvHJOOC1ntlXDNHpZCZZs2bAiy/K1+HDpeI1q4BROiuD7IULFzKtTWiv9YBnz56N6Oho1KtXL9P9PXr0SP8+Ojoa1atXR9myZbFu3Tq0atXKLm0hsrn//kOkvwfmDmyJk3dSzP78L1fU/ODn6yuJ4Zo1WYLaHjKWlg4Pl/Fhj+TqcnT/PrB+PdC0lj+6dKlvGvCXx3vgubpRWPVXIA7vAGpW4FKQLsfJ4nLFihVRsWLF9J8bNWqE06dPY9q0aZg7d65N9kHkzi5elCpQlSsDJUvKfZEh/pj7ivlx4dFzg5gYIDFRClm1bOmgeO/vL6PQSpeWqdG3bplKU+/eLY8JCjIljIsUYXkTcn7skCYiFeX3fCBdRIR0CBsTxQMG2LjcCJEDMCZnwSQxAQB+3RmbXnoCQJ7lJ4y/33LmJlpPW48PulRFD5VKFBoTwrt3m5LCmkwIZ5SQAAwaBPzwA9C1qywIXKRI7s/Zv1967GfMAIKCUD4IGNulKsaiKpKSU7F8cxKe72XA/HkeaN84c9nwSZOAKlUkxg8fnvMuypSRTujJk4ExY4AVK4B586QjgsjaIBsUFJSpMzonhQsXhqenJ65evZrp/qtXr+a5nnBSUhJ+/fVXjBs3Ls/9lClTBoULF8apU6eYJCZtuHRJeoU7dwb0epQP02f6/D+3eTdSer0In3k/oVTj2vleNsJYgvrAAZagtgVLS0tnZ+NGOR9q0UJ+Lh8WmPk9cOwcUv5cAJ9nnkKpSqUyvQeU1sBvvwGnTgHly9v44Ehddo7LtlCvXj1s2rTJIfsicmW3bgE7dsjgoqpVs/4+S1w4G4eUbdvh06A+SpUOz/HcwMMDaNhQYtSmTVLdwk7jObOn0wGhoXKrWhVISZFZxlevSlb85ElpZJEiptnIgYEc9UTOhx3SROQEHj0fOHYpCSdOGVChnAcqFTdziclChYChQ2VZxE8/BV5/HYiOtn/jiWyFMTkLJokJM9aetHoR+7T/X89gxIKDuJGYjAEt7Nu7mFdCuEIF6VjVVEL4UZs2yXTd69eB2bOlJ96ci9xhw6R3t2/fLL8K0HuhdMFgpFwBShcEAh65sC9fHujXD5g4EXjlFaBw4Zx34+kJjBoFtGsH9OoF1KplGjzGa3E3Z+cg6+Pjg9q1a2P16tXo2rUrAMBgMGD16tUYMGBArs/9448/kJycjF69euW5n4sXL+LmzZsoVqyYRe0jUoWiyIidokXlA/kRAXovVC3oDVw5ART0BvKZIDbS6aQiZMWKphLUe/dKwQuWoDbfpUtSKOTKFZmt1bp1jitK5Oj2bUkMNG2a/TlPgN4LVYv4Ax5JQBH/LO+BihVlxtmqVUDZsm5x/eM+NHDxu2/fPsZbony6dw/YvBkIDgbq1s37mixA74WqYQFAgAEIC8jz3MDbW5YaWr0a2LIFeOwxFQeF+fhIJjwyUs6BEhJMs4wPHpTOAT8/SRYby1Oz9BU5Aw3EZCJyLwF6L1QODwZuA5XDAX9LBoEFBMjkptmzJVncqxfQuLHd2kpkU4zJWTBJ7OZ+3RlrdYL4UVNXnkCRAnpZzN4GMiaEjUnhRxPCmpshnJuUFKnfPHky0KCB9LibW7Jj5Uq5LVggV/FWeP99mYg8fjzw2Wd5P752bfm7DBsmy1D8849MfI6IsGr35AocEGSHDBmC3r17o06dOqhXrx6mT5+OpKQkvPTSSwCAF198EcWLF8ekSZMyPW/27Nno2rUrQkNDM92fmJiIDz74AE8//TTCw8Nx+vRpDBs2DOXKlUO7du0sbh+Rwx07Bpw/LxdlKpy4ZleCumpVoG1blqDOzb17psS6paWlH7V6tfSHN2xo3fN1Ovl7ffuttKd2beu2Q07IznE5MTERp06dSv/57Nmz2LdvH0JCQhAVFYWRI0fi0qVL+OmnnwAA06dPR+nSpVG1alU8ePAA3333HdasWYOVK1datF8iMnn4UMYYe3hI36y9krcBAbL9devkurxePScYIKzTyclGUJB0DqSlyUDruDiZaXz2rDwuJMQ0yzgkxAkaTm6JHdJE5Gp8fGQW8S+/SEfA3bvSOcA4S86OMTkLJond2IVb9zBmyeFcH5Mcdwp3N81H8sUjUFIfwqtgGArEtEdQnS7ZPv79JYfRqGxhi9cofjQhvHs3sG+fCyeEH3X0qHTwHzgAjBsnNZ+9zPz3TEuTTG3jxlKa2kpFigAjRkiy+M03gXLl8n6Ov79Ut378cZnwHB0NfP018MwzVjeDtEynsyxwWnHi2L17d1y/fh3vv/8+4uLiEBMTg+XLlyMsLAwAEBsbC49H2nD8+HFs2rQp205oT09PHDhwAD/++CPu3LmDiIgItG3bFuPHj7fb2shENpOWZpr+ac6Hth09WoJ6xgwpQd2gAUtQZ2QsLb16tUyAsqa0dEYXLwKHDwNduuRvolREhMTwtWtlnWl+/LkIO8flXbt2oYWxxjlkIBcA9O7dG3PmzMGVK1cQGxub/vuUlBS8/fbbuHTpEvz9/VG9enX8999/mbZBROZTFGD7diApSdYL9vW17/5CQyU5vG2bXItXqWLf/VnM09OUDAZkRNbVq5I0PnkSOHJEBlQb1zIOC5MLWiJHcMC1MhGRw3l4AM8/DxQsCCxeLIni7t3dIqlGGsaYnAWTxG5s1MKD6WsQZ+f+2T249uc4+ISVRXCjHtD5+CL1ThzSEm7k+JxUg4JRCw9i7iv1c36MmQnhZ56RjlOXSwhnpCjSkz5smNR63LpVDtoS8+bJFOstW/L9oTVokKwtOWoU8Pvv5j+vfXup7vX668Czz0q17M8/l5Jn5EYcNBJrwIABOZaXXrduXZb7KlasCEXJ/rPOz88PK1assKodRKrbtUsWIezWzSlOWh8tQb16tcT3Dh3ML4zhyi5elNnW+SktnZGiSBGRsDB53fOrVSvpP9+yxbS2MWmcneNy8+bNc4yvADBnzpxMPw8bNgzDhg2zaB9ElLP9+yX/2aSJ4667IiOlwvPhw0CBAkCUbYqI2Ye/v6yBUbq0jNK6fdtUmnrXLnlMUJApaVykCEe2kf1w1hIRuSqdDujUSU5G5s0D4uOlVJaVlS6J7I4xOQsmid3UyasJ2Hgq52SvIfkebvzzKfzK1kWRJ0dCpzPvnyHNoGDjqRs4dS0B5YoGWpQQNs4QdpvylJcvy7SrlSuB/v1lYV9LRzLfvw+89568gNbWmczA3x+YMEGatX07UD/nXH8WhQsDf/4pFUbefBNYvx6YO1fWSCQ3wSBL5DgPHkjNx5gY04wZJ5GxBPWyZRIL3LkEtS1LS2d09Chw4YLtKo0HB8vM7y1b5JzMHf9WLodxmchlnTolk2Nr1XL8aUDlypIo3rlTBjs9spqLc/LwkIaGhspJSUqKaZbxxYvyYnp4SKLYOBs5MNApBuGRi7BzTJ40aRIWLFiAY8eOwc/PD40aNcLkyZNRsWJFCxtKRGSlJk0kdn77raxj+L//sWIHOSdeJ2fBJLGb+nl7LDw9dEjLYSZx0pF1MCTdQaHHXoRO5wFDygPovH3MShZ7QIe+k2ORvLVqekIYkJlFbpsQftSff8q0Wx8f6UFv39667Xz2mVzYTpxos6a98ALw6afA0KHAhg2WXRfrdEDv3sBjj8ls4mbNZJL0uHH5K4NJGsEgS+Q4GzbIQoQtW6rdkhyFhwN9+rhvCeqMpaUBoGNHOf+xxUdfWpoknsuVk2rjttKkiSSz164FnnjCdtsllTAuE7mkuDgZeF2+vG1jgLl0Oil+de8esHmzVKLIT2UMVfj4yIityEgpzREfb0oaHzwo07T9/EwJ46JFeUFL+WPnmLx+/Xr0798fdevWRWpqKkaNGoW2bdviyJEjCNDcPygRaVaNGsBbb0mZyqlTZRZRoUJqt4ooM14nZ8EksZtae/xajgliAHhwbh90en+kJt7EtQUTkHrrEnTevgio1gIhrfpC55XzBZIBCs6mXEPj0lWZEH5UfDwwcCDw44/AU0/JAr6FC1u3revXgUmTgDfekB4CG/H0BKZMkbz14sXWLXNcurRMcJsyRdY4XrFCKo5UrWqzZpIzYpAlcozbt6XcQ5MmTh9cM5agXrfOfUpQ27q09KN27gTu3AF69LDdNgGZBd68ubS9fn2nm6ROlmJcJnI5d+/KCkXh4bZZasBanp5Ao0YS1zdtkjFrmq0qqdNJOY3gYCl1lpYm19rG0tRnz8rjQkNNpalDQjjLmCxj55i8fPnyTD/PmTMHRYsWxe7du/HYY49ZtC0ionwpj7w0TgABAABJREFUWxZ45x2Z2PTxx9IPXqyY2q0iMuF1chauf4SURWJyKmJv3cv1MQ9vXQYMabj+13j4la6FIk+OQoHqbZC4dxluLJ2e5z50Be7hm+9TMWSIzBpy8j5sx9i4Ua7kFywAfvhBZhNbmyAGpC40AIwebZv2ZdCuHdCmDTB8uExUs4anJzBihOQxkpNlsMBnn8nMKnJRxiBryY2ILLd6tWTzGjVSuyVm8/WVwUevvy4Vp+bOlTAYH692y2wrKQlYsgSYPVsmJr38sszItWWC+P59mUhes6ZMbLK1WrWkH3zlSjkG0jDGZSKX8uCBJGQDAmQgj9o5Sr1exqvdvy+Ja5e5zvP0lERwTIycvHTqJBezfn5SlnrNGhlNvXWrJJCNpdOIcmNlTI6Pj890S05ONmt3d+/eBQCEhITY7ZCIiHJUrJh0Kvv6ygyi06fVbhGRCa+Ts3D9I6Qszt9MQl59fsrDB1AeJiOgWkuEtHkd/hUbIaTN6ygQ0x73jm7Aw1uXcn8+gHM3k2zWZk1LSQFGjpRsefHiUrqqT5/8XdWfOgV8+aVkYYsUsVlTM/r4Y7kG/u67/G2nZk1Zi/r114HBg+U6+1Lubx8iIsrJxYtSBrFlS+md1ZiwMAmBXbsC585JCerNm2XSjpYZDDK7d8YMWSu4Y0egb1/brD38qI0bgdRUoEUL228bkL7xNm2k3/vUKfvsg4iILJOWJvHSYJDErLPM2g0KAho2BK5dk0ohLjm4yN9fyp80bAh06SLnYOXLS73tXbuAf/6R0ln798vMY62f1JBTiYyMRHBwcPpt0qRJeT7HYDBg8ODBaNy4MapVq+aAVhIRZaNQIZlRHBEBTJsmcZKInBLLTbuhlNS8h/gay0kHVG6W6f6AKs2RuG85ki8dg3dI8Xzvx+UdPgz06gUcOgR8+KEs0GuLhRhHjZLRzYMH539bOYiJkfWJx46VQwgMtH5bfn4yi7hTJ0kOREcDs2YB3brZqLHkHFiug8i+FEWmdxYtKiNwNMrVSlDbu7R0RrdvAzt2AE2bAgUK2GcfgFTbLFVK1pIuW5Yf15rFuEzkEhRFBiLdvStLAvj7q92izMLCpArF7t1yzWjDlZCcj4eHlNsIDZW1lFJSTGsZX7gAnDghjylSxLSecWCg+tO+SX1WxuQLFy4gKENpPr0Zg0T79++PQ4cOYdOmTRY3k4jIpvz9gUGDpNTWrFlAz54y2o1ITbxOzsL1j5Cy8PHK+8/uWSBUvgYUzHx/QDAAwPAgMc9tHDvigXu5V7V2XQaDZEVr15Zay9u3y2xiWySIt20D/vhDyk37+eV/e7mYMEE6I6ZMsc322raVCXCtWgHdu0sS+v+rIJErYLkOIvs6dgw4f17WBHCB/x+tl6B2RGnpR61eLa9Vw4b22wcgfdlt2siSjHv32ndfZEeMy0Qu4fBhyT/WqydL4TqjMmVkgNG+fcDly2q3xoF8fKRsSN26MiK6bVvAOHPz4EGZYbx0qcw4vnhRksrknqyMyUFBQZlueSWJBwwYgH/++Qdr165FiRIlHHFkRES58/YGXntNRjrPnStx0SVLj5Bm8Do5C84kdkOlQgOgA3ItOe0TXhYPzu1FasJNeIeaTixTE24BADz9g3Pdh6IAPbsEQJcGVKkiudI6deRrjRrON/rZpi5dAl56SabfvPkmMHmy7ZK5igIMHQpUry7Te+0sMlImK3/yCdCvn1QIya/QUOD334F584ABA2RdxZ9+kmrcpHEciUVkP6mppmmd5cqp3RqbMpagPnhQJkrPmCExoUED24ytsjWDQWZLrVkjP3fsKOc39v5Iu3BBEgVdukiftL1FRMjpxtq10t+twermxLhMpHnnz8syBtHRgLPne6pXBxITZUxzy5ZAwYJqt8jBdDogOFhuFSvKuduNGzLLOC5O1nEA5II4PFxOgEJCOMvYXdg5JiuKgjfffBMLFy7EunXrULp0aQsbSERkRx4ewHPPycnB4sUyY6hHD15/kDp4nZwFk8RuKEDvhagQf5y/lfM034BKTRG/7U8kHlgJv1I10u9PPLAS8PCEPio6132UCvXHwm1e2L1bBs3u3g3Mnw88fCgdvpUrm5LGLpU4/v13yab6+gLLl8tsL1tavFgWo1qxwmE95yNHyrrEY8YA335rm23qdDKL+LHHgBdflHUVhw4Fxo9nJ7Sm6XSWBU52iBCZb9cu4NYtKcPggnQ66VyuUMG5S1BnLC1ds6ZUxrDnzGEjRZExAmFhcs7kKC1bAkeOyKlHy5aO2y/ZCOMykaZdvy7hv1QpyTk6O50OqF9fBhdt2iQx0s6Fr5ybl5ep5DQgaxgbE8YnTsjILx8fWUbE+Di3fsFcnJ1jcv/+/TF//nwsXrwYgYGBiIuLAwAEBwfDj+8rInIGOp2MsA4OlplD8fHAK6/ITGMiR+J1chZMErupFhWLYu7280gzZD+f2Ce8LAKqt0HSgVW4bjDAN6oaHsQexL1jmxDU8Fl4BYbmuG1PDx1aVCyKWrVkbaK+feX+lBRZmteYNN69G/j5Z1Pi2DjjWJOJ47t3ZVrsvHnAM8/IOguhOb9GVnn4EBg+XOo/tm1r223nIjgYGD0aGDJEZhVXrWq7bZcsKTOxPvkEeO89mUE2b56pQhdpDEdiEdnH/fvA+vWSlQwLU7s1dmUsQV2zpiRj586V84N27YAMy7E5XFIS8N9/krguVkyuZR05o+voUZlJ/MILjv3oDA6WGd1bt8rgPjX/BmQFxmUizUpMBLZskUvK2rW10zfl5SVLDa5eLQOMmjeX+wjSuVGmjNwMBhn8Z1zPeNcueUxQkClhXLiwc5ZUIevYOSZ/9dVXAIDmzZtnuv+HH35Anz59LNoWEZFdNW4MBAYC33wDTJ8O/O9/jhl5TWTE6+QseLrupnrWj8KcredyfUxou/7wCiqCxAP/4d6JrfAKLoJCrfoiqO4TuT4vzaCgV4OoLPf7+CA9cWyUnCyJY2PSWJOJ4w0bpNf29m3gxx/le3tcxX/3HXDypMxWdrA33gC++EJy1P/8Y9tte3oCw4ZJ3rtXL+mEnjQJGDTILT6DXQuDLJF9bNwogbFFC7Vb4jAZS1CvWiUlqB97TNbidWR/qVqlpTNKS5MEdbly6syqbtIE2LNHXoOuXR2/f8oHxmUiTUpJkZm4Pj5Ao0ba+9f085P+37VrgR07JHZrJcntMB4ekgQuXFhGYScnA9euScI4NlZmGnt6AkWKyElReLh0qPOF1C4HlJsmItKM6tVlNtKMGcDUqcDAgUChQmq3ityFnWPyhg0bMGXKFOzevRtXrlzBwoUL0dXJO1OYJHZT5cMC0bRcYWw5czPH2cQ6Ty8UbPI8CjZ53uzteioGNCpbGOWKBpr1eL3elAA20kziODkZeP99YMoU6UFdv15qgdlDQgIwdqzUZnZkncn/5+Mjidtu3eRi3x55ipgYGUA9cqScJyxdCsyZ4/xrb1EG7Iwmsr3bt2Vxv6ZN3W4ap7EEdcWKUoJ6zRqZyduxo2OSpWqVln7Uzp3AnTuyZJMa9HqZCfbvv1JGtFgxddpBVmBcJtIcg0GqNyQnS5l/R6xBbw+FCkklis2bZcBX9epqt8jJ6fVAZKTcFEVKcMbFyUzjgweB/ful08OYMC5aVLtvDnfFmExElFmZMjJr6LPPgMmTJVEcEaF2q8gd2DkmJyUloUaNGnj55Zfx1FNPWdg4dTBJ7MYmPhmN1tPW55gktpwCr9SHmPj9KKDhF1bXDM5v4rhOHcmj2nXZlUOHZNrrkSOSPR061L5Tmz7+WC4Ux4+33z7y8Mwz0jk8dKh0WNvjmsXXF5g2DejUSWaQRUcDX32lXsc4WYgXvkS2t3q1dAo2bqx2S1Sj10u56ZgYYNkyUwnqtm2lHLKtqV1aOqOMlcaLFlWnDYBUgdmxQ2Z126tgCtkB4zKRpiiKVG64fh1o1kwmjmpZRIRcl+/fL8dSurTaLdIInU5OcIKDZaRcaqq8KYylqc+elceEhEjCOCxMvmdwdm6MyUREWYWHS9nKzz+XSVj9+0sJLSJ7snNM7tChAzp06GBho9TFJLEbiwzxxwddqmLEgoM22qIO4xqFI3L5dZvXDDYncbxrV/aJ4zp1TDOO8504NhhkhNPIkUDZssD27dJza0+XL8uivYMHy8hileh0Eq8fewz49VfgefMnmFusdWvgwAEpc/3cc8DffwMzZwIFC9pvn2QDvPAlsq2LF2X2SJcunC0C6QPt3dtUgnrmTNuWoH60tHSnTpIcVfOjasMGaZfalcY9PSU2//qrrHxRoYK67SEzMS4TacqJE5L/q1tXqgy7gvLlpSjW7t1SjUPNAU+a5eUlo9aMpTySkkwJ4xMngMOH5TwxLMw009iuI+atl5ScinM3k5CSaoCPlwdKhQYgQO8m3ZKMyURE2StYUGYkffWVrFHct68qVTTJjVgZk+Pj4zPdrdfrodfrbdky1bjJ2RjlpEfdKNxITMbUlScABUA+Bp++07YiurcoB3TcBYwaZfeawXkljnftyn7GsTFpbHHi+OJFmd66erUkvydNcszF1/vvyyyyESPsv688NG0KPPGE/Hmfekpm/tpLSIh0RnfpIgPJNm6UJZ/V7iinXPDCl8h2FAVYsUI6++w9GElDcipB3aGDjN2y1oULUk45Lk5e7tatVVrKIoPbt2X2brNmQIEC6rYFkMRwqVKSoC9Xjh/hmsC4TKQZly7JINlKley3gpEadDqJq0lJwJYtsnSD1mdIqy4gQEp0likjI8lu3TKVpt61Sx4TFCTJ4vBwWffYnlXP8nDyagJ+3h6LtcevIfbWPWSsY6cDEBXijxYVi6Jn/SiUD3PhNwdjMhFRzvz9pdz0999LsrhnT+mEJrIHK2Ny5COT98aMGYOxY8fasGHqYZKYMKBFeeiS9fh49WF4eClQYH75aU8o8PLyxLguVdG9bpTc6esLfPqpTMHp3duhNYMzJo5fe03uyy5xPG+eKXFctWrWNY6z5H5//VWmtfr7AytXAm3a2P1YAEjDf/hBajDbo6amFSZPltdsxgwZ6GVPOp3pvKB3b+lUGDIE+PBD+VuTk+GFL5HtHDsGxMZKbV/+r2RhLEFds6Ykd+fNs64EtTOVln7Uf/9JP3DDhmq3ROh08vp+842UQ61TR+0WUZ4Yl4k04fZtKVBVooTVKzY5NQ8PWZ94zRoZ+NuqFa/lbMbDQ5LAhQvLmyc5Gbh2TZLGsbEy09jTU6amG0tTBwY6pDT1hVv3MGrhQWw8dQOeHrpslzlTAJy/dQ9zt5/HnK3n0LRcYUx8MhqRISqP1LMHxmQiotx5e8ss4t9+kwv8u3clt8DlFMjWrIzJFy5cQFBQUPrdrjKLGGCSmP7f9vlRSNlSGM2HHcTWszmfxBsZf9/oyjFM/OhVRIYXzPqgVq2kJuT//qdqzeDcEsfGpHGOiePK91D7v8mosfJj+HXrIsnukBDHNX74cFm8qV8/x+0zDxUryuv44YfAyy875uWIipIJ3J9+Crz7ruTpf/5Zxh8QEbmc1FT5oCtXjuvx5KFoURlEdOiQvGTmlqA2GOQcYO1a+dkZSktndOECcOSIVO/w9la7NSbFislM7nXrJAa70DUREZEq7t0DNm2SAU716rluP6iPD9CkiVzTbdkisVrFya2uS6+XJaoiI6UqTXy8JIzj4mSqusEgA9+NZamLFrXLkia/7ozFmCWHkfr/fUq59S1l/P2WMzfRetp6fNClKnoYJyEQEZH78PCQSWYFCwKLFkmi+LnnnOdCndxaUFBQpiSxK2GSmLB3ryRIv/rKH6+/Vt9UDujENcTezKYcUKg/WlQoil5hBpRr/AQQrQPefjv7jRcqBPzyC9C5sySLnaRmcE6lqg8eNCWNd69LwLwf9HiID+DpMQZVj+lQe6jOulLV1lizRqZH/f67061FOWYMMHeuJIo/+cQx+/TwkJnLbdvK7OI6dYCJE4G33uK5gtPg6Ggi29i1S6YVOaAChyvQ6SRhWaGCeSWoM5aWrlVLxrSpXVo6I0WRhHd4uCRknU3LlpLA3rxZvicnxrhM5NRSU+Wz1MMDaNzY9ZOmBQrIca5fL9fbdeu6blLcKeh0MvogOFhGeqemAtevm9YzPntWHhMSYipNXahQvv8oM9aelOXMrJBmUJBmUDBiwUHcSEzGgBbl89UWp8KYTERkHp1OLuaDg6XzOT5eSn45Wd84aRhjchZMErs5RQHeeUeuGV55Re4rHxaIsV2qYiyqIik5Fec270ZKrxfhM+8nlGpcGwH6DG+b114DJkwAXnop9ymlzz8vQ4eduGawXi+JxzrRycCp94BTnyC5aSscfOcn7L5cLPcZx7XludWr2yhxbDDIH6Z+feCZZ2ywQdsKCwOGDZM//YABMtnZUapXB3bulBnFQ4fKstc//iiDpUllOp1lgZO9QkRZ3b8vmc6aNeXDlsyWXQnqypXlvuDgzKWlIyKAV18FihdXu9VZHTkCXLzovJXGg4OlbOjWrXLu46IDaV0D4zKR01IUYNs2IDFRBtz4+qrdIscoXFiSw9u3S9XjypXVbpEb8fKSkiDFisnPSUmmhPHx48Dhw9IBHxZmmmlsYefGrztjrU4QP2rqyhMoUkBvWtZM6xiTiYgs06iRnCx8/TUwfTrQv7+sx0SUX3aOyYmJiTh16lT6z2fPnsW+ffsQEhKCqCjnPK9hktjNrVghJZ8WL5ZrhkcF6L1QtaA3cOUEUNAb0D/yIOOU0okTgalTc9+ZsWbwtGnAqFHOWTP44EGgVy/g6FFg8mTohwxBHU9PZFx2L8uM4xwSx3XqyFerEse//CIL/m3c6LQXB0OGSPXtd98F5s937L59fWUGc8Zlr7/8UsYikIo4Eoso/zZsANLSOEUzH7IrQV26NHD+vHzsOFtp6YxSU+VUqXx5oEwZtVuTsyZNpBLNmjVA165qt4ZyxLhM5LQOHACuXJHP0+BgtVvjWFFRQEKCxOkCBTjYVzUBAXKyUaaMDFK/dctUmvrCBXlMcLApYVy4cK7T3S/cuocxSw5n+7uU6+dxd9N8pMSdQlrSHei89fAOjURQ/afgX75+jtt8f8lhNCpb2DXWKGZMJiKyXHS0VC/94gtgyhRg4EDHLgNJrsnOMXnXrl1okaGK7pAhQwAAvXv3xpw5cyzalqPwrMONpaXJZNXHHpNq0FYxTin94gspV5QXDw/5cN+5U36uU0eyfQaDlQ2wEYNBFrytU0demJ075cXJ5iLIOOP49deBb76RJHFCgjxl5kyZ/LtvHzB4sMy0CQyU0tSvvCKJzO3bZaJYjh48kMxr167Sa+CkAgKAceMkn71rlzptaNlSOlg6dpQS1M89JxVaSSXGIGvJjYhMbt+WING4sQQPspqxBHXXrrKm74n/n9TSqZPEcGf9+Nm5E7hzB2jTRu2W5E6vB5o3B/bvlyQHOSnGZSKndPq0xKWaNU2TOt1NlSqSHN6xA7h5U+3WEDw8JAlcrRrQujXQpYt0bBQqBMTGyiDGxYtlEPvJk9IBomReZ3jUwoPpaxA/Ki3+Ggwp9xEQ3QqFWvdFcKPuAIDrf41Hwr7lOTYr1aBg1MKDtjtONTEmExFZp3RpyT2kpAAffwxcvqx2i0jr7ByTmzdvDkVRstycNUEMcCaxW/vpJxm9u317PierGqeUvveezAw2R/XqckX43nuSjFWzZvCFCzLlaO1aWeB24kSL632ll6rOMOU444zjXbvk608/ySwhT0+5/jKWqjaucezrC2DGDKkzuWKFbY/TDvr0kYofQ4fKy6fGpOdChWQmc+fOwBtvyFtrzhypak4OxtHRRPnz33+yOG6jRmq3RPMeLS3dvr3E4T//lGqKxhLUzuT+femDrVULKFJE7dbkrVYtOYdcuRJ48UWnLXzi3hiXiZzO1atSiaFcObm5K51Oyk7fuyfrMrdqxQqSTkWvlynfUVGSDI6PN80yPnBATrD8/WWGcVgYTuoCsPHUjRw351e2LvzK1s10X2Dtx3FlzmDE71iEwJj22T4vzaBg46kbOHUtAeWKanwAJWMyEZH1wsNNk9SmTJHS0+58IkX5w5ichesfIWXr3j3Jz3bvDtSrl8+NGaeUzp9v2ZRSX18pUb16NXDqlEz5cXTd4vnzZb8nTkhv8qef2mxBqIwzjr/9VqpHJybKLKEZM+SieO9eYNAg04zjmOhUvPJuGL5sNA/b71TEgwc2aYrdeHkBkycD69dLnl9Nzz0nSfny5WXw85AhcPrXz+VwdDSR9S5elJFbLVvKenBkFYNBxqB98YUsr/f441LJIzpaxoM99ZSMDZs5UybDpKaq3WKTDRuk/c2bq90S83h4yIznc+dkUhE5IcZlIqcSHw9s2SLFuGrUULs16vP0lOIpXl7Apk2yfBM5IZ1ORtZVrAg0awY88YRUPIuIAK5fB7Zuxc+/bYCnhYPFdB6e8AosDENyYq6P8/TQYd622HwcgJNgTCYiyp+CBWWWUmSkzFjat0/lBpFmMSZn4fpHSNmaNk3O5ydOtNEG+/SRxXjfeSdL2aE8tWgho1E7dXJczeDbt2U/PXsCHTpIdtEBU0+NieN+/bImjr/4AqiLXdibGo1BW7ubEscxplLVO3Y4X+KzY0f5Ew4frn5ne2Sk5Po/+UQSAHXrSilMchAGWSLrKIpUjwgLkw99skpsrCwDsWyZnJIMGCCVOowfNcYS1AMGSCxeu1YKoZw6pW67AVkGcMcO6SwvUEDt1pivfHmp/rVqlforh1A2GJeJnMaDB5II9feXAcL8dxN6veQb790Dtm1jLNEELy+pk16zppRq6dgRax/4Ic2MbiBDygOk3buLh7evIH7HItw/sxu+JXMfMZFmULD2xDUbNV5FjMlERPnn5we8+aaUkZw1S0ZaE1mKMTkL1z9CyuLaNZn92b8/UKaMjTZqnFK6bh3w77+WP79gQSlV/csvwPLl8mG/Zo2NGveINWtk+8uWmfZZqJB99mWG9MRxu7P49kQz7PngHyQk6NJnQmWccVy/vvMljnU6qfRx5Ajwww/qtcPIw0NmEe/aJW2rV0/al5amdsvcgIOC7MyZM1GqVCn4+vqifv362LFjR46PnTNnDnQ6Xaab7yPVAhRFwfvvv49ixYrBz88PrVu3xklOiyNHOnpUMpzt2rnFyaetJSYCixZJDPL0BF59VZYg8PfP/vF6PdC2rQzYCgqSU4Hffwfu3nVoszNZvVoKszRsqF4brKHTyWziGzdk4Bs5GTvH5Q0bNqBz586IiIiATqfDokWL8nzOunXrUKtWLej1epQrV86p12UispW0NJlBnJoqCVFvb7Vb5FyCgmSljatXOcBXixK99IhNMG8a+O013+Hi5z1x+eu+uL32e/hXaIiQtm/k+bzYm/eQlOxE5V+swQ5pIiLb8PaWi/7mzeVi/u+/LZ+wRu6NMTkL1z9CymLcOHlvv/eejTdsnFI6bJj1U0p79JBZxRUqyMxeW9YMfvBAtteqlUx9OXAAeP5522zbFt59FwgNBd56C76+khzOOOM4IQFmJY6/+srxiePateWlfP996ax3BtHRMkN74ECZ5dyqFXD+vNqtcnEOCLK//fYbhgwZgjFjxmDPnj2oUaMG2rVrh2vXch5dHhQUhCtXrqTfzj/yRvj444/x+eefY9asWdi+fTsCAgLQrl07PHC2afvkmlJTZRpmuXJA2bJqt0ZTDAZZE3fGDFk1wlhaunhx855ftKispfv001KCesYMdUpQX7ggA61attRm4qBYMSmbunYtkJysdmsoEzvH5aSkJNSoUQMzZ8406/Fnz55Fp06d0KJFC+zbtw+DBw/Gq6++ihUrVlhzdESaoChyTXL7tiSIue5u9sLCZGLqqVNcwkBrzt9Mgrld80F1n0DRHhMQ2ukt+JWpDUUxAGl5J5gVAOduJuWrnapjhzQRke14eMgamk8+CfzzjySLOTuIzMWYnIWX2g0gxzpxAvj6aykzHRpq440bp5TWqQPMmSOjeqwRGSkd5p99BowcKd/Pm5e/hZsOHJDS0idOyDrIb73lXP/gu3bJjObvvsux58CYOK5b13TfgwdSKXv3btPtp5+kg9vLS8pt1qkjSVx7d0h8+KEsU/Tpp5IsdgZ6vbwlO3WSRED16lKGumdPebuSjVkaOK34H/z000/Rt29fvPTSSwCAWbNmYenSpfj+++8xYsSIbJ+j0+kQHh6e7e8URcH06dPx3nvv4YknngAA/PTTTwgLC8OiRYvQo0cPi9tIZBFjzzHfaxaJjZXCJVevArVqyUCgnGYO50anA6pVk7Fj69dLQZR9+2QlinLlbN3qrBQFWLkSCA/X9vqULVsChw9LKVUHrN5B5rJzXO7QoQM6dOhg9uNnzZqF0qVL45NPPgEAVK5cGZs2bcK0adPQrl07i/ZNpBVHjshgoAYNgJAQtVvj3MqWlQHH+/bJ0gvFiqndIjJHSqr5NcK9QyPhHRoJACgQ3QpXfx2Na3+OQ/iLn0KXxwW6JftxSg64ViYicis6nSx7EBwsneHx8ZKL8PFRu2Xk7BiTs3D9I6RMRo4EIiKkfL9dZJxSmpSPkZ4eHpLI3bVLvre2ZnBamjyvbl0JHjt3Am+/7Vz/3IoCDB0qGd0+fSx6qjkzjnfvltm0vXvLc55/XmKmrWcclyol76uPPwbi4myzTVtp3lzGCXTuDLzwguRibt1Su1VkFB8fn+mWnMNUtJSUFOzevRutW7dOv8/DwwOtW7fG1q1bc9x+YmIiSpYsicjISDzxxBM4fPhw+u/Onj2LuLi4TNsMDg5G/fr1c90mkU3cvy+ZyVq1ZAoN5cnS0tLmUqsE9ZEjwMWLsm8tD14KCpJS2du2qVu2m2zD3Lhsqa1bt2aKtwDQrl07xltyWefPy+d8tWoyDpryVr269Fds2wbcuaN2a8gcPl7W9634V2qMlCsnkXrrkl33Q0RELqxhQ1lT8+hRYPr0/OUjiNwUz7LcyObNwIIFMuPzkSU5bevDD4GbN4H/nyWQL9WqSSZz0CDLawafPy+PHz5cspc7dshVp7NZulSSBB9/LD3e+fRo4njvXkkc//ST/L5SJVPi2FiqumZN2ySO331XBmx98EG+D8PmChaUCem//iqztqpXB/77T+1WuRidzrJSHf+fEYmMjERwcHD6bdKkSdlu/saNG0hLS0PYI8m0sLAwxOUwMqFixYr4/vvvsXjxYsybNw8GgwGNGjXCxYsXASD9eZZsk8hmNmyQwUwtWqjdEqeXXWnpV181v7S0uYoUMZWgvnjRviWoU1MlDpUvD5QubfvtO1rjxpJsX7NG7ZZQOjvHZUvFxcVlG2/j4+Nx//59m+yDyFncuCHjnUuWlOsvMo9OJ9eoBQpIdQqu/uL8ivhaX7JMeSiDkAzJuXfo6wCUCtV4rXYrYzIREZmhWjVZYvLqVZksxplBlBvG5CxYbtpNKArwzjuSDLT7MrwZp5S+/nr+Z0fp9bItc2sGK4pMAerfX0pOrF7tvB3wqamyhnPLllLb0k58fWWiMiCTvGvVMpWq3rXLVKr6xx9NpaqrVZOJ4bVrS8nq6Oi8BxcUKiRrXQ8bJnl9Z+wQ6d5dOrL79AHatJF2TpoE+Pmp3TIXYGW5jgsXLiAoKCj9br1eb7MmNWzYEA0bNkz/uVGjRqhcuTK+/vprjB8/3mb7IbLYrVuS9XzsMRmtQznKWFq6dm0JmfmdOZwbR5Wg3rlTZt3a/bzMQfR6qdyxdKmUVWWZUCfghHGZyB0kJsoA7ZAQuY5yg34lm/Lykuu11avldWze3CZjqclGHj4Erl2T87K4OCApyQuhen/cTL6X43PSku7AM6BgpvuUtFQkHVoDnZce3oWjct1nVKg/AvQa775kaUsiIvsqXVo6pD/7DJg8WWZH2XpUObkGxuQsNH6WReZasADYulVmrDjkff3uu8D33wNjx8r0VFto1kxqBg8YIDWD//5btp1xcadbt4A33pAakc8/L8nkggVts397+P57KYcxd67Dew9yW+M4r8SxcZ3j7BLH/ftLqevhw4HFix16SGYrUUJmE3/+OTBihCx7/fPPQEyM2i3TOCuDbFBQUKbO6JwULlwYnp6euHr1aqb7r169muOaw4/y9vZGzZo1cerUKQBIf97Vq1dRLENG4+rVq4jhG4LsafVqyXQ2aqR2S5xWYqKct+zfL6Un+/aVr45iLEFds6YkqX/+WQY/tWuX/1OLe/dkInmtWjJ72VXUqiVjH1aulHF9TIyozM5x2VLh4eHZxvCgoCD4cbQeuYiUFJkB6+MjId4N+pTswt8faNIEWLtWKl01aMCYohZFkdLfcXFyu3lT7itQAAgPl1snn6L4ecd5pBmUbLdxc/kMKCn3oI+sBs/AUKQl3kbSkXVIvXkRhVq+Ag+fnGOAp4cOLSoUtdPRORA7pImI7C8sTDqkv/gCmDoV+N//ZPQ3UUaMyVm4/hESHj6URFiHDlJ92SGMU0q//RY4dsx22w0OloTqb79JZi9jzeD//pOfV64EfvlFenOdOUGcmAiMGSMzomvXVrs1AEyJ4zfeAL77zlSqevt2SajWri2J4zfflGWiM5aqnjVLZkUpCjBxIrBkiXSAOysPD2DwYEmIe3vL8UyebPmy15SBJaU6LA3IAHx8fFC7dm2sXr06/T6DwYDVq1dnmi2cm7S0NBw8eDA9IVy6dGmEh4dn2mZ8fDy2b99u9jaJLHbhAnDokARlHx+1W+N0Hi0t3bmzxBlHJogzyliC+tIlGX+2YUP+SlBv2CDH2by5zZrpFDw8pErHuXPytyOV2TkuW6phw4aZ4i0ArFq1ivGWXIbBIAOzHzyQBCcn4edPoUJSevriRTltIsd58EBW79q+Xcbm//efdOv4+MjA6g4d5FarlpyfvdAgKscEMQAEVG4K6DyQsPdf3FrxJRJ2LoJXYGEUeXo0guo9mWtb0gwKejXIfaaxJjhZTCYiclnBwcDbbwORkbJG8d69areInA1jchacSewGvv4aOHNGZhM7lHFK6YgRwKJFtt12t26ZawbHxEgtyJYtgTlzJBA4u08+kZnPEyao3ZJc+fpKArVePdN9Dx7IpG7jbOPsZhwXLgz07i35/Bo1nLeTpFo1ufh9/31g5Egpk/nTT1I1nSzkgJFYQ4YMQe/evVGnTh3Uq1cP06dPR1JSEl566SUAwIsvvojixYunr584btw4NGjQAOXKlcOdO3cwZcoUnD9/Hq+++ioAQKfTYfDgwZgwYQLKly+P0qVLY/To0YiIiEDXrl0tbh9RnhQFWLFCpl3UqKF2a5yOo0tLmytjCeoNG6QM9f791pWgvnVLBlU1by6zcFyNcY3lVavktWGJUBXZOS4nJiamV+YAgLNnz2Lfvn0ICQlBVFQURo4ciUuXLuGnn34CAPTr1w8zZszAsGHD8PLLL2PNmjX4/fffsXTpUov2S+SMFEX6IK9f50oStlS8uIwDP3BAXlNeo9mHwSDraBtLSN+5I/cXLCgxPTwcCA3NOUyUDwtE03KFseXMzWyTxQFVmiGgSjOL2+XpoUOjMqEoV9QF/qE4a4mIyHH8/GSG05w5khh57jmpUEoEMCZng0liF3f3LvDBB5JLjY528M71eplS+vzzwMaNQNOmtt1+8eIy9bNjR0kQh4XJ4vRaSBDHxUlbBw7U5JWuOYnjhATg9GkZ/e3lJe8/4xrHtWvLxb6zJI71etNbybjs9YwZUtXcmrJmScmpOHczCSmpBvh4eaBUaID211AyhwOCbPfu3XH9+nW8//77iIuLQ0xMDJYvX46w/1/7PDY2Fh4Ztnv79m307dsXcXFxKFSoEGrXro0tW7agSpUq6Y8ZNmwYkpKS8Nprr+HOnTto0qQJli9fDt+8FuEmssbRozKT+MUX3eJE01wZS0sXL+740tLm0utNY9OWLbOuBPXq1ZIcbtDAni1Vj04nZbq//hrYsyfzshbkYHaOy7t27UKLFi3Sfx4yZAgAoHfv3pgzZw6uXLmC2NjY9N+XLl0aS5cuxVtvvYXPPvsMJUqUwHfffYd27dpZtF8iZ3TypAzMrlMHKOoClXGdSYUKcm25axcQEOBayzSoKTHRVEL6+nUZ8K3XS7dKhQry1ZLLoYlPRqP1tPW5zii2lJeHDhOfdHRHlp2wQ5qIyLG8vYFXXgGCgoD58yVJ0rkz168gxuRsuEHWwr19/DGQlASMG6dSA7p3Bz79FBg6FNi2zXYfxGlpMhP3vfeAypWl1vEHH0iP6/jxsj9nnroydqzUaho1Su2W2Ex2ieOOHaXDf8QI+bpzpwziSk2VWG1c49hZEsfGZa/ffFNmQf/9t7y1QkPzfu7Jqwn4eXss1h6/hthb95Dx0lgHICrEHy0qFkXP+lEoH+YCI6Gz46AgO2DAAAwYMCDb361bty7Tz9OmTcO0adNy3Z5Op8O4ceMwTrUPSnIbqakyvbJ8eaBsWbVb4xQMBokNa9fKR0LnzrKMgbNftxUpIgOJDh+WVS5mzpSxcI0aycConMTGAkeOAF27Shx0VcaJ8uvWqR/b3Zqd43Lz5s2hKDknA+bMmZPtc/ay5Bu5mMuX5VqnYkWZdUm2pdNJWeOkJGDLFqkywpnalnv4UJLBxsRwUpK8toULS5dKWJgMeLP2HCwyxB8fdKmKEQsO2qzN47pURWSIE5SUsQV2SBMROZ6Hh1QjLVhQSqzevSuT2Zw5Z0D2x5icBZPELuziRcnPvv22zMpRhYeHzJht0QL44w/5YM6vc+ckg7dxoySDx4+X3scOHWSNX2evGXz0qCz4+/HHstCSC5s6VWYQp6XJIQOZZxzv2pV74rhOHXm+IzuXg4PlrdO5M/D667L/OXNkVlR2Lty6h1ELD2LjqRvw9NBlO3JaAXD+1j3M3X4ec7aeQ9NyhTHxyWjXueA1YpAlyt3OncDt21LqiHD+vMzGNZaWbtVKqkJpRU4lqNu3l/sepSiSUA4Pl8Spq2vZUpLomzbJ35ZUwLhMZHe3b8tY6OLFVajc5UY8PICGDYE1a0xxxcdH7VY5N0WRstFxcXKudeOG3BcQIOci4eEy6M2Wg9Z61I3CD78k47j+RL639U7biuhe1wXWIjZiTCYiUodOJ6W/goNlrcT4eCldxhMJ98WYnIXrH6EbGz1aRtgOG6ZyQ5o3Bx5/XJK3KSnWb0dRJHtXvbokiteulUSrMYOo1wMffSTTVmJj5XE//STPcyYjRkhJ7P791W6J3VWpIpU9xo83rWtknHH8xhvA7NlSKTwhQdYFnj5dZpDt3CmzeevWlfdwrVoSv7/+WhLLycn2b/uzzwIHD0oCoF07qQx+/37mx/y6Mxatp63HljM3ASDP0lrG3285cxOtp63Hrztjc3285hiDrCU3Indx/75kEWvVcvs6lImJwMKFMgDHy0s+3x9/XFsJ4oyMJaj79ZPrzvnzgd9+M8U9oyNHgEuXZNCRs8+UtoWgIOnQ37ZNBmyTChiXiezq/n1g82b5vKtXzz0+29Xk4wM0aSJdClu2SDUSyuzBAxmEt327VMX67z/g2DFJBMfEyLj6jh3ldDQiwvZVTb74Alg5rTw6Fo6G3ssDnh6W/VN4euig9/LA5Kei0b9FOds2Tm2MyURE6mrQQPrijx8Hpk2TjglyT4zJWXAmsYs6cEAGx3zxhVy0qm7yZBla/dVXwKBBlj//5k3pff3zT6BXL1kwNjg4+8c+9phM5Rk40PKawfa2YQOwZIn0ILtJ7cUPPpA1GydNkrdBdnJb43jXLpl1vHMn8MMPMis544zjOnXkqz1mHBcvDixfLm+34cPlInvePLmonrH2JKautG6EdJpBQZpBwYgFB3EjMRkDWmQz5UyLdDrLAid70sidrF8vH2AZ1u90NwYDsGOHjOXSUmlpcxlLUB85AqxYkbkENSAxpEKF/2PvvMObqr8w/qYTWlqghbbsvSnDAmXPskQRUQQFGSJThuwhey8RGTJUQBEFFFFxsPcqUDayEYoCZRTogq7k98f7C91t0ia5N8n5PE+eQprce5Im93y/Z7zHvqRIGzTgXOI9e4A331TaGjtE/LIgmI2EBHa0ArzWZTZqQDAdefLQrx44wD1irVr2fenSatkhHBbGjmF9gVq+fFxv+PpSTtoSsc0//wQ+/hgYPhz4dERx3AkvkKXilh797+uX9rZNxS1AfLIgCIIaqFqVjmrJEspfDhkCeHkpbZVgacQnp0G2MjbK6NGUOuzbV2lL/o++pXTaNCZu8+Uz/Lk7dgA9ezJruHGjYZLVegkJQzWDLYFOR3nsWrU4q9lOKFSIL3vuXGDgQKBECcOel17i+PnzJKnqjBLH+qSxqRLHDg5cMwQFAV27svCsyyehOPAi5xJaALBgx1UUzONqG1JaItchCOkTHs7saJMmdjtE7/ZtBg8fPOB1unlz6+0czgyNBqhShWuw/ft5O3OG0y/044/sCVdX1kX8/jsQGMiuJcGCiF8WBLOg07FTMyqK1zhb9GdqpmBBriWOH+eyqmJFpS2yLFFRSRLSDx6wYMHVlQnh8uX5M1cuy9p07hxDHK+9RrE3gDOK1/UOxLWwSKwPDsXeqw8Q+jgGyVPFGgDFvd3QrLwPutUtjrI+NrxOFp8sCIKgDkqWZOJk8WIGq4cMUXBOp6AI4pPTIEliG2TnTnaw/Pyz6eWDcoS+pXTOHN6y4vlztm8uWcIM3dq1xl+0336bpca9elEzePBgOgAldvKbNjGruXevXVxckjNyJKWiJ06kAnh2yZ2bQebAwKT7UieOjx8HVq9OShz7+ycljXOSOK5cmcGgEZNj8GvkRTg4gbvaTHh2ZCOeHlgH5wLFUfjDLzJ83KTfLqJ+mQK2WTEtCAJbSN3cqL1rZ0RFcV1y7hxdeJ8+9pEodHGhBHWNGkyQnj7N+jhVrcssRM2a9J87dwLdu9tFEa4gCDbOuXPA3buUPjam9lkwHSVKcGTR+fPsLi5aVGmLzEd8PPDwIRPD9+8D0dH0pQUKMEHu58fPoVL+9f59JofLlmW4x9Ex5e/L+XpgSvsqmIIqiI5NwPl/onH4mBYN6jrAv5Q73F0lLCkIgiBYGF9fJoqXLAHmz2dXU/nySlslCIohqzEbQ6vlNa5BA6BDB6WtSUXqltLimXROnjpFWembNzmodvDg7CdWCxcG/vqLuo+jR6fUDLYUsbGcyfzaa5zRbGd4eABTpvDPPmwYA8amwpDEcXCwaRLHLi7A07Ln4XRDhyzGDyMh4hGeHd0EjXPWZdwJWh3GbzmPdb0Ds3ysqpFKLEFIy507wMWLdMouLkpbYzGSS0s7OtqetLShFCzI4O3du+z0WbaMSQV7kiZ1cGDC/PvvgatXgQoVlLbIjhC/LAgm5+ZNXstq1OD2VlCOKlVYjHb8OGvxbEUtUqejbLReQvrRI97n7s41hZ8f1xdqKDyLiQHeeIP77K1bmbDPDHdXJ1TwzYs77kAFX8DdPiZwEfHJgiAI6iJvXmDECI6o/PxzKqBaMlcgKIf45DTYSXjKfvjuO8oaHjmi0kBs8pbSb75J+/vEROoTTZ7MXV9ICH/mFAcHJppbtGDyOTCQ0tejR6ctdTUHy5dTa/P3381/LpXy4Yf0uaNGsZvInJ/PnCaOa9WidHXqxPG1sEgcvP7IIBue7P0aroUrQKfVQvs8ItPHJmp1OHj9Ea4/iLRuiS1xsoKQEp2O0h5+fkD16kpbYzHsRVraEB4/Bk6eZH1YYCBnKB44AJw9C7RtS1lqe6BsWaB0afr/smUts/QSIH5ZEExMWBhrmcuU4bVMUBaNBqhdmwVphw9zq+9mpcJML14kJYXDwlhj7ugI+PiwIMHPL+sErKXRajlJ7MIFrm1suZvbJIhPFgRBUB+5czNfsHYtsGoV0KWLXTZ32R3ik9MgSWIb4vlzYMIE4K23VKxombqltEaNpN/98w91CA8fZvJ22jTTd11VrgwcO0YbPvmEUexvvwVKlTLteZLz9CkwfTqzpJUrm+88KsfJiU3kb7zBnEmbNpY9f1aJ45MnM04c6+cc/xIaCkcHDRKzaCN+EXoBMZcPo1CvxQjfucIg+xwdNPjuWCimtDdBUYRSiJMVhJT8/Tc7iXv0sIvPe2QkxTrsTVo6M3bvZlC3bl36laAgLn3++oudtRUq0B/aulypRsNu4pUrmWCpXVtpi+wE8cuCYDIiIoCjR5OSdqosyLZDHB2pzrF7N3DoEGdEq6HDNiu0WhaS6SWknz7l/fnyMTTh60s5aTVflidOBDZv5pizgAClrbECxCcLgiCoEycn4IMPAE9P4Icf6JTfeEMWe7aM+OQ0SJLYhli8GLh3D5g9W2lLsiB5S+mOHbzvm284KN7Li6XAjRub7/wuLsCsWcCrrwLvv8/ursWLGcQ3hwOYPZulwFOmmP7YVsbrrwONGvFP37Kl8p1EmSWOT55M23FcpN8DOOXPPEGs0yYifOcK5KneCi4+JQ22JVGrw96rDzAFkiQWBJsgIYFtk+XKsYXShtFLS+/dy/1V+/YSQAeA0FDg0iUqjScPWBcoQFGTv//mMsheJKj9/Pi52LePRVi5sp7GIOQU8cuCYBJiY5mAzJ2bxdjyVVEXuXLRj+7Zw71bgwbqXINERSV1Cj94wKWiqysTwuXL86e1+Ma1axlSmT9fhWPO1Ir4ZEEQBPXi4AC88w6rtTZvZnVg167KB64F8yA+OQ02HIqyLx494iJ9wAArkC5M3lL644/Axo0sP+3encnavHktY0fDhtR7HDoU6NWLQ3RWrmT01lTcvs2E+NixMrQK3KwvWMCk7Lff8m1XGxkljo+dTECvP2OyfH7U6b+QEPEQvu/ONPrcoY9jEB2bAHdXK700i5MVhCSOH2cF6nvvKW2JWRFp6fTR6ZgALlQIqFYt7e81Gk7TKFcupQR1mzYMFNsqzZpRlvLQIXZVC2ZG/LIg5JjERI5ySkgAmjSxji5VeyRvXibwDx2iP00uWKYUCQlcH+kTw1FR9P8FCgAVK7J4Kl8+dSa0M2P/fqBvX9b+jxihtDVWhPhkQRAE9dOqFTuKv/mGieK+fU2vciooj/jkNFhpJkJIzYwZ/DlxorJ2GMzrr3Poa9eulKD+8Ufg7bctb4enJ7BmDe3p25etLWvWmE4LecIE7vxGjjTN8WyAOnWAzp351nTubB1zo3LnBnzKRGf5uMTnEXh6cD3y1e8MRzfjix10AG49jkaVwhYqlDA14mQFgcTEMOsXEEBdShskMpKN0ufPcwZd375SC5WcixeB//5j/VtmwV8Xl5QS1D/8QAnq1q2B/PktZq7F8PQE6tfnZJHatS1XF2i3iF8WhByh01FdKDyc4+nc3ZW2SMgMvWLF6dMc9WDpudE6HesD9bOFHz3ife7utK1aNS4LrbnQ4No1oGNHqoN98YX1JbgVRXyyIAiCdVC3LjeuK1YACxcCgwZxYSHYDuKT02D7r9AOuHGDC/SxY4GCBZW2xgBiYjgU/sIFltdOnKhMgjg5HTsy0l2jBtC2LR1ATNZdo5ly+jTw3XfA1KniTFIxaxbw8CGwaJHSlhhOXII2y8c8PbAODrnzwKPW62Y9j2rRO1ljboJgixw4wNajZs2UtsTkJCZyJuPSpVx/tG/P8T2SIE4iIYGzEcuX51xBQ9BLUHfqxNEhX3zBTp2EBPPaqgT161NOc/dupS2xA8QvC0KOuHSJowPq1AG8vZW2RjCEsmWp0nHmDBO15ubFC6qqHD9OYbJduzhOwskpKbTw6qvAK68ARYpYd4I4PBxo144xp59+su7XogjikwVBEKyHypWB4cNZ8TVvHvD4sdIWCaZEfHIabP8V2gHjx7MidehQpS0xgJAQdlZ9/TWlpTt1Aj79NOcJWVNQqBA1M5cupX0BAbQ3O+h0HLxbsSLQu7dp7bQBSpcGPvoImDOHElxqJzYWuH4188tlfPh/iDqzHR4B7ZEYGY6Ep2FIeBoGXWI8dNpEJDwNQ+LzyCzP5eJkxZdljcY4Byul54ItEh7OSGHDhjZXIHT7NrBqFTuIq1dnPVXNmvJVTs3x48CzZ0DLlsY9T6PhXvSjjzjy4MABJouvXjWPnUrh6sr6ifPngbt3lbbGxhG/LAjZJjSUqhBVqgDFiiltjWAM1auzc/foUfpjU6LVstj5/Hmuh7ZuTfL7JUtSkrxDBy4Dy5a1naVgXBzr6sPDgT/+sE21E7NjZp984MABvP766yhcuDA0Gg1++eUX87wOQRAEe6FkSWD0aFbKz50L/Puv0hYJpkL2yWmw4myEAADBwcCmTZSbVrVsb2IiMHMmJRty52bydfDgpCyhWlpKNRpGZ0+fpi5U3bq029hWnu3b2SIzdy7LiIU0TJjA6+y0aUpbkpLYWMrKrVgB9OnDqm8PD6Dzq+7Q6TJ+XmLkY0CnxZNdK/Hfit4vb3F3ryAh/D/8t6I3nh3+IdNzawCU9LZiHTupxBIEtpC4u3Mwno0QGQn8/DOwdi3lkfv0YVeMzB5OS3Kl8QIFsncMvQT1gAEMwv7wA29PnpjWViWpWZOdSDt2IFPfKuQQ8cuCkC0ePwZOnACKFwcqVVLaGsFYNBoWW7m7c0bxixc5O15UFNVTDh8Gfv0V2LcPuHmTSpR16nByVcuWSXLStnYp1emA/v2ZdP/lF6BMGaUtslLM7JOjo6NRvXp1LFu2zEwvQBAEwQ7x8QHGjOGcpPnzgStXlLZIMAWyT06DZK+sGJ2Oo26rVQPef19pazLh5k0aeOwYL6xTpiQNfU/eUtqnj3r0sitWBI4cYQZz0iR2GK9bR3uzIjGRXcSNG3PHKKSLtze74D/5BBgyhLKcliY2llXgISFMDIeEUAU9Pp65/SpVGOjv0wcICHDCyH1uCH2Sfte7c8ESKNjxkzT3Pz2wDtq45/AK6gunfJnrsRb3doO7qxVflo11nHbgZAU7Q9929OabSX7OiklMZHfMvn28JrZvT+lEOyiizDb793N91rRpzo+ll6C+dIm1Z198ATRowJu1Szw6ODCg/v333GdXrKi0RTaK+GVBMJroaCYDvbyAWrXE51krzs7s5t29m3/Ppk0BR0fDnpuQwDr2+/c5Xzgqip8Db2/6Kz8/IF8++/lszJsHrFnDcEjDhkpbY8WY2Se3bdsWbdu2NdIoQRAEIUs8PYERI9hNtHgx520FBChtlZATZJ+cBivORgi//cbK2G3bDN/wWBSdjm1HQ4Yw0rl/f/q7igkTuOuYNg1YssTiZmaIiwtbtNu2ZZK7enXg88+BXr0y3xF+8w0zjcHB9rNzzCZDhgDLlgHjxgGbN5v3XMkTwvqksD4h7OgIVK1KH//hhwwIVavGmYnJaX7fB+uCbyNRm7btydEtL9zKp+0cjDjxKwCk+7sUz3fQoFl5n+y/QDUgTlawZ3Q6ZvL8/HgBsXJu3WJ91KNHvCY2ayadw1nx+DF9S7Nm7F4yBXoJ6rJl2aF88CBw7hzQpo0yxVWmpGxZ1t7t2sX5kapcy1o74pcFwSji47m/dnLi/HS5Llk3bm4srNq3j53hgYHpb891OspF37/P26NHvM/dPWlZ5+Nj/QVa2WHzZmDsWGDiRBauCTkgmz45IiIixd2urq5wdXU1pWWCIAhCVuTKxXlb33wDfPklEBHBjb9gncg+OQ2SJLZS4uPZlNuyJdC6tdLWpMPDh0C/fsCWLUDPnkyuenqm/9jkLaWDB6sv6tmgAXD2LPDxx5wvvHUrhzKm1/UcE8MdVOfO1J4SMiVXLubhu3dnhXeDBqY5buqEcEgI/59eQjgggBt/Q5IfXQOLY+3RW6YxMhWJWh261S1ulmMLgmAB/v6bM2p69LDqBWRkJGfsnT8PFC1KJYVCmYsgCP9n927OHgwMNP2x9RLUNWoAf/1F+eny5Zkstta5gBoN17ErV9JPy7JJEAQl0Wopp/v8OdC8OeenC9aPlxf9y9Gj9NFVq/L+2NikTuH79/l/R0cmg2vUAHx9+Xh7rvk+cYK18p07A1OnKm2N/VIs1VD0yZMnY8qUKcoYIwiCYM84ObFxLG9eYMMGVpi98YZ9LxYEm0GSxFbK118DV6/ymqQ6/vyT0gsJCSw97dgx6+cMHgwsXcpk8U8/md9GY/Hw4Jv+2mtA376Avz+wejWHMibns8+YIJ81Sxk7rZCuXYGFC6nQffiw8b7V0IRw797GJYTTo5xXLjTCUxxJzINER8Mun35d52T5GEcHDeqX9kZZH4/sGaYWpBJLsFcSEphZLV/esLEEKiS1tPQbb1BAQ/Y7hnH7NmWh33zTvJ1GqSWoly2jSIu1SlD7+TEYv39/+goeQg4RvywIBqHTAWfOUGK4UaOMa5sF66RoUe4JL1wAnj7ljOInT/i7vHmBkiXpj7y9pXtcT2gox4xUr07RN1kPmoBs+uQ7d+7AM9lFSbqIBUEQFMTBAXj7bS4gfvqJieJu3WQBYW3IPjkNkiS2QiIjgcmTWdVZo4bS1iQjJoZDkpcvZ2vL6tWGtx/lzg3MnMmW0iNHqO+lRt58E6hXj0nwdu2AAQOABQuoZfXgATB3LmcsW2mSQAkcHID589lN9PPPwFtvZfxYSyaE03D5MtCtG2bduoegPiuQaKLDAoCTgwaz3vQ34REVQpysYK8cP87NQdeuSluSLURaOmfodMCOHVzy+FvgUp5cgvrgQd7OnuV0DLWJsRhCs2Yc5X3oELulBRMiflkQDOL6deDGDe4ffH2VtkYwFVFRSZ3CYWG87949dgvXrs3EsBQnpSUyEnj9dXbT//KLrAlNRjZ9sqenZ4oksSAIgqACWrZkVeE331B6um9fkaGxJmSfnAZJElsh8+czFj1jhtKWJOPECVbOhIayI3jgQOPLTZO3lB46pN5yVT8/4I8/OLB+xAjqS373HR2DgwNnLAtGERTEuoKxY1mx7OzMhPCFC5zvmF5CuEoVJjPMkhBOjk4HfPEFP5fFi6PYtl8xVeeDsT+fN9kpprWvgmJebiY7nmKIkxXskZgYtkG+8kr6YwhUTGQkk5sXLgDFinFf4+entFXWx8WLwN27VBq35NLFxQVo0YJdPtu2Wa8Etacn6+8OH6Zfz5dPaYtsCPHLgpAld++yi7hCBanztXYSEli3rU8MR0XRL3t7A5UqMTl8/jy7iQMCJEGcHomJwLvvsoDwyBEpmjAp4pMFQRBsi8BAKo+uWEFl0UGDOKtCUD/ik9MgSWIr4+5d4NNPOR431WgSZUhIAGbPBqZNY5Ty9GmgYsXsHSt5S+mWLYbJVCuFRsMu4ubNmRyvX5+DrGbO5C5UMIrYWI6ufvddoGlTSoClTgibrUM4M+7dY9f4tm0sfJg/H3BzQxcAj6JisWDH1RyfYlSrCuhc20ZmEYuTFeyR/ft5/W/WTGlLDCYxEQgOpukiLZ0zEhKAXbuYXChZUhkbChRgnd3ly3RX1ihB3aABcOoUsGePupd/Vof4ZUHIlKdPgWPHgMKFLaMEIZgWnY7F8/fv8/boEe9zd2dys1o1JoaT+8L69VnjfegQt/IuLsrZr0ZGjOBa4o8/uAcXTIiZfXJUVBSuX7/+8v///PMPzpw5Ay8vLxQvbiPxBkEQBLVRuTKd55IlwLx5wJAh3KAL6kb2yWmQJLGVMXkyk2PjxiltCajJ9f77jDSPGwdMmpTzXVbyltLXX1d/dLNCBZbYVqvG6OyWLUCnTkCZMkpbplr0HcIhIUldwvqEsEbDj1OXLszN1qplwYRwan7+mW11zs7UYW3bNsWvBzUrhwJ5XDF+80Uk6nTQOOgMPrSjgwZODhpMa1/FdhLEgDhZwf54/JhKGk2bWk3FaGpp6ebNpZMmJwQHU12qWzdl7dBo2CVVpkxKCeo2bbhUUTsuLqyz2LqVBdlFiihtkY0gflkQMuT5cyYKPTx43ZFCKesgNjalhPSLFywq9vHhKC5fXy7JMvp7uriwkGrPHuDoUc6glksf+eIL4PPP+bN1a6WtsUHM7JNPnjyJZsmKVocPHw4A6NGjB9auXWvUsQRBEAQjKFECGDOGTnTuXCaKVdHZJ2SI7JPTIEliK+LiRY75/ewzzkdXDJ0O+PprtjP7+jISacoZwnPncoe3ahXn+6qd48eZIJ40CVi/nu1Yixax7dXOow1xcSlnCJ88mX6HsD4h7OXFt69ECQX/9BERwNChwNq1nEG9alWGVWCv5C2Ou18VQK0B5/FvwiM4OmiQqM04Waz/ff3S3pj1pr9tSEwnR5ysYG/s2sV2lbp1lbbEIHbvBg7FiLS0qYiJ4RKoVi31FAvrJahr1AD++gvYsOH/EtQ1HaF2BeoaNZh037nT8tLdNov4ZUFIl4QEStwDTBg6SVREtWi1rMnTJ4WfPOH9efNyz+jnRyEvR0fDj+nhwfDF/v1UsQgIEJ+zbRtj2kOHUjBNMANm9slNmzaFTmd44bogCIJgQgoWBEaPZkfxggVUo7SGam17RfbJaZDtkBUxZgxQqhTQv7+CRjx8CPTpA/z6KzN7ixZxl2VKqlWj9vDUqexU9vQ07fFNiU7HWbU1a7LNe9QoYNgwvkdbtwJffsmyZjsgdUI4JAQ4dy79hHBAAJPB6XUIDxvG0dQDBgBFi1r4RRw6xM/co0esyOjZM9OIwbhxgK+7G3Z9Eog7zyKxPjgUe68+QOjjGCTfnmkAFPd2Q7PyPuhWtzjK+pj4O6MWNBrjHKe9R2ME6yY0FPj7bxaTqFirMDERuHAWqA7g33+BN3qJtLSp2L+fP5s0UdaO9PD2TpKg3r4dWPaTDxpqmqJBAqBWjRYHB04cWb8euHIl+9NLhGSIXxaENOh0rPGNiKCCgSKKRUKmREcnSUg/eMCkvosL69PLluXPnP7dChZkkdeJEwxn2HMc98IF4J13qD7y6adKW2PDiE8WBEGwbTw9KT29ciWweDHQqxcXG4L6EJ+cBttPg9sIe/dyLszs2QrGog8eBKpWZdn1li3sJjZ1gljPtGlAVBS7itXMzz9Tp2r+fF5c8uRhYviXXyhD7e/PP5yNERfHJPCqVUC/fvR5Hh78OXAgZ3tVq8au96NHgchIyl6uXs0O4bp1M97YjxnDY02aZOEXNH48I/1FitDYXr0ydQJHjvDPP2MGpVrL+XpgSvsq2D+yGS5MaY0/WhbAlm+G44+WBXBhSmvsH9kMU9pXsd0EMZBUiWXMLRssW7YMJUuWRK5cuRAYGIjjx49n+Ngvv/wSjRo1Qv78+ZE/f34EBQWleXzPnj2h0WhS3Nq0aZMt2wQ7Qadj5q1QIV7sVMo//3B/EhzM/3fpwm5NO1jfmp3Hj6mO0bAhm8nViF6CeuBAoJ5/FA6hEb74yQdXrihtWcaULUvJ7J07WeAg5BAL+GVjfPLatWvT+NtconcvWJjz54H//uN+JL/aJRbshIQE4N494PRpqmD8+Sf/HRfHgqEWLYD27fk3K1nSdIn9kiV5/HPn+JmwR8LCgNdeYzPCDz8Y15EtGImF9sqCIAiCguTKxcD3K68AX33F+RaC+hCfnAbpJLYCtFo2qAYGAm+/rYABz5/z58cfcy7r6tXm16gsWlThllIDiIvj7OS2bblzTc4bb3AX27s3d139+rEsV62R5ExIr0P4/Hne7+gIVK7M5HCvXpl3CBuKpyebsgcP5kfO7PmXS5c4TPLcOWD6dGaps9gd63TAyJFMtnTtmvb37q5OqJLPGbh3FcjnDLjayaXWAnIdGzduxPDhw7FixQoEBgZi0aJFaN26Na5cuQKfdLr29+3bh3fffRf169dHrly5MHfuXLRq1QoXL15EkWRDL9u0aYM1a9a8/L+rq6vRtgl2xMWLbMvt0UOVi8WICCbZLlygtHT7jgBWAvKxNh27diXNsVQ7Li5Ai9qRqHFqDf7K2xcbNjihXDl2DHl5KW1dWlq2BFas4HqjTh2lrbFyzOyXjfXJAODp6YkrySoVNFK1IliQf/6hUkH16kDhwkpbY7/odMCzZ0kS0o8eMebh5sYwQ7VqFONytoD0RdWqrE0PDmZnuT0VDjx/zrBFbCzw++/mq/8X/o9IWwqCINgHTk4MkufLB2zcyEVPhw5Sra8mxCenwU4yF9bNhg0MlB08qMD15Phx4N13+e+xY4FZsyxnxJgx7MqdNImJabWxahVw8ybbSdPD15eS06tWAcOHs3rou+9UHfGMi2NS4eRJyySEM6JvX+DzzznOYds20x8fAKMTS5fyJCVLsv05IMCgp27Zwg7pnTvtwk8YjgWc7MKFC9GnTx/06tULALBixQr88ccfWL16NcaOHZvm8evXr0/x/6+++gqbN2/G7t270b1795f3u7q6wk8GtAqGkJDADGH58kDp0kpbk4LERAY59+9nYLVDBwZaNaeVtsy2uH2bMs5vvmmZALap8MZjdG0TjssRhbF9O/DFF0CDBuyGVtPr8PVlEda+ffz8SqNpDjCzXzbWJwNMCou/FZTgwQPubUqXBsqVU9oa+yM2lglhfWL4xQvuL318eK3386Mol6XjHRoNt+f79nHyUIsWTFbbOlot9/TnzgEHDrCoUDAzEpAWBEGwHxwcgLfeAvLmBX78kYni998XyQ61ID45DZIkVjkvXlAFt0MHBvEsRkICMHMmOyvLl+d9nTpZdteWvKV02DBKN6uFZ884M7lnz8zt0mjYRdysGZ1B/frAxInAJ5+wskhB9AnhkJCkpHDqhHBAgPkTwunh7AzMmUN/unMnu4pMyt27fGE7dgCDBlHW3MBoQHw86yXatAGCgkxsl50SERGR4v+urq7pdvLGxcUhJCQE48aNe3mfg4MDgoKCcPToUYPOFRMTg/j4eHilap/bt28ffHx8kD9/fjRv3hwzZsyAt7d3Nl6NYPMEB9MHpCcjoCD//EOJxkePgNq16XYkuWZ6dDq6jsKF1bUsMRS9BHXZsiw+PHyYAeI2bbjcU0txc/PmbNg/eNAMawAhSwzxy9n1yVFRUShRogS0Wi1eeeUVzJo1C1WqVDHtCxCEVERGclSMjw9Qs6Z6rnW2jFbL0Qz6xPCTJ7w/b16gRAkmhb291RErdXRk0dTu3fSLzZopvlU3O1OmsLlp82YZlygIgiAIZiMoiPmNtWu5IO3bVyTeBFVi40tf62fZMipabt9uwZNeu8aE5okTTGa+9ppyeorJW0r/+ksZG9Jj7lwgOpqzkw2hfHmWJusT73/+ya5iC5Wxx8VRVRmgCbdvp58Q7tmTm8Rq1ZSvoH7zTebUR49mAttkRTs//cTEvasr25Rbtzbq6StXAtevc0MtpCKblVjFUpWuT548GVOmTEnz8EePHiExMRG+vr4p7vf19cXly5cNOuWYMWNQuHBhBCXL8Ldp0wYdO3ZEqVKlcOPGDYwfPx5t27bF0aNH4aiGyJWgHmJi2G4REAAULKi0NQDSSkv37Wv+iRD2zIULrDPq0cO6kwzOzkzEVq/O5dWGDVCVBLWHB9cAhw6x6CFfPqUtslLM6Jez45MrVKiA1atXo1q1anj27BkWLFiA+vXr4+LFiyiqxtEygk0QG8uCk1y5OA3IDhoBFCM6mgnh+/fZuZ2QwJEHvr4sTvL1tVzRsbHkysWi/D17KDDVoIF1+/nMWLeOIYk5c4COHZW2xo6QriVBEAT7pE4dbnCXL+dYzUGDZMaD0ohPToMkiVVMeDgwYwYDvhUqWOCEOh3lnYcNAwoVYmSuXj3g1CkLnDwDkreU7tqljtbNf/8FPvsMGDECSDbTNEucnVmy27YtZ+DWqMHj9Olj0h1o8g5hfZewPiEMsGOoYUMmhPUdwkonhNNDowHmz+cGff161i3kiGfPgCFDgG+/5edp5UqWrxtBRIRhDeR2Szad7J07d+Dp6fnybnPNA54zZw42bNiAffv2IVeyFssuXbq8/Le/vz+qVauGMmXKYN++fWiRet64YN/s309f2bSp0pZkLC1towFNNZCQwC6jChU4pcAW8PZmU/zly1CdBHX9+lzH7N5Nty1kA5X55Xr16qFevXov/1+/fn1UqlQJK1euxPTp001yDkFITmIiO4jj4ykj7OKitEW2RUIC8PBhUmI4KorrEG9v+ko/P874tZa1Sd68LCQ4dIh75urVlbbI9Bw8CHz4IfDBByzGFiyIBKQFQRDsl0qVgJEjgSVLgHnzgKFDgQIFlLbKfhGfnAZJEquYWbO48Zo82QIne/CAu4WtW/nzs884FEgN6FtKR40ycUtpNpk4kRU/2d1VBQYCp08zydyvH9/zr75iabWRpE4Ih4RwQ5teh3CePFRY3rgReOWV7JluaerXZ2D4k0+At9/OQeX5wYPMMoeHU+Kje/dsRSuMbSC3O7LpZD09PVMEozOiQIECcHR0RFhYWIr7w8LCspxvuGDBAsyZMwe7du1CtWrVMn1s6dKlUaBAAVy/fl2SxEISjx8Dx49Tg1Bh//jPPxSkePxYpKUtSXAwFaJyXLSkMjKSoG7dmkF+pYL7Li78bG/dyqC9MXV5wv8xo1/OiU/W4+zsjJo1a+L69euG2ygIBqLTcW8UHg40aaK467YJdDrW3eolpB89oqy0mxsTwtWqUdJb6SKjnFCoECXJT5/mZ6ZMGaUtMh3XryeFVpYvt57kvc0gAWlBEAT7pnhx5hIWL2aAefBg3idYHvHJabD9V2il/PMPi0tGj85W7tA4tm4FqlalrtKvv7KbWE27aH1L6ZkzbClVknPngG++YebegKRWhuTJw07W335j1Nnfn3+HTIiLY1P3l18C/fszMeDhwSRw//6skq9aFfj0U/47IoLmrllDJYss8mKqZfZs4N49+lCjiYvjAOEmTajDeu5ctjVC//2XqiDDhgGiiJgBeidrzM0IXFxcEBAQgN27d7+8T6vVYvfu3Sk6k1Izb948TJ8+Hdu2bUMtA4Zu/fvvv3j8+DEKFSpklH2CjbNrF6/dmXzWzE1EBBXzv/2WAdm+fSlOIQli8xMTwwRqQIDRIhRWg16CesAAFjVv3Aj88AMTLEpRowYTDjt2MDkhGIkZ/XJ2fXJyEhMTcf78efG3glm4fJkjdmrXlkaNnBAbC4SGsk7u99854uLiRV4uqlXjmIJXX6V/LFLEuhPEesqW5e30aSbEbYEnTzhFzNubY5Okq14BzLxXFgRBEKyAggXZBOflxQC+gaPzBBNjIZ+8bNkylCxZErly5UJgYCCOHz9u4hdiOqSTWKV88gkX8MOHm/EkUVE8wZdfAu3aAV9/bYGMdDZJ3lLaqZNyEfHRo7lj7NvXNMd7/XW2An/4IdC+PaWnFy5EnEueDDuEHRzYIVyrFvOdapaMNgXlyjEJPmsW0Lu3EUGeixcp633xIp88ahTbq7PJpElMyo8Zk+1D2D4WqMQaPnw4evTogVq1aqFOnTpYtGgRoqOj0atXLwBA9+7dUaRIEcyePRsAMHfuXEyaNAnff/89SpYsifv37wMA8uTJgzx58iAqKgpTp07FW2+9BT8/P9y4cQOjR49G2bJl0drIedWCDXP7NvD33xzcpkD0MzGRdVz79zOoJ9LSlmffPv5s0kRRMyyCtzfw3nvAlSvAtm3KSlA7OAAtW7JG8PJldjwLRmBmv2ysT542bRrq1q2LsmXL4unTp5g/fz5u376NDz/80KjzCkJW3LnDLVblytKgYSxaLYuD9BLST57w/rx5gRIlGC4oUCBH2yqroHp1hkuOHKFUeU7qw5UmPp6qXA8fcj3p5aW0RXaKdC0JgiAIABcVw4axeWzxYsp+1q6ttFX2hQV88saNGzF8+HCsWLECgYGBWLRoEVq3bo0rV67Ax8fH6OOZG0kSq5CTJ9m58eWXgLu7mU5y7Bj1Eu/eBVasYNJT7dHm2bO501+8WJkBOjt3cmDf5s0mjZLG5fPBxSm/IjLfV6izZhgefLsXXRPX4VBC3ZcJ4YAA+0gIZ8SkSWzgnjEDWLQoiwdrtWzDHzMGKF2ando1a+bo/OfOUaV6yRLrDhCYHY3GOMeZjWtO586d8fDhQ0yaNAn3799HjRo1sG3bNvj+v8AlNDQUDslsWL58OeLi4vD222+nOM7kyZMxZcoUODo64ty5c/jmm2/w9OlTFC5cGK1atcL06dPNNhtZsDJ0Ol77CxVSZBj5zZvAX39RWrpOHY5Dls5hy/LoEYu1mjc347pMZWg0QMWKlNnUS1CfPcuOMUtLUJctSzt27QLKl7f9xIRJMbNfNtYnP3nyBH369MH9+/eRP39+BAQE4MiRI6hcubJR5xWEzNBPhyhenPsoIWuio5kQDgvjLSGBRWm+vrwG+/rmYOyPleLgwFEHe/ZwRnGLFoA1bg10OiqEHDxIP1qunNIW2TEW2CsLgiAIVkKuXJT9/PZbjqCMiOBiQ7AMFvDJCxcuRJ8+fV4WUK9YsQJ//PEHVq9ejbFjxxp9PHMjSWKVodOx4bFKFRaSmJz4eGbaZs5kxvGPPxhxswZSt5RaUu9Rq+UfpkEDDvLJJnFxbGwNCWExQFKHsAYODn3QukwzLHnSDfvDG+K/Dz6B98IJcMtrA5pdOaRgQapGT5nCkQ0Zzob67z9+cXbuBIYMAebMMUlEY8wY0zaQ2ywWqo4eNGgQBg0alO7v9unb/f7PrVu3Mj1W7ty5sX379mzZIdgJFy/y2tKzp0Ur+iMiKLF78SID3W+/rV6xD1tn924qSQQGKm2J5dFLUFevzq7ijRvpD9u2tWwnUsuWLLQ+edI+/w7ZxgJ+2Rif/Nlnn+Gzzz4z+hyCYCjR0SxqyZ+fqkuSY0mfhATgySOgIPh+3X3O98rbm4VAfn58D+39/XN2porG7t18n5o0sb5CpQULKBi3di3QuLHS1tg50kksCIIgJMfRkXGmvHmBTZuAZ8+Yc7D3BZglyKZPjoiISHG3q6trug1GcXFxCAkJwbhx45IdwgFBQUE4evRo9mw2M5IkVhl//klJwz/+MMMG5OpVyu+eOgVMmEDpZmsbGpS8pdSSQabvvmMLzZEjBl+skyeE9Unh1JLRAQFA9+4MYrBDuCyQcAiYNQvFpk0Dzv/Fc1tLIt+MfPwxJS/Hj2eQOg2bNrGIIHduZlZatjTJeXftYmDcxA3ktolsfAVbIz6eRScVKgClSlnklCItrS5u3aLMcceOgJMdr5rTk6CuXx9o1MgyvtHXl/OJ9+/nekm66Q1E/LJgR8THs+PTyYl1vdaWzDMnOh3jjmFh7Bh+9Ajw1AItAeT3AkoU53VW9jppcXdnonjvXuDECRYqWcuabMsWFjuPH09VMkFhxCcLgiAIqdFoGGxIniju3l0WsuYmmz65WLFiKe7Wq1Sm5tGjR0hMTHypsKXH19cXl1U6h9qOw13qIyGBKsrNmrFDw2TodGy/GDECKFyYZbDW2oaRvKV00KBMWkpNyPPnTKq/9RZQr166DzEmIRwQwEBnhpLRTk5Mhrdpw6R+jRrAwoVAv37WsyM1A25uwPTpwAcfcJT2y4/ws2f8LHz3HedVr1hhsvYmfQN5/fo5aiC3H2TjK9gax4+zpbdbN4ucTqSl1YVOxxqBwoWBqlWVtkZ5kktQHzrE5eS5c5aToG7WjDNGDx40WR2Y7SN+WbATtFoWWD1/TvUDa5QFNjWxsUlJ4bAw4MULxhsLFmTxWeHcAI4ClSsByK+0terGy4vrsmPHqCxSpYrSFmVNSAjQtSuVaKZPV9oaAYD4ZEEQBCFjWrTgfMM1axiD6tdPgkHmJJs++c6dO/BMNofSlsYUSpJYRaxZA/z9N+XoTRZoCwujNPMff1Ar99NPgTx5THRwhdC3lH7yCbBhg/nPt3gxcO8eZyKDVeoXLiQlhENC2GScUUK4evVszjCsUwc4fRoYOZKDhH7/nXMK/PxM+/qsiO7d2UA+ahS7iTQH9vPOp0/5xenWzaRR6vXrgTNnGAi34/y84cjGV7AlYmKAAwd4IS9Y0KynEmlpdXLhAnD3LhWgxAck4ezMhG316ixqsJQEtYcHi7YOHQJq1wby5TPfuWwG8cuCnXD2LLe9jRoxvmaPaLVAeDiTwvfvA0+e8P68ebm28PMDChRI1pjyRDFTrZJixYCoKK4NPDz4nqqVf/8FXn8d8PenCJtc2lWC+GRBEAQhM2rX5iJj+XIGvwcN4v8F05NNn+zp6ZkiSZwRBQoUgKOjI8LCwlLcHxYWBj+V5nUkSawSoqPZPPree4xHm4RffwU+/JAf5N9+407BFkjdUlqnjtlOFX/vERxmzMLlxgOwdGG5lzOEY2NTJoTffz+HCeGMcHenc3jtNb5ef38mit94w4QnsR4cHYH589m19FvHtXjj1w8YDfr2W6BECZOe6/lz1iG89RaD0oIByMZXsCX27WMradOmZjtFamnpN9/kZV4SksoTH88ZhBUrmty92AxeXpaXoK5fn8V5u3fTPwtZIH5ZsAOuXQOuXwdeecX+Cqyio1N2CyckcD3h68viHV9fTuIRTEPFikBkJGWn3dyYdFcbUVEM+zg7Mxwkf38VIT5ZEARByIqKFdkstngxMG8eMGSI2ZsW7BIz+2QXFxcEBARg9+7d6NChAwBAq9Vi9+7dGDRokFHHshSSJFYJn37Kyt+ZM01wsKgodtt+/TV3CF99Bfj4mODAKkLfUjpy5P9bSnMeUY+PZxfXyZNJHcLvn5qB7olA870TUTCMs4PNlhDOjHbtWLbcpw8HVPbuzddvhxVFrQpfQFCeKIz5pR5enT0fzqM+NsushiVLUjSQC4JgTzx+zAhg8+ZmU98QaWl1ExzMQPD77yttibqxtAS1iwu/lr/9xrETRYua9viCIFgX9+5R9ad8ectMIVKahATg4cOkpHBkJK+zXl685vr5AfnzS7GZudBoGAeIjqa/a9FCXSJtiYks3rpxg/aptFFFEARBEITMKFYMGDMG+PxzJooHD1a3hImQLsOHD0ePHj1Qq1Yt1KlTB4sWLUJ0dDR69eqltGnpIkliFXD/flJxSMmSOTzY0aOU3A0LA1atYiexLe4SHR35prVtC2zdCrRvb9TT00sIJ+8QrlQJaFv+Bgae+gL/9puKm58WtFxCOCMKFgS2bAFWrwaGDgX27uUc3gzmJNscWi3w+efQjBuH+UXa4ZXon/B1vhHob/r8MB4/BmbNAvr3B8qVM/3xbRapjhZshZ07WYRTt67JDx0RAWzfzvESIi2tTqKjmfCsVQvw9lbaGusguQT1tm1JEtRt2pj+PaxenR34O3eKFHiWiF8WbJinT3ktKFyYM3ZtEZ2O6wa9hPSjR9wSubkxAVi1KmvBXVyUttR+cHSkqsWePVwrNG+unvd/9GhOGfv9dyrTCCpDfLIgCIJgKAUK0LEvXcrOwv79mawQTIMFfHLnzp3x8OFDTJo0Cffv30eNGjWwbds2+Ko0AChJYhUwdSo3FuPH5+Ag8fHAtGnMbNWuzQh02bIms1GVtG4NBAWxuubVVwGn9D/O+oRwSEhSUjh1QjgggLn1WrWSdQh3Hg/4+aDEwqGAm2VfWoZoNOwibtqU7U0NG/KDM2mS+bQd1cC//zISvHs38PHHqDF7Nt7vp8HkyUDXrqZvqJ4+nQGYSZNMe1ybRza+gi1w+zZw6RLQsaNJr6uJiazjOnAAcHUVaWk1s38/fzZpoqwd1oiXF/Duu8DVq0wWL19ueglqBwegVSvWyV2+LHvlTBG/LNgoL14wQZcnD1UFbMmXxsay3lsvI/3iBROTBQsyGe7ry72PLb1ma8PVldvw3bu5tmvUSPnL58qVwMKFVMNq21ZZW4QMEJ8sCIIgGIOHB8dsrlpFB9+zp1lHbtoVFvLJgwYNUq28dGokSawwly8DX37Jptj8+bN5kCtXmOE8fRqYPJlJwwwSpjaFRsM3LiCAktr9+6dICOuTwgYlhFMTHAxs2gSsWcNSbbVRpgwzDXPmsMpg2zZGSytUUNoy07NhAzBgAP9QO3eyMABM5G7cCCxYwLfAVNy4wbmKU6bI2AejkY2vYO1otSyyKlzYpC0YN28Cf/7JsRKBgazzcXU12eEFE/LoEdcOLVqo0/1bAxoNlyOlS6eUoG7dmtLUpkhslCnDWshduygza4apE7aB+GXBBklI4HVFpwMaNLD+ba9Wy/WBvlv4yRPe7+lJxRE/PzaTyHVOXXh4sAjqwAGGYV55RbnE/c6dwEcfAYMG8SaoFPHJgiAIgrG4ugIDBwLr1nGsaETEy7i4kAPEJ6fByrdU1s/YsZSa/+ijbDxZp2OLxsiRHMp25IhdVZTExwMXNTXhXrcbfIdPxhtfdcXRCx7pJoQDAoAaNQycIazT8T2tVk3dwwidnIAJE6jl2K0bULMmMH8+nYctlJY/fcovxvffA507M3Pr5fXy18WLc/T2ggVAv37M6ZiC8eMp2/bxx6Y5nl2h0RjnOG3hcyrYFhcvAv/9xwpNEywCnz0DduygtHSJEkCnTiItrXZ27WJgPjBQaUusn9QS1Js2Mbnbtq1pJKhbtgRWrGBSX/5eGSB+WbAxdDrgxAn612bNrLeYJzo6qVP4wQPua11cuEYoU4aJ4dy5lbZSyAofH8YZTp5k0rh8ecvb8PffHF3SqhXw2WeWP79gBOKTBUEQhOzg6Aj06AHkzQv8+CMXwm++aReJS7MhPjkNkiRWkIMHgV9/ZQ7M6I6i+/eBDz4A/vqLuvQLFhiYAbVOUncIh4QAZ8+yQ7iEZgauYBOGxi/Am/OmGpcQTo/ffmPry7Zt1lGyXasWcOoUMGoUS4d//51ziwsVUtqy7LN3Lx1gRAQ7pN97L90L8tixbCKfPJkd+TlF30C+erX1Bp0URSqxBGsmPp4ZwgoVgFKlcnQokZa2Tm7dojhLx47W35mmJtKToK5Xj/KcOZnj6OPD9d7+/azrk4RKOohfFmyMCxc4haZ+/RyocClAQgLw8GFSYjgykmsCLy8mFv38+HpknWB9lCrFv+fZs5Q/N1XhsiE8eAC89hqLpzdskLWL6hGfLAiCIGQXjYaBpbx5Gbh+9gzo3l2cf3YRn5wG+SQphL5ZtVYtNkkaxZYtQJ8+vBD8/jvQrp1ZbFSKzBLCDg6UKqxVi7NomRAuDtdpQ9Fh6QKgU/+cJUfj4znjuGVL6iJaC25uwLJl3CV+8AGzEV9+SQdiTcTGAp98woFKTZoA33zDXW8G5MsHTJzIEQ0ffwxUqZL9U+t0zLP7+9PPCtlAnKxgzQQHszAlhwoSN26wfkukpa0LnY5d30WKAFWrKm2N7ZGeBPX58zmXoG7WjEmjgwfZRSWkQvyyYEPcusVRTdWq8VqtZnQ6Lin0EtKPHlFW2s2N3cJVq7LQJSeFMoJ68PcHoqKAY8folyxRwPDiBdChAxATw/pqT0/zn1PIIeKTBUEQhJzSvDmd/po1rFLr1w/IlUtpq6wP8clpkCSxQvz4I3D8OBf0Bn/OIiOBoUN5IXjjDSYBrXxoanw8JZJOnjQ0IZxBh/C4cdTmnzyZA92zy9dfs9Vlw4bsH0NJ2rZl1LVvX7ZC9eoFfP459a/Uzvnz/ENfuULZ7GHDDPpyDBgALF7M3P7vv2f/9L/9xiCztTSQqxJxsoK1Eh3NC0CtWhz8lw1SS0u/8w4DwIJ1cP48cO8elcalk8t8mFqC2sODM0kPHgRq17auzkKLIH5ZsBEePuR+sVQpZSR9DSE2lp2d+sTwixfcUxQsyMS2ry+vWeJjbA+NhlO/9u1jEVSLFuZVt9DpWBd++jTVNEqUMN+5BBMiPlkQBEEwBbVqcVH5xRdssho0SKrFjEV8chokSawAsbHMab72GjuMDOLwYXY3PXhAfd0PPrC6HaY+IRwSkpQUTp0QDggwICGcHslbSocOzV5LaWQkk8zvv8+TWysFCgCbNwNr1wJDhnC3um4dkLuB0palj1bLAUrjxzPqc+IEIykG4uICzJ7Njvy9exl8NpaEBCaZg4KkEylHiJMVrJX9+xlxM9gpJ5FaWrpjR3YIWZmLtmvi44Hdu7kOkUCrZfDy4iSJK1dyLkFdrx7XlLt3cy6jkAzxy4INEBkJHDnCZOsrr6jHv2q1VA25f58y0uHhvN/Tk0JIfn7clknxqX3g5MSipd27qZjRrJn5FCCnTgV++IGFVnXqmOccghkQnywIgiCYigoVKFG7eDEwbx5zIVbeSGhRxCenQZLECrBiBeWytm414MFxcdwFzJlD3cqdO9lyoXIMTQi/9x4LYHI0Q1iPvqV07FgD39xUzJ/PVrAZM3JoiArQaNhF3KQJtZMbN0bhnmPhjMkAVKRrducOZw/v3csE/8yZ2ZLJ6NQJ+PRTykUfP278tfurr9hA/sMP6gk8WSXiZAVr5NEjFqc0b260IxJpadsgOJgykUFBSltif+glqA8fZlD93DmgTRvjJKhdXBiM/+03oG5doGhR89psVYhfFqycuDheG1xdWRCi9Ec0JiapU/jBA+55nZ3ZJVy6NBPDMh/dfsmdG2jYkFvb4GDOzjb13nL9eoaHZs7kHliwIsQnC4IgCKakWDF2PC1eDMydy0axTEY2CskQn5wGSRJbmKdPgWnTgN69gcqVs3jwpUtAt26MmE2dyuSnCgeSJ08I65PC+oSwRgNUqpSUENZ3COfJYwZDkreU7ttnXEfY3bvMMn78MS+ytkLp0uyQmzsXvpMm4yi2Idc/3wGvVFLaMuD774GBAymRsXs3EzTZRKMBFiwAGjemUvh77xn+XH0DebduQM2a2TZBAMTJCtbJrl28DtWta/BTnj0Dtm+nmxZpaesmudJ4duSOhZzj7MwlW7Vq/F5lR4K6enUG5HfsYI1c8qB8dGwCbj2ORlyCFi5ODijp7Q53V/Wtp82C+GXBitFq2UEcF0f5XiXm9yYkUOo6LIyJ4chI3u/tTQEkX18qI0iRqaAnXz4WDh4+zFEWRghkZcnhwxSU69GDynSClSE+WRAEQTA1BQoAo0cDS5YwMN6/vwEJpyTsdq8sPjkNdvBXtzyZfcFmz+Z8oqlTMzmATgcsW8a2yBIlqGNZq5ZljM+C1AlhfYfwixcWTghnRPKW0uBgw7/Ekyez9NcWd1uOjsD48bhcojXcunVDha6vAHfncWaBEhGNJ0+YHN6wAXj3XX7WTTBEsFEjjuoePx546y3Du/kWLLCdBnLFEScrqJBMF723bjHT+9ZbzFRlQUICXfLBgyItbSvs28e/X5MmSlsieHlxWaCXoP7iC3ZhGSJB7eDAcRHr1vEr7ewdifXBodh75QFCw2OgS/ZYDYDiXm5oVsEHXQOLo5yvhzlflrKIXxZUhqGBKJ2O+8zHj3l9ttR+UqcDIiKSJKQfPmSyOndudglXrcqiMCUS1oL1ULgw4yBnzvCzW7p0zo958ybQoQNrGletkrWnVSI+WVAZdpscEgRbI08eqnOuWsVkcc+erFjLgGthslcWn5wWufqbCEO+YLWK+GDFuuIYOdIDhQplcKC7d1keun07E2nz5wNubhZ4BWnRJ4Rv/Qq8AVasbrqeNiH87rsKJYTTI3lL6caNNC4rLl4EVq/msPe8ec1vo0I8rxSAhgjBrQ5j4DNkCPD778CaNdzFWordu+msIiPZSWzI38cI5sxh8GbpUmDEiKwff/cuPy4ffyyKHIJgSxi26C2IrqHHUa5wYV44skCkpW2PR4+YhAgKUmypJaRDehLUrVtz3ZlZULx0acCreAz6bzyP0LhHcHTQIFGrS/M4HYDb4TFYF3wba4/eQqOyBTDrTX8U85IPgSCYg+wEoq5cYR1XnTpskDAncXFJncJhYcDz54wD+fgA/v5MDnt4SFJOMI6yZbnlPXWK00x8fbN/rKdPgXbt2KX8889SpCAIQvaR5JAg2CiurswjrVvHHEdEBNCyZYqH3AmPwfgt53HwuuyVhbRIkjiHGPMFu/34Ngr2uIWrRQrgTng6X7DNm4G+fbnq//NP6uxZiMw6hF8Bk8TFiwNzPlRRQjgjkreUduyYdRR/zBigVCnONLZxnsMN/45eAp9er1GP0d8fWLkSePtt8574xQv+PT77jLLSa9eaRda7YkWgTx92Bffqxa6kzJgyhZ0BY8ea3BT7RCqxBIUxatF77DbW6nzRqIg7Zj19keGiV6SlbZddu1gbVqeO0pYIqdFLUFevzq7iH3/MWoJ6w4lQLL1xEXGJ/N6n9/1Pjv73R24+RtBn+zG1fRV0qW1jFWPilwUFyW4ganA9f9y+6IZKleh3TY1Wy4IvfWI4PJz3e3pye+Lnx8S0o6Ppzy3YDxoNYyZRUVShad6cnzFjiY+nWFpYGHDsmIzGsGrEJwsKIskhQbADHB3Z4ZcvH/DTTwxmdewIODhgw4lQTP7tIhK0slcGID45HSRJnAOM/YJBw98fv53qCxYRweHi33wDvPkm5QHMWDKdkMCE8MmT6UtGV6yYskP4FQBoBEyfjv//xwrQt5QuW0bJhYzYuxf44w8OwLOnktzWrTkkqV8/7jp79OCg++zsXLPi7FkO/L12jd3aQ4ea9eI6ZQrw3XfArFnsEs6IixeBr7+mSfnymc0c+0KjMe5vKy0ZggkxetH7/18fuReT7qJXpKVtm1u32Kn21luAk6yGVUv+/FyPXr3KTv6MJKiX7r2GBTuuZusciVodErU6jP35PB5FxWJQs3Imsl4FiF8WFCLbgagbj3H0xn58UL0K3q5iukBUTAwTwvfvAw8eMPHm7MzuztKl+VMUJQRT4+AA1KsH7NlDZYwWLYxTodHpgMGDORpj507OwRasGPHJgkJIckgQ7AiNhvMp8ualwuqzZ1haoiEW7L6ercPZ7F5ZfHIaJCyWTUwWjLpwFYOm9aHm4Zo1TNaZ8IOnTwiHhCQlhdNLCHfpwrHH6XYInzKZOZYjdUtpejNvtVrOLg4MNH8nrRrx9mZrzrffcve5fz//3aiRaY6fmMgM7IQJ/HucPGmQpGtO8fUFRo/mn/6jj9gknh5jxgAlS9pFA7nlkEosQSFMnSC6fp0JqSdPOPutSRORlrYldDpgxw6gSBGgShWlrREMoXx5+vPDh3lLLkG98WRotr//qVmw4yoK5nFFZ1sJhIlfFhQgRz5ZpwOgw6oz5+Hpk/1AVGIi5wnrE8ORkbzf2xsoV47dwl5edhHvERTG2Rlo2JBTl44c4VQsQ7vUP/uMol+rV1NdQ7ByxCcLCiCFlIJgpzRrBnh6YsO6HVhwPXsJ4tTY1F5ZfHIaJEmcDTacyDgYpUuIx9OD3yH64l5oX0TBuWBJ5Gv8PnKXqpnu4xdcjUXBV9qi8/yRLGPOASZJCNsSU6ZQi3/WLM52Ts2GDXyTDh603wiBRsPChMaNge7dmQkZMwaYOjVnndW3b/O4Bw4AI0eyDd2CGZbhw4Hly5mfXr8+7e/1DeQbN9pXA7nZEScrKIBJffKOq7h12RUeD4qjZEmgc2eRlrZFzp8H7t1jDZm9un9rJD0J6vxFY7Ds1sV0Hx/38DaeHfoecfevIzH6KTTOrnD2LgbPwI5wKxeY4Xkm/XYR9csUsA1pPfHLgoUxtU82NBCl01GcSz9X+OFD1gPnzs2EcNWq9Oey7heUwN0daNCAHcEnT3LMRVbrj99+4zZ6zBiuVwQbQHyyYGGU8smCIKiDO6UqYXKeMCBBm2bhEXvvKqLP78aL0PNIeBYGh9yecC1cAfkavw9nryIZHtNm9srik9Ng+6/QxNwJj8Hk39IPRgHAoz8+Q8SJX+BeuSnyB/WFxsEBD36cghd3MnqODpMqv447+fyMsiMhgV0Ua9YAgwax08nDg4Gz3r2ZBCtXDpg9m3m6iAgmkNetAz7+mNWsNp0gBpJaShcvpq5kcvQzcjt04Jth75QqxV3rrFnAp5/yA/X338YfR6ej1nO1asDNm9TWmjfP4i147u7AtGnA999zI54cfQN5nTpU2hZMiN7JGnMThBxgep8MbAm9iAatY9C9uySIbZH4eHbzVKoEFJcYh1Wil6B+913gp9DziEtIXzIvMeIBtHHP4e7fAvmD+iBv/c4AgIebpyPyzLYMj5+g1WH8lvNmsd3iiF8WLIg5fPKk3y7iTnhMur+LiwPu3AFOnGDx544dwIUL/J2/P9UG2rVjcXTRopIgFpTF25v7z9BQ4NKlzB97+jR93Jtvcnsu2AjikwULYmmfLAiC+hi/5TwSdEi3Mi3i2E+IuXIEuUpUR/6gvshTvTVe3LmAe2uGIu7hrQyPaTN7ZfHJaZBOYiMZv+X8yzkOqYm9ewUxlw4gX7MPkDewIwAgT9XmuPvVR3i6bw383k9vQKrm5RdsXe/0uxqSdwjrb2fOpN8hHBDADmEPD9O8XqtnxAi2lH7yScqW0mXLgH//BbZvV842teHoCIwdy4hK1678MM2dyyoEQy6G4eHUbt60ic9fulTRYb89e1Kia9Qo5qr1PnHjRn6HDhyQDjKTI5VYgoUxvU8G4KDDNxfPI6huxp2GgvVy7BgQFQUEBSltiZBTNHkjERr3KMPf5y5TG7nL1E5xn0fAa7i39mNEHP8FHjXapPu8RK0OB68/wvUHkSjrY+ULavHLggUxh09Ovk/WajkGQi8hHR7Ox3h6AsWKsT64YEHDpXwFwdIUK0bp84sXGa8pViztY/77D3j9daByZRb4y2XZhhCfLFgQc/tkQRDUzbWwSBy8nvFe2aP2myjQfhQ0js4v73Ov1Ah3vx6EiGM/ocDrI9N9ns3slcUnp0GSxEaQ1Rcs5sphQOOQIuikcXJBnuot8XT/t0iIeAgnz4Jpnpf8C1bSyyNNQvjsWeD5cya0KlRgNXTnzpIQNgh9S2nfvtQgDghgRGHGDN5XoYLSFqqPmjX5wRs7Fhg6FPj9d7asF8lYbgK7djErGx1NGe/OnS1mbkY4ObGJ+bXXgD//ZCdBbCwbyN94w3Sjl4VkiJMVLIglfLJVL3qFNERHA4cOAbVrcxalYN2sDw6Fo4MGiRkEwNJD4+AIJ48CiL1/LdPHOTpo8N2xUExpb+VDq8UvCxbC3D75px2RcIrxQHw8ped9fTmpydcXcLNytTvBvqhUiYni48f52fX2TvpddDQTxBoN5abls21jiE8WLITskwVByGqvnKtopTT3OXsVgUuB4oh/dCfTY9vEXll8chps/xWaEP0XLCPiwm7C2asIHFxTruZdCpV/+fuM0Og0aD8iFJ6eSZLRu3cDZctSYujAAeDZM0oT6SWjGzWSBLFB9OrFUtxRoyiHPGsW27MnT1baMvWSOzfw+efUbbt4kZptmzalfdzz5/wwtmzJlvbz51WRINbz6qtAs2ZUHU9IYHPznTvAnDlKW2ajWEiuY9myZShZsiRy5cqFwMBAHD9+PNPH//jjj6hYsSJy5coFf39//Pnnnyl+r9PpMGnSJBQqVAi5c+dGUFAQrl3LPIEgKI85fbJ+0SvYFvv28bLTuLHSlgimYO+VBwYliLVxL5AY8wzxT+4h4vgveH4zBLlKVM/0OYlaHfZefWAqU5XDAn7Z1D5ZsE7M6ZMdoMFf10NRrhzQvDmLPevV47QcSaIJ1oZGw6J/Ly/g8GEmhgEgMZFiXNeusUa7UCFl7RTMgAp9smCbyD5ZEARD98rJ0el0SIx5Cgc3z0wfZxN7ZZGbToPtv0ITktUXLDEqHI558qe53zGP18vfZ4ROo4PW94EkhM2BvqV0715g9WpgyRJmDX19lbZM/bRsycRvUBCTv++/zw8nQM3zWrWAFSuARYuYUC5aVElr06DRAPPnU6592TI2kPfpw3y2YAYs4GQ3btyI4cOHY/LkyTh16hSqV6+O1q1b48GD9BcoR44cwbvvvovevXvj9OnT6NChAzp06IAL+qF1AObNm4fFixdjxYoVCA4Ohru7O1q3bo0XL15k+60QzI85fbJNLHqFFDx8SJGMRo0kqWALRMUmINTAmWhP9nyFfxd3xd2VffBk72q4la8Hr1YDsnxe6OMYRMcm5NRUZTGzXzaHTxasE3P6ZC10uB7zAFWqsOtSxsUI1o6jI1C/PsMUhw4B8fEU8dq6laJc1TOvYxKsFZX5ZMF2kX2yINg3xuyVkxN9cR8SIx/DvWLW0ptWv1eWJHEabP8VmghDvmC6hDggmZa7Ho2TS9LvMyHWOQZ9BiRIQtgcvPoq0LQpJae9vPhTMAwvLw7y/fZb6l5Vqwb06wfUqQO4uDDqPnSoai+YAQHAe+9xLHVcHDBlitIW2TAWcLILFy5Enz590KtXL1SuXBkrVqyAm5sbVq9ene7jP//8c7Rp0wajRo1CpUqVMH36dLzyyitYunQpAFbKLVq0CBMmTMAbb7yBatWq4dtvv8Xdu3fxyy+/5OTdEMyIJXyy1S96hRTs2gXkzUvXJRiHTgdotexySkhgMDsujiMcXrygqEhMDLuhoqIooxkRwZqyp085QzQ8HHj8GHj0iAn7Bw+AsDDOFb13D7h7l3MY//2Xih+hocDt28CtW8A//wA3bwI3bgDXr7PL6uCpaBhaF+1Z+w34dJkB73bDkLt0AHQ6LZAYn/XrBnDrcXQO3jkVYGa/bGqfLFgn4pMFwXhcXYGGDelDf/wRWLiQt3btlLZMMBsq88mCbSI+WRCE248N3yvriX98B+E7l8O1SEW4+7fI8vFWv1eWJHEaZCaxgRjyBdM4uaQbdNI7WL3DzQj9F6xK4bzZtFLIEI2GstP79gEdOnBWsWA4Gg27iEuV4s511SogMJDdw56Zy1Cogf79ge+/p/S0NJCrj4iIiBT/d3V1haura5rHxcXFISQkBOPGjXt5n4ODA4KCgnD06NF0j3306FEMT1UU0rp165cJ4H/++Qf3799HUFDQy9/nzZsXgYGBOHr0KLp06ZLdlyWYEUv55J+2R6O4R17odLDqW8E7QDew1idst/L2WPrm7g5UqMAkY4cOytujxK1aQeBgV6BBQ+BMmOHPUysuhbQo1MOwxzp7F4OzdzEAQB7/FgjbMBEPfpoGv+4LocmiJTEuQZtTU60SQ/yyOXyyYJ3IPlkQsoenJ5ArFxPFn34KDB6stEWCGjGXTxZsE/HJgiAYu4dNjHqCBz9OhYOrOwp0GAeNg6NZziOoG0kSG4ghH3zHPF5IjHyc5n69VIdeuiOn5xGygU4HrFnDNqKdO9nuIoliw9HpqH0+aBCQPz/w7ruU7m7cGFi/Hqii7mH1K1bwz338ODuXJFFsHnTQQAfDNQD1jy1WrFiK+ydPnowp6bR8P3r0CImJifBN9Qf09fXF5cuX0z3H/fv30338/fv3X/5ef19GjxHUh6V8ct/+WsTdM94+S6DRGH6roWWS+KuvgHNOxj3XFm5Fi7LD9elTSjwqbY8SN18tgGhg4ADgobPy9uT0FhrpgElHsvfdcavYAOHbliIh/D84e2c+JsPFyborhs3pl83hkwXrRPbJgpA9Ll0CunQBevRgV/GNG0C5ckpbJZgLtflkwTYRnywIgjF7WO2LaIRtmgzti2j4dpsLJw9vs5xHbWTXJ9sykiQ2EEM++C4+pRFx+xy0sTFwcE0aeBd39yp/71s6y2P8uMEBkXWBmjVFctqk/Pknu4i//hoYMIBaThMnKm2VdfD4MVtxf/qJ3cRLljDZ3r8/0K0b9ZznzAGGDFGl/MLJk+wiXrQImDqVctPLlyttlW2i1fJmzOMB4M6dO/BM1pGeXhexICTHUj75l58dUK6A8gmx1DejOQUgADhwAMAr2Xi+FXP2LPDLLxQTKV5caWsU5C6AlUDXrgAKK21MzomOdcfkIzBaRgsAdPGxAABtbObyWBoAJb2tu6BQ/LJgCSzlk605ECUIqXn0CHjtNRayTZvG8QpnzrCwubAN+GkhLeKTBUsgPlkQhJLe7tAg672yLiEOD36ahoQn/8G3ywy4FDA8YGLte+Xs+mRbRq7qBqL/gmWGW8UGgE6LyDPbXt6nS4hH1PmdcClcAU6eBTM/gA74fKY7mjRhDq5iRebgPvuMgd3IyJy/DrskIQEYPRpo1oxR4sGDgXnz2FIqZM6OHYC/P7B7N7BpE7VK8/5fUqZGDWZgBwwAhg0DWrXiMEEVodMBo0YBlSsDH33EucRffglIMa150DtZY24A4OnpmeKW0ca3QIECcHR0RFiq725YWBj8/PzSfY6fn1+mj9f/NOaYgvJYwidrADSu6Y6yZYEyZYDSpam4X7IkUKIEE47FijG4V6QIA3qFCgF+flQr8PEBChYEChQAvL053j1/fiBfPl5GPT1ZDJYnDwOCbm5A7tyUHXR15ch3Z2fAyYndrw4O2UwQ2zHx8cCePUClSnaeILZB3F2dUNzLLdPHJEY/TXOfLjEB0Rf2QOPkCucsNsHFvd3g7mrd9bTm9Mvm8MmCdWIRn6zToeTKz4GjR7m3EwQrJjYWePNNqpz8/jvXhdWqcS157BiVTwTbQ20+WbBNLLVPtubkkCDYOobslXXaRDz8ZS5i715GwQ5j4VqkklHnsPa9cnZ9si0jSWIDMeQL5lq4AtwqNsTT/d/gyd7ViDyzDWE/jEfCswfI37RXlucoUcANzx474dw5Kvm2bAncvMnElj5xXKmSJI6NZs0a4O+/gfnzGWEfP55R96lTlbZMvTx/zs7g1q2BqlWB8+eBTp3SPi5XLn4Yd+5k5tXfH9iwwfL2ZoC+gXzePP7JBw1iUmfsWKUts03M7WRdXFwQEBCA3bt3JzunFrt370a9evXSfU69evVSPB4Adu7c+fLxpUqVgp+fX4rHREREIDg4OMNjCspjCZ9s7YtegYHWqCgg2chxwYZoVsEHjg4Zh8Eeb1uKsB/G4+mh7xF5djueHt6Au6sHIS7sBvI17gYHl9wZPtfRQYNm5X3MYbZFMadfNodPFqwTi/jk+Ei4L1kE1K/PCqxOnThD4c4dE70KQbAMOh3w4YfAiRPAr7+y+BBgmCIwkAWEhw5xOy7YFmrzyYJtIvtkQRCArPfKT/Z8jefXg5G7dAASn0ch6sLeFLfMsIW9siSJ0yJXdSNoVsEH64JvI1GbccN+gdeG4+mB7xB9YS8SX0TBxackfN6ehFzFq2Z6bP0XzMmJeTZ/f6BnT/4uIYHzakJCkm6bNwMvXnAzUaECFX/1N5GqTkZ0NDBpEvDee3xzALZzTZgAjBnDRGjFisraqDZOnWIlwj//AIsXswU3KxnpoCDg3Dlg4EDOK966FVi2jC1zCqFvIG/aFHj1Vd7n6grMmsWPw8GDQKNGiplnk1hCrmP48OHo0aMHatWqhTp16mDRokWIjo5Gr17czHTv3h1FihTB7NmzAQBDhw5FkyZN8Omnn6Jdu3bYsGEDTp48iVWrVgEANBoNPv74Y8yYMQPlypVDqVKlMHHiRBQuXBgdOnQw3kDBYljCJwvWS1QUg6y1a9PtC7ZH18DiWHv0Voa/d6/UCFHndiLy9J/QPo+Eg0tuuPiVRf6mveBWLjDTYydqdehW1/rbz83tl03tkwXrxew+uUk1YN5DZta2bQO2bwf69eOHtnJlFra2bg00bkxZDkFQKTNmAN99x7rqunVT/s7JibOJd+8GDh/mPtZJInY2g9I+WbAfZJ8sCEJWe+W4sJsAgOfXj+P59eNpfp+narMMn2sLe2WRm06LLDmNIKsvGABonFyQv/kHyN/8A6OOndkXzJDE8cmTkjhOl08/BcLDgZkzU97/0UecrTtuHLBlizK2qY3ERLbcTprED1tICIMuhuLlBfzwA/D663x/Dx4EvvmGMt8KsHYtG8i//TalRGvnzvxYjBzJLjORbzUdlnCynTt3xsOHDzFp0iTcv38fNWrUwLZt2+Dr6wsACA0NhUOyoob69evj+++/x4QJEzB+/HiUK1cOv/zyC6pWTdr8jB49GtHR0ejbty+ePn2Khg0bYtu2bciVK5fxBgoWw+w+OdC6F732zr59rG9q0kRpSwRzoXvmgeIuBXAn7jF06Uxccq/cBO6Vjf8AODpoUL+0N8r6WP/C2dx+2Rw+WbBOLLJPdnRkVq1uXWDKFO7xdu9mwvjHH6lulCsXE8X6pHHlyrLYF1TDhg3cak+bxj1peuTODTRoAOzdCxw/DtSrJx9hW0FpnyzYD0rFrgVBUA/lfD3QqGwBHLn5ON2CEb+uc7J1XFvZK0uSOC2SJDaCrL5g2cVRm4j6xTyN+oJllTg+eTLzjuNatZg4zpPHZC9DfYSFMek5ZEiSjpOeXLnYUtq1q7SUAuwa7t6dJctjxzLw4uJi/HE0Gr6njRoBPXoALVoAI0awZDqDObPmIL0Gcj0ODlQeb96c8aR33rGYWTaPpZzsoEGDMGjQoHR/t2/fvjT3derUCZ3Sk0v/PxqNBtOmTcO0adOyZ5CgCGbzyTot6t86g7Kd51MRoUoVkx1bsAwPH1IUo2VLaSizRZ48YSPh1avA2yX8seyf/YhNMN01wMlBg1lv+pvseEpiCb9sap8sWCdm88mZBaK8vCg73akTNXwvXUrqMv7kE+5BihZNShgHBQH585vMNkEwhqNHGbfp1o2iZpmRPz9rIQ4f5tSnatUsYqJgZpT2yYL9oIhPFgRBdcx60x/NP92PBJ3OZAVntrJXliRxWmQmsZHMetMfTploumcHJ20iZs36gLNzddl34PrEcc+ewNKl3IhERlIF+Ouvma+7cYMjeRs3Bjw9k2YcL1rEXGlUlMlelvLoE53jx6f/+y5dmEEcNSpH77tVo9Ox5bZ6deDffznoetas7CWIk1O8OCv7582jZHWdOtzhWoiFC4HHj9M2kOtp1gxo146N5LGxFjPL5pGZDoKlMYtPdnbCrHfrAPfu8do4YgQQEWHScwjmZdcuIG9eSk0LtkN8PDvEly0D7t9nkdfgXm6Y2t60hRzT2ldBsSxmuVkL4pcFS2IWn2xoIEqjYdfw8OFMEoeHM2HcqRM3xe+8AxQowLbMKVN4X2KiSW0VhIz45x/gjTe4LvnqK8M6gwsX5jL0yhU+X7B+xCcLlsTkPlmngxO0NpEcEgR74dhuNzzcVsWkiiS2slcWn5wWSRIbSTEvMwWjWjcBPvgAeOsttsCYCH3iuFevzBPH48ZlnDiOiTGZOZbj8mXgyy9ZpptRxbi+pTQ4GPjpJ8vapwYePQLefpsfjrfeAs6e5RAkU+HgQE3nEyd4Na1Vi9lbM19Z9Q3kgwenbSBPzrx5wK1bwIoVZjXHrhAnK1gas/nkN1rTUc6YwYtExYrA99/bb0GRFfHPP+wwDQqSOX62xJUrwBdfcF1arx6nWlSqxEB7l9rFMbJVeZOcZ1SrCuhc23Yk9MQvC5bEbD45O4Go3LnZPbxwIXDxIhAaCqxcyc7izz8H6tcHChZk8vjrr1ksKwhm4Nkz4LXXOPpryxbjxLXKlQNKl6ZC3IMH5rNRsAzikwVLYnKfrNFg2p9LUeyXDaY7piAIZmPJEo62eK1ScQxrLnvl1IhPToskibOByYNRjcqzi3jzZnZy+vsDf/5pkuOnR0aJ47Nn008c65WYJ0ywoo7jsWOBYsUYRcyM5C2lcXGWsU0NbNvGD8G+fUyQr1nDCgFzUK0aE8WDBrEjLygIuHPHPOcCmwOcnDJuINdTuTLQuzdnQj19ajZz7AqdzjgHK/k2wRSYLUHk6kpfcukSh8N17UqfceGCSc4lmB6dDtixgzmAypWVtkYwBU+eAD/8wDmO3t7AwIFcp6YWPBnUrBzmdPSHq6MGjunMJ84MRwcNXJ0cMLejPz5qVtaE1iuP+GXB0pjSJ3evbsJAVLFiwIcfctbMw4fAkSMcSXTnDtC3L39fpQo7kXfsAJ4/N815BbsmIYF1CHfvAn/8wWZ2Y9BoOCLMx4cf2chI89gpWAbxyYKlMek+OagcOtcrzSDazJnyARUElaLTMR4+ZAhD8N9+Cwxt+f+9spMDHI1UGLDVvbL45LRIkjibvAxGZeMLpkEGX7COHSnJW7MmE5cDB1qsjdfJibm89BLHkyfzMXf+TdlxXLky8P77KkwcHzwI/PorZZMNKdWdO5etR8uXm982NTB3DtC2LfWrzp9nF7G5yZUL+PRTSlBfu8YE9fffm/w0yRvIvbyyfvzUqZzZPWeOyU2xS6QSS1AKs/hkPcWLM6i8YwclqGvUYBBZJKhVx7lzlCFu1cowKUdBvSSXlg4LY5C9a1cmijOiS+3i2FX6Keq7MLmT1bVA//v6pb2xa1gTm6mKTo74ZUEJcuKT9YGoj+v7w9+xLG7fNoOBTk4pZacfPgQ2buQQ2E2b2IHs5QW0aQN89hnw99/2ERkSTIpOxwDtnj2sya5YMXvHcXDgRzNXLuDQIRmVZM2ITxaUwBQ+eW5Hf3zUojwX5tOnM+A2aJCMbRAElREfT5Ha2bMZgp8/n+sI4P975WFNUL80N9T2vlcWn5wWSRLngOx+wWJve+P7rhl8wQoVYhfx0qXs7qxZk12YCqBPHLdvz/9/szZlx3Hz5sD16ypLHOt0lDiuVYu6CoZQpQqvotOn23ZL6aW/+fOXX6k78ddfHHZkSZo3ZxT/1VcZ7X33XbYJmQh9A/mgQYY9vlAhflwWLaIKnSAI1kt2fXIhjTeWvmrAordlyyQJ6pUrgQoVgPXrJXCsEuLjWYdUuTL9gGC96KWlDx1iHmfgwCRp6Uy5cQPFbl/Bus5VsPPjxng/sARKeLsh9dM0AEp4u+H9wBLYNawx1vUOtIm5SoKgJnIaiBr6WnGULAmcPMkJOWbFyytJdvrOHSqG6Lukxo3jXrFEiaROZBPuXQTbZfFi1qAvX04FjJzg4sKpUHFx7CiWvIwgCMZgsuSQRsME8ZdfciTTO++w60IQBMWJjgbeeIMhqvXr2deQmmJebljXO1D2ykK6yLS2HKL/gl0Li8T64FDsvfoAoY9jUgjdaQAU93ZDs/I+aF+5OFrV9cDKPMCqVRkcVKOhTHKLFhwOXL8+MGkSN6kKD9jTJ471XccAZZT+/puzckJCuJn/6SeuFTQaVs0GBCTdatYE8uQxk4E//ggcPw7s3ZtULmMIU6eys3XOHNtrK01IYLf05F8BHOfrfKuUcvbkz08bXn8dGDCAH6ZvvmECOQfoG8jXrzdu1tPIkVzfTphAGQ4h+xhbXWUPlViCZTHWJ3erWxwhez1wMRhoWgtwds7iBHoJ6q5dueru1o3OfNkyoGpVM74yISuOHuXGKKeBWEE5wsM5DePaNaBMGX69MuscToFWC2zfzs7/SpVQTqPBlPZVMAVVEB2bgFuPoxGXoIWLkwNKervD3dU+tkDilwUlyY5PLuvj8fJ3AQG8rh8+zGu72faPydFomBTWS0/HxHAc1PbtvH39NfeYgYHsOG7dGqhdG3B0tIBxgrXw++/AsGHAqFGsLTAFefJw+sn+/Yy51K4tqinWhvhkQUly6pNT8OGHgK8vG3Nat2YgLl8+C7wKQRDS49EjCtL+/Tf7DoOCMn98OV8Pu98ri09Oi+3/1S2EMV+wiRO55xw6lPvPDKlYkaWi06ZRDuuvv4B16xg5UxHpJY7j4znGUZ80DgnJOHFcqxbVO3O88Y+NZSL9tdeApk2Ne27hwhTrnzePLSvFbURG4eZNtnYfOwb0XAysBlBKwQRxct59lyXRPXow8jNsGCXCc+Uy+lD6BvKAAKBLF+Oe6+HBGoGBA2lCzZpGn174P+JkBbVgjE/OH8SuxeBgXpIMolgxFiXt3AkMHkwnNmQIfbW55rsLGRIVxSRCnTqGjRoQ1EV8PLuGDx/mWvCdd7hONCr4ffYsdan79EnzRHdXJ1QpnNe0RlsJ4pcFNZDdQJSDA2uld+/mNaJ587TzyM2Omxtlp9u04f9DQzl+Yvt2SlFPmcIC2KAgPqZVK6BoUQsbKaiJs2e5H33jDdPXnhcowORwcDD3sJUqmfb4gnkRnyyoAZMlh15/nQ76tdeARo1Y6VmkiHmNFwQhDf/8wyXo06csJHvlFeOeb697ZfHJaRG5aTOg/4LVLJ4fVQrnTeNkBwwASpZkM1KWuLhQ2vLgQQa/qlcHvvpK9fKWzs5JSeNly5ijjIjgpumrr4BmzdgpMm4c1xPJpao//5yBAKOlqlesAG7dYtdsdhg1Csibl1l8a0enA1av5ufl3j1WwH/0kdJWpaVYMWDXLg5LWLaMu95z54w+jL6BPPm8BWP48EOgfHlg9GjVf7VUjcx0ENRIVj7Z25vFSocOsWPJKPQS1DNnigS1guzbx2t/48ZKWyIYg06XJC19+DCTQR99ZKC0dHLi4hikqlpVkjOpEL8sqI2sfHJq9DK7sbFUjFD8M1q8eJLs9KNHvHgNHszkcZ8+3NtUrcri4x07RIbTzrh3j/mSChWA777L3r40K4oXZ9zkwgWqowvWg/hkQW0Y65PTUK8eN9EREfz3pUvmMVQQhHQ5c4Z7aK2WPYbGJojtGfHJaZEksQK4uHCI+O+/M7BpEPXr89vfuTM3oG++CTx8aEYrTY8+cfzBB5knjseOTZk47t7dgMTx06fsuO7dm0/KDvqW0nXr+F5bKw8fAh078r145x2+wQ0aKG1Vxjg4sLX+5ElGhWvXBhYsMPgKHBfHYoN27fgZyg5OTqwt2LWL8Rwhe4iTFayVJk34c//+bDzZxQUYMwa4fJnOq1s3qlmcP29KE4UMePgQOHWKCeLcuZW2RjCU8HDghx+ADRtYqDFgALsEs5R8T48jRygJm5Wulh0iflmwBTw8uBXWX+9VU4fl5ETDpk7lxvbhQ2DjRkpRb9xICc78+dnesWgRg+eqMV4wNTExQPv2/BNv3Qq4u5vvXJUrsx7h+HHg8WPznUcwLeKTBZukUiWuxfPlY9zxyBGlLRIEu2DPHsZAihZlzaLKRGdVj/jktEiSWCE6daIs4qhRRnzQPDw4B2nLFl4BqlYF/vjDrHaam4wSx2fOJCWOr15NmTiuUiWdxPHs2azUnjo1Zwb17p3UUmqN/Pkn4O/PzvOff+bnxSODOSJqw98fOHGCkq2jR1OC+vbtLJ+2fHnOGsj1tG/Pz9ioUUBiYs6OZa+IkxWsFTc3fv9PnmRjULYoVgzYtIkS1GFh1K4fNgx49syktgop2bmTMYnatZW2RDCE+Hhg7152Dz94wFq2rl2NmD2cmshIrokDA5mMEVIgflmwFQoWpOrHP/9wb6hKvLx4Ufv6a7Z4nj9PRTCtlpvZypWBEiVY8P3TT8CTJ0pbLJgIrZaKaJcuMUFcuLB5z6evq86fny7QaCUcQRHEJws2S5EiVC/092fR5tatSlskCDbNpk1A27asVdy7F/DxUdoi60N8clokSawQGg2bJU+eZKGxUXTowE1nQAD1jPr3t6mdgbMzVZIzShw3bcrgwJgxDOpX8QhF7PzPsaXsSHy+qVD2pKqTn3zuXEadt2834asyMzExHKrbrh31Jc6fZ7e5teHqSs3oPXuAGzdYQfDddxlW3esbyD/4IIv53gag0fDU588D336bs2PZK+JkBWsmMJCFSLt25fBAQUGUoJ41C/jySw5XzeQ6JmSfmzepQNKiBRu6BPWi07HZPsfS0qnZswdwdBSt8QwQvyzYEiVL0qWeOwf895/S1mSBRpNSdjo8HPjrL+Ctt1jl3KkTB8zqO5GDg6VK1YoZP551/D/8wBpBS+DoyKY9Jyd+pOLjLXNeIfuITxZsmnz5GEN99VXGrL/6SmmLBMEmWbwY6NKFdYm//QbkyaO0RdaJ+OS0SJJYQRo1At54g5uK2Fgjn+znxy7iL75gRqtmTeoN2SjpJY4jI5k43l1vAmJz5cNi55EvE8d586btODY4j96+PYdfjR5tHZv1Eyf491+7lm/OH38AhQopbVXOaNqUEaDXX2dZdpcuDK6kYs4cNpBPm2aa0wYG0tFOnMi8u2Ac4mQFa8bJifndK1eoTpAjXFzoQy5fZvLq/fepaS0S1CZDq2XcvWjR7E+ZECyDXlp640bmRHIkLZ2csDDg9GmuGURrPF3ELwu2hn70eHCwlTXiurlRdvqzz9huevs2sGIFW04/+wyoW5dtIJ07A6tXW0EWXNCzejVrzBcs4NbVkri6MmwRE8P4iFzD1Y34ZMHmyZWLC/4BA6iaMWOGFEoLgonQ6ThqcehQKmB+8w3DTkL2EJ+cFkkSK8ycOVSjWrYsG0/WaOh8T59mVlRfiZyQYHI71YizM1Bdexplj30Hz4VTsPekx8vE8ZdfMmZ45UpSx3FqqeoMpZn0bd7nznE+sVpJSACmT+ff3dOTn4OBA3PYkqMi8uVj992GDcwEVKuWosUvNJTjvUaONG1OfNYsSmAuWmS6Y9oLOp1xDlb2C4LaqFKFalk7dpjo81m0KDfKO3dyVqFIUJuMc+eYI2zVynbcnq2RWlq6c2fgvfdyIC2dmh07qLVZq5aJDmh7iF8WbA2NhiOb8uZlEbDVFnUWL54kO/3oETemgwaxSu3DD7l+qFqVG52dO1kVK6iOvXuBfv14GzZMGRs8PRkOCAsDzp5VxgbBMMQnC3aBoyOwZAkwcya7LwYOtI7mG0FQMfHxQM+ezCF99hmL0xwko5cjxCenRT5SClOxYlKBVbaroStUAI4cYUvytGksJ712zaR2qhKdjp1aFSpwM420HcfBwUiROG7SJClx3LBhysTx4sXJEsf6ltIJE9QZfbhxg91pU6awlOjIEb4Ptkjnzuy+q1gRaNkS+Phj4PlzTJzIANHIkaY9XZkyXMfOmcOcjmA4UoklWDsaDZOO9+6ZuOk3KIiRO70EdYUKIkGdA+LjqTJcuTJHQQvqQi8tvWxZSmnpihVNmNC/fp23li1FazwTxC8LtoheZtfBgdcYq6+PdnJKKTv98CGLZOvUoQxDq1acd9y2LatYL12S9YMKuHKF6uHNmjEfomTBmq8v6xD1rlFQJ+KTBbtBo2F8+uuvufft1EmKnQQhm0RFUfD0hx94+/hjpS2yDcQnp0WSxCpg8mQgLo6x42zj7MwE8aFDrEauUQNYtcq2N5Dbt7OzdO7cTAOEyRPHX3yRMnG8alVS4nj06JSJ45Fxs5B4/wFuDf9cPSOfdTrO9qhenW05hw7x755jzUaVU7QoO4Y++wxYsQLPq9bCuW/PYOpUwMPD9KebOJGBJ1PJWNsL4mQFW6B4cc5J3b3bxPPdkktQN2mSJEF97pwJT2IfHD3Kgq6gIKUtEVITHg58/z0b6AsWNKG0dHK0Wq4J9F9WIUPELwu2Sq5c3LdFRVFm16a2vN7eSbLT//7LqrXp09mJNXYsK6RKlmSl+ebNwNOnSltsdzx+DLRrxwlgmzapYytepgxQvjzFxe7dU9oaIT3EJwt2xwcfAL/+CmzbxoInq5oTIQjK8/Ah99KHDwN//cVJjIJpEJ+cFkkSqwA/P8aNFy82wRzEevWY/XzvPeoevfEGk4m2RmIi37RGjbI1/EefOO7dO2Xi+PTppMTxwbtl8AUGwmvlbJT2eIgqVYAePVJ1HFuSBw+ADh0YEHj3Xf6d69WzsBEK4uAAfPwxdCdO4u4DZwSjDvo8mWcW6RpvbxY+rlgBXL1q8sPbLOJkBVuhRQsGnoODzXBwvQT1rl1c9b/yCstBRYLaIKKiWB9Vpw6VhgV1oO/u/uILfqxNLi2dnDNnqKvZurVojWeB+GXBlsmbl6N8792z4XorjYay0yNGsDgmPBz480/gzTfpDN9+m8PeGzRgdWtwsMh6mpnYWL79z54Bv//OCUlqoVo1jrk+dkyWlWpEfLJgl7Rrx03CxYuM3/77r9IWCYJVcPMml3ehocD+/YxRCaZDfHJaJEmsEkaMoIrUJ5+Y4GB58lDS49dfuUOoWhXYutUEB1YR337LquoFC0wWIHR2ZgN28sRx/zsT4J5Hgz3NpqNJEzaAJe84rlrVQonjP/4A/P0pK/3LL/z75sljppOpmx13q6JyVDBuvzkMjp+MZVlVjqsr0jJ4MGcdjx9v8kMLgqByvL055vTgQTNe11u0oAT17NlUiKhQAVi3zsbaoUzP3r2UGm3cWGlLBCCltPSRI9zImlxaOjmxsQw0Va3KggtBEOyaQoUos3v1Kqfx2Dxubillp2/dApYvZ9X5woXMmvv4sFJnzRrgv/+Uttim0OmAvn2B48cZaildWmmLUqLRcGpWnjysIRB1V0EQVEHdugyYRkVxvMLffyttkSComtOn+VUBuMeuWVNZewT7QJLEKsHdncW/338PhISY6KDt2zORWqcO/923L52ytRMTQz3gzp352syIc6ECcJwwHlUOLMcXw66l6Thu3NjMiePoaKB/f+C114DatYELF9gdbqckJgKjRgGBjVxRdvNcZgtu3WLZ9LffmjS5kjs3MHMmVdyOHDHZYW0aqcQSbIkmTRhs27fPjCdxceFF7fJloGlToHt3OhabbYnKGQ8e0P82acJrtKAsqaWlBw7kbEazym4eOcJ1oGiNG4T4ZcEeKFuWt9OnKTJgV5QokSQ7/egRM4MffcT9Ue/eLKbx9wdGjgR27pSsYQ6ZPZtbztWrk4K3asPJiQVbWi1jEdJYrh7EJwt2TcWKXMfnz8/g6eHDSlskCKpk927GO4oX59dEbQVptoKafPLMmTNRv359uLm5IZ+CEjWSJFYRvXpxxNCoUSbMdfn6sot4xQpg/XqWnxw7ZqKDK8SiRYwU52iIsxEMGcIy9XHjAKTfcZw6cXzpkgkSx8eP8++1bh3/flu38u9px+gbyOfP/3+Hkn6eZ4cOfIPfeYdDokxE1678W48cKc19hqAmJysIOcXNjdfzkBDGXc1K0aLAhg2UoH78mBLUQ4eKVmAqdu2irGPt2kpbYt9kJC3t5WXmE0dGchFVt65ojRuI+GXBXqhenduko0eBiAilrVEIfXZQLzv98CHXFrVqAT/8wHmQXl7Aq68Cn39uFiUmW2bTJqq+TZlCn6dm3NwYh3j2jCEF2ceqA/HJgt1TuDBw4ACddlAQJRkEQXjJhg0UjGnQgPvtggWVtsh2UZNPjouLQ6dOnTBgwADzncQAJEmsIpycgHnz2Bz5118mPLBGw/nEp09zY9iwITB5MqN81saDB8CcOayQtlQ5Te7cwIwZrNA+ejTdh6ROHB8/njJx3KhR5oljfWMMACAhAZg6leXJ+fPzIP362f3cPX0D+TvvUEbrJXnzMnu8aRNLrvz9ObPLBDg4MCF99CiwZYtJDmnTqMnJCoIpqFOHl5idOy10whYtOG919mzg668pQW1ilQRr5eZN4No1xhMcHZW2xj6xuLR0avbs4YKrUSMLnMw2EL8s2AsODqwfyZ2bzbSxsUpbpAK8vZNkp//9l4W106YxBjB6NPDWW3ycfp/79Kmi5qqZ4GDu2997D5g0SWlrDCN/fu6Z//2XYmSC8ohPFgRwc/3XX1RL7NiRo/QEQcCiRcC77/L22292O2HSYqjJJ0+dOhXDhg2Dv7+/+U5iAJIkVhmvvkrFydGjmSs0KeXLc9c8YQJ1dBs04AAna2L6dEYBJkyw7Hm7dWO1mxEtpckTx8uXZ544btAA8PAAXi13DdcLNYR22nTc6TEBMTsO8e8mZN1A3qkT24yrVgVat2YH+PPnOT5vUBDQpg0wdqx11lVYEjU5WUEwBU5OzNtevQr884+FTppagrpHD7Y0nz1rIQPUh1bL2p9ixYBKlZS2xj55/DhJWtrHx0LS0sm5f1+0xrOB+GXBnnB2ZjFuQoLI7KZBo0kpO/3kCSuVAeDUKeDtt4ECBfgGTp/Ojau8gQCA27c57emVV1i/Z01120WKcCrT5cvSOK4GxCcLwv/JlYstkwMHcizitGlSFC3YLVotMGYMMGwY485r11pwj23HZNcnR0REpLjF2lBlqiSJVYZGw87Fixd5YTA5zs7USDp8mJvDmjUpZWwNDvnqVdo6fjwroy2JvqX0yJEctZRmmDg+pcO+rquw5VYNuEQ+RmOHwyi+ego8vJxRtSrQsyewZEmqjmM74uFDNpAPHAiUKZPJA4sUAbZto4Tal18CAQEMfOSQuXOB69eZ3BcyRja+gi1SpQovLTt3WthV6iWod+9OKUFth50+585xzmSrVtYVnLUF9NLSy5dTdr1LF1Y3m11aOjU7d/KktWpZ+MTWjfhlwd5wd2fx7ZMnwIkT1rHFVQQ3N75RAPDzz8wgfvEFNbsXLGALqo8PL/pr1gB37ypqrlJERLDZzc0N+OUX5jWsjfLlgVKlgJMnuacWlEN8siAkw9GRxUqzZlHpcsAAKU4S7I74eMb7589nGHv2bIl3WIrs+uRixYohb968L2+zZ89W9oWYEEkSq5BatRiAmzTJwNm12SEwkB0Z3brRGb/+OiOwamb8eM6wGDJEmfO3bMkOVRO3lDqHh6HGpPZotK4fXD/ohuKPTmNPdCBOnQJWrmTH8d9/s/Bb33Fsb4njadOYp5840YAHOzjwMxISAri6Untu9uwcLTirVeP7PXWqHc85MwCdzjgHK4E7wRrQaJicvHePyUqL07w5JajnzrVLCeq4OCYpq1Rh3lywDDod1U6SS0sPHMiPn8U3rtev89ayJdv7BYMRvyzYI97eHBdx5w73UIIBlCjBbq7Nm1mYdugQL/o3b7K6uUgRdiKPGgXs2gW8eKG0xWYnIYE58tBQ4PffrXcuoEbDOsOCBenPIyOVtsh+EZ8sCKnQaIBx41iM9NVXVLUwgRqgIFgDUVFMxWzcCPzwg3KpDnsluz75zp07ePbs2cvbuHHj0j3+2LFjodFoMr1dvnzZgq84ayRJrFJmzeL+bOFCM54kTx5mIX/7jaXWVasCv/5qxhPmgCNHuGmdMUPZEt5580zbUrp1KzfcwcH8O6xcCeTJAxcXNnl/+GHKjuPMEsf+/raZONY3kI8bZ2QDeeXKfF9HjAA++YSyrTnQi502jU587txsH8LmkepowVYpXpwyx3v2KCQ77+LCC/6VK0wa9+hBR2AHEtRHj9KftWihtCX2w+PHwPr1wKZNCklLJ0erBbZvZwKjYkUFDLBuxC8L9kqxYtza/v03k3yCETg5cYOpl51+8IDRy1q16BxatqSyw6uvsu3l8mWbzGYNG8ZRFz/9xG2lNePgANSrx/rpQ4dYgCdYHvHJgpABPXsyHrpjB31MeLjSFgmCWXnwgPvrI0c4ortzZ6Utsj+y65M9PT1T3FxdXdM9/ogRI3Dp0qVMb6VLl7bgK84aSRKrlJIlgcGDmZM0e4Pv669zlmu9ekCHDsxMRkWZ+aRGoNMxOF6jBtC1q7K2VKvG4HxOW0qjolit3b49O10vXODfIROyShw3bJh54thacwnjxwOFCmWzqsrFhV3E+/eznaB6deq4ZyOQUbQogwULFwL//psNW+wAtW18w8PD0bVrV3h6eiJfvnzo3bs3ojK5toWHh2Pw4MGoUKECcufOjeLFi2PIkCF49uxZiselVwG2YcMG874YQXGCgnjpPnZMQSOKFGGgds8ebp5feYUXRxuVoI6K4nSMOnWA/PmVtsb2iYujuvny5UwUKyYtnZzTp7mLFq3xbKEmv2ysTwaApk2bpvG3/fv3N5+Rgk1RsSLrS06coFy+kE0KFEiSnf7vP8qqTJtGpzF6NKvoSpUC+vWjdHWqdbM1smQJsHQp1TRatlTaGtPg4sJ4QVwcg9KSgLQ8avLJgqA6Xn2Ve9zLl1kMfeeO0hYJglm4eZMx+3//BQ4cYA+AYHnM7ZMLFiyIihUrZnpzcXExz4vLJpIkVjHjx7OQd+pUC5zMx4ddxKtWcQZi9eps31EDW7bQlvnzWQarNNOnMzs7b172nn/sGLO969fz/f71V77/2cCQxPHFi0wcf/ABn/POO0mJY32HllrRN5DPnAnkzp2DAzVqxIBGx45Ar16UsclGtGjMGDbgT5qUA1tsGLVtfLt27YqLFy9i586d+P3333HgwAH07ds3w8ffvXsXd+/exYIFC3DhwgWsXbsW27ZtQ+/evdM8ds2aNbh3797LW4cOHcz4SgQ14OUF1K7NDgyzjYIwlGbNWPkzbx6DthUqAN98Y3PRpL17uQ5q1EhpS2wbvbT0F19wXaCotHRyYmMZLPL3F63xbKImv2ysT9bTp0+fFP52XnbX34LdodEAAQH034cPq6sG2mrRaHhNHjmSstPh4cAffwBvvMGi3LfeovRTw4ZJnchWNmPyzz+Bjz8Ghg9n3tuWyJMHqF+fhWAhITbZAK5q1OSTBUGVBAbSYcfE8GJ18aLSFgmCSTl1iv15Gg3j3TVqKG2R/aImnxwaGoozZ84gNDQUiYmJOHPmDM6cOZNlQbWpUUHGTcgILy9gwgTmES0iU67RAH36cPZhwYLc3E2cyIE8ShEfzxnAbdqwjUsNJG8p/e8/w58XHw9Mnsz31dub73OfPiaPwKZOHJ84wcTx+vX8ffXqSYnj+vXTdhyrJXGs03HslckayD092UX800/Avn180du2GX2IyZN5mPPnTWCTjaEmJ3vp0iVs27YNX331FQIDA9GwYUMsWbIEGzZswN27d9N9TtWqVbF582a8/vrrKFOmDJo3b46ZM2di69atSEh1HcyXLx/8/Pxe3nIpKYMvWIzGjVmrtG+f0paA2r8jRnCB0KIFL+KNG1uvbEQqHjxgE2njxjksEhIyRVXS0qk5coRzL0VrPNuoxS9nxyfrcXNzS+FvPT09zWOkYJM4OnK/4+IiMrtmwd09pez0P/+w4sjHB1iwgAF/X1/KUqxdC2TxfVeac+co+fjaa9mvB1c7BQtSOfzWLU4xESyHWnyyIKiaChW4B9AXHB06pLRFgmASdu0CmjShcuzhwxRhEZRDTT550qRJqFmzJiZPnoyoqCjUrFkTNWvWxMmTJ8130nSQJLHK+egj5iQzmINtHsqWpSOePJlSvT17WvDkqVi1ijOA1bZLGzOGm2JDW0qvXmVrzsyZfM6hQ0C5cua1MRkuLkmj/D75JClxrO84btAg48Tx0qXKJI63bOHa0OQN5G+9xQxv9epA27bAoEFGvbh+/fgVGT3ahDbZORERESlusbGxOT7m0aNHkS9fPtSqVevlfUFBQXBwcEBwcLDBx3n27Bk8PT3h5OSU4v6PPvoIBQoUQJ06dbB69WropBTfLnBzY1drSAjw8KHS1vyfIkWA779nx+WTJzYjQb1zJ5AvH7u3BdOTnrT0e+8pLC2dnIgI7p4DA0VrXAFM7Zdz4pPXr1+PAgUKoGrVqhg3bhxi1FDJKFgVrq6MM794wT2NJF7MSMmSHKn0889UbTp4EBgwALhxg7JWRYpwfNOoUYyWmmDNbyru32dyuGxZFk85OiptkfkoUYIq4efPyxglQRBUSKFCVKeoWZOa/7/8orRFgpAjvv+eNXWNGjFsU7Cg0hYJamLt2rXQ6XRpbk2bNrWoHZIkVjm5cgGzZtEnHjxowRM7OTGZeeRIkjbXpk2W1SSKiKDWds+ezFiqibx5mURfsybzllKdDlixgoubp0/5fk6axPdXYZJ3HK9YkTJxvGJFUuJ4xAgmjj09+Wfo1cv8iWN9A3nr1mZqIC9cGPjrL7ZOf/01tehCQgx6qrMzMGcOm5B37TKDbVZMdiuxihUrhrx58768zZ49O8e23L9/Hz6pZNydnJzg5eWF+/fvG3SMR48eYfr06WnkMKdNm4ZNmzZh586deOuttzBw4EAsWbIkxzYL1kGdOnQBqvv+N2tGhQobkKC+cYP1YUFBth2kVQK9tPSyZfTjDRsmSUurij176HBFazxHqMUvZ9cnv/fee/juu++wd+9ejBs3DuvWrUO3bt1yZItgn3h4cD/z8CFVKqS2zwI4O6eUnX7wgFHSV14BvvuOgX8vL6BdO2DxYra1KvSHiYmhYnZiIrB1K2WZbZ0qVYBixfinCQ9X2hr7QE1dS4KgevLmZcyufXs2eqxcqbRFgpAtFi6kOmbXrpw26e6utEUCID45PZTPVAlZ0qULLyqjRjGgZ9H5cHXqAD/8wA3e3LnUYFq9GvDzM/+5585lgnraNPOfKzv07UtprTFjOLwoNffvMwP7xx9A//6U3FK5N9AnjmvWpBI2wG6jCxeYQ9Xfvv+e9zs6ApUrM8eqv1Wvzm67nKBvIP/pp5y/pgzRaNhF3KIF0K0bULcuMGUKs9NZZCXefJOBplGj+H6oYVS2GjDWceofe+fOnRTyka6urhk+Z+zYsZg7d26mx7106ZLhRmRAREQE2rVrh8qVK2PKlCkpfjdx4sSX/65Zsyaio6Mxf/58DBkyJMfnFdSPkxOTlz/9RFVFVckE6SWo332X0hA9e/KCOmiQ0pYZjFbLLuJixdjlIpiWv/4CTvwHlC/PQizVdA4n5/59Fjy0bSta4znE3H7Z3D45eZGWv78/ChUqhBYtWuDGjRsoU6ZMto8r2Cc+PtyrnDzJpHH58kpbZGcUKMD1ybvvMhl8/jywfTtvo0YBQ4eyxbV1a95atGCSwMxotUCPHtzvHjhAFTd7QKOhWsu+fRTuaNEi53t4IXOy65MFwW5xdWU82s+PMdV799isY9GguCBkD62W6YIFC6gOO3OmfHTVhPjktEiS2ApwcKDkbvPmDEp36mRhA/QBukWLKD9dtSrw5ZfMlJmLf/9lZnz4cPXu1Fxc2FL69tvUbEw+M+/XX5kgdnAAfv+dFdJWiosLC75fecUyiePkDeTVqpntZSVRqRKrL6ZOZZf3n38C69YBpUtn+BSNht/JBg0oR/b++xaw0wrIrpP19PQ0eMbgiBEj0DMLCfzSpUvDz88PDx48SHF/QkICwsPD4ZdFkUtkZCTatGkDDw8PbNmyBc5ZDOcMDAzE9OnTERsbm2mCW7AdKlemYuKOHawXUt1iv3BhXpT79uXcCv1g98hIZe0ygLNngbAwoHdvFb6vVkpcHHDmOFAHwNNnLD5UXedwcnbsYPY6mTSxkD3M7Zct4ZOTExgYCAC4fv26JImFbFGqFF3h2bPsFi1cWGmL7BSNhhs9vfR0dDSlRbdtY9J41SpuKuvVS0oaBwSYpTJ34kRg82YqZAcEmPzwqsbRkfvZ3bs5DatZM9YbCuZBAtKCkA0cHBiLLlyYDR137wJffKEKdUZByIi4OE7Z+P57iqUMHqy0RUJqxCenRa6qVkKzZswzjhtHKSQXFwWMaNSIA+v69AE6dqTu8OefsxTb1EyaxOOOGWP6Y5uSjh25eR01imXp0dHAsGGUMH7jDSbTbXDYgDkTx4o0kLu4sKzr1VeZ8a1enZ/tXr0yzFLUr88//yefsHAjV66k30XHJuDW03jEFSoPl6fxKBmbAHdX27/cWsLJFixYEAUN+E7Vq1cPT58+RUhICAL+H/HZs2cPtFrtyyBzekRERKB169ZwdXXFb7/9hlzJ/7AZcObMGeTPn18SxHaERsN45erVFNioXl1pizKgaVN2ZI4ZA3z2GdChA392765KCYS4OKoMV6mi3vowa0IvLb19O+ARxSRxp06Ac3GlLcuEa9eoN96li2iNmwBz+2Vz++TUnDlzBgBQqFAh4wwVhGT4+3OvcewY99gy9lwFuLtzH/bqq/z/rVtJXcbz5zOT6+1NiWp90tgE14G1aznaa/58LpHskVy5KBq3Zw8QHMyksRTpmQcJSAtCNtFouJ/182MlcVgYsGGDKA4JqiQykr1k+/YBGzcq0OgnGIT45LSoL0IoZMjcuZS2XLFCQSMKFgS2bAG++ooziqtXpz6RKTl3jju2yZM5CFfNaDTUjjh9mp2oNWpwsfLVV3yfbDBBnBH6xHGfPilnHIeEAMuXM6l6/nzKGcfVqiXNOD52jLHhhQuZZ1ckQdCgARMqnTpx8dmxI4eXZcCcOVS8WbwYuBYWiSm/XUST+XtRdcp2tNv5CG/2WIh2Ox+h6pTtaDJ/L6b8dhHXwtTfyZdddDrj5jmYc+xYpUqV0KZNG/Tp0wfHjx/H4cOHMWjQIHTp0gWF/9828t9//6FixYo4fvw4ACaIW7VqhejoaHz99deIiIjA/fv3cf/+fSQmJgIAtm7diq+++goXLlzA9evXsXz5csyaNQuDpTTQ7ihWjMUve/ZwjrpqcXampD5AWf1evRgNPH1aWbvS4ehR4PnzlMIcQvZ4/JhKFz/+yHjKO+/wfmc11yslJrKLuEQJoGJFpa2xCdTil7Pjk2/cuIHp06cjJCQEt27dwm+//Ybu3bujcePGqGYRqRnBVtFoOFHJ05Pb2OfPlbZISEPJkkC/fmzvffSIOtD9+3Me0QcfsKOsenVg9Gi2wcbGGn2K/fspuPLhh9yf2jN587Lu/f59dtkL5kEtPlkQrJYePTg4ftcuzn+SgeqCyggLYwHisWMUR5EEsXoRn5wWSRJbEVWqcE80bRrw9KmChmg0TKCdPcvIY+PGbKeMizPN8ceMAcqW5a7NGqhdm8HMadOYFD57VnQy/0/qxPHJkykTx/XqMXE8fDj/XaECky23bgHLltGxWjxw4+nJ9sDNm4GDB9lukN7MaQDlygHdB8Tg83PBaLnoANYF38bt8Bik9h06ALfDY7Au+DZaLjqA978Oxp3wGLO/FEtjjIM1tmorO6xfvx4VK1ZEixYt8Oqrr6Jhw4ZYtWrVy9/Hx8fjypUriInh3+LUqVMIDg7G+fPnUbZsWRQqVOjl7c6dOwAAZ2dnLFu2DPXq1UONGjWwcuVKLFy4EJMnTzbvixFUSYsWSd1IVsHMmcDevdT1r1WLs4qfPFHaKgD0DYcPM3AvXV3ZJy6O8fIvvmCiWD/+0dMMoi8m58wZ4MEDdojJGsokqMkvG+uTXVxcsGvXLrRq1QoVK1bEiBEj8NZbb2Hr1q3mM1KwG5ycWBsKUGY3IUFZe4RMcHamotmMGaxCfvCAclU1a3JEUFAQRxS0a8fK3atXs4zkXbvGWuBGjegvxeUwrFOjBt+b69eVtsY2UZNPFgSrpW1b7mevXmXhc2io0hYJAgCKYTVoQEX0AweYLBbUi/jktKi5n0BIh6lTuSeaM4c3RSlThle+OXNo2LZtwHffccZrdtm1i8fZvNk6BuJcucIOrWvXKN355pt8X4QMyUiqessWBrIDA/m2/vgjE8bJpapr1UqSqja7soxeSvyDDxh0GDCAXePJNLI3nAjFIc+LcMrNQESiNvOAhP73R24+RtBn+zG1fRV0qa1m3U/jUJtch5eXF77//vsMf1+yZEnokgWRmjZtmuL/6dGmTRu0adPGZDYK1o2XF+uEDh1irDJPHqUtMoCmTdlFvGQJMGUKVUHmzmVltoIS1Hv3MmjfqJFiJlg1yaWlY2L4PjZoYB1LKQDsAtuzh4VZRYoobY3NoCa/bKxPLlasGPbv328+gwS7J3duxpf37qXMbv36kiy0CgoUSKqA0umoQqaXph41Chg6lJ3Ielnq5s3ZKvt/wsO5tStYEPjpJyvykxagbFkWP545wzWtESPjBQNQk08WBKumTh1WF7duTee9bRtQtarSVgl2TEgIJ2bkzw8cOcJliKBuxCenRTqJrYzChSmHtGiRSgqmnJyACROoERkdzczf0qXZ68PXarmxq1+fyVY1o9Ox7LhmTbY/HTvGJOLs2WzdEYzCxYUK42XLcm7DyZPcoIaE8G3WdxwPG8Z/e3hQqvqDD8zccVyoELuIly2jgTVrsoIdwNK91zD25/OITdRC42Dc5z1Rq0NsghZjfz6PpXuvmcFwZZBKLMEeadKEudV9+5S2xAicnSnhcPky5/t98IGiEtRhYQxINmkio6Wyw6NHrNHTS0sPHMhaAKsKfB8+DLx4wY4wwWSIXxaEzMmXjwWqd+9yryFYGRpNStnp8HDg99+B119n9r9jR84y/n8nctzRELz1lg7h4cAff4hySXpUr861xNGjwLNnSltjW6jJJ8+cORP169eHm5sb8uXLZ74TCYK5KF+eF6qCBXmNP3BAaYsEO2XnTu69S5Vi84AkiK0DNflktSBJYitk1CgWw06cqLQlyahVCzh1ioHmwYMpAXL3rnHHWL+eUeL589Vdxn3/PsuPP/qIsx1PneLrnzSJV40ZM5S20OrQN5DPnp0U1NZ3HPftC6xcmSRVffJkUuL43LmUiePq1c2QONZoGHE/fZpS1PXrY8PkL7Bgx1UTHBxYsOMqNp5QQ8VHzhEnK9gjuXNz6sKpU5mOMFcnhQvT9+7bp6gE9a5dDNTWqmXR01o9cXF875Yv559M31hldUHviAiWXNety4yNYDLELwtC1hQuTJndK1eAmzeVtkbIEe7uSbLT+j/o0qVAgQLQzZ2H/vXP4si+OGypMRVlDn0D3LuntMWqQ6Nh4YS7O4PdL14obZHtoCafHBcXh06dOmHAgAHmO4kgmBs/Pw6Yf+UVoFUrzrEXBAuyfj07iBs3Zq1agQJKWyQYipp8sloQuWkrxMOD6s4DBzJBVqOG0hb9Hzc3Zudee42ZOn9/YNUq4K23sn7u8+eca/zWW+wkVitbtlAj2dmZHaZt2yb9zseH85SnTmWivHRp5ey0IvQN5PXqsdg7M1xdKTcdEJB0X2wscOECu471t+++S5KqrlIl6Tk5kqquUAE4cgR3ps7F5Gg/wEmXppgh7uFtPDv0PeLuX0di9FNonF3h7F0MnoEd4VYuMMNDT/rtIuqXKYBiXm4ZPsYaELkOwV6pXZsiAzt3Au+9p7Q12aBJExbCLF0KTJ5sUQnqGzc4++6dd3jNFrImtbR048aUlnay1lX9nj1JMycFkyJ+WRAMo2xZFqOeOsXkmK+v0hYJJqFUKaB/f6B/f8yblYg1nzhiXfsf0eju70CvEDrUatWSpKkbNuSG085xduZbsXs3hT6aNpU1milQk0+eOnUqAGDt2rXmO4kgWAJPT8Zme/YE3n6bMWkpfhAswKefAiNHsnds5UorU/ESVOWT1YJ0ElspvXtTXWP0aKUtSYe2banX1aQJnXTPnuwSyYwlS1jJO3u2RUw0mshIJr47dmQ09vz5lAliPcOGUe5k/HjL22il6BvIFyzIXgO5PnGcUcdx3brA2bMm6jh2dsb4Ui2R4OKarrGJEQ+gjXsOd/8WyB/UB3nrdwYAPNw8HZFntmV42AStDuO3WL/GnVRiCfaKkxPQogXH01ttF5KzMy+UV66wEvuDD5h5PHXKbKfUaoEdO4DixYGKFc12GpsiubR0oUIsGGzSxIoTxPfvcxHQtCmQK5fS1tgc4pcFwTA0GhZe+/hQvTKrratgXWzeDIz9xBETJwLdfu3Eyr6wMG5Ea9QA1q3juAMvLxa8L1kCXL2avRFaNoKbG5eBz57x7bLjt8JkZNcnR0REpLjFxsYq+0IEQW24uvJ6PnQoN0eTJslFSzAbWi3HgI4cyV63r7+WBLE1IvvktEiS2EpxdmaTz86d7CRRHQUKcDe2Zg1/Vq8OHDyY/mMfPwZmzWKVb7lylrXTEA4fpv0//gisXs3Xk5GGhJsbMH06sHEjcPy4Ze20Ql68oFPt2NG0DeSpE8chIcYljoOD008cXwuLxMHrj5CYwXozd5na8O08DfkavgePGm3gWfsN+L43C84+pRBx/JcM7U3U6nDw+iNcfxBpmjdAEASLU7kyULQo/bJV70kLFWIWct8+DoevXZvjFcwgQX32LPDgAcciq3nKhBpIT1q6SxcrlJZOjk7HRayXl2iNC4KgOA4O3Bfkzk2ZXcnD2AYnTgDvvw907kzBr5cULEj5l2++4ZisM2eopvL8OSO/FSpQGax/f+CXX+yycsDLC6hTB7hzB7h4UWlr7JdixYohb968L2+z1dpYIQhK4uAALFwIzJvHmGyfPkBCgtJWCTZGXBzQrRvw2WcUYZsxQ+IYgu0gSWIrpn17ygCNHg0kJiptTTpoNOwiPnsWKFKErS7jxvGqmpwZM1iSMWmSImZmSFwcM5iNG3NY1dmz1JHIygP06EGp7VGjrDxTYH4WL7ZcA3lWiePAwKTEcd26KRPHX3zBxPE3R0Lh6GDcCkDj4AgnjwLQxkZl+jhHBw2+O2bds4mlEkuwZzQaNuDev89ridXTpAm7iD/9lB025cuzUMpEX9y4OKoMV63K5LqQPjodA7P6AqbGjVkgX7680paZgOvX2XrfqpXoWJoJ8cuCYBx6md2EBI5KV+UeWzCY0FDGTKpXZ+16htt4jYYPGj2aGsuPHwNbt7KreM8e4M03AW9vOuGZM7mBtJMLZtGiDG1cugTcvq20NdZNdn3ynTt38OzZs5e3cePGpXv8sWPHQqPRZHq7fPmyBV+xIFgYjYZx2G+/ZQFQx46czSMIJiAyEmjXjn1jmzaxjl6wXmSfnBZrFacTQP+3YAETWuvWMR+rSkqXBvbvZ+vz5MnsGvnuO7Zd3bjByOeUKazmVQuXLrE86Nw5VqGNGWN4ANPRkdVrbdtyc9m+vXlttVL0DeT9+ikX7E4+47hvX96nn3F88mTaGcdF+j2AU/6sE//auBfQJcRCGxuD59eC8fxmCNwqZT5rMVGrw96rDzAFVUzx0hRBZjoI9k6xYnRte/ZwHrrVyw45OwMff8z2m9GjOeviyy/pt195JUeHPnKEzTotWpjGVFvk0SPgr7+YR61QgeMSrbpzODmJiVwPlizJFyeYBfHLgmA87u6U2d23j/uBOnWkS8QaiYwEXn+d+71ffmGHuMHkycME8Wuv8f///EOftX07YxoTJlBZrGVLOudWrajEYqNUqJBUXO3unrGompA52fXJnp6e8PT0zPLxI0aMQM8sgoKlS5c23ABBsFbef5/x5bff5iiBrVtZ6CMI2SQsDHj1VdY479jBenrBupF9clokSWzlBAYC77zDfco771DtWJU4OnJOb+vWTL4GBHCDdegQhz99/LHSFhKdjsHvUaMYuDx2jLYaS+vWjHyPGUNPYrXDAs2HvoF88mSlLUlJ8sSxnthY4PipBLz/m2FViE/2fIUo/QxijQPcyteDV6sBWT4v9HEMomMT4O5qnZ8XcbKCwEv/smWcadi4sdLWmIhChViN1qcPS2Zr1QIGDOCFPBtZy8hIJokDA4F8+UxvrrUTFwccOMDPUN68lJa2ic7h5Jw+DTx8yO4syb6YDfHLgpA9vL2ZHD52jOpClSsrbZFgDImJ9J23bnG94eubwwOWKkXZ6f79WTl89GhS0viHH/iY6tUZA2jdmlUGrq45fRmqQaPh3jg6mpO4WrRgHl0wDnP75IIFC6KgmhovBEFJ2rQB9u5l62fDhsC2bUCJEkpbJVgh167x4/TiBadoVqumtEWCKZB9clpEbtoGmDWLM/0+/1xpSwwgIICtmR9+CAwdyjm/w4erI7t99y67fwcPpn0hIdlLEAPcSc2fD1y+zCn2Qgr0DeRjx6qrgTwjXF0BrxLRBj/es/Yb8OkyA97thiF36QDodFogMT7L5+kA3Hps+HnUhk5nnFSHqLELtoh+ftvhwxzpa1M0bkwJ6oULcyRBvXcva6caZS6wYHfYtLR0cmJj+SGoVo3jSASzIX5ZELJPsWJUBbl4kTNZBethxAjmAzZt4t/QpDg7p5SdfvAAWL+eSeJvvmEG1dubXchLlzK6bAMXVwcHoH59wMWFdf6pJ4gJWaMmnxwaGoozZ84gNDQUiYmJOHPmDM6cOYMom9u8CHZN7drclMfG8gJ2/rzSFglWxsmTrPtycWHRmSSIbQc1+WS1IEliG6BMGQYRZ89mU4bqcXPjMNqqVRklnj6dyWIl2byZw3bOneOOcsmSnCeua9Zk1/TkyWybEl7yySfqaiA3hLgEw5Mgzt7FkLtkDeTxbwGfTpOhi3uBBz9Ng84Ar2LMedSGzHQQBNK4MYNp+/YpbYkZ0EtQX7nCktrevbnpPnXKoKeHhbGJtEkTIFcu85pqTTx6xLz7Tz+xcXvgQL5HNilEcvgwS7FFa9zsiF8WhJxRqRJQvDhw/DhH5Qjq54svWDy/ZAmbes1OwYLAe+8xQXz3Lhc5EydyDubw4az0KlOGCiy//AJERFjAKPPg4sKGvNhYNlOLzzAONfnkSZMmoWbNmpg8eTKioqJQs2ZN1KxZEydPnjTfSQVBCcqVS5KUaNSIoxAFwQC2bweaNqULP3RIGtFtDTX5ZLUgSWIbYeJEBqSnT1faEgPZupWDX7//nkHCd94BuncHnj2zrB0RERzm/PbbQLNmrCwz5W5yxgzg6VPg009Nd0wr5/hxYONGflbV0EBuCM+fA1cuZf9y6VaxAeLuXUNC+H9ZPtbFyXovy+JkBYHkzp3UdGsVxVvZQS9BvX8/A6G1ajGzGR6e6dN27mS3da1aFrJT5cTF8T1ZvpzLhffeA7p0saHZw6mJiGCgpm5d0Rq3AOKXBSFnaDT0V15erG+Jtl7BH7tg+3ZgyBAKlg3IetKP6XFwAGrU4MipPXu4Jtq6lXKnu3dzxIK3NxeJs2ZRuczKLrweHqwNfPiQ61x76KwxFWryyWvXroVOp0tza9q0qflOKghK4efH6u1atRjv3bxZaYsElbNuHQVBmjWj+5aR1raHmnyyWrDebISQAm9vYNw4BhmvXVPamixISODGKSiIydkffwTWrmVlbfXqHMRnCQ4e5Pl+/pnn//FH01/5S5TgLnX+fODePdMe2wrR6YCRI9m03b270takz/PnnD+2dCnQqxflRDw8gPded8/2JlgXHwsA0MZmHlnSACjp7Z69k6gAcbKCkETt2syB7dyptCVmRp8N/+wzyi1WqMAxC+l8wa9f57iBoCDA0VEBW1WEXlp66VIWTzVpwhx7uXJKW2Zmdu9mN7pojVsE8cuCkHMcHZkUc3JiJ0l81hNkBAW4cIF1523aqKg+O08eRpmXLAGuXuUiaPFiVh3MmcOEhZ8f0LUr8O23wP37SltsEAUL0vR//uHLEgxDfLIgKIinJ/Dnn0DHjkCnTpSdEIRU6HQM33fvDvToAWzZYj3NTYJxiE9OiySJbYghQ9jYM26c0pZkwVdfUaZy/nyWZ2s0vPqeO8fhT02bMokcG2ue88fF8U1q0gQoWhQ4e5bn12jMc75x46ipOWWKeY5vRWzdytz8vHnqSBDoE8LLlqVMCNerR3Ww8+f57+XLgZPHnFDCK/PVQWL00zT36RITEH1hDzROrnAuUDzT5xf3doO7q/Vqi4qTFYQknJyYDL12Dbh5U2lrzIyTEwuirlwB2rYFPvyQEfWQkJcP0WqZMC9eHKhYUUFbVcDDh0nS0kWKAB99xFy7TUpLJ+fePa65mjUTrXELIX5ZEEyDqytldp8/F5ldNRIWxlxsyZLADz+oY5+ZLqVLJ8lOP35MNZY+fbh+6tGDwZwaNYCxY4G9e1U9+LdkSa7nzp0D/staLEuA+GRBUBwXF+C77zg66aOPgAkTRA5BeIlWC4wYAYwezY/Gl1/awf7cjhGfnBb5uNsQuXNT3bhHD25e69VT2qJ0iIzkjN733+cGKDklS1ICZP58YNIk6kWtXw9UqWK68//9N+cEX7hAiadRo8y/i8yXj3rgI0YwiF65snnPp1KSN5BbZD5UKp4/Z2w6JIS3kyf5cUhMZFNTtWr8zgwaxMroqlW5hkxO8399sC74NhK16S8kH29bCl1cDFyLVYWjhzcSo54g+u99SHj8L/I37w0Hl9wZ2ufooEGz8j6mfMkWx1jHaQ9OVrBvKlViLdKOHUDfvlQhtGn8/NgJ06cPN961awP9+gEzZ+LMLS88eMD8sblqstROXBzjwceOAXnzUlra5juH9eh0/CJ4ewMBAUpbYzeIXxYE0+Hpyb3CwYPAmTNAzZr268/UxPPnQIcOrC///XcW/FoFzs6sEGvcGJg5E3jwgNV027dT5WzuXMDdnYVVrVvzVrasqj50VasCUVFAcDDNtNlRGSZCfLIgqAAHB2DhQlbqjhzJItaVKyUbaOfExnIS5caNbCIaOFBpiwRzIz45LXIVtDG6daPi48iRlMNS0R6CLFjAucMZDU92dGTlbOvWlF0KCKAU05AhOYuua7XUdBwzBihVijuZmjWzfzxjGTCA0lJjxrCd1g7RN5B//735P5epE8IhIZT1TC8hHBDADa6ra9bH7RpYHGuP3srw9+6VGiHq3E5Env4T2ueRcHDJDRe/ssjftBfcygVmeuxErQ7d6mbeaax2xMkKQko0GqBVK2D1anZapK6NslkaNaIE9bJlwKRJiPvlT+wdeAlVq+RGkSJqW5iYH52ORUnbt9M/NWmSJF1qN+hb6t99V8UtXraH+GVBMC2+vsArr3Bv4eFhR4U+KkWrpRrU2bMswipWTGmLcoCPD+MfXbvyhZ07x4XDtm2UuIqPZxyjTRvGSpo3VzwjrtEAdeqwzv/QIaBFC5HlzAzxyYKgIkaMYIFzz56Uo9i0SS5gdkpEBFXIDx2i0lfHjkpbJFgC8clpsafwlF3g4MBG3JYtqWL05ptKW5SMe/eYJP74Y+pNZkbNmtx9jx0LDBvGsuC1a9mSZSz//cfd486dTDbPmcO2a0vi6grMng106cJdVNOmlj2/wugbyLt1M31u3pCEcN26bGozJiGcHiXye8BXVwD3tY+hcUzbTexeuQncKzcx+riODhrUL+2Nsj7WUvqePuJkBSEtxYpREGPPHv50dlbaIguhl6Du3BlHZh/F8zgHtFjWESg1wa46SR8+BP76i3P7KlZkXDdfPqWtsjCJiewiLlmSM6sFiyF+WRBMT+nS3NucOcNGz8KFlbbIfpkyhV0/mzdTvMRmcHBgZWGNGiwyj4qi/PT27bwtX851Vv36SV3GNWsqIlnj6Ag0aADs3g0cPsyOYrsqgjMC8cmCoDK6duWQ9Y4dWeWydStQoIDSVgkW5P59Tsv65x9uVxs3VtoiwVKIT06LrQsf2iV6Od8xY1hwqhomT2ZyduxYwx6fOzfw+ee8Ul+6BPj7cxdoDD/+yOddvMjjfP655RPEet55h7vXUaPs4+qSjKwayA0l+QzhDz4AqldPmiE8bBiTxXXrAl98QTnpyEj+XLmSUq8BAdlPEF+8CAQGAue+8oeTo2k74ZwcNJj1pr9JjykIgnpo0QKIjuYoCHsj0t0PR3zfRGDph8j3+Ab94IABQHi40qaZldhY1qatWEH/9957QOfOdpggBoDTp5ktb91ahRI3giAIxlOtGpPDx44BT58qbY19sm4d95Zz5thB10+ePMDrr1MZ7do14MYNqpTlz89C9Fq12BHXrRvfmLAwi5qXKxdndkdF8TuR2YjP6NgEXAl7htDoJ7gS9gzRsQmWM1QQBCE1rVqxkefGDV7Ibt1S2iLBQly9ylqrhw85SkQSxIK9IzV+Nsq8eSw8XbWKHZSKc/Ei8PXXnP1gbIS0ZUvg/Hmgf3924m7dyg1SZsd59gwYPJibpE6dGKX18srJK8g5Gg2zpU2aMNn97rvK2mMh9A3kQ4cCJUoY/rznz6mydfJk+h3C/v5M2pqiQzgztFpgyRIWXZQuDRzZ6YYrCVUw9ufzJjvHtPZVUMzL+qVtpBJLENInf37K8R06RJnKPHmUtshy7NnDjpJG7xYD3j/FKp6JE1nENWcOK35saFizTpdUl2a30tLJiY3lh0CfUREsivhlQTAPGg33IXv3JsnsKlWHbI8cPAh8+CGXEKNHK22NApQuzYK7AQOAuDhWIeq7jNev52Nq1EjqMm7QAHBxMatJefOyWPvQIe7hq1dP+t21sEisDw7F3isPEBoeA30OeckVQAOguJcbmlXwQdfA4ijna93KWpkhPlkQVEqtWsCRI5Tzr1+fMv/VqiltlWBGTpwAXn2VjeT79mUtdirYHuKT02I7UTkhBdWqAT16AFOnUl9fccaOpczggAHZe76XFxOr337LJHG1arySp8eBA9yV/PorH79xo/IJYj2NGwPt2wPjxzNwagdMnszq4nHjMn7M8+ccE/3FFyk7hOvWTeoQDgxkB7G+QzgkhEUQOe0Qzoz//uM68eOPgX79eM6aNYEutYtjZKvyJjnHqFYV0Lm2baxIdLokR2vILbMqc0GwNRo3piTf3r1KW2I5wsIox9m0Kf0AnJw49uHKFaBdO6BPH0pBnDypsKWm4eFD1qZt3gwUKcIipsaN7ThBDDBaHBvLDIpgccQvC4L5cHJi0xFAmd0EaYi0CNevc6RW/fpUXbZ7gQoXF1akzZrFzWpYGPDdd6ygXrOGs4u9vNiJvGwZ30AzUagQ98pXr7Ip7054DN7/OhgtFx3AuuDbuJ0sQaxHB+B2eAzWBd9Gy0UH8P7XwbgTHmM2G5VEfLIgqJiyZenMCxUCGjXKON4sWD3btjE+Ua4ct6qSILZPxCenRZLENsz06ZT8mTdPYUP27eNM4dmzc1bBqtEA77/P0tRSpbjhGTUqKdkaG8t2z6ZN2bJ67hwfr7ad45w5wJ073KTZOPoG8okTkxq/M0sIf/xx5gnhfv3MlxBOzaZNmSuVD2pWDnM6+sPVyQGODsZ9xhwdNHB1csDcjv74qFlZE1uuHMY4WGOrtgTB2smdmzG806eBBw+UtsYy7NzJuGSaEcR+fsA337AV6MULtln37w88fqyInTklNpZ+Qi8t3bWrHUtLJ+fZM3Y31asnb4ZCiF8WBPOSOzebNCMigOPH7SOApCRPngCvvQZ4e7Mgy8zNsdaJjw8XIuvWUdLr1ClgwgQGhoYNY1S8TBlg4EAW1UdGmvT0ZcvytmJnKIIW7seRm1zbJWoz/3Lof3/k5mMEfbYfG06EmtQuNSA+WRBUjq8v49eBgVRh+OknpS0STMy337JmKigI2LVLPf1kguURn5wWSRLbMEWLch+wcCE7IhVBq2Uit04dyj6bghIlKF04dy4zd3XqAFu20JF/9hmTsHv2GKdtbEkqVaI+1owZ3OnaMKNGsRDPwQHo3TvzhPCJE8olhJPz7BlrCzp35sLh/HkqnqdHl9rFsWtYE9Qv7Q0AWSaL9b+vX9obu4Y1sZkOYj3iZAUhc2rXZq5s506lLTE/16+zi6RlS3ZQp0vDhrzof/458MMPQIUKwJdfWs3FQacDLlxI8mFNmlAwpazt1P7kjD17GMHXt9oJFkf8siCYn/z5ubf57z/uGwTzEB8PvP02VTt+/10Cuwbh4MDW3rFjKWXz+DHw22+UytqxA+jQgW9k06Ys6D91yiSO4FD4Nfx4+zxiE7VZJodTk6jVITZBi7E/n8fSvddybIuaEJ8sCFaAhwedTKdOwDvvcNShYPXodGyg69ED6NWLhWZu1j/xT8gB4pPTYs8CeHbB6NFMuE2axI5Oi7NxI9tBDxwwbUevoyMzkC1aULKyY0d2Jh07xoGPamfKFMpAzZoFzJ+vtDUmQT9DWD8/eP9+JggAYOTIpBnCAwcy+evvb/kEcFbs3w907w48fcoKs27dsv7YFvNyw7regUmzlq4+QOjjlFJaGgDFvd3QrLwPutUtjrI+tjlryVjHaQ9OVhCS4+jI4pMff+T1sUwZpS0yD1otY48lSjDvmylOTsDgwdyEjxnDGQJffcXMa61aFrE3Ozx8CPz5J3DrFlCxIovNpVk2GffusRLs1Vf/rzUuKIH4ZUGwDIULsxj27FnGl0uVUtoi20KnYxHWwYPs/ClXTmmLrBQPD7ZQvf46/3/jRtIs41mzOBLLx4cVfq1bA61asbPOCDacCMWnu66axNwFO66iYB5XmymsFp8sCFaCiwsDgn5+3Kfeu8cmH7WpVAoGodUCw4ezLn3SJIbj5U8piE9OiySJbZy8eTkTdsgQdm76+1vw5LGx3Gi88QZnOpiaf/9lFvz+fVbInj7NxPHatUCxYqY/nynx86Ots2ZxaGHJkkpbZBQvXjAIok8Ih4SwmyoxEXB2BqpUYUduyZKUba5WTX0J4eTExlISe8ECflS//db4RvRyvh6Y0r4KpqAKomMTcOtxNOIStHBxckBJb3e4u9r+5VacrCBkTaVKdFE7dzKI7GCDmi5nzjCJ+uGHRmzAfH3pv/v0oV+sU4cJ45kzqSupEmJjWVAUHMykcNeu0jmcBp2OAWdv73S0xgVLIn5ZECxHuXJJqkju7sy1CaZhwQIWvK9dCzRurLQ1NoRednrgQCAujiMitm/nwMb16/mYmjWZMG7dmoOgM9H4vhMeg8m/XUz3d7H3riL6/G68CD2PhGdhcMjtCdfCFZCv8ftw9iqS4TEn/XYR9csUQDEv62/5Ep8sCFaEgwOdT6FC7Hq5e5cdWM7OSlsmGEFsLBuBfvoJWL6cE64EARCfnB42GJoUUtOvHwOYY8ZY+MTLlnH27pw5pj/2xo3MeF++zEj7qVP8eeUKM5I//GD6c5qaESMo7zRhgtKWZMqLF0kzhHv3BmrUSJKMHjqUufnatVNKRo8eDTx6xJGTtWurO0F84QI7nBctMp1SuburE6oUzouaxfOjSuG8dpEgBkSuQxAMQaNhY0ZYGIttbI24OCoa+vsDRTKO+WVMgwZUIPn8c2DDBqB8eVVIUKeWlm7aVKSlM+TaNeCff/hBz1BrXLAE4pcFwXJoNMyn+fgAR46YfNSr3fLLL4xjjB9PmUjBTLi4cG7GrFmMrdy/z7nGVaoAq1cDzZqx+Kt9ey6Grl9Pc4jxW84jIQN56YhjPyHmyhHkKlEd+YP6Ik/11nhx5wLurRmKuIe3MjQrQavD+C22oeMuPlkQrJARI1g0s349Jfqjo5W2SDCQiAiKWv36K5PEkiAWkiM+OS2SJLYDnJ05Yuavv4Dduy100idPKMfRpw91GE3F06fUAO7ShdWs585RuxPgz3PneP977/Gm5pm/efIAU6dysRESorQ1AJgQPn4864TwkiUMkkdFcQ/55ZcsRtArg44fz/2jmiu9tVqOsK5VC0hI4OsePVri2TlBbU42PDwcXbt2haenJ/Lly4fevXsjKioq0+c0bdoUGo0mxa1/qtVkaGgo2rVrBzc3N/j4+GDUqFFISEgw50sRbIyiRRlz27uXSVVb4vBhjh9o3jwHB9FLUF+5QknEvn3piE6cMJmdxvC/9u48LMpy/QP4d4ZNARHZRcEN9y2PmULWETFFK8vMsrSy41ImrWq571qWvyzNY3o0NdNs046VqaRUrqgUZR5FMREDAZUQBQGZmd8ft8Mi2wzM8s7M93NdXCYz884Dje/9vs/93PeTlSUdJr76Sv7fTZggXSecHWP9j3E0Guk13qKFJPjJqpQUlxcuXIiIiAi4u7vD28De7DqdDrNmzULjxo1Rv3599OvXD2fO2NcelWRf1GoJV/XqAfv3SwUL1V5CgnTsePRRYP58a4/GwQQGyrzLxo3SavWXX+QmPzdXWtS1bi2VyBMmANu348yfGdiXfLnKPYgb9BiCJi98BJ/7nkODrgPgffdwBI1YDJ1Wg9zDX1Y5DI1Wh33Jl5GcZfurLpQUk4nICE8+CXz3nWyj2LevVMSQol28KPPRv/wi21QMGWLtEZHSMCZXxCSxg3jkESA8XDocW+SDvXChzHzPmWO6Y/74o1QJf/ut7Of76adSiVuWj498/5NPZLPALl2kNFSp/vUv6T06ebKUKVmQPiG8cmX5hHDPnjUnhJ9/XpKrlVUI6wvIFy+26I9jlL/+kgKn116TSrBjx+Tnp7pRWpAdMWIETpw4gdjYWHz77bf4+eefMW7cuBpfN3bsWFy8eLHk6+233y55TKPR4P7770dRUREOHjyIDRs2YP369Zg1a5Y5fxSyQ1FRQH6+dPazF7m5Uj3Vq5eJ9ufVt6Dev1+uKXr2lBVJV66Y4OA1KyyUfOeqVfKzjRghWydz7+Fq/PKL9Brv35+bPSmAkuJyUVERhg0bhvHjxxv8mrfffhvLli3Dhx9+iPj4eHh4eGDAgAEoKCgw30CJ6sjVFejdW8LWwYOydoaM99dfsk6sUyfpTmWP23PYDLVayuSnTpU5mexsKc2Kjpb21A89hE3j58JJV3UQqde0PVRO5du0uvg0gatfKG5evlDt2zupVfjkcKopfhKrUlJMJiIj3Xef7DmUkiKdr1JSrD0iqsLp07I7wuXLwL59ck1GdDvG5Ip4qe0gVCrZTuHXX4HNm838Zikpkll8/XWZ4K2rwkJJovbtK6tVf/9dZmqrmnxUqeTx33+XPpBRUdIiRIkTSs7OwNtvSznZ99+b7W0KCqRNJiDFy2UTwi+9VD4hfOSItEczJCF8O3MVkJvSli3lO5UvXSqr/anulBRkT548iZ07d2LNmjXo2bMnevfujeXLl2PLli1IT0+v9rXu7u4ICgoq+fLy8ip5bPfu3fjf//6HTz75BHfccQcGDhyI+fPnY8WKFSiyt5JQMqtGjWTb3QMH7KclZVycdC8x+Y2YvgX1smWy3USbNrInlJlm3nU64PhxtpY2WkGBfAi6dgWCg609GoKy4vLcuXPx6quvonPnzgY9X6fT4b333sOMGTPw0EMPoUuXLvj444+Rnp6Or7/+2nwDJTIBT08JXdnZUg1r4bXANu/6dUkQu7hILrJ+fWuPiMpp0KB82+kzZxDXYwA0KuOmF3U6HTT5OVC7e1X7PI1Wh7jTWXUZsSIoKSYTUS384x+y+kurlSose9w7ysbFx8v1l7u7LMbv1MnaIyKlYkyuiEliBxIRIRXF06ebOV86fbrsVzNxYt2Pdfy4zKIvWybJ1D17gNBQw14bGirPf+cd4IMP5Di//173MZna/ffL/j+vvy59j+uobIXwmDGlCWH9Hk5JSdUnhHv0qH3SVF9APnt2nX8Mk8vJkbUDTzxRsVM5WVdubm65r0IT9OY7dOgQvL29cae+BzqAfv36Qa1WIz4+vtrXbtq0CX5+fujUqROmTp2K/Pz8csft3LkzAsssgBkwYAByc3Nx4sSJOo+bHIu+ZfGPP1p7JHWXkQEkJkpC1SwLb5ydgZgYCWKDB0tFsRlaUOtbS2/dKq2lY2LYWtpgBw7Iwr6oKGuPhOrIHHHZWOfOnUNGRgb6lblYa9iwIXr27IlD9tSCgeyWn5/cV50/L4tTyTAajXT2PHtWGogFBVl7RFST6yHNkapxqfmJt8k78SM0167Ao909NT439Uo+8gq5vQ8RWVmrVnLP06SJ9DOOi7P2iOiWHTuktqxtW6kgDgmx9oiIbAuTxA7mzTeB9HRJEJpFQoKUKs+bB3h41P44Wi3w7rtSwqrVyiTwpEnG95lSq+V1R4/KEu4ePaSkWklLQPRl3idOSC8tI9yeEO7WrXyFcEJCaUL444/lNZs3myYhfLuyBeRKu5mPi5PO4999V3Wncqo7nc64VVj6qoqQkBA0bNiw5OvNN9+s81gyMjIQEBBQ7nvOzs7w8fFBRkZGla978skn8cknnyAuLg5Tp07Fxo0bMXLkyHLHDbytQ4L+79Udl6gy9evLveWvv0py0lbpdNKZwdcX6N7dzG8WGAisWyc358XFEvDGjavz3lBlW0tfuybb8D32GNCwoYnGbe+uXpWV9eHh/KUpiJLisrH0MbWymMt4S7YiNBTo0EE6Ol2ovqMu3fL663LP9tln0v2JlO/8lTwYWyx/88oFZMeuhFuTdvDoXPPiMh2AlCt5tRqfUtQ2JhORwgQEyCrvXr2k7f7nn1t7RA5v/XpZR37ffTIvwfleqgljckWsi3AwbdpI8c3ChbIdrq+vCQ+u00lb6A4dgFGjan+cCxfk9Xv3yqaxCxfWPZPZpYskiqdPlzF+950kZA2tSja3O++UEteZM4HhwytNsBcUSPVrQkLp1x9/yBy5s7O00ejeXf7/du8uN9Vlf22//GLeH2H6dAnEr71m3vcxRmGhjOvdd6VYW0n/y+2RsS049M+9cOFCuZbObtX0Np8yZQoW17Dh9cmTJw0fxG3K7lncuXNnNG7cGFFRUTh79ixatWpV6+MSVaVHDwlPsbHS7cAWJScDf/4JPP444ORkoTeNiJBf3IcfAjNmAF99BSxaJCumjBiETiexdPduiRl9+kiek5XDRtqzR/al4KZPimLuuGxoTG6n1D1IiCygQwdZfHTkiLQ/NOn9t51ZtUru25YvBwYOtPZoyFBFxcYtwNdc/xtZX8yF2s0Dfg9PhUpt2HWbse+jNLWNyUSkQJ6ewDffAKNHyxxuZibw4ovWHpXD0emAxYuBqVNl3fiKFbyPJ8MwJlfEfzoOaNYsqSpdsED2YzWZHTukZPPbb2t/Vv70U+CFFyTg7tkjvSJMpV494P/+T9o7P/OMJI5XrJB+VlXtb2xJCxfKRr5Ll6Jg0gyDEsLjxkl++faEsKXpC8hXr5b/dUpw/LgkXJKSpFP5a68ZX4hOxqltkPXy8io3GV2diRMnYlQNi1BatmyJoKAgZN1WmllcXIzs7GwEGVHq3rNnTwBAcnIyWrVqhaCgIBw5cqTcczIzMwHAqOMS6Tk5Sev7zz+X1oq2thZBq5UEd7Nm0trJovQtqB97DHjjDWmRsWaNxPa77qrx5VlZculy/jzQvr1sRcAi2FpIT5dVbPffb92LEarA3HHZ0JhcG/qYmpmZicaNG5d8PzMzE3fccUetjklkDSqVLAjLz5cmGFFRdWu4Za9iY4EJEySsx8RYezRkDFdnw2+ytQV5yPx8NrQFeQgcuRjODQxfNWHM+ygRJ6SJ7Iyrq1SiNG4srRzT02XRshLmlx2ARgO8+qosLJszR3Id/NWToRiTK2KS2AEFBMhc6ty5stCplnM35RUXS2+oyEhg0CDjX//333JX+OmnUlG7YgXQqJEJBlaJvn1lMnPCBOkn+c030q/ZXO9Xg4ICSWgeO9YCrdrE4O7Zi9FmzlikawIrJIS7d5fctpLmYMsWkD/7rLVHIyfupUuBadOkcv7oUfmdkflZIsj6+/vD39+/xueFh4cjJycHCQkJ6H6r/+3evXuh1WpLEr+GSExMBICSCerw8HAsXLgQWVlZJe2sY2Nj4eXlhQ4dOhj50xCJdu1kz5zYWKBFC9ta0PLrr8ClS8DYsVa8KQsIkBbUY8dKbO/VSyqKFy2STSFvU1goHcLi46UDxsiRtpecVwydTsqwfX2Bf/zD2qOh25g7Lhsak2ujRYsWCAoKwp49e0qSwrm5uYiPj8f48ePN8p5E5uLkBNx9t6yB3r9fbkddjN/C1W7973/Ao48C/fubeBE7WUTz+oAKqLHltK64CFlfzkPx32kIHL4Arn6Gt/hSAWjua9urKzghTWSH1GqpSmncWCpT0tNl0TKDvFkVFgJPPSXNxFatkvlyImMwJldkQ9OQZEqvvipzqtOmmeiA69fL3d077xg/S7x3r2TxduyQctTNm82fsG3UqPS9du6UUtw9e8z7npCEsL47Ztk9hO+6SxaeLcR0wNkZuyLmIj5eWpP9+qtcY4wfL89TUoIYKC0gX7zY+m09LlyQirxJk2QFOhPElmXMfg7GBmRjtW/fHtHR0Rg7diyOHDmCAwcOICYmBsOHD0dwcDAAIC0tDe3atSupDD579izmz5+PhIQEpKSkYPv27Xj66adx7733osutD1L//v3RoUMHPPXUU/jtt9+wa9cuzJgxAxMmTKi2TTZRdVQqmRjNzAR++83aozFcYaGc/zt3Bm79s7KuiAjg2DFZTvz551LavGqVLDOG5DOPHwc++EA6YPTtK8XHTBDXwenTwLlz8gG2WK9xMpSS4nJqaioSExORmpoKjUaDxMREJCYm4vr16yXPadeuHbZt2wYAUKlUeOWVV7BgwQJs374dx48fx9NPP43g4GA8/PDD5hsokZnoO/Ln5wOHDzvGZJMhsrKABx6QLYG2bLH+/SQZoLgYuHhRJiq+/x4eP+xGqFv1H2idVoNLXy9GYfop+D88BW5N2hv1lqG+7vBws+0Ph5JiMhGZ2KuvStHTp58CDz0E5Nn2HupKdvWqbAX9zTfA1q1MEFPtMCZXZNtXWVRr7u7A/PmyL/FrrxnUlbFqeXnS1+HJJ6XU1VAFBaUbxkZGSpuOkJA6DKQWnnhC7tafeUayi6+8Arz5pkkysfoK4YQEmbOurmV0aYWwD7BkOjpNmQI0fBmoZ+nencbRF5D36SNdJq1p82bpVN6ggek7lZNhlLYSa9OmTYiJiUFUVBTUajWGDh2KZcuWlTx+8+ZNJCUlIT8/HwDg6uqKH374Ae+99x7y8vIQEhKCoUOHYsaMGSWvcXJywrfffovx48cjPDwcHh4eeOaZZzBv3jzz/jBk95o2lbiwdy/QsaN0r1K6gwcl1inqfOvkJNXEw4YBU6ZIFvg//0HW4nXYcaEzzp+Xzhf9+7O1dJ1pNFJF3KKFtO4gxVFSXJ41axY2bNhQ8vdu3boBAOLi4tCnTx8AQFJSEq5evVrynNdffx15eXkYN24ccnJy0Lt3b+zcuRP1lLZikshAXl6ynmnfPlkUduufgcMqKAAeflgS53Fx8vshBdLpZFY+MxPIyAAuX5aA4e4OBAUBXbog0iUbG49egEZbeT3x33vX4kZyPOqH3QXNjeu4/kdcucc9O0VW+fZOahUi2wSY9EeyBiXFZCIyg+HDAX9/YMgQmeP+7jv5O5lMejowcKAUCP3wg3RpIaoNxuSKmCR2YE8/Le2cJk+Wtou1bhP57rvAlSuyp66hfv9d+jsmJck+wa+8Yr3+miEhEl3ef192u4+NBTZtArp2NfgQhYUot4fwsWPlE8IdO8rewQa1jI6JkTKnKVOAW9UUSqUvIN+wwXptRv/+W5LDW7aYv1M5VU9pQdbHxwebN2+u8vHmzZtDpyudyAgJCcFPP/1U43GbNWuGHTt2mGSMRGX17SvnsEOHgH/+09qjqV5uriSJe/UCvL2tPZpKBAQAH32Ewmefx4+rTyP+5/bw0WRg5ND6aNWN2WGT+OUXuf579FFuAKVQSorL69evx/r166t9TtmYDEg18bx587gQi+xKYKAkh3/5RRa3hoVZe0TWodPJgvVffwV++glo1szaI6JyCgtLk8KZmZLRd3KShEeXLpIc9vQsif8jnL2wPj61ysMVZf4JALiRfAQ3ko9UeLy6JLFGq8PIXoa3plYqJcVkIjKTqCgJagMHSgZz1y5ZUEt1lpQEDBgg65T37ZN5dqLaYkyuiEliB+bkJFsnDBwobRoGD67FQTIz5SAvvgg0b17z87VaSSpPny5tII8dkz6V1qZWS3uQ++4DRowAevQAFiwAJk6s0D7x9oRwQoJUDJdNCNdpD+F69SThPnKkRL577jHtz2oi+gLyJ56QBLg17NkDjBolbbk3b5axkPUwyBLVTaNG0tnjwAHZ3rVBA2uPqGpxcVLt3Lu3tUdSOX1r6dgjd6GwfQ/0dT2MXm89DOd/35S9iseOZXvkuigokA9Bly6yBxcpEuMykTK1agVcvy4JUg8PxzyNzp0rXTk//7yOXc3INLRaIDtbksIZGbISG5C2K82ayeoGP78qr51aBzbAPWF+OPjnlUqriYNGvFWrYTmpVYho6YuwAAVfFBuIMZnIQXTrJqupBwyQ9iE7drB1SB3Fx0v3yqAg2TGyaVNrj4hsHWNyRUwSO7gBA6TL8htvAIMG1WIPoLlzARcXSfrWJDVV2jr/9JMkXxcskM2ZlKRTJ+DIEWDmTGDKFBR+sxu/T96IhPTGJQnhP/4Abt6U+yN9y+gxYyRRanRCuCpPPCHJ9MmTpaRMgRU6tSkgN5WCAtlPe+lS63Uqp4oYZInq7t57gcREyb/VavGWBWRkyBgHDjRRzDOxrCy5Fy9tLa1Cw4bhwNPHpWPI+PHAmjVStt2zp7WHa5v275dVc1FR1h4JVYNxmUi5unSRRPHhw9JJxJG2QNi8WaYRFi6U3SHISvLySiuFMzNl1burqySEw8Lkz/r1DT7coiGd0W/pT1W2nK4NZ7UKi4YooKjABBiTiRxIy5ay8vuBB6RF2LZtvG+qpe++k2uF7t2B7dvZOZJMgzG5IiaJHZxKJYXA3bsDa9cCzz1X/vG8wmKk5NxEUeM2cM25ieaFxfBwu/WxOXUKWL0aWLy4+rO0Tid3ghMmyEZDe/fKJrYKU1oh7IaEv99GQthM/LHfDTf3u8JJrUWnzip0767CmDGlFcJG3DMZR60G3nlHLiK+/FJxd8/6AvKYGMt3TvntNymyPn3a+p3KqTydzrjAqTPd/AGR3ahXT+4jd+2S/GVgoLVHVJ5OJ9vQ+vpKLFSSwkLZPiM+HvDxkVjRqlWZJwQEyMXOmDFyTdKrl/z3m29KdQwZ5upVWcAWEeFYWQ0bxLhMpFwqlcT5uDhZdxMVpcyFV6Z24ADw7LOydnzqVGuPxsEUFwOXLpVWC1+/Lh9EX1/p8hYUJPM6tVygHuLjjrmDO2LK1uMmG/K8wR0R4uNusuNZE2MykYMJCJD572HDZHX1xx/LvsVksHXrpAHY4MGyK6TZ5uDJ4TAmV8QkMaFbN5lInT1bOi1fzLuGTfGpiEvKQmp2PnQA8My7QOxlqGJ3IdTHHZFtAzBi0xK0DgmRTGFV/v5bKnY++0wO/sEHiti8sLBQ2lAeO4aqK4TvaYAx4/LR/YeF6LLrbdRv8yDwzocy82wJfftKeffUqcBDD8mqXoWYO1eqzg0pIDcVjUaql2fMUFancirFlVhEpnHnndLUIjZW4rOSJCcD587J/a1SujWXtJaOlfjety8QHl7N+MLDgaNHgVWrJJB99RVbUBtjzx7pBKPUXuNUgnGZSNmcnWXLwj17JHnap499h6E//wQefljWaK1erchmWfZFp5OFXfq9hS9flhO9u7skhDt3ltWILi4me8vhPUJx+Xohluw+XedjTe7fFo/3sP29iPUYk4kckKenlL+OGSMdIzMzgZdftvaoFE+nk3Xc06dLMduKFfZ9fUSWp5SYnJKSgvnz52Pv3r3IyMhAcHAwRo4cienTp8PVwnkgJokJADB/PvDVznz0X3Qc6brLcFKrKm0TpANwPjsfGw+nYH3LR3FPl4ewKE+DkMq6Ru/ZI0uE8/KALVuAxx83+89RGX1COCGhNClcVcvoihXC7sCkucBnHYDnn5cbqfXrZe9iS1i8GOjaFfjwQ+CllyzznjXQF5C/9Zbl8uXnz8tH6eefldupnIjIVJycZCuIzz+XpGxYmLVHJLRaScQ2awa0aWPt0YjMTOD778u2ljawuNXJCXjhBVnZPWWKLGj7z3+Af/+bLairk54uLT0eeICBmIjIBNzdZc1NXJwsEOvVyz6Tpzk5Ejq8vYGtWxW1/tm+FBaWto/OyJB9mpycAH9/megICpKkhRk/ZDGRreHn6YbZ20+gWKszqv20k1oFZ7UK8wZ3tKsEMRE5MBcXmUdu3FhaIaanSwaULRErpdFIHn3FCmDePCkUssfrIiIAOHXqFLRaLVatWoWwsDD88ccfGDt2LPLy8rBkyRKLjoVJYgIAHMpKRdC/TiBNo4NKjRov5DW3Hj6Y74p+S3/C3MEdMVx/EV9QINWv770nfbPWr7fYrvJlE8L6pHDZhHDHjlKhZXTL6Mcfl2Xeo0bJDPRLL0mW1Ny9Ljp1kn5c8+YBTz+tiCrsKVPkf2d1BeSmotNJS5EJE2TSX6GdyukWpazEIrIH7doBoaGSlG3ZUhn3kL/+Kl0Kx461/o1aQYG0lj5yRBYsPfWU/J6M5u9fsQX16NFy4+7vb+ph2zadTvqg+/sD//iHtUdDBmBcJrINjRrJ+qSDB+Xe1d66Jd28KWuyMjJktwJfX2uPyI5otUB2dmkL6b//lu83bCgXkkFBsqWGhUuwhvcIxd2t/DBt23HsS666CEFP/3hES18sGtLZblpMl8WYTOTAVCqZQ27cGHj1VeDiRbkHNWEnB3tQUCD39Vu3yvrtMWOsPSKyV0qJydHR0YiOji75e8uWLZGUlISVK1cySUyW90HcGWkHpDJ+0ldza2XolK3Hcfl6IWJ88qWtdHIysHSpJFPNNLNtSEK46grhWmjaVDZiXLZMMqU//AB88on06zanefNkT+fFi2XS2or27QP++19J3Jp7z6zsbCne/uILRXUqp2ooJcgS2QOVStYkrVkDJCZaPydXWChVTl26AMHB1hvH7a2lo6Ikr1vnuU99C+rVq4Fp0+TOdOFCYNw49rbSO30aSEmRoMzfiU1gXCayHU2aSIz9/XegQQOgeXNrj8g0dDrgxRdlYdfu3bJtENVRXl5ppXBmpuw17OoqraPDwuRPBWzcGOLjjo2je+JM5q3tzE5nIfXKre3MblEBCPV1R2SbAIzsFYqwgAbWGq7ZMSYTEV5+WRbvPPUUkJUFfPmldHcg5OTIlhTx8cC2bbIPMZG51DYm5+bmlvu+m5sb3EzcYe3q1avwsVTr1jKYJHZwW46mmmS/GABYsvs0/Hd9gMednSVj26mTSY4LVEwIJyTI329PCI8eLZXCdU4IV0WtlvYg/frJRpE9e0oSd/Jk802YBgdLj+UlS6Q1ZkiIed6nBjqd/Jj/+IfsRWlOP/wg7aXz863aqZyMxBtfItNq0kRCaVyc/GnN1owHDpTu92stmZnAjh1AaqrE/f79AS8vE76Bk5O0nX70UemI8sILkqVfsUIy0Y5Mo5HZ/ZYtgdatrT0aMhDjMpFtadMGuHZNbqU9POyjocXSpcCqVcBHHwGRkdYejY0qLpZWLvqk8LVrsprQx0ey7kFBUo5u7TYvVWgd2ABzBnfEHHREXmExUq7koahYC1dnNZr7esDDzTGmJRmTiQiATHD6+0tGNDIS+O47ICDA2qOyqrQ0YOBA4K+/ZOfKiAhrj4jsXW1jcshtOZnZs2djzpw5JhtXcnIyli9fbvEqYoBJYod2ITsfs7efqPQxbdEN5MZvRWF6Eoounoa24Dp8B70Czy79qj6gTodZ/ccj4pV7ERLkXetxGZoQ/te/5M+uXa2wULZTJ1neNHu2VBzt2AF8/LH5lny//rpUN82cKe27reDLL+VH3rvXfG1Pb9yQefn337d4p3IyAd74EpleVJR0Ujh40Hrt9nNzpT1kr14G7vdrYmVbS/v61qG1tKH8/SU5rG9BHR4uFx1vvWUfM/a1kZAAXLkiCXSFTkJTRYzLRLZFpZIFuXl5Evf79pWqYlu1fTswaRLwxhuygxIZSKeTiy99C+nLl+UE7e4uCeFOnSShYIMbO3u4OaNjsBUuJhWAMZmISvTtC/z8s2RG775btvQx6w2ucp06BQwYIKHvwAGgfXtrj4gcQW1j8oULF+BVplKhqiriKVOmYPHixdUe8+TJk2jXrl3J39PS0hAdHY1hw4Zh7Nixhg/ORJgkdmDTth1HcRX7wmjzc3H1wKdw8vKHS0ALFKYer/mAKhWK1c6Y9l0SNo7uadAYbCIhXBU3N5kwHjRI9gvu0gVYvlz+29QTqA0aAHPmyGT1q6/KL8KCiookeXv//eZbAZ6YKB0sz541e6dyMhPe+BKZnrd36T6F3btbZ7J4716Zh+zd27Lvq28tvXu3xCGTtZY2VK9ekplevRqYPr20BfVzzzlWu2V9lr5rV9lHi2wG4zKR7VGrZW3S3r3A/v0S+2wwF4hffwWeeAIYMgRYtMjao7EBhYVSJaxvI11QINca/v4yzxAYKBeBXKhlsxiTiaicO+6Qm/wBA6R0dscO6+8xZWGHDgEPPCANNHfulE5qRJZQ25js5eVVLklclYkTJ2LUqFHVPqdlmYUh6enpiIyMREREBFavXm34wEyISWIHdSbzGvYlX67ycSdPHzSN2Qgnz0YovHgGGRteNei4Gq0O+5IvIznrWoX9ZAoLZc/gY8dsMCFcnXvvBX77TTZbGjUK+OYb6anl62va9xkzBnjvPen5vHu3aY9dg5UrgXPnZD9iU9NopJP2zJlAhw4m71ROFsQbXyLzuOcemWyNi7P83jwXL0qIGzRI1kZZitlbSxvq9hbUEyYAa9c6Vgvq/fslS2/NXuNUK4zLRLZJvzBrzx6ZP773XttaPJuWBjz4oNzbbdxoW2O3GK0WyM4ubSGdnS3f9/ICQkOlYtjPz7EWpdk5xmQiqqBFCymfvf9+4J//lM14+1XTwdOOfPst8NhjsmXkf/8ruyYQWYq5Y7K/vz/8DexCl5aWhsjISHTv3h3r1q2D2koXzkwSO6hN8alwUqugqaKSWOXsAifP2p2hndQqbDiQiodDOyIhoTQpXDYh3KGDBAKbSwhXpWFDaTf94INSYdS5M7BunawIMxUXF2DxYlmOvXu3zJhbQE4OMH++/L/q2NG0x05JkcLr/fsl9z1vnmWTEGRavPElMo969eSecedOqSoODLTM++p0QGyszFFaalGzxVtLG8pRW1Dn5MgS74gI6/QapzphXCayXZ6ecur9+We5l77zTtsoIs3Lk1tilUraTbu7W3tECpKXV1opnJUlkyOurnJh17KlJIZtelKEqsOYTESV8veX1eDDhsnK7A0bpBWHHVu7VqbOH3oI2LRJ5juILEkpMTktLQ19+vRBs2bNsGTJEly6dKnksaCgIPO8aRWYJHZQcUlZVSaI60qj1WHdriwsWNWxJCFskxXCtTFsmNzNP/ssEB0NxMRIYtdUd8cPPST7VUyeLL3HLLCy+K23ZK/guXNNd0ydTlaVx8TIarG4OEmAkG3T6YwLnDrznIKI7NKdd0riNDYWGDnSMu955ox0kRg+3PzhRqcDfv9dfj6rtJY2lL4F9X/+A0ybZv8tqPfskbt2S/caJ5NgXCaybf7+pfG/QQOgzLZliqTRyPZBZ87IImCH36GguBi4dKk0MXztmnzf1xdo00aSwo0a2Ub2n+pMKTE5JSUF8+fPx969e5GRkYHg4GCMHDkS06dPh6st9rYnsgceHlJOO3Ys8OSTEjNeNayjpy3R6eTWeeZMada1fLl93kKT8iklJsfGxiI5ORnJyclo2rTpbe9p2ZtzJokd0PXCYqRm55v1PZwb5SNuXzHu+oez460ebtJEyr0++AB44w3ghx9kaZQpyrBUKunNHB4OfPIJ8MwzdT9mNVJTpcP166/LHhGmcOWKzKV/9ZVUiC1fzuIke6GUlVhE9sjJCbjvPuCzz4DkZCAszLzvp9VKwrZ5c5nHNCfFtJY2lJMT8Pzz5VtQr1kjLajDw609OtNJT5fM/YMPss2HjWJcJrJ9zZpJbvH4cakuvm3+SFGmTJGdl7Zvl4XhDkenA3JzZXI/IwO4fFlOrO7uUi3cqRMQEGCbm0xTnSklJp86dQparRarVq1CWFgY/vjjD4wdOxZ5eXlYsmSJed6UiGrm4iIdKYODgddek3uxxYvtZs8GjUZ2aVy5EliwQNZbc40UWYtSYvKoUaNq3LvYUpgkdkDnr+TBEmsR/Fvmwd3dQbN/ajXw0kuyl8SIEdIfdO5cSRrXdZlUr15SsTxjhmzgYMay7JkzJYE7ebJpjrdrlxRZFxQAn38uPwbZD6UEWSJ71batbFMXGytdCc15v/jLLzK3+cgj5rt5KyiQThJHjyqstbSh/Pykonj0aEkU6zuJvPWWTALbMp1Ogra/P9Ctm7VHQ7XEuExkHzp2BK5fl4pid3fAx8faI6pozRpZy/zee7K1osMoLJTW0frEcEGB3O/7+wNdukhyuEEDzoSTYmJydHQ0oqOjS/7esmVLJCUlYeXKlUwSE1mbSgUsWiStOF5+Gbh4EfjoI5tfXFRQIFPj//2vXC+MHm3tEZGjU0pMVhL7WI5CRikqtswn21Lvo2gdOgDx8ZJlnTFDeiqfO1f34y5aJKVX771X92NVITFRWkLPmSP3tXVx44bkzKOjZQH18eNMENsjfZA15ouIDKdSSZVtVpaco82lsFD2Be7SxTytInU64LffpOHGr79Ka+nnn7exBHFZ+hbUK1cCX38t2fwVK2S5tK1KSgJSUuQDxx5gNotxmcg+qFRAjx6yePfAASDfvE3BjLZnj7SNfOEFueeza1qtrKL74w/5wbdvBw4fBrKzZSXfvffKFlH33AO0bi2tUZggJvfvHAoAACiZSURBVNQ+Jufm5pb7KiwsNPnYrl69Ch8lrj4hclQvvghs2QJ88YV0ddJvV2CDcnKAAQOA77+XW2UmiEkJeJ9cEZPEDsjV2TL/2y31Porn6ipJ3Z9/BtLSZNZ93bq6NbQPC5M78TfflH2OzOD116XF6JgxdTvOL7/IXtT/+Q/w/vvSibtJE9OMkYjI0TRpAnTuLBW4RUXmeY8DByRR3Lev6Y+dkQGsXy83iM2by970d99tB3lIfQvq06elDXVMjMzoHzpk7ZEZT6MpLVdv3draoyEiIkiYuftu6SKyfz9w86a1RyROnQKGDpUFX++/b6f50Px84M8/gYMHJSkcFyd7f7i7y6bRDzwgM+Bdu0rlsM1f1JCShISEoGHDhiVfb775pkmPn5ycjOXLl+O5554z6XGJqI4ee0wmUA8fBiIjpVDIxvz1l6yZ0q+reuABa4+IiKrCLJ4Dau7rAbPfu+mAeZM98H//J9VIubnmfkMb0Lu3lE49+ijwr3/J3fTly7U/3syZchc+f77pxnjLrl0yP/zWW7ItRm1oNJLD7tlTtjJMSJCV5XaynQZVgiuxiCyjb1/p0HDwoOmPnZsrec1evUy7X3xBgaweXr1a5lqfekrCoaL3Hq4NfQvqw4cl4EVESMzPyrL2yAyXkABcuSJVxHY52+84GJeJ7Eu9enJLmZcnzarqsubYFC5fltbSTZoAn30GONvLZmbFxbKqLTFRJui/+05iY0GBrKLu21eqhcPDgRYtzLr9E9mP2sbkCxcu4OrVqyVfU6dOrfT4U6ZMgUqlqvbr1KlT5V6TlpaG6OhoDBs2DGPHjjX3r4CIjBUZKQVH6emyUuzsWWuPyGAnT8qtcG6uLEIPD7f2iIhK8T65Inu5jCcjeLg5I9THHeezzdenykPnjr9SnPHt16XtsNq0kYpS/dc//mGHk8M18fKSKuIHHgDGjZNysI8+AgYONP5Yfn7A1KmSLH7xRZNV+2g00h27d2+5962Nc+eAp5+WC4E33pDtmG18Cw0yAPd0ILIMb29ZgHPwoMTTum4JUNbevXK+7t3bNMfT6YDff5eFR0VFUmnUq5cDFNn07Ckz+GvWSKzetg1YsECqjZX8w+s3iu7a1Ty9xsmiGJeJ7E/DhjLRun+/rD++4w7rjKOwEBgyRPZK3rPHtAvLLE6nk1nsjAyp1Lp0SU6I9esDQUGyX1JAAG9oqU5qG5O9vLzgZcDE2cSJEzFq1Khqn9OyzN4u6enpiIyMREREBFavXm34wIjIsrp2lRv/AQMk67pjh0wCKNjBgzLt3bSprLUKDrb2iIjK431yRUwSO6jItgHYGH8eGm3Vy49zE76BtiAPmuvZAIAbyUdQfE0qX726Pwh1PY9KX+ekVmFYeADmLJZFuKdOycJb/dfXX0sFFODAieOhQ+Xu/l//AgYNkg2c3nlHWlYZ4+WXZd/DadNkrwoT2LhR9gw+fNj4AiKdDtiwQSqGfXyAn36S1iLkGBhkiSznnntkP9+9e2u/oOd2Fy/KhPOgQdIBoq4yMuQe9sIFoGNHKUx1iBiv5+QEPPecxPxp02RB15o1ErcjIqw9usrt2yc9TKOirD0SMgHGZSL7FBQkyeFffwU8PWUnIkvS6WRLoqNHZV1R8+aWfX+TKCqShLA+MXzjhnQACQiQhdxBQbIKjx01yETMHZP9/f3h7+9v0HPT0tIQGRmJ7t27Y926dVCz3RuRsjVvLlU4DzwA9OkDbN0K3HeftUdVqe3bgccflzXTX38tC9yJlIb3yRUxSeygRvQMxfpDKdU+Jzd+GzS5pe0R808fBE5Lb0vPjpFVJok1Wh1G9goFIC2nOnWSr2eekceNSRzfeSfQrZudTioHB0vvzRUrpHR3zx7gk0/khzZU/fpSmTRqlPQHrWP/jvx8YMYMYNgwCejGuHxZ5sK3bpX/18uW2en/N6oSgyyR5dSrJ/eH338vlbmBgXU7nk4H7N4tTSrqujBZX4x69Cjg6yudJVq0qNsxbZqfn/TZHjMGmDBBWoWNGgUsXiyT0UqRkyMrxO6+mwHcTjAuE9mvsDCp4k1MlERxUJDl3nvBArlt3bLFhtpHarVAdnZpYjhbFsLDywsICZFfoJ+fsrt9kE1TSkxOS0tDnz590KxZMyxZsgSXLl0qeSzIkicSIjKOn5/MGz/2mKzqXr8eGDHC2qMqZ80amRd+5BEpQKpXz9ojIqqcUmKykjBJ7KBaBzbAPWF+OPjnlSqriZu+8JHRx3VSqxDR0hdhAVX3vjQkcXzsWOWJ4zvvlD/tJnGsUgExMVKxM3Kk3GXPng1MmWL4pk4jRwJLl0qied++Oq12fv992TbxzTeNe93330tRdFER8OWXUjRFjodBlsiyuneXjsa7d0soqEuxy5kzQEoK8MQTtd87XqeTSuQffpB40K+fLDjifOstd90lSdg1a6SyuGwLaiVs5Lhnj9zJ3323tUdCJsK4TGTfunaVRPGhQ7JNriVaPm/ZAsyaBcybJ5VCipafLwnhjAy5yb15E3BxkZV1LVvKn8Z28iKqJaXE5NjYWCQnJyM5ORlNmzYt95jO2hudE1H1PDxksvy552QCICMDmDjR2qOCTie3tbNmyZro99/nHAApm1JispIoYEaKrGXRkM7ot/SnaltOG8tZrcKiIZ2Nf10tE8f6pLHNJ47bt5e7+7lzJUm8Y4csu2rVqubXOjlJq+r+/eUXNGRIrYZw6ZIkh8ePN+xtAbnvnjwZ+Pe/ZXuMjz7iXhOOTKczLnDyHpSobpycpMvUZ58BZ8/Wvt2kVit7BjdvXvvt7cu2lu7UScZlszHZnG5vQf3SS6UtqK2ZnE1Lk82jH3zQNL3GSREYl4nsm0oli7Hi4mSP4qgo81btHDokjTBGjpTuU4qj0chNrT4xfO2afN/XVy5wgoJkTyS2kCYrUEpMHjVqVI17FxORgrm4AGvXyuTrpElAerrMCVupbbxGI7VPH34ILFwITJ3KMEvKp5SYrCRMEjuwEB93zB3cEVO2HjfZMecN7ogQH9Osxq0pcXzsmPy5bZudJI5dXSWiDhoEPPWUbDT13ntSoltThL3vPkkSv/GG7FHh4mL028+bJ28zc6Zhz09IkM4m588Dy5fLajFeCDg2rsQisry2bYFmzaSauGXL2t0b/vKLbBnwyCPGn8fZWrqWbm9B3bu3XOwsXlz33uHG0vcaDwiQCyeyG4zLRPbPxUVCyJ49sl1hnz7mqd45dw546CGgRw9Z26SI+z6dDsjNLW0hfemSnMjq15eEcKdOEttcXa09UiLGZCIyHZVKSncbNwZefFFi4Lp1Fo93N24ATz4JfPONFA09+6xF356o1hiTK7LOMhNSjOE9QjGpfxuTHGty/7Z4vEeoSY5VFX3i+JlnJDF58KDcFx4/LvGwf3+5gZ0xQ26Qvb2Bdu0kmfnuu8BPP8nzFe3uu6Vf52OPyeTxI4/IDW9N3n4bSE4G/vMfo9/yzBlZ9TVtmsxbV6e4WHLZvXpJp5NffpFVY4qYKCCr0gdZY77MKTs7GyNGjICXlxe8vb0xevRoXL9+vcrnp6SkQKVSVfr1xRdflDyvsse3bNli3h+GqAoqlawTunQJ+PVX419fWChJ3q5d5R7TUDqd7IP4wQfyZ79+0jWZCWIj6VtQr1old9dt28oFTnGx5caQlCS9xvv3Z18wO6OkuLxw4UJERETA3d0d3t7eBr1m1KhRFeJtdHS0+QZJZKPc3eUW8upVWbRl6mqHq1dlHXKDBrJA26oNJ4qKpG3J0aPAd9/JIqfjtxa9d+4s7a3uv19WjjdtygQxKYaSYjIR2YkJE4DPP5d9/+6/v7SDhgX8/bfcPu7aBfz3v0wQk21hTK6IlcSEmMjW8PN0w+ztJ1Cs1RnVftpJrYKzWoV5gzuaPUFclbIVx/quOfqKY321cdmKY5WqdI9jxVYcN2gg7UMeeAAYO1ZueD/6SKqMq9K1q5RwzZkjPcDK/EB5hcU4l5MH18ZanMtRo22hBzzcSv/5T50qyYGXXqp+WH/+KUXOhw/LtsmzZ/O+m0opbSXWiBEjcPHiRcTGxuLmzZt49tlnMW7cOGzevLnS54eEhODixYvlvrd69Wq88847GDhwYLnvr1u3rtxEtaET3kTm0KSJhIm4OPmz7Hk5r7AYKTk3UdS4DVxzbqJ5YXG58//+/TLfGhlp+PuxtbSJOTkB48aVtqB++WW5BjBRC+q8wmKkXMpHkdYDrpfy0dy3zGdAoyktQ69tv3JSLCXF5aKiIgwbNgzh4eFYu3atwa+Ljo7GunXrSv7uxnboRJXy8ZF1R4cOAZ6eEp+rkldYjJTMPBTlqeGamYfm7g3KXRuUVVwsa5fT0+XYNS0oNjmtVmai9S2ks7Pl+15eQEiIdN/w9+ciJ1I8JcVkIrIjjz4qwfmhh6RaascOgztT5RUW41RGHk5f0QIZarRr4lHl9UBZFy4AAwdKWN67V4qIiGwJY3JFTBITAKkovruVH6ZtO459yZfhpFZVmyzWPx7R0heLhnQ2WYtpU6kqcXzyZGnSuLrE8Z13SuK4QQOr/hiyv3CvXsDo0bIq7PnngSVLpIS3MgsWyOaU77yDMzGvY1N8KuKSspCanQ8dgMbPABNjgUmxQKiPOyLbBqBjvVB89VUDbNggnbkqo9NJpfbLL8s9+M8/W3frRFImJQXZkydPYufOnTh69CjuvPNOAMDy5csxaNAgLFmyBMGVbJ7t5OSEoKCgct/btm0bHnvsMXh6epb7vre3d4XnEllT377A//4nrSabdrhW4fyPZ94FYi9DFbur5Pw/uGMoDh9ugPBwoGHDmt+joEBuAo8dk/tQtpY2MV9fqSgeMwZ44YU6taA+k1nJZwAdgS1JUCGp5DMwon4OWmdnSwaALUHsjpLi8ty5cwEA69evN+p1bm5ujLdEBmraVBaLHT8u97HNmpU+VnlcqAck/QYVfiuNCz1D0TpQboJ1OllEvHcvsHOndOiyiPx8mXnOzJSvmzelr3ZgoCxqCgyU8mkiG6KkmExEdqZPH2DfPsncRkRIeW8VC4Arvx4AEAeogEqvB8r63/+kaYeTk8w9tG1rrh+KyHwYkytikphKhPi4Y+PonqUB43QWUq+UCRi4FTB83RHZJgAje4UiLMDaWVTDOTvLTXPnzsYnjvX7HFslcdy4sbTSWrkSmDRJNpz65BNZKn67pk1x4ZUpmHbWBfve+7nKZL8OwPnsfGyMPw+NNgWtRvvhn4M6A6h4s33pkhQ4ff21tA957z1WjJFp5d7WA97Nza3OlUKHDh2Ct7d3SYIYAPr16we1Wo34+HgMGTKkxmMkJCQgMTERK1asqPDYhAkTMGbMGLRs2RLPP/88nn32WaiYYCEr8vYGWnXNx4w9x5G2u+rFXmXP/+sPpSDExQ+Pd6j8/F/yGp3sghAbK3GzXz+gZ08W7ZhNjx7SsmPtWmn18fXXwPz5wPjxcjFTjQvZ+TUu+Cv5DBw+j/U6He7x6o5Frl4IMc9PQzbIHHG5tn788UcEBASgUaNG6Nu3LxYsWABfX1+rjIXIFrRtK90mjx2TdcU31EbEhVvXBveE+WHRkM7YutEdK1fKbkZRUWYctEYjN536amF9u0xfX6B1a9lf2MeHi5mIiIiq0qWL7Mk4YIAkinfskMnsW4y6T7ztekBfGHbgAPDgg9LI4/vvgUpqL4jIRjFJTBW0DmyAOYM7Yg46SiuqK3koKtbC1VmN5r6GtZ6wFYYmjrdulQoqfeJYnzS2WOJYpZKqoqgoaSUdEQHMmiVtKctMGG85morZznehOOQmANTYOlz/uNb/Cvq//xPmDu6I4WXahu/YAfzrX/I7+eor2R6ZqCq1XYkVElI+NTF79mzMmTOnTmPJyMhAQEBAue85OzvDx8cHGRkZBh1j7dq1aN++PSIiIsp9f968eejbty/c3d2xe/duvPDCC7h+/TpeqqlfO5EZbTmaijlHTqBII+d1Q8//acVXcP+Kiud/vYsXJRb89Zd05+jfXwFdNhxBZS2o16yRFtS9e1f6ki1HU0u2DgEM+Azc2rTy4DU1+i2t+jNAtktJcbk2oqOj8cgjj6BFixY4e/Yspk2bhoEDB+LQoUNw4ioVokqpVHKPmpcHLNmWim2pRsSFW48f/PMK+v7fT8jc0RGTJoVizBgTD1KnA3JzpUo4I0MSxFqttLUKCgI6dpRqYe5rRHaEVUtEZHbNmkkm94EHpLr4q6+AAQOMv08scz2gv0+slxaKJ56QZpdff21YJzIipWJMrsh+sn1kFh5uzugY7FhnfkMSx8eOSay1eOK4bVtZGTZvHjB3rizd2rgRCAvDB3FnsGT3aXme2riJMy10KCzWYcrW47h8vRDP3tUakyYBH34IREfLdsiNG5vh5yG7Utsge+HCBXiVKU+vrlppypQpWLx4cbXHPXnypOGDqMKNGzewefNmzJw5s8JjZb/XrVs35OXl4Z133mGSmKym3PnfSFpd+fN/TGRrANJRIy6utLX0M88AzZubcNBkmLItqCdMAO65R/p8v/12uRbUdfkMaHSAplhb4TNAts/ccdnQmNyulj1qhw8fXvLfnTt3RpcuXdCqVSv8+OOPiDJrWSORbVOrgd9unsGWP2sZF7Q6FOt08Ik+jpB+hQBMEBeKikrbR2dkyIWGWi17GXXuLMnhBg1YLUx2ixPSRGQRvr7SgfLxx4EHHsAHb3+KJVlV7C1YA41WB41W5gpyfi7Egw+2xsaNgJUaDBGZDGNyRUwSExmgpsTxsWPyZ9nEcdu2pUljkyaOXVyk7eTAgcBTTwF33IEtc1dhyWVvExwcWLL7NN570w3p+0OxYoV0t+S9OhmitkHWy8ur3GR0dSZOnIhR+n+EVWjZsiWCgoKQlZVV7vvFxcXIzs42aG/DL7/8Evn5+Xj66adrfG7Pnj0xf/58FBYWWq0dJzmuLUdTa50cvN2S3afh5+mGts6h+OEHiXP33Se7G7Boz8rKtqCeMqW0BfULL2DLr+km/Qz4e7rhcVYU2wVzx2VDY7KptGzZEn5+fkhOTmaSmKgaW46mYuneusUF/f3fuz+cRqBXLeKCTgdkZ5e2kM7Olu97ecnmyUFBkiDmBQY5CE5IE5HFuLsD27Zhy8tv1jpBfDvve09jyBA3uLnxPpFsH2NyRUwSE9WS1RPHERFAYiIuTJqB2RfrA866CtncwounkXd8DwpSj6P4aibU9b3gFtwW3vc+BRefJpUeVqcDiu84gR0L/dCnR9V7VBLdzhJB1t/fH/7+/jU+Lzw8HDk5OUhISED37t0BAHv37oVWq0XPnj1rfP3atWsxePBgg94rMTERjRo1YoKYLO5Cdj5mbz9R5ePaohvIjd+KwvQkFF08DW3BdfgOegWeXfpV+ZoZ207gYRc/RHR1x333sbW0oqjVwNixsvfD9OnAK6/gwuatmB01udKn1+YaAABmbT+BiFZ+JXtPke0yd1w2NCabyl9//YUrV66gMdvbEFXJHNcGBseF/PzSSuHMTODmTVngHBgItGwpf7oztpBj4oQ0EVnShdwizPa5EyjWAKhY+VOb64E535xA7zDeJ5LtY0yuSG3tARDZE33ieNQo4IMPgEOHgGvXgN9/l+KfqCjg7FnZXvCf/5Q9HNq3l22Gly4F9u0Drl834g0bNMC0u55EsYtrpeW+uYe/RH7SQdRr1hWN+o2DZ9cBKLjwBy6uexlFl1IqPaRKBTi56LD29+O1+h2Q49LpSgOtIV+66rdBqZP27dsjOjoaY8eOxZEjR3DgwAHExMRg+PDhCA4OBgCkpaWhXbt2OHLkSLnXJicn4+eff8aYSjZg++abb7BmzRr88ccfSE5OxsqVK7Fo0SK8+OKL5vthiKowbdvxkn2FKqPNz8XVA5/i5pULcAloYdAxNTodUvyP45FHmCBWLF9f2Q/iyBFM6/IIim8WV/q02lwDAECxVodp23gNYA+UFJdTU1ORmJiI1NRUaDQaJCYmIjExEdfLXPi2a9cO27ZtAwBcv34dkydPxuHDh5GSkoI9e/bgoYceQlhYGAYMGGC+gRLZOHNcG1QZFzQaSQgnJgK7dgHffScrpfPzgdatgb59gcGDgfBwoEULJojJoSkpJhOR/Su9Hqi8NaRJrweIbAxjckWsJCYys7IVx88+K98rLgb+97/SPY6rqjjW73PcrRvg6Vnx2Gcyr2Ff8mVUFfQb9BgCv8GToXJyKfmeR/t7kL42BrmHv4Tfg5MqfZ1Gq8O+5MtIzrqGsABmCcgwWq1xrcnNvRJr06ZNiImJQVRUFNRqNYYOHYply5aVPH7z5k0kJSUhPz+/3Os++ugjNG3aFP37969wTBcXF6xYsQKvvvoqdDodwsLC8O6772Ls2LHm/WGIblN6/q+ak6cPmsZshJNnIxRePIOMDa/WeFwddDiWxvO/LTgT0hb7fDOrfJzXAKSkuDxr1ixs2LCh5O/dunUDAMTFxaFPnz4AgKSkJFy9ehUA4OTkhN9//x0bNmxATk4OgoOD0b9/f8yfP5+dO4iqYK5rg5K4kHkNYfV1pS2kL12SE0f9+tI+ukMHqRZ2dTXVj0RkN5QUk4nIvpn9eoD3iWTjGJMrYpKYyAqcnYEuXeTLmMSxPmmsTxxvik+Fk1oFTRWrxes1bV/hey4+TeDqF4qbly9UO0YntQqfHE7FnMEd6/zzkmNQWpD18fHB5s2bq3y8efPm0FWyHGzRokVYtGhRpa+Jjo5GdHS0ycZIVFs1nf8BQOXsAifPRkYfm+d/28BrAKqJkuLy+vXrsX79+mqfUzYm169fH7t27TLfgIjskFmvDVTAJ5/9hDmNb8j2B/7+sgo6MFD2GTbmZEPkgJQUk4nIvnGugKh6jMkVMUlMpBCGJo6//LI0cdxsQhZ0nsb1PNDpdNDk58DFL7Ta52m0OsSdzsIcMPCTYRhkiSwnLimr2pu+uuD53zbU5jPAawDHwrhM5FjMem2gA+KuOWPOY/dIgtjJySzvQ2SvGJOJyFI4V0BUPcbkipgkJlKw6hLHB48W460z+dUfoBJ5J36E5toVePceUeNzU6/kI6+wGB5uPFVQzRhkiSzjemExUrONP/8bg+d/ZavtZ4DXAI6FcZnIcVjk2uC6BnmN/ODBBDGR0RiTicgSOFdAVDPG5Ir4r5nIxugTx05+eXgr2bjX3rxyAdmxK+HWpB08OkfV+HwdgJQreegY3LB2gyWHwiBLZBnnr+TBPOuCS+kA7DyQhxbePP8r0bkc4z8DvAZwPIzLRI7DUtcGjAtEtcOYTESWwOsBopoxJlfEJDGRjSoqNu4Mpbn+N7K+mAu1mwf8Hp4KldqwFeDGvg85LgZZIsuw1Hn5yZFaFF20yFuRkVwba9H4GcOfz2sAx8S4TOQ4LHW+Zlwgqh3GZCKyBF4PENWMMbkiJomJbJSrs9rg52oL8pD5+WxoC/IQOHIxnBv4muV9iIjI/Cx1Xt78iRotvC3yVmSkczlqTIw17Lm8BiAisn+WOl8zLhARESkXrweIqDaYJCayUc19PaACamwjoisuQtaX81D8dxoChy+Aq1+owe+huvU+RIbgSiwiyzD0/F8XKgDRd3vAw82Mb0K11rbQA5NieQ1A1WNcJnIclro2YFwgqh3GZCKyBF4PENWMMbkiLvsgslEebs4I9XGv9jk6rQaXvl6MwvRT8H94CtyatDfqPUJ93eHhxrUkZBit1vgvIjKeIef/uuL5X9l4DUCGYFwmchy8NiBSNsZkIrIEXg8Q1YwxuSL+iyayYZFtA7Ax/jw02srXiP29dy1uJMejfthd0Ny4jut/xJV73LNTZJXHdlKrENkmwKTjJfum0xkXOHXmXNpIZOdqOv/r5SZ8A21BHjTXswEAN5KPoPjaZQCAV/cHoa5XcQUwz/+2gdcAVBPGZSLHwmsDIuViTCYiS+H1AFH1GJMrYpKYyIaN6BmK9YdSqny8KPNPABLobyQfqfB4dRPEGq0OI3sZ3paSyNiVVY6wEovIXGo6/+vlxm+DJjer5O/5pw8Cpw8CADw7RlZ648fzv23gNQDVhHGZyLHw2oBIuRiTichSeD1AVD3G5IqYJCayYa0DG+CeMD8c/PNKpSvEgka8VavjOqlViGjpi7CABnUdIjkQBlkiy6np/K/X9IWPjDouz/+2g9cAVBPGZSLHwmsDIuViTCYiS+H1AFH1GJMr4p7ERDZu0ZDOcFYbsdu6AZzVKiwa0tmkxyT7xz0diCyL53/iZ4Cqw7hM5HgYF4iUiTGZiCyJ1wNEVWNMrohJYiIbF+LjjrmDO5r0mPMGd0SIj7tJj0n2j0GWyLJ4/id+Bqg6jMtEjodxgUiZGJOJyJJ4PUBUNcbkipgkJrIDw3uEYlL/NiY51uT+bfF4D+4vQcZjkCWyPJ7/iZ8BqgrjMpFjYlwgUh7GZCKyNF4PEFWOMbki7klMZCdiIlvDz9MNs7efQLFWV+2+E7dzUqvgrFZh3uCODPpUa8YGTUcIskSWwPM/8TNAlWFcJnJcjAtEysKYTETWwOsBoooYkytikpjIjgzvEYq7W/lh2rbj2Jd8GU5qVbUXAPrHI1r6YtGQzmwbQnXCIEtkPTz/Ez8DdDvGZSLHxrhApByMyURkLbweICqPMbkiJomJ7EyIjzs2ju6JM5nXsCk+FXGns5B6JR9lw78KQKivOyLbBGBkr1CEBTSw1nDJjjDIElkXz//EzwCVxbhMRIwLRMrAmExE1sTrAaJSjMkVMUlMZKdaBzbAnMEdMQcdkVdYjJQreSgq1sLVWY3mvh7wcOM/fyIie8TzP/EzQEREZTEuEBEREa8HiKgy/JdP5AA83JzRMbihtYdBdk6nM251lc7wrVCIqJZ4/id+BhwX4zIRVYZxgcjyGJOJSGl4PUCOijG5IiaJiYjIJLRaQKUy/PmOEGSJiIishXGZiIhIGRiTiYiIlIExuSImiYmIyCQYZImIiJSDcZmIiEgZGJOJiIiUgTG5IiaJiYjIJBhkiYiIlINxmYiISBkYk4mIiJSBMbkiJomJiMgkGGSJiIiUg3GZiIhIGRiTiYiIlIExuSImiYmIyCQYZImIiJSDcZmIiEgZGJOJiIiUgTG5IiaJiYjIJBhkiYiIlINxmYiISBkYk4mIiJSBMbkitbUHQERE9kGrNf7LnBYuXIiIiAi4u7vD29vboNfodDrMmjULjRs3Rv369dGvXz+cOXOm3HOys7MxYsQIeHl5wdvbG6NHj8b169fN8BMQERHVnlLickpKCkaPHo0WLVqgfv36aNWqFWbPno2ioqJqX1dQUIAJEybA19cXnp6eGDp0KDIzM80zSCIiIjNSSkwGgMGDByM0NBT16tVD48aN8dRTTyE9Pd18b0hERKQgjMkVMUlMREQmoaQgCwBFRUUYNmwYxo8fb/Br3n77bSxbtgwffvgh4uPj4eHhgQEDBqCgoKDkOSNGjMCJEycQGxuLb7/9Fj///DPGjRtnjh+BiIio1pQSl0+dOgWtVotVq1bhxIkTWLp0KT788ENMmzat2te9+uqr+Oabb/DFF1/gp59+Qnp6Oh555BHzDJKIiMiMlBKTASAyMhKff/45kpKS8NVXX+Hs2bN49NFHzfeGRERECsKYXJFKp3OEgmmRm5uLhg0b4urVq/Dy8rL2cIiITMLa5zb9+wNXARjz/rkAzD/u9evX45VXXkFOTk61z9PpdAgODsbEiRMxadIkAMDVq1cRGBiI9evXY/jw4Th58iQ6dOiAo0eP4s477wQA7Ny5E4MGDcJff/2F4OBgs/0c9sban1siInNQwrlN6XEZAN555x2sXLkSf/75Z6WPX716Ff7+/ti8eXPJTfKpU6fQvn17HDp0CL169TLr+ByNEj63RESmpoRzmy3E5O3bt+Phhx9GYWEhXFxczPpeVDMlfG6JiMzB2uc3xuSqOdSexPp8eG5urpVHQkRkOvpzmvXX/Bh7bpXn335OdnNzg5ubm4nGZLhz584hIyMD/fr1K/lew4YN0bNnTxw6dAjDhw/HoUOH4O3tXZIgBoB+/fpBrVYjPj4eQ4YMsfi4bRVjMhHZI+XEZEDJcfnq1avw8fGp8vGEhATcvHmzXExu164dQkNDmSQ2A8ZkIrJHjMk1y87OxqZNmxAREcEEsUIwJhORvVJOXGZMvp1DJYmvXbsGAAgJCbHySIiITO/atWu3VkRZlqurK4KCgpCRYfy51dPTs8I5efbs2ZgzZ46JRme4jIwMAEBgYGC57wcGBpY8lpGRgYCAgHKPOzs7w8fHp+Q5ZBjGZCKyZ9aKyYDy43JycjKWL1+OJUuWVPmcjIwMuLq6wtvbu9z3y8ZkMh3GZCKyZ4zJFb3xxhv44IMPkJ+fj169euHbb7+t8zHJNBiTicjecf66PCXEZIdKEgcHB+PChQto0KABVCqVtYdDRGQSOp0O165ds1qr43r16uHcuXMoKioy+rU6na7C+bi6VVhTpkzB4sWLqz3myZMn0a5dO6PHQpbFmExE9sjaMRmwXFyuTUxOS0tDdHQ0hg0bhrFjxxo9PjIPxmQiskeMyeWVjcmTJ0/G6NGjcf78ecydOxdPP/00vv32W8YABWBMJiJ7Ze24zJhcNYdKEqvVajRt2tTawyAiMjlrrYzWq1evHurVq2f295k4cSJGjRpV7XNatmxZq2MHBQUBADIzM9G4ceOS72dmZuKOO+4oeU5WVla51xUXFyM7O7vk9WQYxmQislfWjsmAZeKysTE5PT0dkZGRiIiIwOrVq6t9XVBQEIqKipCTk1OumjgzM5Px1gwYk4nIXjEmlyobk/38/ODn54c2bdqgffv2CAkJweHDhxEeHm7WcVLNGJOJyJ5ZOy4zJlfOoZLERERk2/z9/eHv72+WY7do0QJBQUHYs2dPSVI4NzcX8fHxGD9+PAAgPDwcOTk5SEhIQPfu3QEAe/fuhVarRc+ePc0yLiIiIiUyJianpaUhMjIS3bt3x7p166BWq6t9fvfu3eHi4oI9e/Zg6NChAICkpCSkpqZyApuIiOg2dblP1mq1AIDCwkJTDomIiMgh2WJMZpKYiIjsUmpqKrKzs5GamgqNRoPExEQAQFhYGDw9PQEA7dq1w5tvvokhQ4ZApVLhlVdewYIFC9C6dWu0aNECM2fORHBwMB5++GEAQPv27REdHY2xY8fiww8/xM2bNxETE4Phw4dbtY0ZERGRUqWlpaFPnz5o1qwZlixZgkuXLpU8pq8KTktLQ1RUFD7++GPcddddaNiwIUaPHo3XXnsNPj4+8PLywosvvojw8HD06tXLWj8KERGRTYuPj8fRo0fRu3dvNGrUCGfPnsXMmTPRqlUrLsIiIiKyICXFZCaJiYjILs2aNQsbNmwo+Xu3bt0AAHFxcejTpw8AqUq6evVqyXNef/115OXlYdy4ccjJyUHv3r2xc+fOcq1INm3ahJiYGERFRUGtVmPo0KFYtmyZZX4oIiIiGxMbG4vk5GQkJydXaJ+o0+kAADdv3kRSUhLy8/NLHlu6dGlJnC0sLMSAAQPw73//26JjJyIisifu7u7YunUrZs+ejby8PDRu3BjR0dGYMWNGlXsrEhERkekpKSardPo7cyIiIiIiIiIiIiIiIiIisnvVbwZFRERERERERERERERERER2hUliIiIiIiIiIiIiIiIiIiIHwiQxEREREREREREREREREZEDYZKYiIiIiIiIiIiIiIiIiMiBMElMRERERERERERERERERORAmCQmIiIiIiIiIiIiIiIiInIgTBITERERERERERERERERETkQJomJiIiIiIiIiIiIiIiIiBwIk8RERERERERERERERERERA6ESWIiIiIiIiIiIiIiIiIiIgfCJDERERERERERERERERERkQP5f6RT5OowWORqAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB4kAAAKaCAYAAAAjwm9WAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xUZfbH8e8kkNBD7713RJrAqiAddBcUFlddARX5KYiKFRs2xF1RUVQU1t5FxAoI0pUiRRSQgID03hJqgGR+f5wdQpaWMjPPlM/79ZrXc5PM3HvIlif3nuc5x+P1er0CAAAAAAAAAAAAAESFGNcBAAAAAAAAAAAAAACChyQxAAAAAAAAAAAAAEQRksQAAAAAAAAAAAAAEEVIEgMAAAAAAAAAAABAFCFJDAAAAAAAAAAAAABRhCQxAAAAAAAAAAAAAEQRksQAAAAAAAAAAAAAEEVIEgMAAAAAAAAAAABAFCFJDAAAAAAAAAAAAABRhCQxAAAAAAAAAAAAAEQRksRAmFm+fLl69uypSpUqKU+ePCpXrpw6dOig0aNHZ3jfM888oy+//NJNkJIOHTqkYcOGqXPnzipatKg8Ho/eeecdZ/EAAOBv4TInL1q0SIMGDVK9evWUP39+VaxYUX//+9+1Zs0aZzEBAOBP4TInr1y5Ur169VLVqlWVL18+FS9eXJdddpm++eYbZzEBAOBv4TIv/6/hw4fL4/Gofv36rkMBgsbj9Xq9roMAkDnz5s1T27ZtVbFiRfXp00elS5fW5s2btWDBAq1bt05r16499d4CBQqoZ8+ezhKzGzZsUJUqVVSxYkVVrVpVs2bN0ttvv62+ffs6iQcAAH8Kpzm5Z8+e+umnn9SrVy81bNhQO3bs0CuvvKJDhw5pwYIF3AADAMJaOM3JkyZN0ssvv6yWLVuqbNmyOnLkiCZMmKC5c+fqjTfe0K233uokLgAA/CWc5uXTbdmyRbVq1ZLH41HlypW1YsUK1yEBQZHLdQAAMm/48OFKSEjQokWLVLhw4Qw/27Vrl5ugzqFMmTLavn27SpcurcWLF6tZs2auQwIAwG/CaU4eMmSIPvroI8XFxZ36Xu/evdWgQQM9++yz+uCDDxxGBwBAzoTTnNy1a1d17do1w/cGDRqkJk2a6IUXXiBJDAAIe+E0L5/u3nvv1SWXXKLU1FTt2bPHdThA0FBuGggj69atU7169c6YYCWpZMmSp449Ho8OHz6sd999Vx6PRx6PJ8MO3q1bt+qmm25SqVKlFB8fr3r16umtt97KcL5Zs2bJ4/Ho008/1UMPPaTSpUsrf/78+utf/6rNmzdfMNb4+HiVLl062/9WAABCWTjNya1atcqQIJakGjVqqF69elq1alXW/uEAAISYcJqTzyY2NlYVKlTQgQMHsvV5AABCSTjOy3PmzNHnn3+uUaNGZfWfC4Q9dhIDYaRSpUqaP3++VqxYcd7SkO+//75uueUWNW/e/NRK5GrVqkmSdu7cqUsuuUQej0eDBg1SiRIlNHnyZN18881KTk7WXXfdleFcvl4MDzzwgHbt2qVRo0apffv2WrZsmfLmzRuwfysAAKEs3Odkr9ernTt3ql69eln7hwMAEGLCcU4+fPiwjh49qqSkJH399deaPHmyevfunf1fAgAAISLc5uXU1FTdcccduuWWW9SgQYOc/eOBcOQFEDamTp3qjY2N9cbGxnpbtmzpvf/++73ff/+99/jx42e8N3/+/N4+ffqc8f2bb77ZW6ZMGe+ePXsyfP/aa6/1JiQkeI8cOeL1er3emTNneiV5y5Ur501OTj71vs8++8wryfvSSy9lOu5FixZ5JXnffvvtTH8GAIBQFq5zss/777/vleR98803s/xZAABCSTjOyQMGDPBK8kryxsTEeHv27Ondt29fFv7VAACEpnCbl1955RVvQkKCd9euXV6v1+u9/PLLvfXq1cvKPxkIa5SbBsJIhw4dNH/+fP31r3/Vr7/+qn//+9/q1KmTypUrp6+//vqCn/d6vZowYYKuuuoqeb1e7dmz59SrU6dOSkpK0tKlSzN85sYbb1TBggVPfd2zZ0+VKVNGkyZN8vu/DwCAcBHOc3JiYqIGDhyoli1bqk+fPln6LAAAoSYc5+S77rpL06ZN07vvvqsuXbooNTVVx48fz9o/HACAEBRO8/LevXv12GOP6dFHH1WJEiWy9w8GwhxJYiDMNGvWTF988YX279+vn3/+WUOHDtXBgwfVs2dP/f777+f97O7du3XgwAGNHTtWJUqUyPDq16+fJGnXrl0ZPlOjRo0MX3s8HlWvXl0bNmzw678LAIBwE45z8o4dO9StWzclJCTo888/V2xsbKY/CwBAqAq3Obl27dpq3769brzxRn377bc6dOjQqYfhAACEu3CZlx955BEVLVpUd9xxR9b/kUCEoCcxEKbi4uLUrFkzNWvWTDVr1lS/fv00fvx4DRs27JyfSUtLkyTdcMMN59w51LBhw4DECwBApAqXOTkpKUldunTRgQMHNHfuXJUtW9av5wcAwLVwmZP/V8+ePTVgwACtWbNGtWrVCui1AAAIllCel//44w+NHTtWo0aN0rZt2059/9ixYzpx4oQ2bNigQoUKqWjRojm+FhDKSBIDEaBp06aSpO3bt5/6nsfjOeN9JUqUUMGCBZWamqr27dtn6tx//PFHhq+9Xq/Wrl1LMhkAgLMI1Tn52LFjuuqqq7RmzRr98MMPqlu3bqauCQBAuArVOflsjh49KskWdAEAEIlCbV7eunWr0tLSNHjwYA0ePPiMn1epUkV33nmnRo0alakYgHBFuWkgjMycOfOs5ad8/RVOX3GcP39+HThwIMP7YmNjdc0112jChAlasWLFGefZvXv3Gd977733dPDgwVNff/7559q+fbu6dOmS3X8GAABhL5zm5NTUVPXu3Vvz58/X+PHj1bJly/O+HwCAcBJOc/L/lseUpBMnTui9995T3rx5WcQFAAh74TIv169fXxMnTjzjVa9ePVWsWFETJ07UzTfffMF/LxDuPF4angBho379+jpy5Ih69Oih2rVr6/jx45o3b54+/fRTVahQQb/88osKFy4sSerWrZtmz56tJ598UmXLllWVKlXUokUL7dy5Uy1atNDu3bvVv39/1a1bV/v27dPSpUv1ww8/aN++fZKkWbNmqW3btmrQoIE8Ho/69eunnTt3atSoUSpfvrx+/fVX5cuX77zxvvLKKzpw4IC2bdumMWPG6Oqrr1bjxo0lSXfccYcSEhIC+vsCACBQwmlOvuuuu/TSSy/pqquu0t///vczfn7DDTcE5HcEAEAwhNOc3KNHDyUnJ+uyyy5TuXLltGPHDn344YdKTEzU888/ryFDhgTjVwYAQMCE07x8Nm3atNGePXvOmqAGIpIXQNiYPHmy96abbvLWrl3bW6BAAW9cXJy3evXq3jvuuMO7c+fODO9NTEz0XnbZZd68efN6JXn79Olz6mc7d+70Dhw40FuhQgVv7ty5vaVLl/a2a9fOO3bs2FPvmTlzpleS9+OPP/YOHTrUW7JkSW/evHm93bp1827cuDFT8VaqVMkr6ayvP//80x+/EgAAnAinOfnyyy8/53zM7QAAINyF05z88ccfe9u3b+8tVaqUN1euXN4iRYp427dv7/3qq6/89vsAAMClcJqXz+byyy/31qtXL1ufBcIRO4kBnJVvJdb48ePVs2dP1+EAABC1mJMBAAgNzMkAAIQO5mUg5+hJDAAAAAAAAAAAAABRhCQxAAAAAAAAAAAAAEQRksQAAAAAAAAAAAAAEEXoSQwAAAAAAAAAAAAAUYSdxAAAIMu2bt2qG264QcWKFVPevHnVoEEDLV682HVYAAAAAAAAAIBMyOU6AAAAEF7279+v1q1bq23btpo8ebJKlCihP/74Q0WKFHEdGgAAAAAAAAAgE6Kq3HRaWpq2bdumggULyuPxuA4HABCmvF6vDh48qLJlyyomJvqKcjz44IP66aefNHfu3GyfgzkZAOAP0T4n+wNzMgDAH5iTc445GQDgL5mdl6MqSbxlyxZVqFDBdRgAgAixefNmlS9f3nUYQVe3bl116tRJW7Zs0ezZs1WuXDndfvvt6t+//zk/k5KSopSUlFNfb926VXXr1g1GuACAKBCtc7I/cJ8MAPAn5uTsY04GAPjbheblqCo3XbBgQUn2SylUqJDjaAAA4So5OVkVKlQ4Na9Em/Xr12vMmDEaMmSIHnroIS1atEiDBw9WXFyc+vTpc9bPjBgxQk888cQZ32dOBgDkRLTPyf7AfTIAwB+Yk3OOORkA4C+ZnZejaidxcnKyEhISlJSUxEQLAMi2aJ9P4uLi1LRpU82bN+/U9wYPHqxFixZp/vz5Z/3M/+4k9v2hEq2/QwCAf0T7nOwP/A4BAP7AfJJz/A4BAP6S2TmFBhEAACBLypQpc0ap6Dp16mjTpk3n/Ex8fLwKFSqU4QUAAAAAAAAAcIMkMQAAyJLWrVtr9erVGb63Zs0aVapUyVFEAAAAAAAAAICsIEkMAACy5O6779aCBQv0zDPPaO3atfroo480duxYDRw40HVoAAAAAAAAAIBMIEkMAACypFmzZpo4caI+/vhj1a9fX0899ZRGjRql66+/3nVoAAAAAAAAAIBMyOU6AAAAEH6uvPJKXXnlla7DAAAAAAAAAABkAzuJAQAAAAAAAAAAACCKkCQGAAAAAAAAAAAAgChCkhgAAAAAAAAAAAAAoghJ4ij1+OPSPfdIXq/rSAAAiG6ffir17i0dPuw6EgAAAAAAws+WLdL110sPPeQ6EgAIL2GVJN66datuuOEGFStWTHnz5lWDBg20ePFi12GFnX37pCeekF54QVq3znU0AABEL69XuvZa6bPPpDFjXEcDAABOt2yZ9MEHUlKS60gAAMD59OghffSRNGKEdPSo62gAIHyETZJ4//79at26tXLnzq3Jkyfr999/1/PPP68iRYq4Di3sFC0q1a9vx6tXu40FAIBo9uuv6cc7driLAwAAnOmaa6R//lP65RfXkQAAgPN54430402b3MUBAOEmbJLE//rXv1ShQgW9/fbbat68uapUqaKOHTuqWrVq5/xMSkqKkpOTM7xg6ta1MTHRbRwAAESzSZPSj9evdxcHAADIaMkSqWZNO16xwm0sAAAgo6lTpddfT//64ovTn3dv3OgmJgAIR2GTJP7666/VtGlT9erVSyVLllTjxo01bty4835mxIgRSkhIOPWqUKFCkKINXcePS2lpUq1a9jU7iQEAcKdjR6lBAztetcptLAAAwOzbJzVvLk2ZYl+vXOk2HgAAYI4ckQYNkjp1kgYPln77Lf1nlSrZyE5iAMi8sEkSr1+/XmPGjFGNGjX0/fff67bbbtPgwYP17rvvnvMzQ4cOVVJS0qnX5s2bgxhxaHrzTal8eem77+xrdhIDAOBO06a2AnrIEOmBB1xHAwAAJJub09LSv2YnMQAA7v38s9S4sfTqq/b1gAFS9erpP/clidlJDACZl8t1AJmVlpampk2b6plnnpEkNW7cWCtWrNDrr7+uPn36nPUz8fHxio+PD2aYIW/iRGn7dunSS6WlS0kSAwDgWunS0vPPu44CAAD4+NpBdOxoCeOVKyWvV/J43MYFAEA0OnFCGj5cevppKTVVKltWeucdqUOHjO8jSQwAWRc2O4nLlCmjur7GAv9Vp04dbaJ+RKbt3y/NnGnHvt1Khw5JBw+6iwkAgGj10Uf24PnYMdeRAAAAn7Q0afJkOx4yRIqJsXvpHTvcxgUAQDRKS5OuuEJ64glLEF97rbR8+ZkJYknq1cvusZ9+OvhxAkC4CpskcevWrbX6fxrorlmzRpV8S4RwQd99J508KdWrJ118sfVnOHRIKljQdWQAAESXtDR78NypkzRvnnTggPTjj9KyZa4jAwAgui1eLO3ZIxUqZA+lfWUsKTkNAEDwxcRI3btLhQtLH39sr6JFz/7eatUseVyxYjAjBIDwFjZJ4rvvvlsLFizQM888o7Vr1+qjjz7S2LFjNXDgQNehhY2JE23s0cPGChVsogUAAMG1bJm0c6dUoID0l79YT6VLL5VeeMF1ZAAARLfTS03nzi09+6z07bdS06Zu4wIAIFps3Zpxcdbdd0urVtkuYgCAf4VNirBZs2aaOHGiPv74Y9WvX19PPfWURo0apeuvv951aGHh6FFpyhQ79iWJAQCAG74ylu3aSXFxUp069vWqVe5iAgAA6Unirl1t7NFD6tZNKlLEXUwAAESLTz6RGjSQrrlGOnLEvhcTI5UunbnPf/ihlabesydwMQJAJMnlOoCsuPLKK3XllVe6DiMsTZ1qE2ulSlLjxva9hQttx1LZstKLL7qNDwCAaOJ7AN2li42+JHFiouT1Sh6Pm7gAAIh2r79u87RvjgYAAIG3b580cKAliSVr97Bvn5QvX9bO8+ij0p9/2oLsv/zF/3ECQKQJm53EyJmaNa334W23pT94Tk6WPvssfTcTAAAIvH37pAUL7Nj3ALp6dSlXLunQISutBQAA3Lj4YumRR9J3LKWkSOPHS08/bQu5AACAf02daruHP/lEio2VHn9c+uknqXz5rJ+rUiUbN270a4gAELHCaicxsq9OHen55zN+r1YtG9etk06csH5LAAAgsKZOldLSpHr1pIoV7Xu5c0vVqkmrV1vJ6ezcDAMAAP/zeKTrrpNOnpT69JEqVHAdEQAAkeH4cemee6RXXrGva9aU3n9fat48++f0JYk3bcp5fAAQDdhJHMXKl7eSHSdPSuvXu44GAIDoMG+ejf9bxpK+xAAAuHPypDRggFXbOnEi/ftxcfbQWpJWrHATGwAAkSh3bmnNGjseNEj65ZecJYil9IXY7CQGgMwhSRwFPvtMmjYt442uJMXEpO8mXr06+HEBABCNXnpJWr7c+i2d7vS+xAAAILgWLJDGjrUWTTH/86SkXj0bV64MflwAAESSEyekI0fs2OOR3npLmjJFGj066/2Hz4Zy0wCQNSSJI1xamvUi7thR+v77M39OkhgAgODyeKT69aXKlTN+v3t36dVXpf79XUQFAEB0mzTJxs6drR/i6erXt5EkMQAA2bd6tdS6tTR4cPr3ypWTOnXy3zVIEgNA1pAkjnCLF0tbt0oFCkjt25/589q1bWTXEgAAbjVvLt1+u9S4setIAACIPr4kcdeuZ/7Mt5OYctMAAGRdWpr1HW7cWFq0SPriC2nHjsBc6/Ry015vYK4BAJGEJHGEmzjRxq5dpTx5zvx5rVrWYyklJbhxAQAQja66SrruOumPP1xHAgAAfLZulX791ap9nG03k28n8e+/24NuAACQOVu3WpWOO+6Qjh6VOnSw9kulSwfmepUrS1OnWn9jAMCFkSSOcL4kcY8eZ//51VdLhw9LH3wQvJgAAIhGe/dK330nffyxlDfv2d+zbJn0zjvSn38GMzIAAKLb5Mk2tmghFS9+5s+rVbPF1UeOSBs2BDU0AADC1scf20KradNs89Lo0dZ/uFy5wF0zLs4S0TVr2uIvAMD5kSSOYKtWWa+HuLizl8yS7Ge5cgU3LgAAotHUqVbuqkEDqXz5s7/n/vulfv2kGTOCGxsAANHsfKWmJbtn/vZba9Pk63UIAADOLSlJuvNO6cABqWlT29k7aJAUQzYCAEIK6cEI9sUXNrZrJxUq5DYWAACinW+XUpcu535PnTq2ynrVquDEBABAtPN6pZ077fhcSWLJdiUBAIDMSUiQxo2z5PDDD0u5cwfv2rNmSbNnS61aMX8DwIWwdieCLVpk49VXn/99//qX1KSJ9OGHgY8JAIBolJZmZbWk8yeJa9e2kSQxAADB4fFIP/0kbdwoNW7sOhoAACLH3/4mPf54cBPEklX/ePzx9EohAIBzI0kcwSZOtN6G11xz/vdt3SotXSr9+mtQwgIAIOosWSLt3i0VLCi1bn3u99WpY2NiYnDiAgAApmLF85fA3LFDGjFCeuih4MUEAEC46dRJ6t7dFl+54msN4TIGAAgXJIkjmMcjNWokFSly/vf5di3xQBoAgMDwlZru0OH8q6h9SeI//5SOHg18XAAARLtjxzL3vkOHLEH8wgtSampgYwIAIBylpFj7pK++kvLkcRcHSWIAyDySxBEqKzettWrZuHp1YGIBACDalStnrR26dTv/+0qWtMVdXq+0Zk1wYgMAIFr9+afNu3/7m7WGOJ8qVaS8ee0B+Lp1wYkPAIBwsnGj3cvmz2/3tq6QJAaAzCNJHIF275ZKlZL++U/pxIkLv9+3k3jdOun48cDGBgBANLr5ZmnxYqlfv/O/z+OhwgcAAMEyebLtJD5w4PylpiUpNja94sfKlQEPDQCAsONbRFW1qt3buuJLEu/dKx0+7C4OAAgHJIkj0Dff2CS4cuX5S1r6lC0rFShgu49ZEQ0AQOBk5kb5ySel77+30tQAACBwJk2ysWvXzL2/fn0bSRIDAHCm05PELhUuLBUqZMebNjkNBQBCHkniCDRxoo09emTu/R4PJacBAAiUpUutj2FmtW8vdewoFS0auJgAAIh2R49KM2bYcWaTxPXq2bhiRWBiAgAgnK1fb2O1am7jkCg5DQCZlct1APCvgweladPsOLNJYslWRB88mLny1AAAIHPS0qROnaTkZOnnn6VGjVxHBAAAJGn2bEsUly+fvkP4QthJDADAufl2EodCkvjdd603cuXKriMBgNDGTuIIM3mylJIiVa+evso5M95+23YR9+oVuNgAAIg2ixdLe/ZIefJIdetm7jPHj0sffSQ99pi1ggAAILOeffZZeTwe3XXXXa5DCXmnl5rObN9E3z32unXSyZOBiQsAgHCVK5eUL5/7ctOS1LixVLOmFBfnOhIACG0kiSPM6aWmM3ujK2XtvQAAIHMmT7axQwcpd+7MfSY2VrrpJumpp6QNGwIWGgAgwixatEhvvPGGGjZs6DqUkOf1St99Z8eZLTUtSRUrSsuWSfv22YNwAABON2LECDVr1kwFCxZUyZIl1b17d62Oot5+EyZYq6UOHVxHAgDILJLEESQlJf1GNyulpk/n9doLAADk3Om7lDIrNlaqVcuOV63yf0wAgMhz6NAhXX/99Ro3bpyKFCniOpyQl5oq3X67PcRu1y7zn/N4rHVEnjyBiw0AEL5mz56tgQMHasGCBZo2bZpOnDihjh076vDhw65DCxqPx+5pXduwQXriCWnECNeRAEBoI0kcQVJSpCFDpPbtpRYtsvbZ1FSpdWupaFFp9+7AxAcAQDTZvVtatMiOO3fO2mfr1LExMdG/MQEAItPAgQPVrVs3tW/f/oLvTUlJUXJycoZXtMmVS7rnHmnqVKlAAdfRAAAixZQpU9S3b1/Vq1dPjRo10jvvvKNNmzZpyZIlZ30/c3Lg7NghPf64NGaM60gAILSRJI4ghQrZ5DdtmhSTxf9kY2Ol7dulAwd4IA0AgD98/71V52jUSCpbNmufrV3bRnYSAwAu5JNPPtHSpUs1IpNbZUaMGKGEhIRTrwoVKgQ4wsiydKl0yy3Sww+7jgQAEOqSkpIkSUWLFj3rzyNpTh4/3u59hw1zHYmpWNHGrVulEyfcxgIAoYwkMU7xlbaMolYZAAAEjK8fcZcuWf+sbycxSWIAwPls3rxZd955pz788EPlyWQN5KFDhyopKenUa/PmzQGOMrQcOiS9+660c2f2Pr9nj/Tmm9IXX/g3LgBAZElLS9Ndd92l1q1bq379+md9TyTNyb//Lv32m7Rtm+tITOnSUlyclJYWOjEBQCjK5ToA+MeqVTYZd+4s5c+fvXPUri1NmcJOYgAA/OHJJ6VLLpEuvzzrnz09Sez1Wl8nAAD+15IlS7Rr1y5dfPHFp76XmpqqOXPm6JVXXlFKSopi/6cxYHx8vOLj44MdasiYMUPq21eqVk1auzbrn/c95//jD2v5FMW/SgDAeQwcOFArVqzQjz/+eM73RNKcvH69jVWruo3DJyZGqlBBWrdO2rhRqlTJdUQAEJrYSRwh/vMfqWdPaeDA7J/DV9qSJDEAICueffZZeTwe3XXXXa5DCSnVqkl33CE1bJj1z9asaTe1Bw5Iu3b5PTQAQIRo166dli9frmXLlp16NW3aVNdff72WLVt2RoIY0qRJNman0ocklSkjFS4spaZShQsAcHaDBg3St99+q5kzZ6p8+fKuwwmKdetsrFbNbRyn8yWGN250GwcAhDJ2EkcAr1eaONGO//rX7J+HctMAgKxatGiR3njjDTXMTiYU55Qnj/U0rlxZKlHCdTQAgFBVsGDBM0pY5s+fX8WKFTtnacto5vWmJ4m7ds3eOTweqV496aefpJUrs7cYDAAQmbxer+644w5NnDhRs2bNUpUqVVyHFDS+JHGo7CSW0pPEmza5jQMAQhk7iSPAb79Jf/5pD5Q7dcr+eXw7if/808pmAQBwPocOHdL111+vcePGqUiRIq7DCSn33SeNGyclJWX/HO3bS9Wr245iAACQcytXSps3271zmzbZP0+9ejauWOGXsAAAEWLgwIH64IMP9NFHH6lgwYLasWOHduzYoaNHj7oOLaCOHJF27LDjUEwSs5MYAM6NncQR4IsvbOzUKfv9iCWpVClbBV2unJW3LFXKL+EBACLUwIED1a1bN7Vv315PP/30ed+bkpKilNNWICUnJwc6PGd27ZJGjrTjK6+UEhLcxgMAiC6zZs1yHULI8u0ivuIKKW/e7J/Ht0l75cqcxwQAiBxjxoyRJLX5n5VIb7/9tvr27Rv8gILE14+4cGGpaFGnoWTQv7907bVSxYquIwGA0EWSOAL4Sk336JGz83g80q+/5jweAEDk++STT7R06VItWrQoU+8fMWKEnnjiiQBHFRq+/97Gxo2tb2F2/fmn9P77Uq5c0kMP+Sc2AACiWU5LTfv4dhIfOJCz8wAAIovX63UdghOHD9vcGGoFxsqWdR0BAIQ+ChiGuXXrpOXLpdhY6aqrXEcDAIgGmzdv1p133qkPP/xQefLkydRnhg4dqqSkpFOvzZs3BzhKdyZPtrFLl5ydZ8cOadgw6bXXch4TAADR7vBhad48O87pHP2Xv0jJyRKbtgEAkFq0sBYMc+e6jgQAkFXsJA5zvpvSNm38W87j6NGcld8CAESuJUuWaNeuXbr44otPfS81NVVz5szRK6+8opSUFMXGxmb4THx8vOLj44MdatClpqbvJM7pA+jatW3cutUeRBcqlLPzAQAQzfLnt37Ec+fmvF9iXJy9AABA6PJ6paeftipdI0eGVilsAAgVJInD3M03S23b2sNjf5g1S+rVy26aFy70zzkBAJGlXbt2Wr58eYbv9evXT7Vr19YDDzxwRoI4mvz8s7Rvn/ViuuSSnJ2rSBGpVClp505p9WqpWTO/hAgAQNQqVUrq2dN1FAAAIBg8Hun116Vt26TbbydJDABnQ7npCFC1qnTRRf45V4kS0p49UmKirbYCAOB/FSxYUPXr18/wyp8/v4oVK6b69eu7Ds8pX6npjh2tl3BO1alj46pVOT8XAADwn88+s4pew4e7jgQAALeaN5caN7aWiKGmUiUbN250GwcAhCqSxGEsEEnc6tWlmBjbmbxjh//PDwBAJNuxw+bRrl39cz6SxAAA5Nwvv1gFrldf9d859+6VZs9O73MMAEA0Sk2Vfv1VWrZMKljQdTRnqljRRpLEAHB2YZskfvbZZ+XxeHTXXXe5DsWZHj2kv/1N+u03/50zPl6qUsWOV6/233kBAJFt1qxZGjVqlOswnBs7Vtq9W7rmGv+cz9eXODHRP+cDACAaffedtVb64Qf/nbNePRtXrvTfOQEACDfbtknHj1slrfLlXUdzJnYSA8D5hWWSeNGiRXrjjTfUsGFD16E4s3+/3eh+/bWUJ49/z80DaQAAsq9oUalAAf+cy7eTeM0a/5wPAIBoNGmSjf6q9CGlJ4k3bpQOHvTfeQEACCfr1tlYubJ/Wi75G0liADi/sEsSHzp0SNdff73GjRunIkWKuA7Hme++k06elOrWlWrW9O+5SRIDAJB1x475/5ytWkm//26luwAAQNbt2SMtWGDHXbr477zFikmlS9vx77/777wAAIST9ettrFrVbRznQpIYAM4v7JLEAwcOVLdu3dS+ffsLvjclJUXJyckZXpFi4kQbe/Tw/7lr1bKRctMAAGTOyZNShQpS69ZWbstf8ue33cS5c/vvnAAARJOpUyWvV2rY0P9lMCk5DQCIdr4kcbVqbuM4F1+SeNMmt3EAQKgKqyTxJ598oqVLl2rEiBGZev+IESOUkJBw6lWhQoUARxgcR49KU6bY8dVX+//8F10ktW8vtWzp/3MDABCJfv7ZdiqtWiWVKuU6GgAA4BOIUtM+9evbSJIYABCtfOWmQzVJXLOmVcvcssV1JAAQmsImSbx582bdeeed+vDDD5Unk014hw4dqqSkpFOvzZs3BzjK4Jg6VTpyxFZCNW7s//M3ayZNmyY99pj/zw0AQCTyPYDu1EmKjfXvub/7TurTR3r3Xf+eFwCASJeamr7AOhBJ4nr1rOQ0FT8AANGqXDmrfuWrTBlq4uIstrx5XUcCAKEpBNvJn92SJUu0a9cuXXzxxae+l5qaqjlz5uiVV15RSkqKYv/nqWx8fLzi4+ODHWrA+UpNd+8ueTxOQwEAAJImT7bRn70OfZYvl957zx509+nj//MDABCp9u+3CllLlwamUtbNN0v9+/v/vAAAhIuRI+0FAAhPYZMkbteunZYvX57he/369VPt2rX1wAMPnJEgjmStW1spj0CUmj5dcrI9kC5SJLDXAQAgnO3YYQ+fJdtJ7G+1a9u4apX/zw0AQCQrXlz65hu7rw3EI4OYsKnNBgBA9Pr0U+n776UePaSrrnIdDQCElrC5pSlYsKDq16+f4ZU/f34VK1ZM9X2NgKJE//7S3LnSZZcF7hp33iklJEivvBK4awAAEAl8ZSybNg1MP+I6dWxMTJTS0vx/fgAAIl0w1pR7vYG/BgAAoSQtLTzmv59+kt5+W5o3z3UkABB6wiZJjOAqW9bGxES3cQAAEOoCWWpakqpVs16HR45IW7YE5hoAAESa5GRp48bAX+fRR6Xy5aVx4wJ/LQAAQsnEiVaBsl8/15GcX6VKNgbj7wIACDdhnSSeNWuWRo0a5TqMoElLkz78UNq7N/DXqlXLxtWrA38tAADCWffu1gIiUGWrcuWSatSwY0pOAwCQOV98IVWuLP3jH4G9ztGj0tat0ooVgb0OAAChZt06KSlJOnHCdSTnV7GijSSJAeBMYZ0kjjaLF0s33CBVry6dPBnYa/n6HyYmhkfZEAAAXPnHP6QJE6RmzQJ3DfoSAwCQNZMm2VizZmCv4+t+tXJlYK8DAECoWb/exqpV3cZxIewkBoBzI0kcRiZOtLFjR9tVFEhVq1rfpsOHbVU0AABwp04dyeORdu50HQkAAKHvxAlp6lQ77to1sNeqV89GksQAgGizbp2N4ZIk3rZNOn7cbSwAEGpIEocRX5K4R4/AXysuznogSpScBgDgXD74QFq7NvDXue8+W7g1YkTgrwUAQLibP9/KXxYvLjVtGthr1alj486d0p49gb0WAAChxJck9j1DDlUlSkjx8VYtc8sW19EAQGghSRwmVq2yZG1cXOBXQvucXnIaAABktH279M9/WhnLQD8UTkiQ8uYN7DUAAIgUvlLTnTtbhaxAKlBAqlLFjtlNDACIFidOSJs22XGo7ySOiUnvS0zFTADIKMBFi+Evvl3E7dpJhQoF55rdukllykh16wbnegAAhJMpU2xs2tR2KgEAgNDgSxIHa4F1vXrSn39akvjyy4NzTQAAXNq0SUpNlfLksefHoW7GDKlYMRZfA8D/IkkcJoJZatrn1luDdy0AAMKN7wF0ly7Bud5DD0lz5kgvvCA1bx6cawIAEG42b5aWL7ddQx07BueaLVtKBw5IRYoE53oAALh28qQtxvJ4bM4NdeXLu44AAEITSeIwsGuXtHSpTbp/+5vraAAAwIkT0rRpdhysXUpLl0o//ST9+itJYgAAzqVoUWn8eGubVKxYcK750EP2AgAgWtSqJX33nesoAAA5RZI4DJQsKW3bJs2fb8fBdOSItGaNVKeOFB8f3GsDABCq5s+XkpLs4XPTpsG5Zu3a0vff20NvAABwdvnzSz17uo4CAACEkt9+k156yVpF/etfrqMBgNARBsUgIEmlSknduwf/upUrS40bS6tWBf/aAACEqsmTbezUSYqNDc4169SxkTkZAIDQdOSIdPy46ygAAAi8o0ddR5A1+/ZJb70lffGF60gAILSQJMZ51axpI7uWAABIF+xS0xJJYgAALuTnn6Unn7TWDMHWsaNUoIA0d27wrw0AQLC1amUtHubMcR1J5lSqZOPmzVJamttYACCUkCQOce+9J7VtK332mZvr165tI0liAADSzZwpffml1KVL8K7pm5M3brSdSgAAIKNPPpGGDZNefjn4186fX/J6pRUrgn9tAACCyeuV1q2T9u+XSpRwHU3mlC8vxcRIKSnSrl2uowGA0EGSOMSNHy/NmuUuSVurlo2rV7u5PgAAoahgQelvf7OV08FSooRdz+uV1qwJ3nUBAAgXkybZGMxKHz7169u4cmXwrw0AQDDt3SsdPGjHlSs7DSXTcueWypa1440b3cYCAKGEJHEIO3gwvZzl1Ve7iYGdxAAAhAaPR6pbV6pQwVZsAwCAdOvW2eLmXLmk9u2Df/169WxkJzEAINKtX29juXJS3rxuY8mKihVtJEkMAOlIEoewKVOsBEb16uk3nMHmSxKvXk2/BgAATpyQLrtMeuQR6fDh4F9/xgxp0yZrRQEAANJNnmzjX/4iJSQE//q+e/aVK63qBwAAkWrdOhurVnUbR1b5+hKTJAaAdCSJQ9jEiTb26GG7h1yoUsXKcRw9Km3Z4iYGAABCxbx50ty50tixblZM584d/GsCABAOXJaalqxVU65cUnKytHWrmxgAAAgG307iatXcxpFVviTx7t1u4wCAUJLLdQA4u5QU6dtv7bhHD3dx5Mol3XefVLhweJUPAQAgEHwPoDt1kmJYagcAQEg4ckSaOdOOXSWJ4+KkGjWkVaus5HT58m7iAAAg0MJ1J/GDD0qPPirly+c6EgAIHSSJQ9SMGdaTuEwZqUULt7EMH+72+gAAhApfKcsuXdxcf/9+6ZprbOX22rW2mAsAgGiXmGhJ2pIlpbp13cXRvbvUvLlUrJi7GAAACLRGjaTOnaWLL3YdSda4aEcBAKGOR4shqkABewBdsyY7lQAACAVbtkjLl1sLiI4d3cSQkCAtWGBtIP7803YsAQAQ7S6+WNqzx3oMumrVJEnPPOPu2gAABMudd9oLABD+SD+GqEsvtZKWL77oOhLp+HFp5UppzhzXkQAA4M6UKTa2aCEVL+4mhpgY63koWTlLAABgcueWqld3HQUAAAhVqanSzTdL7dtLSUmuowGA0ECSOMS5XAXts3SpVL++dN11riMBAMAdXz9iV6WmferUsTEx0W0cAACEgpMnJa/XdRTpfIus09JcRwIAgP8dOyYdOOA6iuyJjZW+/FKaPt2qjwAASBKHpDVrpE2bQudG17djaetW65MMAEA0KlXKegyGSpKYncQAAEgvv2w7iMeMcR2J7VAqWtQWWW/a5DoaAAD8b8YMqUgR6fLLXUeSPZUq2cg8DQCGJHEIuvdem7Bef911JKZIEalkSTtes8ZtLAAAuDJmjLRzp9Skids4ate2kSQxAABW6WP9etvB61psrFS1qh2vWOE2FgAAAmHdOhuLFXMbR3b5ksTsJAYAQ5I4BC1fbmPdum7jOJ3vgTSlLQEA0Sw21voCu3T6TuJQqToCAIALBw9Kc+bYcdeubmPxqVfPxpUr3cYBAEAgrF9vY7VqbuPILpLEAJARSeIQk5wsbdhgxw0aOA0lA1/J6dWr3cYBAIALiYmhk5CtUUMqW1a6+GLp0CHX0QAA4M706dKJE1ZuukYN19GY+vVtZCcxAESfOXPm6KqrrlLZsmXl8Xj05Zdfug7J73w7iX2VM8IN5aYBICOSxCHGdyNZrpz1MgoV7CQGAESrzZtt926VKlJKiutopPh4aetWaeZMqWBB19EAAODOpEk2hsouYomdxAAQzQ4fPqxGjRrp1VdfdR1KwPiSxOG6k7hiRRvZSQwAJpfrAJCRr9R0KO0ilkgSAwCi1+TJNpYtawlaAADgntcbmkli307iVauk1FRrVQEAiA5dunRRly5dMv3+lJQUpZy2Ejk5OTkQYfmN15tebjrcdxIfPuw2DgAIFewkDjG//WZjw4Zu4/hfjRtLw4fbCwCAaOJLEofSA2ifkyddRwAAgBvLl1tljbx5pcsvdx1NuipVpDx5pGPH0h+kAwBwNiNGjFBCQsKpV4UKFVyHdF7bt9v8FhOTnmwNNxddZAli3zN4AIh27CQOMaG6k7hMGemhh1xHAQBAcB0/Lv3wgx1nYUF4wE2dKt1yi1SzZnp8AABEk7x5pdtvt926efK4jiZdbKx0111S/vxSgQKuowEAhLKhQ4dqyJAhp75OTk4O+UTxbbdJhw5JuXO7jiR7cuWyFwDA8H+JIebOO6WWLe0FAADcmjfPboBLlrSqGqGiUCHrlZya6joSAADcqFFDCtWWjyNGuI4AABAO4uPjFR9GPY3KlpVee811FAAAf6LcdIi55hrpX/+SqlVzHcmZNm+WvvpKWrzYdSQAAATHTz/Z2KaNldQKFXXq2Lhtm5SU5DYWAIBbI0aMULNmzVSwYEGVLFlS3bt31+rVq12HBQAAEJJGjZI6dJAmTnQdCQC4F0KPOxHqXn9d6t5devNN15EAAFyKpofRCxbYGGoVPhISrBWEJCUmuo0FAODW7NmzNXDgQC1YsEDTpk3TiRMn1LFjRx0+fNh1aAHz66/S3LnSyZOuIzm7tDRp7Vpp+nTXkQAA4D+bN0sHD7qOIud+/93aNv36q+tIAMA9ksQhZPFiu4nct891JGdXu7aNPIwGgOgWTQ+j77hDeuABW2Ucany7iVetchsHAMCtKVOmqG/fvqpXr54aNWqkd955R5s2bdKSJUtchxYwL74oXXaZ9OijriM5u02brBx2167SiROuowEABMuhQ4e0bNkyLVu2TJL0559/atmyZdq0aZPbwPykd29rfRTuO3ArVbJx40a3cQBAKKAncQh58UXpo4+kZ56Rhg51Hc2ZSBIDACR7GH26d955RyVLltSSJUt02WWXOYoqMDp2tFcoqlNHmjGDeRkAkFHSf/sQFC1a9Kw/T0lJUUpKyqmvk5OTgxKXv6SlSZMn23GoztEVK0r580uHD9uOYt/CLgBAZFu8eLHatm176ushQ4ZIkvr06aN33nnHUVT+s26djb4ka7giSQwA6UgSh5Dly21s0MBtHOdSq5aNO3ZY/8OEBLfxAABCw4UeRkvh/0A6FLGTGADwv9LS0nTXXXepdevWql+//lnfM2LECD3xxBNBjsx/li6Vdu2SChaUWrd2Hc3ZxcRIdetKixZJK1eSJAaAaNGmTRt5vV7XYQTEoUM2/0pS1apuY8kpX5I4QjZ4A0COUG46RBw/nv6QN1STxIUKpfc/jNDWkwCALMrMw2jJHkgnJCScelWoUCGIUWbPt99KU6ZIoZrPvugiqVUrqVEj15EAAELFwIEDtWLFCn3yySfnfM/QoUOVlJR06rV58+YgRphzc+faePnlUlyc21jOx/dn0YoVbuMAAMAf/vzTxqJFpcKFnYaSY74k8ebNVqEEAKJZ2CSJR4wYoWbNmqlgwYIqWbKkunfvrtURlKlcvVo6edISsRUruo7m3Cg5DQA4XWYeRkvh+UD6kUekLl2kqVNdR3J2rVtLP/0kPfmk60gAAKFg0KBB+vbbbzVz5kyVL1/+nO+Lj49XoUKFMrzCyc8/23jJJW7juJB69WxcudJtHAAA+IOv1HS47yKWpLJlpdhY27S1Y4fraADArbBJEs+ePVsDBw7UggULNG3aNJ04cUIdO3bU4cOHXYfmF6eXmvZ43MZyPr6S0xGUnwcAZFNmH0ZL4fdA+tCh9Lm5ZUu3sQAAcD5er1eDBg3SxIkTNWPGDFWpUsV1SAG1cKGNLVq4jeNCfDuJSRIDACLB+vU2VqvmNg5/yJVLKl9eKl5c2rPHdTQA4FbY9CSeMmVKhq/feecdlSxZUkuWLNFll13mKCr/+e03G0O11LRP375SmzZSs2auIwEAuOL1enXHHXdo4sSJmjVrVkQ+jF60yMpOVagglSvnOprzO3bMVkCHeN4dABAgAwcO1EcffaSvvvpKBQsW1I7/bolJSEhQ3rx5HUfnX7t3p5e7bNrUbSwX4ttJvGaNlJIixce7jQcAgJyIpJ3Eks3Pody2AgCCJWySxP8rKSlJklS0aNFzviclJUUpKSmnvk4O1aaCSt+t1LCh2zgupEWL0F+xDQAIrGh4GD1/vo2hXsryvvukF16Qhg2THnvMdTQAABfGjBkjSWrTpk2G77/99tvq27dv8AMKoMKFpXnzrP1RqPdDLFfO5ufatSWv13U0AADkzBVXSKmpUgTs1ZJEghgAfMIySZyWlqa77rpLrVu3Vn1fDaezGDFihJ544okgRpZ9Tz8tde8utW3rOhIAAM4vGh5G+5LEoV5qunhx2/GcmOg6EgCAK94oykDmzm1zc6jPz5K1kXr8cddRAADgH9dcYy8AQGQJyyTxwIEDtWLFCv3444/nfd/QoUM1ZMiQU18nJyerQoUKgQ4vWxo3tlc4mDZNWrFC+sc/pNKlXUcDAAi2SH8Y7fVKCxbYcag/hK5Tx8ZVq9zGAQAAAABAuJgzR3rqKeux/PrrrqMBAHfCLkk8aNAgffvtt5ozZ47Kly9/3vfGx8crnsY/fnfvvdZDuWZNqVs319EAAOBf69ZJe/ZY+alQX8DlSxKvXm07imNi3MYDAECgeL3SkCFSo0bStddKefK4jujCkpJs4dmxY9Lf/uY6GgAAsufQIWn9eutHXKCA62j84+hR6YcfpP92zwKAqBU2jxK9Xq8GDRqkiRMnasaMGapSpYrrkPxmzhzpjTek3393HUnm1KplI6UtAQCRqEoVWwz1ySdSqK81q1LFktlHj0qbNrmOBgCAwPnjD2nUKOm226TYWNfRZM7ixVLnztJ997mOBACA7Fu0yBZpNWniOhL/qVTJxo0bbSEaAESrsEkSDxw4UB988IE++ugjFSxYUDt27NCOHTt09OhR16Hl2EcfSf/3f9L777uOJHNq17Zx9Wq3cQAAEAixsVKDBlKPHq4jubBcuaQaNeyYktMAgEj28882Xnyx9SYOB/Xr27h2rS3oAgAgHK1bZ2O1am7j8KeKFW08eFA6cMBpKADgVNgkiceMGaOkpCS1adNGZcqUOfX69NNPXYeWY8uX29iggds4MoudxAAAhA76EgMAosHChTY2b+42jqwoWVIqVsx2KHH/DAAIV+vX21i1qts4/ClfPqlECTveuNFtLADgUtgkib1e71lfffv2dR1ajni94ZckZicxACBSHT4s3Xij9NprUmqq62gyp2NHi9mXLHZh+nTrE3nsmLsYAACRzZckbtHCbRxZ4fFI9erZ8YoVbmMBACC7fDuJIylJLKXvJqZ1E4BoFjZJ4ki1caOVtcidO32HbqirWdPGXbukffvcxgIAgD8tWmTtH0aMCJ9+h/37S+++K3Xp4ub6hw9L7dtLL74ovfGGmxgAAJEtJUVatsyOw2knsZSeJF650m0cAABkl28ncSSVm5Yy9iUGgGhFktgx3y7i2rWluDi3sWRWwYJSuXJ2zG5iAEAkmT/fxksucRtHOBk3Lv34hx/cxQEAiFzLlkknTkjFi0tVqriOJmt8fYlJEgMAwlWk7iSuVMlKTp886ToSAHAnl+sAol24lZr2efttqUiR9BteAAAigS9J3LKl2ziy6sQJae1aqXJlKW/e4F332DHpuefs+KqrpI8/Dt61AQDRw1equXlzK+EcTig3DQAIZ/v320uKvCTxyJHSCy+4jgIA3CJJ7Nhvv9nYsKHbOLKqQwfXEQAA4F9er7RggR2HW5K4bl1LEs+eLV12WfCu+8470rZtUvny0uefh09VFABAeLn5ZluMlJTkOpKsu+gimy9ZYA0ACEcej/Tss9LOnVL+/K6j8a8YaqwCAEli1159Vfq//0vvgQAAANxYv17avdsSnRdf7DqarKle3ZLEiYnBSxKfOCH96192fP/9JIgBAIFVsqS9wk1CgtSnj+soAADInsKFpQcecB0FACBQWC/jWLFiUps24ddXae9eafRo6cknXUcCAIB/+EpNN24sxce7jSWr6tSxcdWq4F3T65WGDJGaNJFuucX+Nnj4Yal79+DFAAAAAABAdhw9atUya9WyYwCIRiSJkS2HD0uDB0tPP207iQAACHcbNlgprXArNS25SRLHxUl33CEtWmR9kOPirD/xV19Ja9YELw4AQGSbOVPq1MmqcIWrP/6w+CdMcB0JAABZs2yZtHx5ZCZR8+SxxeJr1kibN7uOBgDcIEns0IwZVp5x6lTXkWRd+fJSvnyWIP7zT9fRAACQc488Ih04IA0d6jqSrPMliRMTg39tj8fGggXTS11PmhT8OAAAkWnOHLtnXrDAdSTZN3OmNGiQNG6c60gAAMiae+6RGjaUxo93HYn/eTzpLSA3bnQbCwC4QpLYoe+/T99xE25iYqSaNe149Wq3sQAA4C+FCoVnv0NfknjjRqv2EUhpaVLv3tKHH0onT2b8WbduNn73XWBjAABEj59/trFFC7dx5ET9+jauXOk2DgAAsmrdOhurVXMbR6BUrGgjSWIA0YoksUO//WZjw4Zu48iu2rVtdLFrCQAApCtWTCpRwo4DvXjr22+lzz6TbrtNOngw48+6drVx9uwzfwYAQFZ5vdLChXbcvLnbWHKibl0bt2yxqiUAAISD48fTyzBXreo2lkBhJzGAaEeS2KHly21s0MBtHNlVq5aN7CQGAIS7UaOk1q2l9993HUn2DRwoPfGEJYwDxeuVhg9Pv16RIhl/XrOmrTA/cUKaPj1wcQAAosP69dLevdb3vlEj19FkX+HCUrlydvz7705DAQAg0zZtskpSefNKpUu7jiYwSBIDiHYkiR3Zt0/autWOfaWnwg07iQEAkWLmTGnePGnXLteRZN+wYdJjj6Xf5AbCDz9Y2c+8eaW77z7z5x5P+m5iSk4DAHLKV2q6cWMpPt5tLDlVr56NlJwGAIQLX6npqlXtXi8S+e6fN21yGwcAuJKtJPGTTz6pI0eOnPH9o0eP6sknn8xxUNHAt4u4cmXrfxiOfDuJSRIDgDvMyTnn9UoLFthxy5ZuYwl1vl3Et9567t7N3brZbuZw/fsGALKLOdn/IqHUtI9vcfiKFW7jAIBowJzsH+vX2xip/YglezZfooSUkOA6EgBwI1tJ4ieeeEKHDh064/tHjhzRE088keOgokG4l5qWrK/SvHnSmjWuIwGA6MWcnHN//mk7iHPnli6+2HU02ZeWZjfxs2YF5vxz51qv4bg46d57z/2+9u2lnTul558PTBwAEKqYk/3P67VFRy1auI4k59hJDADBw5zsH6fvJI5UrVrZ84CvvnIdCQC4kSs7H/J6vfKcpcbEr7/+qqJFi+Y4qGjg6+Mbzkni+Hh2XAGAa8zJOTd/vo2NG0t58riNJSc2b7YV3rlzS4cP2+hPvl3EfftK5cuf+32xsf69LgCEC+Zk/3vpJenFF6XUVNeR5FzXrtKPP6YniwEAgcOc7B89ekjFi0dGRQ8AwNllKUlcpEgReTweeTwe1axZM8Nkm5qaqkOHDun//u///B5kJHr5Zen++6Vc2UrTAwCiHXOy//iSxOG+8KlCBSlfPunIEdtR7GsL4S9DhkjHj0sPPJC593u90tq1Uo0a/o0DAEINc3JgxcTYK9yVLm0vl5KSpPHjpd69pYIF3cYCAIHAnOxfrVvbCwAQubKUohw1apS8Xq9uuukmPfHEE0o4rVh/XFycKleurJbh/oQ1SDwee5gb7n76Sfr8c9sRfdNNwbvu0aO22+ssiwIBICowJ/tPpPQjjomRateWli6VVq3yf5K4Y0d7ZUZysu2U2rbNSncVK+bfWAAglDAnB8bJkyyq9qfUVKlzZ/u75/ffpRdecB0RAPgfczKy4777pK+/tupZPXu6jgYAgitLt1x9+vSRJFWpUkWtW7dWLu7Yot6vv0qjRklXXRXcJPF119lDg9dei4xkOwBkFXOyf3i91l9py5bwTxJLUp066Uni7t3dxVGokFSkiP1ev//e5m0AiFTMyYFxyy1WnvnZZyPnge20adKkSVK7dtKVVwb32m+8kb4wbvRoaeTIyNihDQCnY072n0OHpJkzraVR3bquowmsXbukNWusEhYARJts3RIULFhQq1atOvX1V199pe7du+uhhx7S8ePH/RZcpJoxw3o6vPGG60hyzrdLyddjORi+/NJeU6ZIBw7YHy0AEK2Yk3PG45E++0zavj0yFh3Vrm1jYqL/znn77dJjj0n79mXtc9262fjdd/6LBQBCGXOyfy1YIK1bZ60UIsUPP9gi68mTg3/tm26yxLtkC67nzQt+DAAQLMzJObdihfTXv1oVikhXqZKNGze6jQMAXMhWknjAgAFas2aNJGn9+vXq3bu38uXLp/Hjx+v+++/3a4CRaN48S3L+9JPrSHLO9zB63TrrUxhoBw9KgwbZ8TXXSP/8p/U6TEsL/LUBIBQxJ/uHxxMZLQzq1LHxtOchOfLHH7ao7amnpE2bsvZZX5J4yhQrcQkAkY452X8OHEhfiNy8udNQ/Kp+fRtXrgz+tfPkkcaNk2680b7+7LPgxwAAwcKcnHPr1tlYtarbOIKBJDGAaJatJPGaNWt00UUXSZLGjx+vyy+/XB999JHeeecdTZgwwZ/xRaTffrOxYUO3cfhD2bJSgQL28Hf9+sBf75FHpK1b7Q+UN96wMiA7dkjLlwf+2gAQipiTc2bvXis5HSl8SeLERP/8u5591hZiXXml9N//mmXaJZdYyel9+6SFC3MeCwCEOuZk/1m0yMZq1aTixd3G4k/16tm4YkVw/v7weqUPP8y4WKtXLxs//5zF1gAiF3Nyzvme81ar5jaOYKhY0UaSxACiUbaSxF6vV2n/vZv44Ycf1LVrV0lShQoVtGfPHv9FF6F8Cc0GDdzG4Q8eT3rJaX+WtjybRYusd5Ikvf66lJAgtWljX3//fWCvDQChijk5+7xee1hbtmzg57BgqV5devhhacyYnO/e3bhReu89O3744ax/PlcuqVMnO6bkNIBowJzsP77FRZG0i1iyxVwejy1S27Ur8Nd76SXphhtssZcvKd2hg1SypNS0adZbSQBAuGBOzrlo3UkcSYvIASAzspUkbtq0qZ5++mm9//77mj17trr9t57gn3/+qVKlSvk1wEhz7Jj032onEZEkloLTl/jkSenWW22ivv56u7GV0h8+kyQGEK2Yk7NvwwZp5057UFu5suto/CMuTnr6aZsrc+XK2bmee87m33btbFdwdvz3WYwmTcpZLAAQDpiT/efnn21s0cJtHP6WN2/6jqxAl5xevFjyVVS96qr0thrx8dLmzdLXX0fWLm0AOB1zcs5F407iw4dZQAUg+mQrSTxq1CgtXbpUgwYN0sMPP6zq1atLkj7//HO1atXKrwFGmt9/t5JORYtKZcq4jsY/fH2JN2wI3DU2bZKSk+339sIL6d/3JYl//NEmcgCINszJ2Td/vo2NG1ufPqTbvl36z3/sODu7iH06d5buvlsaOdI/cQFAKGNO9g+vN30ncaQliaXg9CVOTpauvVY6cULq0UO67baMP4+LC9y1ASAUMCfnXDTtJM6Tx6qMNWlicygARJNs7TFp2LChlp+lCexzzz2n2NjYHAcVyXy/toYN01fyhrvbbpMGDJBKlAjcNapWtd/dypVWGsunRg0rCbJxozR7dvqOJQCIFszJ2edLErds6TYOf9u3z3YP5c4ttW2bvXO88IKUkiK1apXe2iE7SpTIuLgLACIZc7J/HDsmde8uLVki/bedZESpV0/68ktp7drAnN/rtfvzdetsZ9Sbb5772cP69VJsbHqZTQCIFMzJOXP0qLRtmx1Hw05iSVqxwnUEAOBGjgoRLlmyRKtWrZIk1a1bVxdffLFfgopk+/ZZialIKTUtBa9EVb58UrNmGb/n8dhu4rFjreQ0SWIA0Yo5OesWLLAxu6WUQ9W330p9+lhyN7tJ4gEDpAMHpJ49I2dRGwAEC3NyzuTNK73xhusoAueOO+x1+uJnf3rrLemTTyz5+/HHUpEiZ3/fsGHSk09KgwZJo0cHJhYAcI05OXs8HptDNm60qo4AgMiVrSTxrl271Lt3b82ePVuFCxeWJB04cEBt27bVJ598ohKB3FIa5u6+Wxo8WDpyxHUk4eHLL61f0u23203u2fToYSvcOnYMamgAEBKYk7Pn6FFp2TI7jrSdxHXq2JiYmP1zVK8ujRvnn3jS0qQZM6QpU6Thw60XIgBEIuZkZEYgW2EeOpTeh/jpp60iyLk0b27jhAnSSy9JMdlqRgYAoYk5OWfy5LG2BQCAyJet24A77rhDhw4d0sqVK7Vv3z7t27dPK1asUHJysgYPHuzvGCNObKxUsKDrKPzr3/+W/vpXK2/pLwcOWCnrwYNtp/C5dO4svfee1K2b/64NAOGCOTl7Fi+WTp6UypSxUoyRpHZtG3fssLk0K7xev4cjSfrnP6Xnn5fmzAnM+QEgFDAn+8eqVdLx466jCE8FCkizZtl9tC9ZfC4dOkgJCdL27dJPPwUlPAAIGtdz8quvvqrKlSsrT548atGihX7++eeAXxM58+WXUq1a0g03uI4EAIIrW0niKVOm6LXXXlMd31YVWcmOV199VZMnT/ZbcAgfM2dK33wj/fKL/845dKg94K5ZU7rpJv+dFwAiCXNy9pQoYdU9+vWLvHLKBQtK5crZ8X8rq2Xas89Kf/+7f/sxxcSkt4OYNMl/5wWAUMOcnHMnTkhNmthctnGj62gC56WXpKuukn780f/nbtBAeu21C+8Mjouz3s+S9Nln/o8DAFxyOSd/+umnGjJkiIYNG6alS5eqUaNG6tSpk3bt2hXQ6/rT7NnWxmjHDteRBE9MjLRmTc4qcgFAOMpWkjgtLU25c+c+4/u5c+dWWlpajoOKVHPm2A3bvfe6jsT/fLuW/DWRzpsnvf66Hb/xxoVLU6alWdnQiRP9c30ACBfMydlTu7b0wgtW/jgS+Z6FZCVJfOiQ7fYdP1769Vf/xuOr9vHdd/49LwCEEubknFuxwlpC5M0rVajgOprAmTvXHr77a2PZt99KCxZk/XO9etk4YYKUmuqfWAAgFLick1944QX1799f/fr1U926dfX6668rX758euuttwJ6XX967jlbzPTVV64jCZ5KlWzctMltHAAQbNlKEl9xxRW68847tW3btlPf27p1q+6++261a9fOb8FFml9+sZvedetcR+J/tWrZuHp1zs91/Lh066123K+f1KbNhT+zaJHUuLHtOD55MucxAEC4YE7G2WQnSTx2rLR3r1StmtS7t3/jad9eyp1b+uMPewFAJGJOzjlf0rR588jukVu/vo0rV+b8XOvXS9dfL116adbbOlByGkCkcjUnHz9+XEuWLFH79u1PfS8mJkbt27fX/Pnzz3h/SkqKkpOTM7xCwfr1Nlar5jaOYPK1odq9WzpyxG0soS411aqE/fOf0ssvu44GQE5l67brlVdeUXJysipXrqxq1aqpWrVqqlKlipKTkzV69Gh/xxgxli+3sUEDt3EEgj93Eo8caTfLxYvbyrXMaNpUKlzYei8uWpTzGAAgXDAnZ93evdKMGbZzNlJlNUl87Fj6nPvgg1KuXP6Np1Ahe3gtUXIaQORiTs65hQttbN7cbRyBVq+ejTlt73D8uPSPf0jJyfY7a9kya58/veT0hAk5iwUAQomrOXnPnj1KTU1VqVKlMny/VKlS2nGW2s0jRoxQQkLCqVeFECijkZaWniSuWtVtLMFUuLC1u5DYTXwuGzZIjz0mVa5s1cI++EC6807pzTddRwYgJ7L1CLBChQpaunSpfvjhByX+NytYp06dDKukcKbffrOxYUO3cQSCbyfxn39KKSkXLg99LgcOSCNG2PGLL0rFimXuc7Gxtkvp88+lqVOzfnMMAOGKOTnrpk6VrrvOHqb6HkZHmg4dpLffli66KHPvf/tt6zdVvrx0442BialbN0vOf/ed3UgCQKRhTs4537zcooXbOALNt5P499/tYXx2d00//LDtvi5cWProI6vakVV33GFzdNeu2YsBAEJRuMzJQ4cO1ZAhQ059nZyc7DxRvH27PduNjU3fXRsNPB4rOb1ihbRxY/qGKNju6htukKZNk7xe+17Rovb8fedO6a9/dRsfgJzJ0q3IjBkzVLduXSUnJ8vj8ahDhw664447dMcdd6hZs2aqV6+e5s6dG6hYw1paWnopqUjcSVy6tO0SSkuT1q7N/nkKF7b+THffbSWzsqJTJxu//z771weAcMGcnH2+Kl+R/AC6enWpb9/MJYlPnJCefdaOH3jAdhUFgu/h87p1tIYAEFmYk/0jOTm9Akak7ySuXt0SuocOZX+30uTJVoVLssVevl6KWdWkifUmzp8/e58HgFDiek4uXry4YmNjtXPnzgzf37lzp0qXLn3G++Pj41WoUKEML9d8bRIrVfJ/halQ50uKb9zoNo5QsH9/+nGxYtZi0uu1TVqffCJt2yZ98409xy9Rwl2cAHIuS0niUaNGqX///medsBISEjRgwAC98MILfgsukqxfb/0M8uSxG8JI4/HYbuICBWwnUk5cdJH0wgt2zqzo2NHGhQttRzIARDLm5OxbsMBGqk6Yjz6yB9SlSkk33xy469SqZa031q6NvocNACIbc7J/LF5sDx8rVbI5KZLlzp1ejSs7fYm3bUuv/DFoUHrJaACIdq7n5Li4ODVp0kTTp08/9b20tDRNnz5dLcPkBjQa+xH7NGxoi6eideHUkSPSu+9aq6jata2thWQVT95+2xYQTJsm9e5tVUQ9Hst1+PznP9Ls2W5iB5B9WUoS//rrr+rcufM5f96xY0ctWbIkx0FFIl+p6bp1rVxHJJo2zVZ/t2uX9c/u3Zveszm7Kla0CSwtTTrtbzEAiEihMCe/+uqrqly5svLkyaMWLVro559/Duj1/OHoUemXX+w4TO7Rs23pUmnMGBvP55prbCfSk09KefMGLh6Px8prZnURGACEulCYkyNB1apW2WLwYNeRBEf9+rbIes+erH923Dj73EUXSc89l/NYDh60vwPatZNSU3N+PgBwJRTm5CFDhmjcuHF69913tWrVKt122206fPiw+vXrF9Dr+otvJ3E09SP2GTHCFq1ltbpluFu6VLr9dqlMGatI9uOP9qx+0aL097Rte/7/TnzxhdS/v3TVVenPXACEhywliXfu3Knc52lykytXLu3evTvHQZ1POD6QlixxWbeudPHFriMJnISE7D/4ve8++928+mrOYvCVnP7hh5ydBwBCnes5+dNPP9WQIUM0bNgwLV26VI0aNVKnTp20a9eugF3TH5YssVLHpUtnvyxjuHjlFbvR++ab87+vQAHpnnukW28NTlySPYD29TICgHDnek6OFJUrW9uD01ozRrRx42yRdZ8+Wf/sY49JL78sffppxh082RUfL734ojRjhvTTTzk/HwC4Egpzcu/evTVy5Eg99thjuuiii7Rs2TJNmTJFpcKkTMaNN0offpi9+Qnh5ccf7Xl8kya2wDw5WapSRRo+3KqNtW6d+XN17SpdfrktPOvcWfrjj8DFDcC/spQkLleunFasWHHOn//2228qU6ZMjoM6l3B9IC1JPXtaGamxY11HEnpmzbKSFSdPZq534vkMGGAJ4lGj/BAYAIQw13PyCy+8oP79+6tfv36qW7euXn/9deXLl09vvfVWwK7pD6eXmo70Ha116tjo6+/4v7xeN4naAQOsjKivygoAhDvXczLCU4EC2f9bxOOR7rhDqlnTP7HExaWXrP7sM/+cEwBcCJU5edCgQdq4caNSUlK0cOFCtWjRIuDX9JcaNaTrrov8ylvnE6kLmr1eS+L6JCTYrt+4OOnaa+2Z+tq10kMPSWXLZu3cefJIX39tSeddu6QOHaStW/0bP4DAyFKSuGvXrnr00Ud17NixM3529OhRDRs2TFdeeaXfgvtf4fpA+nSR/EB6927p6qul5s0zP5mmpEj/9392PGBA1lYonU2dOlYiKz4+Z+cBgFDnck4+fvy4lixZovbt25/6XkxMjNq3b6/58+ef9TMpKSlKTk7O8HLBF1403PBeKEnsu4H7+uvgxSRZH8W9e6VJk4J7XQAIFNf3yZFgzx7pk0+kP/90HUno2rtXuvPOjA93/envf7dxwgRKTgMIX8zJyIl9+6RataRChWwzU6TYvdtaTNWpI912W/r3GzSQ3n/fkrkff2zP1GOylC3KqFAhafJkW2iwcaNV/Ny3L+fxAwgsj9eb+bUxO3fu1MUXX6zY2FgNGjRItWrVkiQlJibq1VdfVWpqqpYuXRqQ8hnHjx9Xvnz59Pnnn6u7b4mrpD59+ujAgQP66quvzvhMSkqKUlJSTn2dnJysChUqKCkpSYUKFfJ7jOeSlmZjTv5PNhykpEj58tm/d9s262NwIY8/Lj3xhJX9XLVKKlw40FECQM4lJycrISEh6PPJ6VzOydu2bVO5cuU0b948tTwt23r//fdr9uzZWrhw4Rmfefzxx/XEE0+c8f1g/w5/+02aO1e64or0JGqkWrvWbs7y5JEOHZJiY9N/5vVKLVpYj6EHH7TeS8Hy+ut2Y9q6tZW3AoCciPY52R9C4Xc4YYJV32rc2PriRYsbb7Teh998I1Wrdu73eb3SX/8qffut1K2bjf52/LhV+jhwwKp9XX65/68BILKFwnzCnJwzhw9btcdq1axkcCRvdjqbtDS7fz5xQtqwIbxbVKWl2c7gceOkr76yf5MkFStmSeFAbrDasMHu97dtky65xP6uYEMXEHyZnVNyZeWkpUqV0rx583Tbbbdp6NCh8uWXPR6POnXqpFdffTVgk+yePXuUmpp6xvlLlSqlxMTEs35mxIgRZ30gHWxLllhz98svl777znU0gRMfb30L1q2TVq++cJI4MTH9ofRLL/kvQbxunTR6tK1+Hj3aP+cEgFDjck7OjqFDh2rIaU0GfQu3gq1hQ3tFgypVbG4+dsxW8Vatmv6zadMsQZw3r3T33cGNq2tXG+fPt11RxYoF9/oA4G/hNieHIt/6subN3cYRbMuX22LpFSvOnyR++WVLDMfHS08/HZhY4uKkHj0sOTB+PEliAOGJOTln1q61dgbFi9vu02gTEyNVqCCtX2/30OGaJB47VnrmGfs3+DRrJvXvL/XuHfiEbeXK0tSp0mWX2eK2uLjAXg9AzmQpSSxJlSpV0qRJk7R//36tXbtWXq9XNWrUUJEiRQIRX46EygPp5cttJdZpm5ojVu3alqRNTJTatDn3+7xeKzN9/Lg9LO7Vy38xHDpkSed8+ayUBiuVAEQqV3Ny8eLFFRsbq507d2b4/s6dO1W6dOmzfiY+Pl7x/B9yUMXGWq9C3wPo05PEvgfMAwZIJUsGN66KFaX69e2B+NSp0j/+EdzrA0AguL5PfvXVV/Xcc89px44datSokUaPHq3mYZRx/flnG8OoZaNf1K8vLVsmrVwp/e1vZ3/PkiXSfffZ8fPPSxddFLh4evWyJPHnn9s99elVSAAgXLiek8PZunU2nn7vGG0qVbIk8aZNriPJPN8u4dy5bdy3zxLEhQtL//yndPPNUqNGwY2pXj3LD5QoEdzrAsi6bBdALlKkiJo1a6bmzZsHZZLN7gPpQoUKZXi5sHy5jQ0aOLl8UP23iotWrz7/+9LSpO7d7cH0q6/6t3xJw4ZWvvrIEemnn/x3XgAIVcGek+Pi4tSkSRNNnz791PfS0tI0ffr0DOWnQ80nn0j/+Y+0ZYvrSILHV1L79KIrc+ZYye24OOnee93E1a2bjZFcYQVAdAr2nCxJn376qYYMGaJhw4Zp6dKlatSokTp16qRdu3YF5fo5lZpqJZel6EsS16tn44oVZ/95crLt+Dlxwnb53n57YONp184ejnfoYNcGgHDmYk4Od+vX23i+6haRzrd7+PRduKFs4kTb/fz55+nf69dP+uADK/f88svBTxD7nJ4gPnTIcgCZb3wKIFjCpktuuD6QlqIrSVy7to3nqAB+SmysdNdd1qOgcmX/xuDxSB072vHUqf49NwDADBkyROPGjdO7776rVatW6bbbbtPhw4fVr18/16Gd04svWnmlOXNcRxI8999v/96bb07/3vDhNvbrJ5Ur5yYuX8npKVMsOQAAyL4XXnhB/fv3V79+/VS3bl29/vrrypcvn9566y3XoWXKypVWeatgwfRFx9Gifn0bV64882e+6lvr1lkVjjffDHxvyLg4SxC8/75EPgUAog87iW3OlcIjSZyWJt16q7RzpzRhQvr3S5WSrr/e2kuFgtRUqVMnadAgadgw19EA+F9ZLjft0pAhQ9SnTx81bdpUzZs316hRo0L+gbQk/fabjdHQAzEzO4lPnpRy/fe/eYGarDp2lN57T/r+e+nZZwNzDQCIZr1799bu3bv12GOPaceOHbrooos0ZcqUkO3vdOyY9Msvdhzia8v8qkmTjF8vW2YLqGJjpQcecBKSJKlVK+nSS+119KhUoIC7WAAgnB0/flxLlizR0KFDT30vJiZG7du31/z588/6mZSUFKWc1gsp2fGWUV+p6WbNoq+8sW8ncWJixvtkSdqxQ5oxw34nH38cvKRtTNhsJQAA+Bs7icNrJ/GSJdKePVKhQtKHH7qO5txiY63s9bx50lNPScWKSXfe6ToqAD5hlSQOtwfSkq3k2b3bVvzWres6msCrXVvKk8d6HqSmnnmTP22aNHCgNGaMlbIKlA4dbFy2zP4zCOH/igBA2Bo0aJAGDRrkOoxMWbLESjWWKuX/ChbhpFEj6euvraxllSru4siVK7p2dANAoOzZs0epqaln3BOXKlVKieco7zRixAg98cQTwQgvUxYutDHaSk1L9iA6Xz5rlbR2bXplLkkqU0b69Vdp9mxbXBVMXq8tds+fX6pePbjXBgC4w05iqWZN6eKLM87JoWrKFBvbt5fi493GciH/93/S3r3SI49YddFixaQbbnAdFQApjMpN+wwaNEgbN25USkqKFi5cqBYhfifpKzVdvbrd/EW6EiWsVNjSpWcmiI8elW67TfrjD3tAHUglS9qELlliGgAQ3XybqVq2DHypxlDz9tvSPffYCmOPR7rqKum0DWcAgCgzdOhQJSUlnXpt3rzZaTyPP2599K67zmkYTsTEWNWPRo3O3gO4VCnp738PflxDh0oXXWStOgAA0eHkyfTds9G8k/gvf7FF5i+95DqSC5s82cbOnd3GkVkPPWQJYknq21f67juX0QDwCbskcbjJm1f661+t7n408HjOXZ7qqadsRVr58tLTTwc+lo4d7VrHjgX+WgCA0LZggY2XXOI2Dheeflp64YX0ctuh5NAhWzi2e7frSAAgPBUvXlyxsbHauXNnhu/v3LlTpUuXPutn4uPjVahQoQwvl8qVk665Jr0/b7SZPdsqYDVvbl/fd5/0ySdOQ1KbNjZOmGAVwgAAkc/jsWpP778vlS3rOhpcyL596dVYwiVJ7PFIzz9vpadTU6WePaW5c11HBYAkcYC1bi199ZU0erTrSNxavlx67jk7fuUVqWDBwF9z2DBp0ybpllsCfy0AQOjyejPuJI42derY2LGjNHy4/T5CRefO0t/+FvgKIwAQqeLi4tSkSRNNnz791PfS0tI0ffp0tYzGSS8MnV7hZPx4aeRI21X9++/uYmrXznog79zJw1sAiBaxsXa/fMMN9KeX7L45lBdK/fCDlJYm1asnVajgOprMi4mR3nzTKpwVKiQVKOA6IgD8Xz787quvrFyWLzmbliYNGGBlS3r0sIfBwZAnT/SVFAUAnGn7dmnbNuuD27Sp62iC7/ReSgsXhtbc2KGDjZMmuY0DAMLZkCFDNG7cOL377rtatWqVbrvtNh0+fFj9+vVzHdoFTZxoFS+WLXMdiXvr1qXfQz/4oFS3rrtYcue2e3fJEtcAAEST3r2tbeSXX7qO5NxatbKS2Hff7TqSrMudW/r0U6v41rix62gAkCQOoNRUaevW0NqxEwxer/Tbb+k3+m+8YTu4ChaUXn45+PGkpkq7dgX/ugCA0FC2rLR3rzRzpt3oRZsqVdKPH37YXRxn062bjdOmScePu40FAMJV7969NXLkSD322GO66KKLtGzZMk2ZMkWlSpVyHdoFffih9OijNg9EqwMHrNR29erWl7hVK+nJJ11HJfXqZSMlpwEgOnz3nfTqq24rWYSSY8fSezSHovLlpcGDpZtvdh1J9uTNm/FZxYIFtsAfQPCRJA4gX//dihWjK1Hs27G0erX9u33lqYYPt99HME2ZIpUsKV17bXCvCwAILUWLSn/5i+so3Oja1W7AevWSWrRwHU1GF18slSolHTwo/fij62gAIHwNGjRIGzduVEpKihYuXKgWofZ/+Ofg66Xn68cbjRISpJUr07/++GOrfuIaJacBILq88440aJA0darrSNyrVMnGTZvcxhEtpk+XrrhC6tRJ2r/fdTRA9CFJHEC//WZjmTKhVdox0KpWtT4Whw5Zec8PP7Qykrff7iaWffvswfPhw8G/PgAArlWpYnPhxx+7juRMMTFSly52/N13bmMBAATXtm3Sli02FzRp4joadzwea8kUEyN98YUtMg8Fp5ec/uort7EAAAJv/Xobq1Z1G0co8CWJQ3Un8VdfSf/5T+TsvK1aVSpcWFq+XLrySunIEdcRAdGFJHEALV9uY4MGbuMItri49D8oEhPtprdLF0scB1uNGlLlytKJE9KsWcG/PgDArWPHpPbtpaFDpZQU19G4kyePm3k4M7p2tZG+xAAQXX7+2cb69aUCBdzG4tpHH1klMl9SNlTceaf0/ffSv//tOhIAQCB5vTYPSVK1am5jCQWhniR+8UWpf39bXBYJqlSxHeyFC0vz5kk9e9KOCggmksQBFK1JYim9rPS8eW7j8Hikjh3t+Pvv3cYCAAi+pUutdNGbb9oiJoSejh2trGZiorRhg+toAADBQqnpdPny2eLmUNOwoc3TuXO7jgQAEEj790tJSXZ8ep/YaBXK5aaTk6WffrJjX1WuSFC/vi0cz5dPmjxZ6ttXSktzHRUQHUgSB5Cv3HTDhm7jcKFmTRsfe8x9P+ZOnWykpwYARJ/5821s2TK6Wj+Ek4QEa02xZk1oPiAHAASGbydxmLRPBgAgYvl2EZcpY0m6aOdLEu/dG3rtC2fMkE6etOqZkVYavGVLacIEW0T+8cdW0cR1XgGIBiSJA+Tw4fReDtG4k/j++6Xeve3G3/VD+SuusBKbq1eHbpkQAEBgLFhgY8uWbuPA+f3973aTCwCIDl6v9PvvdkySOLQlJUn33Wc7vk+edB0NACAQfM+wKTVtChWSLrvM2kCEWpJ4yhQbO3d2G0egdO4svfee5RO2bOFvDyAYcrkOIFKtXGk3vqVKSSVKuI4m+KpWlT75xHUUpnBhe/Awb56VnL71VtcRAQCC5fSdxAAAIDR4PFbCceVKqW5d19HgfPLlk956S9q3T5ozxxZhAwAiiy9JHGk7U3Ni9mzXEZzJ67VSzFLkJokl6R//sJzKZZfZrmIAgcVO4gApUkS65x6pXz/XkUCSbrlFeuQRqXVr15EAAIJl82Zp61arJtG0qetocCETJkjXXEN7CACIFrlzSxddZPM0Qlfu3LaTSpLGj3cby//at891BAAQGQYMkH780Z5lI3QlJtoiu/h4qU0b19EE1hVXpCeIvV5p6VK38QCRjCRxgNSoIY0cKY0Y4ToSSJasf+opqV4915EAAILFt4u4USMpf363seDCZsyQvvhCmjjRdSQAAOB0f/+7jRMmhE7Zx40bperVpQcekE6ccB0NAIS3okVtY03Dhq4jCS1er3T0qOso0v3yixQTI11+efT0jj55Urr5ZqsS6ttFDcC/SBIDAICIdOCA3exSajo8dOtm43ff2c04ACBy9e4t3XST9OefriNBZrRta39T7d5tJaddS02V/vlPaf9+W1z2/PPSoEGuowIARJL//McSsbfc4jqSdNddZ3Px6NGuIwmemBjp2DFLFl9zjbWTBOBfJIkDwOu1Eh3797uOBKc7eFD66it7+AwAiHy33irt2SP961+uI0FmtGkj5cljZcJXrHAdDQAgUI4csR2pb79tpYwR+nLnlq6+2o4/+8xtLJL07LPS3LlSgQLS2LHS0KHSa69JO3e6jgwAwk9KinTvvdKYMaFTLSIUJCRYcnLjRteRZFS0qFSzpusogicmRnrnHalLF9vV3a2btHy566iAyEKSOAB27JAuvVQqXtwmE4SGTz+VuneXnn7adSQAgGDxeCg1HS7y5bO+Q5I0aZLbWAAAgbN0qe0ELVNGKlfOdTTIrF69bPziC7dJhIULpWHD7PjVV22RWZMmtlj/66/dxQUA4WrjRqvIcN99Umys62hCR8WKNoZKkjiaq23FxUmffy61amUV4zp2lNavdx0VEDlIEgeAbzVLjRq2IwahoWNHG3/+OXR2eScl2S43AIB/paa6jgDZcXrJaQBAZPr5ZxtbtLDFXAgPbdtK9epJPXtKhw65ieHgQen66+3vvN69reS0JPXoYePEiW7iAoBwtm6djVWrMi+frlIlG7dtk06ccBuLJA0ZIv3lL9HblzdfPunbb6UGDWyDXocONgLIOZLEAfDbbzY2bOg2DmRUsaJUu7aUliZNn+46GksQN2ok1aol7dvnOhoAiCwvvWQ3dc895zoSZEXXrjbOmxc6C7oAAP61cKGNLVq4jQNZkzu3LYh/7TWpcGE3MQwebMmMihWl119PT2b4SmFPny4lJ7uJDQDClW9HZrVqbuMINSVLSvHx9hx561bX0ViC9KefpOPHXUfiTpEi0vffS1WqSBs2sLgc8BeSxAHg20ncoIHbOHCmTp1snDrVbRySlcjauNESxFOmuI4GACLLggXSpk30VAo3lSvb308tWrAqGAAilS9J3Ly52ziQda53mLVtaz0iP/ggY6K6Th1bfH38OC0rACCrTt9JjHQxMaFTcnrtWnvlypXeoilalSlju6lXrpRuvtl1NEBkIEkcACSJQ5cvSfz99257Ofz6qzR6dPrXrHwCAP+aP9/Gli3dxoGsW7zYVkjXqeM6EgCAv+3caQ9aPR6paVPX0SA70tKkuXOlVauCf+0bb7T//lx66Zk/o+Q0AGQPO4nPzVdy2nWS2Le56C9/kQoWdBtLKKhVy6qFAvAPksR+dvKk9PvvdkySOPRcdpk1u9+0SVqzxk0MXq80cKDdXNepI5UoYS8AgH9s2WKv2FipWTPX0SCr4uJcRwAACJTt2+2hXr16UqFCrqNBdtx7r91XjxoVnOulpmZsQZGQcPb39egh5cnD3xEAkFXsJD63yy6TuneXSpVyG4cvSdy5s9s4QtHvv0u//OI6CiC8kST2sz/+kFJSpPz5rT4+Qkv+/OmrjufOdRPD4cNShQoWy5QpVk4zWDfYABANFiywsWFD+/9ahKf9+6U9e1xHAQDwp4sush2oS5a4jgTZ1aWLjV98EZy2Hv/6ly3Anznz/O9r1sz+bnj//cDHBACRwutN30lMkvhMjz5qFSp8lSldOHZMmjHDjn1zMMyHH9rfCP/3f24rhgLhjiSxnxUvLr32mk0iMfx2Q9Jzz1ky/5Zb3Fy/QAHp44+l1auttwX/PQEA/6LUdPgbNsyqbLz8sutIAACBwG7P8NW2rVSsmCVkZ80K7LV+/tn+Jti69cKlPj0eFgcCQHb88YdtpGGzU2iaO1c6etR68VK1NKP27aW8ee3vhS++cB0NEL5IT/lZiRLSbbdJDzzgOhKcS+PGUvXqrqOQypVLP/Z6pZUr3cUCAJHElyS+5BK3cSD7qlSx8pKTJrmOBADgL15vcHaeIrBy5ZKuvtqOx48P3HUOHZKuv97+O/P3v0t9+mT+s+vW8d81AMgMj0cqW9Z63ebO7Tqa0OT1Svv2ubt+gQLWUqFXL/vPC+lKlZKGDLHjhx9m7geyiyQxECTLlknXXmt9Mk937JjtKK5fX9q82UloABBRWrWSmjSxEeHJV0ZryRLrXwkACH9r1lg/2S5dKAkY7nr1sjGQJacHD5bWrrVWTa+/nvkH41dcYYvCf/opMHEBAKLHli1WpaJcOXd/u7RsafPtSy+5uX6ou/deq+y6erX09tuuowHCE0liP/v4Y2nRIunECdeR4HxmzrTVz8OHB+d6aWnS7bdLn35qK5tOlyePJYkldkwBgD+MHCktXixVq+Y6EmRXqVJS06Z2PGWK21gAAP6xcKF05IjtEGUnTHgLdMnp8ePtQa/HI33wgVSkSOY/67u3puwkAFzY+PFWDXP2bNeRhKaSJW1zz7Fj0q5drqPB2RQqlP6s/fHH7W9NAFlDktiPDh6UrrtOat5cSk52HQ3OZ9s2aeJE6fPPg3O9d9+18qf580vPPHPmz7t1s/G774ITDwAAoY65EQAiy8KFNjZv7jYO5NzpJaf9vZhr82bp1lvteOhQ6bLLsvb5Hj1s/PJLdqwDwIV88430739L8+a5jiQ0xcVZOW5J2rgx+NdfudJaKOD8brtNqlTJnvePHu06GiD8kCT2oxUrbCxb1lbVInR16GDjsmXSzp2Bvdb+/dL999vx449n7EXs43sQPn26rU4DAGTP6tXS0aOuo4A/+ObGqVOl48fdxgIAyLmff7axRQu3ccA/7r7bkgr//rd/z1uwoNS5sy0mePzxrH++Y0cpXz5p0yZp6VL/xgYAkWb9ehurVnUbRyirVMlGF0niRx+1FgqjRgX/2uEkPl568kmrPFKokOtogPBDktiPfvvNxgYN3MaBCytZUmrc2I6nTQvstR55xMpw1a0r3Xnn2d/TsKFUvryVxAhEuS4AiBYdOthNwaJFriNBTjVpYvP1wYP0FQSAcHfsmPTrr3ZMkjgy1KljfRJj/PxUqXBh6aOPpB9+kHLnzvrn8+a1vteSVQ8DAJybb5cqrZrOzVWS+PhxmwslqXXr4F47HF1/vS16uO0215EA4YcksR8tX25jw4Zu40DmdOpk4/ffB+4aS5ZIY8bY8auvnvsm1+ORuna1Y8pqAkD2bN1qJQrT0uzBJcJbTIwttHrjDal+fdfRAABy4pdfpBMnbPGPr2csIoc/yjrv3p1+Ho/HdhRnl6/kNH2JAeDcjhyRduywY5LE5+b7uyXYSeL5823BdPHitoAa5xcbawvNAGQdSWI/8iWJ2UkcHnxJ4qlTLaEQCM88Yze6110ntWlz/vee3nuR3kkAkHXz59vYoIFUoIDbWOAfd9xhfQlLlHAdCQAgJ04vNe3xuI0F/rN/v83TdetKJ09m/zyHDtkuqWuukfbty3lc3bpZ3+RVq6wVCQAEy/Dhw9WqVSvly5dPhUM8Y+UrNV24sJXpxdn5dhJv2hTc606ZYmOnTv6v2hHJvF7p66/tmTyAzMnlOoBI4fWSJA43rVpJ+fNLu3ZZqfCLLvL/Nd5913az3X77hd/brp10773pO4oBAFmzYIGNLVu6jQMAAGRUsaIl7jp0cB0J/KlgQSvpvGePNHNm9v/zvfNO6Y8/pKNH/bOIoHBhafhwqUYNdq4DCK7jx4+rV69eatmypd58803X4ZyXL0nMLuLza9hQ6t49+CWffUliXwsFZM6vv0p/+5sl1q++Wqpd23VEQOgjSewnW7faKtrYWEpchou4OLuJ3b3bSqwEQoEC0tNPZ+69+fNLzz0XmDgAIBr4dhKTJI4smzZJX30lVa4sXXWV62gAANnRo0d6CWBEjly57AHs2LHS+PHZSxJ//rn01luWHP7gA//tZrv/fv+cBwCy4oknnpAkvfPOO24DyQRfkrhqVbdxhLrWrYOfIN6+XVq2zObGjh2De+1wd9FF0l//aruJH35YmjDBdURA6KNYgZ8UKyZNm2Y3R/HxrqNBZk2YIP34o+0q9qcffwxcCWsAwJmOH7c+8BJJ4kjzySfS4MHSmDGuIwEAAP/r73+38YsvrO90VmzebOWqJenBB6XLL/dvbAAQ6lJSUpScnJzhFSyDB0tbtkj//nfQLolM+v57G5s0ofVSdjzzjO0k/uILaeFC19EAoY8ksZ/kzSu1by/ddJPrSJAVgejpsGiRdNlltsrs2LGsfdbrtT8EBg+WDhzwf2wAEKl++UVKSZGKF5eqV3cdDfypWzcbZ84MXOUPAEDg7NhhlbcQmS6/3P7+2rtXmjUr859LTZVuvNEqsjVtKv13851fJSZKw4ZJn33m/3MDgD+MGDFCCQkJp14VKlQI2rVjYqRy5axiE87P67V2hcG6H73mGunLL6XHHgvO9SJNvXr2N4Zki9C8XrfxAKEuLJLEGzZs0M0336wqVaoob968qlatmoYNG6bjx4+7Dg0RYv9+K+WRU6mp1n/Y67X+R3nyZO3zHo90993S6NHS1Kk5jwcAokWFCtILL1hvd3/0skPoqFvX+gkeO2aJYgBAeBkzRipf3hbCIvLkymUPs6WsJWNHjrSkcv780kcfSblz+z+2b7+VnnxSeuMN/58bQPR48MEH5fF4zvtKTEzM1rmHDh2qpKSkU6/Nmzf7OXr4Q8uWUqlS0owZwblewYLWV5d2S9n3xBNW7XXWrPSd2QDOLiySxImJiUpLS9Mbb7yhlStX6sUXX9Trr7+uhx56yHVop4waZTc2SUmuI0FWjRhhK5+ffTbn5/rPf6TFi6VChbLfX9i3Y+q773IeDwBEi7JlbZHNAw+4jgT+5vGkz40jR1rfwmw+gwEAOPDzzzbWru02DgROr142TpyY+ZLTrVrZIrCXX7YF1oHg64M9e7btdAaA7Ljnnnu0atWq876qZrOxb3x8vAoVKpThFQxpadK119ouy8OHg3LJsFa6tI2bNrmNA5lXsaI0cKAdP/ggbSGB88nlOoDM6Ny5szp37nzq66pVq2r16tUaM2aMRo4c6TAyc+KEdP/9Nm7YICUkuI4IWVGrlk0UOV1VtGePNHSoHT/9tK0wy45u3ewh+OTJFlcgSmIDABBOrrrKdqLNmmWvZ59NTzYkJlo/w8qVM76qVLGda4HYmQQAyByvNz1J3Ly521gQOJdfLl1yidSmjXT0aObm3ksvlVautJ3EgVKtmtSggbR8ue0q7tMncNcCELlKlCihEhHWGHbrVunTT60axPDhrqMJfZUq2bhxY+Cv9Z//2HWuu06qUyfw14tkDz1kPYkfeICKc8D5hEWS+GySkpJUtGjR874nJSVFKSkpp75OTk4OSCyrV1uCuFAhW6WC8NKunRQba/85btyYPvFn1dChVra6USPpttuyH0/r1rbQYPdu62/cokX2zwUA0WDPHqu+0KpV4HaiwK3Ona1U5NKltiCvYcP0n/3xhzR3rr3+V0yM9NJL0qBB9vWOHbYIy5dIJokMAIG1bp20b5+V+zv9/7sRWXLlkubPz9x7d+5MX1BdoEDgYvK5+mpLEk+cSJIYQOBt2rRJ+/bt06ZNm5Samqply5ZJkqpXr64Cwfg/vUxat87GypXtmSjOz/e8PxhJ4nHjbIFd1aokiXOqWDHpxx9dRwGEvrDco7h27VqNHj1aAwYMOO/7RowYoYSEhFOvChUqBCSe5cttrF+fVSnhKCHBVj1L2e8DvGCBrfSSpFdftZvk7MqdW+rY0Y4pOQ0AFzZ7ttS3r9Szp+tIECgej+0Wfv11acoUqUuX9J81bSp9/LG1jxgwQOrUyaqExMdbRY7ixdPfu2iRdNNN0hVX2E13njy2OOzyy+3B8fvvB//fBgCRbOFCGy++WIqLcxsL3JswwebfceOCd01fyenvv6ekKoDAe+yxx9S4cWMNGzZMhw4dUuPGjdW4cWMtXrzYdWgZrF9vY7VqbuMIF8HaSezbMCTZfS38i5LTwNk5TRI/+OCD8ng8530l/k/Tua1bt6pz587q1auX+vfvf97zDx06VElJSademzdvDsi/47ffbGzQICCnRxD4krLZLTkdH28PPvr2tZ3AOUVfYgChasOGDbr55ptVpUoV5c2bV9WqVdOwYcN0/PhxZzEtWGBjy5bOQoBDZcqk99PyJZETE6UjR6Tt29PnVMlKWnbsKNWsmZ5E3rRJmjNHeu89FvsBgL/5ksSUmo4OKSlW1tn3jOR0W7ZI/fvb/OxLTgRDw4bWguLYsZy3mAKAC3nnnXfk9XrPeLVp08Z1aBn4dhJns5Vy1AlWknjaNGvV0aiRVLZsYK8VTY4fl557TqpXTzp0yHU0QOhxWm76nnvuUd++fc/7nqqnzVbbtm1T27Zt1apVK40dO/aC54+Pj1d8fHxOw7wg305iymeFr06dpGHDpB9+kE6ezPpO4MaNrRTI0aP+iadLF3tQvXevrXYOZJ8mAMiKxMREpaWl6Y033lD16tW1YsUK9e/fX4cPH9bIkSOdxOQrb0iSGKeLiZFKl874vSuusJdkCeKdO6189YYN9vD62mvT3/vWW9aK4t57pQhrQQYAQePrR0wLnehw333S6NHSLbdk3C2clibdeKO1Z2raVHriieDF5PHYbuK33rIdWgAAdhJnlS9JvH27LYgKVLphyhQbO3cOzPmjlccjjR0rrV0rvfCC9NhjriMCQovH6/V6XQeRGVu3blXbtm3VpEkTffDBB4rNRsOE5ORkJSQkKCkpSYUKFfJbbJUqpe9CufRSv50WQZSaag+A9++X5s0LjUTD2rX2xxq7moDQE6j5JFw999xzGjNmjNafZ1tISkqKUlJSTn2dnJysChUq5Ph3ePy4VKiQ3aitXm07RIGcSkmxOXjrVluoNWiQJYtPL10NIDQwJ+dcIH+H48dbL7h77knv54fINWOG1K6dVLSotGOHtVKSpH//W3rgASlfPmnZMqlGjeDGlZRk1/bFAyAwmJNzLli/w+bNrazxF1+kl+XHuXm9Uu/etrv3ySftGYS/paVZlaxdu6SZM6UQ23we9j791BaFFyhgiyRYCI5okNk5JSx6Em/dulVt2rRRxYoVNXLkSO3evVs7duzQjh07XIempCRLEEvWkxjhKTZWevRRW1WUlRvW22+31Uf+2kF8uurVSRADCA9JSUkqWrToed8zYsQIJSQknHpVqFDBL9f+9VdL6BUrFvwHjohccXFWurpJE6vo8a9/SZUrS0OHSnv2uI7uTCdPWmmyfv2kDh2kAHVYAYAs69VLeuklEsTR4rLL7KHrvn32gFuSliyRHn7Yjl9+2c3fawkJJIgB4HRbtthIuenM8Xikzz6TRo0KTIJYkn75xRLEBQpIrVoF5hrRrFcvaxV56JA0fLjraIDQEhZJ4mnTpmnt2rWaPn26ypcvrzJlypx6uVawoK0+mTRJKlLEdTTIibvvth5Jmd0lNG+eNGaM9NRTZ++55C8nT9pOZwAIRWvXrtXo0aM1YMCA875v6NChSkpKOvXa7Kcslq/U9CWXsLAG/uPxSFdeaavrv/7abiYPH5aefdaSxe+/7zpCW82+YIE0eLBUrpz1Wn7nHWudMXCg6+gAANEoVy7pmmvs+LPPbO687jq7p73mGummm9zG5/VK27a5jQEAQsHmzbbpqW5d15HAZ9Mmq8TRvr0tWoZ/xcTY/bxkz/M3bHAaDhBSwiJJ3LdvX3m93rO+XIuJkapUsR6yiB4nT9ouYkm6+ebA9di66y6pZMn0VdgAECgPPvigPB7PeV+JiYkZPrN161Z17txZvXr1Uv/+/c97/vj4eBUqVCjDyx9OTxID/ubxSFddJS1enDFZXLu268ikt9+29hijR9uK82LF7OF77tz2kD4QVU4AICsmTbKWTEeOuI4EwdSrl40TJ9rzkt69bSf52LFuF/StXm075po2tZKeABDNYmOlChWospAVXq/1tt++PTDn79HD7uvGjQvM+WFVt9q1s7Zl9CUG0oVFkhgIlnXrrATWjz+e/31jxliJ0yJFpBEjAhfPwYPWJ/m77wJ3DQCQpHvuuUerVq0676vqabWotm3bprZt26pVq1YaO3ass7hfekn66it7AAkEyunJ4p9+kpo1S//ZQw/Za+/ewF1/40YreT1xYvr3rrzSymfecIP9nbB9u/Tmm9KKFdZbLG/ewMUDAJlx993S5ZdbohjR47LLbKHzvn32n/2TT0q//267o1yqUsVi2r5dWrjQbSwAgPDz7LM2v/laKARCbGzmK1wie3y7iT/+mOoigA9J4hx69FErN0zvt8jwyivSnXdK77577vfs3Ck98ogdP/NMYBvdd+tmI0liAIFWokQJ1a5d+7yvuP/WPNq6davatGmjJk2a6O2331ZMjLs/J0qWlP76V/oRIzg8noz9oXbskF54wRaMVa5sDwz8lSzevdsWpV16qZ37wQdtUYRPyZK20vz996WuXdN3AdSs6Z/rA0BO7N8vrVljx82bu40FwZUrl3T11XbsWyCQP7+7eHzi4myBlWSLqQAgWn3wgS2y/vRT15GEl/Llbdy40f/nPnLEdioj8Jo2lZ5/3jZ/lS3rOhogNJAkzgGv13adPvaY3QQj/HXsaOPUqeeenO+/X0pOlpo0sR7GgdShgz30/eMPewGAa74EccWKFTVy5Ejt3r1bO3bs0I4dO1yHBgRdqVL2cOWii6RDh2zxWE6TxR9/bEnfMmWstcWPP1pyuk0b2zV8+t8n5+tVtXOn1KeP7d4CgGD7+Wcbq1d3v4MUwXfvvVbZYvhw15Fk1KOHjRMn8jAeQPSaO9f6xq9c6TqS8FKpko2BSBIPHmzn/+wz/58bZxoyhH7cwOlIEufApk2WLMyVKzR60yHnLr9cio+3/2xXrz7z59u3S59/bg9rX3vNyoAEUsGCVq5LYjcxgNAwbdo0rV27VtOnT1f58uVVpkyZUy8g2ng80t/+Ji1dKn35ZcZkcZUq0uTJFz7HyZMZv373XftcaqotSHv+eatYM3OmdMstme/nOGSI9N57lmjmQTiAYPMliVu0cBsH3KhWTapXz3UUZ+rc2e73162zJDYARKP16208rZsUMsGXJN682b+97b1eacoUO2/hwv47LzJn3TrulwGSxDmwfLmNtWuffycHwke+fFbWUZK+//7Mn5cpYyvtxowJXtk0X8npb78NzvUA4Hz69u0rr9d71hcQrU5PFk+cKDVqZMnfiy8++/tTU6UZM6wiSalS0pYt6T8bOFB6/HFbrLZ4sSV7y5XLekzDh1tf4tmzpQ8/zNY/CwCyzdfzlSQxQkmBAlKnTnY8caLbWADAlXXrbKxWzW0c4aZsWSkmRjp+3Ko2+cuKFdLWrXbv5tsohOC4805r1/T1164jAdwiSZwDviRxgwZu44B/nV5y+mwqV5YGDAhaOKeSxHPmSAcPBu+6AAAgazweqXt3SxYvWmQJYJ+ePaWHHrKkb4UKUrt20n/+I+3bl/FB9VVXScOG5by3cOXK1hJFku65h9YoQCTasGGDbr75ZlWpUkV58+ZVtWrVNGzYMB0/ftxpXF5vepKYfsQINb6S0/QlBhCNTpyw6okSSeKsyp07ffGuP0tOT5liY9u2Up48/jsvLqxAAdsV/tBDtpAbiFYkiXPgt99sbNjQbRzwL9/K4lmzpJQUO96+3Xp2uFCzpt3IPvigrVYDAAChLSYmY5nNxYulCROkESOkF1+0vyuKFJFuvdX+3hg4MDBxDBliFW927ZIeeSQw1wDgTmJiotLS0vTGG29o5cqVevHFF/X666/roYcechrXhg3Snj1Wbeuii5yGApzhqqusFcPIkZSXBBB9Nm+2ZFiePFLp0q6jCT+B6EvsSxJ37uy/cyJz7r9fKlpU+v13a9UERKtcrgMIZ+wkjkwNGtgfSnv3WsmPJk2k++6zUo3Dh9vqomBjlTMAAOHr4ottLn/jDUsOX3edLUoLdLuSuDjptdekK66wVhl9+0rNmgX2mgCCp3Pnzup82hPFqlWravXq1RozZoxGjhzpLK5y5aQFC6znYXy8szCAsypWTHr1VddRAIAbvlLTVavawlZkzTXX2L2dv/o5HzqUvimJJHHwJSTYc/5777VqXv/4B7u5EZ1IEmfTyZO2QloiSRxpPB5p8mSpenUrO+Hr5efxpJeiBgAAyKyYGKsK4itxGUxt20o33CB98IH0xBPSt98GPwYAwZOUlKSiRYue9z0pKSlK8ZVMkpScnOzXGOLirBcx/YgBAAgtu3db2WR/JTmjzV13+fd8M2ZYCfBq1aQaNfx7bmTOwIHSSy/ZLvtXX7VWTUC0Yc1QNuXKZb3dVq60vnKILBddZAniEyfSS0AOGCA1beoupoMHrWehb9UfAABAZowcaaujP/zQdSQAAmnt2rUaPXq0BgwYcN73jRgxQgkJCadeFbihRRSaO1e6+25p507XkQBA8Fx3nXT0qC0ghXtVq1ri+eabXUcSvfLkscXUkvTMM1JSktt4ABdIEudA7txS3bq2wxSRafRoWwhQvLiVmnapXz/p6qt5wAsAALKmVCnpueesnBaA0Pfggw/K4/Gc95WYmJjhM1u3blXnzp3Vq1cv9e/f/7znHzp0qJKSkk69Nm/e7LfYfYts337bjoFQdc890qhR0ldfuY4EAIIrNpb7guzyem039sqV/jlf/frSiy9KQ4f653zInhtvtBxPWpr066+uowGCj3LTwDk89pj01FN2/K9/WSN7lzp3liZMkL77zmIDAADIKq9X+vFH6dJLXUcC4Fzuuece9e3b97zvqXpancht27apbdu2atWqlcaOHXvB88fHxys+QM2Cf/vNeqEXKWJ90IFQ1aOHtGiRVeu69VbX0QAAwkFioiUTCxVix2kkiY2VPv1UKlfO/oYFog1J4my6804rN33PPVKjRq6jQSB4vTZWrBgaDzi6drVx0SJp1y6pZEm38QAAgPBy8qTUqZP1vpoxw/oVAwg9JUqUUIkSJTL13q1bt6pt27Zq0qSJ3n77bcXEuC0W9vPPNjZvTsUthLYePaSHHpKmT7cH/eyqAxDpvF7piiuk0qWlV16RihVzHVH4qVjRxuRk6cABqXDh7J9r7lzp+HHpL3+RArR2D1lQv77rCAB3KDedTV98Ib3/vnTokOtIECj33y/9+9/SggWS42ctkqSyZaXGje2PusmTXUcDAADCTa5cUu3adnz77fZQAkD42rp1q9q0aaOKFStq5MiR2r17t3bs2KEdO3Y4i2nhQhubN3cWApAptWvb68QJq9YFAJFu715p1izpk0+k/PldRxOe8ue3loSStGlTzs71zDNS+/aWsEfo8Hqlb7+V1q51HQkQPCGQ+go/+/dLW7bYMatMIlfBgtJ990llyriOJF23bjZyEwsAALJj+HCrRpKYKD3/vOtoAOTEtGnTtHbtWk2fPl3ly5dXmTJlTr1c8e0kbtHCWQhApvXoYePEiW7jAIBgWLfOxnLlpDx53MYSzipVsnHjxuyf4+hRS9hL1l4QoeOhh6SrrrIRiBYkibNh+XIbK1WiJBGCy5ck/v57W/EMAACQFYULpyeHn3pK2rDBZTQAcqJv377yer1nfbmQlGQLUCR2EiM8+JLEkyfbA3sAiGTr19tYrZrbOMKdP5LEs2dLx45JFSpYj2OEjuuus5Yp48dLixe7jgYIDpLE2eBLEjdo4DYORJ9mzaysSXKy9SYGAADIquuvl9q0sQfigwe7jgZApFi0yEr0VakiZbKlMuBU06ZS+fK2gMq3wy5anDxpO6hZLAZED9//z1Wt6jaOcOfrS5yTJLGvjWDnzpaQROho0EC64QY7fvBBt7EAwUKSOBt++81GksQItthY6cMPrS9Cq1auowEAAOHI45Fee816FH/zjfT1164jAhAJfv/dRkpNI1x4PNK8edZXMppaia1bZ/87vfpqG33t1ABENt9OYpLEOeOPncRTpthIqenQ9OSTUlycNH26NG2a62iAwCNJnA2+ncQNG7qNA9GpY0dKwwAAgJypU0e69157KF6ypOtoAESCwYOlXbukESNcRwJkXoUKUkyUPRkrWlTats2Od+2yZPGxY25jAhB4vp3EPFPMmUsusb95fC0Lsmr9emnNGluw266df2ODf1SuLN12mx0/+KCUluY0HCDgouxPYf84edJuIthJDAAAgHA1bJi0dKk96AAAfyhRwh6sAeEmNdXaOkWqpUutHLwkFSkiTZhgu6iLFrVS8bffnv5zAJHJ67XEJDuJc+aSS6SXXpL+8Y/sfX76dBtbtZISEvwXF/zr4YelggVt/hw/3nU0QGCRJM6Gn3+WDh2Satd2HQmi1aRJUvfu0ptvuo4EAACEqzx5pNy507/m4TAAIBq9845Upoz0yCOuI/G/ffukm2+WmjSx1lU+rVpJLVtKn3ximyDeflsaM8ZdnAACb84c6ehRqVkz15FEt5tvln75RXr2WdeR4HxKlLDKW3XrSsWKuY4GCCySxNmUN6/1hwVcWLFC+uor6fPPXUcCAADCXUqKNHy41K0biWIAQPQpWlTavVv68svImQe9Xumzz6y9xFtvWf/lxMQz39ehQ3qiYsQI6ciR4MYJILhy5eJ5tj/s2SMtWSIdPJj1z8bESBddZAt1ENoeeED67TepfXvXkQCBRZIYCEPdutk4c6Z0+LDbWCRp61bphx9shz0AAAgvO3ZYknjy5Iy7jAAAiAYdOkj580ubN9tD/3C3ebP0t79JvXtbz+E6daQff5Sefvrs77/3Xunxx6X586V8+YIaKgCEpcsuk5o2lRYudB0JAik+nkUViA4kiYEwVLeuVKmS7fyZMcN1NNIXX9iNdeHC9kfSXXfZLucdO1xHBgAALqRSJemxx+z4nnuk/fvdxgMAQDDlzSt16WLHEye6jSWnPvnEnhd88421lHj8cStr2qrVuT/j8UjDhknlywctTABB9vbb1kt31CjXkUSGSpVs3Lgxa58bMULq08cW5SB8HDsmPf+8NHq0m+sfPy6tXSvNmiVt3+4mBkQ2ksRAGPJ40ncTf/ed21gki6dSJSk11VZev/SS1KuX9XWqXl1atcp1hAAA4HyGDJFq17YdR5HYkxEAgPPp0cPGcE8Sly1rFb5atZKWLbPkb3x81s7xxRe28DtSSm8DkH791Xa9bt3qOpLIkN0k8UcfSe+9l/XPwa1vvrGqG488Iu3d6//ze7220Wr+fGn69Iw/a97cFrPVqCG1bWsLutq3t4UfSUn+jwXRiSQxEKZOTxIH++bt+HHp+uttRbIkDRokbdggbdokffyxNHCg1KiRJY83bJAqVkz/7NNP2w3488/bH6gnTgQ3dgAAcKa4OOm11+x4zBhp0SK38QAAEEzdutnO21Wrzt67N1SlpEjz5qV/fdllVm1s7lzbUZxV69bZgu+XXpLGjvVfnADcWr/exqpV3cYRKXxJ4k2bMv+ZLVukFSusJ3GHDoGJC4FxzTXWRzo5WXrmmZyf7803pTvvlK66SqpfXypQwDZatWol3XprxvfGxkppaVKePFLlynY8fbp0003SX/6S81gAiSQxELbatrWVRFu2SMuXB/faDzxgq9+6dpWOHk3/foUK0rXXSq+8YquW9++XZs+2/k4+33wjffmlrcC65BIpIUG64gorczl1qk12AAAg+Nq2lW64wRaf3XabVQgBACAaJCRI7drZcbjsJv7pJ6lxY9tR5EsASTafx2TzaV+1atLw4XZ8xx12DQDhb906G6tVcxtHpPBthsnKjuApU2xs3lwqVsz/MSFwYmKsVLhkz7zPtjjgxAmbi6dPl8aNkx56yJ6Rt2hhz79PN26c9PLL0rffSitXSkeO2EarihVtIcfpm8Hee0/ats3e8+ef9r/l4cNtIdg116S/79gxacAA6YcfuI9H1uVyHQCA7MmbV+rUSdq9Wzp8OHjX/fzz9B4mb7xhcZxLQoLUunXG7738sjRnjq1s/uknad8+aeZMe5Upk7H0zU8/2eRYpozf/xkAAOAsRo60BV3Ll1sLiebNXUcEAEBw3HKLVcS68krXkZxfcrL04INW+UOSSpa0RIW/dgg+8ID9DfD551LPnnZctqx/zg0g+LxedhL7W3bKTfuSxJ07+z8eBF6nTlKbNtYX+LbbbOPUwIHpP7/0UquYeTa5clniNjbWvv7HP+xcVarYq2pVSxDHxZ352Ro1Mn5dtaoloIcOlU6eTP/+pElWAWTsWKl0aUtQX3ed1LSpJaCB8/F4vdHTZSQ5OVkJCQlKSkpSoUKFXIcD5NjpE0wwrFljk8vBg9L990v/+lfOzpeWZqW8fvzRXkWLpiegvV6pVClLglerJt13n5XcYGJDKGA+yTl+h0Do+vZbqVatM29IgVDEfJJz/A6B8PH119Ltt6cvrr7pJum55+xe2p8OHZJatrTSqJdcYg/Fs9rbGNGH+STnAvE73L7dFnrExlo1wNy5/XLaqLZ5syX1cuWyHZwXejZ74oRUvLgt8lm4kIW44WrhwvRdwblz2/+efP/ZX3utVc48PfF7+tiwYfarfGTGihW2y3n8eNuQ5VOjhiWL/+//LHmM6JLZOYUkMYBMOXLESmSsWGF9jqZPtz+GAmXvXiub9euv6WU2unSxvg3sLIZrzCc5x+8QAOAPzCc5x+8QCH1er/TPf0offmhfV6tmu4WuuCJw11y7VmrWTDpwQOrfnx7FuDDmk5wLxO/wxx9tl2OVKhlL0yP7Tp6U7rnHdhQPHHjhRTS+/wyKFZN27gzuhh/419NP2zPxSpUsKVuggH3/0CEpX77AJoIz4/hxa+f44YfSV1+lt4lMTLSF4FLwN53BnczOKfQkBiLA3r3Shg2BO7+vN+GKFba795NPApsgluwPp19+sb7Gzz9vf3BNnizVry999llgrw0AAMzChdKCBa6jAAAgOFJSrKLGc8+5jiQjj8cSw7GxVg56+fLAJoglqXp16eOP7YF3gQJWCQxA+DlyxBLENWu6jiRy5MolvfSSNGRI5qosHD5sO0k7dSI5F+4eecRaJr7zTnqCWLJj1wliyUpWX3mlzd+7dkkffCANHpyeIJZsZ3H79tJbb9lCMICdxECYe+016Y47pN69pY8+Csw1jh2TevSwlUjTp1vfhGD7/XfpxhutH5LHI61cKdWpE/w4AIn5xB/4HQKh75NP7AayVi2r7HG2HkmAa8wnOcfvEEj3559WGjI21nZ7FSvmLpY//rAdQfXq2dcpKdLq1ZZoCKbff5fq1g3uNRGemE9yLpC/Q6+XFm6unThBuW+4dfiwlT4/dsy+jouTunWTrr/exjx53MYH/2InMRAlGja0Fb1TpmRsWO9PefJI330nzZnjJkGs/2fvvsOjqL4+gH83CUlISAKhhUgCobdQQwsgVaogVlBEuuUHCtJBOkgTBAUUFQVEEBtNkCa9N4kU6S3U0EkBErI77x/n3fSym+zu7M5+P8+zD2R3dubOZjNnZs6950IuSvftA8aMAUaMYIKYiIjI2lq3BgoXltJUM2eq3RoiIiLrCwkBqlWTUox//qlOG549A6ZOlWv9rl2Tr/M9PGyfIAZSJ4ifPZNKZkTkeJggtqxHj2Qgy9mzpr+HCWJSm7e3dP769FOJ7wkJwMqVwGuvSfXQTz9Vu4WkBiaJiRxcvXpAgQJSltnS5SATEpL/7+ICNGhg2fWbK08eYPz41AHr7Fng44+lfA4RERFZTv78ycnhiROtO7UFERGRvXj5Zfl35Urbb3vHDpkHeMQIGeVTqJAkIuxBVBTQvDnQoUPqewVERM5oxgwgLAyYNSvr5W7c4D1Lsi8hIcDIkTKt5L//yjQWQUFAdDSQN2/ycjExwMGDUoWAtI1JYiIH5+YmI30AGe1rKYoCvP460KtX8iT39kZRpAT17NlAjRoSuIiIiMhyunSRKiJPnshcRpS9xETg6lW1W0FERDllTBJv3AjExtpmm0eOyFyVTZrIDVt/f2DxYmmDmiWvU4qOBo4dA/buBfr3V7s1RPbn8uXL6NWrF0JCQpA3b16ULl0aY8eORYLKvSqqVgXCw4ErV1RthuYEB8u/2X2ugwfLMf2HH6zfJiJz6HRyfJg6VTqE79wJvP128ut//AHUrSvzmY8dK9NgkDYxSUykAe3ayb+WTBJ/9hmwZo1McG9O6RRb0umACROAwEBpY3i4BK1nz9RuGRERkTbodMBXX0mntD//lHMDytzp0zKiIDhYbvT/9Rd7XhMROZrQUJmXOD5epnWytv37JXZs2iTx9oMPgFOnpEO0PZWHLVsWWLZM2jR/PrBggdotIrIvp0+fhsFgwDfffIOTJ09i1qxZmD9/PkaOHKlam2JjgePHZfq2/PlVa4YmlSgh/2aVJNbr5dgeHy+JNiJ75eICNGoEFCmS/FxUFODlBZw/L/ffy5WTe+9ffw3cv69eW8nyHC5JHB8fj+rVq0On0yEiIkLt5hDZhdat5WB+/DgQGZn79e3YIWUnAGDOHJmTyV61bCnlMd58U06+JkwA6teXi2oiIiLKvYoVpQc8AHz4IRAXp2577NXWrUCtWjICDJDzqXbtJNmwaBFLcxIROQqdzvolp58+Tf5/3boyjVTXrsCZM9I5K+VNWnvStq1MQQEAfftafsorIkfWunVrLFy4EC1btkSpUqXQoUMHDB48GCtWrFCtTRcvyr/+/oCfn2rN0KSUSeLMOoUeOSLzuPv5yXGeyJEMGyaJ4qVLk3MP+/YB//sf8NxzTBRricMliYcOHYrAwEC1m0FkVwoWTD7Z+Ouv3K3r1i2gc2dJuHbtCvTpk/v2WVuBAtKjefly+f+RI1J+et8+tVtGRESkDaNHSwJ0zJjU8xRRslq15KZ+8+bA4cPAkCGAjw9w8iTw8ccygoCIiByDMUl84YJlK0JERUmp5tKlpXwzIEnpHTuAH3+UEcz2bsQI+XwSEoBXX5V7CESUsUePHsHf3z/T1+Pj4xEdHZ3qYUnGJHHp0hZdLSG53HRcHPDgQcbLrF8v/77wglSKIHI0+fIBb70l3+Vr14CZM2UwWXi4dD4xmjcPOHCAVbQclUMlidevX49NmzZhxowZJi1v7UBLZE8GDQK++w7o2DHn60hMlATxrVtAlSpSPsKeyltlp1MnGVXcqpW0PyxM7RYlY5AkIiJH5uUFHDoE9OolPYgBKT3t7KfXp04lx3g/P5nHadMmSRhPny5zE0+bJkl2Hx9ZTlHk4vrGDfXaTUREWatfH/jvPxkpa4lr4ocPgVGjJFHz5ZcSA37/Pfl1d/fcb8NWXFxkvuSKFWU/evVSu0VE9un8+fOYM2cO3nvvvUyXmTJlCvz8/JIeQUFBFm3DhQvyryN0QHE0efMmV33IrOS0ccqC1q1t0yYiaypWDBg4EIiIAFatSn7+1i3go49kAFuFCsCkSTLHMTkOh0kSR0VFoU+fPliyZAm8vLxMeo+1Ay2RPXnlFaB3byAgIOfrGD1aejDnyycXrN7elmufrQQGSu+mjRuBPHnkuYQEKRNm60Stokgv69q1pS01asicyYcPAwaDbdtCRESUWylvkp87J+ceISHA1Kky35kz0euBTz+VUtLffJP8fFBQchIdkMTx0KFyMW30999SvrtkSaBnT0lCEBGRfXFxkSRobj1+LJ2FSpWSuBEXB9SpI7GgZ8/cr18tPj5yg7huXen4RKRlw4cPh06ny/Jx+vTpVO+5fv06Wrdujddffx19sijRN2LECDx69CjpcfXqVYu23TiSmEli68hqXuJ794CDB+X/rVrZrk1EtmDsAA0AT57INJBeXsDZs5JfCAkBmjQBfviBHcsdgUMkiRVFQffu3fH+++8jzIyhgdYOtERa07ixlK7+4QegfHm1W5NzOp3sh9G4cXIj+7XXgDt3rLPNR4+AdeuAL75I3Y5t2yQprNdLT6sJEyRpXLx48vyOREREjubOHaBMGZmHaMQIufE0c6bcDNe669eBFi1kRJheL3HeHN7eQKNGwLNnwMKFQOXKQPv2MgqZlUeIiOzP06c56+QbEwOUKwcMHy6lSCtVks7L+/fL1ASOrlw5meKpQgW1W0JkXYMGDcKpU6eyfJRKkYW9ceMGmjZtivDwcHz77bdZrtvDwwO+vr6pHpZkHEnMctPW8f77cg1UuXL61/7+W2JHlSpyD5BIq0JCgJ9+khHFixYBzZolT6XRq5dMD0nZe/hQOpaocU9A1Wr4w4cPx7Rp07Jc5tSpU9i0aRNiYmIwYsQIs9bv4eEBDw+P3DSRyKHcuAH89puMWv3f/8x/f+vWwPnzQP78Fm+aqvz8ZO6PFSuAPXuABQuAF1/M3TofPQJ27wa2b5fHP//IyZ+rq/QIN/aoGjpUbirUrCkH+jVrpNzMzZtAZGTy+hRFgmazZkDRorlrGxERkbWFh8tcu8uWAePHyw2owYOBzz6TpPF77wGenmq30vLWrAF69JDkuLc38NVXQNeu5q0jPFwSwvv3y+e1ciWwdq086tSRbfBcgIjIPrz3nsS6DRuABg2yX15Rkitv+PgATZvKdeOECTKnn6urddtraymrjGzbJrGxTh312kNkDYULF0bhwoVNWvb69eto2rQpatWqhYULF8LFRd3xWQEBUr2mTBlVm6FZWVWEqF8f+PxzwMJ5fyK75eMDdOsmj6tXgaVLgV9+AV5/PXmZJUvkHvo77wDVqzvWNJeWcusW8O+/wOnTqR+3bsnrUVHJpextRaco6vVXv3PnDu7du5flMqVKlcIbb7yBP//8E7oU3xq9Xg9XV1d06dIFixcvNml70dHR8PPzw6NHjyzeM4vIHqxZA7z0kpwAXrxo2oH26VM5CJUsae3WqevoUbmJe/Kk/Ny7t5yspSyPYarhw+Wmbtre5GXKSCmNCRNknobMPH0qieUCBaQ8FyDBoGJF+Z3VrQt06CCPSpWcM2DaO8aT3ONnSKQdiYlysTdhgsw95OcHXLokcU4rnj4FhgwB5s6Vn2vWBH7+WUZR5dbZs3JOsmiRjPI4fjy5ZHXKZANljPEk9/gZEmWuSxdJEg8aBMyYkflyigKsXi0dp379FShbVp6/f1+mc3KkOYdzYu1aoGNHSUgdOcLOTpagKFLCtkgRKeHpCJw9nly/fh1NmjRBiRIlsHjxYrim6BUSYOLccM7+GRKRttWtm1yGvUoVSRa/9Rbw3HPqtsvSnj6VKbqMCeCPPpL7JADw8cfA7NkZvy8wEPjrL6BaNcu0w9SYomqS2FSRkZGITlG8/MaNG2jVqhV+//131K1bF8VNrNnAQEtaFxcnZZbj4yUZWqlS9u95/30Zwbp0KdCunfXbqKanT6U05OefywVXSIiMvK5VK/2y0dGpRwovWZJcgvurr4C+fZOTwk2aSKnu3JSP2bsX6N8/fcnKkBBJFr/7rmm/T7INxpPc42dIpD0JCZLoTExMrmiiKDJStn17qXTiqA4elNEABoMkCiZPtvwN/6go4Nq15POSx49liorOneXzTDmVBiVjPMk9foZEmfvjD5m2qFQpqbqVUcedv/8GRo4EDh2Sn3v2BL7/3rbtVFt0tNz4PX1aplT4+2/tJ8atQVGk8/9ff8nj2jWgUCFg4kTp6O6maj3I7Dl7PFm0aBF69OiR4Wum3n539s/Q0Tx9Kvdfo6OlcgQRZU5RZKrGH3+UWBcfL8/rdDKdU8+ecu3riPbskQqmxqTwpUupy0bv3Sv3EwCZ5nPmTJmuI+WjfHnLVx7QVJI4rcuXLyMkJARHjx5F9erVTX4fAy05g9atgY0bgenTZcRLVpYskR47Op2Uz2rZ0jZtVNuOHVL64u5dKe9QujQQGyulH41J4SNHUo8Unj9fSo0BMp9UXJx15hS5fl16Yf/5p1xYGwPm2rXJSfzbt+VGu5ZGaDkaxpPc42dI5Bw2bADatJFOT2PGAG+/bf83ODPzxRdy4da6tW229/33ckMYkBFEvXtLr2OtV38xF+NJ7vEzJMpcXJwk6Z4+BSIiUo/s2L8f+OQTYOtW+dnLS47TgwdrbwonU5w5I52bYmKAfv2AOXPUbpH9UxSZNizlCKpq1YBjx9IvW6WKjDyy5/msGU9yz5KfISvSWF9EBFCjhoz4j4pKfn71aqkk0bYtKysQZeThQxm49eOPMkgLkI7la9YkL2MwJFfYUpNeL0nflKWhT50C5s2TktmAVBz78MPU78ufX6qGVqgg54ehobZuuekxxUFv0RBRZtq1kyTxunVZJ4lPnEhOeo4d6zwJYkBG/R47JnMglC4tz+3YkX6e4pQjhVu0SH6+QAHrJWife05+L++9JzckNm+W32WzZsnLzJol5a4bNZJRxu3bc34ZUkd8fDzq1q2Lf//91+yOW0TkHKKj5abJpUsyl+/kyXLe0bmzfc/L+OCBlIQaOVIu7ACp+GFL3bpJwmH6dLkB9eWXciH6xhtyjlejhm3bQ0TkjLy95Vp5zRqpjGFMEnfvDhhnPnN3lwpdI0c6dzKgfHngp59kCqy5c6UyRvfuarfK/jx5Ih3TjaOFr18H7t2T7xog50sXLkhyqUEDuYE+dqzcw9mxw76TxGRffvgBGD1aSrlmVS6fcq5ECfn39m35286bV37+/HMZiPLVV8AHH6jXPiJ7lT8/0KePPC5elPMH45SMgDzXuLFM+/H885IwTkyUhK1eL88Zq/ifPi3xUa9PvYzx/6+9llwd9OhRqaaadhnjv++9lzzid+1aYMQImR4qISH9Phw/npwkbtAAGDAgeVRwxYpA4cKO01HHIUcS5xR7tJEzuHhREp+urjJSNqMezDExQFiYHORatpQLE3u+UWsLjx4BdepIkLFE+WhreuUVuUGRUsWKwKuvSjnKrOZDtldnzkiv6Nu35aZCx46WL7FhSYwnon///jh37hzWr1/P6h5ElKm4OLlBMm2a3AQFJG6NGycXbPbQOzilPXvkZlpkpJwvHTyo7sWdokh1kc8+k85jgLTn4kWOKgYYTyyBnyFR1hYvlmRn1apSiQoAJk2SxN0770g8MyYKSOZlHjcO8PAAdu2S0cXO7urV5DLSW7fKyHSjPHkkaRwenvn779+XpNPw4TLHNSD3cwoVAvz9rdp0szCe5J4lP8MRI4CpU2W6tLlzLdRASkVR5N5VbKwkqsqXl/uLBQtKwunCBZmugIjMM3myVGvJzIYNQKtW8v8FCyTZnJk//pB76QDw889yrZ+ZH38EunaV/69fLx22AMDTU/6+U5aHbtTI/udS5khiIidVqpQcqE6fBjZtktEmKSmKlCs8e1aSoEuXMkEMyOTxZ86o3QrTrFghN4b//FMuNHfulDIXkyZJWexr1+SC3BEcPiwXLStWJM/VsGKFjJy6cUN+L2Sf1q9fj02bNuGPP/7A+vXrs10+Pj4e8cb66ZATFSJyDt7eMvL1/fel9OSMGRK3xo+XDk72Qq8HPv1U2mUwSKe7r75Sv/evTge88II8jh6VZPGzZ6kTxMYSqGq3lYhIi9q3l3/j46WcaNGiMlrk1VeTq01QstGjZfqmP/8EfvnFOZPECQlyLuHpKT///jswcGDy68WLy43ntm2lapiPT9br8/eX630jg0FGV128KOct770nyWailC5elH+ZpLQenU46CZ08CVy5IkmkLVvkuqJcOX72RDk1aJDkN5Yulapkbm7ycHWVR8pBcSEhMtjI1TV5mZTLpuzIV7Gi3JtIu4zx/zVrJi9br5507qpYEQgOtr/O7ZbEJDGRBrVrJyeDV66kf23ZMuDXX+Xg99tv0vOUHE+pUlL2sn9/mcfhr7+kBGX9+skJYkWR0hdVq6ra1ExNnw4MG5b880svyQ3uX38FAgNTJ4inT5fXmjd33LkstSQqKgp9+vTBqlWr4OXlZdJ7pkyZgvHjx1u5ZURkz3x8pBRn374yv2+1askd1Z48kZE1bduqk+i8dk1utu7cKT937SpxNbubtrZWo4acyxkMyc9dviwjnitXlhFGr7/OWElEZEn+/nJsvXBBplAAZDQnE8QZc3EBliyRxGjPnmq3xnauXZNRR3/9JRVAvvxSSkcDcn6zerX826aNzC+cm/OdqCg5d7p/X+ZAnDdPRhq3aWOZfSFtuHBB/jVOs0bWkTJJDMgIR4B/j0S54eEho3+NI4Cz0ry56VMxVK+eXCI6OwUKOM/fMctNE2nQ3bvSY9VYhiil+HjpwVq+vMy1R9ry7FlyD+Jdu6R8duPGwNChEtjUHGGk10sJHmPy97//JDC/+aa0r3JleV5RZA5L43K3bkn5DoNBbsq8/rq8p3599XpxOXM8URQFbdu2RYMGDTBq1ChcvnwZISEh2ZabzmgkcVBQkFN+hkSU3uzZwMcfy2ijTz6RZGhgoG2SnSdPSry8f1/Onb7+Gnj7betv11JWr5b2xsbKz6VLSyesd96xz8oier2U1Xz0yLSL/uw4c0y2FH6GRNl78gS4c0dGkpD5Nm2SyiJhYfYZm3IiMRHYty95buFjx1K/3qOHzAlrze1/952M3DZO59G6NTBzJlCpkvW2mxXGk9yz5Gfo7w88eCDfzdBQCzWQ0vnf/+T6YdQoYMIEiRPGTiOtW6vdOiJyZqbGFA0PkiZyXoUKZZwgBuSCbN48Joi1KmWJqYgI+XnHDhldXrWq9Oh+9sy2bUpIkIvjypWll7NRpUrA9esyx5cxQQxIIjvlKOLERClRWqiQzFk8bx7QsKGUExk2zHHKhNu74cOHQ6fTZfk4ffo05syZg5iYGIwYMcKs9Xt4eMDX1zfVg4jIKCFBpho4dEhKRZUoIecsQUFAgwbSyc3o2DGZE/LBg+SpCnLDOLdQWJiUc3akBDEglTgiI+WmVMGCMmrk3Xel6sjnnwOPH6vdQunotXs30K+fdPxq0UI6LTpPd2UicnR58zJBnBuDBsk1nJ+fdMz65BNJoDx6pHbLTBcbm1y+F5CKXo0by/RJx47JdWz9+sDEiVJue8EC67bHzQ344APg/Hn5fPPkkRGMVasCBw5Yd9tk/x48kAfAksfWZixle+WKDIa4dk0G7jRurG67iIhMxZHERBr39KlcLCxeLCNKWH7QuVy7JqOzvvkmeYRRUJCM1urbF3B3t962Y2OlZ/PMmZIMBoDChWUuCW9v89f37JnM7fLzz8DKlUBMjDy/YAHQq5f8X1FsM1pai/Hkzp07uGfsgp6JUqVK4Y033sCff/4JXYoPWq/Xw9XVFV26dMHixYtN2p4WP0Miyp3bt4Fp04BVq4CrV5M7NeXPn3yTC5BSjcap0PPlk5v2QUHyb3CwlLQ2VpowGDKuOnH6tHQ2Mo5munNHblxbMy7aQlycxN4ZMyT2+vjIDasCBdRt15Ah0iYjf3/gtdfkHCGzjo2mYjzJPX6GRGRNej3QqZNM6XDnTurXdDqZ83n1anXalpm4OOk4duQIcPiw/Hv6NFCnDrB/f/JyL74o5ylt2wItW6o7nde5c1Kh69o1SRKrUXWL8ST3LPUZHjkiHSCLFpXqbGQ9R45IlZywMDnv7t5djgfGstNERGoxNaYwSUykURERMv+Pi4tcdI0bJxcwa9aoW3KY1PHwITB/viSMo6KAMmXkItc4F6Ql3b0LzJ0LzJkjpTsBKRk6cKCMbLLE/I5PngDr1gG//AJ8+23yze/Zs2WuxjfflBsRgYG531ZGnDmeREZGIjo6OunnGzduoFWrVvj9999Rt25dFC9e3KT1OPNnSETZMxgkXkVGSgxr1Sr5tU6dgG3b0t9oBtInlNu3lxs3xgRycLAkgmfNktE3n39u7T1RR3y8VA+JiwP695fnFEXmR3zjDaBYMetsV1FkNNUvvwCvvgrUqiXPb9smI8Rffhno3FnmjEpZ/SQ3GE9yj58hEdmCokgic9cuqS6xa5dUv+jWDVi0SJbR6yV2VK0KNGoko48rVLDuPYyUUzYBcs7x999yLpJWmTLA2bP2fU8lNja5A1ZsLNChg1yLt2tn/XYznuSepT7Dw4elk17BgjI/ONnO3btyL6xcObVbQkTOjkniDPBkhZxJVBQQECD/1+nkguzHH4GuXdVtF6nr6VO5aZw/v8zta3xu1Cgp6VymTO63MWWKjOICgLJlpTdz1662mXsqPFzmhQLke9+4MfDWW3Kj2t/fctthPElm6pzEafEzJKLcevxYRstERiY/9Hop82gUGgqcOJHx+9u0kc5zzlJlZds2oFkzicc9e8qNw5AQy6z79GlJDC9fLv8HZGqTL76Q/+v1chPe09My20uJ8ST3+BkSkVpu3pTrUWM8iogAatRIvUyhQpIsbthQYndu5tt98kSmrEg5Qvj2bWmHMYH6yitSuSowUEYG1qqV/G/Rojnftho+/VSu9QHghRekc1yVKtbbHuNJ7vEzJCIiS2GSOAMMtORs6tSRuf0A4L33ZCQpUVoLFgB9+sio81dflaRuWJjp7z91SkYqGd/z8KGMFurbVy6wrTFaOTO3bwO//SajiffuTX4+Tx7pQf3bb5bpPc14koxJYiKyZ3fupE4iR0YCN25IJ6J331WnFKNa9u2TOQuNnalcXaUj1fDhObvh/vSpVPD45Re5qW/k4SFlN3v1klFL1sZ4knv8DInIXjx+nDzKeNcuKZv89Gny62PHSpU0QOYzPnQIqFcv+6kLZs6UztInTkjHpbSuXEmec/r8eZkeyVpVN2wpOhqYPFkqqCQkyHnPu+8CEybIVFCW3x7jSW7xM3RMEREyZ3mzZjIog4jIHjBJnAEGWnI2kycDn3wC1KwJ7NljndEb5PgOHJCLxL/+Sn6uaVNg2DCZRyWzpOrBg8DUqTJ3ZJ06ctPZnspuXbkiI5qWLZPSly+9JG21BMaT3ONnSERke4oic0JOngxs2pT8fMeO0mmsYMGs35+yhKXBIDfUr1+X0dgtW0op6ZdeAmx5WGc8yT1+hkRkrxISZLSvMXE8ZIiUoQbk2u7ll6XTU40a8nxIiFz7HT4MbN2aPC3R0KHAZ5/J/4sUkQ7OxtHBtWrJqGF7upa1tIsX5freWHbY1xcYM0bKUFtyvxlPco+foWMqXVr+znQ6YP361FPlEBGpxdSY4iTF1Yic08CBUnK6QwcmiClzdevK/L7Hj8uF888/S0nKbduAatWkg4G3tyyrKMDmzZIc3rYteR3Fislo4ux6cNtSiRJyITxsGPDff0BiototIiIiUpdxKobGjeUG+pQpwIoVEiczG/Vw+7bcVF6+XOaSvHpVksIuLnKD2cVFbtJnl2AmIiIyl7s7UL++PIYMSf1aXJx0VoqMlJh2+HDq1//5B2jeXP7ftSvQoIEkhJ97TtsJ4YyUKiVVtXbuBAYMAI4elVHYzvY5EFlLcLAkiRUFiI9XuzVERObhSGIiIkolMlLKUX33nfTGXr9ent+yRXpg//OP/OzmBnTpIs/lZl4oR8R4knv8DImI7MOpU1KW+/nn5eenT4FOneQcYONGGYllMCQvf+CAVBCxF4wnucfPkIgcWWRk8kjj69eB0FBJBjdpAvj7q906+2MwAIsXS1ncEiXkuWvXpHx35cq5WzfjSe7xM3RMDRokT3kWHQ34+KjbHiIigCOJiYgoh4KDJUk8ejTw4EHy8w8eSILYy0vmMB44MHneJiIiInJMFSvKw2jxYmDNGnkY1akjiePXXweCgmzfRiIioswEBwNvvSUPyp6LC9CjR+rnhg8HPvxQnfYQaUHRosn/Z4KYiBwNk8RERJQhf//UPa9ffhmYMQPo1g0oVEi9dhEREZH1vPQScOmSdAxr2lSSw6VKqd0qIiIisobERBkFWbeu2i0hclyzZ8sc6p98onZLiIjMxyQxERGZxNUVGDRI7VYQERGRNQUEAFOnqt0KIiIisgU3N+CDD9RuBZFjCw4G1q5VuxVERDnjonYDiIiIiIiIiIiIiIiIiIjIdpgkJiIiIiIiIiIiIiIiIiJyIkwSExERERERETmw+Ph4VK9eHTqdDhEREWo3h4iIiIiIiBwAk8REREREREREDmzo0KEIDAxUuxlERERERETkQJgkJiIiIiIiInJQ69evx6ZNmzBjxgy1m0JEREREREQOxE3tBhARERERERGR+aKiotCnTx+sWrUKXl5eJr0nPj4e8fHxST9HR0dbq3lERERERERkxziSmIiIiIiIiMjBKIqC7t274/3330dYWJjJ75syZQr8/PySHkFBQVZsJREREREREdkrJomJiIiIiIiI7MTw4cOh0+myfJw+fRpz5sxBTEwMRowYYdb6R4wYgUePHiU9rl69aqU9ISIiIiIiInvGctNEREREREREdmLQoEHo3r17lsuUKlUKW7duxb59++Dh4ZHqtbCwMHTp0gWLFy/O8L0eHh7p3kNERERERETOh0liIiIiIiIiIjtRuHBhFC5cONvlvvzyS0yaNCnp5xs3bqBVq1b45ZdfULduXWs2kYiIiIiIiDTAqZLEiqIAAKKjo1VuCREROTJjHDHGFTIfYzIREVmCM8fk4ODgVD/ny5cPAFC6dGkUL17c5PUwJhMRkSU4c0y2FMZkIiKyFFPjslMliWNiYgAAQUFBKreEiIi0ICYmBn5+fmo3wyExJhMRkSUxJuccYzIREVkSY3LOMSYTEZGlZReXdYoTde8yGAy4ceMGfHx8oNPp1G5OlqKjoxEUFISrV6/C19dX7ebkCPfBPnAf7AP3wT5Yah8URUFMTAwCAwPh4uJiwRY6D8Zk2+I+2Afug33gPtgHxmT74Ugx2UgLfwMpaW1/AO3tk9b2B9DePmltfwDH2yfG5NxzxJiclqN9by3FGfeb+8x91jIt7LepcdmpRhK7uLiYVXbLHvj6+jrsl9CI+2AfuA/2gftgHyyxD+wZnTuMyergPtgH7oN94D7YB8Zk9TliTDbSwt9ASlrbH0B7+6S1/QG0t09a2x/AsfaJMTl3HDkmp+VI31tLcsb95j47B2fcZ8Dx99uUuMxuXUREREREREREREREREREToRJYiIiIiIiIiIiIiIiIiIiJ8IksZ3y8PDA2LFj4eHhoXZTcoz7YB+4D/aB+2AftLAPZHta+N5wH+wD98E+cB/sgxb2gdSjte+P1vYH0N4+aW1/AO3tk9b2B9DmPpH2Oev31hn3m/vsHJxxnwHn2m+doiiK2o0gIiIiIiIiIiIiIiIiIiLb4EhiIiIiIiIiIiIiIiIiIiInwiQxEREREREREREREREREZETYZKYiIiIiIiIiIiIiIiIiMiJMElMREREREREREREREREROREmCS2I1OmTEHt2rXh4+ODIkWKoGPHjjhz5ozazcqVqVOnQqfTYcCAAWo3xSzXr1/H22+/jYIFCyJv3rwIDQ3F4cOH1W6WyfR6PUaPHo2QkBDkzZsXpUuXxsSJE6EoitpNy9TOnTvRvn17BAYGQqfTYdWqValeVxQFY8aMQbFixZA3b160aNEC586dU6exmchqH549e4Zhw4YhNDQU3t7eCAwMxDvvvIMbN26o1+AMZPd7SOn999+HTqfD7NmzbdY+U5iyD6dOnUKHDh3g5+cHb29v1K5dG5GRkbZvLNktxmT7wZisDsZl+8C4TJRMi7E5LUeN1Sk5etxOy1HjeEpaiOkpaSG+p6WFeE/kDHE6O1qI46bQWqw3hRbOB7KjtfMFU2jxnCInmCS2Izt27EDfvn2xf/9+bN68Gc+ePUPLli0RFxendtNy5NChQ/jmm29QtWpVtZtilgcPHqBBgwbIkycP1q9fj//++w8zZ85EgQIF1G6ayaZNm4avv/4ac+fOxalTpzBt2jRMnz4dc+bMUbtpmYqLi0O1atUwb968DF+fPn06vvzyS8yfPx8HDhyAt7c3WrVqhadPn9q4pZnLah8eP36Mf/75B6NHj8Y///yDFStW4MyZM+jQoYMKLc1cdr8Ho5UrV2L//v0IDAy0UctMl90+XLhwAQ0bNkSFChWwfft2HDt2DKNHj4anp6eNW0r2jDHZPjAmq4dx2T4wLhMl01psTstRY3VKWojbaTlqHE9JCzE9JS3E97S0EO+JtB6ns6OFOG4KLcZ6U2jhfCA7WjtfMIUWzylyRCG7dfv2bQWAsmPHDrWbYraYmBilbNmyyubNm5XGjRsr/fv3V7tJJhs2bJjSsGFDtZuRK+3atVN69uyZ6rlXXnlF6dKli0otMg8AZeXKlUk/GwwGJSAgQPnss8+Snnv48KHi4eGh/Pzzzyq0MHtp9yEjBw8eVAAoV65csU2jzJTZPly7dk157rnnlBMnTiglSpRQZs2aZfO2mSqjfejUqZPy9ttvq9MgcliMyepgTLYPjMv2gXGZKDVHjs1pOXKsTkkLcTstLcTxlLQQ01PSQnxPSwvxnkhRtBWns6OVOG4KLcZ6U2jtfCA7WjtfMIUWzylMxZHEduzRo0cAAH9/f5VbYr6+ffuiXbt2aNGihdpNMduaNWsQFhaG119/HUWKFEGNGjXw3Xffqd0ss4SHh2PLli04e/YsAODff//F7t270aZNG5VbljOXLl3CrVu3Un2f/Pz8ULduXezbt0/FluXOo0ePoNPpkD9/frWbYjKDwYCuXbtiyJAhqFy5strNMZvBYMC6detQrlw5tGrVCkWKFEHdunWzLOdFBDAmq4Ux2T4xLtsPxmVyZo4cm9Ny5FidkhbidlpajOMpaTWmp+SI8T0tR4/35Jy0FKezo5U4bgotxnpTaP18IDvOcL5gCi2cU2TETe0GUMYMBgMGDBiABg0aoEqVKmo3xyzLly/HP//8g0OHDqndlBy5ePEivv76awwcOBAjR47EoUOH8NFHH8Hd3R3dunVTu3kmGT58OKKjo1GhQgW4urpCr9fj008/RZcuXdRuWo7cunULAFC0aNFUzxctWjTpNUfz9OlTDBs2DG+++SZ8fX3Vbo7Jpk2bBjc3N3z00UdqNyVHbt++jdjYWEydOhWTJk3CtGnTsGHDBrzyyivYtm0bGjdurHYTyQ4xJquHMdk+MS7bD8ZlclaOHJvTcvRYnZIW4nZaWozjKWkxpqfkqPE9LUeP9+R8tBSns6OlOG4KLcZ6U2j9fCA7Wj9fMIVWzikywiSxnerbty9OnDiB3bt3q90Us1y9ehX9+/fH5s2bHXYeMYPBgLCwMEyePBkAUKNGDZw4cQLz5893mGD366+/YunSpVi2bBkqV66MiIgIDBgwAIGBgQ6zD1r27NkzvPHGG1AUBV9//bXazTHZkSNH8MUXX+Cff/6BTqdTuzk5YjAYAAAvvfQSPv74YwBA9erVsXfvXsyfP583oylDjMnqYUwmW2BcVg/jMuWUo8bmtLQQq1PSQtxOi3HccTlqfE9LC/GenI9W4nR2tBbHTaHFWG8Kng84N62cU2SG5abtUL9+/bB27Vps27YNxYsXV7s5Zjly5Ahu376NmjVrws3NDW5ubtixYwe+/PJLuLm5Qa/Xq93EbBUrVgyVKlVK9VzFihURGRmpUovMN2TIEAwfPhydO3dGaGgounbtio8//hhTpkxRu2k5EhAQAACIiopK9XxUVFTSa47CGFSuXLmCzZs3O1TPo127duH27dsIDg5O+vu+cuUKBg0ahJIlS6rdPJMUKlQIbm5uDv83TrbDmKwuxmT7xLhsHxiXyVk5cmxOSwuxOiUtxO20tBjHU9JSTE/JkeN7WlqI9+RctBSns6O1OG4KLcZ6U2j9fCA7Wj1fMIWWzikyw5HEdkRRFHz44YdYuXIltm/fjpCQELWbZLbmzZvj+PHjqZ7r0aMHKlSogGHDhsHV1VWllpmuQYMGOHPmTKrnzp49ixIlSqjUIvM9fvwYLi6p+4C4uromjdZwNCEhIQgICMCWLVtQvXp1AEB0dDQOHDiADz74QN3GmcEYVM6dO4dt27ahYMGCajfJLF27dk03v0qrVq3QtWtX9OjRQ6VWmcfd3R21a9d2+L9xsj7GZPvAmGyfGJftA+MyORstxOa0tBCrU9JC3E5Li3E8Ja3E9JQcPb6npYV4T85Bi3E6O1qL46bQYqw3hdbPB7KjxfMFU2jtnCIzTBLbkb59+2LZsmVYvXo1fHx8kuq5+/n5IW/evCq3zjQ+Pj7p5prw9vZGwYIFHWYOio8//hjh4eGYPHky3njjDRw8eBDffvstvv32W7WbZrL27dvj008/RXBwMCpXroyjR4/i888/R8+ePdVuWqZiY2Nx/vz5pJ8vXbqEiIgI+Pv7Izg4GAMGDMCkSZNQtmxZhISEYPTo0QgMDETHjh3Va3QaWe1DsWLF8Nprr+Gff/7B2rVrodfrk/7G/f394e7urlazU8nu95A2GObJkwcBAQEoX768rZuaqez2YciQIejUqROef/55NG3aFBs2bMCff/6J7du3q9dosjuMyfaBMVk9jMuMy5bCuEyWooXYnJYWYnVKWojbaTlqHE9JCzE9JS3E97S0EO+JtBins6O1OG4KLcZ6U2jhfCA7WjtfMIUWzylyRCG7ASDDx8KFC9VuWq40btxY6d+/v9rNMMuff/6pVKlSRfHw8FAqVKigfPvtt2o3ySzR0dFK//79leDgYMXT01MpVaqU8sknnyjx8fFqNy1T27Zty/D7361bN0VRFMVgMCijR49WihYtqnh4eCjNmzdXzpw5o26j08hqHy5dupTp3/i2bdvUbnqS7H4PaZUoUUKZNWuWTduYHVP24fvvv1fKlCmjeHp6KtWqVVNWrVqlXoPJLjEm2w/GZHUwLtsHxmWiZFqNzWk5YqxOydHjdlqOGsdT0kJMT0kL8T0tLcR7ImeJ09lx9DhuCq3FelNo4XwgO1o7XzCFFs8pckKnKIqSLnNMRERERERERERERERERESa5JL9IkREREREREREREREREREpBVMEhMREREREREREREREREROREmiYmIiIiIiIiIiIiIiIiInAiTxEREREREREREREREREREToRJYiIiIiIiIiIiIiIiIiIiJ8IkMRERERERERERERERERGRE2GSmIiIiIiIiIiIiIiIiIjIiTBJTERERERERERERERERETkRJgkJs27fPkydDodIiIi1G5KktOnT6NevXrw9PRE9erVM1xGURS8++678Pf3V7399vgZ5tT27duh0+nw8OFDq29r3Lhxmf5+iYickT3GE8Zk9TAmExGpyx5jCuOyehiXiYjUY4/xhDFZPYzJZEtMEpPVde/eHTqdDlOnTk31/KpVq6DT6VRqlbrGjh0Lb29vnDlzBlu2bMlwmQ0bNmDRokVYu3Ytbt68iSpVqtikbd27d0fHjh1TPRcUFGTTNjginU6HVatWpXpu8ODBmf5+iYjUwJicHmOy9jAmE5GjYFxOj3FZexiXicgRMCanx5isPYzJlBEmickmPD09MW3aNDx48EDtplhMQkJCjt974cIFNGzYECVKlEDBggUzXaZYsWIIDw9HQEAA3Nzccry93HJ1dVW9DY4oX758mf5+iYjUwpicGmOyc2BMJiJ7xbicGuOyc2BcJiJ7xJicGmOyc2BMJiaJySZatGiBgIAATJkyJdNlMiptMHv2bJQsWTLpZ2MvocmTJ6No0aLInz8/JkyYgMTERAwZMgT+/v4oXrw4Fi5cmG79p0+fRnh4ODw9PVGlShXs2LEj1esnTpxAmzZtkC9fPhQtWhRdu3bF3bt3k15v0qQJ+vXrhwEDBqBQoUJo1apVhvthMBgwYcIEFC9eHB4eHqhevTo2bNiQ9LpOp8ORI0cwYcIE6HQ6jBs3Lt06unfvjg8//BCRkZHQ6XRJn0HJkiUxe/bsVMtWr1491Tp0Oh0WLFiAl19+GV5eXihbtizWrFmT6j0nT57Eiy++CF9fX/j4+KBRo0a4cOECxo0bh8WLF2P16tXQ6XTQ6XTYvn17huU6duzYgTp16sDDwwPFihXD8OHDkZiYmOrz+uijjzB06FD4+/sjICAgw31Na8GCBahYsSI8PT1RoUIFfPXVV0mvhYeHY9iwYamWv3PnDvLkyYOdO3cCAJYsWYKwsDD4+PggICAAb731Fm7fvp3p9kz53h06dAgvvPACChUqBD8/PzRu3Bj//PNP0uvGZV9++eVUv6+0687uu2H8nFesWIGmTZvCy8sL1apVw759+5KWuXLlCtq3b48CBQrA29sblStXxl9//ZXlZ0pElBJjMmMyYzJjMhHZD8ZlxmXGZcZlIrIPjMmMyYzJjMnOiElisglXV1dMnjwZc+bMwbVr13K1rq1bt+LGjRvYuXMnPv/8c4wdOxYvvvgiChQogAMHDuD999/He++9l247Q4YMwaBBg3D06FHUr18f7du3x7179wAADx8+RLNmzVCjRg0cPnwYGzZsQFRUFN54441U61i8eDHc3d2xZ88ezJ8/P8P2ffHFF5g5cyZmzJiBY8eOoVWrVujQoQPOnTsHALh58yYqV66MQYMG4ebNmxg8eHCG6zAejG/evIlDhw6Z9RmNHz8eb7zxBo4dO4a2bduiS5cuuH//PgDg+vXreP755+Hh4YGtW7fiyJEj6NmzJxITEzF48GC88cYbaN26NW7evImbN28iPDw83fqvX7+Otm3bonbt2vj333/x9ddf4/vvv8ekSZPSfV7e3t44cOAApk+fjgkTJmDz5s2Ztnvp0qUYM2YMPv30U5w6dQqTJ0/G6NGjsXjxYgBAly5dsHz5ciiKkvSeX375BYGBgWjUqBEA4NmzZ5g4cSL+/fdfrFq1CpcvX0b37t3N+vzSiomJQbdu3bB7927s378fZcuWRdu2bRETEwMASb+fhQsXZvn7yu67YfTJJ59g8ODBiIiIQLly5fDmm28mncD07dsX8fHx2LlzJ44fP45p06YhX758udo/InIujMmMyYzJjMlEZD8YlxmXGZcZl4nIPjAmMyYzJjMmOyWFyMq6deumvPTSS4qiKEq9evWUnj17KoqiKCtXrlRSfgXHjh2rVKtWLdV7Z82apZQoUSLVukqUKKHo9fqk58qXL680atQo6efExETF29tb+fnnnxVFUZRLly4pAJSpU6cmLfPs2TOlePHiyrRp0xRFUZSJEycqLVu2TLXtq1evKgCUM2fOKIqiKI0bN1Zq1KiR7f4GBgYqn376aarnateurfzvf/9L+rlatWrK2LFjs1xP2n1XFEUpUaKEMmvWrFTPpV0XAGXUqFFJP8fGxioAlPXr1yuKoigjRoxQQkJClISEhAy3m/L3ZWT8DI8ePaooiqKMHDlSKV++vGIwGJKWmTdvnpIvX76k303jxo2Vhg0bplpP7dq1lWHDhmW6z6VLl1aWLVuW6rmJEycq9evXVxRFUW7fvq24ubkpO3fuTHq9fv36Wa7z0KFDCgAlJiZGURRF2bZtmwJAefDggaIopn3v0tLr9YqPj4/y559/Jj0HQFm5cmWq5dKuO7vvhvFzXrBgQdLrJ0+eVAAop06dUhRFUUJDQ5Vx48Zl2jYioqwwJjMmGzEmMyYTkfoYlxmXjRiXGZeJSF2MyYzJRozJjMnOhiOJyaamTZuGxYsX49SpUzleR+XKleHikvzVLVq0KEJDQ5N+dnV1RcGCBdOVaKhfv37S/93c3BAWFpbUjn///Rfbtm1Dvnz5kh4VKlQAIHMrGNWqVSvLtkVHR+PGjRto0KBBqucbNGiQq302V9WqVZP+7+3tDV9f36TPIyIiAo0aNUKePHlyvP5Tp06hfv360Ol0Sc81aNAAsbGxqXrApWwHABQrVizT0hlxcXG4cOECevXqler3MGnSpKTfQeHChdGyZUssXboUAHDp0iXs27cPXbp0SVrPkSNH0L59ewQHB8PHxweNGzcGAERGRuZ4f6OiotCnTx+ULVsWfn5+8PX1RWxsrFnrNOe7kfJzK1asGAAkfW4fffQRJk2ahAYNGmDs2LE4duxYTneLiJwcY7JtMCYzJhMRmYJx2TYYlxmXiYiyw5hsG4zJjMlkH5gkJpt6/vnn0apVK4wYMSLday4uLqnKMABSeiGttMFBp9Nl+JzBYDC5XbGxsWjfvj0iIiJSPc6dO4fnn38+aTlvb2+T12kNufmMjJ9H3rx5rddAM9qRVmxsLADgu+++S/U7OHHiBPbv35+0XJcuXfD777/j2bNnWLZsGUJDQ5NOsuLi4tCqVSv4+vpi6dKlOHToEFauXAkASEhIyHC7pnym3bp1Q0REBL744gvs3bsXERERKFiwYKbrzK2Un5vxRMb4ufXu3RsXL15E165dcfz4cYSFhWHOnDlWaQcRaRtjcu4wJjMmMyYTkSUxLucO4zLjMuMyEVkKY3LuMCYzJjMmOxYmicnmpk6dij///DPVZOaA9LK5detWqgNeyonmcyvlgToxMRFHjhxBxYoVAQA1a9bEyZMnUbJkSZQpUybVw5zA6uvri8DAQOzZsyfV83v27EGlSpVyvQ+FCxfGzZs3k36Ojo7GpUuXzFpH1apVsWvXrgyDMwC4u7tDr9dnuY6KFSti3759qX5Xe/bsgY+PD4oXL25We4yKFi2KwMBAXLx4Md3vICQkJGm5l156CU+fPsWGDRuwbNmyVL2wTp8+jXv37mHq1Klo1KgRKlSokGnPLyNTvnd79uzBRx99hLZt26Jy5crw8PDA3bt3Uy2TJ0+eLD83S343goKC8P7772PFihUYNGgQvvvuO7PeT0RkxJicc4zJjMkAYzIRWRbjcs4xLjMuA4zLRGQ5jMk5x5jMmAwwJjsSJonJ5kJDQ9GlSxd8+eWXqZ5v0qQJ7ty5g+nTp+PChQuYN28e1q9fb7Htzps3DytXrsTp06fRt29fPHjwAD179gQgk6nfv38fb775Jg4dOoQLFy5g48aN6NGjR7YBJ60hQ4Zg2rRp+OWXX3DmzBkMHz4cERER6N+/f673oVmzZliyZAl27dqF48ePo1u3bnB1dTVrHf369UN0dDQ6d+6Mw4cP49y5c1iyZAnOnDkDAChZsiSOHTuGM2fO4O7duxkG4//973+4evUqPvzwQ5w+fRqrV6/G2LFjMXDgwFSlVMw1fvx4TJkyBV9++SXOnj2L48ePY+HChfj888+TlvH29kbHjh0xevRonDp1Cm+++WbSa8HBwXB3d8ecOXNw8eJFrFmzBhMnTsxym6Z878qWLYslS5bg1KlTOHDgALp06ZKuR1vJkiWxZcsW3Lp1Cw8ePMhwW5b4bgwYMAAbN27EpUuX8M8//2Dbtm1JJ4tEROZiTM45xmTGZMZkIrI0xuWcY1xmXGZcJiJLYkzOOcZkxmTGZMfCJDGpYsKECenKNlSsWBFfffUV5s2bh2rVquHgwYMYPHiwxbY5depUTJ06FdWqVcPu3buxZs0aFCpUCACSesjo9Xq0bNkSoaGhGDBgAPLnz2920Pjoo48wcOBADBo0CKGhodiwYQPWrFmDsmXL5nofRowYgcaNG+PFF19Eu3bt0LFjR5QuXdqsdRQsWBBbt25FbGwsGjdujFq1auG7775LKhHRp08flC9fHmFhYShcuHC6nkMA8Nxzz+Gvv/7CwYMHUa1aNbz//vvo1asXRo0alav96927NxYsWICFCxciNDQUjRs3xqJFi1L1xAKkZMe///6LRo0aITg4OOn5woULY9GiRfjtt99QqVIlTJ06FTNmzMhym6Z8777//ns8ePAANWvWRNeuXfHRRx+hSJEiqZaZOXMmNm/ejKCgINSoUSPDbVniu6HX69G3b19UrFgRrVu3Rrly5fDVV1+Z/H4iorQYk3OGMVkwJjMmE5FlMS7nDOOyYFxmXCYiy2FMzhnGZMGYzJjsKHRK2mLmRERERERERERERERERESkWRxJTERERERERERERERERETkRJgkJiIiIiIiIiIiIiIiIiJyIkwSExERERERERERERERERE5ESaJiYiIiIiIiIiIiIiIiIicCJPEREREREREREREREREREROhEliIiIiIiIiIiIiIiIiIiInwiQxEREREREREREREREREZETYZKYiIiIiIiIiIiIiIiIiMiJMElMREREREREREREREREROREmCQmIiIiIiIiIiIiIiIiInIiTBITEZHD2LlzJ9q3b4/AwEDodDqsWrUq2/ds374dNWvWhIeHB8qUKYNFixalW2bevHkoWbIkPD09UbduXRw8eNDyjSciItKIKVOmoHbt2vDx8UGRIkXQsWNHnDlzJtv3/fbbb6hQoQI8PT0RGhqKv/76ywatJSIi0jZrXScTERGReRzxWplJYiIichhxcXGoVq0a5s2bZ9Lyly5dQrt27dC0aVNERERgwIAB6N27NzZu3Ji0zC+//IKBAwdi7Nix+Oeff1CtWjW0atUKt2/fttZuEBERObQdO3agb9++2L9/PzZv3oxnz56hZcuWiIuLy/Q9e/fuxZtvvolevXrh6NGj6NixIzp27IgTJ07YsOVERETaY43rZCIiIjKfI14r6xRFUWyyJSIiIgvS6XRYuXIlOnbsmOkyw4YNw7p161IF1c6dO+Phw4fYsGEDAKBu3bqoXbs25s6dCwAwGAwICgrChx9+iOHDh1t1H4iIiLTgzp07KFKkCHbs2IHnn38+w2U6deqEuLg4rF27Num5evXqoXr16pg/f76tmkpERKRplrpOJiIiotxzhGtlN6tvwY4YDAbcuHEDPj4+0Ol0ajeHiMgiFEVBTEwMAgMD4eKiToGIp0+fIiEhwez3KYqS7njs4eEBDw8Pi7Rr3759aNGiRarnWrVqhQEDBgAAEhIScOTIEYwYMSLpdRcXF7Ro0QL79u2zSBsoY4zJRKRF9hCTAdvH5UePHgEA/P39M11m3759GDhwYKrnWrVqZVJJTLIuxmQi0iJnjcmmyO46mdTDmExEWmUPcVmNmOwI18pOlSS+ceMGgoKC1G4GEZFVXL16FcWLF7f5dp8+fYqQvHlxKwfvzZcvH2JjY1M9N3bsWIwbN84ibbt16xaKFi2a6rmiRYsiOjoaT548wYMHD6DX6zNc5vTp0xZpA2WMMZmItEytmAzYPi4bDAYMGDAADRo0QJUqVTJdLrOYfOtWTlpKlsSYTERa5kwx2VTZXSfnzZs319ugnGFMJiKtc6b7145yrexUSWIfHx8A8kX09fVVuTVERJYRHR2NoKCgpGOcrSUkJOAWgKs6Hcw5skYDCIqNTXdMttQoYrJvjMlEpEVqx2TA9nG5b9++OHHiBHbv3p2j9pL6GJOJSIucMSaT42NMJiKtUjsuqxGTHeVa2amSxMYh4b6+vgy0RKQ5apci8nVxga85bVAUQK+36jE5ICAAUVFRqZ6LioqCr68v8ubNC1dXV7i6uma4TEBAgFXaRIIxmYi0TO2YDNgmLvfr1w9r167Fzp07s+0NnllMZrxVH2MyEWmZs8Rkc2R3nUzqYUwmIq1TOy7bKiY70rWyepNyEBGRtri4mP+wsvr162PLli2pntu8eTPq168PAHB3d0etWrVSLWMwGLBly5akZYiIiBySFeOyoijo168fVq5cia1btyIkJCTb92QXk4mIiDTLzq6VGZOJiMhpWTkmO+K1slONJCYiIitycQHM7YllptjYWJw/fz7p50uXLiEiIgL+/v4IDg7GiBEjcP36dfz4448AgPfffx9z587F0KFD0bNnT2zduhW//vor1q1bl7SOgQMHolu3bggLC0OdOnUwe/ZsxMXFoUePHma3j4iIyG5YMS737dsXy5Ytw+rVq+Hj45M0V5Kfn1/SCKR33nkHzz33HKZMmQIA6N+/Pxo3boyZM2eiXbt2WL58OQ4fPoxvv/3W9DYSERE5IitfK1vjOpmIiEiTrByTHfFamUliIiKyDBskiQ8fPoymTZsm/Txw4EAAQLdu3bBo0SLcvHkTkZGRSa+HhIRg3bp1+Pjjj/HFF1+gePHiWLBgAVq1apW0TKdOnXDnzh2MGTMGt27dQvXq1bFhwwYULVrU7PYRERHZDSvG5a+//hoA0KRJk1TPL1y4EN27dwcAREZGwiVFr+vw8HAsW7YMo0aNwsiRI1G2bFmsWrUKVapUMb2NREREjsjK18rWuE4mIiLSJCvHZEe8VtYpSg7u0juo6Oho+Pn54dGjR5zXgYg0Q+1jW9L2vb3NmtMhWlHgFxfHY7KTUvt7S0RkDfZwbGNcJnPZw/eWiMjS7OHYxphM5rKH7y0RkTWofXxjTM4cRxITEZFl2GAkMREREZmIcZmIiMg+MCYTERHZB8bkdJgkJiIiy2CQJSIish+My0RERPaBMZmIiMg+MCanwyQxERFZBoMsERGR/WBcJiIisg+MyURERPaBMTkdJomJiMgydDoJtKYyGKzXFiIiImfHuExERGQfGJOJiIjsA2NyOkwSEzmBuPhEXL4Xh4REA9zdXFCyoDe8PfjnT0SkdTz+E78DRESUEuMCERER8XyAiIz4l0+kUeeiYrD0QCS2nbmNyPuPkbIwgg5AsL8XmpYvgi51g1G2qI9azSQtcXExrycWEVkFj//E7wABYFwmoiSMC0QqY0wmIjvA8wEiMCZngEliIo25ev8xRq48jl3n78LVRQe9IX3dfAXAlfuPseTAFSzadxmNyhTC5JdDEeTvZfsGk3YwyBKpisd/4neAUmFcJnJ6jAtEdoIxmYhUxPMBohQYk9Php0GkIcsPRaLFrB3Ye/EeAGQY9FMyvr734j20mLUDyw9FWr2NpGHGIGvOg4gsgsd/4neA0mFcJnJqjAtEdoQxmYhUwvMBojQYk9PhSGIijZi77RxmbDqbo/fqDQr0BgXDVxzH3dh49Gta1sKtI6fgJIGTyN7w+E/8DlCGGJeJnBbjApGdYUwmIhXwfIAoA4zJ6fDTINKA5Ycicxz005qx6Sx+YS8xygn2xCKyOR7/id8ByhTjMpFTYlwgskOMyURkYzwfIMoEY3I6HElM5OCu3n+MsWtOZvja0yvHEPXzyAxfC+g6Ax7PVcjwtTFrTiK8dCHOO0HmcZLASWQvePynrL4DaT3a+wse7lyCPIWCEdj7q0yX43dAQxiXiZyOOXEBMC02MC4QWQBjMhHZUFbnAwl3ruDR7mVIuHUe+riH0OXxQJ6CQfCt+wq8ytbNdJ08HyDNYExOh0liIgc3cuVxJGYzn4RPrfZwL1Yu1XNuBYplunyiQcHIlcexpFfmJwdE6TDIEtkUj/9kyncAABKj7+LRvl+hy+OZ/bL8DmgH4zKR0zE1LgCmxwbGBSILYEwmIhvK6nxAH30bhoQn8A5tDtd8/lCexePxmb2488dE+LfuB5/qrTN8H88HSDMYk9NhkpjIgZ2LisGu83ezXc4jqDK8KzQ0eb16g4Jd5+/i/O0YlCnik5smkjNhkCWyGR7/ydTvAAA82PY9PALLQzEYYHgSneWy/A5oCOMykVMxJy4ApscGxgUiC2BMJiIbye58IG/p2shbunaq53xqvYibiwYg+uCqTJPEPB8gzWBMToefBpEDW3ogEq4uOpOWNcQ/hmLQm7xuVxcdftrP+SbIDDqdefM56Ez77hJRejz+k6nfgaeRJ/D49B4UaP6uyevmd0AjGJeJnIo55wbmxgbGBaJcYkwmIhsx53zASOfiCjefQjDEx2a5HM8HSBMYk9PhSGIiB7btzG3oTSgndu+vL6AkPAF0LvAIqowCTXvCo1jZLN+jNyjYdvY2xqGypZpLWmduTyzFtFJ4RJQej/9kyndAMehxf/N85KvWEu5FSpq8bn4HNIJxmcipmHpukJPYwLhAlEuMyURkI6aeDxgSnkJJjIch/jGenDuAJxePwKtioyzfw/MB0gTG5HSYJCZyULHxiYi8/zjrhVzzwKt8OPKWCoOLlx+e3Y1E9MGViFo6DAFvfwb3gNJZvj3y3mPExSfC24OHCjIBgyyRTfD4TyZ9BwDEHl2PxOg7KPrmp2Zvg98BDWBcJnIapsYFIOexgXGBKBcYk4nIBsw5H3iwdQFiIzbIDzoXeJWrD/+WH2T7Pp4PkMNjTE6Hf81EDurKvThkd4jyLF4RnsUrJj9Rti68KjTAze8/xIMdi1G004Qs368AuHwvDpUD/XLdXiIisgxbHf8Pn4lDucI8/tujs3ey/w7on0Tj4a6lyB/eCa5e5v8eeQ5AROQ4TDk3AHIXGxgXiIiI7Jup5wMA4Fv7JXhVaAh9zD08Pr0bimIA9M+yfR/PB4i0h0liIgeVkGjI0fvyFAhE3rJ18fjsXigGPXQurlbZDjkh9sQisglbHf9/+8OAwmb8SZPt3DFk/x14uHMJXPLmg09Y+xxvh+cADo5xmchpmHq8zm1sYFwgyiHGZCKyAXPidJ6CQchTMAgAkC+0OaKWj8bt3ycg4J3PoctmDlaeD5BDY0xOh0liIgfz7Bnw33/A+r05v3Pv5lsI0CdCeRYPnYdXlsu6uzFDQCZikCWyidwcl805/r/+qgvKFc7xpsiKzt5xwdqfM3/92f3riI3YiALN+0Afcz/peUX/DIpBj8SHUdB5eME1r0+W2+E5gINjXCZyGqYcry0RGxgXiHKIMZmIbCA3cdqrQgPc3zAXifevI0/B4lbbDpHqGJPTYZKYyI4ZE8JHjiQ//v0XePoUcHH3RtDHALLu3JWhxIe3oHNzh87dM8vldABKFvTOUdvJCTHIEtlEyYLe0AEml5FKyZzjf1h5b3h75KSFZG2+/ll/B/Qx9wDFgAd/f4MHf3+T7vXr83vBJ6wD/Fu8m+k2eA6gAYzLRE7DlHOD3MYGHYCS/l5yrMhmhBERpcGYTEQ2kJt7BcqzeACAIT4uy+V4nUgOjzE5HSaJiexEVglhnQ6oUAGoVQt48035t3p1N7T72gtX7j/OdJ36x4/SzTWVEHURj88dRN5StaDTZX1ADC7oBW8PHibIRAyyRDbh7eGGYH8e/51Zdt+BPIVLoPArn6R7/uHOJTAkPIF/i3fhlr9Yltvgd0ADGJeJnIYp5wa5jQ2p4kLa4wWTxkRZY0wmIhsw6V5B3EO4eudP9ZyiT0Tcia3QuXkgT6HgLLfB60RyeIzJ6fAvmkgFiYmSED582NSEMJAvX/r1NC1fBEsOXIHekPHB6s6qaXDJ4w6P5yrCxcsPz+5eRey/G6DL44ECTbpn2UZXFx2aliuS+50l58EgS2QzPP5TVt8BVy8/eJWrn+756EOrASDD11K9n98BbWBcJnIq2Z0b5CY2SFzIYg6KlMcPJoyJ0mNMJiIbye584N6GuVASHsMjqApcfQpCH/sAcf9tR+K9ayjQrBdc3PNmum5eJ5ImMCanwyQxkZWZmhDu3BkIC8s8IZyRLnWDsWjf5Uxf9ypXD3EntyP64CoYEh7//42BcPg1fBN5CgRmuW69QcHb9bLuPUaUCoMskc3w+E8tQrL+DuQGvwMawbhM5FSyOzfIDYkLJVIngDM7ZnCUMVF6jMlEZCPZnQ94V2yE2GObEXP0LxiexMDFPS/cA8qgQJMe8CpbN8t18zqRNIExOR0miYksyJgQPnIkOSmcWUK4Vi2gRg3TE8IZKesFNEqIwl7XgtC7pv9z9g3rAN+wDuav2KBDzecKokwRn5w3jpyPTmdekDUYrNcWIo0rW9QHjcoUwt6L9zLsIZzT47+riw7hpXj8t2ePHwNbtgD//OODkp6FcDX+HvQmXrQEdJma7TL8DmgI4zKRU8nu3CAz2cWGTONC2uSvKUljJozJWTEmE5GNZHc+4F2pMbwrNTZ7vbxOJM1gTE7HjE+DiFJKTASOHQMWLgT69QPq1QN8fIBq1YBevYBt24CyZYEpU4CdO4FHjySBvGQJMGAA0KhR7hLE2LsXqF4dk3+eCDc3V0vtllB02DQ5FPPmOUVnGbIUY08scx45MG/ePJQsWRKenp6oW7cuDh48mOmyTZo0gU6nS/do165d0jLdu3dP93rr1q1z1DYiW5r8cijcXCx7s9XNRYfJL4dadJ1kGQaDdD6bOxc4eRJo3RpY3DcUbq78DlAmrByXd+7cifbt2yMwMBA6nQ6rVq3Kcvnt27dnGJNv3bqVi50kopRUPTfQ6ZIfmVGU1A8iZ2GDa2VzrpMXLVqULh57enrmZg+JyI5Mfqky3KAAsFys5XUiaYaN7l87Eo4kJjJByhHCxlHCKUcIly8vpaKNI4SrV5eEsVU8ewaMHy/Z5zp1ELRkCcY/cMfwFccttokJHSpjf6wX+vUD1q4FfvgBKFbMYqsnrTI3cOYgyP7yyy8YOHAg5s+fj7p162L27Nlo1aoVzpw5gyJF0s+LsmLFCiQkJCT9fO/ePVSrVg2vv/56quVat26NhQsXJv3s4eFhdtuIbC3I3wvjO1S2+PE/yN/LYusjy7h+HfjrL+DGDemM1qKFsaMZvwOUBSvH5bi4OFSrVg09e/bEK6+8YvL7zpw5A19f36SfM4rfRJQzdnNukJNRxhm9j0grrByTzb1OBgBfX1+cOXMm6Wcd//6ItCExEUGnIzA+KAHDr7hbbLW8TiTNsMH9a0fDJDFRGmkTwkeOABERqRPCKUtGWzUhnNbp08Dbb0uDxo0DRowA3NzQGcDd2HjM2HQ215sY0rI83mkYjHcaAi++CPTsCYSGAt9+C5hx/4+ckQ2C7Oeff44+ffqgR48eAID58+dj3bp1+OGHHzB8+PB0y/v7+6f6efny5fDy8kqXJPbw8EBAQIDZ7SFSW+fawRY9/neqzfmF7ElyaWmgaFGgRw8gOM2viN8BypSV43KbNm3Qpk0bMxslSeH8+fOb/T4iMk3nagG4O/srzAhulOt1DdFfRKfa7bJfMDumzGWc9jUmrEhLrByTzb1OBiQpzGtgIo2Jjwd27wYePULnjuG4eyqG14lEaTFJnA6TxJSluPhEXL4Xh4REA9zdXFCyoDe8PbTztckoIfzvv8CTJ6kTwp06qZAQTklRgK++AoYMAYKCgH37gNq1Uy3Sr2lZFMrngbErIpBoAPQuZpSgNujg4a7DhA6VUwX9tm2B48eBd98FXn0V6N4d+OILIMXgD6Jci46OTvWzh4dHhiN5ExIScOTIEYwYMSLpORcXF7Ro0QL79u0zaVvff/89OnfuDG9v71TPb9++HUWKFEGBAgXQrFkzTJo0CQULFszB3hDZXtLx/48IJCrmHf910MHdLf3xn9RlMEhieOtW+X+bNlKxJLNrk35Ny8LfywNjVp2EAQoMZpQVc4UCNzdXfgcoialxOaeqV6+O+Ph4VKlSBePGjUODBg0stm4ip6cowPvvo9/vS1FoYUuMPRWPRINi1hzFri46uLnoMMHrJjqN/Agolxfo3dtybeQoYyKTmRKTc3qdHBsbixIlSsBgMKBmzZqYPHkyKleubNkdICLbiYsDdu0CEhKAJk0Af3/0CwiQewVrTub8fIDXiUSap51sH1nMuagYLD0QiW1nbiPy/uNUtxl1AIL9vdC0fBF0qRuMskUdZ7J6UxPCb7whN2JVSwindfOmDOfdsAH44APgs8+ANAkuo84BOjT44UOM7DkZu5Afri66LE8AjK8/uVIQH7cIRafa6cuGFC4MrFgBLFoEfPQRsH27zKvcsKGF9o+0I4c9sYKCglI9PXbsWIwbNy7d4nfv3oVer0fRokVTPV+0aFGcPn06280dPHgQJ06cwPfff5/q+datW+OVV15BSEgILly4gJEjR6JNmzbYt28fXF0tPN83kZV0LqKgwQ/9MLL3VOxS/Ew+/ge6FsRH9TI+/pM6UpaWrl4daN7cWFo6a6URjJc9CiGy6HEciLxr8ncgXBeNyW83QFB5XvhrjpXjsrmKFSuG+fPnIywsDPHx8ViwYAGaNGmCAwcOoGbNmrlePxEBmD4dWLgQWLIEnd9qhgb3H2PkyuPYdd6MuFCqICa/HIqgAnmBa0fkGjQkRAKSNeQkacyEMTkaK8bknFwnly9fHj/88AOqVq2KR48eYcaMGQgPD8fJkydRvHhx09tJRPbh4UNJELu6As2apbqA7Fw7GA1KF8r5+QBLTJPWcCRxOkwSU5KrJlxAKgCu3H+MJQeuYNG+y2hUppBdBozERODUKZk7OLuEcK1aQI0adpIQTmvlSqBPH8DNDVi3Tob2ZmX0aAQpT7BkRHuce6KTZP/Z24i8l0Gyv6AXmpYrgrfrBWP4/3wwcwLwbhcgb970q9XppMRl48bAO+/Iv8OGScVrd8tNb0GOLodB9urVq6nmJrTWfMDff/89QkNDUadOnVTPd+7cOen/oaGhqFq1KkqXLo3t27ejubVuhhFZ2siRCHJJwJKRHXAuTjH5+H/luA/27wceNQT8/NRqPAGpS0sHBEj/sDT3BTP15AmwYwfQqKYXOnSom9zhL7vvQO3iKPPbYmD/dqDcO7zprjV2FpfLly+P8uXLJ/0cHh6OCxcuYNasWViyZIlFtkHk1P74Axg+HBg9WqYogsxRvKSXGXGhXjDKFElxYfzFF8CFC1JWav9+oEIF6++HKaWpOcqYHI2dxeT69eujfv36ST+Hh4ejYsWK+OabbzBx4kSLbIOIbOT2bWDPHkkMN2oEeHqmWyTX5wNEWsIkcTpMEhMAYPmhyKTSEwCyLT9hfH3vxXtoMWsHxneojM4qlZ4wJoSPHElOCjtkQjilmBigf3/pBd6xo0wIXLhw1u/591/gxx+BuXMBX1+U9QXGdaiMcaiMuPhEbNgTh7feNmDZTy5o3SB12fApU4BKlYAvv5Tkb2ZKlZKb0NOmAWPHAhs3Aj/9BFSsaJndJgeXwyDr6+ub6sI3M4UKFYKrqyuioqJSPR8VFZXtXEpxcXFYvnw5JkyYkO12SpUqhUKFCuH8+fNMEpNjOHQIWLZMYkW+fCibL/Xx//CZOPz2hwGvv+qCsPKpj/9BDYGjR4Ft2yTckO2ZW1o6I7t2yflQ06byc9miPqm+A5dPX0bC7yvg/torKFmhZOqpQ1q2BH7+GTh/Hihb1rI7R+qycly2hDp16mD37t022RaRph06BHTtKvMkjR+f7uV0cWHPESS8/Q7cf/oRJRvUynxKKTc34JdfgPBwoF074MABoFAhK+9MCixNTVphxZicm+tkozx58qBGjRo4f/686W0kIvVduyaxuXBhoH59IE+eLBdPez6Q1b1iIs1ikjgd7e8hZWvutnMYvuI44hMNZs1NAEiyOD7RgOErjmPutnNWamGyxESZI3fRIqBfP4l/vr5A1aoy4ubvv4HSpYFPP5Vk5qNHkkD+6Sfg44+B5593gATx7t1AtWrAb78B338vtZ6zSxADwNChcnO3T590L3l7uCEkvx8SbhZASH6/dEG/bFng/feByZOBu3ez3oyrKzBypHQkf/wYqFkTmDMn8+t1ciLGIGvOwwzu7u6oVasWtmzZkvScwWDAli1bUvWCzshvv/2G+Ph4vP3/oyqycu3aNdy7dw/FihUzq31EqlAUYPBgoEoVCYRpeHu4oVxhPxR2KYByhdMf/z08ZLqif/+V2Q3Itq5fBxYskGIh5csDH34I1Klj3uHxwQPg4EGgQYOMz3G8PdxQubAXarjEoXJhr/QX/uXLAyVLSs8vvT5X+0N2xspx2RIiIiIYb4lyKzIS6NBBriEXLsw2Qert4YbK+fOgxs2zqJw/T/Y3hP38JFDFxgIvvwzEx1uw8WbS6ZIfWVGU5AeRPbBiTM7NdbKRXq/H8ePHGZOJHMn588C+fUDx4jInYDYJ4rSyu1dMpFkOcJ1sa/zrd3LLD0VixqazFlnXjE1nUTifh8Ums085Qtg4SjjlCOFy5RxwhHBWEhKkfvO0aUC9epLxLlXKtPdu2iSPFSvMPikwGjNGBiJPnChVxbJTq5b8XoYOlbmK166VexKBgTnaPGmBDXpiDRw4EN26dUNYWBjq1KmD2bNnIy4uDj169AAAvPPOO3juuecwZcqUVO/7/vvv0bFjRxQsWDDV87GxsRg/fjxeffVVBAQE4MKFCxg6dCjKlCmDVq1amd0+IptbvRrYuRNYv1568eRAzZrS+XjTJplSgINvrO/xYwnzR4+aX1o6rS1bZKoIE+8BpqfTyWjib7+VBoWF5XBFZHesHJdjY2NTjTi6dOkSIiIi4O/vj+DgYIwYMQLXr1/Hjz/+CACYPXs2QkJCULlyZTx9+hQLFizA1q1bsWnTJrO2S0QpxMQA7dtLr69VqzKeO8gSSpaU9TdtCvTuLReOap8wcJQxORIrx2Rzr5MnTJiAevXqoUyZMnj48CE+++wzXLlyBb179zZru0SkAkUBTpwATp+Wm+NVqzK2EZmDI4nTYZLYiV29/xhj15zMcpn4W+fxaPcyxF/7D0riM7jlL4p81VvDN6xDhsuPWXMS4aULmT1HcdqE8JEjQESEhhPCaZ06JfNGHTsGTJggNZ/dTPzz1OslU9ugQa5qhRYuLFNYjRkjI5nKlMn+PV5eUt36xRdlzuLQUOCbb4DXXstxM8iR6XTmBc4cnMR26tQJd+7cwZgxY3Dr1i1Ur14dGzZsQNGiRQEAkZGRcEnThjNnzmD37t0Z3oR2dXXFsWPHsHjxYjx8+BCBgYFo2bIlJk6caLW5kYks5tkzOf6/8AKQi04NLi6yip9/Bs6dk5hL1mEsLb1li1zb56S0dErXrgEnT8oAMnf3XDTsuefk5sK2bRLMefzTBivH5cOHD6OpscY55AY1AHTr1g2LFi3CzZs3ERkZmfR6QkICBg0ahOvXr8PLywtVq1bF33//nWodRGQGvR54803g8mVg717g/8+HraZ+fWDxYqBzZzlZGD3autszV06SxrypTrZi5Zhs7nXygwcP0KdPH9y6dQsFChRArVq1sHfvXlSqVMms7RKRjRkMctP88mW5fitfXu0WETkeG9y/djRMEjuxkSuPJ81BnJEnl/7B7d8nwL1oafiFd4bO3ROJD29BH5N5PeJEg4KRK49jSa+6mS9jYkL4tdfkxqnmEsIpKYpkWYcOBUqUkDIh5o7g+eknGWK9d2+uD1r9+wPz5kk56V9/Nf19rVtLGfD33gNef11Gon35pVQmIydio55Y/fr1Q79+/TJ8bfv27emeK1++PJRMbhLlzZsXGzduzFE7iFT3zTdSYur333N9/C9bFggJATZvlk5CTtBR0uauXQP++kvKelevDrRoAXh753x9iiKjv4sWlQqjuda8OfDff8CePUCzZhZYIanOynG5SZMmmcZXAFi0aFGqn4cOHYqhQ4eatQ0iysKgQcCGDVIKunJl22yzUyfg7FnpWVy2rCSM7VXKcyOOMia12eBa2Zzr5FmzZmHWrFlmb4OIVJSYKPeNo6KAunWBYMtU8iRyOhxJnA6TxE7qXFQMdp3PPNlriH+Mu2s/R97StVH45RHQ6Uz7Y9AbFOw6fxfnb8egTBEfsxLCxhHCvr4W2kl7d+OGDL/dtAno2xeYPl2G5prjyRNg1Cj5AHNcZzKZlxcwaZI068ABOecwVaFCkqf48UcZibxjB7BkCdCoUa6bRY6CQZbIdh49kikKevSQHsS5pNPJaOJvv5VYXbt27ptIwpKlpVM6dQq4elUKkVjkcJo/v0x3sXevdFhzmhMyDWNcJtKur76SOYK++ipX1URyZNQoSRR37y4dnS1wHWp1LE1NamNMJqLciI8Hdu8GoqPlRqu1q4cQaZmVY/LOnTvx2Wef4ciRI7h58yZWrlyJjllUf92+fXuG1bVu3ryJgIAAs7adU0wSO6mlByLh6qKDPpORxHH/bYch7iEKPP8OdDoXGBKeQpfH3aRksQt06DMtEvH7KiclhAGpgOG0CeG0fv9dht26u8s8kq1b52w9X3wB3LoFTJ5ssaZ17Qp8/jkweLBMc2nOdbFOB3TrBjz/vIwmbtxYBklPmJDLMpjkGHjhS2Q7kydLgJ040WKrLFZMRqRu3y55Z1Yczp2UpaUBoG1bOf+xxKFPr5fEc5kyQOnSuV9fkkaNkhv98ssWXDGpgnGZSJs2bAA++kjKQH3wge23r9MBCxZIqcuXXpLexSEhtm9Hbpgyyjjta0wYU24wJhNRTsXFyQ3aZ8+AJk2AAgXUbhGRY7NyTI6Li0O1atXQs2dPvPLKKya/78yZM/BNkSwrUqSIWdvNDSaJndS2M7czTRADwNPLEdB5eCEx9h5ur5iExPvXocvjCe8qTeHfvA90bpln/AxQcCnhNhqEVGZCOK3oaLmgX7wYeOUVKRVaqFDO1nXnDjBlitwYKFvWYk10dQU++0zy1qtX52ya45AQSTJ89plUItu4Uapi26oKGqmEF75EtnH5snQSGj4cCAy06KqbNZM5bnfvlurDlDOWLi2d1qFDwMOHVqjy6ekJNG0qja9XT3oOkONiXCbSnhMngDfekIu1mTPVa4eHB7BypZSeevFFqULhqHMNcZQx2QJjMhHlxMOHwK5dcrO2WTMgXz61W0Tk+Kwck9u0aYM2bdqY2ShJCufPn9/s91kCzzqcUGx8IiLvP85ymWf3bwAGPe78MRF5Q2qi8Msjka/qC4g9uh53183Odhu6fI/x7Q+JGDhQRpMyQQwJ6tWqAStWAAsXymjinCaIAakLDQCjR1umfSm0aiVlR4cNk45qOeHqKvmLAwekKkqtWpLTMBgs21ayI8Yga86DiMz3ySfSe3jwYIuv2tdXqkbu3y8Vrck8cXHAmjXA99/LveSePWWQlSUTxE+eSEfyGjUAq3QsrVULKFhQpsPIanQV2T/GZSJtiYqShGxICPDzz3LBpaZChWQ+5Bs3JHGdmKhueyxFp0v9yIyiJD+IssOYTETmun0b2LYNyJuXCWIiS8phTI6Ojk71iI+Pt2izqlevjmLFiuGFF17Anj17LLru7PCswwlduReH7C5jlGdPoTyLh3eVZvB/4T14lQ+H/wvvIV/11nh8aiee3b+e9fsBXL4XZ7E2O7SEBGDECMmWP/cc8O+/Mn9Tbnoenz8v808NHw4ULmyxpqY0fTpw7pxUEsuNGjVkfsv33gMGDJBO79ez/voQEVFmDh4Eli2TMtNWukhs0EAGCG3dapXVa5LBIKN7586VuYLbtgX69LHM3MNp7dol9+EzmLLGMlxdpafYxYtyIkBEROp78kR6HcXHA2vXAj4+ardIVKggnZ+3bpWKWVpMmJqbMNbiZ0BERLZ19apc+BUsKCWmPT3VbhGR0wsKCoKfn1/SY8qUKRZZb7FixTB//nz88ccf+OOPPxAUFIQmTZrgn3/+scj6TcFy004oITH7oZzGctLeFRunet67UhPERmxA/PXTyOP/XK63o3knTwJvvy1lwT79VCbotUSP75EjgYAAybpaSfXqMj/xuHGyC7m5D5E3r4wibtdO8uOhocD8+dLhnDSEJbSIrEtRZPRwlSpAjx5W24yHh1yHrlvHisOmsHZp6ZQePJB+Ao0aWbkjefnyQMmSMpq4dGn1R6tRzjAuE2mDwSBx/9gxKSVhjR5IudG8OfD119I7qnx5mStZq1iamnKKMZmITHXuHBARAQQHA7Vr83hAZGk5jMlXr15NNWewh4eHRZpTvnx5lC9fPunn8PBwXLhwAbNmzcKSJUssso3s8CjjhNzdsv+1u+YrKP9650/9vLfMM2R4GpvtOk7/54LHWVe11i6DQbKitWpJb+8DB2Q0sSVusu7fD/z2m5Sbzps39+vLwqRJUm70s88ss76WLYHjx+U+QqdOkoRmOVMNYQktIutavVp6E8+YYfWkXc2aUkWSFYczZ4vS0mlt2QJ4eUlJcKvS6WTuiTt3gKNHrbwxshrGZSJtGDcO+OUX4KefgLAwtVuTsd69pSPbwIEy0tlZmDLKGOAoY2JMJqLsKYrcNI2IkE5XderwWEBkDTmMyb6+vqkelkoSZ6ROnTo4f/681dafFo80TqhkQW9k14/VPaA0ACAx5l6q5xNj7gMAXL38sny/ogBdOnjDx0dGjXbvLiUY9+2D9hPH169LTeUBA4B335VayzVrWmbdxlFkVavK8F4rCwqS3Zg5U6aasoSCBYFffwV+/FFurletCuzYYZl1k8p44UtkPQkJUo2iZUtJ3lmZi4tUHL58GTh71uqbcyi2LC2d0tWrUqCkaVPA3d262wIABAZKkN66VTq8keNhXCZyfEuWyBQTU6cCr7yidmuyNnUq0KED0LmzTLHkbHIylzGTxs6DMZmIsmK8yDx9GqhWTa7DWIWCyDocICZHRESgmA3L+vGswwl5e7gh2N8r62UqNAIAxB7blOr52GObABdXeASHZvn+kgW9cHi/G+bPB8LDpdrywIHyf19fSRz36KHBxPGvv8rOnTgBbNgAfPmlZUf7rl4N7NkjQ3ttVPpxxAjZhbFjLbdOnU5GER87JtUsmzaV3AfvQTs4nc68AMsTXiLTffMNcOGCjCK2kbJlgZAQYPNmQK+32Wbt2rVrwIIFUl66YkWgXz/bVABTFPk9FC0q9wxspnlzCc67d9two2QxjMtEjm3XLhmh27OnXCzZO1dXGe1cvjzw4osyD4Mzy0nSmLSLMZmIMpOYKPd6IyOBunWBcuXUbhGRtlk5JsfGxiIiIgIREREAgEuXLiEiIgKRkZEAgBEjRuCdd95JWn727NlYvXo1zp8/jxMnTmDAgAHYunUr+vbta7Fdzg7nJHZSTcsXwZIDV6A3ZHwh4h5QGt5VX0Dcsc24YzDAM7gKnkYex+PTu+Fb/3W4+RTMdN2uLjo0LV8ENWvKANo+feT5hATJnR4+LINrjxwBli4Fnj2T68lKlaQ6s/FRrZqUVHQIjx7JneKffgJee00m3C2Y+WeUI8+eAcOGydCuli0tu+4s+PkBo0dLkn/AAKByZcutu0QJGaA0cyYwapSUNf3pJ5lukxyQub2r2DuayDQPHwLjx0vvqtCsO2lZkk4n4eabb4B//pFkqLOKiwP+/lsqfxUrBvTqBRQvbrvtnzolI4m7drXxoTN/fqltvW+flDj1y7qSDNkZxmUix3X+PPDyy9LL+uuvHSdh5O0t5aLq1pVRxTt2ONBFvZWl/B1yLmPnw5hMRBmJj5dOYTExQKNG0iuYiKzLyjH58OHDaNq0adLPAwcOBAB069YNixYtws2bN5MSxgCQkJCAQYMG4fr16/Dy8kLVqlXx999/p1qHtTFJ7KS61A3Gon2Xs1ymYKu+cPMtjNhjf+Px2X1w8yuMAs37wLf2S1m+T29Q8Ha94HTPu7sjKXFsFB8viWNj0tghE8c7d8pd2wcPgMWL5f/WuJhbsAA4d05GK9vYBx8Ac+ZIjtrSU0y5uiZXUH37bbkHPWUK0L8/r4scDi98iaxj8mTgyRNgwgSbbzogQGLv9u2Sn/b0tHkTVGUwyLnJ1q3yc9u2cj5iy8OXXi8J6jJlgFKlbLfdJA0bSi+BrVslYUGOg3GZyDE9eCAjcQsWBP74w0ZzDFjQc88Bf/4p8aNrV+C333h8SSvt/QImjbWPMZmI0oqLk3vKz54BTZoABQqo3SIi52DlmNykSRMoWVSIWbRoUaqfhw4diqEqVw1ikthJlS3qg0ZlCmHvxXuZjibWubohf8O3kL/hWyav11UxILx0IZQp4mPS8h4eyQlgI4dJHMfHA2PGSOnnhg2ll3TJktbZVkwMMG4c8M47Nq4zKdzdJXH7xhvAtm1SHtrSqleXUeYjRsio5XXrgEWLbDtSi3KJF75Elnf5MvDFF8DIkTJHrAqaNZO5cPfskerDzuLaNSkrffMmUKOG7Lu3t+3bceiQDCbv3Nn22wYgPQOaNJEPo149GUpNjoFxmcjxPHsmlanu3AH27wf8/dVuUc7UqAH8/DPQsaOcw0ydqnaL7Jspo4zTvsaEsWNhTCailB48kCl93NzkgjtfPrVbROQ8GJPTYZLYiU1+ORQtZu3INElsPgVuic8w+YeRQP05Oa4ZnNvEcViY5FEtORVwOidOyLDX//6T7OngwdadI3j6dCA6Gpg40XrbyMZrr0nVsMGD5Ya1NY6Pnp7ArFlAu3ZA9+4yau3rr1W8MU7mYZAlsryRI2Uk0eDBqjXB19e5Kg6rXVo6pSdPpA9ajRpAkSLqtAGAnGAdOABs3Ah068Yb046CcZnIsSiKlHDatUsCUdmyarcodzp0AGbMAAYNkvkVe/ZUu0WOgaOMtYkxmYiMoqKAvXsBHx8ZdORs5bqI1MaYnA6TxE4syN8L4ztUxvAVxy20Rh0mhAcgaMMdi9cMNiVxfPhwxonjsLDkEce5ThwbDDKia8QIoHRpuWFao0YuV5qNGzdk0t4BA4CgIOtuKws6nQyafv55YPly4C3TB5ibrUUL4NgxuUfy5ptSrWzePJkakewYgyyRZR08KKNwFixQZwhrCg0aaL/icNrS0u3ayRQZah6qdu6UdtlwKpqMubrKvBDLlsnUF+XKqdwgMgnjMpFjmTED+P57Kaf0/PNqt8YyPv4YOHsWeO89ICTEDgKaA8pJ0thOE8Zx8Ym4fC8OCYkGuLu5oGRBb3h7OMltScZkIgKAyEi5zi9aVHpiuznJMZDInjAmp8MjkZPrXDsYd2PjMWPTWUABkItriSEty6NT0zJA28My8snKNYOzSxwfPpzxiGNj0tjsxPG1azK8dcsWSX5PmWLl4cr/b8wYqac9fLj1t5WNRo2Al16SX+8rr1i3s5u/vySjO3QA+vaVDvWLF/O+gl1jkCWyHEWRkTehoRJ7VObhIcfftWulqoRKla+t5upVqaZ865b0/WrRQqWpLFJ48EDuHzRubCfVx8qVkxv8mzZJRzlrVlAhy2BcJnIcK1cCw4bJhVa3bmq3xnJ0OmDOHODiReDVV6UsSfnyarfKsZlSmtqORhmfi4rB0gOR2HbmNiLvP0bKlukABPt7oWn5IuhSNxhli5o2bZlDYkwmonPnpFxViRJyc5p/50TqYExOR/t7SNnq17QshjQOhaJ3gc7MLLErFHi4uWDaK6Ho27SMPOnpCXz+uZTIOn1abnAvX26FlqdnTBy/+y7w7beSJI6JkYTxV1/JVHr//isdmuvXl8oe1apJ5at582TapydPMljx8uWyH6dOyc3R2bNtkyA+cQJYuFASxXZS33PaNMmXz51r/W3pdECXLjKquHRpmQ9y8GDpDEB2yBhkzXkQUcZWrZI5imbMsJtkXI0aQOHCEgazmi7PkcTFAatXAz/8IDGnVy/pnKR2ghiQ0yhvbzlfsQs6nYwmvnNHhpWT/WNcJnIMR47IRc9rr6k6vZDV5MkD/PorEBAgZTru3VO7Rdqh06V+ZEZRUj9s4Or9x+j6/QG8MHsnlhy4gitpEsSAjFO4cv8xlhy4ghdm70TX7w/g6v3HNmmfzTEmEzkvRZEbmxER0lGqdm3+jROpiTE5He3vIZnkwLJgJKxsjHohBQEAri5ZJ4uNr4ffPI2/+9ZHp9rB6Rdq3hw4fhxo3VpqBnfpAjx8aOmmZyurxPG8eTIiKtPE8WePsb/VWDx5s4fcGD1+HHjhBds1ftgwGbXz/vu222Y2ypeXz/LTT4H7922zzeBgGcA9fbp0RK9dW34VRESalJAADB0KtGolscdOuLhICLxyRSpHOjKDQUbpzp0r/dnatQN691Zv7uG0rl4F/vsPaNZM7q3bjcBAOUnatg14+lTt1hAROb5r14D27aVD8uLF2r0JlT+/lCN59EhKUrHXr3WYkjAGrJ4wXn4oEi1m7cDei9IhQG/IejvG1/devIcWs3Zg+aFIq7SLiMjmDAbg0CHgzBmgenWgalW7nRKAiJwXy00Tjh4FfvoJ+PprL7z3bt3kckBnclPeSgABAABJREFUbyPyXgblgAp6oWm5Ini7qAFlGrwEhOqkJGZGChSQ+RTbtwf+9z+7qRmcWanq48eT5zg+sj0GPy30wDOMh6vLWFQ+rUOtwbqclarOia1bpfblr78C7u5W3JD5xo4FliyRRPHMmbbZpouLjCJu2VL6G4SFAZMnS3Jfq/dSHA7LdRBZxvz5UpZx5Uq1W5JOmTJAqVLA5s3yfzsZ5GyWlKWla9aUPm32MHLYSFFktHZAgNxDsDvNmwMnTwJ79sj/yX4xLhPZt9hYuU7Ok0fKWtiiUpWaSpWS/WzWTOYoXriQN8qtKSdzGWf0PjPN3XZOpjPLAb1Bgd6gYPiK47gbG49+Tcvmqi12hTGZyPkkJgJ79wK3b0tpy6AgtVtERABjcgaYJHZyigIMGSKjQ3v1kufKFvXBuA6VMQ6VERefiMt7jiDh7Xfg/tOPKNmgFrw9Unxt3n0XmDQJ6NFDJpHNzFtvAQ0byvxKzZvLfMWffirZWjvh4SGJx7DQeOD8KOD8TMQ3ao7jQ37EkRvFkpLHP/2UPMdx5crJyeawMLmZa5Fre4NBfjF160rZMTtTtKgMcps0CejXTwY720rVqtIJ75NPJGm8bp30O+C5lh3Q6cwLnLwpRJTew4fA+PFSzqJKFbVbk45OJ6OJv/lGYmKdOmq3yHRxcVLCOSJCBsT27g0895zarUrvv/9kYFnXrnZ6LeLnJ6VX9u6Vkx87mQ6DMsC4TGS/9Hq5Rr5wQTrdBASo3SLbCA+XOR66dJG57keOVLtFziMnSWMz48LyQ5E5ThCnNWPTWRTO55Fx1TpHxJhM5FyePpXpo2JigOefB4oUUbtFRGTEmJwOk8RObuNGKeO7ejXglsG3wdvDDZXz5wFungXy5wE80ixkHFI6ebLMm5gVY83gWbPkYnDTJmDpUimtZS+OHwfeflvmHp42DR4DByLM1RVhKRZJN+I4k8RxWJj8m6PE8c8/y3x/u3bZ7YFo4EDg668lWbtsmW237ekpI5jbtZN+B6GhMuf0W2/Zth2UBntiEeXep59KoJkwQe2WZCogQCpl7dghMc7TU+0WZc1gkCkmtm2TkNqunYwgtsdDUGKinCqVLSsDruxWw4ZynrJli5QNJfvEuExkv4YOld6ua9fa1/WwLbz1lsxb8cknEvBef13tFjmnlPcZLDDK+Or9xxi75mSGryXcuYJHu5ch4dZ56OMeQpfHA3kKBsG37ivwKls303WOWXMS4aULIcjfjkq+5BRjMpHziI2V+7mJiVJJM39+tVtERCkxJqej/T2kTOn1Mlj1+eelylWOGIeUzpkDXLqU/fIuLlKa+tAh+TksTLJ9BkMOG2AhBgPw+efSHr1e2jdkSIZ1NI0jjt97L/Ucx4cOJc9xHBEBDBgg1USMcxz36iWJzAMHgCdPsmjL06dywdyxo9yEtVPe3pLD+PlnufmuhmbNgGPHgLZtpTP6m28CDx6o0xZCcpA150FEyS5dAr78UuJqsWJqtyZLTZvK1Mm7d6vdkqxdvQp89x2wfj1QqZJUvwgLs9/Dz6FDMpj8hRfUbkk2PD3lS3DsGHDjhtqtocwwLhPZp2++kWvPL74A2rRRuzXqGDtWLt7eeUcukEldKecyzqqTesq5jNMkkEeuPI7ETOYe1kffhiHhCbxDm6NAiz7wC+8EALjzx0TERGzIdHOJBgUjVx43f3/sEWMykXN48ECmDwTkpiUTxET2hzE5HY4kdmI//gicOCHXZLkarGocUjpqlIwMNkXVqsDBg/KeIUPUrRl89aoMR922TSa4nTzZ7GFRSaWqUww5Tjni+PBh+ffHH6UjmaurVBE1lqo2znHs6Qlg7lypM7lxo2X30wq6dwdmz5ayz8YRWrZWoICMZG7fHvjgA/lqLVrEaRJVwZ5YRLkzciRQsKB0prJzvr5SMXLPHol99nbt6yilpVN68gTYuVNGORcurHZrTFCzJrB/v1SG6dbNbiufODXGZSL7s3kz0Lev9Frq10/t1qhHp5Oy01euAC+9JDclSpRQu1VkZMoo4xSvnYuKwa7zdzNdLG/p2shbunaq53xqvYibiwYg+uAq+FRvneH79AYFu87fxfnbMShTxMf09tsjxmQi7YuKkil5fHyARo3saopFIkqBMTkd7e8hZejxY8nPdupkgfkEjUNKly0zb0ipp6eUqN6yBTh/Xsps2bpu8bJlst2zZ+Vu8uefW6xuZsoRx999J1UZY2NllNDcuUDt2sDRo0D//skjjquHJqLXJ0XxVfhPOPCwPJ4+tUhTrMbNDZg2TUqOrlunblvefFOS8mXLAi1aSN8Fe//8NIc9sYhy7sABYPlymezd21vt1pgkPFxCprGjtD0wGKQP2pw5wJkzwIsvSiUPe08QA5IgNhiAJk3UbomJXF2Bli1lBPxZy8w/SBbGuExkX/77D3jtNTl2zpqldmvU5+kJrFoFeHlJwI6OVrtFlBETRhkvPRgJVxfzOovpXFzh5lMIhvjYLJdzddHhp/2RZq3bLjEmE2lbZKSUmC5USC7omCAmsl+Myelofw8pQ7NmAXfuyKBZi+jeXSbjHTIk656mGTGWK2zXznY1gx88kO106SIlvo4ft8nQU2Pi+P330yeO58wBauMwjiaGov++TsmJ4+rJpaoPHrS/xGfbtvIrHDZMRkmrKShIcv0zZ0rp79q1gX//VbdNToVBlihnFEVGD1etKiMyHYSHhxz/jx+3j4rDkZEyDcT69XJK0q+fVOpwhEPN/fsS4xs0APLlU7s1ZihXDggJkdHEer3araG0GJeJ7Mft25IIDQ6WTmFuLOoGQEpnrF0rQbxzZ/UvKCl7GSSNt525A30mpaZTMiQ8hf7xIzx7cBPRB1fhycUj8CxRLcv36A0Ktp29bZGmq4oxmUi7zp6VTt/BwXJBxxhPZN8Yk9PR/h5SOrdvy+jPvn2BUqUstFLjkNLt24G//jL//fnzS6nqn38GNmyQG+XWGpq0dausf/365G0WKGCdbZkgKXHc6hK+O9sY/4xfi5gYXdJIqJQjjuvWtb/EsU4HfPaZdIxfuFC9dhi5uMgo4sOHpW116kj7eO/aBmwUZOfNm4eSJUvC09MTdevWxcGDBzNddtGiRdDpdKkenmmqBSiKgjFjxqBYsWLImzcvWrRogXPnzuWobUQ5snKl1G2eMUNGZzqQGjXk/u6mTeb3EbOU2FgZiLRwoXx8vXvLFAReXuq0Jye2bJEB5PXrq90SM+l0QKtWwL170vON7IuV4/LOnTvRvn17BAYGQqfTYdWqVdm+Z/v27ahZsyY8PDxQpkwZLFq0KGf7RuRInj4FOnaUcl5r18qcDZSsUiXg99/lZOLjj9VuDZkpNkGPyPuPTVr2wdYFuPZlF9z4pg8ebPsBXuXqw7/lB9m+L/LeY8TFO3gHAhtcK5tznQwAv/32GypUqABPT0+Ehobir5zcyyNyZooiI1P+/ReoUEFu4DpBMonI4TFJnI7295DSmTBBvtujRll4xcYhpUOH5rwHcOfOMqq4XDkZ2WvJmsFPn8r6mjeXmsTHjgFvvWWZdVvCJ5/IXJQffwxPTzm3SDniOCYGJiWOv/7a9onjWrXkoxwzRm7W24PQUBmh/dFHMsq5eXOZ8oqsyAZB9pdffsHAgQMxduxY/PPPP6hWrRpatWqF27cz713u6+uLmzdvJj2upPkiTJ8+HV9++SXmz5+PAwcOwNvbG61atcJTexu2T9qUkCAHqdatgRdeULs1ZnNxkWZfuSLlnW3JYJAO23PnSudtRyotndLVq9LRqlkzIE8etVuTA8WKSee7bdvsr9yJs7NyXI6Li0O1atUwb948k5a/dOkS2rVrh6ZNmyIiIgIDBgxA7969sXHjxpzsHZFjUBSgZ0+5eFuzhvPuZuaFF6QU1Ny5csFLDuPKvTiY2k/Qt/ZLKNJ5Egq2+xh5S9WCohgA/bNs36cAuHwvLlftVJ2VY7K518l79+7Fm2++iV69euHo0aPo2LEjOnbsiBMnTlhib4m0zzjP0dmzckM2NDTTkvxEZGeYJE5H+3tIqZw9C3zzTXI+0qJSDinNzaiAoCBg82aZH/irryxTM/jYMVnPvHkyUuvvv6UMiL04fFhGNE+cmOlclKYmjj/6KHXiuHdvSRxb+1z/00+lXObnn1t3O+bw8JCv5NatwMWLcg/7p5/UG+2meTYIsp9//jn69OmDHj16oFKlSpg/fz68vLzwww8/ZPoenU6HgICApEfRokWTXlMUBbNnz8aoUaPw0ksvoWrVqvjxxx9x48YNk0ZEEeXa11/LAeqzz9RuSY6VKSOVSf7+23ZVG4ylpTdscLzS0ikpigycCggAqmVdbdG+NW8OxMcDu3er3RJKycpxuU2bNpg0aRJefvllk5afP38+QkJCMHPmTFSsWBH9+vXDa6+9hlmcm5W0bPx4uc778UcpcUSZe+896dQ9YEDOqpORKhISDSYvm6dgEPKWrI58oc1R5PWxUBKe4vbvE6CYcIFuznbskpVjsrnXyV988QVat26NIUOGoGLFipg4cSJq1qyJuXPnWmJvibTt2TO57rl2DahXTwYiEZHjYJI4He3vIaUyYgQQGAh8+KGVNpBySGlcLnp6urhIqanDh+X/Oa0ZrNfL+2rXliT2oUMy76M9/XErCjB4sNzl7t7drLeakjg+ckQSx8ZpLt96KzlxbMkRxyVLyvdq+nTg1i3LrNNSmjSRfgLt2wNdu8qA9fv31W4VGUVHR6d6xMfHZ7hcQkICjhw5ghYtWiQ95+LighYtWmDfvn2Zrj82NhYlSpRAUFAQXnrpJZw8eTLptUuXLuHWrVup1unn54e6detmuU4ii3jwQMp79OoFVKmidmtyTKeTAUD37knMsSYtlJZO6b//5N5Cy5YO3vHczw8IDwf27QMePVK7NZRLpsZlc+3bty9VvAWAVq1aMd6Sdi1dKkniTz8FXn9d7dY4hunTpTRIp05yAUd2z90t5/dWvCo0QMLNc0i8f92q23FkpsTknFwnMyYT5dDTp8COHXLx26iRDHQiInJwznmW5aT27AFWrJBr1DRTclrWp59KsJw5M/frqlJFMpn9+5tfM/jKFVl+2DDJXh48KENJ7c26dXKCMX26ReaiTJs4PnpUEsc//iivV6iQnDg2jjiuUcMyieNPPgHc3eVeiL3Jn19GES9fLqO2qlaVUW9kQTqdeb2w/j8jEhQUBD8/v6THlClTMlz93bt3odfrU40EBoCiRYviViY9E8qXL48ffvgBq1evxk8//QSDwYDw8HBcu3YNAJLeZ846iSzm009l9OWECWq3JNcCAqR6xfbt1qk4nFFp6d69Ha+0dEqJiRKHypYFQkLUbo0FNGwoJTy2bFG7JWRk5bhsrlu3bmUYb6Ojo/HkyROLbIPIbuzZI2Wmu3WTntpkGldXSa6XKSPBnufjdq+kvxdy2s9NeSYJT0N81gMMdABKFsy44prDsGJMzsl1cmYxmdfARFmIjZVShU+eyHSLRYqo3SIiyokcxmQtc1O7AWQbigIMGSLJQKtPw5tySOl77wFpTjzN5uEh62rXDnjnHcnuzZsHdOmS8R+posiFZd++MrJlyxYJ3vYoMVHmcG7WDGjTxmqb8fSUgcqADPKuWVNu4h8/LoO1jxyRx+LF0iQ3N8nP16olj7AwmV4ju84FBQrIXNdDh0pev0IFq+1SjnXqBDRoIIO2X3hB2jllCpA3r9ot0wBzS3D8/7JXr16Fr69v0tMeHh4Wa1L9+vVRv379pJ/Dw8NRsWJFfPPNN5g4caLFtkNktosXpeTDqFGSYdWApk2Bkyel8laagQm5EhkpVSejoiQmNWvmuCOHUzp0SAbdWv28zFY8PORLsHatlF0LDFS7RWSHcZnIKVy8CHTsKMfCb791ihtLFpUvH/Dnn9Kj+aWXpAcaL9bsR5rS0N4ebgj298KV+48zfYs+7iFcvfOnXo0+EXEntkLn5oE8hbKeCiy4oBe8PRz89iVjMpFje/AA2LULyJNHLkgzmSqQiBxADmOyljn4WRaZasUKqQD49982+l5/8gnwww/AuHEyPNUSGjeWklP9+knN4D//lHX7+ycvc/8+8MEHwK+/yl3XefNkCKm9+uEH4NQpYMkSm988MI44rl07+TlTE8dhYfJvRonjvn0l7zFsGLB6tU13yWTFi8to4i+/BIYPlymwly6VUXCUCzkMsr6+vqkufDNTqFAhuLq6IioqKtXzUVFRCDAxyZYnTx7UqFED58+fB4Ck90VFRaFYsWKp1lmdXwiyppEjgUKFZO49jfD1BerXl8FTYWG5D7+xsXLe8u+/km/s00c7ecfHj4GdO6XTVuHCarfGgmrWlCHfGzdKbywmRtRl5bhsroCAgAxjuK+vL/IyAURa8fChdG7On18uwt3d1W6RYypeHFizBnj+eRmNvXy5U9ygs0smzBfctHxhLDkQCb0h42XvbZgLJeExPIKqwNWnIPSxDxD333Yk3ruGAs16wcU98xjg6qJD03IaGK1nxZick+vkzGKyqdfVRE4lKgrYu1cueI3Vk4jIcTFJnI7295Dw7Jkkwtq0kerLNmEcUvrdd8Dp05Zbr5+fJFR/+UUyeylrBv/9t/y8aRPw88+S9bPnBHFsLDB2rIyIrlVL7dYASE4cf/ABsGBBcqnqAwckoVqrliSOP/xQpolOWap6/nwZFaUowOTJck2/c6fae5Q5FxdgwABJiOfJI/szbZr5015TCuaU6jA3IANwd3dHrVq1sCVFKVODwYAtW7akGi2cFb1ej+PHjyclhENCQhAQEJBqndHR0Thw4IDJ6yQy2/79EscmTdJcD+QGDWSwz9atOV9H2tLS7dtLnNFKghiQ+GgwAE2aqN0SC3N1lQmWL1+WXx6py8px2Vz169dPFW8BYPPmzYy3pB3Pnsncw1FRMqVQwYJqt8ix1aol1/S//w6MHq12a5yLoiQ/MqPTJT261C2RaYIYALwrNgJ0Log5+hfub/wKMYdWwc2nEAq/Ohq+dV7Osil6g4K362U90tghWDEm5+Q6mTGZyERXrsgI4kKFZPASE8REjs/OrpPtAUcSO4FvvpGKVytW2HjDxiGlw4cDq1ZZdt1vvJG6ZnD16kBEhJT8WLQICAqy7PasYeZMGfk8aZLaLcmSp6ckUOvUSX7u6VMZ1G0cbZzRiONChaTT9y+/ANWq2e95VJUqkowYM0amC1u3TuZvLllS7ZY5IBv0xBo4cCC6deuGsLAw1KlTB7Nnz0ZcXBx69OgBAHjnnXfw3HPPJc3VNGHCBNSrVw9lypTBw4cP8dlnn+HKlSvo3bs3AECn02HAgAGYNGkSypYti5CQEIwePRqBgYHo2LGj2e0jypaiAIMGyYHxnXfUbo3FubtLxWFjlUhz5wzWamnplO7fl05VTZpIRU3NKVsWKFVKOu2VKSOJY1KHleNybGxsUmUOALh06RIiIiLg7++P4OBgjBgxAtevX8ePP/4IAHj//fcxd+5cDB06FD179sTWrVvx66+/Yt26dWZtl8guKYr0pN2+XTozlyundou0oWNH6ck7dKh8pt26qd0ibTJhtDCATCuElC3qg0ZlCmHvxXsZJou9KzWGd6XGZjfL1UWH8FIFUaaIj9nvtTtWjsnmXif3798fjRs3xsyZM9GuXTssX74chw8fxrfffmvWdok07cwZuflZsqRcnDpBoojIKXAkcTpMEmvco0fA+PGSSw0NtfHGPTxkSOlbb0mvq0aNLLv+556TC8a2bSVBXLQo8NlnjpEgvnVL2vrRRw6ZjTQlcRwTA1y4IEkCNzf5/hnnOK5VSwZ920vi2MMj+atknPZ67lypap6TSplx8Ym4fC8OCYkGuLu5oGRBb8efQ8kUNgiynTp1wp07dzBmzBjcunUL1atXx4YNG1D0/+c+j4yMhEuK9T548AB9+vTBrVu3UKBAAdSqVQt79+5FpUqVkpYZOnQo4uLi8O677+Lhw4do2LAhNmzYAM/sJuEmyokVK6RU1ebNmk2eVa8unW82b5Z7uaYcR1OWln7uOW2Vlk5ryxZJDterp3ZLrESnk9HE33wjJwQpTxbItqwclw8fPoymTZsm/Tzw/8vnd+vWDYsWLcLNmzcRGRmZ9HpISAjWrVuHjz/+GF988QWKFy+OBQsWoFWrVmZtl8guzZolx70fftBgmQiVDR4s1Sn69JFr58bmJxspA6Ykhs24GJ78cihazNqR5Yhic7m56DD5ZVvfyLISK8dkc6+Tw8PDsWzZMowaNQojR45E2bJlsWrVKlSpUsWs7RJpkqLIDc6zZ4GKFYHKlTmNDpGWMEmcjhNkLZzb9OlAXBwwYYJKDejUCfj8c7mw27/fckFVr5eRuKNGScCeP1+y4fXqARMnyvbs+eb7uHEy3GrkSLVbYjEZJY7btpUb/sOHy7+HDslA78REKfFsnOPYXhLHxmmvP/xQEht//ilfLVMqxZ2LisHSA5HYduY2Iu8/RspLYx2AYH8vNC1fBF3qBqNsUQ30hM6IjYJsv3790K9fvwxf2759e6qfZ82ahVmzZmW5Pp1OhwkTJmCCagdKchoJCTJhe5s2QIsWarfGalxcpMjH0qXS+bpChcyXNRgkNmzbJu9r316mMdDqNXhkJPDffzIwKk8etVtjRcWKyWj57dsluLPTjTqsHJebNGkCJYskw6JFizJ8z9GjR83aDpHdW7NGrj+HDQP+f9QeWZBOB3z1lZRHe+UVua9QtqzarXI8uRwtnJ0gfy+M71AZw1ccz9H7MzKhQ2UE+WukpIwNrpXNuU4GgNdffx2vv/662dsh0jTjBWpkpFyYlimjdouIyNKYJE6HSWINu3ZN8rODBplf7tFiXFxkxGzTpsBvv0mZ6Ny6fFkyeLt2ycX4xImSWWzTRub4tfeawadOyYS/06fL3M0aNmOGjCDW62WXgdQjjg8fzjpxHBYm77dl4tjPT7467dsD770n21+0SAZFZeTq/ccYufI4dp2/C1cXXYY9pxUAV+4/xpIDV7Bo32U0KlMIk18O1c4FrxGDLFHWvvoKuHQJWL1a7ZZYXZkyQOnSMpq4bNmM+21duQKsX59cWrp5c5nPWKsURSowBwRI3lTzmjUDTp4Edu/WdKcIu8a4TGR9R48Cb74JvPyyVNEi68iTR+Ymrl8faNdOEsX+/mq3yr5ZOSmckc61g3H35z8wwyP35daHtCyPTrU1MBexEWMykf179kyqft29K/GmeHG1W0RE1sCYnI7299CJjR4N+PjI9D2qatIEePFFSd4mJOR8PYoi2buqVSVRvG2bJFqNGUQPD2DqVBm1Ehkpy/34o+kXR7YyfLiUxO7bV+2WWF2lSkCvXpLHf/hQnjOOOP7gA+D776VSeEyMlCadPVs66h06JKN5a9eW73DNmlJd7JtvJLEcH2/9tr/+OnD8uCStW7WSyuBPnqReZvmhSLSYtQN7L94DgGxLaxlf33vxHlrM2oHlhyKzXN7hGIOsOQ8iZ/HggZT16N1bylU5gRdekPl3jxxJ/XxsLLBypXTAcXOT4/uLL2o7QQzICOLr16XTkVZHSqfi5yc3V/btSz4JINtiXCayruvXpWdppUrAkiX8G7K2AgWkM/j9+8Crr+bu3oJWKUryIzM6XeqHJc2Zg36zBmJqoQfwcHOBq4t563d10cHDzQXTXglF36YaG73HmExk354+lfvJ9+/LdIlMEBNpF2NyOtrfQyd17BiweLEMrPX1Vbs1kAlfL18Gvv46Z++/d09GIXfrBrz0kuxgZnMRPf+81DZ++WVZ/o035P32YOdOKUc2ebL9TMhrZePHy7nWlCmZL2NMHP/vf1knjvv2tW3i+LnngA0bgC++AL77Tka6/fOPvDZ32zkMX3Ec8YkGs+dd0hsUxCcaMHzFcczdds7yDVeLTmdegHWKLAnR/5s0SXomjx+vdktspmhRmZ94+3aJAwaDDPyZOxc4d07uq/fqpd25h1NKTJQ5l8uVA0JC1G6NDTVsKEF+yxa1W+KcGJeJrCcuTgKZTifXd14aqxBkr0qXlp5me/cC779vfx3CbS1lUtjUxLC1/PUXMGAAMHAgOg96G39/3BjhpWTepuySxcbXw0sVxN8fN9bWCGIjxmQi+xUbC2zdKhetTZsCRYqo3SIisibG5HRYblqjhg6V8o7vvqt2S/6fcUjphAmSuM2f3/T3btoEdO8uwfqXX0wrWe3nJ1lyU2sG24KiSHnssDCZq9lJFCsmuz1tmiSBS5Qw7X0ZzXH85ElyqeojRyRxvHChlLM2lqoOC0suV22JUtUuLjKKuEULoEsXmfa68yeR2Pn0bO5W/P9mbDqLwvk8tHEhzHIdRBm7eBGYMwcYM0ZqDTsRY8XhdeuA27flERYmz2t95HBKBw8Cjx4Bb72ldktszMNDbrT8+aeMKnaGHgH2hHGZyDr0erkwOHdOSuoXK6Z2i5xLo0bSs7hrV6B8eZkL2pmYkhi39c3MY8fkHseLL0q1N8gcxUt61cW5qBgsPRCJbWdvI/LeY6RsvQ5AcEEvNC1XBG/XC0aZIj62bbctMSYT2af79yWWu7vLYCRvb7VbRETWxpicDpPEGrR5M7BxI7BihSTO7Mb48cDSpVISeurU7Jd/8kQu+ObMkQzdokXmT6782mtAeDjQo4fUDP7wQ8lWqnFn+tdfJau5bZtTHFxSGjxYRvyOHi0VwHMqb16gbl15GKVNHB88CPzwQ3LiODQ0OWmcm8RxpUoysnnQ2MdYHXMSLm6Qq9osPNr7Cx7uXII8hYIR2PurTJcbs+YkwksX0t4cxUQkRowAChcGBg5UuyU2p9NJdcgTJ2RkcZ8+zpcnfPwY2LVLYlDhwmq3RgU1asgQ8o0bpdOfE/TCJSKNGz5cOr+sWQNUq6Z2a5zT228DZ8/K76JMGSk/rVUqzC1sllu3JDlcpozc73F1TfVy2aI+GNehMsahMuLiE3H5bhwS9Aa4u7qgZCFveHvwtiQRqeTWLalM4ecnFZCcpOIjEVFaPBvTGINBRhE3aAB07Kh2a9JIO6Q0OIuRk//8Ixd+Fy9KveEPP8x5YjUwEFi/Hpg3Tz6cv/8GfvpJ6hXbSny8JAlefFHmaHYyPj7AuHHya//4Y7lfbCmmJI4PHLBM4tjdHXhY5jjcLijIrsJ0YvRdPNr3K3R5PLNdb6JBwciVx7GkV91sl7Vr7IlFlN6+fdJJaOFCpypFaTBIp53t2+VP3cNDEqTOliAGZKYJg8Epw79wdZVKLkuXAmfOABUqqN0i58G4TGR5330HzJgh16jt2qndGuc2frwkirt2lXsLtWur3SLLsPekcEqPH8t0YHq9dJzIly/Lxb093FA5MMV8aPawD7bCmExkX65ckYE8AQFSMtCNKRIip8GYnI7299DJ/PSTzOf62Wd2er49eLCUmh49OuPX9XqZvLZePbmjfOQI0L9/7v8YXVwk0XzkiNQxrltXtqPX5269pvr6azkBmTbNNtuzQ717SzWwIUOsP3WUMXFsnOP4339ljuP9++V+TvXqkjhOOcdxrVpSnv2bb+RrktEcx+eiYrDr/F0YTNiBB9u+h0dgebgHlMl2Wb1Bwa7zd3H+doz5O2tPzJnPwdyATOSIFAUYNEgOOl27qt0am7lyRY6lGzdKJ5wPP5Qc4YkTwPXrarfOtu7dk3sPDRs6eeWysmWBUqWk3I2tzr2IcZnI0rZskQuM//1P5qMhdel00gmvWjWgQwcgMlLtFuWcufMK28PNHoNBphI7cUJG1RcvrnaL7BtjMpF9UBTpuHrwoMyHFx7OBDGRs2FMTkf7e+hEnjwBRo2SSkv166vdmkwYh5QuWSLZ7JQuXZJhNp98IiU5DxwAKle27PYrVZJM4ZAhsp0mTWS71vTwITBxomRJK1Wy7rbsmJub5Mi3bJHEga1llziuVi05cRwWljpx/O23kjj+cW8kXF2yvyB/GnkCj0/vQYHmpk8K7uqiw0/7HfjGBsAgS5TWH3/ISOIZM9KV3tOimBhg5UqZHSJPHikt3a6dHH+rVweKFAE2bbJ+RyF7smWLDKqpV0/tlqhMp5OeAvfuSUAl22BcJrKcU6fkQrt5c+CLL+wjSUdykrFqlXQwb99eTkYcQcqksKmJYXszerSc6y5dKhfOlDXGZCL1KYrcDDx2DKhYUW7+8W+NyPkwJqej/T10Il9+Cdy8KQNk7VraIaWKIneUq1UDrl6V2pRTp0ptX2twdwcmT5b6j9euyXYXLbLeXespU2RY6rhx1lm/A2nfHmjUSH719jCQKGXi+IcfUieOZ81KThz/739y7rhw423os6kzrRj0uL95PvJVawn3IiVNboveoGDb2du53COVMcgSJYuPB4YNA9q2lRvKGmYwyHFz7lzg/HkZzNOrV+rS0i4uwAsvyCCf06fVa6stRUZKTqFZM0maO71ixSSwbtsGPH2qdmucA+MykWXcvSvTBhUvDvzyC0cc2ZuiRYF164DLl4E337SPC82MOOJo4cwsWiT3VKZPt8N5zuwUYzKRuvR6ucF37pzMgVelin0fZ4nIehiT09H+HjqJu3flHP2DD6Sin10zDin9+2/gt9+A114DevQAXn5ZsnTPP2+bdjRsKNt79VXZ/muvyQdpSVeuSE/zwYPl5qiT0+lkQN2JE8CPP6rdmowZE8d9+6ZOHG/dmQi3Ao+zfX/s0fVIjL6D/M+bX1o28t5jxMUn5qTZ9oFBlijZV1/JzcrPPlO7JVaVsrR01apAv35yzZ3R9XaZMkDp0hL+7fX+raUoioyaLlZMPhf6f82bA8+eAbt2qd0S58C4TJR78fFynRobC6xdC/j5qd0iykjlysCvvwIbNshUH/ZAC6OFM7Jjh5Tb6t3bfj5rR8CYTKSeZ8+A3btl7qP69eXClIicF2NyOtrfQycxaZL8m9lUv3anfXvptdWli4wo+e03YPFi2190+/rKPEZ//CEXO6GhcmFpKaNGyRzMgwdbbp0Ork4doFMn+WgeZ59ztQt58wJFSsdlu5z+STQe7lqK/OGd4Opl/ndZAXD5XvbbsVsMskTi/n2ZZqBPH81OMxATA6xYIQNJ3N3lXqGxtHRWXngBePAAOHzYJs1UzcmTcg/ihRcc556vTfj6yrxf+/fLdBxkXYzLRLmjKJIIO3QIWL0aKFlS7RZRVlq1kvJqX3whnfVsLSdJYUc7STh3DnjlFSkP9tVXjtd+NTEmE6nj6VOpWPnggQxK4vzpRMSYnI7299AJXLgg5+fDhwOFC6vdGhM8fgx8+KEMJ01MlMz2a6+p26ZXXgGOH5dJE9u0kaFQuc1gHj0K/PQTMH68TEhISSZPBu7ckbmAHUVCoiHbZR7uXAKXvPngE9beqtuxWwyyRGLSJOmtPH682i2xOL1eplmeO1fOPzp0AHr2NL1YRtGiEmp37NBuxeHERJmLuFw5ICRE7dbYoQYNAE9P+ZDIuhiXiXJn0iS5nlu8mJPLO4r//Q/o3x/46CMpc2JtWk8Kp3T/vvQILFwY+P13zqVhLsZkItuLiQG2bpULz6ZNHeSmORFZHWNyOtrfQycwciRQpIhcC9m9I0eAWrWA77+XXr6vvw7MnGkfQ0qLFQP++kvufH//vbTzyJGcrUtRZOLdChVkYkZKpVQpKec8dSpw2wGm4Y2PB86fzfpw+ez+dcRGbIRPrQ7Qx9xH4sMoJD6MgqJ/BsWgR+LDKOifxGS7LXc3Bz4s63TmBVhHvklClJkLFySODB8uGVENuXIF+PZbYPNmmVo2q9LSWWnaVBKpWq04fPAg8OiRjCKmDHh4yJfg2DEZbk3Ww7hMlHPLlwNjxgATJkgZJHIcM2cCrVsDb7whHdMtSaslpLOTkCAd6+/fl/mfCxRQu0WOhzGZyLbu35cEsYuLTHnD6SKIyMjKMXnnzp1o3749AgMDodPpsGrVqmzfs337dtSsWRMeHh4oU6YMFi1alLN9yyEHzkYQABw4IFPvTJoEeHmp3Zos6PXAp59KD+y8eSX5+uGHyVlCexlSqtNJ9vLoUcDbW9r76adyN9scGzfKCJlp02QOZkpn1Cg5zk6YoHZLUouPlzKo8+dLpdiaNQEfH6BTW+8s7wPoY+4BigEP/v4G1+f3Snok3DiDxPvXcX1+Lzza83OW29YBKFnQ27I7ZEvsiUUEjBghPbc+/ljtllhM2tLSffoAbdtmX1o6Mz4+UnH4wAHtVRx+/BjYuVP6mRUqpHZr7FiNGvJ3smlT1jfZKXcYl4lyZt8+oHt34O235aKFHIurK/Dzz1Ie/MUXgaio3K3PmUYLZ0RRgPffl7+LVauA0qXVbpFjYkwmsp1bt6TEtI+PdE616xvmRGRzVo7JcXFxqFatGubNm2fS8pcuXUK7du3QtGlTREREYMCAAejduzc22qIqzv9j9sqBKYpMdVu1KtC1q9qtycLFi9LA/fuBYcOAcePkLjOQekhpnz72U/qjQgVg717JYI4ZIyOMlyyR9mZHr5dRxM8/L3MvU4YKFpRR8J98ItXAypWzfRvi46XK+JEjkhg+ckQ6mz97Jrn9ypXlRn+fPkCtWm4YvN0LkQ8yHvWep3AJFH7lk3TPP9y5BIaEJ/Bv8S7c8mddjzW4oBe8PRz4sGxu4OSFL2nN3r3Ab79JNlUDF6J6vYyK3b5djokdOkipaEvc+wwPl2Puli3Aq6/mfn32YscOOT9r0kTtltg5V1egZUsp43rmjJx3keUxLhOZ79Il4KWXgNq1gQULtJfwcxY+PsDatUCdOkDHjjKazNTebaZ2XnKW78b06cDChXI/pGFDtVvjuBiTiWzjyhXg0CEgIEAG/nDgDhGlZeWY3KZNG7Rp08bk5efPn4+QkBDMnDkTAFCxYkXs3r0bs2bNQqtWrczadk7xSOnA1qwBdu8GNmyQe212R1HkRvlHH8lwmh07Mr6oGDVKLjomTADmzLF5MzPl7i5DtNu0kSR3tWrAF18APXpkfUG4eLFkGg8ccJ4Lxxz66CNg3jwZePfHH9bdVsqEsDEpbEwIu7oCVapIQrh3byAsTDpfeHqmXkezW0Ww5MAV6A3pbxy4evnBq1z9dM9HH1oNABm+lur9Ljo0LVck5ztoD3jhS85MUYBBgySLatc9t0xz+bL0j7p7V46JTZvmfORwRtzd8X/snXd8zPcfx1+XSRDEihFbzVhBiE2M0qJUKWrUqtJhj9p71VajpVqjaNVq/RARmyAoUjVLrMQWCRJJ7vfHqyc7uUvu7vu9u/fz8biHNrn7ft93ubv39/N5vd+vN5o04bWMtzdQpIjxjq0Ujx8ztzRuTDMSIR1Kl2Y30t69QJkyKr2YtXAkLwuCYTx/zs7THDmArVtpjy9YLh4evNBo2JBr+A0bUv6eE1E4dbZs4QiVcePYWS9kHMnJgmBatFoWn164AJQoQVtA+RwJgpASGczJ4eHhiX7s7OwMZyOsF44fPw5fX99EP2vRogW+/vrrTB9bX+Tb0kJ584ZNuc2aAWYqKDCMhw/ZGvTpp8CHHwJ//ZV61amupXT5cuDKFfPGqQ916zL+jz7ifOH27fn8UuLlSy6gOnVi1bKQJlmyUIf//Xfg6FHjHVdnGb1iBdCvH8XfHDnYEDBwIDvjqlWjy/mJE7RSPXeOo6g//5x/uqQCMQB09S6aokBsDGLjtOhWu6hJji0Ighn47Td+oXz7rUUvRnXW0j/9xL3xzFpLp0WVKnQc9vOzDsdhf38ge3aK3oIeaDTsJn7yhElbEARBSWJiuN67d48zV2VmgHVQsyZdKzZtoqOZDn0spAHrtZDWh1OnWPjYqRMwaZLS0QiCIKSOVst92wsXgAoVuAlowWtyQRDUiYeHB3LmzPn2NmPGDKMcNzQ0FAUKFEj0swIFCiA8PByvXr0yyjnSQzqJLZRVq6inbtyodCQpsGsXxeGYGFaetm+f/mO++AJYsoRi8W+/mT5GQ8mRgy/6e+9RdfT0BFav5s55QubPp4A8fboycVogXbsC8+bRofvoUcPX30k7hIOC+P9JO4R79+a/lStnXOwo45YF9fEMx2KzI9Zev69P964z072PvZ0GPiXzoHT+HBkLTC1IdbRgq0RFsXKrdWu2x1ogSa2l27aliGvKPVE7u3jH4X/+AcqXN925TM2tW8ClS8AHHwCOjkpHY0G4u7P7/sABvuFSqtASMo7kZUHQD62WFkf799OmSyzwrYv27YEZM2hfVbp02o4vtigGp0RICOeMVKlC1zd5XTKP5GRBMA2xsSxquX2b3cMyN10QhPTIYE6+ffs2XF1d3/7YGF3EakFEYgvkxQtgwgSubapWVTqaBLx8ySHJy5YBLVtSRC2Y9gzWt2TNCkybBnTvzpmOPj6mjTWjfPABUKcORfDWrYEBA4C5czl78sEDYNYstqrqM7tYAMDv2Tlz2BX/++9pz6Y0pyCcjH/+Abp1w/Sb9+HbdzlijXRYAHCw02D6B55GPKJCyMJXsFWWLuVm2p9/Kh1JhjC1tXRalCrF/dp9+zib3hIdh7VaOiYXLMgaMsFAmjTh/IfDh3kxIBgPycuCoB+LFnEN+/33QNOmSkcjGIuEXcIjRrDKvm9foHhxoH59/lzEz+S8eAG8/z4tZbZtM99FobUjOVkQjM+bN9xDfvSIe7XWMMNIEATTk8Gc7OrqmkgkNhbu7u4ICwtL9LOwsDC4uroiq5muw0QktkDmzOG4pKlTlY4kAadOcUZNSAg7gj//3PAFV8KW0iNH1Ltgc3enELB8OedP+vuzDeqnn/ilMXas0hFaHL6+rCsYNYoFy46OFIQvXqQDZUqCcMWKFDNMIggnRKsFvvuO78uiReGxezsmafNj1O8XjHaKyW0qwsPNxWjHUwxZ+Aq2yJMnwJQp3HS0sFbYFy8obl68yLF9/foxxZmbZs2YUk+ftkyr5uBgupP26KHeSxdV4+rK4sCjR2kLmiuX0hFZD5KXBSF9/vgDGDyY1/p9+igdjZAZ0rKO1mhYCPDvv+wsPnGCVWpCYmJjgY8/ZgXhsWNAEutDIRNIThYE4/LqFYtMX74EGjQA8uVTOiJBECwFleXkOnXqYNeuXYl+5ufnhzp16pj0vAkRkdjCuHeP4w6//pobuooTE0PrpsmTaUV09mzG7bkStpRu3aqfTbVSaDTsIm7ShOK4jw8QF8du6Dx5lI7O4oiKAnr25Hq0USPg9evkgrDJOoTT4v59do3v3s3ChzlzABcXdAbwKCIKc/dmfob28OZl0ammlcwiVlmSFQSzMGUKc2HCOXcqJzYWCAwEDh40n7V0WuTPT2eUgwfN+P1uJGJi2AVdtiwbk4QMUrcuq8H27QM+/FDpaKwHycuCkDZ//QV07sxEODP9ETGCykhvnrAO3QWOszPHYdWpwzFSx48DuXObLj5LZOhQrn3//JOLcMF4SE4WBOPx4gVw6BDzQOPGQM6cSkckCIIlYeKcHBERgWvXrr39/3///Rfnzp2Dm5sbihYtitGjR+Pu3bv4+eefAQCfffYZlixZghEjRuDTTz/F/v37sXnzZvxpRrdCEYktjAkTuHk6erTSkQC4fp2e14GBDGj8eMDJKXPHTNhS+v776h/sV7YsK2wrV6Yd8datQMeOMgMjDXQdwkFB8V3COkFYo+HbqXNnarM1aigoGPz+O9vqHB3pw/ruu4l+PahxGeTN7owxW4IRq9VCY6fnJgU4g9jBToPJbSpaj0AMyMJXsD2uXaPV9MSJFtNpkdRaukkTdYyBbdw43nG4eXOlo9GfwEAgPJz1YkImcHbmm3HHDm7eFy6sdETWgeRlQUid+/cpFJYtS1coef9bBoYKw0lxc2P3eO3aLEravVv9ew7m4rvvgIUL+W+LFkpHY31IThYE4/D4Md0nnZ3ZQexiBa58giCYFxPn5NOnT6Nx48Zv/3/IkCEAgB49emDNmjW4f/8+QkJC3v6+RIkS+PPPPzF48GAsXLgQRYoUwQ8//IAWZrweE5HYgggO5pjf+fMVLpLSaoFVq9jOXKAAd3SNOUN41iy2FK1cyfm+aufkSQrE48cD69ezHWvBAra92rjvZHR04hnCp0+n3CGsE4Td3PjyFSum4J8+PBz46itgzRrOoF65EsibN8W7Vs9ZFPd+yIsaAy7gTswj2NtpEBuX+saF7vc+JfNg+gee1mExnRBZ+Aq2xujRzINff610JHrh78/6LiWtpVMjRw42kx4+TMdhS2jsefmS8daokWqaEAyhWjXaf+7ZA/TqZfPXUEZB8rIgpMzLl5xxo9UCO3cC2bIpHZGQGpkVhVOiTBkWd/v60i1q5UrJObt3A19+yXXwgAFKR2OdSE4WhMxz/z5dIHLlAurVy3yjkiAItomJc3KjRo2gTeMads2aNSk+5uzZswadx5iISGxBjBwJlCgBfPaZgkE8fMi5i9u3U9lbsIA7u8akcmV6D0+axE5lEwwENxpaLedXVavGNu/hwznTqm9fbjh8/z19NG2ApIJwUBBw/nzKgrCXF8XglDqEBw/maOoBA4AiRcz8JI4c4Xvu0SNWZPTsmeaGwejRQIFsLtj3jTduP3+B9YEhCLjyACGPXyJhKtAAKJrHBY3fyY9utYuidH4jf2bUgkZjWOK09c0YwbI5ehT47TfOo1dx9XJsLN00AeDuXeWtpdOiTh3mDn9/y3AcPniQ/zZsqGwcVoOdHdvI161j8Z2FzfhWJZKXBSE5cXG83r90iZU+hQopHZGQFH2E4cx+XzVowLV6z57sJh82LHPHs2QuXgQ++oiObt9+q3Q01ovkZEHIHDdvsvOkYEG6QdjbKx2RIAiWiuTkZEhpmoUQEMCxMDNmKFgodfgwUKkSN8a3bmU3sbEFYh2TJwMREewqVjO//84qtjlz+OWSPTsXm9u20Yba05N/OCsjOpob+StXAv37s4sqRw7++/nnbASqXJld78ePc1zIX39Rdx04kNdzqVlIjxzJY40fb+YnNGYMd/oLF2aw6XQxHTvGP//UqbRqLVMgBya2qYiDwxrj4sQW+LNZXmz9aQj+bJYXFye2wMFhjTGxTUXrFYiB+EosQ24ZYOnSpShevDiyZMkCb29vnDx5MtX7fv/996hfvz5y586N3Llzw9fXN9n9e/bsCY1Gk+jWsmXLDMUm2AhaLWe2Vaumap/hf/8FVqygJTIAdOpEow61Xt86OdF2OjgYuHNH6WjS5vFj7lHUqycNaEalTBmO7PDzY4WDkDnMkJcNyclr1qxJlm+zqMHvXrAtxozhWvaXX5jHBeXRahPfUkOjib8Zgx49+H4YMYLrd1skLIy26yVK8DMhoovpMNNaWR+ePHmCrl27wtXVFbly5ULv3r0RERGR5mMaNWqULId/pmgHi2AzaLUsID11it9VderId5UgCJlDRTlZLVj/M7QC4uLYoOrtrVBnzatX/Pfrr9kCeuEC0K6dac9ZpEh8S6lad4qjozk7+d13gaZNE/+ubVtW5NasyUXXZ58BkZHKxJlJ0hOEjx+nIDxvnuGCcEq4urIpe80adiKbnEuXeJE5Zw4wZQpbw0qWTPMhWi2LzatWBbp2Tf77bM4OqJjLEdXuX0HFXI7I5mwjpg1mSLKbNm3CkCFDMGHCBJw5cwZVqlRBixYt8ODBgxTvf+DAAXz88ccICAjA8ePH4eHhgebNm+Pu3buJ7teyZUvcv3//7e2XX37J0Esg2Ai//krlde5cVV4shocDW7YAP//MIpb27flzZ2dl49KHKlXo4L13r/4Ok0qwbx9zobe30pFYIc2bA0+eUIUXMoeJ87KhORkAXF1dE+XbW7duZfZZCoL+rF7NIuS5c4H331c6GtslI6KwqSrcpkwBOnTgoi4oyDTnUCuvXnHfIiqKc5pN1QAgEBVtSHft2hXBwcHw8/PDH3/8gUOHDqFfv37pPq5v376Jcvjs2bNNFqMgAGCOOHeO+9AVKgDVq6ty/S0IgoWhopysFmxEubBsNm7keuXwYQW6f06eBD7+mP89ahQwfbr5ghg5kl2548dzQa82Vq4EbtxgO2lKFChAy+mVK4EhQ4D9+2mhWKuWeeM0gOhoatunT8dbRl+4wJ/b2/OarEYNNtmmZRmdWfr1AxYuZFH37t3GPz4AXmwuWcKTFC/O9mcvL70eunUrBXE/P5vIE/pjhjlL8+bNQ9++fdGrVy8AwPLly/Hnn39i9erVGDVqVLL7r1+/PtH///DDD9iyZQv8/f3RvXv3tz93dnaGu5oGtArqJSqK+fC994AmTZSOJhGxsdSuDx4EHB1Zz1W5MhAaqnRk+mNnBzRrxnR56RLzjtq4dYvF7B98wNdZMDLu7qzCOnCAb2BTXGjYCibOy4bmZADQaDSSbwVlCAhgxWv//ixGFsyLKWYLGwM7O1bVNWrEwoGTJxWYeaQAcXFc1J8/Dxw6BHh4KB2R9aOSmcSXLl3C7t27cerUKdSoUQMAsHjxYrRq1Qpz585FoTQs+F1cXCSHC+YjNpbfyXfuUBwuVUrpiARBsBZUkpPVhPU/Qwvn9Ws6ILVrR0tDsxETw5nAPj60UAaAjh3Nu2hL2FJ64YL5zqsPz5/z9enZk5bSqaHRcCPi7Fkgd26+npMm8fVVmOho4MwZ6vAJO4S9vOI7hD09E3cInz+f8Q5hQ3B0BGbOBPbsoRBrdO7d48ylL78E+vShGq6nQPzmDfWhli0BX18TxGaDhIeHJ7pFRUWleL/o6GgEBQXBN8ELb2dnB19fXxw/flyvc718+RJv3ryBm5tbop8fOHAA+fPnR9myZTFgwAA8fvw4409IsG6WLAFCQgCVVc7rrKX37aO+NmiQemcPp0epUkDp0nwuanMc1mrZ5VyoUNrpX8gkTZow4R4+rHQkNok+eTmjOTkiIgLFihWDh4cH2rZti+DgYJM8B0FIxOXL7BZt3BhYvNgyk6OloaZu4fTImhXYvp2L0Pff59gra2fiRGDTJlbl/ScUCupE37Wyvhw/fhy5cuV6KxADgK+vL+zs7BCom1GTCuvXr0fevHlRqVIljB49Gi9fvsxULIKQKrp1wL173EcVgVgQBMGkiEiscpYuZdHUzJlmPOnVq1SkJ0+mQr1mjRlPnoR+/bhTPGKEcjGkxKxZtI+ePFm/+7/zDnDkCDB2LC2t6tbl62wmoqPZkQUA06YlFoQHDIgXhL/9lv8dHk5B+McfTS8Ip8YHH/BacMQIFjobjd9+45O9cIFtyosXAy4uej98xQrg2jXV6UPqIIN2HR4eHsiZM+fb24wZM1I8/KNHjxAbG4sCBQok+nmBAgUQqmer5MiRI1GoUKFEm9otW7bEzz//DH9/f8yaNQsHDx7Eu+++i1i1qVOC8jx+zEHk/foB5csrHQ2A5NbS/fpxCoKlj/ls1gx49oyjp9TExYvcq2jWTDQGk+LqymulwEDg6VOlo7FcTJiXM5KTy5Yti9WrV2P79u1Yt24d4uLi4OPjgztqHS0jWAePHwOtW9OlYPNmsYAwJZYiCqeEuzstl69fB7p0UV+VmjFZu5Z7EjNnxs8kEUyPidfK+hIaGor8+fMn+pmDgwPc3NzSXFN36dIF69atQ0BAAEaPHo21a9eiW7dumYpFEFLk1Su6fzx7BjRsCBQurHREgiBYG2I3nQyxm1YxT57E70WXLWuGE2q1bCsdPBgoWJCiZp06bDdVCl1LaYcObClSQ+vmnTvA/PnA0KGGXaw4OrJi9913gW7d2Oo1fz7Qt69RF8g6y2idXfTp0/GW0QDF33r12ASts4w2QCM1GxoNxwTXrQusXw988kkmD/j8OTuHf/6Z76cVK4A8eQw6RHi4fg3kNksG7Tpu374NV1fXtz92NtHg1JkzZ2Ljxo04cOAAsiRQ0Dp37vz2vz09PVG5cmWUKlUKBw4cQNOk88YF22bKFG4aTpyodCSpWkurab81M+TPD1SrRgdEU402MJSYGMDfn9dkxYsrHY0N4OPDixh/f+DDD5WOxjJRWV6uU6cO6tSp8/b/fXx8UL58eaxYsQJTpkwxyjkEIRFRUaw8ff6cSTNXLqUjsi7UaiGdUTw92V373nusVP72W6UjMj6HD9NJ69NP1VeIb+2YOCePGjUKs2bNSvOQl3SdAxkg4cxiT09PFCxYEE2bNsX169dRSro8BWPx4gUXgFot3T9y5lQ6IkEQrBGxm06GiMQqZvp0bkhOmGCGkz14wMXCzp38d/78eJtppdG1lA4fTtVT6Q/muHFsw83oosrbm/bTQ4fS53nnTuCHHzjD2ECSCsJBQRSBE84Q9vKiqJk9O8cObdrEcR6WgI8P9dxvvuH+cIZFgsOHqTI/ecLO+O7dM7RZYWgDuc2RwSTr6uqaaOGbGnnz5oW9vT3CwsIS/TwsLCzd2Uhz587FzJkzsW/fPlSuXDnN+5YsWRJ58+bFtWvXRCQW4rl6lfYekydTwVSQf/8Fdu1ic1TNmlw/W3rncEo0bswip8OHgebNlY6G+sKLF0YoWhL0w9mZttM7dtDSxBZmRBobE+blzORkHY6OjqhWrRquXbumf4yCoC9aLautT54E9u8HSpZUOiLLx9pE4ZR4911g4ULgiy/oBta/v9IRGY9r1+L3VpYts+y/kyVi4rXy0KFD0bNnzzTvU7JkSbi7u+PBgweJfh4TE4MnT54YNG/Y29sbAHDt2jURiQXj8Pgxm5WyZAHq11dnN4sgCNaBiMTJEJFYpfz7L11wx47NkHZoGDt3Ar1787+3bwfatDHxCQ3E6C2lmeD8eeCnn/jH0eNCPVWyZ2cn63vv8bX39ARWreIMpFRISxC2swMqVqQg3KNHyh3CSjaEZ4YZMyh2L1oEjBxp4IOjo4Hx4+kNXbcucOBAhtu/7tzhfOYhQ2SfOlVMnGSdnJzg5eUFf39/tGvXDgAQFxcHf39/DBo0KNXHzZ49G9OmTcOePXsSzV5KjTt37uDx48coWLCgQfEJVs7o0bQi/PprxUIID+c83OBgoGhRFtEYsJdjcWTPzq/uw4cphufOrVwsL18yDi8vg00ohMxQrRpw4gTf+L16yYa2oZgwL2c0JyckNjYWFy5cQKtWrfSPURD0ZcYMOgitX09RTMgYtiAMJ2XQIM6xHjiQxQXNmikdUeZ5+pR7D3nycE6Jk5PSEdkeJl4r58uXD/ny5Uv3fnXq1MGzZ88QFBQELy8vAMD+/fsRFxf3VvjVh3PnzgGArJkF43D/Pmff5c7NBaB8RwmCYEpEJE6GiMQq5ZtveP0+ZIgJTxIRwRN8/z3nNK1aZQZFOoMkbCnt2FG5lqkRIzgjOYHVTqZ4/30qv336UJzv2xeYNw/RTtnTFIQrVOBc4dQEYWuiTBngs8/YWd+7N5A3r54PDA6mrXdwMB88fDjbqzPI+PFsIDdYqLYlzJBkhwwZgh49eqBGjRqoVasWFixYgMjISPTq1QsA0L17dxQuXPjtrKZZs2Zh/Pjx2LBhA4oXL/52zlL27NmRPXt2REREYNKkSejQoQPc3d1x/fp1jBgxAqVLl0aLFi0Mjk+wUo4ciR/8q4DvcWwsdbKDB7letjZr6bSoU4c5UGnH4QMH+G/DhsrFYJPY2QEtWnB+4j//qGYWuMVg4rxsaE6ePHkyateujdKlS+PZs2eYM2cObt26hT59+hh0XkFIl82buW6cOJHzZQX9sUVROCXmz+d84g8/pHBRoYLSEWWcN2/4PB4+5AWlm5vSEdkmKtmQLl++PFq2bIm+ffti+fLlePPmDQYNGoTOnTujUKFCAIC7d++iadOm+Pnnn1GrVi1cv34dGzZsQKtWrZAnTx6cP38egwcPRoMGDdJ16RKEdPn3Xy74Chake1Am9u0EQRD0QiU5WU2ISKxCTp8GfvmF2m22bCY6yYkT7Mi9dw9Yvpyip9oXeglbSpWYn+PnB+zZQ6HA0dFoh43OlR/BE7fjRa4fUOvHwXjwcwC6xq7FkZjabwXhtDqEbYHx49nAPXUqsGBBOneOi2On98iRrPwODGQnUiY4f54u1ZltILd6NBrDEmcGvnM6deqEhw8fYvz48QgNDUXVqlWxe/duFPivwCUkJAR2CWJYtmwZoqOj8WESdWnChAmYOHEi7O3tcf78efz000949uwZChUqhObNm2PKlCkmm40sWBhaLccDVK8OdO1q9tPfuAH8739036pVC2jUyDqtpVPDyYmOw9u3c1qDh4f5Y3j0iPsWTZqY8LpMSJ3SpXnbu5eVYw6yfNEbE+dlQ3Py06dP0bdvX4SGhiJ37tzw8vLCsWPHUMGSxRdBfQQGcuHUpQsXEUL66CMMq32vwNg4OAAbN7Kj7b33+L7So0tTdWi1wIABtEPZt495VFAGM6yV9WX9+vUYNGgQmjZtCjs7O3To0AGLFi16+/s3b97g8uXLePnyJQC6h+zbt+9tMZiHhwc6dOiAsWPHmixGwQbQalkEevEi9+6qV7e9XCMIgjKoKCerBdllURlaLRseK1akq57RefOGStu0aVQc//yTs3YsgaQtpeb0e4yL4x+mbl3O8ckg0dFsbA0KYjFAfIewBnZ2fdGiVGMsftoNB5/Uw91Pv0GeeWPhktN4grSlki8fMGoUmwG++AJIdeTN3bv84Pj5AV9+CcycaZSuv5EjjdtAbrWYqRJr0KBBqVpZHtC1+/3HzZs30zxW1qxZsWfPngzFIdgImzfHzzM0Y/VgUmvpDz9Ur9mHqalcmbVtfn7KOA77+9NJwgAHPsHYNG/O+YmnT7PDQNAPM+RlQ3Ly/PnzMX/+fIPPIQh6c+sW3ZmqV6dLlg1s6GQIrTZeGE5LILb118/VFfjjD14AtGvHCwJLq9SbO5efhTVrgAYNlI7GtlFR15Kbmxs2bNiQ6u+LFy8ObYLvBg8PDxw8eNBk8Qg2iFYLnDvHWekVK9ItyNZzjiAI5kNFOVktWP8ztDB27aKl4ezZJnDYuHKFIue0aRx2fOSI5QjEOsaPp2A7dap5z7tuHfDXX5yNrOeFS3Q0cPYs8MMPLN6tWZObzNWrA/37A0eP8lpo7lzg2DHgxQtg15XSKHX/COwmjIfHT9Pg0qwu/24Cvv4ayJ8fGDMmlTts3szZzsHBVFYWLjSKQLxvH7B7N/VmIzaQWye6JGvITRDUzOvXrFB5/32gcWOznDI2lvlhyRLg5k3uSfbsabsCMcCviubNgdu3gUuXzHvumzdZ4N60qTSwKkqBAnQFOXgQePVK6WgsB8nLgi0RHs6Oz2zZgG3bLE/MMyU6UTihOJwSGk3imwAUKwbs2AGcOQN8+qn+dtxqYOtWVjuPGcPuekFZJCcLAtHNUrp2jc1LFSpIzhEEwbxITk6GbHepiJgYuig3bgy8+64RD6zVAitW0C6zUCHuPltqO0zCltJBg9JoKTUir15RVO/QgcMRUyBhh7CuSzjpDGEvL6B7d/5btWoaltEODhTDW7bkTN2qVYF586gs2/CFk4sLMGUK1+ZDhiR4Cz9/zvfCunWcV718udHmLOkayH18MtVAbjtIJZZgbSxZQmXyf/8zy+ls3Vo6LUqWpKHIvn1A2bLmGVWl1bJ7uVAhoFIl059PSIcmTYALF2iZ2by50tFYBpKXBVshJgbo3Jk5+9gxy7QFNjaGzBa24TWmXtSqBfz8M/DRR7wImTBB6YjSJyiIY1I+/JCLaEF5JCcLAt0tjx7lgrduXS60BEEQzI3k5GSISKwifvwR+Ptvrj+Mtk4LC6M1859/0iv322+B7NmNdHCF+Ppr4LvvgG++4ZwgU7NoEXD/Pmcig9c0Fy/GC8JBQWwyTk0QrlIlgzMMa9ViK/KwYWxF/uMPtiW7uxv3+VkQ3bsD8+dTuD14ENAcOsgfPnvGD063bkbd5Fi/ng44R4/K3oleSJIVrInHj+la0b8/UK6cSU8l1tL64evLOqBTp8zjOHzxInDvHju5JQeogBw5uJl0+DDtWXLnVjoi9SN5WbAVBg9mIt29m4sxW8QQUTjhv4J+dOxIR7ZvvmHVWpcuSkeUOnfu0AXH0xP46Sf5blcLkpMFW+fVK17Hv3wJNGwI5M2rdESCINgqkpOTISKxSoiMZPNoly4UFo3C9u1Anz58I+/YwYWCNZC0pbRWLZOd6s39R7CbOh3/NBiAJfPKvJ0hHBWVWBD+5JNMCsKpkS0bZ/C99x6fr6cnheK2bY14EsvB3p6O3y1bAjvar0Hb7Z8C9etTIC5WzKjnevWKewAdOrCTWNADSbKCNTF5Mu0ETNgtonPaOngQcHKiY4Gnp+zbpkb+/PGOw1WqGGWiQKq8ecPRg+XKGT29CJmhbl1W5+3bxw17IW0kLwu2wOLFdP5YvpzVRLaEPsKwXFQYj9GjOQqqVy9eHNStq3REyYmI4L6PoyP3g0x5sSQYhuRkwZYJD6dArNXSHcjVVemIBEGwZSQnJ8P6n6GF8O23wJMnLE7NNBERFIfbtaM98oUL1iMQ6+jenTvpw4YZbS7QmzfsGtXNEK5VC1juMRUREUCTgHE4fJii8Jw57CwND+dLu2YN8MUXFBKNKhAnpHVrtjTVrcu/a58+HGJsgzQvdBG+2U9g5LY6eDN9DrB/v0l28BcvTtRALgiCLXH1Kh0rxoyhMmkCbtzgfra/P2fVDxoEVK4se7np0bgxtftDh0x7nsBApllb0xtUj5MTN5YuXmSnlCAIts2uXXSZGjKEzh/WTkZmCwvGQ6PhGK/atbkmv3FD6YgSExvLroPr1+lCZsMOZIIgqIjHj4GAAI7WE4FYEARBlUgnsQoIDQVmzwa+/BIoXjyTBzt+nJa7YWHAypUUE61xcWhvzxft3XeBnTuBNm0MevibN7T1PH063jI6YYdw+fLAu+9cx+dnvsOd/pNw49t8phOA9SVfPmDrVmD1auCrr3iRtW5dqnOSrY64OGDhQmhGj8acwq1RPfI3rMo1FJ+ZYC7l48fA9OnAZ5/RTUzQE6nEEqyFUaOAggX5XWtkwsOBPXs4XkKspQ0ne3bWSx08yGIuUzgOR0YCR44ANWoAefIY//hCJqlalS34e/bQZcUar3ONheRlwZo5fx7o1ImOS7NnKx2NaTDUQlowPc7OwO+/Uyh+7z3OwM6VS+moyIgRHDP2xx8sqBfUheRkwRa5d4/X7blzcxHn5KR0RIIgCJKTU8D6n6EFMGkS8+SYMZk4yJs3wLhxQL16FBPPnQP69rXuBWOLFmzxGTkSiIlJ9W66DuFVq+I7hHPkoGVl//50PClfnnsLug7hixeBOY5jYO+eH8XmfaW8QKxDo+GM6b/+oqpQrx7/7m/eKB2ZablzB2jenF0CAwagavB6fPKJBhMmmKahesoUatLjxxv/2FaNLskachMEtXH4MDf/pk83qkVfbCyFxyVLgJAQWkv37CkCcUaoU4fOHfv2meb4Bw/y34YNTXN8IZPY2fGaICQEuHRJ6WjUjeRlwVoJDaVAV7o0sH49C4itBX06hQHpFlaSPHkoxIaGcvSBGtbiK1YA8+YBCxeykF5QH5KTBVvj339ZSOPuDjRoIAKxIAjqQXJyMqSTWGH++Qf4/nsKlBnuhrl8md3DZ89yduKYMbTxsHY0Gr5wXl70iP7ss7cdwrru4NOnk3cIe3nx5apRI40ZwoGBwObNwI8/cgay2ihVil6bM2eyymD3bnYVly2rdGTGZ+NGqvvZsgF+fm+9P6dMATZtAubO5UtgLK5fp8vsxImstxAMQCqxBEsnLg4YOpSJoksXox32xg06Yj55Anh7A40asRFFyBiOjnQq274duH0b8PAw3rEfPeK1Q9Om6kz/wn+ULs2bnx/wzju2cd2bESQvC9bIy5dA27asvtq5kxYTlox0C1smZcsCW7awaOmLL4Bly5T7G/n5AQMHcnbJoEHKxCCkj+RkwVbQarnZffEi9y6rVZMcJgiCupCcnAzrf4YqZ9Qobm4OHJiBB2u1VLOqVQOeP2eF1vjxNrNR9uYNcE5TDVdrd0P4kAloXOPF2w7hfv2ooeo6hI8cie8Q/uknWnunOkNYq+Ws48qVgU8+Mfvz0hsHB2DsWFqMv3jBJ750qdFmNCvOs2dA167Axx+za/z8+UTDIYsW5QiyuXPpYGMsdCNIv/7aeMe0GTQaw6qwZKEgqI3Nm4FTp/jFYoSLwOfPgV9/Bdau5R52//78OhOBOPNUrsyi9L17jZv29u3jmCxvb+MdUzARzZsDT59S1RdSRvKyYG3ExQE9enBRt2MHUKSI0hFlDEPnCstnU500bswRXytWAPPnKxPD339zdknz5srFIOiH5GTBFtBq2cB08SJQqZIIxIIgqBPJycmwDTVRpRw+zC6YDRsysGEcGso5bP/7Hwenzp2biuJpHSTtEA4KouNyVBRQTDMVl7EZX72Ziw9mT4KXF8fVZfjl2LGDqvLu3ZZhXVajBnDmDDB8OCuH//iDc4sLFlQ6sowTEMANoPBwdkh36ZLiF/KoUWwinzCBHfmZRddAvnq1dJBlCKnEEiyZ16/5pdKmDVt9M0FsLOt3Dh1ifv/gA46Gs4HrSrNhZwc0a0YB/u+/gYoVM3/MmzdpztK+vc3U21k2BQpw4+nAAVrDGNEe3mqQvCxYG+PGsXvz99/p+mEpSLew9dKrFy8ehg2jw0WbNuY794MHtF0vWpTuW3Lxom4kJwvWTmwsN9Xu3uU+ZYkSSkckCIKQMpKTkyFXkQqha1atUQPo1MnAB2/dynnDDg4UBFu3NkmMSpGWIGxnB5Qrx9eta1f8JwgXhfPkr9BuyVyg42eZE0ffvOGM42bN2O5lKbi4sIv4vfdYPODpSdX0gw+UjswwoqKAb77hPKWGDdn2XbRoqnfPlYt7RUOGsPM3MyKBVkud3dMT6N4948exaSTJCpbM4sWcf75nT6YOc/0667fEWtr0lCwJlCkD+PvT9TEze6NaLbuSCxdm0btgITRpwk6FQ4cs67rNXEheFqyJNWuA6dOBOXOAdu2UjiZtRBS2LaZPB65eZWHz4cMsYDI1r1/zc/DyJQusXV1Nf04hc0hOFqyZ6Gjg6FG6/NStCxQqpHREgiAIqSM5ORkiEivEr78CJ0/yel7v99mLF8BXX3FObtu2FAEtfGjqmzfsADp9Wl9BOJUO4dGjgVWr2FK6cmXGA1q1CrhyhZW4lsi77wIXLtBvu317VjYvXAjkyKF0ZOlz4QL/0Jcvc/Nn8GC9PhwDBgCLFlHb/+OPjJ9+xw6u6S2lgVyVSJIVLJVHj4Bp0+jMkcHZ7s+fU2T8+2+gWDHgo49oXS+YlmbNOAbw1CmgTp2MH+fCBeD+faBnT9mztyhy5OBG1KFDQK1aQO7cSkekLiQvC9bCwYNc3/TpAwwdqnQ0KSPCsO1iZ0drk4YNgfffZydd4cKmO59Wy8Lws2f52ShWzHTnEoyH5GTBWnn1itfir1/zezBPHqUjEgRBSBvJyckQkVgBoqKoab73ngGOlkePcj7ugwf01/30U4tbYOoE4aCgeFE4qSDs5aWHIJwSCVtKv/oqYy2lL15QZP7kE57cUsmblzZsa9Zw+PKBA1y0Zq2rdGQpExfH+UljxgDvvMOd/sqV9X64kxMwYwY78gMCOBrKUGJiKDL7+nKck5BBJMkKlsrkydxwmzDB4IcmtZZu356dqBaWoi2WfPmA6tX5+letmjHH4Tdv2I1crpzss1okPj68sNy3D+jYUelo1IXkZcEauHqVybV+feC779STYEUUFhLi4sKq41q1aDl96JDpxoFNmgT88gvnJNWqZZpzCMZHcrJgjYSH8/tOo+FmnLgaCIJgCUhOToaIxAqwfDnn3u3cqcedo6O5CJg5k76Vfn5AqVKmDjHT6CsId+nCTuFMzRDWoWspHTVKzxc3CXPmsBVs6tRMBqICNBp2ETdsSO/kBg1QqOcoOGICACelo4vn9m3OHg4IoMA/bRqQJYvBh+nYEfj2W9pFnzxp+Hf3Dz+wgfyXX2QfJ1NIkhUskStX2Io6darB7hxiLa0OGjViJ3BGHYcDA4GICBYKCRaIkxPQtCmwbRtQuzbg4aF0ROpB8rJg6Tx5wtFK+fIBv/0GODoqG48+wrAsJmyXggVpbVWvHtCtGwu3jf29un4994emTZPCKEtDcrJgbTx6BBw5wiKZ+vUzVq0rCIKgBJKTkyEisZl59owNS717AxUqpHPnS5e4uDh/nguBUaMyN3DPRCQUhHWisE4Q1miA8uXjBWFdh3D27CYIJGFL6YEDBrRpA7h3jyrj119b1+ZiyZK0oJo1CwXGT8Bx7EaWf9cB1csrHRmwYQPw+ee0ivT351zBDKLRAHPnAg0a0Cm8Sxf9H6trIO/WzTzjo6waSbKCJTJqFGcmffWV3g95/pyjiy9dEmtpNZA9Ox2HDx4EatYE3Nz0f2xkJEcN1KghzmgWTZUqbOnfuzeZ205kVAxuPo5EdEwcnBzsUDxPNmRzVt/1tEmQvCxYMtHRQIcOFIoDA5Wxk5duYcFQqlRh5XHbtrzGnD3beMc+epQ5rkcPWtMJloXkZMGauHcPOHGCubluXe7HCoJgcdjsWllycjJs4K9uftL6gM2YwTENkyalcQCtFli6lG2RxYpx06tGDfMEnw5JBWFdh/Dr12YWhFMjYUtpYKD+H+IJE1j1Zo2LLXt7YMwY/FOsBVy6dUPZrtWBe7OBQYOU2dB4+pTi8MaNwMcf871uhE2f+vW5Fh8zhvtJ+nbzzZ1rPQ3kiiNJVlAhaV70HjoEbN3Krgw9XAxiYpiSDx8Wa2m1UacOi9T8/Q1rrDlwgH+/hg1NFppgDuzs2Eb+88/ApUu4mscD6wNDEHD5AUKevERCmUcDoKibCxqXzY+u3kVRpkAOpaI2PZKXBZWh90aUVgt89hlw7Bi/2M3lpCWisGAM3nsPmDePBejvvMNZ2pnlxg2gXTs6ZqxcKe9BS0RysqAyMiwO3bjBzeDChWmnZW9v+mAFQTAaV8NeyFpZcnIyRCQ2Evp8wGoUzo/la4ti2LAcKFgwlQPdu8fq0D17KKTNmUPrDgXQCcI3twNtwYLVzdeSC8Iff6yQIJwSCVtKN21icOkRHAysXs2FXM6cpo9RIV6V90I9BOFmu5HI/+WXtML68Ud20JkLf3+gZ0+2727YoN/fxwBmzqRgs2QJMHRo+ve/d49vl6+/BooWNWoogiAoiH4XvfnQdf5MlKlRA+jcOd1jirW0unF0jHccvn1bP1OQR4+4v+Hrq9illmBMSpXC7WJlMWZTMA5H/wt7Ow1i45ILPloAt568xNrAW1hz/Cbql86L6R94wsNN3gSCYAoytBE1ezbXKWvX0rrXlIgwLJiCL78ELl/mSKwSJXiRklGePaPteq5cwO+/S8eeIAgZJlPikFZLK63gYBZvVasmuVEQLIjbT15izNYLOHztkayVhWSISJxJDPmA3Xp8C/l63MSVwnlx+0kKH7AtW4B+/XjRv2sX8O675nkSSLtDuDooEhctCszsoyJBODUStpS2b5/+Lv7IkVy4DRhgnvgU5BVccGfEYuTv9R5nFnt6AitWAB9+aNoTv37Nv8f8+bSVXrPGJLbe5coBffuyK7hXr/QtRydOZAP5qFFGD8U2kUosQWEMuug9fhNrag9E/Tz2mP7sdaoXvWItbTlUrkzXsxQch1Nk3z7WhtWqZZ74BNOy8VQIJtzIhZjYOABI8fOfEN3vj914DN/5BzGpTUV0rmllFWOSlwUFyfBGVNa78Bg1Chg3jvNgjI2IwoI50GiARYtYZdihAy9QypUz/Dhv3tAiJSyMx5DZGJaL5GRBQTItDmm1wJkz7CKuVInfZ5InBcFi2HgqBBN2BCPmv8++za+VJScnw/qfoQnZeCoEvvMP4tiNxwDS/4BBw9+fvMUP2MZTIfx5eDi7Kz/8kH6HFy6YVCCOieGY49WrgYED6Vjk6krht08fICAAKFOGXZmHD/MGAFOmcGRjvXoqFoh1zJzJVqKlS9O+X0AA8Oef9AG3pYrcFi34PmvcmIvOnj35PjQFf/3FIZHffcdubT8/k859njiR7/Hp09O+X3AwsGoV959y5TJZOLaFRhOfaPW5yaJCMCKG5uRY8P137Glc4pz8HzExzH9LlzKdtG9PRw0RiNWLRgM0bw7cucPCt7S4eZMNPk2bAg5SMmnxLAm4ilG/X0BUrPbtZ1tfYuO0iIqJw6jfL2BJwFUTRagQkpcFhTA4J+s2oq4/gu9ZYGPvb9KZz2QgWm38LTU0msQ3QcgsDg7A5s20ZG3dmhYmhqDVAl98wdkYv/9O62rBcpGcLChEhnPyf+LQxsCbnLn0778chVi+vLw/BcGCeLtWjolLX7tKgtWulSUnJ0O2xTLIkoCrmLv3SoYeGxunRWycFqN+v4BHF69g0OS+XDD8+CN3oI34xouJie8QPn06+QzhcuXYGdy5M3N9ih3CZ4wWjvlI2lKa0szbuDjOLvb2Nn0nrRrJkwf49VfO7/viC+DgQf53/frGOX5sLEXhsWP59zh9mhWHJqZAAWDECP7pBw5kk3hKjBwJFC9uEw3k5kMqsQSFMFpOjojCoMZlcO0araWfPmUhVcOGYi1tKZQowT3UffuAsmVTFoC1WnYbFy4MVKxo/hgF47LxVEiGP/9Jmbv3CvJld0Yna6mSlrwsKECmcrIWiLV3wqh8dfDowDUMalwmY0FIt7CgFnLmZFG6tzfwwQe8QNH3onL+fLp+rV7NOSeCZSM5WVAAo6yTtwXjUeEYDOpQF6nPThQEQY3IWjkVJCcnQ0TiDJDWB0wb8wbPDq9DZHAA4l5HwDFfceRq8AmylqiW4v3nXolCvurvotOcYUDJkpmKyyiCsDUxcSLnWE2fztnOSdm4kS/S4cO2u0Gg0bAwoUEDoHt3KiEjR7JyPzOd1bdu8biHDgHDhrEN3YwKy5AhwLJl1KfXr0/+e10D+aZNttVAbnIkyQoKYNScvPcKbv7jjBwPiqJ4caBTJ+kctkR8fZkDTp0C6tRJ/vsLF4D791lDZqvp31q4/eQlJuwITvF30Q9v4fmRDYgOvYbYyGfQODrDMY8HXL3bw6WMd6rHHL8jGD6l8lrH3CXJy4KZMUpO/u+L2aCNKBGFBTVTvDiwbRtdvPr0YWF2eu/FHTu4jh45khcsguUjOVkwM0ZdJ991QL47b9BJNGJBsBjSWitH3b+CyAv+eB1yATHPw2CX1RXOhcoiV4NP4OhWONVjWs1aWXJyMqz/GRqZtD5gAPDoz/kIP7UN2So0Qm7fftDY2eHBrxPx+nZqj9FifIX3cTuXu0Fx6Cyjf/wRGDSInU45cgBVqgC9e8dbRs+YQZ0uPJwC8tq1wNdfW4hldGbRtZQuWkRfyYToZuS2a8cXw9YpUYI2VtOnA99+yzdUel6dKaHVAuvWcTDkjRvA/v3A7Nlmb8HLlg2YPBnYsIEFEwnRNZDXqkWnbcGIGGLVYWhCFoQUMH5OBraGBKNui5fo3l0EYkslXz6genVe/7x8mfh3b94A/v50SStqBQWwts6YrRfezlVKSmz4A8RFv0I2z6bI7dsXOX06AQAebpmCF+d2p3rMmDgtxmy9YJJ4zY7kZcGMmCInj98RjNtPXqb8S30spAGxkBbUQZ06wE8/ca08dWra9z17Fvj4Y3YepzdDSbAcJCcLZsTsOVkQBNWR1lo5/MRveHn5GLIUq4Lcvv2QvUoLvL59Efd//ArRD2+mekyrWStLTk6G9T9DI5PWByzq3mW8vHQIuRr2QO4mnyJH1ZYo8PF0OLjmx7MDP6ZyRE26H7CkgnCdOokF4f37EwvCz58nFoTr17cBQTg1hg4F3NyAb75J/POlSzm0cOZMZeJSI/b2wKhRQGAgRXQvLwrscXH6Pf7JE7apf/IJ8P77fNMqaIvVsydQoQIF4YR7R5s2sYF87lzZKzI6kmQFM2P8nAzAToufgi/I94OF07gx09ehQ4l/fuIEEBHBbmPBsrka9gKHrz1Kda5S1lI1UaDTZOSq1wU5qraEa822KNBlOhzzl0D4yW2pHjc2TovD1x7h2oMXJorcjEheFsyIKXJyonVyQlFYZgsLlkinTqxkHj+ei9KUuHuXa+kKFbihI9/L1oPkZMGMmDwnC4KgatJbK+eo+QEKf74abs36I0eVFshVtzPcu86CNi4W4Sd+S/W4VrNWlpycDOt/hkYkvQ/Yy8tHAY0dclRt+fZnGgcnZK/SDFF3/0FM+MMUH5fwA5aSIOzqGi8I+/sDpUunLQjnyGGKZ2+hJGwpDQriz548YfVuv34cWCgkplo1vlb9+gFffQW0bMnFalrs28fu4b17aeO9bh2QK5dZwk0NBwc2MR84AOzaxZ9FRbGBvG1b441eFhIgSVYwI+bIyYLlki0bjUJOnWLaB4DISODIEaBmTdaPCZbN+sAQ2NsZJgBp7OzhkCMv4qIi0ryfvZ0G606EZCY8dSB5WTATJs/JYWnkZBGFBUti7FigWzeOZjp+PPHvIiMpEGs0tJt2sXArRyExkpMFMyHrZEEQ0lsrZylSHhp7x0Q/c3QrDKe8RfHm0e00j20Va2XJycmw/mdoRNL7gEWH3YCjW2HYOSe+mHcq+M7b36eGRqtBm6EhKQrC06fHC8KXLokgbDC9eiVuKZ0+ne3ZEyYoHZl6yZoVWLiQom9wMODpCWzenPx+r17xzdisGYdeX7jACmmV0KoVu8lGjOCffMkS4PZtaSA3GWZKskuXLkXx4sWRJUsWeHt74+TJk2ne/9dff0W5cuWQJUsWeHp6YpeuauA/tFotxo8fj4IFCyJr1qzw9fXF1atXMxSbYD5MmZOt4qJXQO3adFLZt4//f+AAv3YaNFA0LMFIBFx+kOrmV0Liol8j9uVzvHl6H+Ent+HVjSBkKVYlzcfExmkRcOWBsUJVDjPkZWPnZMEyMXlODryV+IciCguWikYD/PADK9bato0fixUbC3TtCly9CvzxB1BQBn9aHSrakJ42bRp8fHzg4uKCXHoW98ua2XKQdbIgCPqulROi1WoR+/IZ7Fxc07yfVayVVbh/vWbNGmg0mkS3LFmyZPQZGoyIxAaQ3gcsNuIJ7LPnTvZz++xub3+fGlqNFnEFHoggbAp0LaUBAcDq1cDixVQNCxRQOjL106wZhV9fX4q/n3zCNycAnDsH1KgBLF8OLFhAQblIESWjTYZGA8yZw277pUvZQN63L/VswQSYIclu2rQJQ4YMwYQJE3DmzBlUqVIFLVq0wIMHKV+gHDt2DB9//DF69+6Ns2fPol27dmjXrh0uXrz49j6zZ8/GokWLsHz5cgQGBiJbtmxo0aIFXr9+neGXQjA9pszJVnHRK8DREWjShNdT58/TJKN+fWnMsQYiomIQoudMtKf7f8CdRV1xb0VfPA1YDZd36sCt+YB0Hxfy+CUio2IyG6qymDgvmyInC5aJ6XPyQxGGBevB2RnYupUbPO+9x/X1qFHAzp105aqSdiGTYKGoSCSOjo5Gx44dMWBA+tdDOmTNbDnIOlkQbBtD1soJiQw+gNgXj5GtXPrWmxa/Vlbh/jUAuLq64v79+29vt27dSvW+xsbBbGeycPT5gGljooEkrfoAbTve/j4Nohxfou+AGGRzlj+L0WnVivNxhwyhx+SQIUpHZDm4uXFm0vvv0wP90CFaUP/4I1CxInfdK1ZUOspU8fICunThWGqtFpg4UemIrBhDE2cGkuy8efPQt29f9OrVCwCwfPly/Pnnn1i9ejVGjRqV7P4LFy5Ey5YtMXz4cADAlClT4OfnhyVLlmD58uXQarVYsGABxo4di7Zt2wIAfv75ZxQoUADbtm1D586dDY5RMD3myMm6i17JyZZN5cqcQ/y//3F8R61aSkckGINbjyOhb120a822cClXD7EvHuPlP0eg1cYBsW/SfZwWwM3HkahYKGemYlUUE+dlY+dkwTKRnCwIGSBvXuDPP2l74uPDquYFC4DWrZWOTDAVZlgr68ukSZMAsGtJH2TNbDlIThYEM6PVqu5269FrvdfKOt48vo0nfsvgXLgcsnk2Tf9pw8LXyircvwYAjUYDd3d3g89lDOQbXU/02YzSODiluOmkS7C6hJsaFv8BUzMaDW2nDxwA2rXjsEJBfzQadhGXKMGF68qVgLc3u4dd07ahUAOffcax1I0bSwO5GgkPD0/0/87OznB2dk52v+joaAQFBWH06NFvf2ZnZwdfX18cTzrT6z+OHz+OIUmKQlq0aIFt27YBAP7991+EhobC19f37e9z5swJb29vHD9+XBa8KkVysqAvGg2F4r17+a+DXPlaBdExcXrf1zGPBxzzeAAAsns2RdjGcXjw22S4d58HTTodiYacx5rQJy+bIicLlonkZEHIIOXKsZJ5xAgWXX/xhdIRCSpE37WyKZE1s+Vgtpy85yAq5rBTXAwz2g1QPgalbk9LAFgAfPUV4HpN+Xgs6T2gUqILvgP0mKf3/WMjnuLBr5Ng55wNeduNhsbOXr/z2OBa2ZT71wAQERGBYsWKIS4uDtWrV8f06dNR0UyNebJVpif6vPHts7sh9sXjZD/XWXXorDsyex4hA2i17HzNmRPw8wMiI0UoNgStlt7ngwYBuXMDH39M6+4GDYD161XdSQzQETtbNuDkSSAsTIRiU6GFBlrobwGou6+Hh0ein0+YMAETU2j5fvToEWJjY1EgyR+wQIEC+Oeff1I8R2hoaIr3Dw0Nfft73c9Su4+gPiQnC/qi1dJqOksW4MoVTlEQodjycXLIeHeNS7m6eLJ7CWKe3IVjnrTHZGTmPGrAlHnZFDlZsEwkJwtCBrl0CZg2DahQAQgO5lisr75SOirBRJh6rWxKZM1sOZgtJ3/2OXD/iuEBmoOE4yn0vWX0cdZw02Fnx3lNSsej5OugdAxGujm9iAOOvdLr4xL3OhJhmycg7nUkCnSbBYccefT+qFnyWlmN+9dly5bF6tWrUblyZTx//hxz586Fj48PgoODUcQM4z1lm0xP9HnjO+UvifBb5xEX9RJ2zvED76LvMXE6FSiZ7jF+3WiHF7WBatVkBrFR2bWLXcSrVgEDBgDz5gHjxikdlWXw+DFbcX/7jd3EixdTbP/sM6BbN/o5z5wJfPmlSS2RMsrp0+wiXrAAmDSJdtPLlikdlXUSF8ebIfcHgNu3b8M1QUe6uSujBcvDXDnZki96BXL+PBAaCnzwAbBtG4uFfHyUjkrILMXzZIMGMNhGCwC0b6IAAHFRkWneT/PfeSwZycuCOZCcLAgZ4NEjziMuUgQ4ehSYOpUjsUqV4s8Fq8PUOXnUqFGYNWtWmse8dOkSypUrp38QgsVhtpz8+29A3qyKi2EpCn2CYZwB4AVg/nygutLBCMageFQMNMf2pLtW1sZE48FvkxHz9C4KdJ4Kp7xF9T6Hpa+V1bhOrlOnDurUqfP2/318fFC+fHmsWLECU6ZMMdp5UkNEYj3RZzPKpVxdhJ/8HS/O7UZO7/YAAG3MG0Rc8INTobJwcM2X9km0wMJp2TAjnLntnXeAGjWowXl5iXCcYWJiaOHUuDEtp//+G5g9G+jXT1pK02PvXqBnT+D1a2DzZqBjx/jfVa1KBXb0aGDwYOCPP4A1a7jQVQlaLTB8OIuzBw7kW2HkSBZoy9rI+GQ0ybq6uiZKsqmRN29e2NvbIywsLNHPw8LCUp3Z4O7unub9df+GhYWhYMGCie5TtWpVfZ+KYGbMkZMt/aJXAN68AfbvB8qXp9X07dvA4cNMXy4u6T5cUDHZnB1Q1M0Ft9KYuRYb+Qz22XIl+pk2NgaRF/dD4+AMx3QWwUXzuFj8rDVT5mVT5GTBMjFLTtZqUXzFQqBlM6BmTbGEECybqChWr0VEAP7+LMCeORO4dg3o3JmicZUqSkcpGBlTr5WHDh2Knj17pnmfkiXTF/9SQtbMloPZ1snVygMWfp0sCNaKPmtlbVwsHm6bhah7/yB/h7FwLlzeoHNY+lpZjfvXSXF0dES1atVw7do1/QPNBFKOqye6D1haOBcqC5dy9fDs4E94GrAaL87tRtgvYxDz/AFyN+qV7jmK5XXB88cOOH+eTr7NmgE3bnBMTcOGXDuUL8/mzfnzgUOHgBcvjPUMrZgff6QwPGcO1fcxY7ixMGmS0pGpl1ev2BncogVQqRJw4UJigVhHlix8M/r5Af/8A3h6Ahs3mj/eVNA1kM+ezT/5oEGAhweQynx4IZPokqwhN0NwcnKCl5cX/P39E5wzDv7+/omqrRJSp06dRPcHAD8/v7f3L1GiBNzd3RPdJzw8HIGBgakeU1Aec+RkS7/oFYATJ7j/qhuf1qgRv3cOHVI0LMFINC6bH/Z2qXcMPN69BGG/jMGzIxvw4q89eHZ0I+6tHoTosOvI1aAb7JyypvpYezsNGr+T3xRhmxVT5mVT5GTBMjFLTn7zAtkWL6AVRL58XJf88AOrfwTBktBqgT59gFOngO3bgeLF+XN7e2DdOqBsWXYS37+vaJiC8TH1WjlfvnwoV65cmjcnp7RnzaaGrJktB1knC4IApL9Wfrp/FV5dC0TWkl6IfRWBiIsBiW5pYQ1rZTXuXyclNjYWFy5cSFScZUrkW90AGpfNj7WBtxAbl3pNVt73huDZoXWIvBiA2NcRcMpfHPk/HI8sRSuleWzdB8zBgTqbpycbOAF2P166BAQFxd+2bGFzp0bDdYSu21g6jpMQGQmMHw906cIXBwDc3ICxY9lS+uWX0lKalDNnWInw77/AokVswU3PRtrXl56en3/OecU7dwJLlwK5cpkl5JTQNZA3agS0asWfOTsD06fz7XD4MFC/vmLhWSUZrcQyhCFDhqBHjx6oUaMGatWqhQULFiAyMhK9enEx0717dxQuXBgzZswAAHz11Vdo2LAhvv32W7Ru3RobN27E6dOnsXLlSgCARqPB119/jalTp6JMmTIoUaIExo0bh0KFCqFdu3aGByiYDXPkZMFyiYgAjhxhw5nbf2O1smUD6tVj8VDNmkAe/cftCCqkq3dRrDl+M9XfZytfHxHn/fDi7C7EvXoBO6escHIvjdyNesGljHeax46N06Jbbf3tttSKqfOysXOyYLmYPCc3rAzMfkhhbfduYM8eoH9/vmkrVGBha4sWQIMGQNbUC0AEQXGmTqUYvHEjULt24t9lywbs2AF4ewNt2gAHD4r1iRVhjrWyvoSEhODJkycICQlBbGwszp07BwAoXbo0smfPDgAoV64cZsyYgQ8++EDWzBaGrJMFQUhvrRwddgMA8OraSby6djLZ77NXapzqY61hrazG/evJkyejdu3aKF26NJ49e4Y5c+bg1q1b6NOnj+EnzwAiEhtAeh8wANA4OCF3k0+Ru8mnBh07rQ+YPsLx6dMiHKfIt98CT54A06Yl/vnAgZytO3o0sHWrMrGpjdhYttyOH883W1AQN130xc0N+OUX4P33+foePgz89BNtvhVgzRo2kP/8c+LRJJ068W0xbBi7zGRsifEwR5Lt1KkTHj58iPHjxyM0NBRVq1bF7t27UeA/6/iQkBDYJShq8PHxwYYNGzB27FiMGTMGZcqUwbZt21CpUvziZ8SIEYiMjES/fv3w7Nkz1KtXD7t370aWLFkMD1AwGybPyd6WfdFr6xw4wPqmhg0T/7x2bV4z+fsDH32kSGiCkSjz7B7qO0XiWLQLYpE8mWer0BDZKjRM4ZFpY2+ngU/JPCid3/IvnE2dl02RkwXLxCzrZHt7fonXrg1MnMg1nr8/BeNff6W7UZYsFIp1onGFCnKxL6iHjRu51p48mYvSlChcmAXX9eoBn3zC93Z6BduCRaAmkXj8+PH46aef3v5/tWrVAAABAQFo1KgRAODy5ct4/vz52/vImtlyUGrvWhAE9VCmQA7UL50Xx248TrFgxL3rzAwd11rWymrcv3769Cn69u2L0NBQ5M6dG15eXjh27BgqGKLNZAKNVqtNb4611RAeHo6cOXPi+fPnevmHp8QnqwJT/YBlFPu4WPh4uGLtoEaZOk5C4fj0af577lzKwnGNGhSO/ysSTJszZ/igoCCgugVNsQ8LA0qVAgYMoNV0UjZsALp2pe+kDbSUpvln/PdfoHt3zj8aNYobLxm0IgIAhIQAPXqw+nnoUFZMG3GYe3pERgJlylCfXr8++e8DAoAmTYBNm0woEpjxc2OM7zZjnP/OHcPOHx4ejiJFlItbUBbV5mRo4aMJx9oyUUDr1kB+y6+Uvn8fWLkS6NcPMJNTjaI8fAgsW8axHSk5+Zw/z/qwXr2Aorayx3HvHrBiBTvvChVSOprM8eQJ8L//AVeu4LZHGfjeckNUjPG+A5wd7LBvcEN4pGPVlxpK5+SEMUheFvRFtTn5v42otb3T7v6HVsuFsK7L+NAhLoKLFIkXjH19gdy5jRabxWOpa3xL5fhxLk47dkxexZwSO3YA7drRGmtmxjZyVUvCLUgTF3FIThYsEYvPyYJFIZcD1svtJy/hO/8gomKMV3Vk6WtlycmpIyWJBjL9A084pOHpnhEc4mIxffqnnJ2bCc1e13HcsyewZAnXIS9ecDN01SqgaVPg+nWO5G3QAHB1jZ9xvGABGz8jIoz2tJRHJ3SOGZPy7zt3ZiYcPjxTr7tFo9Wy5bZKFeDOHW6oTJ+eOYEY4K67vz87kxctAmrV4lxjMzFvHvD4cfIGch2NG1P7GT0aiIoyW1hWj6lnOghCUkySkx3sMb1jVSbQZcu44fz6tVHPIZiWffuAnDlpKZ0Snp4Uy/futd30b5G8ecMqr6VLWQjYqRM8enfFpDbG7UKd3KZihhe9akPysmBOTJKT7TSY/oFn+nfUaNg1PGQIReInT5i/O3bkovijj4C8eVk5NHEifxYba9RYBSFV/v0XaNuWFyY//KCfMNqmDTB3LjBrFveJBItHcrJgToydk7VawA565mRBEFSBh5sLJrWpaNRjWstaWXJyckQkNhCTfcBaNAQ+/RTo0IEtMEZCJxz36pW2cDx6dOrC8cuXRgvHfPzzD/D995w9nFrFuJ0dO4wDA4HffjNvfGrg0SPgww/55ujQAfjrL9paGQs7O3o6nzrFb9MaNajemvibNSyM2vQXXwDFi6d+v9mzgZs3geXLTRqOTSFJVjA3JsvJ1SpwxnqTJrTmWLKEiVMURdXz77/AlStsGHNIZaiKRgM0bw7cvQsEB5s3PiGDXL5McfjwYYo8gwa9tZHtXLMohjV/xyinGd68LDrVtJ72csnLgjlR1UZU1qzsHp43j1/0ISF0UyhSBFi4EPDxAfLlo3i8ahWLZQXBFDx/Drz3Hmd/bd1qmLvW4MF0AOnXj0VSgkUjOVkwJ8bOyRoNELarIvy2Wb44JAi2hKyVU0ZycnJkJnEG6FyzKB5FRGHu3iuZPtbw5mXRqX5poP6PnOXarx9V3dWrgVatjBBtchLOOP5vVjZiYji/VTfjOCgofsZxdQBBoN6at3n8jGO9rKqVYtQowMODs3HTImFLadu2me+gtRR27+YfPzqaAnmHDqY7V+XKFIq/+YbW03/8wVnFHh4mOd3EiXyPp9ZArqNCBaB3b46E6tEDyJXLJOHYFFqtYYlT9DbBGBg9J+sueh0cOIrA05NdSVu2MDm2agX8N0NEUBdaLbuDixThd3xaFC/OMRz79gHlyqUuKAsKk8BaGqVKsYoxb95kdxvUuAzyZnfG+O3BiIrWQmOvf4Kxt9PAwU6DyW0qWs2iV4fkZcHcGDcnv2O8z6SHB9CnD28xMVyb7NnDW79+/KBUqEBhuWVL5v+sWY1zbsF2iYlhIcK9e6zWTyF/pYlGAyxeDNy4wfX6iRPAO8bZ6BXMj+RkwdwYMycP9S2LS8+LondvjjIaM8bkbvGCIBgJ3Vp5wo5gxMRpDbKht9a1suTk5EgncQYZ1LgMZrb3hLODHewNtPDQQANnBzvMau+JgY1Lx/+ifXta8larRuHy88/N1sbr4EAtL2nH8V9/ARMm8D637yTuOK5QAfjkExVaVR8+DGzfTttkfSp1Z81i69GyZaaPTQ3Mmgm8+y4tpi9cMK1ArCNLFuDbb2lBffUqRZcNG4x+moQN5G5u6d9/0iQWQljbmCelkEosQSlMkpN15MoFdOrEue0vXtB+QCyoVcn580BoKLuE9dm08PUFwsOBkydNH5tgIClYS+OTT9LcYO9csyiKXmwIzcM8AJDud4Hu9z4l82Df4IZWtejVIXlZUILM5GR7uwQ5uVFp0+zIODgktp1++BDYtAmoXRvYvJlCsZsbxeL581lJbQs7Q4Jx0WqBL78E9u9nUXa5chk7jqMj35fu7twjevzYuHEKZkNysqAExsrJXzQtjaVLgSlTuN82aJBMbRAES6JzzaLYN7ghfErKWhmQnJwSIhJngox+wKJu5cGGrql8wAoWBHbtolL7448UjE+dMnrs+qATjtu04f//tCZeOF61ii6c166pTDjWamlxXKMGNxT1oWJFWn1PmQI8e2bS8BTl0t/8d9t2ViT/739AoULmjaFJE+7it2oFdO0KfPwx8PSp0Q6vayAfNEi/+xcsyLfLggV0oRMEwXLJaE4uqMmDJa30uOgtVSqxBfXixWJBrSLevGEdUoUK+htV5M1Ld5RDhyx0tIa1koa1dFr4+QH+213w7Xve8Pu6AT7xLoZieVyQ9FEaAMXyuOAT72LYN7gB1vb2toq5SoKgJjK9EVUjwRe5qfOsm1u87fTt28DFi8C0aTzv6NFcKxYrxi7kX3816tpFsGIWLWIR+rJlnPGVGXLlohvXs2dsLIiKMkaEgiDYCMYShzQaCsTff8+66Y8+krppQbAkPNxcsLa3rJWFlBFzvUyi+4BdDXuB9YEhCLjyACGPXyLhUlYDoGgeFzR+Jz/aVCiK5rVzYEV2YOXKVA6q0dAmuWlT2ur5+ADjx3ORqrAfok441nUdA8mtqk+fZrHs69d8KuXKcRNWdzOpVfWvv7IlKCCAM3H1ZdIkdrbOnGl9baUxMeyWnrAdwEk+zw4llIsnd27G8P77wIABfDP99BOFl0ygayBfv96wUU/DhvECd+xY4OefMxWCzWNodZUtVGIJ5sXQnNytdlEEBeRAcCDQqAabNdJEZ0FduTK7ibdsYdJr3VosqBXm+HEgMtLwfdhGjaj1HzxIkw1BQRJaS5cunaq1dErExjKf163L/XONJgcmtqmIiaiIyKgY3HwcieiYODg52KF4nmzI5mwbSyDJy4KSZCQnl86fI/6XCcVhrdY8vpYaDUXhihWBIUNYQXToULw19apVXGN6e7PjuEULoGZNwN7e9LEJlsMff3Ce8PDhLC4wBiVLAtu2cc3cvz8bCsTr1aKQnCwoSaZzcgL69OHSt1MnpsHt22V8myBYEmUKyFpZcnJyrP+vbiYM+YCNG8c151dfcf2ZKuXKAceOcWjqxIncOFu7lt1MKiIl4fjNG+DSpXjROCgodeG4Rg2galUjCMdRURTS33uPu76GUKgQ5+XOns1OsaJWYqNw4wZbu0+cAHouAlYDKKGgQJyQjz8G6tXjQOCmTbmQnj6d1tQGomsg9/ICOnc27LE5crBG4PPPGUK1agafXvgPSbKCWjAkJ+f2Bb77DggM5FeSXuTMyVXx9et0/1i+nBvGjRpl6DtMyBwREcDRo0CtWvqNGkhItmzU/QMC+Pg8eUwTo5AGb96w0uvoUf5BOnfmhaIBm98//0yx/8SJ5A/L5uyAioVyGjloy0DysqAGMrwRpdEoIxQnxMWFttMtW/L/Q0KAvXspGM+fzzV67tycX9CyJecdFCli3hgFdfHXX8xjbdsav/i8bl2Kw127cjbxmDHGPb5gUiQnC2rAWOLQ++/Txem997iW2r0bKFzYxMELgmB0bHWtLDk5OSISm4D0PmADBtB9aNQoYOfOdA7m5ARMnUp73k8+4RzZBQuA3r1VXTnq6Ji6cKwTjVMTjmvU4L8GC8fLlwM3b+rxoqbC8OHAihVU8X/6KWPHUAtaLReQX30F5MvHCvisdSkSqwkPD2DfPr6nR4+mV+T69XzjGICugXz/fsMayHX06cMQRozgvo+KP1qqRpKsoEbSy8l58jDvHDnCIpFs2Qw4eKlSTOrHj7MV9cIFllN7esoXiRk5cIDf/Q0aZOzx3t68Ntm3T/9JFYIR0GppLf2//3GeSd263GVycjLoMJGRwDff8G/n7W2iWC0UycuC2jB4I0oNQnFCihblwqFPH7o1nTwZ32Xcty8/RBUrxncZN2ggxWO2xP37VEzKlgXWrcvYwjQ9unSh48Y33wBlygAdOxr/HIJJkJwsqI3MikN16nAN3bIl/3vPHqB8eSMGKAiCYCIkJydHZhIrgJMTMGMGXYgOHNDzQT4+wLlz3AHr2xf44APg4UMTRml8dMLxp59y1NyJE0B4OIttf/gBaNwYuHqV4nn9+vEzjrt3BxYu5MVHqjOOnz1jx3Xv3nxQRtC1lK5dy9faUnn4kF6LvXtzSMhff3HjVa3Y2bG1/vRpbvrUrAnMnav3N3B0NPXl1q35HsoIDg505N63jyKxkDF0SdaQmyCogYYN+e/Bgxl4sM6C+osvOLNwyxYW6YSFGTVGIWUePgTOnOE+fNasGTuGoyPdG//5B7h1y7jxCanw5AmLwn75hZbSujErBgrEAPDtt8Djx7y2FhIjeVmwCpKKwqaeUawvDg5co0+axIXtw4fApk2sVtm0iSJx7tzcPV+wgNXSaoldMD4vXwJt2vBvvHOngVWHBjJhAl25unenFY5gEUhOFqyR8uVpgJkrF7cdjx1TOiJBEIT0kZycHBGJFaJjR9oaDh9uwBstRw7OQdq6lZZ8lSoBf/5p0jhNTWrC8blz8cLxlSuJheOKFVMQjmfMYEvypEmZC6h3b1o3jRhhjKdnfnbtYgfb4cPA77/z/ZIj5TkiqsPTEzh1CvjyS77+TZvqtVu/bBkbyGfNytzp27The2z4cM42FAxHkqxgqbi48PN/+jTw6FEGD5IzJwtzundna+Py5eyQfP3aqLEKifHz46ZEzZqZO46nJ1CwIAuFZA/fhERH0/Zj6VLgwQNacnbrlmGf7/v3OSnkyy/VM01DTUheFqwGS3DncHPjdcCqVcDt23QXmTqVH6xRo1jIXKwYC75/+w14+lTpiAVjERdH17dLlygQFypk2vNpNMDq1UD16rS1lgo3i0BysmCtFC5M80JPT05fyKi5oyAIgrmQnJwcEYkVQqNhs+Tp0yw0Noh27bjo9PKindFnn3FD2kpwdKSrdmrCcaNGFI5HjuSmfsUcIYiasxBbSw/Dws0F0+441ufks2Zx13nPHiM+KxPz8iWH6rZuzcXihQvsNrc0nJ2BOXO4gXz9OisI1q1Ldcde10D+6afpzPfWA42Gp75wgbMNBcORJCtYMt7eLETaty+TB9JZUDdtyhbXxYvp6CDKo9G5cYMOJE2bsqErM2g0HCV57x5w8aJx4hMSoNWyVXvpUlb4+fgAgwax/SAT4s/48bx0kLGMKSN5WbAqEn5XqD2najQs6B46lNVHT56wcKxDB34HduxIFwVdJ3JgoFSpWjJjxrCQ/5dfOLvEHGTJAmzbxkrH997jhomgaiQnC9ZMrlzcQm3VilvWP/ygdESCIAipIzk5OSISK0j9+iz8HDMGiIoy8MHu7uwi/u47KlrVqnEmkpWSknD84gWFY/86YxGVJRcWOQ57KxznzJm841hvHb1NG6BePXazWsJi/dQp/v3XrOGL8+efbIeyZBo1As6fB95/n1XZnTtzcyUJM2eySW/yZOOc1tubDQDjxlF3FwxDkqxgyTg4sPL58mW6E2T6YPXqUQQrVozODmJBbVTi4rjvXqRIxqdMJKV4cY4R9PfnqEnBSDx+bDRr6YRcuMBGqgkT6OgqJEfysmDVqF0oToiLC22n589nt+mtW3QcKVSIP6tdG8ifn6OlVq8G7t5VOmJBX1avZpH53Llcu5qTfPk4wywkhOtluXhRNZKTBWsnSxY2QQ0YQNOMqVMtK1ULgmA7SE5OjojECjNzJt2oli7NwIM1Gmbfs2epiuoqkW1kceDoCFSJO4vSJ9bBdd5EBJzO8VY4/v576oyXL8d3HCe1qj56NBXhWNfmff485xOrlZgYYMoU/t1dXfk++Pxzy7Bj04dcudhFvHEjlYDKlRO1+IWEcLzXsGHG1cSnT6cD5oIFxjumraDVGpZgZcEgqI2KFWmXZTTLYbGgNhnnz1Nzb97cuGnP15fNODLizwgY2Vo6KSNGACVL0lBHSBnJy4LVodb5xIZStGi87fSjR1yYDhrEKrU+fVgBVakSFzp+fnLdoFYCAoD+/XkbPFiZGCpU4Pto717lYhD0QnKyYAvY29NIa9o0Nl98/rll9N4IgmBbSE5OjojEClOuXHyFVYbHEpUtCxw7xpbkyZPZvXT1qlHjVCVaLXcIy5blYhrJO44DA5FIOG7YMF44rlcvsXC8aFEC4VjXUjp2rDpbSq9fBxo0ACZOBEaP5t+/bFmlozINnTqxXahcOaBZM+Drr4FXrzBuHPWXYcOMe7pSpXghO3Mm8PChcY9t7UgllmDp6CyH79/n147REAtqo/LmDbXHChUADw/jHjtvXqBGDeDwYXWmf4sgqbV03bpGsZZOyN69wO7dbN7KZEOyVSN5WbBKrEUo1uHgkNh2+uFDFsnWqkUHhubNOe/43XdZxXrpkuU/Z2vg8mXahzduzOs6JQu1mzVjzl2yhDdBlUhOFmwFjYbb06tWcR+2Y0epdRIEQV1ITk6OiMQqYMIENltMn56Jgzg6UiA+coTVyFWrAitXWvcCcs8edpbOmpXmMMKEwvF33yUWjleujBeOR4xILBwPi56O2NAHuDlkoXpGPmu1HO5RpQq7co4c4d/d0VHpyExLkSLcEZ4/H1i+HK8q1cD5n89h0iQgRw7jn27cOMDOzng21raCJFnBGihalFqWvz/FSKORmgV1aKgRT2IbHD/Ogi5fX9Mcv2FD/nvwoGmOb9UktJbOl89o1tIJiY1lgVi9esAHHxjtsFaJ5GXBarE2oTghefLE207fucOqtSlT+OU3ahQrpIoXZ6X5li3As2dKR2x7PH4MtG7NEWCbN6tjLd6/PzBkCPDVV8CuXUpHI6SA5GTB1vj0U2D7dhZ2Nm+eicYoQRAEIyM5OTkiEqsAd3cKlIsWGWEOYp06VD+7dOFCoW1bionWRmwsX7T69TM0+0cnHPfunVg4Pns2Xjg+fK8UvsPncFsxAyVzPETFikCPHkk6js3JgwdAu3bcEPj4Y/6d69QxcxAKYmcHfP01tKdO494DRwSiFvo+nW0S75o8eVj5uHw5cOWK0Q9vtUiSFayFpk2BiAgTWQ7rLKh79GAiWbFCLKgNICKC9VG1apluDm22bBQgT5/mPrCgB9HRrKxYupRdcB9/DHTtajRr6YT89BM1k7lzrWfChqmQvCxYNbbwBaDR0HZ66FAWzD55QgHwgw+YDD/8kBYYdeuyujUwUHw9TU1UFF//5885DzhXLqUjimf2bOC99zjewaiWOIIxkJws2CKtW9MBKjiY27d37igdkSAIguTklBCRWCUMHUoXqW++McLBsmenp8f27cCJE1xY7txphAOriJ9/NvoOoaMjG7ATCsef3R6LbNk12N94Cho2pHtiwo7jSpXMJBz/+Sfg6Ulb6W3b+PfNnt1EJ1M3e+9VQoWIQNz6YDDsvxkFNGlihOqK5HzxBWcdjxlj9EMLgqBy8uSJtxw22fd6yZJiQZ0BAgI466pBA9Oep3ZtOlXs22fa81g8Wi2tT5cu5YVQvXrsHi5XziQCTkQEJ4F07szJIIIg2DgJv2dsIX+6uCS2nb55E1i2jFXn8+YxeeXPz07kH38E7t5VOmLrQqsF+vUDTp7kXkvJkkpHlBh7e7p5lCpFsVjcagRBUAG1a3OZEBHB6Qp//610RIIgCEJSRCRWCdmysfh3wwYgKMhIB23ThkJqrVr87379mJUtnZcv6QfcqROfmwlxLJgX9mPHoOKhZfhu8NVkHccNGphYOI6MBD77jIu8mjWBixfZHW6jxMYCw4cD3vWdUXrLLKoFN28ClSuzcMCIm0NZswLTptHF7dgxox3WqpFKLMGaaNiQe88HDpjwJAktqIsXpwX16tWyqZcKDx4w/zZsyO9oU+LgQP3+n3+AW7dMey6LRWctvXFjvLV0kyYmHRL87bc87YwZJjuFVSF5WbAJbE0oTkixYvG2048esbt44ECuj3r35sgeT0969Pv5iWtJZpkxg2vO1aupdKiR7NnZIPDmDfcNXr1SOiLhPyQnC7ZMuXLcV8udm8vfo0eVjkgQBFtGcnJyRCRWEb16ccTQ8OFGXN8WKMBFwvLl3MirVo3dxZbMggXcKc7UEGcD+PJLtpSOHg0g5Y7jpMLxpUtGEI5PnuTfa+1a/v127uTf04bRNZDPmfPfflDDhsD587Th7tGDFq5G9Abt2pV/62HDbG/PKSNIkhWsCRcXfp8HBXHf1aTkzAl07MjvsVevaEG9a5ds5iZh3z66OtasaZ7zVaoEFCpEh0/JAQkwo7V0Qu7fp5PmV1+xpkJIH8nLgk1iq1/YDg6JbacfPmQRT40anBPfvDmty1q1AhYuBP79V+mILYvNm2n7NnEiR3upmSJFuHdw8SKvLeXLXRVIThZsnUKFgEOHOPrP15eGDIIgCEogOTk5IhKrCAcHbn4FBHA8odHQaDif+OxZLgzr1QMmTGB1qaXx4AEwcyYrpM1l75Q1KzB1Kiu0jx9P8S5JheOTJxMLx/Xrpy0cHzvGBmkAQEwMMGkSq5Nz5+ZB+ve3jblbaaBrIP/ooyQWkzlzUj3evJmb1p6e3NE3AnZ2FKSPHwe2bjXKIa0aSbKCtVGrFr9i/PzMdMKSJeke0bQpv/sXL+b8eVvd8E7AjRvA1avcULC3N885NRruqd+7x31WmyehtfSxYya3lk7KuHG8JJMxEPojeVmwGZJ+B0neZOGOznb6zh0W1k6ezD2AESM4zxiIX+c+e6ZouKomMJAL9y5dgPHjlY5GP7y82CTw229MoILiSE4WBK6t//c/miW2b89JeoIgCOZGcnJyRCRWGa1aAY0acd0WE2Pkg7/zDi2oxo6lj27dusCVK0Y+iYmZMoXK3dix5j1vt24sdzOgpTShcLxsWdrCcd26nH3YqsxVXCtYD3GTp+B2j7F4ufcI/25C+g3kHTuyzbhSJaBFC3aAG8Fey9cXaNkSGDXKMusqzIkkWcHa0FkOX7lixoabpBbUW7favAV1XBxrfzw8gPLlzXvuYsWogfr7m+C6zJJ4/BhYty7eWvrzz01uLZ2Q8+f5MZgwgd3kgn5IXhZsChGKU0ejSWw7/fQpK5UB4MwZCsZ58/L6Y8oULlxjY5WNWS3cukXb5urVgVWrLKtwu107YNYsLqB/+knpaGweycmCQLJk4ZLi8885FXHyZEnZgiCYF8nJyRGRWGVoNOxcDA4G1qwxwQkcHWmRdPQoF4fVqtHK2BIy8pUrjHXMGJNbGiZD11J67FimWkpTFY7PaHGg60psvVkVTi8eo4HdURRdPRE53BxRqRLQsycbyhJ1HNsQDx+ygfzzz4FSpdK4Y+HCwO7dtFD7/ntWUJ85k+nzz5oFXLtGcV9IHUmygjVSsSK/Wvz8zJwqk1pQL19OC2obnC13/jwQFsauXiX2Zn19masDA81/bsVJaC396JHZrKWTMmIEULo0jVUE/ZG8LNgcIhTrh4sLq5QB4PffOcP4u+842mjuXNo25c8PdO7MTuR79xQNVzHCw9nu5uICbNtGZcPSGDYM6NOHs6sPHlQ6GptGcrIgxGNvz1ql6dNZBDpggNQmCYJgPiQnJ0dEYhVSowb34MaP13N2bUbw9mZLa7duzMbvv88dWDUzZgyHWHz5pTLnb9aMHapGbil1fBKGquPboP7a/nD+tBuKPjqL/ZHeOHOGYynr1wf+/pvrO13Hsa0Jx5MnU6fXyynLzo7vkaAgwNkZqF0bmDEjU1eclSvz9Z40iXsFQspotYYlWNm3EywBneXw/fsUK82OzoK6WTObtKCOjgb276dYX6SIMjHkycOao8OHTXhdpjZ01tJLlsRbSw8aZDZr6YTs2cPbrFlma1y2GiQvCzaJJXV6qoVixdjOtWULnSOOHGF17o0brG4uXJidyMOHA/v2Aa9fKx2x6YmJoUgeEgL88QddNCwRjYYFAPXr09v16lWlI7JZJCcLQmI0GmD0aNYi/fADTS1ssB5aEAQFkJycHBGJVcr06VyfzZtnwpNkz04VcscO4NQpKo/bt5vwhJng2DEuWqdOVbaCd/Zs47aU7tzJBXdgIP8OK1YA2bPDyYlN3n36JO44Tks49vS0TuFY10A+erSBjUsVKvB1HToU+OYb+rhnwi928mQgIoKb1ELKSCWWYK0ULUqb4/37FbKdd3Dgl/0XXwAlStiUBfXx48xnTZsqG0ejRvzXJppwElpL58/PucNNmtAOxczExvJap359umYKhiF5WbBZEgrFtrCrY0x01xw62+kHD4BffmEl+/r1LFpzc+OcrIULgX/+sc7XePBgzrr47TeuKy0ZR0c+j3z5gNatgSdPlI7IJpGcLAgp07Mnt0P37mWKka8oQRBMjeTk5IhIrFKKF+de8OzZZmjwff99znKtU4c7cH36UA1TC1otdwirVqXFoZJUrkzrz8y2lEZEsFq7TRt2ul68yL9DGqQnHNerl7Zw/NdfGQ9XScaMAQoWzGADuZMTu4gPHgRu3+Zc6TVrMrSRUaQI9wrmzQPu3MlALDaA2pLskydP0LVrV7i6uiJXrlzo3bs3ItL4bnvy5Am++OILlC1bFlmzZkXRokXx5Zdf4vnz54nup9Fokt02btxo2icjKI6vL7+6T5xQMAhXV1pQ9+xpExbUERGcjlGrFpA7t7KxuLhQqAwKouuyVRIdzQ6xpNbSbm6KhbRmDS+R5s6V5sCMoKa8bGhOBoBGjRoly7efffaZ6YIUrBdrFDHNRd688bbTd+/SVmXyZOaMESNYRVeiBOcB/P47kOS62SJZvJhOGkuXUrGwBnLnBv78k+pLhw78+wlmRU05edq0afDx8YGLiwty5cql12N69uyZLCe3bNnSdEEKNkWrVizI/ucfrrlu31Y6IkEQrBk15WS1ICKxihkzhoW8kyaZ4WT587OLeOVKdo5UqcL2HTWwdStjmTOHVsJKM2UK1dnZszP2+BMnqPauX8/Xe/t2vv4ZQB/hODiYwvGnn/IxH30ULxzrOrTUiq6BfNo0IGvWTByofn1uaLRvD/TqRR+bDOzyjxzJBvzx4zMRixWjtiTbtWtXBAcHw8/PD3/88QcOHTqEfv36pXr/e/fu4d69e5g7dy4uXryINWvWYPfu3ejdu3ey+/7444+4f//+21s7aXGzetzcgJo16cCouOVwiRIcFZHUgtrKrlwDAngdVL++0pEQb28WYO3bp3QkRkarZZXZkiW8MFDQWjohERHA2LHUqmvVUiwMi0ZNednQnKyjb9++ifLt7Ixefwu2h8wnNj4aDauQhw1jMnzyhMJj27Ysyu3QgdZP9erFdyJb2pDJXbuAr78Ghgyh8G1NlCrFvZVjxzjKRD4TZkVNOTk6OhodO3bEgAEDDHpcy5YtE+XkX375xUQRCraItzcLhF++BHx8uJcpCIJgCtSUk9WCChQ3ITXc3Lg5tnIlq6lMjkYD9O3LjeZ8+bi4GzeO83iU4s0bzgBu2ZJtXGogYUvp3bv6P+7NG2DCBL6uefLwde7b1+gbsEmF41OnKByvX8/fV6kSLxz7+CTvOFaLcKzVcuyV0RrIXV3ZkvTbb8CBA3zSu3cbfIgJE3iYCxeMEJOVoaYke+nSJezevRs//PADvL29Ua9ePSxevBgbN27EvXv3UnxMpUqVsGXLFrz//vsoVaoUmjRpgmnTpmHnzp2ISfI9mCtXLri7u7+9ZVHSBl8wGw0asFbpwAGlIwFgbx9vQV2yJDf9fvzRaiyoHzyg/t2gQSaLhIyIgwNtry9fBm7eVDoaI/HoEa2lN20CChRQ1Fo6KXPnAk+fcgSLkDHUkpczkpN1uLi4JMq3rq6upglSsE5EKDYt2bIltp3+91/Ov82fn1/i3t7MLR9/zAVUOp93xTl/HujUCXjvvYwXhKud+vWBVat4zWitz1GlqCUnA8CkSZMwePBgeHp6GvQ4Z2fnRDk5t9JWP4LVUbYs61h09UZHjigdkSAI1oiacrJaEJFY5QwcSE1y9GgznrR0aWbiCRNo1duzpxlPnoSVKzkDWG0LmJEjuSjWt6X0yhVu5k+bxsccOQKUKWPaGBPg5MSGIIDjeXXCsa7juG7d1IVjXWORuYVjXZGz0RvIO3SgwlulCvDuu+yWMuDJ9e/Pj8iIEUaMycYJDw9PdIuKisr0MY8fP45cuXKhRo0ab3/m6+sLOzs7BAYG6n2c58+fw9XVFQ4ODol+PnDgQOTNmxe1atXC6tWroZVNR5sgoeXww4dKR/Mfrq50R7AyC2o/PyBXLnZvq4lKlYBChRifRX/sddbS331HobhLF8WtpRNy7x7z/1dfcQSLYF6MnZczk5PXr1+PvHnzolKlShg9ejReqqGSUbAsRCg2H8WLc6TS778ztxw+TOeT69dpa1W4MMc3DR/OHGSEa36jERpKcbh0aVZX29srHZHp6NaNzQCjRvFvJagaU6yVM8qBAweQP39+lC1bFgMGDMDjx48Vi0WwXgoWpDlFtWo0ztq2TemIBEEQrB8RiVVOlizsoNi2jWsss+HgQDHz2LH4+cSbN5t3UR0eTq/tnj2pWKqJnDkpov/4Y9otpVotN+yrVQOePePrOX48X1+FSdhxvHx5YuF4+fJ44XjoUArHrq78M/TqZXrhWNdA3qKFiRrICxUC/vc/tk6vWgV4eVH10QNHR2DmTDYhW53laCbJaCWWh4cHcubM+fY2Y8aMTMcSGhqK/Els3B0cHODm5oZQPTstHz16hClTpiSzw5w8eTI2b94MPz8/dOjQAZ9//jkWL16c6ZgFy6BWLaYA1X3+rciC+vp11of5+qpvj1ajAZo3p4hpkY4SSa2l69dnsVTZskpHlohx49hBbtYiSStELXk5ozm5S5cuWLduHQICAjB69GisXbsW3bp1y1Qsgo0iQrH5cXRMbDv94AGwYQNQvTodLJo1Y2FS69bAokW06VDq7/LyJS2zY2OBnTs5X8jamTSJXdPdugGnTysdjU2glpycUVq2bImff/4Z/v7+mDVrFg4ePIh3330XsZZmKS9YBDlzcsuuTRv2eaxYoXREgiBYE9JJnBzllSohXTp3prPx8OHczzPreLhatYBffuECb9YsWjCtXg24u5v+3LNmUaCePNn058oI/frRWmvkSHZtJSU0lArsn39y5s/cuew+VjE64bhaNTphA2w2uniRGqrutmEDf25vD1SoQI1Vd6tShd12mUHXQP7bb5l/Tqmi0XBjvGlTLo5r1wYmTqQ6nY4q8cEHFM6HD+froYZR2WrA0MSpu+/t27cT2Uc6Ozun+phRo0Zh1qxZaR730qVL+geRCuHh4WjdujUqVKiAiRMnJvrduHHj3v53tWrVEBkZiTlz5uDLL7/M9HkF9ePgQPHyt9/oqliihNIRJUBnQe3pCezdS0uG06cB77YA8ikdnV7ExbFL18MDKF9e6WhSplgxunPs388YVeDMrD+7dgF37gDvvEM3DZV0Difk/HnW4C1axG5yIeOYOi+bOicnLNLy9PREwYIF0bRpU1y/fh2lSpXK8HEFG0WjEXFYSfLmpe30xx/z73DhArBnD2/Dh9M6olgxVgm3aME1Ws6cpo8rLg7o0YML3kOHaONmC2g0TLZNmgDvv08h38ND6aisGrXk5HI6izkD6dy589v/9vT0ROXKlVGqVCkcOHAATZs2zdAxBSEtnJ25He3uzi3V+/fZq2PWPXFBEKySjOZka0ZEYgvAzo6We02acFO6Y0czB6AbBrhgAe2nK1UCvv+eSpmpuHOHyviQIepdqDk5saX0ww8Bf38uZHVs306B2M4O+OMPVkhbKE5OLPiuXt08wnHCBvLKlU32tOIpX57VF5Mmsct71y5g7VrO+EwFjYafybp16Ub2ySdmiNMCyGiSdXV11XvG4NChQ9EzHQv8kiVLwt3dHQ8ePEj085iYGDx58gTu6RS5vHjxAi1btkSOHDmwdetWOKajAHl7e2PKlCmIiopKU+AWrIcKFeiYuHcv64VUt1DVWVB7ebFQacvvgKY/8Po1AHXPz/7rLyAsDOjdW4WvawJ8fenUHBjIOjpVEx3NzV8AeP6c1tIq6xxOyPDhdPvs31/pSCwfU+dlc+TkhHh7ewMArl27JiKxkDESCsVarboTjTWj0XChp7Oejoykt+ju3RSNV67korJOnXjR2MvLNJW548YBW7bQdtnLy/jHVzNZs9KyztubVttHjnDulGAS1JKTjUXJkiWRN29eXLt2TURiwWTY2XErulAh9nPcu8c1mArMGQVBsGBEJE6OfK1aCI0bU2ccPZpOSE5OCgRRvz43Fvv2Bdq3p+/wwoWmWUiMH8/jjhxp/GMbk/btuXgdPpzdWpGRwODBtDBu25Ziej7L6N4yBFMKx4o0kDs5cV50q1ZUfKtU4Xu7V69UN498fPjn/+YbFm5kSaC7REbF4OazN4gu+A6cnr1B8agYZHO2/q9bcyTZfPnyIZ8en6k6derg2bNnCAoKgtd/Gz779+9HXFzc203mlAgPD0eLFi3g7OyMHTt2IEuW9AW1c+fOIXfu3CIQ2xAaDfcrV69m12OVKkpHlAo6C2q/i0AggE2bgBaVGbAKLRCio9mdW7GieuvDdOTJA9Sowf3UatVUahSi1QKXLnHTXTc65KOPgKJFlY0rDXbvjm+Ct6gObZVi6rxs6pyclHPnzgEAChYsaFiggpAaIhSrg2zZuA5r1Yr/f/NmfJfxnDkUcvPkoUW1TjQ2xvfAmjWc7TVnDtCuXeaPZ4kUKMCidh8fdnlv366+WR9WglpysrG4c+cOHj9+LDlZMDkaDbeG3d1ZSBwWBmzcGN/PJAiCYCgiEidHfTuEQqrMmkVry+XLFQwiXz7u3P3wA2cUV6kCHD1q3HOcP88F24QJ7IZSMxoNbaTPnmUnatWqvFr54Qe+TlYoEKeGTjju2zfxjOOgIGDZMq47L1xIPOO4cuX4GccnTgBXr7KBfPBghQSCunU5w7NjR159tm8PPHyY6t1nzqTlzaJFwNWwF5i4IxgN5wSg0sQ9aO33CB/0mIfWfo9QaeIeNJwTgIk7gnE17IX5no+Z0WoNm+dgSse/8uXLo2XLlujbty9OnjyJo0ePYtCgQejcuTMKFSoEALh79y7KlSuHk/912IWHh6N58+aIjIzEqlWrEB4ejtDQUISGhr6dtbRz50788MMPuHjxIq5du4Zly5Zh+vTp+OKLL0z3ZARV4uHB4pf9+zlHXbXY28er2IULs2Nk9Wp+eamM48eBV68SG3OomYYN+e/Bg8rGkSKPHtEVY9Mm7qh89BF/ruKy+5gYYNgwoEED1tkJmUcteTkjOfn69euYMmUKgoKCcPPmTezYsQPdu3dHgwYNUNksVjOC1SLzidVP8eK0k/j9d+azQ4foNXrtGvDpp2wpq1IFGDGCjl5RUYaf4+BB2sH06cMFqi1TqRLw66+s1LL118KEqCUnA0BISAjOnTuHkJAQxMbG4ty5czh37hwidEWFAMqVK4etW7cCACIiIjB8+HCcOHECN2/ehL+/P9q2bYvSpUujRYsWpgtUEBLQowfHxu/bR1enJ0+UjkgQBEtFTTlZLYhIbEFUrMg10eTJwLNnCgai0VBA++svbjw2aMB2yuho4xx/5Ej6DCaYQ6ZqatbkcMLJkykK//WX+n0yzURS4fj06cTCcZ06FI6HDOF/ly1LseXmTWDpUgrHr16ZOWhXVwooW7YAhw9ztmdKM6cBlCkDdB/wEgvPB6LZgkNYG3gLt568RNLcoQVw68lLrA28hWYLDuGTVYG4/eSlyZ+KuTEkwRpatZUR1q9fj3LlyqFp06Zo1aoV6tWrh5UrV779/Zs3b3D58mW8fMm/xZkzZxAYGIgLFy6gdOnSKFiw4Nvb7du3AQCOjo5YunQp6tSpg6pVq2LFihWYN28eJkyYYNonI6iSpk3ZoHnihNKR6ImvL738o6KAFStoRW32L9mUefGCNWe1agG5cysdjX64uNBk5fRp7mGrguho7px89x13Trp04U3tRXdgfWBwMGvv5BLKOKgpLxuak52cnLBv3z40b94c5cqVw9ChQ9GhQwfs3LnTdEEKtoMIxZaDoyOT7dSprEJ+8IB2VdWqsRjK1xdwc6Pt2qJFwJUr6f89r15lMXD9+syXknTYnb1oEd20vvtO6WisEjXl5PHjx6NatWqYMGECIiIiUK1aNVSrVg2nT59+e5/Lly/j+fPnAAB7e3ucP38ebdq0wTvvvIPevXvDy8sLhw8fFjctway8+y4QEMCv+nr1gJAQpSMSBMESUVNOVgvqbScQUmTSJK6JZs7kTVFKlWJV78yZDGz3bmDdOs54zSj79vE4W7ZYhs/g5ctAt25caNrZcU6zzEhLk9SsqrdupcOVtzdf1l9/pWCc0Kq6Ro14q2qTW8vorMQ//ZSbDgMGcOc6gUf2xlMhOOIaDIes3IiIjUt7Q0L3+2M3HsN3/kFMalMRnWuq1/bTUNRm1+Hm5oYNGzak+vvixYtDm2ATqVGjRon+PyVatmyJli1bGi1GwbJxc2OdkM5yOHt2pSPSgxIl2I0TGAgcOEBVrlkzxS2oAwLY5Fq/vmIhZAhvb+5Z79sHdO6sYCAJraUjI/lC1qtnGddSYLHFuHHUs2vWVDoa60FNednQnOzh4YGDqmzTF6yGhPOJAbGethTy5uWi8eOP+Tc7fz7emnr4cOCrr9iJrLOlbtIEyJkz/vFPnnBtly8f8NtvFpMnzcLnn1N5+fJL7mlIh6hRUVNOXrNmDdasWZPmfRLm5KxZs2LPnj2mC0gQDKBWLRYXt2hBl8Ldu2mIIAiCoC9qyslqQTqJLYxChegAtGCBSiqmHByAsWPpERkZSeVvyZKMVWPHxXFh5+NDsVXNaLWssK1Wje1PJ05QRJwxA3j8WOnoLA4nJ3YQlS5NzeL0aW4YBwXxZdZ1HA8ezP/OkYNW1Z9+auKO44IF2UW8dCkDrFaNagCAJQFXMer3C4iKjYPGzrD3e2ycFlExcRj1+wUsCbhqgsCVQSqxBFukYUNqqwcOKB2JAdjbM9cOGgSULKm4BXVYGJ3+Gza0vNlSDg5sYrp8mS4YipDUWnrgQKBxY4va+J4zB3j6lKMhBeMheVkQ0kFEYctGo0lsO/3kCefrvv8+q8/at+csY10n8vHjQIcOvN+ff1qOdYk5+fZboGVLjqm4eFHpaKwKycmCYDzeeYdf6fny8Sv+0CGlIxIEwZIwV05eunQpihcvjixZssDb2/vtaKXU+PXXX1GuXDlkyZIFnp6e2JWKs6kpEJHYAhk+nMWw48YpHUkCatQAzpyhavfFF/QAuXfPsGOsX89d4jlz1L1gDw1l9fHAgRyoe+YMn//48fzWmDpV6QgtDl0D+YwZ8Xvauo7jfv3oiqqzqj59Ol44Pn8+sXBcpYoJhGONhlXVZ8/SrtPHBxsnfIe5e68Y4eDA3L1XsOmUGio+Mo8sfAVbJGtWTl04cybNEebqxNUV+PBD5jIFLaj37eM+bY0aZj2t0ahYkeOe9+41s2NpdDTg55fcWtrNzYxBZJ67d3np9/XXQLFiSkdjXUheFgQ9SLjuFNtpyyZbtnjb6cuXgRs3WMCeNy8waxYL5A4cAKpWpQ2MQsVxqsbeHvjlF3Zjv/ceK/kEoyA5WRCMi7s7x8tXrw40b84x9oIgCPpgjpy8adMmDBkyBBMmTMCZM2dQpUoVtGjRAg8ePEjx/seOHcPHH3+M3r174+zZs2jXrh3atWuHi2Yq2hOR2ALJkYPuzmvXUlNVDS4uVOd27eJcXk9P2kbrw6tXnGvcoQMXb2pl61b6mJw9G99hqrMfzp+f85SXLuWCVNALXQN5nTos9k4LZ2faTacmHNeubULhuGxZ4Ngx3B45ARMi3VPcRIp+eAsPt87A3WW9ETK3A24v7ILQdSPx8mpgmocevyPYKmYUy8JXsFVq1gRy5aJeZ5EUL04L6ubNmb8XL2aeM8OH9Pp14No1duPa25v8dCZBo+FLd/8+XS9MjlZLm/DFi5nYGjRg4VrZsmY4ufEZN477+qNHKx2J9SF5WRAygAjF1oNuxMbWrfFJpk0b4PlzFsgVKpS4EzkqStl41UKOHOzIjooC2rUze/GgtSI5WRCMj6srt2Y/+IC1z8uWKR2RIAiWgDly8rx589C3b1/06tULFSpUwPLly+Hi4oLVq1eneP+FCxeiZcuWGD58OMqXL48pU6agevXqWLJkSSafrX6ISGyh9O5Ne40RI5SOJAXefZe7pA0bMkv37AmEh6f9mMWLubs6Y4ZZQjSYFy+oNLZvz83YCxf4PJMyeDD9TsaMMX+MFoqugXzu3Iw1kOsjHP/1l5GEY0dHjCnRDDFOzikGGxv+AHHRr5DNsyly+/ZFTp9OAICHW6bgxbndqR42Jk6LMVvNoSyYFln4CraKgwPQtCnH01tsjZDOgvqLLziHbts2YNUqw11BDCAujt23RYsC5cqZ7DRmoWhRoHx57jG/eWPCEz18CPz8M7B5M0ciDBoENGpkUdbSCfnrL05zmDgx8chIwThIXhYEPUl6XS9CsXWxZQsL0seNA7Zv5/igsDAuRKtWZfW9ry+dON57j3sTV67Y9vvAwwPYsYOJulcvSRBGQHKyIJgGZ2d+nX/1FU0Ax4+37a9vQRDSJ6M5OTw8PNEtKpUCw+joaAQFBcHX1/ftz+zs7ODr64vjx4+n+Jjjx48nuj8AtGjRItX7GxsRiS0UR0c6Jvn5AXv2KB1NCuTNy8XYjz/y3ypVgMOHU77v48ccQvfZZ0CZMuaNUx+OHmX8v/7KmY1btvD5pYSLCzBlCucCpuMzLwCvX3O93r69cRvIkwrHQUGGCceBgSkLx1fDXuDwtUeITeWCM2upmijQaTJy1euCHFVbwrVmWxToMh2O+Usg/OS2VOONjdPi8LVHuPbghXFeAEEQzE6FCkCRIszLFr0ozZGDrh69etHOeOVKdpOYoIvkr7+ABw+AZs3UPWVCX5o2BSIimEOMTlQU31zLlnF4b9eutJa24HmKWi0wbBgv/fr1UzoaQRBsHhGKrZNTp4BPPgE6daIdm458+ZhHf/qJBXHnzgETJvB6Z9gwunOULMk9im3b0i96t0Zq1gTWrePexsSJSkcjCIKQKnZ2wLx5wOzZ3JLt2xeIiVE6KkEQrA0PDw/kzJnz7W1GKs2Ojx49QmxsLAoUKJDo5wUKFEBoaGiKjwkNDTXo/sbGwSxnEUxCmzZAvXrsJlalTaNGwy7iBg2A7t3ZWTxyJBdnTk7x95s6lSUZ48crFmqKREcz1pkzqSTu28eFYnr06AEsWEAP5QMHrGPn20QsWmS+BnKdcOzlFf+zqCjg4kWKyKdP899169gFZm/POZNeXpyT6eUF7LwXAns7DWLj9N800tjZwyFHXkSFXk3zfvZ2Gqw7EYKJbSpm9CkqjqEVz1IdLVgTOsvh1aspflatqnREmURnQX3yJBAQQHvjZs34xOwyX2MYHQ3s388JDkWKZPpwqiBPHuaLw4eBatVooZxptFrg77+B3buBly95TVW3rsV2Didk925eWm3bZhVPR5VIXhYEA9FoEovDWq2s5SyZkBBumlSpwuL11P6WGg3vo7OejojgOn7PHt5WrKBtTJ06QIsWvFWvbpTrIdXTvj33Q0aNopVdt25KR2SxSE4WBNOi0XAb1t2dDSAPHgAbN8ZPCBQEQdCR0Zx8+/ZtuLq6vv25s7OzkSNTDhu4qrVeNBpa9J4/T4ck1VKyJHDwIMXguXPZxvn33/zd9ets3Rw1itW8auHSJS4CdWVoBw/qJxADVBdnzwYOHQJ27jRtnBaMroG8f3+uN5UgYcfxypWJO46XLgW8vSn2fP0137Zr9jzQSyCOi36N2JfP8ebpfYSf3IZXN4KQpViVNB8TG6dFwJWUh9dbCmKhJdg6Hh7sKN6/38SWw+bC3p658IsvgNKladFoJAvqY8fYrNO0qRHiVBENG/L67MABIxzMyqylExITw0athg25fy+YBsnLgpABpKPYOnjxAnj/fS74tm0DsmbV/7HZsye2nb5xg/+dJw/t3GrWBAoUiO9Evn/fZE9DFYwYQcWld2/gyBGlo7FYJCcLgnn45BNuxe7fz4aqx4+VjkgQBLWR0Zzs6uqa6JaaSJw3b17Y29sjLCws0c/DwsLg7u6e4mPc3d0Nur+xEZHYwvH2Bj76CBg7lg0mqsXennN6dQNgvbzYRjp6NJA/P1U4NaDVAkuWsDL45UvGO2aM4W3aLVpw53vkSPE4SQVdA/mECUpHkhidcNy/f2Lh+NCxGDjk1u9D9nT/D7izqCvureiLpwGr4fJOHbg1H5Du40Iev0RklOW+X2ThKwj86o+MBMw0NsQ8GNmC+sULisTe3kCuXMYNVWlcXNjsGxQEPHqUwYNYobV0Un78kfWCc+dKk54pkbwsCBlEvpgsm9hY4OOPgZs3gT//pKCbGUqUoLvK1q1UGw4eZJXxlSt0TitUiE4rI0dSlUhlPp3FotHwmsTHB2jXjoX+gsFIThYE89GyJc2wrl2jA+etW0pHJAiCmjB1TnZycoKXlxf8/f0TnDMO/v7+qFOnToqPqVOnTqL7A4Cfn1+q9zc2IhJbAdOn00Zj4UKlI9EDLy/unPbpA3z1Fef8DhmiDv+Pe/eAd99lx1SfPowzoTexIWg0wJw5wD//sOtKSIRaG8hTw9kZcCsWqff9XWu2Rf7OU5Gn9WBkLekFrTYOiE2/rVAL4OZj/c+jNrRawxKsNGYI1oibG1CrFsfZR0QoHY2R0VlQt2hBG5NFi4AzZwy+Yg4IoGtj/fqmCVNpatUCcuakzmsQWi1tvZcsYZFagwbAwIHK2W2YiBcvgHHjqH3XqKF0NNaN5GVByAQJhWL5cFgWQ4dypsHmzZwfZEwcHZmfp02j/dSDB8D69bSq/uknVgvmycNO5CVLgKtXreP94+QEbNnCC93WrVnEJhiE5GRBMC81a3JNHhXFGpcLF5SOSBAEtWCOnDxkyBB8//33+Omnn3Dp0iUMGDAAkZGR6NWrFwCge/fuGD169Nv7f/XVV9i9eze+/fZb/PPPP5g4cSJOnz6NQYMGGetpp4mIxFZAqVLA559zruvDh0pHowcuLtxYrlSJu8RTplAsVpItWwBPT256795NO6nMCtfVqnFmz4QJ3BEV3vLNN+pqINeH6Bj9RRDHPB7IWrwqsns2Rf6OE6CNfo0Hv02GVo+sYsh51IZURwsCadCAY+qMYjmsNjJpQR0WBpw9S5vhLFlMHKtCODhwj/jKFeDff/V8UEJr6UKFrMpaOilz5gDPnrHIUTAtkpcFwYiIYmMZfPcdq+cXL2ZRm6nJly/edvrePV7kjBtHV7IhQ1joVaoUMGAAba/Dw00fk6lwc2Nn9sOHwIcfWslsFfMhOVkQzE+ZMnSwKlCABcoHDyodkSAIasAcOblTp06YO3cuxo8fj6pVq+LcuXPYvXs3CvzncBMSEoL7CUaW+Pj4YMOGDVi5ciWqVKmC3377Ddu2bUOlSpWM9bTTRERiK2HcOG5IT5midCR6snMncPEisGEDd1I/+gjo3h14/ty8cYSH0yLqww+Bxo1ZWmbMxeTUqdwJ/fZb4x3Twjl5Eti0ie9VNTSQ68OrV8DlSxn/unQpVxfR968i5snddO/r5GC5X8uy8BUEkjUrheIzZyykeCsjJLSgfvMm3oI6ndkXfn7cY7T2DtKKFYHChfl809QVoqKAvXtp4/jsGdtrP/7YqqylE3L3Li2mBw8GihZVOhrrR/KyIGQSmU9sWezZA3z5JR3LBqQ/6sfo2Nkltp1+8oT7Hq1bA/7+wAcfsMu4QQNWSgUFWd4Xb5kywO+/A4cPs1NBPhN6IzlZEJTB3Z3F2zVqcLt3yxalIxIEQWnMlZMHDRqEW7duISoqCoGBgfD29n77uwMHDmDNmjWJ7t+xY0dcvnwZUVFRuHjxIlq1apWJZ2kYlqtGCInIk4fjfZcto6ORqomJ4cLJ15fi7K+/AmvWsLK2ShXg0CHzxHH4MM/3++88/6+/8oU0JsWKcZE6Zw6QoDrEVtFqgWHD2LTdvbvS0aTMq1d0+VyyhNpH5crUQrq8ny3Da2DtG86liotK20paA6B4nmwZO4kKkIWvIMRTsybn7RpsOWxpFC/OIe46C+rFi1Pd9Lx2jeMGfH3ZkGzNaDRA8+ZM/efPp3AHrZbFckuWAIGBbK3+/HOrs5ZOytixQLZsHDchmB7Jy4JgBEQotgwuXmThecuW6inQzp6dttOLF9Ne5Pp1Oqq5uQEzZ1KxcHdngdjPPwOhoUpHrB8NGwLffw/88IN6XmsLQHKyICiHqyuwaxfQvj3QsSNNJwRBsF0kJydHRGIr4ssvgYIFKRarmh9+AC5fpnCq0fDWowd3UT08aK84ciS7a0xBdDRfpIYNgSJFgL/+4vmTbgAYi9Gj6ak5caJpjm9B7NxJbX72bHUIBDpBeOnSxIJwnTp0B7twgf+9bBlw+oQDirml3focG/ks2c+0sTGIvLgfGgdnOOZNu22qaB4XZHN2yMxTUhRJsoIQj4MDxdCrV4EbN5SOxsQktKAuUwbYsSOZBXVcHAXzokWBcuUUjNWMFC0KlC/PZqJEjow6a+lff423lm7Y0CqtpRNy7hzdOCdN4sxmwfRIXhYEIyFCsboJC6MYW7w48Msv6lhopkTJkvG2048f0/e0b1/ujfTowc2cqlVZSRUQwH0LtdKjBzBmDDBiBJ+PkC6SkwVBWZycgHXrOPZu4EAWr0o6FwTbRHJycixXjRCSkTUr3Y179ACOH+d+rep48YIzej/5hAughBQvTg+QOXOA8eNpF7V+PT0bjcXff3NO8MWLtHgaPtz0i8hcuegHPnQou4orVDDt+VRKwgZyc4yHSsqrV6wHCAri7fRpvh1iY7kvX7kyPzODBrGou1IlXkQmpMmd/FgbeAuxcSlfST7evQTa6Jdw9qgE+xx5EBvxFJF/H0DM4zvI3aQ37JyyphqfvZ0Gjd/Jb8ynbHYMTZy2kGQF26Z8edYi7d0L9OtHF0KrJkcOlmd7eXFm3cqV/O+mTXHuHxc8eAD06WO6miw14uvLQqQTJ4D6taK4IXz8OK8NunWjqG4D6JxE3nmH++GCeZC8LAhGRKNJvJus1dpWQlMrr14B7dqxwPyPP3gtYgk4OtJ2ukEDYNo04MEDVtPt2UOXs1mzaL3RuDEXzy1aAKVLq+s9N2UKO6S7dqUbnJeX0hGpGsnJgqA8dnbAvHkcCzRsGF2fVqxggbcgCLaD5OTkyNegldGtGzB/PpPdkSPqWkMA4CC6589TH55sb8/K2RYtuNjw8qIV05dfZm53PS6Olo4jRwIlStDasVq1jB/PUAYMoLXUyJFsp7VBdA3kGzaY/n2ZVBAOCgKCg1MWhL28KAg7O6d/3K7eRbHm+M1Uf5+tfH1EnPfDi7O7EPfqBeycssLJvTRyN+oFlzLeqT4OAGLjtOhWO+1OY7UjSVYQEqOzHF69mmYZSWujrJZixWhBffIkEBCA6OCrCMAXqFTRAYULq+3CxLS4uQE1a2px5FAcqp9YhWxRT+iY4uNj9Z3DCfnf/ziOcft2m3raiiN5WRCMTFKhWFCWuDjaQf31F4uwPDyUjijj5M/P/Y+uXfm8zp+nYLx7Ny2u3rzhPkbLltwradJEeUHczo7OKI0aAe+/z+u+IkWUjUnFSE4WBPUwdCjd/nv2pBnF5s2AS9rGgYIgWBGSk5MjIrGVYWfHRtxmzej688EHSkeUgPv3KRJ//TU9GNOiWjUqe6NGAYMHsyp4zZqMLTru3uXi0c+PYvPMmWy7NifOzsCMGUDnzuyWbtTIvOdXGF0Debduxtfm9RGEa9emnYwhgnBKFMudAwW0eREa9xga++QbRNkqNES2Cg0NPq69nQY+JfOgdH4LqXxPBUmygpAcDw8aYuzfz39tRiDTWVBXqoRj6+7gVRjQ9OFG4F5DWizbCg8fosHdffjrTTscyNYMrfvkBXLnVjoqsxITQ+MW3R6yYD4kLwuCCUgoFEs3sbJMnAhs2gRs2QLUrKl0NMbDzo6VhVWrssg8IoL203v28LZsGdvefHziu4yrVVPGsiZrVlaAeXszyR8+zFnMQjIkJwuCuujaFciXj0ZYTZuynydvXqWjEgTBHEhOTo61Gx/aJDo735Ejk8zAU5oJE7iIGDVKv/tnzQosXEifzkuXAE9PLgIN4ddf+bjgYB5n4ULzC8Q6PvqIi9fhw23j2yUB6TWQ60vCGcKffgpUqRI/Q3jwYIrFtWsD331HO+kXL/jvihW0evXyyrhAHBzMte/5HzzhYG/czSAHOw2mf+Bp1GMKgqAemjYFIiPpMmxrvEAOHHtaHt6eL5FL+5QW1Dt3Ai9fKh2aaYmK4nXHd9/BJeIB6lePQFB4GTyMsS2BGGAn/d9/81pAtBRBEKwO6SxWhrVrubicOZM7/NZM9uwUYJcsAa5eBa5fp0tZ7twsRK9Rgy1x3brxdQkLM2987u4s6r9+HejShdXaqRAZFYPge+E4e/sZgu+FIzIqxoyBCoIgJKZ5c/bxXL8O1KsH3LypdESCIAjKIJ3EVsrs2Sw8XbmSHZSKExwMrFrF4Q+5chn22GbNgAsXgM8+Yyfuzp1cIKV1nOfPgS++4CKpY0dg+XJ6PiqJRsMd0oYNKXZ//LGy8ZgJXQP5V1/RgVRfXr2iy9bp0yl3CHt6UrQ1RodwWsTFAYsXs+iiZEngmJ8LLsdUxKjfLxjtHJPbVISHm+V720glliCkTO7cQK1aHANRvbptNVjs389ml/qtcwKO/YFTp/jDv/9mVZtSnS+mQqtlstq9G3j9+q21dC2NI079C+zbZzPpHwCLtcaN4761jCo0P5KXBcFEyHxiZTl8GOjTh1XDI0YoHY35KVmS46wGDACio1mFqOsyXr+e96laNb7LuG5dwMnJtDHpCvrfe49/k2+/ffurq2EvsD4wBAGXHyDkyUskLKvQACjq5oLGZfOjq3dRlClg2c5aaSE5WRDUSY0awLFjdPP38eEyrnJlpaMSBMGUSE5OjojEVkrlykCPHsCkScAnnwCurgoHNGoUULw4FzIZwc2Ni4733+cg2UOH4uffJOXQIaB7d+DpU96nWzf1LNobNADatAHGjGHFsylUTZUxYQKQJQswenTq99EJwkFB8aJwSoLw55/zAs5UgnBSUnMqr4aieBQRhbl7r2T6HMObl0WnmpY9i1iHVmtY4pTGC8GWaNAAOHeOboG2YrkbFsbn/O67zAOAPe0eKlbkF+uOHfzCb90aKFxY4WiNwIMHwK5dwL//AuXLc6fhv4I2B1AT/+03/rpECUUjNRuzZwPh4cC0aUpHYptIXhYEEyJCsTJcu8aZWj4+tF229dfcyYlF6A0bAtOn81rEz48qx48/ArNmAdmyAY0bx88zLl3aNLG8+y6d2774AnjnHdzu+AnGbL2Aw9cewd5Og9i45ElGC+DWk5dYG3gLa47fRP3SeTH9A0+rKKBOiuRkQVAvpUsDR48CrVoB9evTRd/GpgQKgk0hOTk5VtS6ISRlyhSOr5k9W+FADhyg/dCMGZmrYNVoqHifP8/d1SZNaN0cFcXfR0Wx3bNRI7asnj/P+6tt4ThzJnD7Nj2TrRxdA/m4cfGN369eAYGBtIROaBlduzbHVf/1FwXhpUvjLaODgtgV379/5iyjDWHz5rSdygc1LoOZ7T3h7GAHezvD3mP2dho4O9hhVntPDGxsokW6AugqsQy5CYKtkDUr9+/OnuX+nS3g58car2QdpDlysFDq0085sPb77y3bgjoqKn5G4PPnLE7r3DmZ40mFCtTC9+61jUXGnTtsJBo8GChqHbVQFofkZUEwMUnXmbbw5a4kT5+yUzVPHs4hNnV3rCWSPz8Hba5dS0uvM2eAsWO5MTR4MFCmDFCqFKuvt2/nYtuYDBoEDBqEjcu3wffbABy78RgAUhSIE6L7/bEbj+E7/yA2ngoxblwqQHKyIKibAgW4fe3tzXqa335TOiJBEEyF5OTkiEhsxRQpwnXAvHnsiFSEuDgKubVq0fbZGBQrRqvKWbOo3NWqBWzdykw+fz5F2P37DfM2Nifly9Mea+pULnStmOHDgYIF6STau3fagvCpU8oJwgl5/py1BZ06sevrwgU6nqdE55pFsW9wQ/iUzAMA6YrFut/7lMyDfYMbWk0HsQ5JsoKQNjVrUjf081M6EtNz7RpnOzVrBtjbp3KnYsX4Zd+yJb9sFy9mdZClfDlotfFxnzrFIrWBA7kBmwIaDTccQkNZx2btjB1La/VRo5SOxHaRvCwIZkBtBcnWyps3wIcfAg8fsgBd6VFSloCdHcd6jBpFK5vHj+ni0rIlK9batePr2KgRC/rPnDFKIljSdhBGtRyEqFhtuuJwUmLjtIiKicOo3y9gScDVTMeiJiQnC4L6yZGDKaZjR+CjjzjpUBAE60NycnLEbtrKGTGCgtv48ezoNDubNnHD99Ah4y6g7e2pQDZtSpvK9u0Bd3fgxAkOfFQ7EycC69bREmrOHKWjMQoJLaODgoCDBykQAMCwYYkto728+P9qc9s+eJBO5c+e6e9U7uHmgrW9veNnLV15gJDHKcxayuOCxu/kR7faRVE6v3XOWpKZDoKQNvb2LD759Vd+P5YqpXREpiEujnuPxYoBZcumc2f7/yyoK1Wier5zJzcp1W5BnYa1dFp4eLCjeP9+/uvoaPpQleDsWebRpUtVMPLEhpG8LAhmIqH1tNhOGx+tlmOrDh8G9u1LtRhLSIccOTjzRDf35Pr1+FnG06dzJFb+/Kzwa9ECaN6crXUGsPFUCOb6X+P/ZPJzMHfvFeTL7mw1hdWSkwXBMnBy4jrG3Z3u+ffvs8dHUrsgWA+Sk5MjIrGVkzMnZ8J++SU7Nz09zXjyqCguNNq25VAHY3PnDlXw0FBWyJ49S+F4zRruwqoZd3fGOn06u46KF1c6IoN4/ZpdwDpBOCgIuHgxfoZwxYrsyC1enLbNlSurTxBOSFQULbHnzuVb9eefDW9EL1MgBya2qYiJqIjIqBjcfByJ6Jg4ODnYoXiebMjmbP1ft5JkBSF9ypdnivLz4+QEOyv0dDl3jo0+ffoYsJjOnp0zBr28gD//pAW1lxeLwVxUNJcuKoo+ZCdOUBTu1s3gzeqmTSmenjhhmssjpdFqWRxWtizfA4JySF4WBIUQodi4zJ3Livc1a4AGDZSOxnrQ2U5//jkQHQ0cP07BePduYP163qdaNQrGLVpwDnQaFt+3n7zEhB3BKf4u6v4VRF7wx+uQC4h5Hga7rK5wLlQWuRp8Ake31IsCx+8Ihk+pvFYxo1hysiBYDnZ2TD0FC3Jdc+8eG7CstcBXEGwNycnJscKtSSEp/fsDpUtzXK9ZWbqUs3dnzjT+sTdtouL9zz/caT9zhv9evkxF8pdfjH9OYzN0KO2dxo5VOpI0ef06foZw795A1arxltFffUVtvmbNxJbRI0YAjx4BP/3E36lZIL54kR3OCxYYz6k8m7MDKhbKiWpFc6NioZw2IRADYtchCPqg0bAxIyyMxTbWRnQ0HQ09PTPYCFy0KNCvHztzL14EFi1ShwV1Umvpxo3TtJZOCzc35sYjRzgi0NrYtYu5dPZs2UhRGsnLgmBGZD6xadi2jRsZY8YAPXooHY314uQENGzIIvYzZ1iIv3Ytq79Xr+Z1T548QJs2XPhfu5bsEGO2XkBMKvbS4Sd+w8vLx5ClWBXk9u2H7FVa4PXti7j/41eIfngz1bBi4rQYs/WCsZ6lokhOFgTLY+hQ1sysX0+H/shIpSMSBMEYSE5OjojENoCjI0fM/O9/gL+/mU769Cn9OPr2BcqVM95xnz1j107nzqxmPX+e3p0A/z1/nj/v0oU3Nc/8zZ4dmDSJVxtBQUpHA4CC8MmT6QvCuj3yiAiuIb//nsUINWrwOGPGcP2o5kLvuDiOsK5RA4iJ4fMeMSKN2ZlCuqgtyT558gRdu3aFq6srcuXKhd69eyMiHUWmUaNG0Gg0iW6fffZZovuEhISgdevWcHFxQf78+TF8+HDExMSY8qkIVkaRItxzCwigqGpNHD3K8QNNmmTiIDoL6i++YDvqzp3ADz8Ad+8aLU6DePCAVU+//cY/3qBBTHAOGS8AatiQFeoHDhgvTDUQE0OjlMaNgffeUzoaQU15edq0afDx8YGLiwty6WHNDgBarRbjx49HwYIFkTVrVvj6+uLqVeuaUSlYGSIUG5egIKBrV84injJF6WhsiwIFuO+ydi29Vs+c4SI/PJwWdWXKsBN54EBgxw5cvRGKw9cepTqDOEfND1D489Vwa9YfOaq0QK66neHedRa0cbEIP/FbqmHExmlx+NojXHvwwkRP1HyoJSffvHkTvXv3RokSJZA1a1aUKlUKEyZMQHQ6i5LXr19j4MCByJMnD7Jnz44OHTogLCzMNEEKgoro0oVGV4cOcY376JHSEQmCkFnUkpPVhIjENkL79kCdOty4M8sbe9o07nxPnGi8Yx44wC7hP/7gPN9ffmE7TkLc3PjzdevYylK5MttZ1Mqnn9J7dPhws28i6AThZcsSC8Le3ukLwp99RnE1pQ5hXQP5rFlmfToGcecOO/mGDOF4q9On+fyFzKG2JNu1a1cEBwfDz88Pf/zxBw4dOoR+/fql+7i+ffvi/v37b2+zZ89++7vY2Fi0bt0a0dHROHbsGH766SesWbMG48ePN+VTEayQpk2Bly/p7GcthIcDx45R39VTA0obnQV1796cZ/D998COHXzhzEFUFG0Xly3jk/vkExapGeHJZc1KnfnMGVpzWwurVgGXLtGeTZxWlUdNeTk6OhodO3bEgAED9H7M7NmzsWjRIixfvhyBgYHIli0bWrRogdevX5suUEHILCIUG4c7dzg7t1IlFmpZ43wOS8HOjrbTo0dzT+bJE2D7drq+7NkDtG2L9QMmwV6behLJUqQ8NPaJ7UUc3QrDKW9RvHl0O83T29tpsO5EiDGeiaKoJSf/888/iIuLw4oVKxAcHIz58+dj+fLlGDNmTJqPGzx4MHbu3Ilff/0VBw8exL1799C+fXvTBCkIKqNZM+DgQeDmTaBuXf4rCILlopacrCZswwNVgEbDDbu6dYENG1gUajJu3qSy+M03rEDNLFFRtGT+9lu23vz0E+0oU0OjYcVx/fq0pGralGrgtGlAliyZj8eYODjQj/H999nq3aqVSU7z+jVdOwE2L9+6BQQHs+PHwYG2oDVrUvz18uL/Z+SlMlUDuTHZuJHCcLZsdCjXNaILmcfQxGnKJHvp0iXs3r0bp06dQo3/WtwXL16MVq1aYe7cuShUqFCqj3VxcYG7u3uKv9u7dy/+/vtv7Nu3DwUKFEDVqlUxZcoUjBw5EhMnToRTGnO6BCEhuXMDtWqx87Z6dRbpWDoBAXQvqVfPyAfWWVCfPs3Cr7//5pd39eqm2TTWapk09+xhAm3cmHP4MtE5nBI1a7JYy8+PFeqWTng4MH48tfTq1ZWORgDUlZcnTZoEAFizZo1e99dqtViwYAHGjh2Ltm3bAgB+/vlnFChQANu2bUPnzp1NFaogZB6NJrE4LDOKDSMigutjR0eKkVmzKh2RkJAcOWgb1qYN///aNQSsuYjYWMOuybRaLWJfPoNj3jT2dsBu4oArDzARFTMasSpQS05u2bIlWrZs+fb/S5YsicuXL2PZsmWYO3duio95/vw5Vq1ahQ0bNqDJf3ZBP/74I8qXL48TJ06gdu3apglWEFRE9eosiG7Zkk1Yu3cDVaooHZUgCBlBLTlZTUg5pg3h48OO4m++4Z6nyfjmG86rGTo088e6cIG76IsWUUz1909bIE5I0aK8/5w5wJIlPM7585mPydi0bk3xe8QIqraZJGGHcJ8+8R3CuhFOly/HdwifPMkZwgk7hGvWzLiWrmsgnzAh00/D6Dx7xtqBjz9O7lQuKEt4eHiiW1RUVKaPefz4ceTKleutQAwAvr6+sLOzQ2BgYJqPXb9+PfLmzYtKlSph9OjReJmga/H48ePw9PREgQQFMC1atEB4eDiCg4MzHbdgW9SvT93RGiyHQ0OBc+eARo1MVI9lb0+ri4QW1N9/b3wL6gcPgDVraC3t4WEUa+nUcHBgHrp6Fbhxw+iHNzuzZ1MonjZN6UiEzGKKvGwo//77L0JDQ+Gb4GItZ86c8Pb2xnFrsmAQrBcRhTNGbCwrp65fp4NYKoWbgnqI8CiOkFjH9O+YhMjgA4h98RjZytVP974hj18iMso2x/uYIyc/f/4cbkld+hIQFBSEN2/eJMrJ5cqVQ9GiRSUnCzZFqVIs8i5cmEvEgAClIxIEQTAOIhLbGDNmAPfuUSA0CUFBbFWePJmtmhklLg6YN4+exnFx9DseNszwjiE7Oz7u1ClWcNesyZZqNZWA6Nq8g4PZJW0ASQXhatXiLaO//JJ/Dp0g/PPPfMyGDcYRhJOiayAfMUJ9a/mAADqP//ln6k7lQubRag2z6tA1WHh4eCBnzpxvbzNmzMh0LKGhocifP3+inzk4OMDNzQ2hoaGpPq5Lly5Yt24dAgICMHr0aKxduxbdElgvhIaGJhKIAbz9/7SOKwgpobMcPnuW2qSlotWyGzZPHrpRmJSEFtRxcfEW1JGRmTtuQmvpFy/YDtupk5F8s1OnQgWOOfbzs2xH0jt3aPgyZAi1dUEdqCkvG4oup6aUcyXfChZDQqHYkr/kzcmIEVy0bdpEeytB9dx6HAlD391vHt/GE79lcC5cDtk8m6Z7fy2Am48zea2nMGrNydeuXcPixYvRv3//VO8TGhoKJycn5EpyXSw5WbBF8udnkXft2uwq3rxZ6YgEQTCUjOZka0bspm2Md94B+vdnl8enn3JD12hotZytW6EC0LNnxo9z+zYfv3+/8WyiK1emUPzNN4zxzz/Tt602JzVqsMV13DjOO0xBYH/9mt2vQUHxt4sX4y2jK1Xi5nz//ilbRp85Y9qn8M03FF6HDDHteQwhKopxzZunn1O5kDkyatdx+/ZtuLq6vv25c0rDrv9j1KhRmJXOwOtLly7pH0QSEs4s9vT0RMGCBdG0aVNcv34dpUqVyvBxBSE1atZkevLzo9uBJXLtGjthO3Viw69ZSMmCumlTJkBDCsrMZC2dGhoN0Lw5sHo18NdfdP+wRL75BnB1BUaOVDoSISGmzsv65uRyap1BIgjmRmyn02bFCi7cFi8G3n1X6WgEPYmOMawAPzbiKR78Ogl2ztmQt91oaOz0u3g09DxqQ405+e7du2jZsiU6duyIvn376h+cINg42bPT2Kp3b27hhoXR8EoQBMtA7KaTIyKxDTJ+PLtKp04F5s834oF37WLL5h9/ZHxz9ZdfgM8/Z8b19wf+m3diFLJkYZtL69b0Xq5cGVi6lHZWalisT5vGQb7z5+P1sLF6CcL9+lFfzugMYWOhayBfuZJ/OjVw4QIFl8uXaYE5ZIhpRlcK8WQ0ybq6uiZa+KbF0KFD0TOdIpSSJUvC3d0dD5K0ZsbExODJkyepzhtOCW9vbwCssC5VqhTc3d1x8uTJRPcJCwsDAIOOKwg67O1pObx5M50VLa0WIS6OAnexYnSBNis6C+qKFRnEH3+wIqp1a7bnpseDBywau3mTBW4tWpi8czglPDx4+v37+VQcDXdsVJQzZ4C1a4HvvqNQLKgHU+dlfXNyRtDl1LCwMBQsWPDtz8PCwlDVUqspBNtE5hPrh58fMHAgxzwMGqR0NIIBODnov8iOex2JsM0TEPc6EgW6zYJDDv27Fgw5jxpRW06+d+8eGjduDB8fH6xcuTLNx7m7uyM6OhrPnj1L1E0cFhYma2DBZnFyYiNKwYJ0crx3D5g+XVK8IFgCIhInR0RiGyR/fnZ6TJrESqcM7t0kJiaG1lCNGwOtWhn++KdPuSj85Rd21C5dCuTObYTAUqBJE7bkDhwIdOvG8q9ly0x3vnR4/ZqC5unTJVDqnUGoO2EW3pnYF/diCyQThL28qG0rKQgnJWEDea9eSkfDL+7584ExY9g5f+oUXzPB9JgjyebLlw/58uVL93516tTBs2fPEBQUBK///G/379+PuLi4t8KvPpw7dw4A3m5Q16lTB9OmTcODBw/e2ln7+fnB1dUVFSpUMPDZCAIpV45CoZ8fUKKEZRW0nD0LPHwI9O2r4IJYZ0Ht5UXR94cfgOrV2Vmc0uiL16/pERYYyNz/ySdA6dJmDzshTZvy0uf4cVqQWwpaLad6lC3LsReCujB1XtY3J2eEEiVKwN3dHf7+/m9F4fDwcAQGBmLAgAEmOacgmAwRitPm77+BDz+ktYZRq9gFc6CJ1G/MmDYmGg9+m4yYp3dRoPNUOOXV3+JLA6B4nkyMM1MBasrJd+/eRePGjeHl5YUff/wRduksPry8vODo6Ah/f3906NABAHD58mWEhISgTp06hgUqCFaEnR2bUgoWZGPKvXtcilpa0a8g2BoiEifHgrYhBWMyeDDF4jFjjHTANWu4uJszx/AF7/79VPF27WI76oYNphdsc+eOP9fu3WzF9fc37TnBfelTp4DlyxPPEK5Vi5Vn0/AN4OCAPT6TEBjIsYhnz/IiY8AA3k9NAjEQ30A+a5bZ3DlT5fZtduQNG8YCdBGIzYsh8xwMTciGUr58ebRs2RJ9+/bFyZMncfToUQwaNAidO3dGoUKFAHBxXK5cubedwdevX8eUKVMQFBSEmzdvYseOHejevTsaNGiAyv+9kZo3b44KFSrgk08+wV9//YU9e/Zg7NixGDhwYJo22YKQFjrL4bAwWg5bClFR/P739AT++1gpS9GinLnw7rtAcDDtKk+div+y0WpZJLZkCW2qmzShe4nCAjHAcQ21agFHjwIREUpHoz9//sn3wJw5yl8DCMlRU14OCQnBuXPnEBISgtjYWJw7dw7nzp1DRII3fLly5bB161bg/+3deVyU5f4//tcMq+CCbAoKueWGWh40hdRASNDMMrMszfSQniwqSy3zuGuWxS9N87SaekyPpyzP1zwlopKaCyrFyfwoiokYiqiECCjbzO+Pt+zbzDDLPTOv5+PBQ2Fm7vsaHO/3dV/v63pfAFQqFaZPn46lS5di+/btOHHiBCZOnAh/f388+uijpmsokanUvEe2h83NdJGdDYwcKTF8yxYGEytQUCDx/+WXZZJYUFdHlP7p1uBrtJoyXP3PchRdOg2fR2fDpV0Pvc4Z6OUGdxfr/mwoJSZnZmYiLCwMgYGBiIuLw9WrV5GVlVVtb+Ga98mtWrVCTEwMXnvtNSQmJiI5ORmTJ09GSEgIBg4caJqGElmRV1+VNU//+hfwyCNynSQi5VJKTFYS6+5lkcHc3IAlS2Rf4tdek4FJgxUUSA3rp5+WVTy6un27csPY8HCp0xEQ0ISGGOCpp4BBg6T8dGQkMH068PbbRsnElq8QTk6WseiGSkZXrhD2BOL+jl6zZwOtXgFczV27Uz/lC8jDwqS6pyVt3ixj/S1aGL9SOelGaTOxNm3ahNjYWERERECtVmPMmDFYtWpVxeMlJSVITU1FYWEhAMDZ2Rm7d+/GypUrUVBQgICAAIwZMwZz586teI2DgwN27NiBadOmISQkBO7u7nj22WexePFi074Zsnnt20tcKC857Oxs6RY17tAhiXWKut6q1ZUlqHfvrixBHRIigdjCpaUbMmQIkJIii5xHjrR0axpXWiqVRIYOtXwfgOqmpLg8f/58bNiwoeL7vn37AgASExMRFhYGQFYl3bhxo+I5r7/+OgoKCjB16lTk5uZi0KBB2LlzJ1yVNmOSSFc1VxTbu9u3gUcfBQoLZcYR9yxQJK1WxjXi42V+/U8/AcXFQIcO0p165x3gaJkvvvrlAso0dX++/9y7FrfSktCsy30ou5WP/N8Sqz3evFd4ved3UKsQ3tXXmG/JIpQSkxMSEpCWloa0tDS0r7E9i/bO9anmfTIArFixouKeuqioCFFRUfjHP/5hmkYSWaFx4wAfHylwFR4uk2lMVHCHiJpIKTFZSZgktmMTJ0o1p1mzZEDS4IpX778PXL8ue+rq6tdfpdRzaqrsEzx9uuXqawYEyEDyBx8Ab74p9T43bQLuuUfnQxQVodoewsePV08IBwXJ3sE6lYyOjZVVTrNnA3dWUyhV+QLyDRssVzHtzz8lObxli+krlVPDlBZkPT09sXnz5nof79ChQ8WNMAAEBARg3759jR73rrvuwvfff2+UNhJVNXRoZcnhBx6wdGsalpcnSeKBAxWXaxXNm8vAc+/ewNatwDffAC4uwBNPSFBWoGbNJFGckCB5bqUPKnz+uXTjNm9m1VSlUlJcXr9+PdavX9/gc7Q1kmcqlQqLFy/mRCyyLVUTxfZcdlqrlRnrv/wC7NsH3HWXpVtEVVy7Jv2R+Hhg1y7g8mVZaBAWJtVDoqJka6fyj2+vK4H4V3J6vccrvvI7AOBW2lHcSjta6/GGksRlGi0mDNS9NLVSKSUmT5o0qdG9i2veJwOAq6sr1qxZgzVr1pimYUQ2ICJCQtrw4cD998s1tGNHS7eKiGpSSkxWEiaJ7ZiDg+ydMHy4bMs7apQBB7lyRQ7y0ksylbQxGo0klf/+d6lNdPy4DOBamlot9UEefBAYPx7o3x9YuhSYMUN+UVXUTAgnJ8vM2qoJ4SbtIezqKgn3CROAAweAwYON+16NpHwB+VNPSQLcEvbsASZNkrLcmzdLW8hyGGSJmqZ168qSw3/5i1RGUKrERFntPGiQpVtSj6rLXkpKpM+Rni4dnsJCCdAK3Py5f3+pkJ2QIAValCovT/oAzzwjW2eQMjEuEykUE8XAokVSl/Orr5pY1oyMoaQESEqSlcLx8TLGodXKUM2ECZIUHjRI5tvV5e42LTC4izcO/X69ztXEbce/Y1C7HNQqhHbyQhdfBXeKdcSYTGQf+vaVydRRUUBoqGzRx/slImVhTK6NSWI7FxUlVZbfeAMYMcKALYAWLQKcnCTp25iMDCnrvG+fJF+XLq3/LsNSevUCjh4F5s0DZs9G0Xe78OusjUi+5FeREP7tN7mJcnCoLBn93HOSKNU7IVyfp56SZPqsWbKkTIEDB4YsIDeW27dlP+0VKyxXqZxqY5AlarryksOJiQZO3jKDrCxp4/DhRop5xnblitT3unBBSktHRwOtWslmv1VLUD/0kNT5VhBHR5mBvnUr8PvvQKdOlm5R3ZYvlwlalugDkO4Yl4mshL0lijdvlnGEt94Cxo61dGvsVnq6JITj42XydV4e4OUl8+ZffBEYNgzw99f9eMtG90bkin31lpw2hKNahWWjFbCowAgYk4nsR6dOMvF75EipELZtm9zjEZEyMCbXxiSxnVOpZCFwcDCwdi3wt79Vf7ygqBTpuSUo9usK59wSdCgqhbvLnY/N6dPAp5/KSGFD9X21WrkRfPFF2Wdo716pU6QwlSuEXZD857tI7jIPv/3kgpKfnOGg1qBXbxWCg1V47rnKFcLNmpmoMWq11HEqHylW2M1z+QLy2Fjzl0753/9kNvOZM5avVE7VabX6BU5uyUZUm6ur3EjGx0vJ4TZtLN2i6rRaKTvo5SWxUFFu35b9M5KSAE9P2Vejc+fKx8tLUAcHSxL5s89kyXZkJODubqlW19Kzp+Sud+2SqiRKi3EXL8pEsRkzFJdjpxoYl4kUrOb+xPaSKD54EJg8WSaPv/mmpVtjVwoKZL5++d7CZ87IxPeQEJmbHhUl3aIahdR0FuDphkWjgjD72xNGa/PiUUEI8HQz2vEsiTGZyL74+srw99ixMrn6n/+UfYuJyPIYk2tjkpjQt68k3RYskErLlwtuYlNSBhJTs5GRUwgtADz7PpBwDaqEeAR6uiG8my/Gb4rD3QEBkimsz59/AtOmAf/+txz8ww8VsXlhUZFUoTx+HPWvEB7cAs9NLUTw7rfQJ/5dNOv6MPDexzLwbA5Dh8ry7jffBB55ROp6KsSiRbLaSZcF5MZSViaD0nPnKqtSOVXiTCwi4+jXT4paJCRIfFaStDTg/Hm5wTV0ENHoqpaWLiqS+BkSUn95lIAAyb4ePy5LZ06dkklZCilBrVLJ6p0vvpDJa/fea+kWVff3v8ucvzfesHRLqDGMy0QKZ2+J4t9/l8laAwfKZHNbfq8KULV7FB8vO1kVF8v2z1FRwNtvS/enVSvjnXNc/0Bcyy9C3K4zTT7WrGHd8GR/69+LuBxjMpH9ad4c2L5dqk8+9ZQsuHnlFUu3iogYk2tjkpgAAEuWAN/sLMSwZSdwSXsNDmpVnWWCtAAu5BRi45F0rO/0OAb3eQTLCsoQUFfV6D17ZIZwQQGwZQvw5JMmfx91KU8IJydXJoXrKxlde4WwGzBzEfDvnsDzz0tWcv16qcFkDsuXA/fcA3z8MfDyy+Y5ZyPKF5C/84758uUXLshHaf9+5VYqJyIyFgcHWdz61VeSlO3SxdItEhqNJK7vugvo2tXSrbmjamnpoCAZ9dRltFOtlj0Qg4LkTe3YIR2EkSMVsTw2IEBWFO/dK010crJ0i8TPPwMbN0q3RMl7ZhMRWQ17SRTn5kqM9fAAvv1WUROgbcn169KtKU8MX74sYxvh4VKoLCpK+nCm/IjFht8N7+YuWLD9JEo1Wr3KTzuoVXBUq7B4VJBNJYiJyH45Ockwsp+fVEK8dEkm6ShgbjIRUQUmiQkAcDg7A23/ehKZZVqo1Gi0I1925+FDhc6IXLEPi0YFYVx5J/72bVn9unKlTE1dv95sA65VE8LlSeGqCeGgIFmhpXfJ6CefBO6/H5g0SZb3vPyyZElNVm/6jl69pBzX4sVSNlMBq7Bnz5Z/zoYWkBuLVgts2iSVylu1UmylcrqDM7GIjKd7dyAwUAb6OnVSxk3kL78AV68CU6YoYPz69m3ZuPno0bpLS+vK3V2xJagjI6UAy+HDsle1pWm1MlGrRw8gJsbSrSFdMC4TWYmaiWJbU1Ii9TazsiSoeXlZukU2o7QUOHKkMil8/Lh8lHr3lkJuUVHAoEGynYk5jesfiPs7e2POthM4kFb/IoRy5Y+HdvLCstG9babEdFWMyUT2S6WSIWQ/P+DVV2UCz9q1ypkITGRvGJNrY5KY8GHiWSkHpNJ/0LfszszQ2d+ewLX8IsR6FsrdSFoasGKFJFNNNLKtS0K4/hXCBijfIHDVKsmU7t4NfPml1Os2pcWLZU/n5ctlupkFHTgA/L//J4lbU99o5uTI4u2vv1ZUpXJqAIMskfGUlxz+/HMgJUXylpZUVCQ52T59AH9/CzZEq5UazLt2Sc3EiAgpW1lfaWld1VWCeuhQmVlmoQx969ay2Pmnn+Tfv3lzizSjwo4dsuXzjh1N/3WTeTAuE1mRqoliW1pNrNUCL70kAWTXLtk3iJrkwoXKfYX37AHy8mS+3IMPAi+8IP1Hi/bV7gjwdMPGmAE4e+XOdmZnspFx/c52ZneoAAR6uSG8qy8mDAxEF1/bLVPCmExEr7wCtG0LPPMMkJ0NbN1q+Xs8InvEmFwbh3js3JZjGUbZLwYA4nadgU/8h3jS0VEGWXv1MspxgdoJ4eRk+b5mQjgmRsZzm5wQro9aLfVBIiNlo8gBAySJO2uW6TZn9PeXpTtxcXLXFxBgmvM0QquVt/mXv8helKa0e7eUly4stGilctITgyyRcbVrJ6E0MVH+tGRlxoMHK7f7tRhDS0vrqmoJ6t275Vw//ww89JDFYu+QITJJIDERePhhizQBgPS3Zs2SnPyIEZZrB+mHcZnIitlKonjFCuCTT4AvvpCax6S3wkLJsZevFk5NlaGHgQOBmTOlOxQcbLrhiKa6u00LLBwVhIUIQkFRKdKvF6C4VANnRzU6eLnD3cU+hiUZk4kIkPFNHx8pZhUeLrecvr6WbhWRfWFMrs0+emNUp4s5hViw/WSdj2mKbyEv6VsUXUpF8eUz0NzOh9eI6WjeJ7L+A2q1mD9sGkKnD0FAWw+D26VrQvivf5U/77nH9FWfa+nVC0hKAhYsAObMAb7/HvjnP4EOHUxzvtdfl42A582T8t0WsHWrvOW9e023qOrWLalU/sEHZq9UTkbAIEtkfBERUknh0CHLldvPy5PqkAMHGjcnqzNjlZbWlbs78MgjMivqv/+V5dx9+8oSHTOXoG7WDHjgAVl8NWCA5QYQPv8cOHNGJm7ZQs7CXjAuE1kZW9ufePt2yWK+8YZsoUQ60WqlQlp5Unj/fimeEhgIREcDy5bJpD1rrLLl7uKIIH9LdCYtjzGZiMoNHSrX9uHDZWfD+HjZYoqIzIMxuTYmie3YnG0nUFrPvjCawjzcOPgvOLT0gZNvRxRlnGj8gCoVStWOmPPfVGyMGaBTG6wiIVwfFxfZVGLECBmw7tMHWL1a/m7sm/kWLYCFC2Vz3ldflV+EGRUXS/L2oYdMNwE8JUXKSp87Z/JK5WQiDLJExufhIcnBQ4ckDrawQBW+vXtlFfOgQWY+salKS+uqagnqvXulBHVEhNlLUPfvL/nxhASJk+aWlydz4iZOBO691/znJ8MxLhNZIVtJFP/yC/DUU8Do0ZLVpAZdvy5xPj5euj2XLsm4R1gY8O67slq4Wzfr/CiQYEwmoqruvVfu8aOigNBQWXtk6S2miOwFY3JtTBLbqbNXbuJA2rV6H3do7on2sRvh0Lw1ii6fRdaGV3U6bplGiwNp15CWfbPWfjJFRTIj9vhxK0wIN2TIEOB//5O9liZNAr77TkpqeXkZ9zzPPQesXCn1HnftMu6xG/HRR8D587IfsbGVlUkl7XnzgJ49jV6pnMyIQZbINAYPlrHWxERg1CjznvvyZQlxI0bI3CizycqSO2VTlZbWlQJKUDs4yC4XX38tE6lMuYi6Lu+8A+TnA0uXmve81HSMy0RWytoTxZmZskdCz57Axo2c+VuH0lKp0lW+WvjYMfln7tULePpp6fYMGgS4ulq6pWQsjMlEVFPHjrKt00MPSfWobdvkvo+ITIsxuTYmie3UpqQMOKhVKKtnJbHK0QkOzVsbdGwHtQobDmbg0cAgJCdXJoWrJoR79pSFOFaXEK5Pq1ZSbvrhh4G//Q3o3RtYt07u7ozFyQlYvlxmY+/aBQwbZrxjNyA3F1iyRP6tgoKMe+z0dFmZ9NNPkvtevNjMSQgyKgZZItNwdZWbxp07ZVVxmzbmOa9WK6tavL3NOKu5ZmnpZ59VRu0tC5eg7tFDctIJCTKYYK7x9owMqe4xcya3f7BGjMtEVsxaE8UFBXJPrFJJuWk3N0u3SDEuXKhMCu/ZA9y4IV2dBx8Enn9ebu/btbN0K8lUGJOJqC4+PnL7O3asTMzesEEKcRCR6TAm18YpnXYqMTW73gRxU5VptFgXn41+/YAXXgCOHJFKzCtWyJ6GN29K9cgvvpDqyQMHWnmCuKqxYyUb3quXbBj00ktAYaHxjv/II7JhxaxZsgTXDN55R/YKXrTIeMfUaiWn3qeP3CwnJkr+mwli66bVVgZaXb60prkEEdmkfv1kIDEhwXznPHtWqkhERsoEL5PSamXJ8urVslI3IgKYNk0ZCeKqyktQjxwJnD4NrFolCW0T3zWoVDJ4fOWK/JrM5e9/l3lwr79uvnOS8TAuE1k5a0gKV1VWJvsinD0L7NgB+PlZukUWVVgI/PADMH060L070KGDdG2ysoDXXpOVxNnZwJYtsmUzE8S2jTGZiOrj7i6VG59+Wr5WrLB0i4hsm5Jick5ODsaPH4+WLVvCw8MDMTExyM/Pb/A1YWFhUKlU1b6ef/75JrWDK4ntUH5RKTJyjJi4rINj60IkHijFfX9xtL/Jw+3ayXKvDz8E3nhDylNu2mScZVgqldRmDgkBvvxSVliZUEaGVLh+/XXA3984x7x+XRZbf/MN8Mwzkg+wRAVRMj7OxCIyHQcHWWny738DaWlAly6mPZ9GIwnpDh2Arl1Ney5kZcnq3IwMmWQ1bJiyA4NaLRsF9+xp1hLU7dtLRY/ERPnT2dlkpwIgVWC+/FJ20LDEXtjUdIzLRDag6opipa8mnj1btl7avl1KhdkZrVa21ypfLXzggGy5FRgoBcbeekvmwHl4WLqlZAmMyUTUECcnKUjp7y8TiS5dksU03LGByPiUFJPHjx+Py5cvIyEhASUlJZg8eTKmTp2KzZs3N/i6KVOmYPHixRXfuzUxAccksR26cL0A5piU6NOpAG5uCh7kNSW1Gnj5ZVl+NX681AddtEiSxk1djjVwoKxYnjsXeOIJky7DnjdPxulnzTLO8eLjZZb07dvAV1/J2yDboaQgS2SLunWTgcaEBFlga8obxp9/Bq5dAx57zITj0bdvA3v3ykZ8Siotrav6SlBHRgLNm5vklBERwJo1UpnlgQdMcgoAMtA9c6bkwf/6V9Odh0yLcZnIBik1Ufz55zKZeeVKmTRlJ65fl/li5YnhS5fk9vyBB2RwPypK+m9K/Ccj82JMJqLGqFTAsmVSiOOVV4DLl6UKp6knBxPZG6XE5FOnTmHnzp04duwY+vXrBwBYvXo1RowYgbi4OPg3sGLPzc0Nbdu2NVpbOB/FDhWXmqe3aa7zKFrPnlJHatYsSeo+8IDU7myqZcuk5uTKlU0/Vj1SUoCNG4GFC5u+gujWLcmZR0fLIrETJ5ggtkX6lOrQNyATUWXJ4exsuUabSlER8OOPsiWASSpFarXyBlavBn75RbmlpXVVswT16tUS+01wkWvdGrjvPuDgQdm+w1S++04+A++9BzhySqnVYlwmshE1M4xKq0O7Z4/E8RdekJs+G1ZaChw6BMyfL/PAfXyAceNkvttTTwG7dgE5OVJm+pVXpMw0E8QEMCYTke5eekm2Ivj6a+Dhh01730dkjwyNyXl5edW+ioqKmtSOw4cPw8PDoyJBDACRkZFQq9VISkpq8LWbNm2Ct7c3evXqhTfffBOFTdzulEliO+TsaJ5/dnOdR/GcnSWpu38/kJkpo+7r1jXt5r5LF7kRf/tt4OpV47W1itdflxKjzz3XtOP8/DMQHAx89hnwwQdSiZv7LRERGaZdO6B3byk5XFxsmnMcPCiJ4qFDTXDwrCyZDr1tm9Syjo0FBg2y/kxkeQnql16SCWLffw98+ilw8aLRTzV4sPy6fvzR6IcGAJSUSB8gMhIYPtw05yAiIj0pNVF8+jQwZoxM+PrgA5vMiGZkyL3s448D3t7A/ffLzlIdOgBr1wJ//CGToOPiZGsQV1dLt5iIiKzdE0/I+OmRI0B4uKwTIiLLCggIQKtWrSq+3n777SYdLysrC76+vtV+5ujoCE9PT2RlZdX7uqeffhpffvklEhMT8eabb2Ljxo2YMGFCk9pi5SNyZIgOXu5QAaYtOa0FFs9yx31/kQThX/4CtGxpyhNagUGDgP/9T6YU//Wvskzn00/lTtMQ8+YB69cDS5YAq1YZtanx8VLOdNs22RfDEGVlwLvvyizrXr1kb8OePY3aTFIYpZTrILJ1Q4fK4OShQ0BYmHGPnZcnpYwHDjTytsC3bklm++hRiXvWVlpaV+UlqIODTVaCulkzYMgQWa00YABQ456iyT77DDhzRmav2+BYv11hXCayMVX3JwYsX3r62jUpLd2uHfDvf1v/hK87CgtlfvfOnXJffPq0zAUbOFD2iYyKAvr1a/ouUmRfGJOJSF/h4RKPhg+XCUrx8UDnzpZuFZH1MzQmX7x4ES2rJLhcXFzqfP7s2bOxfPnyBo956tQp3RtQw9SpUyv+3rt3b/j5+SEiIgLnzp1DZwMvErbRiye9uLs4ItDTDRdymrYMvcFzaN3wR7ojdvxHbrIAWZUaHFz5ZZeJ45YtZRXxyJFSmrJ3b1lRZchSHW9v4M03JVn80kvA3XcbpYllZVIde9AgGec2xPnzwMSJshrtjTdkO2buoWH7eONLZB4eHpIcPHRI4mlTtwSoau9euV4PGmSkA2q1MkFq1y5ZohoZKaOsNjKQXK/27YEpU2SG1J49wKlTkt3v398om0n37y/59oQEYPx4I7T3jhs3gAULJId/773GOy5ZBuMykQ2qmSi2lKIiYPRoID9f4pxRZ5aZl1YLnDxZua/w/v3y9gICJCG8ZIkslG7d2tItJWvGmExEhrjnHrnvj4oCQkOlYFVwsKVbRWTdDI3JLVu2rJYkrs+MGTMwadKkBp/TqVMntG3bFtnZ2dV+XlpaipycHL32Gx4wYAAAIC0tjUli0k94N19sTLqAMk39N5h5yd9Bc7sAZfk5AIBbaUdRevMaAKBl8MNQu7rX+ToHtQpjQ3yxcLns2XP6tIyRln/95z+yoAiw48TxmDFASIisKB4xQvZveu89wM1Nv+O88gqwZg0wZ45sVmEEGzdKuawjR/SfmK7VAhs2yFZUnp7Avn1SFpPsA298icxn8GDZznfvXsMn9NR0+bLkc0eMAOqZEKmfrCxZTZuRISUlhg2z6kFkvZWXoO7ZUwbQf/hB9mB46CEgMLBJh3ZwkHz7118D584Zb0b5O+8ABQXA0qXGOR5ZFuMykY2qmii2xGpirVb2JDp2TKqEdOhg3vMbQU6OTLSKj5d5bJmZUiY6LExiYVQU9xMm42JMJiJDdeggi3BGjpQ49e23sr0BERnG1DHZx8cHPj4+jT4vJCQEubm5SE5ORvCd2R979+6FRqOpSPzqIiUlBQDg5+enX0OrYJLYTo0fEIj1h9MbfE5e0jaU5VXOZig8cwg4cwgA0DwovN4kcZlGiwkDZfDT0VHGhXv1klUpgH6J4379pEqjTSaO/f1lwHjNGlm6u2cP8OWX8qZ11ayZjOROmiT1QUNCmtSkwkJg7lxg7FhZpaaPa9eAv/1NOivPPisVsG3y343qxRtfIvMpH8j84QdZmNumTdOOp9XKIKm3txFmJttLaWldubsDo0bJTLj//lc2MLz3Xrmzb0IJ6h49ZJVTQgLQsWPTFyhnZAArVsh+xO3aNe1YpAyMy0Q2zJKJ4qVL5b51y5Ym33+aS2mpdEvKVwsfOybXvKAg4MkngehomYDH/YTJVBiTiagpvL1l2PiJJ2RS9/r1xq0oRWRPlBKTe/TogejoaEyZMgUff/wxSkpKEBsbi3HjxsHf3x8AkJmZiYiICPzzn//Efffdh3PnzmHz5s0YMWIEvLy88Ouvv+LVV1/FkCFD0KdPH4PbwiSxnbq7TQsM7uKNQ79fr3c1cfsXvtD7uA5qFUI7eaGLb/21L3VJHB8/XnfiuF8/+dNmEscqFRAbK/WrJkyQm+wFC4DZs3UvxTlhgozqzpoFHDjQpAGCDz4AsrMBffdd/+EHWRRdXAxs3SoLpcn+KCXIEtmL4GAgKUmSuxMmNG18+OxZID0deOqpJiQbNRrg118rS0s/+KDMOLL10tK6qlmC+vRpKUFt4MaGKpUszl67VlaA9+3btObNmSOlzGfNatpxSDkYl4nsiLkSxVu2APPnA4sXS3ZVwS5elITwzp0SdnNzpWT0gw/Kzk/DhkloJjIHxmQiaip3dxkr/9vf5P4/KwuYMcPSrSKyPkqKyZs2bUJsbCwiIiKgVqsxZswYrFq1quLxkpISpKamovDOfq7Ozs7YvXs3Vq5ciYKCAgQEBGDMmDGYO3duk9rBUTs7tmx0b0Su2NdgyWl9OapVWDa6t/6vMzBxXJ40tvrEcY8eshJ40SJJEn//vdR91qV+pIODlKoeNkx+QaNHG9SEq1clOTxtmu5lKwsLZTD5H/+QklxffCELpMk+abX6BU4lbKdGZM0cHGSg89//lpLDXboYdhyNRlajdujQhO3ta5aWjoqy4qBsQkYuQd2+vayC2rtX/nR2NqxZx48DmzYBn3xi3D2uybIYl4lsXM39iU2dKD58WCpYTZgg5acU5tYt2e6ofLXwqVMSdgcMAKZPl65J//4GzcsiajLGZCIyBicnmSTs7w/MnAlcuiRDwk2tKkVkT5QUkz09PbF58+Z6H+/QoQO0VRoQEBCAffv2Gb0dTBLbsQBPNywaFYTZ354w2jEXjwpCgKee++rWo7HE8fHj8ue2bTaSOHZ2Bt56S+qGPPOMlKJcuVKW6DZ2s//gg5IkfuMN2aTCyUnv0y9eLKeZN0+35ycnS2mTCxeA1auBF1/knk32TkkzsYjsRbduwF13yeLdTp0Muzn8+WfZMuCxxwy4jtcsLT1pktQ+poYZsQR1RITsXHH4MPDAA/o3RauVAYagIOlykO1gXCayA+ZKFJ8/DzzyiGRZP/9cETd+Wi3wf/9XmRTetw8oKpKtGKKi5P42IkJWDxNZGmMyERmLSiU7P/j5AS+9JPO1160zfMIwkb1hTK6N80zs3Lj+gZg5rKtRjjVrWDc82V//VTD6KE8cP/usJCYPHQLy8oATJyQgDhsm969z58pejR4eQPfuksx8/325cczLM2kTm+7++6Vu5BNPAM89J6P2V682/rp33wXS0oDPPtP7lGfPAh9/LKUmvb0bfm5pqeSyBw6UMe6ff5aK2QoYJyALKw+y+nyZUk5ODsaPH4+WLVvCw8MDMTExyM/Pr/f56enpUKlUdX59/fXXFc+r6/EtW7aY9s0Q1UOlkrzi1avAL7/o//qiIsnx3nOP3GTqTKMBUlIkGP/yizRi2jQmiPVVXoL64YeB1FT5fR45ApSV6XyI1q2B++4DDh4Ebt7Uvwnbt0v/6L33WBnc1igpLr/11lsIDQ2Fm5sbPDw8dHrNpEmTasXb6Oho0zWSyFrVvBEz9nKHGzdkInKLFjJD28XFuMfXQ04O8NVXQEyMFODo1Qv4+9/lV/D228DJkzKJ+bPPgMcfZ4KYlEMpMTk9PR0xMTHo2LEjmjVrhs6dO2PBggUoLi5u8HVhYWG1YvLzzz9vmkYSkU5efFFi4tatUpjKkHtBInuklJisJBwKIsSG3w3v5i5YsP0kSjVavcpPO6hVcFSrsHhUkMkTxPWpuuJ40iT5WfmK4/LVxlVXHKtUlXscK3bFcYsWsqpo5EgZPO7dW2o5jxhR/2vuuQeYOBFYuFBKgFV5QwVFpTifWwBnPw3O56rRrcgd7i6V//3ffFOSAy+/3HCzfv9dFjkfOSLbJi9YwJlqVElpM7HGjx+Py5cvIyEhASUlJZg8eTKmTp1abxmPgIAAXL58udrPPv30U7z33nsYPnx4tZ+vW7eu2kC1rgPeRKbQrp2EicRE+bPqdbmgqBRnrhbgqkaDM1fVaOlZ/fr/00+yn3x4uB4nvHxZVr9evCgnHDZMYUHUyqjVUgalZ09g927ZPPGXX/QqQT14sOTsExNlgXJVBUWlSL9aiGKNO5yvFqKDV2nFZ6CkBHj9dSAyEmDuzfYoKS4XFxdj7NixCAkJwdq1a3V+XXR0NNatW1fxvYsFk1NEilZzRXEDCopKkZ5bgmK/rnDOLUGHotJqfYNqSktl8vKlS1KyorEZxUZWWgocOyahMT5e/q7RSPWLJ56QFcODBwPNmpm1WUR6U0pMPn36NDQaDT755BN06dIFv/32G6ZMmYKCggLExcU1+NopU6Zg8eLFFd+7uRmniiARGe7xxyU0P/KILJb6/nugTRvdXtvYWDGRrVJKTFYS/s8nALKi+P7O3piz7QQOpF2Dg1rVYLK4/PHQTl5YNrq30UpMG0t9ieNTpyqTxg0ljvv1k8SxxfflGz1aluzGxMhg8fPPA3FxsoS3LkuXyuaU772Hs7GvY1NSBhJTs5GRUwgtAL9ngRkJwMwEINDTDeHdfBHkGohvvmmBDRvqv7nWamWl9iuvAD4+wP79suCZqColBdlTp05h586dOHbsGPr16wcAWL16NUaMGIG4uDj417F5toODA9q2bVvtZ9u2bcMTTzyB5jXKv3p4eNR6LpElDR0qJRcPHgTa97xZ6/oPADv+BahQef0fFRSII0daICQEaNVKh5PcuiWb3x47xtLSpuDmJhne4GBgxw69SlA3ayalpuPjZe/FPNT1GQgCtqRChdSKz4Dq90CcPdsCX33FiiC2SElxedGiRQCA9evX6/U6FxcXxlsiXVVNFNcoO332Sh1x4dn3gYRrUCXEV8SF8QMCcXebFpXHePllif07d0qJLjO4eLGyhPTu3UBurqwIjoyU+dNRUVKIg8iaKCUmR0dHV5vs3KlTJ6SmpuKjjz5qNEns5ubGmEykQGFhwIEDwPDhQGioxM8uXep+bl39gbrGiqv1B4hsjFJispIwSUwVAjzdsDFmQGXAOJONjOuVg8vAncFlLzeEd/XFhIGB6OJrPQHD0VEWPPXurX/iuHyfY4skjv38ZMXWRx/JpoF79gBffim1JWtq3x4Xp8/GnHNOOLByf73Jfi2ACzmF2Jh0AWWadHSO8cYDI3oDqJ3sv3oVmDoV+M9/gMmTZZtkLhgjY8qrUQPexcWlySuFDh8+DA8Pj4oEMQBERkZCrVYjKSkJo0ePbvQYycnJSElJwZo1a2o99uKLL+K5555Dp06d8Pzzz2Py5MlQMcNCFuThAXS+pxBz95xA5q76J3tVvf6vP5yOACdvPNmz7ut/BY1GtkFISJClpw8+KBOYHBxM9XbsW7t2Mgr+888yOn76tCz17t+/wd95v35AwqFCPP3ZCZwr0OEzcOQCyrTpuGe6NzwDGvkMkF0xRVw21I8//ghfX1+0bt0aQ4cOxdKlS+Hl5WWRthBZHa0WF/+81ehE8Jp9g8FdvGUi+MbP5B70s89kc18TuXVLJiHHx0su+tQpKbIxYAAwfbokhRsJgUQ2yxwx+caNG/D09Gz0eZs2bcKXX36Jtm3b4uGHH8a8efO4mphIIfr0kS0Zo6IkUfz993J/WO5iTqHh/QGFLQwjIuNjkphqubtNCywcFYSFCJJSVNcLUFyqgbOjGh28bKv0hK6J42+/BW7frkwclyeNzZY4VqmAF16Qm/MJEyTiz58vmwhX2UBwy7EMLHC8D6UBJQDQaOnw8sc1Ptcx7IN9WDQqCOOqlA3//nvgr3+V38k338j2yET1MXQmVkBAQLWfL1iwAAsXLmxSW7KysuDr61vtZ46OjvD09ERWVpZOx1i7di169OiB0NDQaj9fvHgxhg4dCjc3N+zatQsvvPAC8vPz8XJj9dqJTGjLsQwsPHoSxWVyXdf1+p9Zeh0Pral9/a/A0tKWUVcJ6p9/lqoid91V50u+/jkD/7x+EiW6fgburDbLc72OyBUNfAbIaikpLhsiOjoajz32GDp27Ihz585hzpw5GD58OA4fPgwHZouI6lZlNfGWYxex4DvZUgrQvW9w6PfriPz/9mLR9z9g3MyZwHPPGbWJWq1UPylfLbx/v9xrt28vg9uLFsmqYe4nTLZEqTE5LS0Nq1evbnQV8dNPP4277roL/v7++PXXX/HGG28gNTUV3377rdHaQkRNc9ddUlls5EhZXfzNNxJXtxzLqNhiEtCzP8D7RLJBXElcm+1k+8gk3F0cEeSvSw1K26FL4iWvnroAABb4SURBVPj4cQm2Zk8cd+smU8MWL5a75x9+ADZuBLp0wYeJZxG364w8T63fwJkGWhSVajH72xO4ll+EyffdjZkzgY8/lj0Kv/hCFjQTNcTQIHvx4kW0rJJ0amhm9OzZs7F8+fIGj3vq1CndG1GPW7duYfPmzZg3b16tx6r+rG/fvigoKMB7773HJDFZTLXrv5402urX/9jwu+UBlpZWhqolqP/7XwnI99wjyfoqJaib8hko02pRVtdngKyeqeOyrjG5u4ElaseNG1fx9969e6NPnz7o3LkzfvzxR0SYcFUjkdVTqfDh3rOISzAwLmi0KNMCs6NfwrXIuxFrhCb9+afMeSpPDP/xB+DqKlslLFsmg9g9enDrA7JdSozJmZmZiI6OxtixYzFlypQGXzt16tSKv/fu3Rt+fn6IiIjAuXPn0Llz58beDhGZiZeXFKB88klJFj/77lnszm5Cf0DD+0SyPUwS18YkMZEOGkscHz8uf1ZNHHfrVpk0Nmri2MkJWLJENpt45hng3nuxZdEniLvmYYSDA3G7zmDl2y649FMg1qwBpk3jzTrpxtAg27Jly2o3vg2ZMWMGJpX/J6xHp06d0LZtW2RnZ1f7eWlpKXJycnTaR2nr1q0oLCzExIkTG33ugAEDsGTJEhQVFVmsHCfZry3HMgxODtYUt+sMfNyd8aRTTmVp6WHDpN4jV+1ZVrt2spKragnqoUOB/v2x5edM434GmrvgSc4Utwmmjsu6xmRj6dSpE7y9vZGWlsYkMVEDthzLMDhBXOHODWDc7rPwaemqd1woKwOOHq1MCh89KteYnj2BsWMlKTxkCNCsWdOaSWQtlBaTL126hPDwcISGhuLTTz/VvWF3DBgwAICsRGaSmEhZ3NxkK8WRr2QYnCCuifeJZEuYJK6NSWIiA1k8cRwaCqSk4OLMuVhwuRngqK2VzS26fAYFJ/bgdsYJlN64AnWzlnDx7waPIc/AybNdnYfVaoHSe0/i+7e8Edaf+06Q7swRZH18fODj49Po80JCQpCbm4vk5GQEBwcDAPbu3QuNRlNxQ9uQtWvXYtSoUTqdKyUlBa1bt2aCmMzuYk4hFmw/We/jmuJbyEv6FkWXUlF8+Qw0t/PhNWI6mveJrPc18/9zAqGO/0NAn24sLa00VUtQ79kD7NyJi0d/xYLs9nU+3ZA+AADM334SoZ29ufeUDTB1XNY1JhvLH3/8gevXr8OP5W2I6mWSvoGOceGPPyqTwgkJQG4u4OEBPPigzHMaNgyoUTmXyG4oKSZnZmYiPDwcwcHBWLduHdRqtX4ng9wDA2BMJlKoy3mFOO95Eiit+3FT9geIlI5J4tr07wkQUb3KE8eTJgEffggcPgzcvAn8+iuwdq1sKXzunGwl/MADQKtWUlZrwgRgxQrgwAEgP1+PE7ZogTn3PY1SJ+c6l/vmHdmKwtRDcL3rHrSOnIrm90Th9sXfcHndKyi+ml7nIVUqwMFJi7W/njDod0D2S6utDLS6fGkb3galSXr06IHo6GhMmTIFR48excGDBxEbG4tx48bB398fgNwcd+/eHUePHq322rS0NOzfvx/P1bH/2nfffYfPP/8cv/32G9LS0vDRRx9h2bJleOmll0z3ZojqMWfbiYp9heqiKczDjYP/Qsn1i3Dy1a1UdKkWmON7P/D440wQK5WbG/Dww8CUKZjzpxdKy+q+YzGkDwAApRot5mxjH8AWKCkuZ2RkICUlBRkZGSgrK0NKSgpSUlKQX6Xj2717d2zbtg0AkJ+fj1mzZuHIkSNIT0/Hnj178Mgjj6BLly6IiooyXUOJrJxJ+gb1xIVbtyQh/NprQFCQJICnTgUuXgReeUV2Sbp6FfjqKyAmhglism9KicmZmZkICwtDYGAg4uLicPXqVWRlZSErK6vac6reJ587dw5LlixBcnIy0tPTsX37dkycOBFDhgxBnz59TNNQImoSc/YHiKyNUmKyknAlMZGJVV1xPHmy/Ky0FPi//6vc47i+Fcfl+xz37Vtt68EKZ6/cxIG0awDqrgfdov9oeI+aBZWDU8XP3HsMxqW1scg7shXeD8+s83VlGi0OpF1DWvZNdPE1xebKZIs0Gv1Kk5t6JtamTZsQGxuLiIgIqNVqjBkzBqtWrap4vKSkBKmpqSgsLKz2ui+++ALt27fHsGHDah3TyckJa9aswauvvgqtVosuXbrg/fffb3QPJyJjq7z+18+huSfax26EQ/PWKLp8FlkbXm30uGVQ4UBmAa//VuCsY0scuO1a7+PsA5CS4vL8+fOxYcOGiu/79u0LAEhMTERYWBgAIDU1FTdu3AAAODg44Ndff8WGDRuQm5sLf39/DBs2DEuWLGHlDqJ6mKxvcCcunL1yEyXXW1SsFt63T+5f27UDoqOBhQtlUrSnp5HeEJENUUpMTkhIQFpaGtLS0tC+ffVqNNo7o+A175OdnZ2xe/durFy5EgUFBQgICMCYMWMwd+5c0zSSiJrE1P0B3ieStVNKTFYSJomJLMDREejTR770SRyXJ43LE8ebkjLgoFahrJ7ZYa7te9T6mZNnOzh7B6Lk2sUG2+igVuHLIxlYOCqoye+X7IPSgqynpyc2b95c7+MdOnSouBGuatmyZVi2bFmdr4mOjkZ0dLTR2khkqMau/wCgcnSCQ/PWeh+b13/rwD4ANUZJcXn9+vVYv359g8+pGpObNWuG+Ph40zWIyAaZsm+g0qoQ8XwGLv4nCK6usp/wW2/J3sI9e+p3rSGyR0qJyZMmTWp07+Ka98kBAQHYt2+faRpEREbHsQKihiklJisJk8RECqFr4njr1srE8V0vZkPbXL+aB1qtFmWFuXDyDmzweWUaLRLPZGMhGPhJNwyyROaTmJrd4E1fU/D6bx0M+QywD2BfGJeJ7Isp+wZalRYtumZj584gDBkCNGtmktMQ2SzGZCIyF44VEDWMMbk2JomJFKyhxPGhY6V452xhwweoQ8HJH1F28zo8Bo1v9LkZ1wtRUFQKdxdeKqhxDLJE5pFfVIqMHP2v//rg9V/ZDP0MsA9gXxiXieyHOfoGhepCDAorRTPGBSK9MSYTkTlwrICocYzJtfF/M5GVKU8cO3gX4J00/V5bcv0ichI+gku77nDvHdHo87UA0q8XIMi/lWGNJbvCIEtkHheuF8A084IraQHsPFiAjh68/ivR+Vz9PwPsA9gfxmUi+2GuvgHjApFhGJOJyBzYHyBqHGNybUwSE1mp4lL9rlBl+X8i++tFULu4w/vRN6FSO5jkPGS/GGSJzMNc1+WnJ2hQfNkspyI9Oftp4Pes7s9nH8A+MS4T2Q9zXa8ZF4gMw5hMRObA/gBR4xiTa2OSmMhKOTuqdX6u5nYBrny1AJrbBWgzYTkcW3iZ5DxERGR65roub/5SjY4eZjkV6el8rhozEnR7LvsARES2z1zXa8YFIiIi5WJ/gIgMwSQxkZXq4OUOFdBoGRFtaTGyty5G6Z+ZaDNuKZy9A3U+h+rOeYh0wZlYROah6/W/KVQAou93h7uLCU9CButW5I6ZCewDUMMYl4nsh7n6BowLRIZhTCYic2B/gKhxjMm1cdoHkZVyd3FEoKdbg8/Raspw9T/LUXTpNHwenQ2Xdj30OkeglxvcXTiXhHSj0ej/RUT60+X631S8/isb+wCkC8ZlIvvBvgGRsjEmE5E5sD9A1DjG5Nr4P5rIioV388XGpAso09Q9R+zPvWtxKy0Jzbrch7Jb+cj/LbHa4817hdd7bAe1CuFdfY3aXrJtWq1+gVNryqmNRDauset/ubzk76C5XYCy/BwAwK20oyi9eQ0A0DL4Yahda88A5vXfOrAPQI1hXCayL+wbECkXYzIRmQv7A0QNY0yujUliIis2fkAg1h9Or/fx4iu/A5BAfyvtaK3HGxogLtNoMWGg7mUpifSdWWUPM7GITKWx63+5vKRtKMvLrvi+8Mwh4MwhAEDzoPA6b/x4/bcO7ANQYxiXiewL+wZEysWYTETmwv4AUcMYk2tjkpjIit3dpgUGd/HGod+v1zlDrO34dww6roNahdBOXuji26KpTSQ7wiBLZD6NXf/LtX/hC72Oy+u/9WAfgBrDuExkX9g3IFIuxmQiMhf2B4gaxphcG/ckJrJyy0b3hqNaj93WdeCoVmHZ6N5GPSbZPu7pQGRevP4TPwPUEMZlIvvDuECkTIzJRGRO7A8Q1Y8xuTYmiYmsXICnGxaNCjLqMRePCkKAp5tRj0m2j0GWyLx4/Sd+BqghjMtE9odxgUiZGJOJyJzYHyCqH2NybUwSE9mAcf0DMXNYV6Mca9awbniyP/eXIP0xyBKZH6//xM8A1Ydxmcg+MS4QKQ9jMhGZG/sDRHVjTK6NexIT2YjY8Lvh3dwFC7afRKlG2+C+EzU5qFVwVKuweFQQgz4ZTN+gaQ9BlsgceP0nfgaoLozLRPaLcYFIWRiTicgS2B8gqo0xuTYmiYlsyLj+gbi/szfmbDuBA2nX4KBWNdgBKH88tJMXlo3uzbIh1CQMskSWw+s/8TNANTEuE9k3xgUi5WBMJiJLYX+AqDrG5NqYJCayMQGebtgYMwBnr9zEpqQMJJ7JRsb1QlQN/yoAgV5uCO/qiwkDA9HFt4Wlmks2hEGWyLJ4/Sd+BqgqxmUiYlwgUgbGZCKyJPYHiCoxJtfGJDGRjbq7TQssHBWEhQhCQVEp0q8XoLhUA2dHNTp4ucPdhf/9iYhsEa//xM8AERFVxbhARERE7A8QUV34P5/IDri7OCLIv5Wlm0E2TqvVb3aVVvetUIjIQLz+Ez8D9otxmYjqwrhAZH6MyUSkNOwPkL1iTK6NSWIiIjIKjQZQqXR/vj0EWSIiIkthXCYiIlIGxmQiIiJlYEyujUliIiIyCgZZIiIi5WBcJiIiUgbGZCIiImVgTK6NSWIiIjIKBlkiIiLlYFwmIiJSBsZkIiIiZWBMro1JYiIiMgoGWSIiIuVgXCYiIlIGxmQiIiJlYEyujUliIiIyCgZZIiIi5WBcJiIiUgbGZCIiImVgTK6NSWIiIjIKBlkiIiLlYFwmIiJSBsZkIiIiZWBMrk1t6QYQEZFt0Gj0/zKlt956C6GhoXBzc4OHh4dOr9FqtZg/fz78/PzQrFkzREZG4uzZs9Wek5OTg/Hjx6Nly5bw8PBATEwM8vPzTfAOiIiIDKeUuJyeno6YmBh07NgRzZo1Q+fOnbFgwQIUFxc3+Lrbt2/jxRdfhJeXF5o3b44xY8bgypUrpmkkERGRCSklJgPAqFGjEBgYCFdXV/j5+eGZZ57BpUuXGnwNYzIREdkKJcVkU41d64tJYiIiMgolBVkAKC4uxtixYzFt2jSdX/Puu+9i1apV+Pjjj5GUlAR3d3dERUXh9u3bFc8ZP348Tp48iYSEBOzYsQP79+/H1KlTTfEWiIiIDKaUuHz69GloNBp88sknOHnyJFasWIGPP/4Yc+bMafB1r776Kr777jt8/fXX2LdvHy5duoTHHnvMNI0kIiIyIaXEZAAIDw/HV199hdTUVHzzzTc4d+4cHn/88QZfw5hMRES2Qkkx2VRj1/pSabX2sGBa5OXloVWrVrhx4wZatmxp6eYQERmFpa9t5ecHbgDQ5/x5AEzf7vXr12P69OnIzc1t8HlarRb+/v6YMWMGZs6cCQC4ceMG2rRpg/Xr12PcuHE4deoUevbsiWPHjqFfv34AgJ07d2LEiBH4448/4O/vb7L3YWss/bklIjIFJVzblB6XAeC9997DRx99hN9//73Ox2/cuAEfHx9s3ry5YuD69OnT6NGjBw4fPoyBAweatH32RgmfWyIiY1PCtc0aYvL27dvx6KOPoqioCE5OTrUeZ0w2LyV8bomITMHS1zclx2Rjjl0bwq72JC7Ph+fl5Vm4JURExlN+TbP8nB99r63y/JrXZBcXF7i4uBipTbo7f/48srKyEBkZWfGzVq1aYcCAATh8+DDGjRuHw4cPw8PDoyJBDACRkZFQq9VISkrC6NGjzd5ua8WYTES2SDkxGVByXL5x4wY8PT3rfTw5ORklJSXVYnL37t0RGBjIAWkTYEwmIlvEmNy4nJwcbNq0CaGhoXUmiAHGZHNjTCYiW6WcuKzMmKwLXcauDWFXSeKbN28CAAICAizcEiIi47t58+adGVHm5ezsjLZt2yIrS/9ra/PmzWtdkxcsWICFCxcaqXW6y8rKAgC0adOm2s/btGlT8VhWVhZ8fX2rPe7o6AhPT8+K55BuGJOJyJZZKiYDyo/LaWlpWL16NeLi4up9TlZWFpydnWvty1Q1JpPxMCYTkS1jTK7tjTfewIcffojCwkIMHDgQO3bsqPe5jMnmxZhMRLaO49eG02Xs2hB2lST29/fHxYsX0aJFC6hUKks3h4jIKLRaLW7evGmxUseurq44f/48iouL9X6tVqutdT1uaBbW7NmzsXz58gaPeerUKXTv3l3vtpB5MSYTkS2ydEwGzBeXDYnJmZmZiI6OxtixYzFlyhS920emwZhMRLaIMbm6qjF51qxZiImJwYULF7Bo0SJMnDgRO3bsYAxQAMZkIrJVlo7LSo3JSmBXSWK1Wo327dtbuhlEREZnqZnR5VxdXeHq6mry88yYMQOTJk1q8DmdOnUy6Nht27YFAFy5cgV+fn4VP79y5QruvffeiudkZ2dXe11paSlycnIqXk+6YUwmIltl6ZgMmCcu6xuTL126hPDwcISGhuLTTz9t8HVt27ZFcXExcnNzq61cunLlCuOtCTAmE5GtYkyuVDUme3t7w9vbG127dkWPHj0QEBCAI0eOICQkpNbrGJPNizGZiGyZpeOyEmOyPnQZuzaEXSWJiYjIuvn4+MDHx8ckx+7YsSPatm2LPXv2VATWvLw8JCUlYdq0aQCAkJAQ5ObmIjk5GcHBwQCAvXv3QqPRYMCAASZpFxERkRLpE5MzMzMRHh6O4OBgrFu3Dmq1usHnBwcHw8nJCXv27MGYMWMAAKmpqcjIyKhzAJuIiMieNeU+WaPRAACKiorqfJwxmYiISHeWHrs2RMN350RERFYqIyMDKSkpyMjIQFlZGVJSUpCSkoL8/PyK53Tv3h3btm0DAKhUKkyfPh1Lly7F9u3bceLECUycOBH+/v549NFHAQA9evRAdHQ0pkyZgqNHj+LgwYOIjY3FuHHjLFrGjIiISKkyMzMRFhaGwMBAxMXF4erVq8jKyqq2Z1JmZia6d++Oo0ePApAZ5jExMXjttdeQmJiI5ORkTJ48GSEhIRg4cKCl3goREZFVS0pKwocffoiUlBRcuHABe/fuxVNPPYXOnTtXJHwZk4mIiMzDFGPXhuBKYiIisknz58/Hhg0bKr7v27cvACAxMRFhYWEAZAb0jRs3Kp7z+uuvo6CgAFOnTkVubi4GDRqEnTt3VitFsmnTJsTGxiIiIgJqtRpjxozBqlWrzPOmiIiIrExCQgLS0tKQlpZWq3yiVqsFAJSUlCA1NRWFhYUVj61YsaIizhYVFSEqKgr/+Mc/zNp2IiIiW+Lm5oZvv/0WCxYsQEFBAfz8/BAdHY25c+dW7K3ImExERGQephq71pdKW35nTkRERERERERERERERERENo/lpomIiIiIiIiIiIiIiIiI7AiTxEREREREREREREREREREdoRJYiIiIiIiIiIiIiIiIiIiO8IkMRERERERERERERERERGRHWGSmIiIiIiIiIiIiIiIiIjIjjBJTERERERERERERERERERkR5gkJiIiIiIiIiIiIiIiIiKyI0wSExERERERERERERERERHZESaJiYiIiIiIiIiIiIiIiIjsCJPERERERERERERERERERER2hEliIiIiIiIiIiIiIiIiIiI78v8DDG28hfdV50EAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -688,9 +682,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "The solution found by RQAOA has energy = -9.0 and ground states = ['1100100', '0011010']\n", + "The solution found by RQAOA has energy = -9.0 and ground states = ['0011010', '1000100', '1100100', '0011011', '0111011', '1100101']\n", "\n", - "The exact energy is -5.0 and the solutions are ['1000', '0110', '1001', '0111']\n" + "The exact energy is -3.0 and the solutions are ['1000', '1100', '0010', '1101', '0011', '0111']\n" ] } ], @@ -726,9 +720,9 @@ ], "metadata": { "kernelspec": { - "display_name": "oq_stable_nb", + "display_name": "azure_nb", "language": "python", - "name": "oq_stable_nb" + "name": "azure_nb" }, "language_info": { "codemirror_mode": { @@ -740,7 +734,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.10.13" } }, "nbformat": 4, From 422901c073e95b07911b455022c0045aebb0e0db Mon Sep 17 00:00:00 2001 From: KilianPoirier Date: Fri, 13 Oct 2023 05:51:18 +0000 Subject: [PATCH 05/10] Rename files --- samples/azure-quantum/qaoa/README.md | 24 + .../openqaoa-recursive.ipynb} | 804 +++++++++++++++++- .../azure-quantum/recursive-qaoa/README.md | 23 - 3 files changed, 806 insertions(+), 45 deletions(-) create mode 100644 samples/azure-quantum/qaoa/README.md rename samples/azure-quantum/{recursive-qaoa/RQAOA-introduction.ipynb => qaoa/openqaoa-recursive.ipynb} (78%) delete mode 100644 samples/azure-quantum/recursive-qaoa/README.md diff --git a/samples/azure-quantum/qaoa/README.md b/samples/azure-quantum/qaoa/README.md new file mode 100644 index 000000000000..0486123dec19 --- /dev/null +++ b/samples/azure-quantum/qaoa/README.md @@ -0,0 +1,24 @@ +--- +page_type: sample +author: +description: Introduction to RQAOA using the OpenQAOA library. +ms.author: +ms.date: +languages: +- python +products: +- azure-quantum +--- + +# Solving Quadratic Unconstrained Binary Optimization (QUBO) problems using QAOA on Azure Quantum + +This sample shows how to solve quadratic unconstrained binary optimization problems using the Quantum Approximate Optimization Algorithm (QAOA) on the Azure Quantum service. It demonstrates how to operate the QAOA workflow for a specific problem instance (TO SPECIFY) as well as a general QUBO problem that can be taylored to more specific cases like graph coloring or minimum vertex cover. + +## Manifest + +- [openqaoa.ipynb](./openqaoa.ipynb) Python notebook demonstrating how to run QAOA locally and on the Azure Quantum platform using the OpenQAOA package. +- [openqaoa-recursive.ipynb](./openqaoa.ipynb) Python notebook demonstrating how to run RQAOA locally and on the Azure Quantum platform using the OpenQAOA package. + +## See Also + +To learn more about QAOA and how to solve QUBO problems using OpenQAOA, visit https://openqaoa.entropicalabs.com/ \ No newline at end of file diff --git a/samples/azure-quantum/recursive-qaoa/RQAOA-introduction.ipynb b/samples/azure-quantum/qaoa/openqaoa-recursive.ipynb similarity index 78% rename from samples/azure-quantum/recursive-qaoa/RQAOA-introduction.ipynb rename to samples/azure-quantum/qaoa/openqaoa-recursive.ipynb index 331cc84364c3..b9bfd37b4356 100644 --- a/samples/azure-quantum/recursive-qaoa/RQAOA-introduction.ipynb +++ b/samples/azure-quantum/qaoa/openqaoa-recursive.ipynb @@ -90,7 +90,763 @@ "execution_count": 1, "id": "f1b38648-393a-4974-af43-a2c7d960fb17", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cloning into 'openqaoa'...\n", + "remote: Enumerating objects: 12047, done.\u001b[K\n", + "remote: Counting objects: 100% (1926/1926), done.\u001b[K\n", + "remote: Compressing objects: 100% (533/533), done.\u001b[K\n", + "remote: Total 12047 (delta 1571), reused 1548 (delta 1387), pack-reused 10121\u001b[K\n", + "Receiving objects: 100% (12047/12047), 19.14 MiB | 17.08 MiB/s, done.\n", + "Resolving deltas: 100% (8926/8926), done.\n", + "Branch 'dev' set up to track remote branch 'dev' from 'origin'.\n", + "Switched to a new branch 'dev'\n", + "Processing ./src/openqaoa-core\n", + " Installing build dependencies ... \u001b[?25ldone\n", + "\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n", + "\u001b[?25h Installing backend dependencies ... \u001b[?25ldone\n", + "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n", + "\u001b[?25hRequirement already satisfied: pandas>=1.3.5 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (2.0.3)\n", + "Requirement already satisfied: sympy>=1.10.1 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (1.12)\n", + "Collecting numpy>=1.22.3 (from openqaoa-core==0.2.2)\n", + " Obtaining dependency information for numpy>=1.22.3 from https://files.pythonhosted.org/packages/9b/5a/f265a1ba3641d16b5480a217a6aed08cceef09cd173b568cd5351053472a/numpy-1.26.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n", + " Using cached numpy-1.26.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (58 kB)\n", + "Requirement already satisfied: networkx>=2.8 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (3.1)\n", + "Requirement already satisfied: matplotlib>=3.4.3 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (3.7.2)\n", + "Collecting scipy>=1.8 (from openqaoa-core==0.2.2)\n", + " Obtaining dependency information for scipy>=1.8 from https://files.pythonhosted.org/packages/18/44/7e8d208eb59a8224fcc474415104f13be9b378be8da63f76dfde12ec2b44/scipy-1.11.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n", + " Using cached scipy-1.11.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (60 kB)\n", + "Requirement already satisfied: docplex==2.25.236 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (2.25.236)\n", + "Requirement already satisfied: autograd>=1.4 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (1.6.2)\n", + "Requirement already satisfied: semantic-version>=2.10 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (2.10.0)\n", + "Requirement already satisfied: autoray>=0.3.1 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (0.6.6)\n", + "Requirement already satisfied: requests in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (2.31.0)\n", + "Requirement already satisfied: ipython>=8.2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (8.15.0)\n", + "Collecting sphinx>=4.5.0 (from openqaoa-core==0.2.2)\n", + " Obtaining dependency information for sphinx>=4.5.0 from https://files.pythonhosted.org/packages/b2/b6/8ed35256aa530a9d3da15d20bdc0ba888d5364441bb50a5a83ee7827affe/sphinx-7.2.6-py3-none-any.whl.metadata\n", + " Using cached sphinx-7.2.6-py3-none-any.whl.metadata (5.9 kB)\n", + "Collecting sphinx-autodoc-typehints>=1.18.1 (from openqaoa-core==0.2.2)\n", + " Obtaining dependency information for sphinx-autodoc-typehints>=1.18.1 from https://files.pythonhosted.org/packages/a4/a2/71ee28033c218b025348555747cb95993338179875bae75c197138be77ad/sphinx_autodoc_typehints-1.24.0-py3-none-any.whl.metadata\n", + " Using cached sphinx_autodoc_typehints-1.24.0-py3-none-any.whl.metadata (7.8 kB)\n", + "Collecting sphinx-rtd-theme>=1.0.0 (from openqaoa-core==0.2.2)\n", + " Obtaining dependency information for sphinx-rtd-theme>=1.0.0 from https://files.pythonhosted.org/packages/18/01/76f40a18e9209bb098c1c1313c823dbbd001b23a2db71e7fd4eb5a48559c/sphinx_rtd_theme-1.3.0-py2.py3-none-any.whl.metadata\n", + " Using cached sphinx_rtd_theme-1.3.0-py2.py3-none-any.whl.metadata (4.5 kB)\n", + "Collecting nbsphinx>=0.8.9 (from openqaoa-core==0.2.2)\n", + " Obtaining dependency information for nbsphinx>=0.8.9 from https://files.pythonhosted.org/packages/a3/a0/ca4aeb2f7f2608a483459a3bb486da250a7eb23eb76c9a0af154395f0cb2/nbsphinx-0.9.3-py3-none-any.whl.metadata\n", + " Using cached nbsphinx-0.9.3-py3-none-any.whl.metadata (2.1 kB)\n", + "Requirement already satisfied: nbconvert>=6.5.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (7.8.0)\n", + "Collecting pytest>=7.1.0 (from openqaoa-core==0.2.2)\n", + " Obtaining dependency information for pytest>=7.1.0 from https://files.pythonhosted.org/packages/df/d0/e192c4275aecabf74faa1aacd75ef700091913236ec78b1a98f62a2412ee/pytest-7.4.2-py3-none-any.whl.metadata\n", + " Using cached pytest-7.4.2-py3-none-any.whl.metadata (7.9 kB)\n", + "Requirement already satisfied: pytest-xdist in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (3.3.1)\n", + "Requirement already satisfied: pytest-cov>=3.0.0 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (4.1.0)\n", + "Requirement already satisfied: plotly>=5.9.0 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (5.16.1)\n", + "Requirement already satisfied: cplex>=22.1.0.0 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (22.1.1.0)\n", + "Requirement already satisfied: six in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from docplex==2.25.236->openqaoa-core==0.2.2) (1.16.0)\n", + "Requirement already satisfied: future>=0.15.2 in /home/kilian/.local/lib/python3.10/site-packages (from autograd>=1.4->openqaoa-core==0.2.2) (0.18.3)\n", + "Requirement already satisfied: backcall in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2) (0.2.0)\n", + "Requirement already satisfied: decorator in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2) (5.1.1)\n", + "Requirement already satisfied: jedi>=0.16 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2) (0.19.0)\n", + "Requirement already satisfied: matplotlib-inline in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2) (0.1.6)\n", + "Requirement already satisfied: pickleshare in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2) (0.7.5)\n", + "Requirement already satisfied: prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2) (3.0.39)\n", + "Requirement already satisfied: pygments>=2.4.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2) (2.16.1)\n", + "Requirement already satisfied: stack-data in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2) (0.6.2)\n", + "Requirement already satisfied: traitlets>=5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2) (5.10.0)\n", + "Requirement already satisfied: exceptiongroup in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2) (1.1.3)\n", + "Requirement already satisfied: pexpect>4.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2) (4.8.0)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2) (1.1.0)\n", + "Requirement already satisfied: cycler>=0.10 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2) (0.11.0)\n", + "Collecting fonttools>=4.22.0 (from matplotlib>=3.4.3->openqaoa-core==0.2.2)\n", + " Obtaining dependency information for fonttools>=4.22.0 from https://files.pythonhosted.org/packages/ac/ed/9a33eca5e2cc35dc1fea0a968509c653db9a99a5979656ae57c6c019d66b/fonttools-4.43.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n", + " Downloading fonttools-4.43.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (152 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m152.4/152.4 kB\u001b[0m \u001b[31m13.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: kiwisolver>=1.0.1 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2) (1.4.4)\n", + "Requirement already satisfied: packaging>=20.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2) (23.1)\n", + "Requirement already satisfied: pillow>=6.2.0 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2) (10.0.0)\n", + "Requirement already satisfied: pyparsing<3.1,>=2.3.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2) (3.0.9)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2) (2.8.2)\n", + "Requirement already satisfied: beautifulsoup4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (4.12.2)\n", + "Requirement already satisfied: bleach!=5.0.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (6.0.0)\n", + "Requirement already satisfied: defusedxml in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (0.7.1)\n", + "Requirement already satisfied: jinja2>=3.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (3.1.2)\n", + "Requirement already satisfied: jupyter-core>=4.7 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (5.3.1)\n", + "Requirement already satisfied: jupyterlab-pygments in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (0.2.2)\n", + "Requirement already satisfied: markupsafe>=2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (2.1.3)\n", + "Requirement already satisfied: mistune<4,>=2.0.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (3.0.1)\n", + "Requirement already satisfied: nbclient>=0.5.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (0.8.0)\n", + "Requirement already satisfied: nbformat>=5.7 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (5.9.2)\n", + "Requirement already satisfied: pandocfilters>=1.4.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (1.5.0)\n", + "Requirement already satisfied: tinycss2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (1.2.1)\n", + "Requirement already satisfied: docutils in /home/kilian/.local/lib/python3.10/site-packages (from nbsphinx>=0.8.9->openqaoa-core==0.2.2) (0.18.1)\n", + "Requirement already satisfied: pytz>=2020.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from pandas>=1.3.5->openqaoa-core==0.2.2) (2023.3.post1)\n", + "Requirement already satisfied: tzdata>=2022.1 in /home/kilian/.local/lib/python3.10/site-packages (from pandas>=1.3.5->openqaoa-core==0.2.2) (2023.3)\n", + "Requirement already satisfied: tenacity>=6.2.0 in /home/kilian/.local/lib/python3.10/site-packages (from plotly>=5.9.0->openqaoa-core==0.2.2) (8.2.3)\n", + "Requirement already satisfied: iniconfig in /home/kilian/.local/lib/python3.10/site-packages (from pytest>=7.1.0->openqaoa-core==0.2.2) (2.0.0)\n", + "Collecting pluggy<2.0,>=0.12 (from pytest>=7.1.0->openqaoa-core==0.2.2)\n", + " Obtaining dependency information for pluggy<2.0,>=0.12 from https://files.pythonhosted.org/packages/05/b8/42ed91898d4784546c5f06c60506400548db3f7a4b3fb441cba4e5c17952/pluggy-1.3.0-py3-none-any.whl.metadata\n", + " Using cached pluggy-1.3.0-py3-none-any.whl.metadata (4.3 kB)\n", + "Requirement already satisfied: tomli>=1.0.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from pytest>=7.1.0->openqaoa-core==0.2.2) (2.0.1)\n", + "Requirement already satisfied: coverage[toml]>=5.2.1 in /home/kilian/.local/lib/python3.10/site-packages (from pytest-cov>=3.0.0->openqaoa-core==0.2.2) (7.3.0)\n", + "Collecting sphinxcontrib-applehelp (from sphinx>=4.5.0->openqaoa-core==0.2.2)\n", + " Obtaining dependency information for sphinxcontrib-applehelp from https://files.pythonhosted.org/packages/c0/0c/261c0949083c0ac635853528bb0070c89e927841d4e533ba0b5563365c06/sphinxcontrib_applehelp-1.0.7-py3-none-any.whl.metadata\n", + " Using cached sphinxcontrib_applehelp-1.0.7-py3-none-any.whl.metadata (2.2 kB)\n", + "Collecting sphinxcontrib-devhelp (from sphinx>=4.5.0->openqaoa-core==0.2.2)\n", + " Obtaining dependency information for sphinxcontrib-devhelp from https://files.pythonhosted.org/packages/c0/03/010ac733ec7b7f71c1dc88e7115743ee466560d6d85373b56fb9916e4586/sphinxcontrib_devhelp-1.0.5-py3-none-any.whl.metadata\n", + " Using cached sphinxcontrib_devhelp-1.0.5-py3-none-any.whl.metadata (2.2 kB)\n", + "Requirement already satisfied: sphinxcontrib-jsmath in /home/kilian/.local/lib/python3.10/site-packages (from sphinx>=4.5.0->openqaoa-core==0.2.2) (1.0.1)\n", + "Collecting sphinxcontrib-htmlhelp>=2.0.0 (from sphinx>=4.5.0->openqaoa-core==0.2.2)\n", + " Obtaining dependency information for sphinxcontrib-htmlhelp>=2.0.0 from https://files.pythonhosted.org/packages/28/7a/958f8e3e6abe8219d0d1f1224886de847ab227b218f4a07b61bc337f64be/sphinxcontrib_htmlhelp-2.0.4-py3-none-any.whl.metadata\n", + " Using cached sphinxcontrib_htmlhelp-2.0.4-py3-none-any.whl.metadata (2.2 kB)\n", + "Collecting sphinxcontrib-serializinghtml>=1.1.9 (from sphinx>=4.5.0->openqaoa-core==0.2.2)\n", + " Obtaining dependency information for sphinxcontrib-serializinghtml>=1.1.9 from https://files.pythonhosted.org/packages/95/d6/2e0bda62b2a808070ac922d21a950aa2cb5e4fcfb87e5ff5f86bc43a2201/sphinxcontrib_serializinghtml-1.1.9-py3-none-any.whl.metadata\n", + " Using cached sphinxcontrib_serializinghtml-1.1.9-py3-none-any.whl.metadata (2.3 kB)\n", + "Collecting sphinxcontrib-qthelp (from sphinx>=4.5.0->openqaoa-core==0.2.2)\n", + " Obtaining dependency information for sphinxcontrib-qthelp from https://files.pythonhosted.org/packages/1f/e5/1850f3f118e95581c1e30b57028ac979badee1eb29e70ee72b0241f5a185/sphinxcontrib_qthelp-1.0.6-py3-none-any.whl.metadata\n", + " Using cached sphinxcontrib_qthelp-1.0.6-py3-none-any.whl.metadata (2.2 kB)\n", + "Requirement already satisfied: snowballstemmer>=2.0 in /home/kilian/.local/lib/python3.10/site-packages (from sphinx>=4.5.0->openqaoa-core==0.2.2) (2.2.0)\n", + "Requirement already satisfied: babel>=2.9 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from sphinx>=4.5.0->openqaoa-core==0.2.2) (2.12.1)\n", + "Requirement already satisfied: alabaster<0.8,>=0.7 in /home/kilian/.local/lib/python3.10/site-packages (from sphinx>=4.5.0->openqaoa-core==0.2.2) (0.7.13)\n", + "Requirement already satisfied: imagesize>=1.3 in /home/kilian/.local/lib/python3.10/site-packages (from sphinx>=4.5.0->openqaoa-core==0.2.2) (1.4.1)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2) (3.2.0)\n", + "Requirement already satisfied: idna<4,>=2.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2) (3.4)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2) (2.0.4)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2) (2023.7.22)\n", + "Collecting sphinxcontrib-jquery<5,>=4 (from sphinx-rtd-theme>=1.0.0->openqaoa-core==0.2.2)\n", + " Using cached sphinxcontrib_jquery-4.1-py2.py3-none-any.whl (121 kB)\n", + "Requirement already satisfied: mpmath>=0.19 in /home/kilian/.local/lib/python3.10/site-packages (from sympy>=1.10.1->openqaoa-core==0.2.2) (1.3.0)\n", + "Requirement already satisfied: execnet>=1.1 in /home/kilian/.local/lib/python3.10/site-packages (from pytest-xdist->openqaoa-core==0.2.2) (2.0.2)\n", + "Requirement already satisfied: webencodings in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from bleach!=5.0.0->nbconvert>=6.5.1->openqaoa-core==0.2.2) (0.5.1)\n", + "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jedi>=0.16->ipython>=8.2.0->openqaoa-core==0.2.2) (0.8.3)\n", + "Requirement already satisfied: platformdirs>=2.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-core>=4.7->nbconvert>=6.5.1->openqaoa-core==0.2.2) (3.10.0)\n", + "Requirement already satisfied: jupyter-client>=6.1.12 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbclient>=0.5.0->nbconvert>=6.5.1->openqaoa-core==0.2.2) (8.3.1)\n", + "Requirement already satisfied: fastjsonschema in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbformat>=5.7->nbconvert>=6.5.1->openqaoa-core==0.2.2) (2.18.0)\n", + "Requirement already satisfied: jsonschema>=2.6 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbformat>=5.7->nbconvert>=6.5.1->openqaoa-core==0.2.2) (4.19.0)\n", + "Requirement already satisfied: ptyprocess>=0.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from pexpect>4.3->ipython>=8.2.0->openqaoa-core==0.2.2) (0.7.0)\n", + "Requirement already satisfied: wcwidth in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30->ipython>=8.2.0->openqaoa-core==0.2.2) (0.2.6)\n", + "Requirement already satisfied: soupsieve>1.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from beautifulsoup4->nbconvert>=6.5.1->openqaoa-core==0.2.2) (2.5)\n", + "Requirement already satisfied: executing>=1.2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from stack-data->ipython>=8.2.0->openqaoa-core==0.2.2) (1.2.0)\n", + "Requirement already satisfied: asttokens>=2.1.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from stack-data->ipython>=8.2.0->openqaoa-core==0.2.2) (2.4.0)\n", + "Requirement already satisfied: pure-eval in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from stack-data->ipython>=8.2.0->openqaoa-core==0.2.2) (0.2.2)\n", + "Requirement already satisfied: attrs>=22.2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema>=2.6->nbformat>=5.7->nbconvert>=6.5.1->openqaoa-core==0.2.2) (23.1.0)\n", + "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema>=2.6->nbformat>=5.7->nbconvert>=6.5.1->openqaoa-core==0.2.2) (2023.7.1)\n", + "Requirement already satisfied: referencing>=0.28.4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema>=2.6->nbformat>=5.7->nbconvert>=6.5.1->openqaoa-core==0.2.2) (0.30.2)\n", + "Requirement already satisfied: rpds-py>=0.7.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema>=2.6->nbformat>=5.7->nbconvert>=6.5.1->openqaoa-core==0.2.2) (0.10.3)\n", + "Requirement already satisfied: pyzmq>=23.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-client>=6.1.12->nbclient>=0.5.0->nbconvert>=6.5.1->openqaoa-core==0.2.2) (25.1.1)\n", + "Requirement already satisfied: tornado>=6.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-client>=6.1.12->nbclient>=0.5.0->nbconvert>=6.5.1->openqaoa-core==0.2.2) (6.3.3)\n", + "Using cached nbsphinx-0.9.3-py3-none-any.whl (31 kB)\n", + "Using cached numpy-1.26.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB)\n", + "Using cached pytest-7.4.2-py3-none-any.whl (324 kB)\n", + "Using cached scipy-1.11.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB)\n", + "Using cached sphinx-7.2.6-py3-none-any.whl (3.2 MB)\n", + "Using cached sphinx_autodoc_typehints-1.24.0-py3-none-any.whl (17 kB)\n", + "Using cached sphinx_rtd_theme-1.3.0-py2.py3-none-any.whl (2.8 MB)\n", + "Downloading fonttools-4.43.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.5/4.5 MB\u001b[0m \u001b[31m170.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hUsing cached pluggy-1.3.0-py3-none-any.whl (18 kB)\n", + "Using cached sphinxcontrib_htmlhelp-2.0.4-py3-none-any.whl (99 kB)\n", + "Using cached sphinxcontrib_serializinghtml-1.1.9-py3-none-any.whl (92 kB)\n", + "Using cached sphinxcontrib_applehelp-1.0.7-py3-none-any.whl (120 kB)\n", + "Using cached sphinxcontrib_devhelp-1.0.5-py3-none-any.whl (83 kB)\n", + "Using cached sphinxcontrib_qthelp-1.0.6-py3-none-any.whl (89 kB)\n", + "Building wheels for collected packages: openqaoa-core\n", + " Building wheel for openqaoa-core (pyproject.toml) ... \u001b[?25ldone\n", + "\u001b[?25h Created wheel for openqaoa-core: filename=openqaoa_core-0.2.2-py3-none-any.whl size=280429 sha256=0785bb519d2eaa7cbb712bb0480953fb5b858e80c4fab48c0c2589bab9c2acde\n", + " Stored in directory: /home/kilian/.cache/pip/wheels/dc/6f/77/46b8e15fbe98080da2db04b8594ed330fa43c232bae768fd09\n", + "Successfully built openqaoa-core\n", + "Installing collected packages: pluggy, numpy, fonttools, scipy, pytest, openqaoa-core, sphinxcontrib-serializinghtml, sphinxcontrib-qthelp, sphinxcontrib-htmlhelp, sphinxcontrib-devhelp, sphinxcontrib-applehelp, sphinx, sphinxcontrib-jquery, sphinx-rtd-theme, sphinx-autodoc-typehints, nbsphinx\n", + " Attempting uninstall: openqaoa-core\n", + " Found existing installation: openqaoa-core 0.2.1\n", + " Uninstalling openqaoa-core-0.2.1:\n", + " Successfully uninstalled openqaoa-core-0.2.1\n", + "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", + "amazon-braket-default-simulator 1.20.0 requires pydantic<2.0,>=1.9, which is not installed.\n", + "qiskit-ibm-provider 0.6.3 requires qiskit-terra>=0.25.0, which is not installed.\n", + "qiskit-ibm-provider 0.6.3 requires requests-ntlm>=1.1.0, which is not installed.\n", + "openqaoa-qiskit 0.2.1 requires qiskit>=0.36.1, which is not installed.\n", + "qiskit-aer 0.12.2 requires qiskit-terra>=0.21.0, which is not installed.\n", + "openqaoa-azure 0.2.1 requires openqaoa-core==0.2.1, but you have openqaoa-core 0.2.2 which is incompatible.\n", + "openqaoa-qiskit 0.2.1 requires openqaoa-core==0.2.1, but you have openqaoa-core 0.2.2 which is incompatible.\u001b[0m\u001b[31m\n", + "\u001b[0mSuccessfully installed fonttools-4.43.1 nbsphinx-0.9.3 numpy-1.26.0 openqaoa-core-0.2.2 pluggy-1.3.0 pytest-7.4.2 scipy-1.11.3 sphinx-7.2.6 sphinx-autodoc-typehints-1.24.0 sphinx-rtd-theme-1.3.0 sphinxcontrib-applehelp-1.0.7 sphinxcontrib-devhelp-1.0.5 sphinxcontrib-htmlhelp-2.0.4 sphinxcontrib-jquery-4.1 sphinxcontrib-qthelp-1.0.6 sphinxcontrib-serializinghtml-1.1.9\n", + "Processing ./src/openqaoa-qiskit\n", + " Installing build dependencies ... \u001b[?25ldone\n", + "\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n", + "\u001b[?25h Installing backend dependencies ... \u001b[?25ldone\n", + "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n", + "\u001b[?25hRequirement already satisfied: openqaoa-core==0.2.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-qiskit==0.2.2) (0.2.2)\n", + "Collecting qiskit>=0.36.1 (from openqaoa-qiskit==0.2.2)\n", + " Obtaining dependency information for qiskit>=0.36.1 from https://files.pythonhosted.org/packages/21/23/51152bd3cfd912b1587dff8c3e3535ab762c336b48898d71bcc1283a1675/qiskit-0.44.2-py3-none-any.whl.metadata\n", + " Using cached qiskit-0.44.2-py3-none-any.whl.metadata (8.2 kB)\n", + "Requirement already satisfied: qiskit-ibm-provider in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-qiskit==0.2.2) (0.6.3)\n", + "Requirement already satisfied: qiskit-aer in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-qiskit==0.2.2) (0.12.2)\n", + "Requirement already satisfied: pandas>=1.3.5 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (2.0.3)\n", + "Requirement already satisfied: sympy>=1.10.1 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (1.12)\n", + "Requirement already satisfied: numpy>=1.22.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (1.26.0)\n", + "Requirement already satisfied: networkx>=2.8 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (3.1)\n", + "Requirement already satisfied: matplotlib>=3.4.3 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (3.7.2)\n", + "Requirement already satisfied: scipy>=1.8 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (1.11.3)\n", + "Requirement already satisfied: docplex==2.25.236 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (2.25.236)\n", + "Requirement already satisfied: autograd>=1.4 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (1.6.2)\n", + "Requirement already satisfied: semantic-version>=2.10 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (2.10.0)\n", + "Requirement already satisfied: autoray>=0.3.1 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.6.6)\n", + "Requirement already satisfied: requests in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (2.31.0)\n", + "Requirement already satisfied: ipython>=8.2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (8.15.0)\n", + "Requirement already satisfied: six in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from docplex==2.25.236->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (1.16.0)\n", + "Collecting qiskit-terra==0.25.2.1 (from qiskit>=0.36.1->openqaoa-qiskit==0.2.2)\n", + " Obtaining dependency information for qiskit-terra==0.25.2.1 from https://files.pythonhosted.org/packages/1d/f8/d406545c3d6c9ffca08a049fdc43fab2c8e33b3b33e12ed73b702e3e4786/qiskit_terra-0.25.2.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n", + " Using cached qiskit_terra-0.25.2.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (9.0 kB)\n", + "Requirement already satisfied: rustworkx>=0.13.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2) (0.13.1)\n", + "Requirement already satisfied: ply>=3.10 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2) (3.11)\n", + "Requirement already satisfied: psutil>=5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2) (5.9.5)\n", + "Requirement already satisfied: dill>=0.3 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2) (0.3.7)\n", + "Requirement already satisfied: python-dateutil>=2.8.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2) (2.8.2)\n", + "Requirement already satisfied: stevedore>=3.0.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2) (5.1.0)\n", + "Requirement already satisfied: symengine<0.10,>=0.9 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2) (0.9.2)\n", + "Requirement already satisfied: typing-extensions in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2) (4.7.1)\n", + "Collecting requests-ntlm>=1.1.0 (from qiskit-ibm-provider->openqaoa-qiskit==0.2.2)\n", + " Using cached requests_ntlm-1.2.0-py3-none-any.whl (6.0 kB)\n", + "Requirement already satisfied: urllib3>=1.21.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-ibm-provider->openqaoa-qiskit==0.2.2) (2.0.4)\n", + "Requirement already satisfied: websocket-client>=1.5.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-ibm-provider->openqaoa-qiskit==0.2.2) (1.6.3)\n", + "Requirement already satisfied: websockets>=10.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-ibm-provider->openqaoa-qiskit==0.2.2) (11.0.3)\n", + "Requirement already satisfied: future>=0.15.2 in /home/kilian/.local/lib/python3.10/site-packages (from autograd>=1.4->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.18.3)\n", + "Requirement already satisfied: backcall in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.2.0)\n", + "Requirement already satisfied: decorator in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (5.1.1)\n", + "Requirement already satisfied: jedi>=0.16 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.19.0)\n", + "Requirement already satisfied: matplotlib-inline in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.1.6)\n", + "Requirement already satisfied: pickleshare in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.7.5)\n", + "Requirement already satisfied: prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (3.0.39)\n", + "Requirement already satisfied: pygments>=2.4.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (2.16.1)\n", + "Requirement already satisfied: stack-data in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.6.2)\n", + "Requirement already satisfied: traitlets>=5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (5.10.0)\n", + "Requirement already satisfied: exceptiongroup in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (1.1.3)\n", + "Requirement already satisfied: pexpect>4.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (4.8.0)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (1.1.0)\n", + "Requirement already satisfied: cycler>=0.10 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.11.0)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (4.43.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (1.4.4)\n", + "Requirement already satisfied: packaging>=20.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (23.1)\n", + "Requirement already satisfied: pillow>=6.2.0 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (10.0.0)\n", + "Requirement already satisfied: pyparsing<3.1,>=2.3.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (3.0.9)\n", + "Requirement already satisfied: pytz>=2020.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from pandas>=1.3.5->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (2023.3.post1)\n", + "Requirement already satisfied: tzdata>=2022.1 in /home/kilian/.local/lib/python3.10/site-packages (from pandas>=1.3.5->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (2023.3)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (3.2.0)\n", + "Requirement already satisfied: idna<4,>=2.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (3.4)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (2023.7.22)\n", + "Requirement already satisfied: cryptography>=1.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests-ntlm>=1.1.0->qiskit-ibm-provider->openqaoa-qiskit==0.2.2) (41.0.3)\n", + "Requirement already satisfied: pyspnego>=0.1.6 in /home/kilian/.local/lib/python3.10/site-packages (from requests-ntlm>=1.1.0->qiskit-ibm-provider->openqaoa-qiskit==0.2.2) (0.9.1)\n", + "Requirement already satisfied: mpmath>=0.19 in /home/kilian/.local/lib/python3.10/site-packages (from sympy>=1.10.1->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (1.3.0)\n", + "Requirement already satisfied: cffi>=1.12 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from cryptography>=1.3->requests-ntlm>=1.1.0->qiskit-ibm-provider->openqaoa-qiskit==0.2.2) (1.15.1)\n", + "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jedi>=0.16->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.8.3)\n", + "Requirement already satisfied: ptyprocess>=0.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from pexpect>4.3->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.7.0)\n", + "Requirement already satisfied: wcwidth in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.2.6)\n", + "Requirement already satisfied: pbr!=2.1.0,>=2.0.0 in /home/kilian/.local/lib/python3.10/site-packages (from stevedore>=3.0.0->qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2) (5.11.1)\n", + "Requirement already satisfied: executing>=1.2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from stack-data->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (1.2.0)\n", + "Requirement already satisfied: asttokens>=2.1.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from stack-data->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (2.4.0)\n", + "Requirement already satisfied: pure-eval in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from stack-data->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.2.2)\n", + "Requirement already satisfied: pycparser in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from cffi>=1.12->cryptography>=1.3->requests-ntlm>=1.1.0->qiskit-ibm-provider->openqaoa-qiskit==0.2.2) (2.21)\n", + "Using cached qiskit-0.44.2-py3-none-any.whl (8.2 kB)\n", + "Using cached qiskit_terra-0.25.2.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.2 MB)\n", + "Building wheels for collected packages: openqaoa-qiskit\n", + " Building wheel for openqaoa-qiskit (pyproject.toml) ... \u001b[?25ldone\n", + "\u001b[?25h Created wheel for openqaoa-qiskit: filename=openqaoa_qiskit-0.2.2-py3-none-any.whl size=14973 sha256=790c7b25a1923746090d455e4806e6cde017f940896feaf630140a58edf47785\n", + " Stored in directory: /home/kilian/.cache/pip/wheels/88/8c/d3/e267d337fb24649ac2f6bc29ae1be76bbfaa224b637848d2c9\n", + "Successfully built openqaoa-qiskit\n", + "Installing collected packages: qiskit-terra, qiskit, requests-ntlm, openqaoa-qiskit\n", + " Attempting uninstall: openqaoa-qiskit\n", + " Found existing installation: openqaoa-qiskit 0.2.1\n", + " Uninstalling openqaoa-qiskit-0.2.1:\n", + " Successfully uninstalled openqaoa-qiskit-0.2.1\n", + "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", + "openqaoa-azure 0.2.1 requires openqaoa-core==0.2.1, but you have openqaoa-core 0.2.2 which is incompatible.\n", + "openqaoa-azure 0.2.1 requires openqaoa-qiskit==0.2.1, but you have openqaoa-qiskit 0.2.2 which is incompatible.\u001b[0m\u001b[31m\n", + "\u001b[0mSuccessfully installed openqaoa-qiskit-0.2.2 qiskit-0.44.2 qiskit-terra-0.25.2.1 requests-ntlm-1.2.0\n", + "Processing ./src/openqaoa-azure\n", + " Installing build dependencies ... \u001b[?25ldone\n", + "\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n", + "\u001b[?25h Installing backend dependencies ... \u001b[?25ldone\n", + "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n", + "\u001b[?25hRequirement already satisfied: openqaoa-core==0.2.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-azure==0.2.2) (0.2.2)\n", + "Requirement already satisfied: openqaoa-qiskit==0.2.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-azure==0.2.2) (0.2.2)\n", + "Requirement already satisfied: qdk in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-azure==0.2.2) (0.28.291394)\n", + "Requirement already satisfied: qiskit-qir in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-azure==0.2.2) (0.3.1)\n", + "Requirement already satisfied: qiskit-ionq in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-azure==0.2.2) (0.4.1)\n", + "Requirement already satisfied: azure-quantum[qiskit] in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-azure==0.2.2) (0.28.277227)\n", + "Requirement already satisfied: pandas>=1.3.5 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (2.0.3)\n", + "Requirement already satisfied: sympy>=1.10.1 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (1.12)\n", + "Requirement already satisfied: numpy>=1.22.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (1.26.0)\n", + "Requirement already satisfied: networkx>=2.8 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (3.1)\n", + "Requirement already satisfied: matplotlib>=3.4.3 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (3.7.2)\n", + "Requirement already satisfied: scipy>=1.8 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (1.11.3)\n", + "Requirement already satisfied: docplex==2.25.236 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (2.25.236)\n", + "Requirement already satisfied: autograd>=1.4 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (1.6.2)\n", + "Requirement already satisfied: semantic-version>=2.10 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (2.10.0)\n", + "Requirement already satisfied: autoray>=0.3.1 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.6.6)\n", + "Requirement already satisfied: requests in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (2.31.0)\n", + "Requirement already satisfied: ipython>=8.2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (8.15.0)\n", + "Requirement already satisfied: qiskit>=0.36.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-qiskit==0.2.2->openqaoa-azure==0.2.2) (0.44.2)\n", + "Requirement already satisfied: qiskit-ibm-provider in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-qiskit==0.2.2->openqaoa-azure==0.2.2) (0.6.3)\n", + "Requirement already satisfied: qiskit-aer in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-qiskit==0.2.2->openqaoa-azure==0.2.2) (0.12.2)\n", + "Requirement already satisfied: six in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from docplex==2.25.236->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (1.16.0)\n", + "Requirement already satisfied: azure-core<2.0.0,>=1.26.2 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2) (1.29.2)\n", + "Requirement already satisfied: azure-identity<2.0.0,>=1.12.0 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2) (1.14.0)\n", + "Requirement already satisfied: azure-storage-blob<13.0.0,>=12.14.1 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2) (12.17.0)\n", + "Requirement already satisfied: msrest<1.0,>=0.7.1 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2) (0.7.1)\n", + "Requirement already satisfied: deprecated<2.0,>=1.2.12 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2) (1.2.14)\n", + "Requirement already satisfied: aiohttp<4.0,>=3.7.0 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2) (3.8.5)\n", + "Requirement already satisfied: aiofile<4.0,>=3.7.2 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2) (3.8.7)\n", + "Requirement already satisfied: protobuf<4.0,>=3.14.0 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2) (3.20.3)\n", + "Requirement already satisfied: Markdown>=3.4.1 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2) (3.4.4)\n", + "Requirement already satisfied: python-markdown-math>=0.8 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2) (0.8)\n", + "Requirement already satisfied: qiskit-terra<1.0,>=0.19.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2) (0.25.2.1)\n", + "Requirement already satisfied: decorator>=5.1.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-ionq->openqaoa-azure==0.2.2) (5.1.1)\n", + "Requirement already satisfied: retry>=0.9.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-ionq->openqaoa-azure==0.2.2) (0.9.2)\n", + "Requirement already satisfied: importlib-metadata>=4.11.4 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-ionq->openqaoa-azure==0.2.2) (6.8.0)\n", + "Requirement already satisfied: pyqir==0.8.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-qir->openqaoa-azure==0.2.2) (0.8.0)\n", + "Requirement already satisfied: qsharp in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2) (0.28.291394)\n", + "Requirement already satisfied: jupyter-jsmol in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2) (2022.1.0)\n", + "Requirement already satisfied: varname in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2) (0.11.2)\n", + "Requirement already satisfied: ruamel-yaml in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2) (0.17.32)\n", + "Requirement already satisfied: basis-set-exchange in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2) (0.9.1)\n", + "Requirement already satisfied: jupyter-nbextensions-configurator in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2) (0.6.3)\n", + "Requirement already satisfied: pygments>=2.7.4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2) (2.16.1)\n", + "Requirement already satisfied: ipywidgets==8.0.4 in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2) (8.0.4)\n", + "Requirement already satisfied: ipykernel>=4.5.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2) (6.25.2)\n", + "Requirement already satisfied: traitlets>=4.3.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2) (5.10.0)\n", + "Requirement already satisfied: widgetsnbextension~=4.0 in /home/kilian/.local/lib/python3.10/site-packages (from ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2) (4.0.8)\n", + "Requirement already satisfied: jupyterlab-widgets~=3.0 in /home/kilian/.local/lib/python3.10/site-packages (from ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2) (3.0.8)\n", + "Requirement already satisfied: caio~=0.9.0 in /home/kilian/.local/lib/python3.10/site-packages (from aiofile<4.0,>=3.7.2->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (0.9.12)\n", + "Requirement already satisfied: attrs>=17.3.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (23.1.0)\n", + "Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (3.2.0)\n", + "Requirement already satisfied: multidict<7.0,>=4.5 in /home/kilian/.local/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (6.0.4)\n", + "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /home/kilian/.local/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (4.0.3)\n", + "Requirement already satisfied: yarl<2.0,>=1.0 in /home/kilian/.local/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (1.9.2)\n", + "Requirement already satisfied: frozenlist>=1.1.1 in /home/kilian/.local/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (1.4.0)\n", + "Requirement already satisfied: aiosignal>=1.1.2 in /home/kilian/.local/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (1.3.1)\n", + "Requirement already satisfied: future>=0.15.2 in /home/kilian/.local/lib/python3.10/site-packages (from autograd>=1.4->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.18.3)\n", + "Requirement already satisfied: typing-extensions>=4.6.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from azure-core<2.0.0,>=1.26.2->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (4.7.1)\n", + "Requirement already satisfied: cryptography>=2.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (41.0.3)\n", + "Requirement already satisfied: msal<2.0.0,>=1.20.0 in /home/kilian/.local/lib/python3.10/site-packages (from azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (1.23.0)\n", + "Requirement already satisfied: msal-extensions<2.0.0,>=0.3.0 in /home/kilian/.local/lib/python3.10/site-packages (from azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (1.0.0)\n", + "Requirement already satisfied: isodate>=0.6.1 in /home/kilian/.local/lib/python3.10/site-packages (from azure-storage-blob<13.0.0,>=12.14.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (0.6.1)\n", + "Requirement already satisfied: wrapt<2,>=1.10 in /home/kilian/.local/lib/python3.10/site-packages (from deprecated<2.0,>=1.2.12->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (1.15.0)\n", + "Requirement already satisfied: zipp>=0.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from importlib-metadata>=4.11.4->qiskit-ionq->openqaoa-azure==0.2.2) (3.16.2)\n", + "Requirement already satisfied: backcall in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.2.0)\n", + "Requirement already satisfied: jedi>=0.16 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.19.0)\n", + "Requirement already satisfied: matplotlib-inline in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.1.6)\n", + "Requirement already satisfied: pickleshare in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.7.5)\n", + "Requirement already satisfied: prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (3.0.39)\n", + "Requirement already satisfied: stack-data in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.6.2)\n", + "Requirement already satisfied: exceptiongroup in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (1.1.3)\n", + "Requirement already satisfied: pexpect>4.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (4.8.0)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (1.1.0)\n", + "Requirement already satisfied: cycler>=0.10 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.11.0)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (4.43.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (1.4.4)\n", + "Requirement already satisfied: packaging>=20.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (23.1)\n", + "Requirement already satisfied: pillow>=6.2.0 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (10.0.0)\n", + "Requirement already satisfied: pyparsing<3.1,>=2.3.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (3.0.9)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (2.8.2)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from msrest<1.0,>=0.7.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (2023.7.22)\n", + "Requirement already satisfied: requests-oauthlib>=0.5.0 in /home/kilian/.local/lib/python3.10/site-packages (from msrest<1.0,>=0.7.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (1.3.1)\n", + "Requirement already satisfied: pytz>=2020.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from pandas>=1.3.5->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (2023.3.post1)\n", + "Requirement already satisfied: tzdata>=2022.1 in /home/kilian/.local/lib/python3.10/site-packages (from pandas>=1.3.5->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (2023.3)\n", + "Requirement already satisfied: rustworkx>=0.13.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra<1.0,>=0.19.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (0.13.1)\n", + "Requirement already satisfied: ply>=3.10 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra<1.0,>=0.19.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (3.11)\n", + "Requirement already satisfied: psutil>=5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-terra<1.0,>=0.19.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (5.9.5)\n", + "Requirement already satisfied: dill>=0.3 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra<1.0,>=0.19.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (0.3.7)\n", + "Requirement already satisfied: stevedore>=3.0.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra<1.0,>=0.19.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (5.1.0)\n", + "Requirement already satisfied: symengine<0.10,>=0.9 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra<1.0,>=0.19.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (0.9.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (3.4)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (2.0.4)\n", + "Requirement already satisfied: py<2.0.0,>=1.4.26 in /home/kilian/.local/lib/python3.10/site-packages (from retry>=0.9.0->qiskit-ionq->openqaoa-azure==0.2.2) (1.11.0)\n", + "Requirement already satisfied: mpmath>=0.19 in /home/kilian/.local/lib/python3.10/site-packages (from sympy>=1.10.1->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (1.3.0)\n", + "Requirement already satisfied: argcomplete in /home/kilian/.local/lib/python3.10/site-packages (from basis-set-exchange->qdk->openqaoa-azure==0.2.2) (3.1.1)\n", + "Requirement already satisfied: jsonschema in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from basis-set-exchange->qdk->openqaoa-azure==0.2.2) (4.19.0)\n", + "Requirement already satisfied: regex in /home/kilian/.local/lib/python3.10/site-packages (from basis-set-exchange->qdk->openqaoa-azure==0.2.2) (2023.8.8)\n", + "Requirement already satisfied: unidecode in /home/kilian/.local/lib/python3.10/site-packages (from basis-set-exchange->qdk->openqaoa-azure==0.2.2) (1.3.6)\n", + "Requirement already satisfied: jupyter-contrib-core>=0.3.3 in /home/kilian/.local/lib/python3.10/site-packages (from jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.4.2)\n", + "Requirement already satisfied: jupyter-core in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (5.3.1)\n", + "Requirement already satisfied: notebook>=6.0 in /home/kilian/.local/lib/python3.10/site-packages (from jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (7.0.2)\n", + "Requirement already satisfied: pyyaml in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (6.0.1)\n", + "Requirement already satisfied: tornado in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (6.3.3)\n", + "Requirement already satisfied: requests-ntlm>=1.1.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-ibm-provider->openqaoa-qiskit==0.2.2->openqaoa-azure==0.2.2) (1.2.0)\n", + "Requirement already satisfied: websocket-client>=1.5.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-ibm-provider->openqaoa-qiskit==0.2.2->openqaoa-azure==0.2.2) (1.6.3)\n", + "Requirement already satisfied: websockets>=10.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-ibm-provider->openqaoa-qiskit==0.2.2->openqaoa-azure==0.2.2) (11.0.3)\n", + "Requirement already satisfied: qsharp-core==0.28.291394 in /home/kilian/.local/lib/python3.10/site-packages (from qsharp->qdk->openqaoa-azure==0.2.2) (0.28.291394)\n", + "Requirement already satisfied: qsharp-chemistry==0.28.291394 in /home/kilian/.local/lib/python3.10/site-packages (from qsharp->qdk->openqaoa-azure==0.2.2) (0.28.291394)\n", + "Requirement already satisfied: jupyter-client>=7.3.4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qsharp-core==0.28.291394->qsharp->qdk->openqaoa-azure==0.2.2) (8.3.1)\n", + "Requirement already satisfied: ruamel.yaml.clib>=0.2.7 in /home/kilian/.local/lib/python3.10/site-packages (from ruamel-yaml->qdk->openqaoa-azure==0.2.2) (0.2.7)\n", + "Requirement already satisfied: executing<2.0,>=1.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from varname->qdk->openqaoa-azure==0.2.2) (1.2.0)\n", + "Requirement already satisfied: cffi>=1.12 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from cryptography>=2.5->azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (1.15.1)\n", + "Requirement already satisfied: comm>=0.1.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipykernel>=4.5.1->ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2) (0.1.4)\n", + "Requirement already satisfied: debugpy>=1.6.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipykernel>=4.5.1->ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2) (1.8.0)\n", + "Requirement already satisfied: nest-asyncio in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipykernel>=4.5.1->ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2) (1.5.7)\n", + "Requirement already satisfied: pyzmq>=20 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipykernel>=4.5.1->ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2) (25.1.1)\n", + "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jedi>=0.16->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.8.3)\n", + "Requirement already satisfied: setuptools in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-contrib-core>=0.3.3->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (68.0.0)\n", + "Requirement already satisfied: platformdirs>=2.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-core->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (3.10.0)\n", + "Requirement already satisfied: PyJWT[crypto]<3,>=1.0.0 in /home/kilian/.local/lib/python3.10/site-packages (from msal<2.0.0,>=1.20.0->azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (2.8.0)\n", + "Requirement already satisfied: portalocker<3,>=1.0 in /home/kilian/.local/lib/python3.10/site-packages (from msal-extensions<2.0.0,>=0.3.0->azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (2.7.0)\n", + "Requirement already satisfied: jupyter-server<3,>=2.4.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (2.7.3)\n", + "Requirement already satisfied: jupyterlab-server<3,>=2.22.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (2.25.0)\n", + "Requirement already satisfied: jupyterlab<5,>=4.0.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (4.0.6)\n", + "Requirement already satisfied: notebook-shim<0.3,>=0.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.2.3)\n", + "Requirement already satisfied: ptyprocess>=0.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from pexpect>4.3->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.7.0)\n", + "Requirement already satisfied: wcwidth in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.2.6)\n", + "Requirement already satisfied: pyspnego>=0.1.6 in /home/kilian/.local/lib/python3.10/site-packages (from requests-ntlm>=1.1.0->qiskit-ibm-provider->openqaoa-qiskit==0.2.2->openqaoa-azure==0.2.2) (0.9.1)\n", + "Requirement already satisfied: oauthlib>=3.0.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests-oauthlib>=0.5.0->msrest<1.0,>=0.7.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (3.2.2)\n", + "Requirement already satisfied: pbr!=2.1.0,>=2.0.0 in /home/kilian/.local/lib/python3.10/site-packages (from stevedore>=3.0.0->qiskit-terra<1.0,>=0.19.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (5.11.1)\n", + "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2) (2023.7.1)\n", + "Requirement already satisfied: referencing>=0.28.4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2) (0.30.2)\n", + "Requirement already satisfied: rpds-py>=0.7.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2) (0.10.3)\n", + "Requirement already satisfied: asttokens>=2.1.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from stack-data->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (2.4.0)\n", + "Requirement already satisfied: pure-eval in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from stack-data->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.2.2)\n", + "Requirement already satisfied: pycparser in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from cffi>=1.12->cryptography>=2.5->azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (2.21)\n", + "Requirement already satisfied: anyio>=3.1.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (4.0.0)\n", + "Requirement already satisfied: argon2-cffi in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (23.1.0)\n", + "Requirement already satisfied: jinja2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (3.1.2)\n", + "Requirement already satisfied: jupyter-events>=0.6.0 in /home/kilian/.local/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.6.3)\n", + "Requirement already satisfied: jupyter-server-terminals in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.4.4)\n", + "Requirement already satisfied: nbconvert>=6.4.4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (7.8.0)\n", + "Requirement already satisfied: nbformat>=5.3.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (5.9.2)\n", + "Requirement already satisfied: overrides in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (7.4.0)\n", + "Requirement already satisfied: prometheus-client in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.17.1)\n", + "Requirement already satisfied: send2trash>=1.8.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (1.8.2)\n", + "Requirement already satisfied: terminado>=0.8.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.17.1)\n", + "Requirement already satisfied: async-lru>=1.0.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyterlab<5,>=4.0.2->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (2.0.4)\n", + "Requirement already satisfied: jupyter-lsp>=2.0.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyterlab<5,>=4.0.2->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (2.2.0)\n", + "Requirement already satisfied: tomli in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyterlab<5,>=4.0.2->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (2.0.1)\n", + "Requirement already satisfied: babel>=2.10 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyterlab-server<3,>=2.22.1->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (2.12.1)\n", + "Requirement already satisfied: json5>=0.9.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyterlab-server<3,>=2.22.1->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.9.14)\n", + "Requirement already satisfied: sniffio>=1.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from anyio>=3.1.0->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (1.3.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jinja2->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (2.1.3)\n", + "Requirement already satisfied: python-json-logger>=2.0.4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-events>=0.6.0->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (2.0.7)\n", + "Requirement already satisfied: rfc3339-validator in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-events>=0.6.0->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.1.4)\n", + "Requirement already satisfied: rfc3986-validator>=0.1.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-events>=0.6.0->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.1.1)\n", + "Requirement already satisfied: beautifulsoup4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (4.12.2)\n", + "Requirement already satisfied: bleach!=5.0.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (6.0.0)\n", + "Requirement already satisfied: defusedxml in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.7.1)\n", + "Requirement already satisfied: jupyterlab-pygments in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.2.2)\n", + "Requirement already satisfied: mistune<4,>=2.0.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (3.0.1)\n", + "Requirement already satisfied: nbclient>=0.5.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.8.0)\n", + "Requirement already satisfied: pandocfilters>=1.4.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (1.5.0)\n", + "Requirement already satisfied: tinycss2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (1.2.1)\n", + "Requirement already satisfied: fastjsonschema in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbformat>=5.3.0->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (2.18.0)\n", + "Requirement already satisfied: argon2-cffi-bindings in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from argon2-cffi->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (21.2.0)\n", + "Requirement already satisfied: webencodings in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from bleach!=5.0.0->nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.5.1)\n", + "Requirement already satisfied: fqdn in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2) (1.5.1)\n", + "Requirement already satisfied: isoduration in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2) (20.11.0)\n", + "Requirement already satisfied: jsonpointer>1.13 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2) (2.4)\n", + "Requirement already satisfied: uri-template in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2) (1.3.0)\n", + "Requirement already satisfied: webcolors>=1.11 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2) (1.13)\n", + "Requirement already satisfied: soupsieve>1.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from beautifulsoup4->nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (2.5)\n", + "Requirement already satisfied: arrow>=0.15.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from isoduration->jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2) (1.2.3)\n", + "Building wheels for collected packages: openqaoa-azure\n", + " Building wheel for openqaoa-azure (pyproject.toml) ... \u001b[?25ldone\n", + "\u001b[?25h Created wheel for openqaoa-azure: filename=openqaoa_azure-0.2.2-py3-none-any.whl size=6144 sha256=fb30dcb7ab0c07060ac70ae9e16bb0232e57e6c82c9e4972474bc3480c87e2cc\n", + " Stored in directory: /home/kilian/.cache/pip/wheels/81/d4/50/1f4163db3264691f88fb9a8b1ab9d5af62996d928a6610de28\n", + "Successfully built openqaoa-azure\n", + "Installing collected packages: openqaoa-azure\n", + " Attempting uninstall: openqaoa-azure\n", + " Found existing installation: openqaoa-azure 0.2.1\n", + " Uninstalling openqaoa-azure-0.2.1:\n", + " Successfully uninstalled openqaoa-azure-0.2.1\n", + "Successfully installed openqaoa-azure-0.2.2\n", + "Processing /home/kilian/Codebase/Quantum/samples/azure-quantum/recursive-qaoa/openqaoa\n", + " Installing build dependencies ... \u001b[?25ldone\n", + "\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n", + "\u001b[?25h Installing backend dependencies ... \u001b[?25ldone\n", + "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n", + "\u001b[?25hRequirement already satisfied: openqaoa-qiskit==0.2.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa==0.2.2) (0.2.2)\n", + "Requirement already satisfied: openqaoa-core==0.2.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa==0.2.2) (0.2.2)\n", + "Requirement already satisfied: openqaoa-azure==0.2.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa==0.2.2) (0.2.2)\n", + "Collecting openqaoa-pyquil==0.2.2 (from openqaoa==0.2.2)\n", + " Obtaining dependency information for openqaoa-pyquil==0.2.2 from https://files.pythonhosted.org/packages/0d/f0/4f6244b71fb729543c62448a1237ec51eb3cd55540c017d93eb0df67ee50/openqaoa_pyquil-0.2.2-py3-none-any.whl.metadata\n", + " Using cached openqaoa_pyquil-0.2.2-py3-none-any.whl.metadata (4.9 kB)\n", + "Collecting openqaoa-braket==0.2.2 (from openqaoa==0.2.2)\n", + " Obtaining dependency information for openqaoa-braket==0.2.2 from https://files.pythonhosted.org/packages/bc/ea/a93cbf6e3ed58c26a00fe4078ac37f93f8a4aa07a46ce88b56e5d28ab635/openqaoa_braket-0.2.2-py3-none-any.whl.metadata\n", + " Using cached openqaoa_braket-0.2.2-py3-none-any.whl.metadata (4.6 kB)\n", + "Requirement already satisfied: qdk in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.28.291394)\n", + "Requirement already satisfied: qiskit-qir in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.3.1)\n", + "Requirement already satisfied: qiskit-ionq in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.4.1)\n", + "Requirement already satisfied: azure-quantum[qiskit] in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.28.277227)\n", + "Requirement already satisfied: amazon-braket-sdk>=1.23.0 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-braket==0.2.2->openqaoa==0.2.2) (1.54.0)\n", + "Requirement already satisfied: pandas>=1.3.5 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (2.0.3)\n", + "Requirement already satisfied: sympy>=1.10.1 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (1.12)\n", + "Requirement already satisfied: numpy>=1.22.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (1.26.0)\n", + "Requirement already satisfied: networkx>=2.8 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (3.1)\n", + "Requirement already satisfied: matplotlib>=3.4.3 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (3.7.2)\n", + "Requirement already satisfied: scipy>=1.8 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (1.11.3)\n", + "Requirement already satisfied: docplex==2.25.236 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (2.25.236)\n", + "Requirement already satisfied: autograd>=1.4 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (1.6.2)\n", + "Requirement already satisfied: semantic-version>=2.10 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (2.10.0)\n", + "Requirement already satisfied: autoray>=0.3.1 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (0.6.6)\n", + "Requirement already satisfied: requests in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (2.31.0)\n", + "Requirement already satisfied: ipython>=8.2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (8.15.0)\n", + "Collecting pyquil<4.0.0,>=3.1.0 (from openqaoa-pyquil==0.2.2->openqaoa==0.2.2)\n", + " Obtaining dependency information for pyquil<4.0.0,>=3.1.0 from https://files.pythonhosted.org/packages/04/da/45dfa58a121da5e6cafddad62f0004fcbf5986522a44e670389553752341/pyquil-3.5.4-py3-none-any.whl.metadata\n", + " Using cached pyquil-3.5.4-py3-none-any.whl.metadata (11 kB)\n", + "Requirement already satisfied: qiskit>=0.36.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (0.44.2)\n", + "Requirement already satisfied: qiskit-ibm-provider in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (0.6.3)\n", + "Requirement already satisfied: qiskit-aer in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (0.12.2)\n", + "Requirement already satisfied: six in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from docplex==2.25.236->openqaoa-core==0.2.2->openqaoa==0.2.2) (1.16.0)\n", + "Requirement already satisfied: amazon-braket-schemas>=1.19.1 in /home/kilian/.local/lib/python3.10/site-packages (from amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (1.19.1)\n", + "Requirement already satisfied: amazon-braket-default-simulator>=1.19.1 in /home/kilian/.local/lib/python3.10/site-packages (from amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (1.20.0)\n", + "Requirement already satisfied: oqpy~=0.2.1 in /home/kilian/.local/lib/python3.10/site-packages (from amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (0.2.1)\n", + "Requirement already satisfied: setuptools in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (68.0.0)\n", + "Requirement already satisfied: backoff in /home/kilian/.local/lib/python3.10/site-packages (from amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (2.2.1)\n", + "Requirement already satisfied: boltons in /home/kilian/.local/lib/python3.10/site-packages (from amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (23.0.0)\n", + "Requirement already satisfied: boto3>=1.22.3 in /home/kilian/.local/lib/python3.10/site-packages (from amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (1.28.29)\n", + "Requirement already satisfied: nest-asyncio in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (1.5.7)\n", + "Requirement already satisfied: openpulse in /home/kilian/.local/lib/python3.10/site-packages (from amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (0.4.2)\n", + "Requirement already satisfied: openqasm3 in /home/kilian/.local/lib/python3.10/site-packages (from amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (0.4.0)\n", + "Requirement already satisfied: future>=0.15.2 in /home/kilian/.local/lib/python3.10/site-packages (from autograd>=1.4->openqaoa-core==0.2.2->openqaoa==0.2.2) (0.18.3)\n", + "Requirement already satisfied: backcall in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (0.2.0)\n", + "Requirement already satisfied: decorator in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (5.1.1)\n", + "Requirement already satisfied: jedi>=0.16 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (0.19.0)\n", + "Requirement already satisfied: matplotlib-inline in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (0.1.6)\n", + "Requirement already satisfied: pickleshare in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (0.7.5)\n", + "Requirement already satisfied: prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (3.0.39)\n", + "Requirement already satisfied: pygments>=2.4.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (2.16.1)\n", + "Requirement already satisfied: stack-data in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (0.6.2)\n", + "Requirement already satisfied: traitlets>=5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (5.10.0)\n", + "Requirement already satisfied: exceptiongroup in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (1.1.3)\n", + "Requirement already satisfied: pexpect>4.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (4.8.0)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa==0.2.2) (1.1.0)\n", + "Requirement already satisfied: cycler>=0.10 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa==0.2.2) (0.11.0)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa==0.2.2) (4.43.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa==0.2.2) (1.4.4)\n", + "Requirement already satisfied: packaging>=20.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa==0.2.2) (23.1)\n", + "Requirement already satisfied: pillow>=6.2.0 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa==0.2.2) (10.0.0)\n", + "Requirement already satisfied: pyparsing<3.1,>=2.3.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa==0.2.2) (3.0.9)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa==0.2.2) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from pandas>=1.3.5->openqaoa-core==0.2.2->openqaoa==0.2.2) (2023.3.post1)\n", + "Requirement already satisfied: tzdata>=2022.1 in /home/kilian/.local/lib/python3.10/site-packages (from pandas>=1.3.5->openqaoa-core==0.2.2->openqaoa==0.2.2) (2023.3)\n", + "Requirement already satisfied: deprecated<2.0.0,>=1.2.13 in /home/kilian/.local/lib/python3.10/site-packages (from pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (1.2.14)\n", + "Requirement already satisfied: lark<0.12.0,>=0.11.1 in /home/kilian/.local/lib/python3.10/site-packages (from pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (0.11.3)\n", + "Requirement already satisfied: qcs-api-client<0.22.0,>=0.21.0 in /home/kilian/.local/lib/python3.10/site-packages (from pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (0.21.6)\n", + "Requirement already satisfied: rpcq<4.0.0,>=3.10.0 in /home/kilian/.local/lib/python3.10/site-packages (from pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (3.11.0)\n", + "Requirement already satisfied: tenacity<9.0.0,>=8.2.2 in /home/kilian/.local/lib/python3.10/site-packages (from pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (8.2.3)\n", + "Requirement already satisfied: types-deprecated<2.0.0.0,>=1.2.9.2 in /home/kilian/.local/lib/python3.10/site-packages (from pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (1.2.9.3)\n", + "Requirement already satisfied: types-python-dateutil<3.0.0,>=2.8.19 in /home/kilian/.local/lib/python3.10/site-packages (from pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (2.8.19.14)\n", + "Requirement already satisfied: types-retry<0.10.0,>=0.9.9 in /home/kilian/.local/lib/python3.10/site-packages (from pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (0.9.9.4)\n", + "Requirement already satisfied: qiskit-terra==0.25.2.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit>=0.36.1->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (0.25.2.1)\n", + "Requirement already satisfied: rustworkx>=0.13.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (0.13.1)\n", + "Requirement already satisfied: ply>=3.10 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (3.11)\n", + "Requirement already satisfied: psutil>=5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (5.9.5)\n", + "Requirement already satisfied: dill>=0.3 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (0.3.7)\n", + "Requirement already satisfied: stevedore>=3.0.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (5.1.0)\n", + "Requirement already satisfied: symengine<0.10,>=0.9 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (0.9.2)\n", + "Requirement already satisfied: typing-extensions in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (4.7.1)\n", + "Requirement already satisfied: mpmath>=0.19 in /home/kilian/.local/lib/python3.10/site-packages (from sympy>=1.10.1->openqaoa-core==0.2.2->openqaoa==0.2.2) (1.3.0)\n", + "Requirement already satisfied: azure-core<2.0.0,>=1.26.2 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.29.2)\n", + "Requirement already satisfied: azure-identity<2.0.0,>=1.12.0 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.14.0)\n", + "Requirement already satisfied: azure-storage-blob<13.0.0,>=12.14.1 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (12.17.0)\n", + "Requirement already satisfied: msrest<1.0,>=0.7.1 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.7.1)\n", + "Requirement already satisfied: aiohttp<4.0,>=3.7.0 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (3.8.5)\n", + "Requirement already satisfied: aiofile<4.0,>=3.7.2 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (3.8.7)\n", + "Requirement already satisfied: protobuf<4.0,>=3.14.0 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (3.20.3)\n", + "Requirement already satisfied: Markdown>=3.4.1 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (3.4.4)\n", + "Requirement already satisfied: python-markdown-math>=0.8 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.8)\n", + "Requirement already satisfied: retry>=0.9.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-ionq->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.9.2)\n", + "Requirement already satisfied: importlib-metadata>=4.11.4 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-ionq->openqaoa-azure==0.2.2->openqaoa==0.2.2) (6.8.0)\n", + "Requirement already satisfied: pyqir==0.8.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-qir->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.8.0)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2->openqaoa==0.2.2) (3.2.0)\n", + "Requirement already satisfied: idna<4,>=2.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2->openqaoa==0.2.2) (3.4)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2->openqaoa==0.2.2) (2.0.4)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2->openqaoa==0.2.2) (2023.7.22)\n", + "Requirement already satisfied: qsharp in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.28.291394)\n", + "Requirement already satisfied: jupyter-jsmol in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2022.1.0)\n", + "Requirement already satisfied: varname in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.11.2)\n", + "Requirement already satisfied: ruamel-yaml in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.17.32)\n", + "Requirement already satisfied: basis-set-exchange in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.9.1)\n", + "Requirement already satisfied: jupyter-nbextensions-configurator in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.6.3)\n", + "Requirement already satisfied: ipywidgets==8.0.4 in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (8.0.4)\n", + "Requirement already satisfied: ipykernel>=4.5.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (6.25.2)\n", + "Requirement already satisfied: widgetsnbextension~=4.0 in /home/kilian/.local/lib/python3.10/site-packages (from ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (4.0.8)\n", + "Requirement already satisfied: jupyterlab-widgets~=3.0 in /home/kilian/.local/lib/python3.10/site-packages (from ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (3.0.8)\n", + "Requirement already satisfied: requests-ntlm>=1.1.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-ibm-provider->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (1.2.0)\n", + "Requirement already satisfied: websocket-client>=1.5.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-ibm-provider->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (1.6.3)\n", + "Requirement already satisfied: websockets>=10.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-ibm-provider->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (11.0.3)\n", + "Requirement already satisfied: caio~=0.9.0 in /home/kilian/.local/lib/python3.10/site-packages (from aiofile<4.0,>=3.7.2->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.9.12)\n", + "Requirement already satisfied: attrs>=17.3.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (23.1.0)\n", + "Requirement already satisfied: multidict<7.0,>=4.5 in /home/kilian/.local/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (6.0.4)\n", + "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /home/kilian/.local/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (4.0.3)\n", + "Requirement already satisfied: yarl<2.0,>=1.0 in /home/kilian/.local/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.9.2)\n", + "Requirement already satisfied: frozenlist>=1.1.1 in /home/kilian/.local/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.4.0)\n", + "Requirement already satisfied: aiosignal>=1.1.2 in /home/kilian/.local/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.3.1)\n", + "Requirement already satisfied: opt-einsum in /home/kilian/.local/lib/python3.10/site-packages (from amazon-braket-default-simulator>=1.19.1->amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (3.3.0)\n", + "Collecting pydantic<2.0,>=1.9 (from amazon-braket-default-simulator>=1.19.1->amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2)\n", + " Obtaining dependency information for pydantic<2.0,>=1.9 from https://files.pythonhosted.org/packages/e0/2f/d6f17f8385d718233bcae893d27525443d41201c938b68a4af3d591a33e4/pydantic-1.10.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n", + " Using cached pydantic-1.10.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (149 kB)\n", + "Requirement already satisfied: antlr4-python3-runtime==4.9.2 in /home/kilian/.local/lib/python3.10/site-packages (from amazon-braket-default-simulator>=1.19.1->amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (4.9.2)\n", + "Requirement already satisfied: cryptography>=2.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (41.0.3)\n", + "Requirement already satisfied: msal<2.0.0,>=1.20.0 in /home/kilian/.local/lib/python3.10/site-packages (from azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.23.0)\n", + "Requirement already satisfied: msal-extensions<2.0.0,>=0.3.0 in /home/kilian/.local/lib/python3.10/site-packages (from azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.0.0)\n", + "Requirement already satisfied: isodate>=0.6.1 in /home/kilian/.local/lib/python3.10/site-packages (from azure-storage-blob<13.0.0,>=12.14.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.6.1)\n", + "Requirement already satisfied: botocore<1.32.0,>=1.31.29 in /home/kilian/.local/lib/python3.10/site-packages (from boto3>=1.22.3->amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (1.31.29)\n", + "Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /home/kilian/.local/lib/python3.10/site-packages (from boto3>=1.22.3->amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (1.0.1)\n", + "Requirement already satisfied: s3transfer<0.7.0,>=0.6.0 in /home/kilian/.local/lib/python3.10/site-packages (from boto3>=1.22.3->amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (0.6.2)\n", + "Requirement already satisfied: wrapt<2,>=1.10 in /home/kilian/.local/lib/python3.10/site-packages (from deprecated<2.0.0,>=1.2.13->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (1.15.0)\n", + "Requirement already satisfied: zipp>=0.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from importlib-metadata>=4.11.4->qiskit-ionq->openqaoa-azure==0.2.2->openqaoa==0.2.2) (3.16.2)\n", + "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jedi>=0.16->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (0.8.3)\n", + "Requirement already satisfied: requests-oauthlib>=0.5.0 in /home/kilian/.local/lib/python3.10/site-packages (from msrest<1.0,>=0.7.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.3.1)\n", + "Requirement already satisfied: mypy-extensions>=0.2.0 in /home/kilian/.local/lib/python3.10/site-packages (from oqpy~=0.2.1->amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (1.0.0)\n", + "Requirement already satisfied: ptyprocess>=0.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from pexpect>4.3->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (0.7.0)\n", + "Requirement already satisfied: wcwidth in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (0.2.6)\n", + "Requirement already satisfied: PyJWT<3.0.0,>=2.4.0 in /home/kilian/.local/lib/python3.10/site-packages (from qcs-api-client<0.22.0,>=0.21.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (2.8.0)\n", + "Collecting attrs>=17.3.0 (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2)\n", + " Using cached attrs-21.4.0-py2.py3-none-any.whl (60 kB)\n", + "Requirement already satisfied: httpx<0.24.0,>=0.23.0 in /home/kilian/.local/lib/python3.10/site-packages (from qcs-api-client<0.22.0,>=0.21.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (0.23.3)\n", + "Requirement already satisfied: iso8601<2.0.0,>=1.0.2 in /home/kilian/.local/lib/python3.10/site-packages (from qcs-api-client<0.22.0,>=0.21.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (1.1.0)\n", + "Requirement already satisfied: retrying<2.0.0,>=1.3.3 in /home/kilian/.local/lib/python3.10/site-packages (from qcs-api-client<0.22.0,>=0.21.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (1.3.4)\n", + "Requirement already satisfied: rfc3339<7.0,>=6.2 in /home/kilian/.local/lib/python3.10/site-packages (from qcs-api-client<0.22.0,>=0.21.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (6.2)\n", + "Requirement already satisfied: toml<0.11.0,>=0.10.2 in /home/kilian/.local/lib/python3.10/site-packages (from qcs-api-client<0.22.0,>=0.21.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (0.10.2)\n", + "Requirement already satisfied: pyspnego>=0.1.6 in /home/kilian/.local/lib/python3.10/site-packages (from requests-ntlm>=1.1.0->qiskit-ibm-provider->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (0.9.1)\n", + "Requirement already satisfied: py<2.0.0,>=1.4.26 in /home/kilian/.local/lib/python3.10/site-packages (from retry>=0.9.0->qiskit-ionq->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.11.0)\n", + "Requirement already satisfied: msgpack<2.0,>=0.6 in /home/kilian/.local/lib/python3.10/site-packages (from rpcq<4.0.0,>=3.10.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (1.0.5)\n", + "Requirement already satisfied: python-rapidjson in /home/kilian/.local/lib/python3.10/site-packages (from rpcq<4.0.0,>=3.10.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (1.10)\n", + "Requirement already satisfied: pyzmq>=17 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from rpcq<4.0.0,>=3.10.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (25.1.1)\n", + "Requirement already satisfied: argcomplete in /home/kilian/.local/lib/python3.10/site-packages (from basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (3.1.1)\n", + "Requirement already satisfied: jsonschema in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (4.19.0)\n", + "Requirement already satisfied: regex in /home/kilian/.local/lib/python3.10/site-packages (from basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2023.8.8)\n", + "Requirement already satisfied: unidecode in /home/kilian/.local/lib/python3.10/site-packages (from basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.3.6)\n", + "Requirement already satisfied: jupyter-contrib-core>=0.3.3 in /home/kilian/.local/lib/python3.10/site-packages (from jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.4.2)\n", + "Requirement already satisfied: jupyter-core in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (5.3.1)\n", + "Requirement already satisfied: notebook>=6.0 in /home/kilian/.local/lib/python3.10/site-packages (from jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (7.0.2)\n", + "Requirement already satisfied: pyyaml in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (6.0.1)\n", + "Requirement already satisfied: tornado in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (6.3.3)\n", + "Requirement already satisfied: qsharp-core==0.28.291394 in /home/kilian/.local/lib/python3.10/site-packages (from qsharp->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.28.291394)\n", + "Requirement already satisfied: qsharp-chemistry==0.28.291394 in /home/kilian/.local/lib/python3.10/site-packages (from qsharp->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.28.291394)\n", + "Requirement already satisfied: jupyter-client>=7.3.4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qsharp-core==0.28.291394->qsharp->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (8.3.1)\n", + "Requirement already satisfied: ruamel.yaml.clib>=0.2.7 in /home/kilian/.local/lib/python3.10/site-packages (from ruamel-yaml->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.2.7)\n", + "Requirement already satisfied: executing>=1.2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from stack-data->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (1.2.0)\n", + "Requirement already satisfied: asttokens>=2.1.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from stack-data->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (2.4.0)\n", + "Requirement already satisfied: pure-eval in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from stack-data->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (0.2.2)\n", + "Collecting urllib3<3,>=1.21.1 (from requests->openqaoa-core==0.2.2->openqaoa==0.2.2)\n", + " Obtaining dependency information for urllib3<3,>=1.21.1 from https://files.pythonhosted.org/packages/48/fe/a5c6cc46e9fe9171d7ecf0f33ee7aae14642f8d74baa7af4d7840f9358be/urllib3-1.26.17-py2.py3-none-any.whl.metadata\n", + " Using cached urllib3-1.26.17-py2.py3-none-any.whl.metadata (48 kB)\n", + "Requirement already satisfied: cffi>=1.12 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from cryptography>=2.5->azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.15.1)\n", + "Requirement already satisfied: httpcore<0.17.0,>=0.15.0 in /home/kilian/.local/lib/python3.10/site-packages (from httpx<0.24.0,>=0.23.0->qcs-api-client<0.22.0,>=0.21.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (0.16.3)\n", + "Requirement already satisfied: rfc3986[idna2008]<2,>=1.3 in /home/kilian/.local/lib/python3.10/site-packages (from httpx<0.24.0,>=0.23.0->qcs-api-client<0.22.0,>=0.21.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (1.5.0)\n", + "Requirement already satisfied: sniffio in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from httpx<0.24.0,>=0.23.0->qcs-api-client<0.22.0,>=0.21.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (1.3.0)\n", + "Requirement already satisfied: comm>=0.1.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipykernel>=4.5.1->ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.1.4)\n", + "Requirement already satisfied: debugpy>=1.6.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipykernel>=4.5.1->ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.8.0)\n", + "Requirement already satisfied: platformdirs>=2.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-core->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (3.10.0)\n", + "Requirement already satisfied: portalocker<3,>=1.0 in /home/kilian/.local/lib/python3.10/site-packages (from msal-extensions<2.0.0,>=0.3.0->azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.7.0)\n", + "Requirement already satisfied: jupyter-server<3,>=2.4.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.7.3)\n", + "Requirement already satisfied: jupyterlab-server<3,>=2.22.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.25.0)\n", + "Requirement already satisfied: jupyterlab<5,>=4.0.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (4.0.6)\n", + "Requirement already satisfied: notebook-shim<0.3,>=0.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.2.3)\n", + "Requirement already satisfied: oauthlib>=3.0.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests-oauthlib>=0.5.0->msrest<1.0,>=0.7.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (3.2.2)\n", + "Requirement already satisfied: pbr!=2.1.0,>=2.0.0 in /home/kilian/.local/lib/python3.10/site-packages (from stevedore>=3.0.0->qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (5.11.1)\n", + "INFO: pip is looking at multiple versions of jsonschema to determine which version is compatible with other requirements. This could take a while.\n", + "Collecting jsonschema (from basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2)\n", + " Obtaining dependency information for jsonschema from https://files.pythonhosted.org/packages/0f/bf/a84bc75f069f4f156e1c0d9892fb7325945106c6ecaad9f29d24360872af/jsonschema-4.19.1-py3-none-any.whl.metadata\n", + " Using cached jsonschema-4.19.1-py3-none-any.whl.metadata (7.9 kB)\n", + " Obtaining dependency information for jsonschema from https://files.pythonhosted.org/packages/b5/5c/ae834dd4160bbe9a4feb6e1f3e6189ab7772408823e294bd12eb6b4b4f44/jsonschema-4.18.6-py3-none-any.whl.metadata\n", + " Using cached jsonschema-4.18.6-py3-none-any.whl.metadata (7.8 kB)\n", + " Obtaining dependency information for jsonschema from https://files.pythonhosted.org/packages/d3/a4/54273ac37a667c3fcf93916fda59b36f0ad79950e4e56ad839ef2e3e1159/jsonschema-4.18.5-py3-none-any.whl.metadata\n", + " Using cached jsonschema-4.18.5-py3-none-any.whl.metadata (7.7 kB)\n", + " Obtaining dependency information for jsonschema from https://files.pythonhosted.org/packages/a1/ba/28ce987450c6afa8336373761193ddaadc1ba2004fbf23a6407db036f558/jsonschema-4.18.4-py3-none-any.whl.metadata\n", + " Using cached jsonschema-4.18.4-py3-none-any.whl.metadata (7.8 kB)\n", + " Obtaining dependency information for jsonschema from https://files.pythonhosted.org/packages/3a/34/ea34f7979d4f9ed1fa3b5c66000bc4e445c570f642ad478796f5ebaae45a/jsonschema-4.18.3-py3-none-any.whl.metadata\n", + " Using cached jsonschema-4.18.3-py3-none-any.whl.metadata (7.9 kB)\n", + " Obtaining dependency information for jsonschema from https://files.pythonhosted.org/packages/03/83/9a89e40dba1498ce9777865fa0bec0bfc3c1831679cdee814ec8dd223904/jsonschema-4.18.2-py3-none-any.whl.metadata\n", + " Using cached jsonschema-4.18.2-py3-none-any.whl.metadata (7.8 kB)\n", + " Obtaining dependency information for jsonschema from https://files.pythonhosted.org/packages/1d/85/984ef667a097ce4e671c6a5d8251a2b4a80845922a3937c6e77c8e6954f7/jsonschema-4.18.1-py3-none-any.whl.metadata\n", + " Using cached jsonschema-4.18.1-py3-none-any.whl.metadata (7.8 kB)\n", + "INFO: pip is still looking at multiple versions of jsonschema to determine which version is compatible with other requirements. This could take a while.\n", + " Obtaining dependency information for jsonschema from https://files.pythonhosted.org/packages/8a/38/2c55180702a637be0fbb8aa95358213a750d25cad3e59869726a54309996/jsonschema-4.18.0-py3-none-any.whl.metadata\n", + " Using cached jsonschema-4.18.0-py3-none-any.whl.metadata (10 kB)\n", + " Using cached jsonschema-4.17.3-py3-none-any.whl (90 kB)\n", + "Collecting pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2)\n", + " Using cached pyrsistent-0.19.3-py3-none-any.whl (57 kB)\n", + "Requirement already satisfied: pycparser in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from cffi>=1.12->cryptography>=2.5->azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.21)\n", + "Requirement already satisfied: h11<0.15,>=0.13 in /home/kilian/.local/lib/python3.10/site-packages (from httpcore<0.17.0,>=0.15.0->httpx<0.24.0,>=0.23.0->qcs-api-client<0.22.0,>=0.21.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (0.14.0)\n", + "Requirement already satisfied: anyio<5.0,>=3.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from httpcore<0.17.0,>=0.15.0->httpx<0.24.0,>=0.23.0->qcs-api-client<0.22.0,>=0.21.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (4.0.0)\n", + "Requirement already satisfied: argon2-cffi in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (23.1.0)\n", + "Requirement already satisfied: jinja2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (3.1.2)\n", + "Requirement already satisfied: jupyter-events>=0.6.0 in /home/kilian/.local/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.6.3)\n", + "Requirement already satisfied: jupyter-server-terminals in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.4.4)\n", + "Requirement already satisfied: nbconvert>=6.4.4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (7.8.0)\n", + "Requirement already satisfied: nbformat>=5.3.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (5.9.2)\n", + "Requirement already satisfied: overrides in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (7.4.0)\n", + "Requirement already satisfied: prometheus-client in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.17.1)\n", + "Requirement already satisfied: send2trash>=1.8.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.8.2)\n", + "Requirement already satisfied: terminado>=0.8.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.17.1)\n", + "Requirement already satisfied: async-lru>=1.0.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyterlab<5,>=4.0.2->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.0.4)\n", + "Requirement already satisfied: jupyter-lsp>=2.0.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyterlab<5,>=4.0.2->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.2.0)\n", + "Requirement already satisfied: tomli in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyterlab<5,>=4.0.2->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.0.1)\n", + "Requirement already satisfied: babel>=2.10 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyterlab-server<3,>=2.22.1->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.12.1)\n", + "Requirement already satisfied: json5>=0.9.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyterlab-server<3,>=2.22.1->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.9.14)\n", + "INFO: This is taking longer than usual. You might need to provide the dependency resolver with stricter constraints to reduce runtime. See https://pip.pypa.io/warnings/backtracking for guidance. If you want to abort this run, press Ctrl + C.\n", + "Collecting jupyterlab-server<3,>=2.22.1 (from notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2)\n", + " Obtaining dependency information for jupyterlab-server<3,>=2.22.1 from https://files.pythonhosted.org/packages/96/cd/cdabe44549d60e0967904f0bdd9e3756b521112317612a3997eb2fda9181/jupyterlab_server-2.25.0-py3-none-any.whl.metadata\n", + " Using cached jupyterlab_server-2.25.0-py3-none-any.whl.metadata (5.9 kB)\n", + " Obtaining dependency information for jupyterlab-server<3,>=2.22.1 from https://files.pythonhosted.org/packages/a7/0d/6d4eab0391bd4df1c43f308368d5e177b0fa8ac632267222a23b71317091/jupyterlab_server-2.24.0-py3-none-any.whl.metadata\n", + " Using cached jupyterlab_server-2.24.0-py3-none-any.whl.metadata (5.8 kB)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jinja2->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.1.3)\n", + "Requirement already satisfied: python-json-logger>=2.0.4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-events>=0.6.0->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.0.7)\n", + "Requirement already satisfied: rfc3339-validator in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-events>=0.6.0->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.1.4)\n", + "Requirement already satisfied: rfc3986-validator>=0.1.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-events>=0.6.0->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.1.1)\n", + "Requirement already satisfied: beautifulsoup4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (4.12.2)\n", + "Requirement already satisfied: bleach!=5.0.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (6.0.0)\n", + "Requirement already satisfied: defusedxml in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.7.1)\n", + "Requirement already satisfied: jupyterlab-pygments in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.2.2)\n", + "Requirement already satisfied: mistune<4,>=2.0.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (3.0.1)\n", + "Requirement already satisfied: nbclient>=0.5.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.8.0)\n", + "Requirement already satisfied: pandocfilters>=1.4.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.5.0)\n", + "Requirement already satisfied: tinycss2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.2.1)\n", + "Requirement already satisfied: fastjsonschema in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbformat>=5.3.0->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.18.0)\n", + "Requirement already satisfied: argon2-cffi-bindings in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from argon2-cffi->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (21.2.0)\n", + "Requirement already satisfied: webencodings in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from bleach!=5.0.0->nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.5.1)\n", + "INFO: pip is looking at multiple versions of jsonschema[format-nongpl] to determine which version is compatible with other requirements. This could take a while.\n", + "INFO: pip is still looking at multiple versions of jsonschema[format-nongpl] to determine which version is compatible with other requirements. This could take a while.\n", + "Requirement already satisfied: fqdn in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.5.1)\n", + "Requirement already satisfied: isoduration in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (20.11.0)\n", + "Requirement already satisfied: jsonpointer>1.13 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.4)\n", + "Requirement already satisfied: uri-template in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.3.0)\n", + "Requirement already satisfied: webcolors>=1.11 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.13)\n", + "Requirement already satisfied: soupsieve>1.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from beautifulsoup4->nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.5)\n", + "Requirement already satisfied: arrow>=0.15.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from isoduration->jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.2.3)\n", + "Using cached openqaoa_braket-0.2.2-py3-none-any.whl (13 kB)\n", + "Using cached openqaoa_pyquil-0.2.2-py3-none-any.whl (13 kB)\n", + "Using cached pyquil-3.5.4-py3-none-any.whl (223 kB)\n", + "Using cached urllib3-1.26.17-py2.py3-none-any.whl (143 kB)\n", + "Using cached pydantic-1.10.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB)\n", + "Using cached jupyterlab_server-2.24.0-py3-none-any.whl (57 kB)\n", + "Building wheels for collected packages: openqaoa\n", + " Building wheel for openqaoa (pyproject.toml) ... \u001b[?25ldone\n", + "\u001b[?25h Created wheel for openqaoa: filename=openqaoa-0.2.2-py3-none-any.whl size=767646 sha256=1735c254514bad2afed461219384800f3b75c0237f8f712ef529d50896aab333\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-kcy9ulf0/wheels/db/02/91/5f3b6b8e46d61121b2ea3aa3d46bb26d9fdf1d92620bf4d11b\n", + "Successfully built openqaoa\n", + "Installing collected packages: urllib3, pyrsistent, pydantic, attrs, jsonschema, pyquil, openqaoa-pyquil, openqaoa-braket, jupyterlab-server, openqaoa\n", + " Attempting uninstall: urllib3\n", + " Found existing installation: urllib3 2.0.4\n", + " Uninstalling urllib3-2.0.4:\n", + " Successfully uninstalled urllib3-2.0.4\n", + " Attempting uninstall: attrs\n", + " Found existing installation: attrs 23.1.0\n", + " Uninstalling attrs-23.1.0:\n", + " Successfully uninstalled attrs-23.1.0\n", + " Attempting uninstall: jsonschema\n", + " Found existing installation: jsonschema 4.19.0\n", + " Uninstalling jsonschema-4.19.0:\n", + " Successfully uninstalled jsonschema-4.19.0\n", + " Attempting uninstall: jupyterlab-server\n", + " Found existing installation: jupyterlab_server 2.25.0\n", + " Uninstalling jupyterlab_server-2.25.0:\n", + " Successfully uninstalled jupyterlab_server-2.25.0\n", + "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", + "referencing 0.30.2 requires attrs>=22.2.0, but you have attrs 21.4.0 which is incompatible.\u001b[0m\u001b[31m\n", + "\u001b[0mSuccessfully installed attrs-21.4.0 jsonschema-4.17.3 jupyterlab-server-2.24.0 openqaoa-0.2.2 openqaoa-braket-0.2.2 openqaoa-pyquil-0.2.2 pydantic-1.10.13 pyquil-3.5.4 pyrsistent-0.19.3 urllib3-1.26.17\n" + ] + } + ], "source": [ "try:\n", " import openqaoa_azure\n", @@ -311,8 +1067,8 @@ " 'schedule': [1, 1, 1, 1],\n", " 'number_steps': 4,\n", " 'intermediate_steps': [{'counter': 0,\n", - " 'problem': ,\n", - " 'qaoa_results': ,\n", + " 'problem': ,\n", + " 'qaoa_results': ,\n", " 'exp_vals_z': array([0., 0., 0., 0., 0., 0., 0.]),\n", " 'corr_matrix': array([[ 0. , 0.15351551, -0.22415966, 0.06753463, 0.28993212,\n", " -0.28993212, -0.15351551],\n", @@ -329,8 +1085,8 @@ " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ]])},\n", " {'counter': 1,\n", - " 'problem': ,\n", - " 'qaoa_results': ,\n", + " 'problem': ,\n", + " 'qaoa_results': ,\n", " 'exp_vals_z': array([0., 0., 0., 0., 0., 0.]),\n", " 'corr_matrix': array([[ 0. , 0.1595476 , -0.35002771, 0.03823884, -0.29664148,\n", " -0.08613327],\n", @@ -345,8 +1101,8 @@ " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. ]])},\n", " {'counter': 2,\n", - " 'problem': ,\n", - " 'qaoa_results': ,\n", + " 'problem': ,\n", + " 'qaoa_results': ,\n", " 'exp_vals_z': array([0., 0., 0., 0., 0.]),\n", " 'corr_matrix': array([[ 0. , 0.99999992, -0.99999992, -0.9999999 , -0.99999992],\n", " [ 0. , 0. , -0.9999999 , -0.99999992, -0.99999993],\n", @@ -354,17 +1110,17 @@ " [ 0. , 0. , 0. , 0. , 0.99999992],\n", " [ 0. , 0. , 0. , 0. , 0. ]])},\n", " {'counter': 3,\n", - " 'problem': ,\n", - " 'qaoa_results': ,\n", + " 'problem': ,\n", + " 'qaoa_results': ,\n", " 'exp_vals_z': array([0., 0., 0., 0.]),\n", " 'corr_matrix': array([[ 0. , 0.22076627, -0.37883018, 0.00745541],\n", " [ 0. , 0. , 0.16551932, -0.22076627],\n", " [ 0. , 0. , 0. , 0.37883018],\n", " [ 0. , 0. , 0. , 0. ]])}],\n", - " 'atomic_ids': {0: 'c71b939d-aaa5-432d-bf8b-4a1cc6fd8292',\n", - " 1: 'b79019b1-e2f7-40b2-9b5b-a72294b8e8d8',\n", - " 2: 'b05291c1-873a-404c-88cc-e240ad19103f',\n", - " 3: 'c429de22-3235-4cce-9bb1-2e5d9628cad5'}}" + " 'atomic_ids': {0: 'd08d3022-5a77-479f-9cfa-16a812402643',\n", + " 1: '307746fa-79ea-429a-b851-325de86b5d73',\n", + " 2: '9c45c810-b05b-483c-a0f0-1f48611e1f8d',\n", + " 3: 'ebde1362-3258-495f-ba05-a875d8484a4b'}}" ] }, "execution_count": 10, @@ -512,7 +1268,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 22, "id": "f9999c24-a924-4126-9514-a0d2d9189e9b", "metadata": {}, "outputs": [], @@ -534,7 +1290,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 23, "id": "a5e416ae", "metadata": {}, "outputs": [], @@ -551,7 +1307,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 24, "id": "4e0c0346-575c-4e32-96a4-dfd8deb14b36", "metadata": {}, "outputs": [], @@ -559,6 +1315,8 @@ "# Connect to the Azure Quantum workspace through OpenQAOA\n", "resource_id = ''\n", "az_location = ''\n", + "resource_id=\"/subscriptions/55f152d4-8edb-44bb-9bf6-4385f01b0561/resourceGroups/L3Concept/providers/Microsoft.Quantum/Workspaces/TestingOpenQAOA\"\n", + "az_location=\"westus\"\n", "\n", "# Set a quantum device to run our instance\n", "device = create_device(location='azure', name=backend_to_use, resource_id=resource_id, az_location=az_location)" @@ -566,7 +1324,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 25, "id": "af73063b-6710-4b3e-a8cf-9d113e5a7520", "metadata": {}, "outputs": [], @@ -576,7 +1334,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 26, "id": "bc5265d1-fdd1-42c3-bea1-43ea1147205e", "metadata": {}, "outputs": [], @@ -596,7 +1354,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 27, "id": "2ef2a984-e1c7-43b5-9501-c669a9d26944", "metadata": {}, "outputs": [ @@ -604,18 +1362,20 @@ "name": "stdout", "output_type": "stream", "text": [ - "............................................................................................................................................................................................................................................................................................................................................................................" + "................................................................................................................................................................................................................................................................................................................................" ] } ], "source": [ "# Job submission to Azure Quantum is done internally\n", - "r_qpu.optimize()" + "# r_qpu.optimize()\n", + "with r_qpu.device.backend_device.open_session(name=\"RQAOA\") as session:\n", + " r_qpu.optimize()" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 28, "id": "24512456-8bc7-4820-9ac7-fd678a43b1a2", "metadata": {}, "outputs": [], diff --git a/samples/azure-quantum/recursive-qaoa/README.md b/samples/azure-quantum/recursive-qaoa/README.md deleted file mode 100644 index a68aa6250d9e..000000000000 --- a/samples/azure-quantum/recursive-qaoa/README.md +++ /dev/null @@ -1,23 +0,0 @@ ---- -page_type: sample -author: -description: Introduction to RQAOA using the OpenQAOA library. -ms.author: -ms.date: -languages: -- python -products: -- azure-quantum ---- - -# Solving Quadratic Unconstrained Binary Optimization (QUBO) problems using QAOA on Azure Quantum - -This sample shows how to solve quadratic unconstrained binary optimization problems using the Recursive Quantum Approximate Optimization Algorithm (RQAOA) on the Azure Quantum service. It demonstrate how to operate the RQAOA workflow for a general QUBO problem that can be taylored to more specific case like graph coloring or minimum vertex cover. - -## Manifest - -- [RQAOA-introduction.ipynb](./RQAOA-introduction.ipynb) Python notebook demonstrating how to run RQAOA locally and on the Azure Quantum platform using the OpenQAOA package. - -## See Also - -To learn more about QAOA and how to solve QUBO problems using OpenQAOA, visit https://openqaoa.entropicalabs.com/ \ No newline at end of file From de6fa827dde42a663e2339fcb92ad8eca00c5f23 Mon Sep 17 00:00:00 2001 From: KilianPoirier Date: Mon, 16 Oct 2023 07:29:22 +0000 Subject: [PATCH 06/10] Updated binder-index.md --- binder-index.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/binder-index.md b/binder-index.md index 6abda43524f4..c152e37daffb 100644 --- a/binder-index.md +++ b/binder-index.md @@ -274,9 +274,9 @@ These are noted in the README.md files for each sample, along with complete inst - Recursive Quantum Approximate Optimization Algorithm + Quantum Approximate Optimization Algorithm - Python + Python From a354247d44626c893252074c6718a200542a912d Mon Sep 17 00:00:00 2001 From: KilianPoirier Date: Mon, 16 Oct 2023 07:29:56 +0000 Subject: [PATCH 07/10] Added standard qaoa tutorial --- samples/azure-quantum/qaoa/openqaoa.ipynb | 747 ++++++++++++++++++++++ 1 file changed, 747 insertions(+) create mode 100644 samples/azure-quantum/qaoa/openqaoa.ipynb diff --git a/samples/azure-quantum/qaoa/openqaoa.ipynb b/samples/azure-quantum/qaoa/openqaoa.ipynb new file mode 100644 index 000000000000..82881131b20c --- /dev/null +++ b/samples/azure-quantum/qaoa/openqaoa.ipynb @@ -0,0 +1,747 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Quantum Approximate Optimization Algorithm\n", + "\n", + "In this notebook, we provide a short introduction to QAOA using the OpenQAOA library." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### A brief introduction to OpenQAOA\n", + "\n", + "This section provides a walkthrough of a simple example workflow and a quick introduction to the functionalities of the OpenQAOA library.\n", + "\n", + "The QAOA workflow can be divided in four simple steps:\n", + "- Problem definition: Define your optimization problem here, either by: \n", + " - using pre-defined problem classes or,\n", + " - supplying your own QUBO\n", + "- Model building: \n", + " - Build the QAOA circuit with the available configurations\n", + " - Choose the backend (device) to run the circuit\n", + " - Choose the properties of the classical optimizer\n", + "- Compile model and optimize: \n", + " - Compile the model by passing the problem defined in step-1\n", + " - Execute `q.optimize()` to run the optimization process\n", + "- Extract results\n", + " - Run `q.results` to obtain information on the optimization run " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Being by importing the necessary modules" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "#some regular python libraries\n", + "import networkx as nx\n", + "import numpy as np\n", + "from pprint import pprint\n", + "import matplotlib.pyplot as plt\n", + "\n", + "#import problem classes from OQ for easy problem creation\n", + "from openqaoa.problems import MaximumCut\n", + "\n", + "#import the QAOA workflow model\n", + "from openqaoa import QAOA\n", + "\n", + "#import method to specify the device\n", + "from openqaoa.backends import create_device" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 1: Create a problem instance\n", + "We begin by creating a problem instance for a simple MaximumCut problem for a random graph created using the python `networkx` module. MaximumCut is a go-to problem to demonstrate QAOA in action.\n", + "\n", + "For this, we first:\n", + "- create a random graph using the `networkx` module\n", + "- using the MaximumCut problem class, we translate into the QUBO formalism to optimize with QAOA" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAHiCAYAAABvHroPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC460lEQVR4nOzdZ1xTdxfA8V8Iw4WIigvEPXBWUUFFEAgKwVW1Wq1bYpfddmirtWpr7W7tNLhHna3Vh6ASFEEFByou3APFhQtRkZU8L2hTqdCiAmGc7+fzvMjlJDn2SW7uuec/FEaj0YgQQgghhBBCFCALcycghBBCCCGEKH2k0BBCCCGEEEIUOCk0hBBCCCGEEAVOCg0hhBBCCCFEgZNCQwghhBBCCFHgpNAQQgghhBBCFDgpNIQQQgghhBAFTgoNIYQQQgghRIGTQkMIIYQQQghR4KTQEEIIIYQQQhQ4KTSEEEIIIYQQBU4KDSGEEEIIIUSBk0JDCCGEEEIIUeCk0BBCCCGEEEIUOCk0hBBCCCGEEAVOCg0hhBBCCCFEgZNCQwghhBBCCFHgpNAQQgghhBBCFDgpNIQQQgghhBAFTgoNIYQQQgghRIGTQkMIIYQQQghR4KTQEEIIIYQQQhQ4KTSEEEIIIYQQBU4KDSGEEEIIIUSBk0JDCCGEEEIIUeCk0BBCCCGEEEIUOCk0hBBCCCGEEAVOCg0hhBBCCCFEgZNCQwghhBBCCFHgpNAQQgghhBBCFDgpNIQQQgghhBAFTgoNIYQQQgghRIGTQkMIIYQQQghR4CzNnYAQIm8ZWQaOXk7hYGIyhxKTuZqSRnpmFtaWSmrY2tDK0Y7WjnY0r2WLlVLuGwghShc5BwpRsimMRqPR3EkIIXK6cPMey3YlsHRnAsmpGQBYWijINPz9dX3wsV15K55zc2ZoJ2ec7CuYJWchhCgocg4UonSQQkOIYuT2/Qw+CYlnxZ7zKBRgeIRvp4UCjMBg17q8H+iCbTmrQstTCCEKg5wDhShdpNAQopiIPJ7EW6viuH437ZF+XP/JQgHVK9nwxcC2eDZ1KLgEhRCiEMk5UIjSRwoNIYqBhTvO8uH6w1g84h28vPz1OtP6tGRE5/pP/oJCCFGI5BwoROkkhYYQZrYo+ixT1h0utNeXH1ohRHEm50AhSi8pNIQwo8jjSYyYv6vQ32fR6E4yhEAIUezIOVCI0k3WghPCTG7fz+CtVXFYKAr3fSwUMGF1HCn3Mwr3jYQQ4hHIOVCI0k/20RDCTD4Jic/XpMf75w5w5ddJuf6t1vAvsHFs/q/PNxjh2p00PtbF82n/No+brhBCFKj8ngP/KXnHCm5FLsaqujN1gn78z3g5BwphPlJoCGEG52/eY8We8zzK76uta2+sazfNcczSvna+nmswwoo95xnv3VjWmBdCmN3jnAMBMm9fIzl6JQqrco/0PDkHCmEeMnRKCDP4dVcCikccLmBTtyWVWnnn+J+ygl2+n2/x5/sKIYS5Pc45EODmlrnY1GmGda3Gj/xcOQcKUfSk0BCiiGVkGVi6M+GxlnA0pN3DaMh6rPfNMsKSnQlkZBke6/lCCFEQHvcceD/hEPeObsfed9xjva+cA4UoejJ0SogidvRyCsmpjz4p8bruW4zpqaCwwKZuS+y9x2BTu8kjvUZyagbHLqfQyjH/nRAhhChIj3MONBqyuBH2M5Xa9sC6Rv3Hfm85BwpRtKSjIUQRO5iY/GhPUFpRoVkXqvpqcBgwmSqew8lIOseVpe+SfvlU4b+/EEIUoMc5B93ZF0rm7SSqeA43y/sLIR6PdDSEKGKHEpOxtFCQmc9xA+WcXCjn5PL3gSZuVGjelUtzX+Hm1oXUHDwt3++tVMDW2LO0Tr/7qGkLIUSBiDyYhFKRPZQpP7JSb3MrailVugx+pHlpubG0UHAwMZkhT/QqQoj8kkJDiCJ2NSUt30VGXqzs61C+iRv3ju/AaMhCYaHM1/OyDEai9Ic59fLmJ3p/IYR4XBf7+5DVuC75nQ1+K3IxFuUrYduh9xO/d6bBSNKdtCd+HSFE/kihIUQRS898vMnc/2RZuTpkZWLMSENhk8/lGhUKjJYyYlIIYT5GpUW+i4yMG4nc2b8Re18NWSk3/n6NrAyMhiwyb11BYVMBZXnbfL9/WkbBnIOFEP9NCg0hipi1Zf66D/8l89ZlFJbWKKwfYT15oxFFpqy4IoQwH0WWAYzGfBUbWSnXwWjgpv4Xbup/eejviT+PxbZDH6qq8r8SlY1VwZyDhRD/TQoNIYpYDVubR5qjkXUv+aFxyelXTnPvxC7KN3RFoch/h0JpoaCbqiXj3+j+CBkLIUTB+f5gEmHnU/I1R8PKoR4O/d9/6PityMUY0lOpqhqHZZX8bVwK2XM0HCrZPEq6QognIIWGEEWslaMdyx5h06iktbOwsLLGxtEFiwp2ZFw7z524DSisbLDvPuqR3jvLCF6u9WnVyfkRsxZCiILhaV2RDQkH8xWrrGBHhaadHzp+e/cfALn+7d9kGoy0lqVthSgyUmgIUcQe9UeuQlN37h6O4PautRjS7/35w9sFO48hWNnXeeT3v7PvBPdb1aRcBbmrJ4QoOvfvpbF15Q42Lo+Bdm3MlocUGkIUHYXRaHyy5W+EEI8kI8tAh4/1j7Vp35OySE2j4ffLqWRbHt/nuhE4zo+GbeoVeR5CiLLjVNxZdFo94UujuJt8D6OFgtPjn8VQvuhvdtiVt2LP+yqslLIohhBFQQoNIczgs41H+XnrKZ5wldtHYzBgH3OQ6lH7chxu7taEQI0Kr8FdKF/xESaWCyFEHlLvpBKxYgc6rZ6ju04+9Pdrnu256dYKLIrugl+pgBe8GvF2z+ZF9p5ClHVSaAhhBhdu3qPbZ1so0i+f0UjLZTrSLyTl+ucKtuXxGepB4Dg/GrdrUJSZCSFKiRN7T6PT6tm8bBv3UlJzjalUpSIdh3dnTgWHIs1NoYCot71xss/ncuBCiCcmhYYQZvLemgOsjD1fJF0NCwUM6lCXjwKaEbk6Bp1Wz6FtR/OMb9qhEeogX7yHeFDBtnzhJyiEKLHupaSy5ddthGj1nIg9nWdcK4/mqDUqPAe6Y1PexiznwE/7m29uiBBlkRQaQphJyv0MfL/ayrU7aYX6Q2uhgOqVbAh/0wvbclam4+eOnEenDSds8VZSbtzJ9bnlKtrgM8QD9Tg/mro2RJHPTbaEEKWb0Wjk+J5T2d2LX7dx/27uu23bVq1EjxFeBAT5Uq9F3Rx/M/c5UAhR+KTQEMKMIo8nMWL+rkJ/n0WjO+HZNPdhCun309n2205CtHoObD2S52s0eqo+gRoVPkM9qGhXsbBSFUIUY3eT77J5WXb34tT+s3nGtfFqQaBGhUd/N6zLWecZVxzOgUKIwiOFhhBmtij6LFPWHS6013+hZTXeG+aer9jzxxKzuxyLIki+lpJrTLkKNngN6oJ6nAoXtybS5RCilDMajcTvPIFujp6tK3dw/17u3Qu76rb0GNmdgCBf6jZzzPfrF/Y5cHqflgzvXL/QXl8IkTcpNIQoBv76obVQUDBDCAwGsLDAYVM0zgkX+X7nTGo3rJnvp6enZbBj7S5CtHr2bz6UZ1yD1s6oNSpUwzypVEW6HEKUJik37xC+JIoQbRhnD53PM66db2vUQb506dcJa5vHG5pU0OfAv15HigwhzEsKDSGKicjjSUxYHffE45UtFFAuM5MqqzdT8exFAOq1cOLb7TMea8hT4slLhAaHs3FBBLeuJucaY13OKrvLoVHRsksz6XIIUUIZjUYO7ziGTpvdvUi/n/t+P1Vq2NFzVHb3wrFx7QJ574I8B1avZMMXA9vKcCkhzEwKDSGKkdv3M/gkJJ4VseexALIe4dupVIABGOxal3dUjZkaMIP4mBOmv3f0f4rp695Daal8rNwy0jOIWR9LiFZP7Ka4POPqtXBCHaRCNcKTylVtH+u9hBBF6/b1FPSLIwnRhpEQn5hnnGuPtgRqVLj3dsXKuuAnVhfUOfD9QBeZ+C1EMSCFhhDF0IWb9/h1VwJLdiaYdhBXAllGY/Zi8EYjlkoLMv+87WdX3ophbs4M6eRsWiP+5pVbjHebyNWEa6bX7fdKAC9/O+aJ87t0+gqhc8PZOH8LNy7fyjXGysYKz4HuqDUqWndzkS6HEMWM0WjkQOQRQoPDiVwdQ0Za7t2LqrWq4D/GB/+xPtRukP8hmE8i13OgArIMf58DlRYKUyGS2zlQCGF+UmgIUYxlZBk4djmFg4nJbIg4yp6dpzBaWqDINNCjXwc6NatJa0c7mtWyxUr58A67pw+c43WPD0i9c9907NUfNfR+oUeB5JeZkcnOkL2EaPXs2bCfvE4ndZvVISBIRY+RXthVr1wg7y2EeDzJ126zaeFWQoP1nD92MdcYhUJBB/+nCNSocAtsj6WVZRFnme3Bc+DW2LNE6Q+bzoHdVC3xcq3/r+dAIYR5SaEhRAmhXxLJrBGzTY+XnvuJGnWr/+fzotfv4cN+n5mKAAulBTM3fEB739YFmt+Vc0mmLse1xBu5xlhZW9K1vxvqIF/adm+JhYVcGAhRFAwGA3ERh9Fp9Wz/fRcZ6Zm5xlV3rJrdvRjjQ816xWt+w6Ft8bzhOcX0+OvIabTycDFjRkKI/2KeWxRCiCLTuXcHNLOGMeedxQAYsgxMf+ZLvov++JGWoPwvNes5MGraswyf8gy7Qveh0+rZpduL4YFZnRnpmUQs307E8u3UaVwLdZCKHqO6Y1/DrsDyEEL87eaVW2xcEEHo3HAunryca4yFhYJO6vaoNSo6BbR77HlcQgjxT1JoCFEGDHyrNwnxF9gwfwsAd27dZXKfWXwX/XGBT9hWWirp3LsDnXt3IOnCdTbM20zo3HCSzl/PEXfx5GWC31vC/A9+pUu/jgRqVLTzbS1dDiGekMFgYF/4QUK0enas3U1WZlaucQ51qxEw1hf/MT44OFUr4iyFEGWBFBpClAEKhYJXf9KQeOoyByPjAUg8cYnpz3zJzA0fFNr4awenagyf8gxD3+/Pno1x6LR6Yv4XiyHLYIrJyswianUMUatjqNWghqnLUa22faHkJERpdf3STTbO30Lo3HAun7maa4yF0oLOvV0JCFLRoWdblErpXgghCo8UGkKUEVbWVny4egKvuE/i0ukrAOzfcpjvx8/ltZ/HFeqqUEqlEjd1e9zU7bl28Ub2xVBwOFfOJeWIu3zmKvPeX8aCKcvp3KcDgRoV7f3ayMWQEHnIysoidtMBdMF6otftyVHEP6hWfYfsBRlGdad6napFnKUQoqySQkOIMsSuemWmr3+P17q8z93kewCEaPU4uzjR//XAIsmhep2qPPf+AIZMfJq9+oPotGHs+GNPjuEdhiwD23/fxfbfd1GznsOfk1O9qe4owzuEALiWeJ0N87K7Fw8uYf0gpaWSLn07oNb40V4lwxKFEEVPCg0hyph6Lk58sOJN3g/8xHT385cJC3FsWhs3dfsiy8PCwoIOPdrSoUdbbly+yaYFEeiCw03dlr9cOZfEwg9XsPijlbj1ckUdpKJjwFPS5RBlTlZmFrs37CdEG8aukJwLLTyoTqOaBASp6DmqO/Y1qxRtkkII8QApNIQogzr0aMtL34zm+1fmAmAwGPlkyDd8s30GDVo5F3k+VWvZ8+x7TzPonb7s33IYnTaM7b/vIjPjgS6HwUj0uj1Er9uDg1M1U5ejhnPxWoJTiIJ2NSGJ0Lmb2Th/C0kXrucaY2mlpOvTnVBr/HjKW5aOFkIUD1JoCFFG9X3Zn3NHLrD+p40A3EtJZUqfT/kuZqbZlpu1sLCgvW9r2vu25ubVZPSLthKi1ZN44lKOuKQL11k8bRVLZ6z+c1MxP9wC28uynKLUyMrM+nMzzDB2h+a9GaZjk9oEalT4jfSiioMsEy2EKF6k0BCiDHv529EknrzE3rADAFw+m8RHAz7nM/2HWNtYmTU3+xp2PDOhDwPf6s2BrUcI0Yaxbc3OHBuNGQxGdun2sUu3j2p17PEf7YP/WB9q1a9hxsyFeHyXz14lNDicDfO3cOPSzVxjrKwt6TbQHXWQijZeLQp1IQchhHgSUmgIUYYpLZVMXvEmr3aexPljFwE4vP0Y3zz/C2/Pf7lYXMAoFAradm9J2+4tSf72NvrFkYRo9Zw/mpgj7vrFmyz9eA3LPvkN1x5tUGv86NzbtdCW7hWioGRmZBK9bg+6YD2xmw7k2b1wdnFEHaTCb4QXlasV7P43QghRGOQXWIgyrlKVikxf/x6vuE8i5cYdAMIWbcW5uSPPvve0mbPLya56ZQa80Yv+rwdyePtRQrR6tq6MJiMtwxRjNBrZszGOPRvjsK9pR89R3gQE+VKnUS0zZi7Ewy6eukxocDgbF2zh5pXkXGOsy1nh+UxnAjUqWnZtXiyKfyGEyC8pNIQQODauzYerJ/Buj+mmZWbnTlqGU7M6eDztZubsHqZQKGjl4UIrDxde/HoU4Uui0Gn1nD18PkfczSvJLJ+1luWz1tJe1Rp1kIou/TpiZW3eYWGi7MpIz2DH2t2EaPXsCz+YZ1z9VnUJ1PjhO6wbtvaVijBDIYQoOFJoCCEAaNu9Ja/9pOErzc+mY7OGz6ZWVA0at2tgxsz+XeWqtjz9qpp+rwQQH3M8u8uxYgdpqek54vbqD7JXf5AqDpXpMbI7AUG+ODWtY6asRVlz4fhFdFo9YYu2civpdq4xNuWt8RrchUCNChf3ptK9EEKUeFJoCCFMAsb6khCfyOqv1gNw/14ak/t8yve7PqVabXszZ/fvFAoFLTo3o0XnZrz41SjCl2Z3OU4fOJcj7lbSbVZ+sY6VX6yjbfeWqDUqPPq7mX3yuyh90u+ns+33Xei0euIiDucZ17BNPQLH+eEz1INKVSoWYYZCCFG4pNAQQuQQNOs5Lhy/SMz/YgG4lniDD/vN4suIj7Apb2Pm7PKnUpWK9H3Znz4v9eTY7pOEzNETsXw79++l5YiLizhMXMRhKlezxW+EF2qNCufmjmbKWpQW5+IvEKrVE7Y4ktvXU3KNKVfRBu9nPVBrfGnWsbF0L4QQpZIUGkKIHJRKJROXvsbrHh9w5mACAMd2n+Lz0T8wadnrJWojMIVCQfNOTWjeqQkvfDWSLb9uR6cN48TeMznibl9PYc3X/2PN1/+jdTcX1BoV3Qa4lZjCSphfWmoaUWt2otPqORgVn2dcE9eGqINUeA/pSsXKFYowQyGEKHpSaAghHlLBtjzT173HeLeJ3LqavRrO1pXRODd3YsTUQWbO7vFUrFyBXs/70et5P47HnkKnDWfzsihS79zPEXcwKp6DUfH8+No8fId5EjjOj/ot65opa1HcnTmUgE6rR784kju37uYaU75SOXyGdkOt8aWpa6MizlAIIcxHCg0hRK5q1nNg6m9v87bPVNMmeYunraJuc0e8n+1q3uSeUFPXRjR1bcTzXwxny/Id6LRhHNt9KkdMys27rJ0dytrZobTo0oxAjQrPZzpTroJ0Ocq6+/fS2LpyB7rgcI7sOJZnXPNOjVFrVHQf3IXylcoXYYZCCFE8SKEhhMhTyy7NeGvuS3w6/DvTsc9H/0CtBjVwcWtixswKRvlK5VEH+aIO8uXk/jPotOGEL43k3u3UHHFHdhzjyI5j/Pj6fHyf64Zao6JR2/rmSVqYzam4s+i0esKXRnE3+V6uMRUql8f3OU/UGl8aP1V8V2sTQoiiIIWGEOJf+T7XjYT4Cyz75DcAMtIy+LDfLL7fOZMazg5mzq7gNH6qAa/+EITms2FsXRlNaLCeI9HHc8TcTb7Huh83su7HjXK3uoxIvZNKxIod6LR6ju46mWdci85NUf/Z9SpfsVwRZiiEEMWXFBpCiP80ctpgzh9LJGrNTiB7I7zJfWfxTdT0UneRXb5iOfxHe+M/2pszB8+h04ajX/Lw+Puju05ydNdJfn5zIT5DPVBrVDRp39BMWYuCdmLvaULm6Nny6zbupaTmGlOpSkVUw7K7Fw1a1yviDIUQoviTQkMI8Z8sLCx4e8F4Lp+5alqx6XTcOT4dPpsP10woUStRPYoGrevx8ndjCJr1HJGrY9Bp9RzadjRHzL2UVP73Sxj/+yWMJq4NCdSo8B7iQQXb0lWAlQX3UlLZ8us2QrR6TsSezjOulUfz7O7FQHdZmUwIIf6FFBpCiHwpX7Ec0/54l/FuE7l+8SYAO/7YzdyJy9DMGmbm7AqXTXkb/IZ74Tfci3NHzqPThhO2eCspN+7kiDsRe5pvYufw81sL8RmS3eVo2qGR7JFQjBmNRo7vOZXdvVi+jft303KNs61aiR4jvAgI8qVeC1mFTAgh8kMKDSFEvlV3rMa0P97lTc8ppKWmA7Dy8z9wdnGk5yhvM2dXNOq1qMuLX49i7MyhbPttJyFaPQe2HskRc/9uGrrgcHTB4TR6qj6BGhU+Qz2oaCe7PhcXd5PvEr50G7pgPaf2n80zzrR7/NOdsC5nXXQJCiFEKSCFhhDikTR1bcQ7C8czfdBXpmPfPP8LdRrVonU3FzNmVrSsy1njM7QbPkO7cf5YIqHB4WxaGEHytZw7QZ/af5bvXg5mztuL8RrUBfU4FS5uTaTLYQZGo5H4mOPotOFsXbnjoZ3i/2JX3ZYeI7sTEORL3WayU7wQQjwuKTSEEI/Mc2BnRk17lgVTlgOQmZHF1P6f8/3OmdRuWNPM2RW9us0cGff5CEbNGMKOtbvQBYezL/xgjpj799LYuGALGxdsoX6rugRq/PAd1g1b+0pmyrrsSLl5h/AlUYRowzh76Hyece18WxOoUdG5b0esbayKMEMhhCidpNAQQjyWoe/35/yxRMKXRgFw+3oKH/SeyXc7Pi6zQ4SsbazoPrgr3Qd3JfHkJUKDw9m4IMK0u/pfzh46zw+vzUP77p9dDo2Kll2aSZejABmNRg5vP0qIVk/kqmjS72fkGlelhh09R2V3Lxwb1y7iLIUQonSTQkMI8VgUCgVval/g4qnLxMecACAhPpEZz37NjPUTUVoqzZyheTk2rk3Qp8MYOW0wMetjCdHqid0UlyMm/X4GYYu2ErZoK84ujgRq/FAN96RyNVszZV3y3b6egn5xJCHaMBLiE/OMc+3RlkCNCvferlhZS/dCCCEKgxQaQojHZl3Omo9+f4fxbhO5mnANgD0b4/j5rYW8/O0YM2dXPFhZW9FtgDvdBrhz6fQVQueGs3H+Fm5cvpUjLiE+kZ/eXEDwxKV4DnQnIMiXNp4tpMuRD0ajkQORR9Bp9USt2UlGWu7di6q17bP3SBnrQ+0GZW+InxBCFDUpNIQQT8S+ZhWmr3uP1z0+IPXOfQDWzg7F2cWJ3i/0MHN2xUvthjUZ8/FQRkwdxM6QvYRo9ezZsB+j0WiKyUjLIHxpFOFLo6jbrA4BQSp6jPTCrnplM2ZePN1KSiZsUSQ6bRgXjl/KNUahUNAx4CnUQSrcAttjaSU/e0IIUVTkjCuEeGIN29Rj4tLX+LDfZ6aL5u9fmYtj41q0V7Uxc3bFj6WVJV37daJrv05cOZfEhnmb2TBvM9cSb+SIO3/sInPeXsT895fR9elOqDUq2nZvWWo3SMwPg8FAXMRhdFo9237bSWZGVq5x1R2r4j/GB/8xPtSs51DEWQohhAApNIQQBaRz7w5oPhvOnLcXAWDIMjB90Fd8F/2xLBH6L2rWc2DkR4MZNnkgu0L3odPq2aXbi8HwQJcjPZOIFTuIWLGDOo1rETDWl56jumNfs4r5Ei9iN6/cYuOCCEKD9Vw8dSXXGAsLBZ0C2xOo8aOj/1Nlfp6QEEKYmxQaQogCM/DNXiQcOc+G+VsAuHPrLpP7zOK76I+pXFUmOP8bpaWSzr070Ll3B5IuXGfDvM2Ezg0n6fz1HHEXT15m7sSlLJi8nC79OhKoUdHOt3Wp7HIYDAb26g+i04ax4489ZGXm3r2o4Vzd1L1wcKpWxFkKIYTIixQaQogCo1AoePUnDRdPXzHtlp144hLTn/mSmRs+kPHx+eTgVI3hU55h6Pv92bMxjtBgPdHrYzFkGUwxWZlZRK2OIWp1DLUa1Mjucoz2plptezNmXjCuX7rJxvlbCJ0bzuUzV3ONsVBa0Lm3K2qNH6492qBUSvdCCCGKG/nVF0IUKCtrKz5cPYFX3Ceahrjs33KY2S8H8/ovz8sqSo9AqVTipm6Pm7o91y7eyL74Dg7nyrmkHHGXz1xl/ge/svDDFXTu0wF1kKrEXXxnZWURu+kAOm3YQ0XVg2rVd8ieID+qO9XrVC3iLIUQQjwKKTSEEAWucjVbpq17j9e6vM/d5HsA6ILDqdeiLv1fDzRzdiVT9TpVee79AQyZ+HSew4kMWQa2/76L7b/vooZzdQLG+uI/xpvqjsV3ONG1xOtsmJfdvfhrieR/Uloq6dK3A2qNH+1VpXOYmBBClEZSaAghCkU9Fyc+WPEm7wd+Yro7/cuEhTg2rY2bur2Zsyu5LCws6NCjLR16tP3XCdJXE66x8MMVLP5o5d8TpAOeKhZdjqzMLHZv2E+INoxdITknvj+oTqOaBASpytzEdyGEKC2k0BBCFJoOPdry0jej+f6VuQAYDEY+GfIN32yfQYNWzmbOruSzr1mFZ9/tx6C3+7B/y2F02jC2/74rx5KvBoORmPWxxKyPxcGp2p+Tpr2p4Vz0S75eTUgidG7uS/n+xdJKiUd/N1nKVwghSgEpNIQQharvy/4kxF9g3Y8bAbiXksqUPp/yXcxM7GvYmTm70sHCwoL2vq1p79s6exO7hVsJ0epJPJFzE7ukC9dZPG0VS6avpmPAUwRq/HALbF+oy8BmZmSyM2QvumA9u0Nzbk74IKemtVEHqfAb6UUVB/lcCCFEaSCFhhCi0L30zWgunLjE3rADAFw+m8RHAz7nM/2HWNtYmTm70qWKgx3PTOjDwLd6c2DrEXTBeqJWx5CRnmmKMRqN7NLtY5duH1Vr2+M/2puAIF9q1a9RYHlcOnOFDXM3s2H+Fm5cuplrjJW1Jd0GuqPWqGjj2UIWChBCiFJGYczr9pIQoljRL4lk1ojZpsdLz/1EjbrVzZjRo7lz6y6vdnmf80cTTcdUwz15Z8F4ucAsZMnXbqNfHEmIVp/jv/+DFAoFrj3aoA5S0blPh8daijgzI5PodXsI0erZG3Ygz+6Fs4tjdvdihBeVq8n+KiJ/Dm2L5w3PKabHX0dOo5WHixkzEkL8F+loCCGKRKUqFZm+7l1ecZ9Eyo07AOgXR1LPxYln33vazNmVbnbVKzPgjV70fz2Qw9uPEqLVE7kqmvT7GaYYo9HIno1x7NkYh31NO3qOyu5y1GlU6z9f/+Kpy4QGh7NxwRZuXknONca6nBWez3QmUKOiZdfmUlwKIUQZIIWGEKLIODauzYerJ/Buj+mmZVnnTlqGU7M6eDztZubsSj+FQkErDxdaebjw0jejCV8SRYg2jLOHzueIu3klmeWz1rJ81lraq1qjDlLRpV9HrKz/HuaWkZ7BjrW7CdHq2Rd+MM/3rN+qLoEaP3yHdcPWvlKh/duEEEIUP1JoCCGKVNvuLXntJw1faX42HZs1fDa1omrQuF0DM2ZWttjaV6LfKwH0He9PfMxxQrR6tq7YQVpqeo64vfqD7NUfpIpDZXqM7E4739bs1R8gbNFWbiXdzvW1bcpb031wV9TjVLi4NZHuhRBClFFSaAghilzAWF8S4hNZ/dV6AO7fS2Nyn0+ZvXOm7PZcxBQKBS06N6NF52a8+NUoNi/bRsicME4fOJcj7lbSbVZ+sY6VX6zL87Uatq2X3b14zoOKdhULO3UhhBDFnCxQLoQwi6BZz+Hey9X0+FriDT7s9xn376WZMauyrVKVivR5qSc/7/uc2TGf0G2AO0qrf1/6VmmppNsAd77fOZOf935On5d6SpEhhBACkEJDCGEmSqWSiUtfo0HrvzfuO77nFF+M+QGDwWDGzMq2tNQ09Esi+WXCIqLWxJD1wOZ/ucnKzCJqTQy/TFhE+NIo0lKlUBRCCJFNCg0hhNlUsC3P9HXvUeWBjfu2roxm8UerzJhV2XTmUAI/vDaPZx2f57OR33No29GHYmzKW+Ps4ohNBeuH/nYwKp5ZI2bzrOPz/PDaPM4cSiiKtIUQQhRjMkdDCGFWNes58NHvbzPBe6ppU7kl01dTt7kjPkM8zJxd6Xb/XhpbV+5Ap9VzJPp4nnHNOzVGrVHRfXAXylcqT+qdVLYs30FosJ6ju07miL1z6y5rZ4eydnYoLbo0Qx3ki9egLpSrYFPY/xwhhBDFjBQaQgiza9G5GW/NfYlPh39nOvbFmB+p3bAmLm5NzJhZ6XQq7iw6rZ7wpVHcTb6Xa0yFyuVRDfNErVHRqG39HH8rX6k86iBf1EG+nNx/Bp02nPClkdy7nZoj7siOYxzZcYyf3liA73Pdcn0tIYQQpZcUGkKIYsH3uW4kxF9g2Se/AZCRlsGH/Wbx/c6Z1HB2MHN2Jd+/dSEe1KJzU9QaFZ7PdKZ8xXL/+bqNn2rAqz8EoflsGJGronPtjtxNvse6Hzey7seND3VHhBBClF5SaAghio2R0wZz/vhFolbHANkbx03uO4tvoqbLReljOrH3NCFz9GxeFkXqnfu5xlSqUhHV8OzuRYNWzrnG/JfyFcvRc5Q3PUd5c+bgOXTacPRLIrlz626OuKO7TnJ010l+fnMh3kM8CBynokn7ho/1nkIIIYo3KTSEEMWGhYUF7ywYz+UzVzkRexqA03HnmDnsO6b+9jYWFrJ+RX7cvX2PLb9uR6cN48TeM3nGte7mQkCQL54D3bEpX3BzKBq0rsfL340haNZzRK6OQafVPzS5/F5KKiFzwgiZE0YT14YEalR4D/Gggq0UlEIIUVpIoSGEKFbKVbBh2tp3GO82kesXbwIQvW4PcycuQzNrmJmzK76MRiPH95wiZI6eLcu3cf9u7svM2latRI8RXgRoVNRzcSrUnGzK2+A33Au/4V6cO3Ke0OBwNi3aSsqNOzniTsSe5pvYOfz81kK8n83ucjTt0Eh2FBdCiBJOCg0hRLFT3bEa0/54lzc9p5CWmg7Ays//wNnFkZ6jvM2cXfFyN/ku4Uu3EaIN43TcuTzj2nZviVqjwuPpTliXe3h52sJWr0VdXvhqFGM+Gcq233YSotVzYOuRHDH376YROjec0LnhNHqqPuoglewyLoQQJZgUGkKIYqmpayPeWTie6YO+Mh375vlfqNOoFq27uZgxM/MzGo3ExxxHpw0nYsV2UzH2T3bVbekxsjsBQb7UbeZYxFnmzrqcNT5Du+EztBvnjyVmdzkWRpB8LSVH3Kn9Z5k9PhjtO4vxGtQF9TgVLm5NpMshhBAliBQaQohiy3NgZ0ZNe5YFU5YDkJmRxdT+n/P9zpnUbljTzNkVvZSbdwhfEkWINoyzh87nGdfOtzWBGhWd+3bE2saqCDN8NHWbOTLu8xGMmjGE6D92E6LVsy/8YI6Y+/fS2LhgCxsXbKF+q7oEavzwHdYNW/tKZspaCCFEfkmhIYQo1oa+35/zxxIJXxoFwO3rKXzQeybf7fi4TAypMRqNHN5+lBCtnshV0aTfz8g1rkoNO/xHexMQ5EudRrWKOMsnY21jhdegLngN6kLiyUuEBoezcUEEt64m54g7e+g8P7w2D+27i/F8pjOBGhUtuzaXLocQQhRTUmgIIYo1hULBm9oXuHT6iml/hoT4RGY8+zUz1k9Eaak0c4aF4/b1FMIWbUUXrCchPjHXGIVCgWuPNqiDVLj3dsXKuvh2L/LLsXFtgj4dxshpg4lZH0uIVk/sprgcMen3M9AvjkS/OBJnF0cCNX6ohntSuZqtmbIWQgiRGyk0hBDFnnU5a6b+9jbj3SZyNeEaAHs2xvHzWwt5+dsxZs6u4BiNRg5EHkGn1RO1OoaM9Mxc46rWtsd/tDf+Y32o3aB0DiGzsrai2wB3ug1w59KZK2yYu5kN8zZz4/KtHHEJ8Yn89OYCgicupdsAN9QaFW08W0iXQwghigEpNIQQJYJ9zSpMX/cer3t8YNp4bu3sUJxdnOj9Qg8zZ/dkbiUlE7Ywu3tx4filXGMUCgUdA55CHaTCLbA9llZl5/Rdu0FNRs8YwvAPn2FnyF5CtHr2bNiP0Wg0xWSkZbB52TY2L9uGU9PaqDV++I3wpIqDnRkzF0KIsq3s/FIJIUq8hm3qMXHpa3zY7zPTReb3r8zFsXEt2qvamDm7R2MwGNi/5TChwXq2/baTzIysXOOqO1bFf4wP/mN8qFnPoYizLF4srSzp2q8TXft14sq5JDbMy+5yXEu8kSPuwvFLzHl7EfMmLcWjf3aXo233lrLhoxBCFDEpNIQQJUrn3h3QfDacOW8vAsCQZWD6oK/4LvrjYrOE67+5eeUWGxdEEBqs5+KpK7nGWFgo6BTYnkCNHx39nyq181CeRM16Doz8aDDDJg9k94b9hGjD2BWyF4Ph7y5HZkYWESt2ELFiB3Ua1SQgSEXPUd2xr1nFfIkLIUQZIoWGEKLEGfhmLxLiL7Bh3mYA7ty6y+Q+s/gu+mMqVy1+E4INBgN79QfRacPY8ccesjJz717UcK5OwFhfeo72xsGpWhFnWTIpLZW493LFvZcrSReum7ocf83l+cvFU1eYO3EpCyYvp0vfDqg1frRXtZYuhxBCFCIpNIQQJY5CoeDVH4O4eOqyaXfpxBOXmP7Ml8zc8EGxmb9w7eINNs7fwoa54Vw+m5RrjIXSgs69XVFr/HDt0QalUroXj8vBqRrDpzzD0Pf7E7vpADptGNHrYzFkGUwxWZlZRK3ZSdSandRqUMNU2FWrbW/GzIUQonQqHr/GQgjxiKysrfhw9QRecZ9oGoK0f8thZr8czOu/PG+2VYeysrLyvMh9UK36DtlDeeQit8AplUo6BbSjU0A7rl28waY/h6r9s9i7fOYq8z/4lYUfrpBiTwghCoEUGkKIEqtyNVumr5/Iq50ncTf5HgC64HDqtahL/9cDizSXfxu28xelpZIu/TqiDlLJsJ0iUr1OVYZO6s+z7/XLc/iaIcvA9rW72b52t2n4mv8Yb6o7yvA1IYR4ElJoCCFKNOfmjnyw4k3eD/zE1D34ZcJCHJvWxk3dvlDfOyszi12h+9AF6x+aiPwgmYhsfhYWFnTo0ZYOPdr+64T8qwnXWPjhChZ/tFIm5AshxBOSQkMIUeJ16NGWl74ZzfevzAXAYDDyyZBv+Gb7DBq0ci7w97uakETo3NyXVv2LpZVSllYtpuxrVuHZd/sx6O0+eS4xbDAYiVkfS8z6WBycqtFztDcBY32o4Vy2lxgWQohHIYWGEKJU6PuyPwnxF1j340YA7qWkMqXPp3wXMxP7Gk++aVtmRmaem8U9SDaLKzksLCxo79ua9r6t/3XTxKQL11kyfTVLZ6wps5smCiHE45CzpBCi1Hjpm9EknrxM7KY4AC6fTeKjAZ/zmf5DrG2sHus1L525QmhwOBsXRHDj0s1cY6xsrOg2ILt70cazhdkmoovHV8XBjmcm9GHgW705EHkEnVZP1OoYMtIzTTFGo5Fdun3s0u2jam17/Ed74z/Wh9oNapoxcyGEKL4UxrxuywkhihX9kkhmjZhterz03E/UqFvdjBkVT3du3eXVLu9z/mii6ZhquCfvLBif7wIgMyOT6HV7CNHq2Rt2IM/uhbOLI4EaP1TDPalcrfjt3yGezO3rKYQtyu5yJMQn5hqjUCho79eGQI2Kzn06SJejEB3aFs8bnlNMj7+OnEYrDxczZiSE+C9yRhRClCqVqlRk+rp3ecV9Eik37gCgXxyJc3Mnhkx8+l+fm3jykql7cetqcq4x1uWs8BrUBXWQLy27NpfuRSlWuZotA97oRf/XAzm8/SghWj2Rq6JJv59hijEajcRuiiN2Uxz2Ne3oOcqbgCBf6jSqZcbMhRCieJBCQwhR6jg2rs2Haybwrt900zKm895fhlOzOnTr75YjNj0tg+g/dhOi1bMv/GCer1m/VV0CNX74DuuGrX2lQs1fFC8KhYJWHi608nDhpW9GE74kihBtGGcPnc8Rd/NKMstnrWX5rLW0821NoEZFl34dsbJ+vGF7QghR0kmhIYQoldp6teS1nzR8pfnZdOyzEbOp3aAGjds14MLxi+i0ejYtjCD5Wkqur2FT3prug7uiHqfCxa2JdC8EtvaV6PdKAH3H+xMfc5wQrZ6tK3aQlpqeI25f+EH2hR+kikNl/EZ4odaocGpax0xZCyGEeUihIYQotQLG+pIQn8jqr9YDcP9eGu+oPsKpWR3iY07k+byGbetldy+e86CiXcWiSleUIAqFghadm9GiczNe/GoUm5dtI0Qbxum4cznibiXdZtWX61n15Xradm+JOsgXj/5uWJezNlPmQghRdKTQEEKUakGznuN47CkObD0CQMrNu7kWGeUq2uD9rAeB41Q07dBIuhci3ypVqUifl3rS+8UeHN9zipA5erYs38b9u2k54uIiDhMXcRjbqpXoMcKLAI2Kei5OZspaCCEKnxQaQohSKS01jcjVMei0eg5tO5pnXBPXhgRqVHgP8aCCbfkizFCUNgqFgmYdG9OsY2Oe/3IEW37dji5Yz4nY0zniUm7cYc03Iaz5JoRWHs1Ra1R4DnTHpryNmTIXQojCIYWGEKJUOXMoAd0cPfolkdy5dfdfY9UaX9745YUiykyUJRUrV6DX8370et6P47Gn0GnD2bwsitQ793PEHdp2lEPbjvLja/NRDfdErVEVym72QghhDlJoCCFKvPv30ti6cgc6rZ4j0cfzjKvn4siFE5dNK1HptOG07d4KnyEeRZWqKIOaujaiqWsjnv9iOBErsj+nR3edzBFz59Zd1s4OZe3sUFp0bopao8JrUBfKVZAuhxCi5JJCQwhRYp2KO0vIHD3hSyO5dzs115gKlcujGpZ9p7hR2/qEL43i0+Hfmf7+xZgfqd2wJi5uTYoqbVFGla9UnoCxvgSM9eXk/jPotOG5fnaPRB/nSPRxfnpjAb7PdTN9doUQoqSRQkMIUaKk3klly/IdhAY/fFf4QS26NEMd5IvnM50pX7Gc6bjvc91IiL/Ask9+AyAjLYMP+83i+50zqeHsUOj5CwHQ+KkGvPpDEJrPhhG5KjrXbtzd5Hus+3Ej637cSPNOjVFrVHQf3IXylWQukRCiZJBCQwhRIvzbOPe/VKpSMV/j3EdOG8z54xeJWh0DZG+0NrnvLL6Jmi4XcaJIla9Yjp6jvOk5yjt7fpFWj37xw/OLju46ydFdJ/n5zYV4D8leHa1J+4ZmyloIIfJHCg0hRLF19/a97JV7tGGc2Hsmz7jW3VxQa1R0G+CWr5V7LCwseGfBeC6fuWpaEeh03DlmDvuOD9dMQKlUFti/QYj8atDKmZe/HUPQp88RuTqG0OBwDkbF54i5l5JKyJwwQuaE0aR9A9QaP7yHdKVi5QpmyloIIfImhYYQolgxGo0c232SkDl6IlZsf2gvgr886V4E5SrYMG3tO4x3m8j1izcBiF63h3mTfkUza9gT/RuEeBI25W3wG+6F33AvzsVfIFSrZ9OiraTcuJMj7sTeM3z74hx+mbBQ9oARQhRLUmgIIYqFu8l3CV+a++7KD2rbvSVqjQqPpzs98e7K1R2rMe2Pd3nTcwppqekArPz8D5xdHOk5yvuJXluIglDPxYkXvhrFmE+Gsu33Xei0euIiDueIuX83jdC54YTODZdd7YUQxYoUGkIIszEajcTHHCdEq2frih2mi/1/sqtuS89R3gQE+eLUtE6B5tDUtRHvLBzP9EFfmY598/wv1G5YkzaeLQr0vYR4XNblrPEZ4oHPEA/OH0skNDicTQsjSL6WkiPudNw5Zo8PZs7bi+g+uCtqjS8u7k2lyyGEMAspNIQQRS7l5h30iyPRBes5e+h8nnHtfFsTqFHRuW9HrG2sCi0fz4GdGTX9WRZMXg5AZkYWHw34gu93zqR2w5qF9r5CPI66zRwZ9/kIRs0YQvQfuwnR6tkXfjBHTFpqOhsXbGHjgi3Ub1U3u8sxrBu29pXMlLUQoiySQkMIUSSMRiOHth1FF6wnclU06fczco2zr2ln6l7UaVSryPIbOqk/548mEr40CoDb11P4oPdMvtvxsQxBEcWStY0VXoO64DWoC4knL7Fh7mY2zN/CravJOeLOHjrPD6/NQ/vuYjyf6UygRkXLrs2lyyGEKHRSaAghCtXt6ymELdpKiFbP+aOJucYoFApce7RBrfGjc29XLK2K/tSkUCh4U/sCl05fMe1nkBCfyIxnv2bG+okoLWUlKlF8OTauzdiZzzHio0HErI9FF6wndtMBjEajKSb9fgb6xZHoF0fi7OKIOkiF3wgvKlezNWPmQojSTAoNIUSBMxqNHNh6hBBtGNvW7CQjPTPXuKq17fEf7Y3/WB9qNzD/ECXrctZM/e1txrtN5GrCNQD2bIzj5zcX8vJ3Y8ycnRD/zcraim4D3Ok2wJ1LZ66Yuhw3Lt3MEZcQn8jPby1k7sSldBvojlqjoo1nC+lyCCEKlBQaQogCcyspmbCFW9EF67lw/FKuMQqFgo4BTxGo8cMtsH2x6xTY16zC9HXv8brHB6aNAdd+H4qziyO9X+xp5uyEyL/aDWoyesYQhn/4DDtD9qIL1rM7dH+OLkdGeiabl21j87JtODWtnd3lGOlFFQc7M2YuhCgtpNAQQjwRg8HA/i2H0WnD2P77LjIzsnKNq+5YlYCxvviP8aaGs0MRZ/loGrapx8Slr/Fhv89MF2XfvzoPxya1aa9qY+bshHg0llaWdO3Xia79OnHlXBIb5m1mw7zNXEu8kSPuwvFLzHlnMfPeX4ZHfzcCglQ85d0SCwsLM2UuhCjppNAQQjyWm1dusXFBBKHBei6eupJrjIWFgk6B7QnU+NHR/6li1734N517d0Dz2XDmvL0IAEOWgemDvuK76I+p28zRzNkJ8Xhq1nNg5EeDGTZ5ILs37CdEG8aukL0YDH93OTIzsohYsYOIFTuo06gmAUEqeo7qjn3NKuZLXAhRIkmhIYTIN4PBQGzYAUKD9ez4Yw9Zmbl3L2o4VydgrC89R3vj4FStiLMsOAPf7EVC/AU2zNsMwJ1bd/mg96fMjvmEylVlAq0ouZSWStx7ueLey5WkC9dNXY6/5ib95eKpK8yduJQFk5fTpW8H1Bo/2qtaS5dDCJEvUmgIIf7TtYs32Dh/CxvmhnP5bFKuMRZKCzr36UCgRkV7vzYolSWne5EXhULBqz8GcfHUZQ5sPQLAxZOXmf7Ml8zc8IFZVscSoqA5OFVj+JRnGPp+f2I3HUCnDSN6fSyGLIMpJiszi6g1O4las5Na9R3w//NGQvU6Vc2YuRCiuJNfSSFErrKystizMQ6dVk/M/3JedDyoVoMapu5Ftdr2RZxl4bOytuLD1RN4xX2iaYjY/i2Hmf1yMK//8rys0iNKDaVSSaeAdnQKaMf1SzfZOH8LocH6h24uXD6bxILJy1k0dSWde7ui1vjh2qN03FwQQhQsKTSEEDn8NYwidG44Seev5xqjtFTSpV9HAjUq2vmW/mEUlavZMn39RF7tPIm7yfcA0AWH4+zixIA3epk5OyEKXrXa9gyd1J9n3+vHXv1BdMF6dqzdnWO4pCHLwPa1u9m+djc1nKvjP8YH/zE+JXq4pBCiYEmhIYQgKzOLXaH70Gn17NLlnBj6oDqNaqLW+NFjpFeZmxjq3NyRySvfZJL6E1N3Z87bi3BqWhu3QFczZydE4bCwsKBDj7Z06NH2XxeAuJpwjUVTV7Jk2io6BbZHHaSiU0C7ErUAhBCi4EmhIUQZdjUhidC5uS91+RdLKyUe/d1Qa1S07V62l7p09WvLS9+M5vtX5gJgMBj5ZOi3fLN9Bg1aOZs5OyEKl33NKjz7bj8Gvd2HuIjD6LR6tv22M8eS1gaDkZj1scSsj6W6Y1X8x/gQMNan2C9pLYQoHFJoCFHGZGZksjNkLyFaPXs25Ny860FOTWuj1vjhN8JTNu96QN+X/UmIv8C6HzcCcC8llcm9P2X2zpnY15D/TqL0s7CwoJ1Pa9r5tP7XTTqvJd5gyfTVLJ2xho4BT6EOUuEW2F4WURCiDJFvuxBlxKUzVwgNDmfjgghuXLqZa4yVjRWeA90JCPKljWcLmeich5e+GU3iycvEbooD4Mq5JKb2/5zPwz/E2sbKzNkJUXSqONjxzIQ+DHyrNwcij6DT6olas5OMtAxTjNFoZJduH7t0+6ha2x7/0d74j/WhdoOaZsxcCFEUpNAQohTLSM8get0edMHhpovi3Di7OBKo8UM13JPK1WR/iP+itFTywfI3eLXL+5w/mgjAkR3H+Hrcz7yzYLwUaKLMUSgUtPVqSVuvlrz8bQr6xZGEaMNIiE/MEXfj0k2WffIbv878nfZ+bQjUqOjcp4N0OYQopeSbLUQplHjykql7cetqcq4x1uWs8BrUBbVGRcsuzeTi+BFVqlKR6eve5RX3SaTcuAOAfnEkzs2dGDLxaTNnJ4T5VK5mS//XA3n6NTWHtx9FFxzO1pU7SL+fs8sRuymO2E1xVKlhR89R3QkI8sWxcW0zZi6EKGhSaAhRSqSnZbBj7S5CtHr2bz6UZ1z9VnUJ1PjhO6wbtvaVijDD0sexcW0+XDOB93pMN02Inff+Mpya1aFbfzczZyeEeSkUClp5uNDKw4UXvx5F+JIoQrRhnD10PkfcravJrPjsD1Z89gftfFtndzn6dpRhiEKUAlJoCFHCXTh+EZ1Wz6aFESRfS8k1xqa8Nd0Hd0U9ToWLWxPpXhSgtl4tefVHDV9pfjYd+2zEbGrVd6BJ+4ZmzEyI4sPWvhL9Xgmg73h/4neeQDdHT8SK7aSlpueI2xd+kH3hB7GrbkuPkd1Ra1Q4Na1jpqyFEE9KYcxryRkhRLGiXxLJrBGzTY9f/nY0Ub/t5MDWI3k+p2HbevQa54fPUA8q2lUsijTLrF8mLGL1V+tNj6s7VmX2zplUr1PVjFkJUXzdTb5L+NJthGjDOB13Ls+4tt1bog7yxb6mHe/4TTcd/zpyGq08XIoiVSHEY5JCQ4gS4p+FRl7KVbTB+1kPAsepaNqhkXQvikhWVhZTn/6cmP/Fmo417dCILyM+olwFGzNmJkTxZjQaOb7nFCFz9GxZvo37d9NyjatQuTz3bqeaHkuhIUTxJ4WGEMVcWmoakatiWPbJmofWqX9QE9eGBGpUeA/xoIJt+SLMUPzlXkoqb3SbzOkDf9+d9XymM+//+nqZ3uhQiPy6e/seEcu3E6LVcyL29L/GDn2/P0Mn9cemvBTyQhRXUmgIUUydOXgOnTYc/ZJI7ty6m2tMBdvy+Az1QK1RyXyAYuLKuSTGu03MsdrXsMkDGfnRYDNmJUTJc2LvaXRaPZuXbeNeSmquMZWqVEQ1zBP1OBUNWjkXcYZCiP8ihYYQxUjq3ftsXRmNThtGfMyJf43VzBpG7xd7UL6SdC+KmyPRx5jg81GOTcsmLn0NnyEeZsxKiJIp9U4qESt2sPqr9Q/ty/GgFp2botao8BrURYYrClFMSKEhRDFwcv8ZdNpwwpdG5hiD/CDrclY51qFfeu4natStXlQpikcUvjSKT4d/Z3psZWPFF1um0sK9qRmzEqLkOrQtnjc8p/xnXIXK5fF9zpPAcSoata1f+IkJIfIkhYYQZpJ6J5Uty3eg04ZxbPepPONadGlGoEZFVlYWXwX9vYSqFBrF34LJy1n68RrTY/uadny/cyY1nB3MmJUQJdM/C40hE58mLuIwR6KP5/mc5p0aExCkwvvZLtL9FcIMZB8NIYrY8dhT6LThbF4WReqd+7nGVKpSEdVwT9Sav8cd65dEFmWaogCM+GgQCccSiVodA8DNK8lM7juLb6Kmy0WPEE+oU0A7xnw8lDOHEtBp9egXPzyf7eiukxzddZKf31yAz9BuBI6T+WxCFCUpNIQoAndv32PLr9vRacM4sfdMnnGtu7mg1qjoNsBNVlIpBSwsLHhnwXgun7lqWkHndNw5Zg77jg/XTECpVJo5QyFKvgatnHn52zEEffockatjCA0O52BUfI6Y1Dv3CZkTRsicMJq0b4Ba44f3kK5UrFzBTFkLUTZIoSFEITEajRzbfZKQOXoilm/n/r3c14avXM0WvxFeBAT5Us/FqYizFIWtXAUbpq19h/FuE7l+8SYA0ev2MG/iMjSfDTdzdkKUHjblbfAb7oXfcC/OxV8gVKtn06KtpNy4kyPuxN4zfPviHH6ZsJDug7sSOE5Fs46NZc8hIQqBFBpCFLA7t+4SvjQKnVafYz+Ff3rKuyUBQSo8nu6EdTnrIsxQFLXqjtWY9se7vOk5hbTUdABWfrGOui5O+I/2NnN2QpQ+9VyceOGrUYz5ZCjbft+FTqsnLuJwjpj7d9PYMG8zG+ZtpmHbegRq/PB9zoOKdhXNlLUQpY8UGkIUAKPRSHzMcUK0erau2GG6mPwnu+q29BzlTUCQL05N6xRxlsKcmro24p2F45k+6CvTsW9f+IU6jWrSxrOFGTMTovSyLmeNzxAPfIZ4cOH4RUKDw9m4YAvJ11JyxJ2OO8fs8cHMeXsRXoO7EKhR4eLeVLocQjwhKTSEeAIpN++gXxyJTqvn7OHzeca1V7VGrfGjS98OWFlbFWGGojjxHNiZUdOfZcHk5QBkZmTx0YAvmB3zCXUa1TJzdkKUbk5N66D5bDgjpz9L9B+7CdHq2Rd+MEdMWmo6mxZEsGlBBPVb1UUdpEI13BNb+0pmylqIkk0KDSEekdFo5NC2o+iC9USuis6xt8WD7GvamboXchEp/jJ0Un/OH00kfGkUALevpzC5z6d8t+NjGbIhRBGwtrHCa1AXvAZ14eKpy4QGh7Nh/hZuXU3OEXf20Hl+fH0+we8twfOZzgRqVLTs2ly6HEI8Aik0hMin29dTCFu0lRCtnvNHc9+dVqFQ4NqjDWqNH517u2JpJV8xkZNCoeBN7QtcOn3FtP5/QnwiM579mhnrJ6K0lJWohCgqdRrVYuzM5xjx0SBi1seiC9YTu+kAD24xln4/A/3iSPSLI3F2cUQdpMJvhBeVq9maMXMhSga5ChLiXxiNRg5sPUKINoxta3aSkZ6Za1zV2vYEjPHBf6wPterXKOIsRUljXc6aqb+9zXi3iVxNuAbAno1x/PzmQl7+boyZsxOi7LGytqLbAHe6DXDn0pkrbJi7mQ3zt3Dj0s0ccQnxifz81kLmTlyKxwA3AjV+tPFqIV0OIfIghYYQubh5NZmwhRHogsNJPHEp1xiFQkEndTvUQSrcAtvLnWjxSOxrVmHG+vd4resHpo0b134firOLI71f7Gnm7IQou2o3qMnoGUMYMXUQO0P2EqINY3fo/hxdjoz0TLb8up0tv27HqWnt7C7HSC+qONiZMXMhih8pNIT4k8FgYP+Ww+i0YWz/fReZGVm5xjk4VcN/jA/+Y7yp4exQxFmK0qRB63pMWvY6U/rOMl3EfP/qPByb1Ka9qo2ZsxOibFNaKunStyNd+nbkakISG+ZtIXRuONcSb+SIu3D8EnPeWcy895fR9elOqDV+POXdEgsLCzNlLkTxIYWGKPNuXL7JpgXZ3YtLp6/kGmNhocCtlyvqIBUd/Z+S7oUoMO69XNF8Npw5by8CwJBlYPqgr/gu+mPqNnM0c3ZCCIAazg6MmDqI5z4YwO4N+wnRhrErZC8Gw99djsyMLLaujGbrymjqNKpJQJCKnqO6Y1+zivkSF8LMpNAQZZLBYCA27AChwXp2/LGHrMzcuxc1nKsTMNaXnqO9cXCqVsRZirJi4Ju9SIi/wIZ5m4HsTR8/6P0ps6M/kQmnQhQjSksl7r1cce/lStKF62ycn93l+Guu1V8unrrC3IlLWTB5OV36dkCt8aO9qrV0OUSZI4WGKFOuXbzBxvlb2DA3nMtnk3KNsVBa0LlPBwI1Ktr7tUGplO6FKFwKhYJXfwzi4qnLHNh6BICLJy8z7Zkvmbnhfdl7RYhiyMGpGsMmD2TIpKeJ3XQAnTaM6PWxGLIMppiszCyi1uwkas1OatV3wP/PG1fV61Q1Y+ZCFB0pNESpl5WVxZ6Ncei0emL+l/NH4EG1GtQwdS+q1bYv4ixFWWdlbcWHqyfwivtELp7KHsIXF3GY78fP5fVfnpdVbYQoppRKJZ0C2tEpoB3XL93M7nIE6x+6mXX5bBILJi9n0dSVuPdyRa1R0aFnW7mZJUo1KTREqXX1/DU2zttC6Lxwks5fzzVGaamkS7+OBGpUtPOVtrYwr8rVbJm+fiKvdp7E3eR7AOiCw3F2cWLAG73MnJ0Q4r9Uq23P0En9efa9fuwLP0iIVs+OtbtzDM81ZBnY8cdudvyxG4e61QgY64v/GB8ZnitKJSk0RKmSlZnFrtB96LR6dulyTtR7UJ3GtVAHqegx0ksm6olixbm5I5NXvskk9Sem7tsvExbh1LQ2boGuZs5OCJEfFhYWuPq1xdWvLTev3GLTwq3otGGmbuVfks5fZ9HUlSyZtopO6vaoNSo6BbSTBUdEqSGFhigVrpxLInRuOBvmbeb6xZu5xlhaKfEY4I46yJe23WXpQVF8ufq15eVvxzB7fDCQvXHkx0O+4dsdH9OglbOZsxNCPAr7mlUY/E5fnpnQm7iIw+i0erb9tjPHEuoGg5GY/8US879YqjtWxX+MDwFjfWQJdVHiSaEhSqzMjExi/heLLjicPRtybqb0IKemtVFr/PAb4SmbKYkSo89LPTl35DzrftwIQOqd+0zu/Smzd87EvoZ8joUoaSwsLGjn05p2Pq25lZRM2KJIdNowLhzPuSnstcQbLJm+mqUz1tDB/ykCNdmbwlpaySWbKHnkUytKnEtnrhAaHM7G+Vu4cflWrjFWNlZ4DnRHrVHRupuLTKQVJdJL34wm8eRlYjfFAdmdu6n9P+dz/RSsy1mbOTshxOOq4mDHM2/1ZuCbvTgQeQSdVk/Ump1kpGWYYoxGI7tD97E7dB9Va9vTc1R3AoJ8qd2gphkzF+LRSKEhSoSM9Ayi1+0hRKtnb9iBPOOcXRwJ1PihGu4p+w+IEk9pqeSD5W/wapf3OX80EYAjO47x9fO/8M6C8VJAC1HCKRQK2nq1pK1XS17+NgX94khCtGEkxCfmiLtx6Sa/zvyd5Z+upb1fG9RBvnTu00GWvhbFnhQaolhLPHkJnTacTQsjuHU1OdcY63JWeA3qglqjomWXZnLxJUqVSlUqMmP9e4x3m0jKjTsA6BdH4tzciSETnzZzdkKIglK5mi39Xw/k6dfUHN5+FF1wOFtX7iD9fs4uR+ymOGI3xVGlhp2py+HYuLYZMxcib1JoiGInPS2DHWt3EaLVs3/zoTzjGrR2Rq1R4ftcN2ztKxVhhkIUrTqNavHhmgm812O6aQLpvPeX4dSsDt36u5k5OyFEQVIoFLTycKGVhwsvfj2K8CVRhGjDOHvofI64W1eTWfHZH6z47A+e8mlFoEZFl36dsLaRLocoPqTQEMXG+WOJ6LThhC2KIPlaSq4x5SrY0H1wFwI0Klzcmkj3QpQZbb1a8tpP4/gy6CfTsc9GzKZWfQeatG9oxsyEEIXF1r4S/V4JoO94f+J3nkA3R0/Eiu2kpabniNu/+RD7Nx/CrrotPUZ2R61R4dS0jpmyFuJvUmgIs0q/n86233YSotVzYOuRPOMaPVWfQI0Kn6EeVLSrWIQZClF8+I/xISH+Aqu+XA/A/XtpTOk7i9k7Z1K9TlUzZyeEKCwKhYIW7k1p4d6UF78eyeZl2/jfnDBOx53LEZd8LYVVX65n1ZfraePVgkCNCo/+brJ4hDAbKTSEWZw7cj67e7F4q2nc+T+Vq2iDzxAP1OP8aOraULoXQgBjP32O88cuEvO/WCB7KcwP+33GlxEfUa6CjZmzE0IUtop2Fen9Yk96vdCD43tOETJHz5bl27h/Ny1H3IGtRziw9Qi2VSvhN9wLtcaXei3qmilrUVZJoSGKTFpqGpGrYgjRhnF4+7E845q4NiRQo8J7iAcVbMsXYYZCFH9KpZKJS1/jjW6TOX0g+27m8T2n+Hz0D7z/6+uyEaUQZYRCoaBZx8Y069iYF74ayZZftxGi1XMi9nSOuJQbd/jt2xB++zaEVh7NUQep8HzGHZvycmNCFD4pNEShO3PwHCFz9IQvjeLOrbu5xlSwLY/PUA/UGpWMNxfiP1SwLc+0P95lvNtE02pskauicW7uyMiPBps5OyFEUatgW57AcX4EjvPjxN7T6LR6Ni/bxr2U1Bxxh7Yd5dC2o/z4+nxUwzxRa3xp0LqembIWZYEUGqJQpN69z9aV0ei0YcTHnMgzrrlbE9RBvnQf3IXylaR7IUR+1aznwEe/v80En49Mm3wtmb6aus0d8RniYebshBDm0qR9Q177aRzjPh9OxIod6LR6ju46mSPmzq27rP0+lLXfh+Li3gS1xg+vQZ0pX7GcmbIWpZUUGqJAndx/Bt0cPeHLorh3OzXXmIp2Ff68k6KiYRu5kyLE42rRuRlvBb/Ip8O/Mx37YsyP1GpQgxbuTc2YmRDC3MpXKk/AWF8CxvpyKu4sOq0e/ZLIh36b42NOEB9zgp/emI/vc9ldjsZPNTBT1qK0kUJDPLHUO6lsWb4DnTaMY7tP5RnXokszAjUqPJ/pLJNWhSggvs914/zRRJZ+vAaAjLQMpj79Gd/vnEkNZwczZyeEKA4ata3PK98HoflsOJGrognR6jmyI+dcyXu3U1n/00bW/7SRZh0bodb44f2sjDYQT0YKDfHYjseeQjdHz+Zft5F6536uMbb2FVEN90KtUVG/pax2IURhGPHRIBKOJRK1OgaAm1eSmdxnFt9smy4XCUIIk3IVbOgxsjs9RnbnzKGE7C7H4siH5k8e232KY7tP8fObC/AZ2g21xpemro3MlLUoyaTQEI/k7u17bF62jdBgPSf2nskzrnU3F9QaFd0GuMnKFkIUMgsLC95ZMJ7LZ66aVpw5feAcM4d9x4drJqBUKs2coRCiuGnQypmXvx1D0KfPEbVmJzqtnoNR8TliUu/cJ2ROGCFzwmjSvkF2l2NIVypWrmCmrEVJI4WG+E9Go5Gju06i0+qJWL6d+/fSco2rXM0WvxFeBAT5Us/FqYizFKJsK1fBhmlr32G820SuX7wJQPS6PcybuAzNZ8PNnJ0QoriyKW+DapgnqmGenIu/QKhWz6ZFD+9xdWLvGb59cQ6/TFhI98FdCRynolnHxrLHlfhXUmiIPN25dZfwpVHotHrTev25ecq7JQFBKjye7iS7jwphRtUdqzHtj3d503MKaanpAKz8Yh11XZzwH+1t5uyEEMVdPRcnXvhqFGM+Gcq233eh0+qJizicI+b+3TQ2zNvMhnmbadimHmqNCt/nulGpSkUzZS2KMyk0RA5Go5Ej0ccJ0YYRuTLadLHyT1UcKtNjZHcCgnxxalqniLMUQuSlqWsj3l30CtOe+dJ07NsXfqFOo5q08WxhxsyEECWFdTlrfIZ44DPEgwvHLxIaHM7GBVtIvpaSI+70gXN8/8pctO8sxmtwFwI1Klzcm0qXQ5hIoSEAuH0jhfAl2d2Ls4fP5xnXXtUatcaPLn07YGVtVYQZCiHyq9sAd0ZNf5YFk5cDkJmRxUcDvmB2zCfUaVTLzNkJIUoSp6Z10Hw2nFEznmXHH3vQacPYqz+YIyYtNZ1NCyLYtCCC+i3rotaoUA33xNa+kpmyFsWFFBplmNFo5NC2o9ndi1Uxpk2//sm+ph09R/sQMNZHLlKEKCGGTurP+WOJhC+JAuD29RQm9/mU73Z8TEU7GeIghHg0VtZWeD3TGa9nOnPx1GVTl+PmleQccWcPn+fH1+cT/N4SPJ/pjDpIRSuP5tLlKKOk0CiDkq/dJmzRVnTB4Zw/mphrjEKhwLVHG9QaPzr3dsXSSj4qQpQkCoWCN+e8wKVTVzgSfRyAhPhEZjz7NTPWT0RpKStRCSEeT51GtRg78zlGThtM9PpYdNowYjcdwGg0mmLS72egXxyJfnEkdZs7EqhR4TfCi8rVbM2YuShqcvVYRhiNRuIiDqML1rNtzU4y0jNzjata256AMT74j/WhVv0aRZylEKIgWZezZupvbzPebSJXE64BsGdjHD+/uZCXvxtj5uyEECWdpZUl3fq70a2/G5fOXGHD3M1smL+FG5du5og7fzSRn99ayNyJS/EY4Eagxo82Xi2ky1EGSKFRyt28mkzYwgh0weEknriUa4xCoaCTuh3qIBVuge3lTqcQpYh9zSrMWP8er3X9wLSx5trvQ3F2caT3iz3NnJ0QorSo3aAmo2cMYcTUQewM2UuINozdoftzdDky0jPZ8ut2tvy6HccmtVEH+eI3sjv2NezMmLkoTFJolEIGg4H9mw8RotWzY+0uMjOyco1zcKqG/xgf/Md4U8PZoYizFEIUlQat6zFp2etM6TvL9KP//avzqNO4Fq5+bc2cnRCiNFFaKunStyNd+nbkakISG+ZtYcO8zSRduJ4jLvHEJbTvLmH+B7/S9elOqDV+POXdEgsLCzNlLgqDFBqlyI3LN9m0ILt7cen0lVxjLCwUuPVyJVCjooP/U7JjsBBlhHsvV8Z9PpxfJiwCwJBlYPqgr/gu+hOcmzuaOTshRGlUw9mBEVMH8dwHA9i9YT+6YD07/xeLwfB3lyMzI4utK6PZujKa2g1rog7ypceo7lStZW/GzEVBkUKjhDMYDMSGHUCn1RO9bg9Zmbl3L2o4V0cdpKLn6O5Ud6xWtEkKIYqFAW/04tyRC2yYtxmAu8n3mNznU2ZHfyITNIUQhUZpqcS9lyvuvVxJunCdjfO3EDo33DR37C+XTl9h7qRlLJiygi59OxAQpMLVr410OUowKTT+Q0aWgaOXUziYmMyhxGSupqSRnpmFtaWSGrY2tHK0o7WjHc1r2WKlLLovwrWLN9g4fwsb5oZz+WxSrjEWSgs69+lAoEZFe7820r0QooxTKBS8+mMQF09d5sDWIwBcPHmZac98ycwN78veOEKIQufgVI1hkwcyZNLT7A07QMifN0oNWQZTTFZmFlFrdhK1Zie16jvgP9aXnqO9qV6napHmWlyvAUsShfHBWTrC5MLNeyzblcDSnQkkp2bvL2FpoSDzgXbfg4/tylvxnJszQzs542RfoVByysrKYs+G/eiCw4n5X2yOL+WDajWogTpIRY9R3alWW1qPpYV+SSSzRsw2PV567idq1K1uxoxESXX7egqvuE/k4qm/h1iqg3x5/ZfnZRUYUWwd2hbPG55TTI+/jpxGKw8XM2YkCsr1SzdNXY7LZ67mGmOhtMC9lytqjYoOPdsW6s3T4ngNWFJJofEPt+9n8ElIPCv2nEehAMMj/NexUIARGOxal/cDXbAtVzB3B6+ev8bGeVsInRdO0vnrucYoLZV06deRQI2Kdr6tpc1YCkmhIQpSwtFEXu08ibvJ90zHXvhyJAPe6GXGrITImxQapZ/BYGBf+ME/F7PZnedwcIe61QgY40vPMd4F+jtYHK8BSzopNB4QeTyJt1bFcf1u2iN9uP7JQgHVK9nwxcC2eDZ9vNWcsjKz2KnbS2hwOLt0e3NMnHpQnca1srsXI72wr1nl8ZMWxZ4UGqKgxYbFMUn9iak7qlAomL7uXdwCXc2cmRAPk0KjbLl55RabFm5Fpw3L0X19kIWFgk7q9qg1KjoFtHui5fmL0zVgaSKFxp8W7jjLh+sPY/GIFWxe/nqdaX1aMqJz/Xw/78q5JELnhrNh3mauX7yZa4yVtSVd+7uhDvKlbXdZCq6skEJDFIZ1P25k9vhg0+Pylcrx7fYZNGhdz4xZCfEwKTTKJoPBkL3hsFbPtt925rlkf7U69viP8SFgrC816z3aBX5xuQYsjWQyOLAoOvsDBgXzAXvwdaasy37df/ugZWZkEvO/WHRaPXs2xpFX7Ve3WR0CglT4jfCkioNsbiOEeHJ9XupJQvwF/vhhAwCpd+4zuc8sZu+cKZtoCSHMzsLCgnY+rWnn05pbScmELYpEpw3jwvGcmxBfv3iTpTPWsOzj3+jg/xTqIF/ce7liafXvl7rmvgYs7cp8oRF5PMn0QSgsU9Ydpn61ig+10C6duUJocDgb52/hxuVbuT7XysYKz4HuqDUqWndzkYmaQogC9+LXo7hw4hKxm+KA7M7q1P6f87l+CtblrM2cnRBCZKviYMczb/Vm4Ju9OBgVj06rJ3J1DBlpGaYYo9HI7tB97A7dR9VaVeg52puAIF9qN6j50OuZ8xqwrCjTQ6du38/A98utTzwe77/8NV4v/E0vyllA9Lo9hGj17A07kOdz6rVwQq1RoRruSeWqsr69kKFTonDduXWXV7u8z/mjiaZjvsO68e7CV+QGhygWZOiUyM3t6ynoF0cSog0jIT4xzzjXHm1RB/nSuU8HrKytzHINWBYniJfpjsYnIfH5/oAZMzO4FbWEu4e3YLh/ByuH+lTxHE75Bu3+87kGI1y7k8bwqeuxWqDj1tXkXOOsy1nhNagLao2Kll2ayY+7EKLIVKpSkRnr3+MV90ncvp4CQPiSKOq51GXIxKfNnJ0QQuSucjVb+r8eyNOvqTm84xg6rZ6tK3eQfj8jR1zspjhiN8VRpYYdPUd1J65Z43xdA6YnnSN52zLSL58k6+4tFFY2WFWrS2W3/lRo4vaf+f11DfixLp5P+7d5kn9qiVRmZxGfv3mPFXvO57uKvRbyNbd3r6Vii+7Yq8ahsLDg6qqp3D+fv5abwQj7sSbpfuZDf2vQ2pmXvxvD8sQ5vLNgPK26NpciQwhR5Oo0qsWHayZgafX3yi3z3l9G1G87zZiVEEL8N4VCQauuzXlnwXiWJ87h5W/HUL9V3Yfibl1NZsnP4aw/di1f14BZt69iSE+lYmtf7FUa7LoMBiBpzXRS9m/IV24GI6zYc54LN+/9d3ApU2YLjV93JZDfa/m0i8e4Fx9JFa+R2PuMwfYpf2oO+QTLyjW4FTE//29qNJLctikA5SrY4D/am293fMwv+7+g3/gAbO0rPca/RAghCk4bzxa89tO4HMc+GzGbE3tPmykjIYR4NLb2lej3SgBz4r7k2x0f03OUN+Uq2Jj+nvxUU8jnzIHyjTpSc/A0qngMxfYpfyp37EvNoZ9gVaMBt3etzXdOFmRfe5Y1ZbLQyMgysHRnQr67GfeObQeFBbZP+ZuOKSytqdTWj7TEo2TeTsrfC1lYcKdDC17+fizLE3/hrbkv0cK9qXQvhBDFiv8YH555q7fp8f17aUzu8ynXLt4wY1ZCCPFoFAoFLdybMmHeSyxP/IVXfwiiQbsGJD/VDJ5gawCFhRJL2+oY0u7k+zlZRliyM4GMP/ctKivKZKFx9HKKaUv5/Ei/chqrqo5Y2OTcVt66dlPT3/Mrw9qKxn07U9GuYr6fI4QQRW3sp8/h3vvvjfuuX7zJh/0+4/69NDNmJYQQj6eiXUV6v9iT8X9MwlDe5r+f8A+G9Ptk3Usm4+Ylbu9aS+rpWMrVa/tIr5GcmsGxyymP/N4lWZksNA4m5j4ZOy9Zd26grGT/0HFlpaqmvxfm+wshRFFTKpVMXPIaDdv8vXHf8T2n+Hz0DxgMZeuOnBCi9Dh08fZjPe/m5mAufPccF3/RcHPLPCo07UzVHi8+8uuUtWvAMrnq1KHEZCwtFGTmc+yUMTMdlA8vSaawtP777/mkVMDW2LO0Tr+b7+cIAXDh+MUcj4/tOsnVc/kctifEY3rugwF8/fwv3LmZfc6KXBVNuQrWBIz1NXNmoqw5feDcvz4WIj8iDyahVGQPZXoUlTv2pUJzD7JSrnPv6DaMRgNk5X90DIClhYKDickMebS3LtHKZKFxNSUt30UG/FlQ5PJh+qvA+KvgyI8sg5Eo/WFOvbw5388RIjfTnvnS3CmIMmrTwq1sWrjV3GmIMm72+LnmTkGUQBf7+5DVuC75XhHoT1bV6mJVLXsVq0qtfbmyfDJXV0+j1oiv8j3XNtNgJOlO2Rp+WiaHTqVnZj1SvLJSVbLu3Hzo+F9Dpv4aQpUvCgVGyzL5n10IIYQQwqyMSotHLjJyU6F5V9IvnSDzRt6bBOYmLePRrkFLujJ5xWttqfzvoAfjazQk40YihrSc6x+nXzye/feaDfP/YkYjikwZ3yyEEEIIUdQUWYZ8L237b4wZ2Z0JQ9qjDYW3sXq0a9CSrkwOnapha/NIczQqNO/K7V2/kbJ/A3Zu/YHsncLvHAzDuk4zLCs75Pu9lRYKuqlaMv6N7o+RuSjL9myKY+mMNabHU1a9hX1NOzNmJMoag8HAoqmriIv4e6PSOo1q8soPQTnWqBeiMJw+cC7HcKlXvh+bY7ECIfLj+4NJhJ1Pyfccjay7t1BWrJLjmDErk7uHNqOwtMGqunO+39vSQoFDpbJ1riyThUYrRzuWPcKmKTZ1mlGhuQe3ti7EcO8WlvZ1uHswnMzkq9QMeO2R3jvLCF6u9WnVKf8fTCEALp/NOfG7WafG1Khb3UzZiLJqxv8a86bXFE7EZi/rffHUFdb9uJEP10xAqSxbd+qEeTVsU49WHi7mTkOUMN2sKrAh4VC+469v+B5j+j1s6rZCaVuNrDs3uXskgszrF7D3GYuFdfl8v1amwUhrx7J1g7BMDp16nP+Tq/d6k8od+nL30BZuhP2C0ZBJjYFTKOfc6pFf68aOI9xNllWnhBAlT7kKNkxb+w7V6vy95Hf0uj3Mm7jMjFkJIcS/u5t8l3U/bmT9O/Mf6XkVXbqBwoKUfTpubPyRlN1rsbStjsOAyVTu9PQj51HWCo0y2dFoXssWu/JWj7Rpn8LSGnufMdj7jHmi97ZITeP3CcvZ8MESvAZ1Qa3xxUV2BxdClCDVHasx7Y93edNzCmmp2avvrfxiHXVdnPAf7W3m7IQQIpvRaCQ+5jghWj1bV+wgLTUdo4UCi3Zt8r1pX8UWXlRs4VUg+diVt6JZLdsCea2Sokx2NKyUFjzn5oxFUV/bGwzY7TuKwmDk/r00Ni7YwmtdP2Bc27dYOzuUlJv538peCCHMqalrI95d/GqOY9++8AsHIo+YKSMhhMiWcvMOv3+nY1zbt3it6wdsWhBhuimiMBix238MinjjUaUChrk5Y6UsW5feZetf+4ChnZwLYtGBR6NQUPfCpYcOnz10nh9em8ezjuOYNXI2h7bFYyzy5IQQ4tF06+/G6Bl/bz2VmZHFRwO+4OKpy2bMSghRFhmNRg5ti2fWyNk86ziOH1+fz9lD5x+Kq1LDjmGd64FF0V4CG4AhZXB+bpkcOgXgZF+BwR3qsjL2PI+wd99js1DAoI7OTJ/2FTHrYwnR6ondFJcjJv1+BvrFkegXR+Ls4kigxg/VcE8qVytbbTYhRMkxZOLTJBy9QPiSKABuX09hcp9P+W7Hx1S0q2jm7IQQpd3t6ymELdqKLlhPQnzue1ooFApce7RBHaTCvbcrVtZWJK05ULTXgB3q4mRfofDfrJgps4UGwPuBLmw+dpVrd9IK9YNmoYDqlWx4X+2ClbUV3Qa4022AO5fOXGHD3M1smLeZG5dv5XhOQnwiP725gOCJS+k2wA21RkUbzxYyl0MIUawoFArenPMCl05f5ciOY0D2+Wv64K/5+H8TUT7ivkVCCPFfjEYjByKPoNPqiVodQ0Z6Zq5xVWvb4z/aG/+xPtRuUDPH38xxDVgWldmhUwC25az4YmDbQq9mDUb4YmBbbMtZ5Theu0FNRs8YwtJzPzH1t7fpGNDuoUIiIy2Dzcu2McF7KmNcXmPVl+u5lZRcuAkLIcQjsC5nzdTf3qaG89/LLcduiuPnNxeaMSshRGlzKymZVV+sY4zLa0zwnsrmZdseKjIUCgWd1O2Y+tvbLD37I6NnDHmoyADzXwOWFWW6owHg2dSBaX1aMmXd4f8OfkzT+7TEs2nem/pZWlnStV8nuvbrxJVzSWyYl93luJZ4I0fcheOXmPP2IuZNWopHfzcCglQ85d0SiyIeZyiEEP9kX8OOGevf47WuH5B65z4Aa78PxdnFkd4v9jRzdkKIkspgMLB/y2F02jC2/76LzIysXOOqO1bFf4wP/mN8qFkvfxspF4drwNKuzBcaACM61wdgyrrDWCgokOr2r9eZ3qclw/98/fyoWc+BkR8NZtjkgewK3YdOq2eXbi+GB5LKzMgiYsUOIlbsoE6jmgQEqeg5qjv2Nas8eeJCCPGYGrSux6RlrzOl7yzTghbfvzqPOo1r4erX1szZCSFKkptXbrFxQQShwXounrqSa4yFhYJOge0J1PjR0f+pxxqqWZyuAUsjhVGWNzKJPJ7EhNVxTzxe76/xeF8MbFsgVWzShetsmLeZ0LnhJJ2/nmuM0lJJl74dUGv8aK9qLV2OUki/JJJZI2abHi8995PsDC6KpdVfreeXCYtMjyvaVeC76E9wbu5oxqxESXdoWzxveE4xPf46cprsDF7KGAwG9uoPotOGseOPPWRl5t69qOFc3dS9cHCqViDvXVyvAUs6KTT+4fb9DD4JiWdF7HksgKxH+K+jVGQvXzbYtS7vB7oU+Hi8rKws9myMIzRYT/T6WAxZua8BXatBDQLG+tJztDfVatvnGiNKHik0RElhNBr5etwvhM4NNx2r06gms2Nmyip64rFJoVF6Xbt4g43zt7BhbjiXzyblGmOhtKBzb1fUGj9ce7RBqSz4hSaK8zVgSSWFRh4u3LzHr7sSWLIzwbSDuKWFgswHytwHH9uVt2KYmzNDOjkXyfJl1y7eYNOfLUVzfilF0ZFCQ5QkGekZvNdzBge2/r2BX9vuLZm54X2srOUHWDw6KTRKl6ysLGI3HUCnDfv3m6f1HbKHiBfhzdPifg1Ykkih8R8ysgwcu5zCwcRkDiYmk3QnjbSMLGyslDhUsqG1ox2tHe1oVsvWLLs9PkqbMWCsL/5jvKnuWDBtRlG0pNAQJc3t6ym80nkSF0/+vYFfwFhf3pjzvCzVLR6ZFBqlw1/DwTfM28zVhGu5xigtlXTp1xF1kMqsw8GL+zVgSSCFRilSVBOnhHlIoSFKooSjibzaeRJ3k++Zjr3w5UgGvNHLjFmJkkgKjZIrKzMre4GbYD27QnIucPMgWeCm9JFVp0oR+5pVePbdfgx6u0+eS8EZDEZi1scSsz7WtBRcwFgfajjLhCUhRMFzbu7I5JVvMkn9iWloxC8TFuHUtDZuga5mzk4IUZiuJiQROjf3Jfv/YmmlxKN/9sbEbbvLkv2ljRQapZCFhQXtfVvT3rc1t5KSCVu4lRCtnsQTl3LEXUu8wZLpq1k6Yw0dA55CHaTCLbA9llbysRBCFBxXv7a8/O0YZo8PBrIni3885Bu+3T6DBq3rmTk7IURByszIZGfIXkK0evZs2E9eA2ecmtZGHaTCb6QXVRzsijhLUVTkirKUq+JgxzMT+jDwrd4c2HoEXbCeqNUxOXbSNBqN7NLtY5duH1Vr2+M/2hv/sT657qQphBCPo89LPUmIv8AfP2wAIPXOfSb3mcXsnTOxryEXGUKUdJfOXCE0OJyNCyK4celmrjFWNlZ0G5DdvWjj2ULmapUBUmiUEQqFgrbdW9K2e0te/nYMYYu2ogvWkxCfmCPuxqWbLPvkN36d+Tvt/doQqFHRuU8H6XIIIZ7Yi1+P4sKJS8RuigPgyrkkpvb/nM/1U7AuZ23m7IQQjyozI5PodXsI0erZG3Ygz+6Fs4sjgRo/VMM9ZYnrMkauHsugytVsGfBGL/q/Hsjh7UcJ0eqJXBVN+v0MU4zRaCR2Uxyxm+Kwr2lHz1HeBAT5UqdRLTNmLoQoyZSWSj5Y/gavdnmf80ezb3Ic2XGMr8b9zLsLX5G7m0KUEIknL5m6F7euJucaY13OCq9BXVAH+dKya3P5fpdRUmiUYQqFglYeLrTycOGlb0YTviSKEG0YZw+dzxF380oyy2etZfmstbTzbU2gRkWXfh1lLXwhxCOrVKUiM9a/xyvuk7h9PQWA8CVRODd3Yuik/mbOTgiRl/S0DKL/2E2IVs++8IN5xtVvVZdAjR++w7pha1+pCDMUxZEUGgIAW/tK9HslgL7j/YmPOU6IVs/WFTtIS03PEbcv/CD7wg9SxaEyfiO8UGtUODWtY6ashRAlUZ1GtfhwzQTe9ZtmWhVv/ge/Ure5I936u5k5OyHEgy4cv4hOq2fTwgiSr6XkGmNT3prug7uiHqfCxa2JdC+EiRQaIgeFQkGLzs1o0bkZL341is3LthEyJ4zTB87liLuVdJtVX65n1Zfradu9JeogXzz6u8k4ayFEvrTxbMFrP43jy6CfTMc+GzGbWvUdaNK+oRkzE0Kk309n2287CdHqObD1SJ5xDdvWy+5ePOdBRbuKRZihKCmk0BB5qlSlIn1e6knvF3twbPdJdNpwtizfxv27aTni4iIOExdxGNuqlegxwosAjYp6Lk5myloIUVL4j/EhIf4Cq75cD8D9e2lM7vMp3+/6lOp1qpo5OyHKnnNHzqPThhO2eCspN+7kGlOuog3ez3oQOE5F0w6NpHsh/pUUGuI/KRQKmndqQvNOTXj+yxFs+XU7umA9J2JP54hLuXGHNd+EsOabEFp5NEetUeE50B2b8jZmylwIUdyN/fQ5Lpy4RPS6PQBcv3iTKX1n8dXWaZSrIOcOIQpbWmoakatj0Gn1HNp2NM+4Jq4NCdSo8B7iQQXb8kWYoSjJpNAQj6Ri5Qr0et6PXs/7cTz2FDptOJuXRZF6536OuEPbjnJo21F+fG0+quGeqDUqGrRyNlPWQojiSqlU8t7iV3mj22TTEM0Tsaf5bNT3fLD8DdklWIhCcuZQAro5evRLIrlz626uMRVsy+Mz1AO1RiVDGsVjkUJDPLamro1o6tqI578YTsSKHei0eo7uOpkj5s6tu6ydHcra2aG06NwUtUaF16AucqdSCGFSwbY80/54l/FuE01LZUatjmHR1JWMmvasmbMTovS4fy+NrSuzf6+PRB/PM655p8aoNSq6D+5C+UrSvRCPTwoN8cTKVypPwFhfAsb6cnL/GXTacMKXRnLvdmqOuCPRxzkSfZyf3liA73PdUGtUNGpb3zxJCyGKlZr1HPho7TtM8J5KRlr2nj5LZ6zBubkjPkO7mTk7IUq2U3FnCZmjz/W3+S8VKpdHNcxTfptFgZJCQxSoxk814NUfgtB8NozIVdG53jW5m3yPdT9uZN2PG2neqTEBQSq8n5W7JkKUdS3cmzJh7ovMHPad6dgXY3+iVsOatHBvasbMhCh5Uu+ksmX5DnTaMI7tPpVn3F+jDTyf6Uz5iuWKMENRFkihIQpF+Yrl6DnKm56jvDlz8Bw6bXiu40CP7jrJ0V0n+fnNBfgM7UbgOBkHKkRZ5jO0GwlHE1k6Yw0AGWkZTH36M77fOZMazg5mzk6I4u/f5k/+pVKVijJ/UhQJKTREoWvQuh4vfzeGoFnP5bmyReqd+4TMCSNkThhN2jdArfHDe0hXKlauYKashRDmMmLqIBKOJhK1OgaAm1eSmdxnFl9HTZfVboTIxd3b97JXhNSGcWLvmTzjWndzISDIV1aEFEVGCg1RZGzK2+A33Au/4V6ci79AqFbPpkUPr9V9Yu8Zvn1xDr9MWChrdQtRBllYWPDOgvFcOZvE8T3ZQz5OHzjHzGHfMvW3t1EqlWbOUAjzMxqNHNt9kpA5eiJWbH9oj6u/yB5Xwpyk0BBmUc/FiRe+GsWYT4ay7fdd6LR64iIO54i5fzeN0LnhhM4Nl91HhShjylWw4aO17zC+03tcv3gTgJj1scybuAzNZ8PNnJ0Q5nM3+S7hS7cRog3jdNy5POPadm+JWqPC4+lOWJezLsIMhfibFBrCrKzLWeMzxAOfIR6cP5ZIaHA4mxZGkHwtJUfc6bhzzB4fzJy3F9F9cFfUGl9c3JtKl0OIUqx6napM++Nd3vScQlpqOgArv1hHXRcn/Ed7mzk7IYqO0WgkPuY4IVo9W1fsMH0f/smuui09R3kTEOSLU9M6RZylEA+TQkMUG3WbOTLu8xGMmjGE6D92E6LVsy/8YI6YtNR0Ni7YwsYFW6jfqm52l2NYN2ztK5kpayFEYWrq2oh3F7/KtIFfmI59+8Iv1G5Yg7ZeLc2YmRCFL+XmHfSLI9EF6zl76Hyece18WxOoUdG5b0esbayKMEMh/p0UGqLYsbaxwmtQF7wGdSHx5CVCg8PZuCDCtJHXX84eOs8Pr81D++5iPJ/pTKBGRcuuzaXLIUQp062/G6NnDGH+B78CkJmRxbSBXzI75hPqNKpl5uyEKFhGo5FD246iC9YTuSqa9PsZucZVqWGH/+js7oV8D0RxJYWGKNYcG9cm6NNhjJw2mJj1sYRo9ewNO4DRaDTFpN/PQL84Ev3iSJxdHFEHqfAb4UXlarZmzFwIUZCGTHyahKMXCF8SBcDt6ylM7vMp3+34WOZtiVLh9vUUwhZtJUSr5/zRxFxjFAoFrj3aoA5S4d7bFStr6V6I4k0KDVEiWFlb0W2AO90GuHPpzBU2zN3MhvlbuHHpZo64hPhEfn5rIXMnLqXbQHfUGhVtPFtIl0OIEk6hUPDmnBe4dPoqR3YcA7K/79MHf83H/5uI0lJWohIlj9Fo5MDWI4Row9i2ZicZ6Zm5xlWtbY//aG/8x/pQu0HNIs5SiMcnhYYocWo3qMnoGUMY/uEz7AzZiy5Yz+7Q/Tm6HBnpmWxeto3Ny7bh1LR2dpdjpBdVHOzMmLkQ4klYl7Nm6m9v84rbRK6cSwIgdlMcP72xgPGzx5o5OyHy71ZSMmELt6IL1nPh+KVcYxQKBR0DniJQ44dbYHsppkWJJIWGKLEsrSzp2q8TXft14sq5JDbM28yGeZu5lngjR9yF45eY885i5r2/DI/+bgQEqXjKuyUWFhZmylwI8bjsa9gxfd27vNb1A9Oux3/8sAFnFyf6vNTTzNkJkTeDwcD+LYfRacPY/vsuMjOyco2r7liVgLG++I/xpoazQxFnKUTBkkJDlAo16zkw8qPBDJs8kN0b9hOiDWNXyF4Mhr+7HJkZWUSs2EHEih3UaVSTgCAVPUd1x75mFfMlLoR4ZA1a12PSsteZ0neWqZP5w2vzcGxSC1e/tmbOToicbl65xcYFEYQG67l46kquMRYWCjoFtidQ40dH/6ekeyFKDSk0RKmitFTi3ssV916uJF24bupyXE24liPu4qkrzJ24lAWTl9OlbwfUGj/aq1pLl0OIEsK9lyvjPh/OLxMWAWDIMjB90Fd8F/0Jzs0dzZydKOsMBgN79QfRacPY8ccesjJz717UcK5OwFhfeo72xsGpWhFnKUThk0JDlFoOTtUYPuUZhr7fn9hNB9Bpw4heH4shy2CKycrMImrNTqLW7KRWgxr4j/Gh52hvqtepasbMhRD5MeCNXiTEJxI6NxyAu8n3mNx7JrNjZsqqc8Isrl28wcb5W9gwN5zLZ5NyjbFQWtC5tytqjR+uPdqgVEr3QpReUmiIUk+pVNIpoB2dAtpx7eINNv3Zwv7nj8DlM1dZMHk5i6aulB8BIUoAhULBKz+M5eKpy8RFHAayu5UfDfyCTzd+IEt/iiKRlZXFno1x6LR6Yv6X82bWg2rVd8gesjvam2q17Ys4SyHMQwoNUaZUr1OVoZP68+x7/bLb2sF6dqzdnaOtbcgysH3tbrav3U0N5+r4j/HBf4yPtLWFKIasrK2YsuotXuk8iYsnLwNwYOsRZr88lzfmPC9LW4tC89fw3NC54SSdv55rjNJSSZd+HQnUqGjnK8NzRdkjhYYokywsLOjQoy0derT914l6VxOusWjqSpZMW0WnwPaog1R0CmgnE/WEKEYqV7Nl+rr3eLXzJO4m3wMgdG44zi6ODHyzt5mzE6VJVmYWu0L3odPq2aXLueDIg+o0qola40ePkV6y4Igo06TQEGWefc0qPPtuPwa93Ye4iMPotHq2/bYzx9KDBoORmPWxxKyPpbpjVfzH+BAw1keWHhSimHBu7sjklW8ySf2JaejKnLcX49S0Du69XM2cnSjpriYkETo39yXU/2JppcSjvxtqjYq23WUJdSFACg0hTCwsLGjn05p2Pq3/dTOla4k3WDJ9NUtnrKFjwFOog1S4BbbH0kq+TkKYk6tfW17+dgyzxwcD2bsufzL0G77dPoMGreuZOTtR0mRmZLIzZC8hWj17NuTcFPZBTk1ro9b44TfCUzaFFeIf5MpIiFxUcbDjmQl9GPhWbw5EHkGn1RO1OoaM9ExTjNFoZJduH7t0+6ha2x7/0d74j/WhdoOaZsxciLKtz0s9SYi/wB8/bAAg9c59JveZxeydM7GvIReB4r9dOnOF0OBwNi6I4Malm7nGWNlY0W1AdveijWcLmQskRB6k0BDiXygUCtp6taStV0te/nYM+sWRhGjDSIhPzBF349JNln3yG7/O/J32fm0I1Kjo3KeDdDmEMIMXvx5F4slL7NkYB8CVc0lMffozPg//EOty1mbOThRHGekZRK/bgy44nNhNcXnGObs4EqjxQzXcU5ZQFiIf5CpIiHyqXM2W/q8H8vRrag5vP4ouOJytK3eQfj/DFGM0GondFEfspjiq1LCj56juBAT54ti4thkzF6JsUVoq+WD5G7za5X3TTYEj0cf5atzPvLvwFbn7LEwST14ydS9uXU3ONca6nBVeg7qg1qho2aWZfH6EeARSaAjxiBQKBa08XGjl4cKLX48ifEkUIdowzh46nyPu1tVkVnz2Bys++4N2vq2zuxx9O2JtI2v7C1HYKtpVZPq693jFfRK3r6cAEL4kCufmTgyd1N/M2QlzSk/LYMfaXYRo9ezffCjPuPqt6hKo8cN3WDds7SsVYYZClB5SaAjxBGztK9HvlQD6jvcnfucJdHP0RKzYTlpqeo64feEH2Rd+ELvqtvQY2R21RoVT0zpmylqIsqFOo1p8uGYC7/pNM60iN/+DX6nbrA7dBribOTtR1C4cv4hOq2fTwgiSr6XkGmNT3prug7uiHqfCxa2JdC+EeEJSaAhRABQKBS3cm9LCvSkvfj2S8KXbCNGGcTruXI645GsprPpyPau+XE/b7i1RB/ni0d9Nxo0LUUjaeLbgtZ/G8WXQT6Zjs0bMplaDGjRp39CMmYmikH4/nW2/7SREq+fA1iN5xjVsW49e4/zwGepBRbuKRZihEKWbFBpCFLCKdhXp81JPer/Yg+N7ThEyR8+W5du4fzctR1xcxGHiIg5jW7USPUZ4EaBRUc/FyUxZC1F6+Y/xISH+Aqu+XA9AWmo6k/t8yve7PqV6napmzk4UhnNHzqPThhO2eCspN+7kGlOuog3ez3oQOE5F0w6NpHshRCGQQkOIQqJQKGjWsTHNOjbm+S9HELF8OyFaPSdiT+eIS7lxhzXfhLDmmxBaeTRHrVHhOdAdm/I2ZspciNJn7KfPceHEJaLX7QHg+sWbTOk7i6+2TqNcBfmulQZpqWlEropBF6zn0LajecY1cW1IoEaF9xAPKtiWL8IMhSh7pNAQoghUrFyBwHF+BI7z48Te0+i0ejYv28a9lNQccYe2HeXQtqP8+Np8VMM8UY9T0aCVs5myFqL0UCqVTFzyKq97TOb0gewhjSdiT/PZqO/5YPkbsotzCXbm4Dl02nD0SyK5c+turjEVbMvjM9QDtUYlQ+aEKEIKY15bXQohClXqnVQiVuxAp9VzdNfJPONadG6KWqPCYDDwVdDPpuNLz/1EjbrViyJVIUqNqwlJvNxpYo6lTJ/7YACjpj1rxqxEfhzaFs8bnlNMjwe/9zQHIg4RH3Miz+c0d2uCOsiX7oO7UL6SdC+EKGpSaAhRDJyKO4tOq0e/JJJ7t1NzjbEuZ5Vjzw4pNIR4PEdijjPBeyoZaX9/nyYueRWfod3MmJX4L/8sNPJSoXL57I6wRkWjtvULPzEhRJ6k0BCiGEm9e5/IVdHotHqORB//19igT4fR56UecpdOiMeweVkUM4d9Z3psZWPFF5s/pEXnZmbMSuQm9U4qW5bvYPVX6zh/9GKecS26NCNQo8Lzmc4y70aIYkIKDSGKqTOHErK7HIvzHndcvlI5fIZ2I3CcjDsW4lEtmLKcpTPWmB5XqWHH9ztnUrOegxmzEn85HnsKnTaczcuiSL1zP9eYSlUqohqe3b2Q+WxCFD9SaAhRzKWlphG5OoZln/zGhWN5381r0r4Bao0f3kO6UrFyhSLMUIiSyWAw8PGQb4hcFW061rBNPb6Omi6rEZnJ3dv32PLrdnTaME7sPfOvsc+9P4Ahk56WFfqEKMak0BCihNAviWTWiNn/GVeuog3dB3clcJyKZh0by9rwQvyL+/fSeKv7hxzfc8p0zL23K1N/exulUmnGzMoOo9HIsd0nCZmjJ2L5du7fS8s1rkLl8jnmsH0dOY1WHi5FlaYQ4jHIen5ClFAvfzeGtt1bPnT8/t00NszbzCvuk3ih/dus+3Ejd5NzH3olRFlXroINH619h+qOf2/cF7M+lrnvLTVjVmXDnVt3+eOHDbzQ7m1ecZ/Ehnmbcy0ynvJuycSlrzH1t7fNkKUQ4knIPhpClFBd+nak3/gALhy/SGhwOBsXbCH5WkqOmNNx55g9Ppg5by/Ca3AXAjUqXNybSpdDiAdUr1OVaX+8yxvdJpOWmg7Aqi/X4+zihP8YHzNnV7oYjUbiY44TotWzdcUO03/vf7KrbkvPUd4EBPni1LQOkL3qlBCiZJFCQ4gSzqlpHTSfDWfk9GeJ/mM3IVo9+8IP5ohJS01n04IINi2IoH6ruqiDVKiGe2JrX8lMWQtRvDRp35B3F7/KtIFfmI59++IcajeqSVuvhzuH4tGk3LyDfnEkOq2es4fP5xnXXtUatcaPLn07YGVtVYQZCiEKgxQaQpQS1jZWeA3qgtegLlw8dZnQ4HA2zN+SY2MygLOHzvPj6/MJfm8Jns90JlCjomXX5tLlEGVet/5ujJ4xhPkf/ApAZkYWHw34gu93zqROo1pmzq7kMRqNHNp2FF2wnshV0Tn2AXqQfU07U/dC/jsLUbpIoSFEKVSnUS3GznyOER8NImZ9LLpgPbGbDvDg2g/p9zPQL45EvzgSZxdH1EEq/EZ4UbmarRkzF8K8hkx8mvPHEtEvjgQg5cYdPuj9KbOjP6aiXUUzZ1cy3L6eQtiirYRo9Zw/mphrjEKhwLVHG9QaPzr3dsXSSi5HhCiN5JstRClmZW1FtwHudBvgzqUzV9gwdzMb5m/hxqWbOeIS4hP5+a2FzJ24lG4D3VEHqWjj1UK6HKLMUSgUvDHnBS6eusKRHccAOH80kemDv+bj/01EaSkrUeXGaDRyYOsRQrRhbFuzk4z0zFzjqta2J2CMD/5jfahVv0YRZymEKGpSaAhRRtRuUJPRM4YwYuogdobsJUQbxu7Q/Tm6HBnpmWxeto3Ny7bh1LR2dpdjpBdVHOzMmLkQRcvaxoqpv73NK24TuXIuCYDYTXH89MYCxs8ea+bsipebV5MJWxiBLjicxBOXco1RKBR0UrdDHaTCLbC9FGtClCFSaAhRxigtlXTp25EufTtyNSGJDfO2EDo3nGuJN3LEXTh+iTnvLGbe+8vo+nQn1Bo/nvJuiYWFrIotSj/7GnZMX/cur3X9wLQr9R8/bMDZxYk+L/U0c3bmZTAY2L/lMDptGNt/30VmRlaucQ5O1fAf44P/GG9qOMtu60KURVJoCFGG1XB2YMTUQTz3wQB2b9hPiDaMXSF7MRj+7nJkZmSxdWU0W1dGU6dRTQKCVPQc1R37mlXMl7gQRaBB63q8/+vrTO4zy9T5++G1eTg2qYWrX1szZ1f0bly+yaYF2d2LS6ev5BpjYaHArZcr6iAVHf2fku6FEGWcFBpCCJSWStx7ueLey5WkC9fZOD+7y3E14VqOuIunrjB34lIWTF5Ol74dUGv8aK9qLV0OUWq5Bboy7vPh/DJhEQCGLAPTB33Fd9Gf4Nzc0czZFT6DwUBs2AFCg/Xs+GMPWZm5dy9qOFcnYKwvPUd74+BUrYizFEIUV1JoCCFycHCqxrDJAxky6WliNx1Apw0jen0shiyDKSYrM4uoNTuJWrOTWvUd8P/zAqN6nar/8spClEwD3uhFQnwioXPDAbibfI/JvWcyO2ZmqV2l7drFG2ycv4UNc8O5fDYp1xgLpQWd+3QgUKOivV8blErpXgghcpJCQwiRK6VSSaeAdnQKaMf1SzezuxzB+ocuOi6fTWLB5OUsmrqSzr1dUWv8cO0hFx2i9FAoFLzyw1gunrpMXMRhILu799HAL/h04welZmO5rKws9myMQ6fVE/O/nDcXHlSrQQ1T96JabfsizlIIUZJIoSGE+E/VatszdFJ/nn2vH3v1B9EF69mxdneOYRSGLAPb1+5m+9rd1HCu/uckUB8ZRiFKBStrK6aseotXOk/i4snLABzYeoTZL8/ljTnPl+iloK+ev8bGeVsInRdO0vnrucYoLZV06deRQI2Kdr4yXFIIkT9SaAgh8s3CwoIOPdrSoUdbbl65xaaFW9Fpw7h4KufE0KsJ11g0dSVLpq2ik7o9ao2KTgHtZGKoKNEqV7Nl+rr3eLXzJO4m3wMgdG44zi6ODHyzt5mzezRZmVnsCt2HTqtnly7nAhAPqtO4FuogFT1GeskCEEKIRyaFhhDisdjXrMLgd/ryzITexEUcRqfVs+23nTmWujQYjMT8L5aY/8VS3bEq/mN8CBjrI0tdihLLubkjU1a9xcSAj01Di+a8vRinpnVw7+Vq5uz+25VzSYTODWfDvM1cv3gz1xhLKyUeA9xRB/nStrssaS2EeHxSaAghnoiFhQXtfFrTzqc1t5KSCVsUiU4bxoXjOTfvupZ4gyXTV7N0xho6+D9FoCZ78y5LKzkNiZKlvaoN4//f3n0GNHl+bQC/kjBEREQFUQQ3IioOVIYsIagER+sedRNfO2y121lrtdYO21o7/gb31mrrIKgElCFDxbrBrSA4UBHZK3k/0KamQisaEsb1+5Z4eJ6TFp7k5NzPfVZOxco3gwGUTcX+fNx3+P7YErTp2krP2T2rpLgE8QcSIQ8Ox8mDmkM6n9bSvjkkUn/4T/TikE4i0gq+wxOR1jSyNMfI9wZjxLuDcDbqIuQyBaJ3J6C4sFgdo1KpcCL0D5wI/QONm1tgwGQfBAT5oXmbZnrMnKhyBr8+ALcu3sbeHw8CAPJzCrBgyHL8kLAMFlbV40P6nRv3EBocjkPrjuDR3cflxhgaG8JrhCskUjG6enaq0feaEFH1w0KDiLROIBCgm3dndPPujDe/z4ZiUxRCZGFISUrTiHt0JxPblv2G7V/8jp7+TgiUiuE2pBe7HFQjvP7tZKRdvYOTh84AKFuWtOjVL/FV+Ccwqmekl5yKi4oRt+8k5MHhSDx8psI4u042CJT6QzzBq9Zu0UtE+sd3cyKqUg2bmGHYrEC8+o4EF44lQx4cjsidsSgq0OxyJB4+g8TDZ9DIylzd5bBp31yPmRP9O5GBCPO3z8bb7vPURfTFuMtYIf0FH22cqdPuQNrVO2Xdi/VH8fh+VrkxRvUM4T3KHRKpGJ3dO7J7QURVjoUGEemEQCBAF49O6OLRCa9/Oxnhm6MRIgvDzfOpGnGP72dhx5d7sePLveju2wWBUjHcX+kDI+PaMauAahdTc1N8tu9jzHSdiycPswEA4VuiYdepJcbNHVal5y4qLEbs78cRIlPgdMT5CuPadLWDRCqG33hPmFk0qNKciIiexkKDiHTOzKIBXpkZgKFvDURSwhXIVytwdMcxFOYXacSdjjiP0xHnYd7UDP0n+UAiFaOlfQs9ZU1UvhbtrPHJ7vfxkf9i9a5r6+Zvg23HFvAc7qr186VeSoNcFo6wjUeR9SC73Jh69Y3hM9odAVIxOrl0YPeCiPSChQYR6Y1AIICjqz0cXe3x+reTELE1BgdWh+H6mVsacVkPsrHrm/3Y9c1+OHk7IlAqhscwF72tgyf6JycvR7zzy//hm2k/qZ9bPvEHNGttCXvndi99/KKCIsTsSUCITIGzkRcrjGvXvTUCpWL4jvOAqbnpS5+XiOhlsNAgomrB1NwUg18fgEEz+uPyyWsIWa3Ake0xKMgt1Ig7G3kRZyMvwqxxA/hP8IZE6odWjrZ6yprobwOn9ENq0m3s/HofAKAwvwgLhy7HquNfoGmLxi90zFsXU8u6F5sikf0op9yYeqbG8B3rAcl0f9g7t2X3goiqDRYaRFStCAQCdOzdHh17t8eMFZNwZFsMQmQKXEm8rhGX/SgHe74PwZ7vQ9DFwwESqRheI1xhbGKsp8yJgKnLxiH1cjri9p0EADxMz8TCocuxInIx6tV/vt/NwvxCRO2KhzxYgfMxyRXGdXBui0CpGP3GeqC+mYlW8ici0iYWGkRUbdU3M0HgdH8ETvfHlVPXIZcpELE1BnnZ+Rpx52OScT4mGT+9sw7i17wgmS5Gmy52esqa6jKRSIQ5m9/GLI8FuH62bAnglcTr+HLyKszfPvtfp2zfOHcLclk4FJujkPM4t9yY+mYm8B3nAYlUjA4921bJayAi0haBqqIRoURUrSg2R2H5xB/Uj7fc+hlWtk31mJF+5Ofk4+iOWMiDw5GccKXCOEc3ewQEieE9yg0mpvV0mCERcD8lA2+5zEHmvb+3mh0/bzgmfzZGIy4/twCRO+Mgl4UhKb7i32cHlw4IlP75+9ygbnYvzsckYbbXQvXjb6MWo4tHJz1mRET/hR0NIqpRTBqYIGCaHwKm+eHamZuQyxRQbI5C3hPNLsfFuMu4GHcZP89eB7/xXpBI/dC+exs9ZU11jZWdJRb99iHe77cIxYVlM2O2LN0Nu0428B3niaunb0C+WoHwrdHP/O7+xdS8flmHTipGW6dWukyfiEgr2NEgqiHY0ahYQV4honbFIUSmwMXYSxXGdezdDhKpP/qNca+z3wqTbkVsjcay11aqH4sMRLDpYK0e8FceR/eOCJSK4TXS7bnv66gL2NEgqnnY0SCiGq9efWP0n+SD/pN8cON8SlmXY9Oz69wvnbiGSyeu4Zd318N3nCckUj+tbD1KVBHfcZ44feQ8QtdEAABKS0rLLTLMLEwhnuANiVSM1p25ixoR1Q4sNIioVmnTxQ5vfj8VQV+MR/TuBMhlCpyLTtKIyc8pQMjqMISsDkOHnm3Kuhxj+8K0YX09ZU21Te6TPERsjUFosAJXTt2oMK6rZydIpGJ4DnfhjmlEVOuw0CCiWsnYxBji17wgfs0Lt5JuI1SmwOGNz84iuHLqBr5/fTX+9/4G+Izui8DpYnTs3Z6zCKjSVCoVLp24ipDVChzdfgwFeYX/Gt/NpzOWhy2ASCTSUYZERLpV8T57RES1RKtOLTFjxWRsv/0/zNnyDrr5dH4mpiC3EAfXRmCm61zM6PkB9v54sMItRomelvM4F3t/PIgZPT7ATNe5OLg2otwio7O7PcwsGqgfnzl6AWs+3qLLVImIdIodDSKqM4zqGcF3rAd8x3rg9uV0hAaH49D6I8h6kK0Rd/3MLayauQayDzfBe7Q7AqVidHK1Z5eD1FQqFS7GXUaILAxRO+NQmF9Ublwjy4boP8kHAUF+aGnfAldOXce7XgvVhciub/bD1sEGAdP8dJk+EZFOsNAgojqppX0LSL+cgMlLxiB270nIZWE4pTinEVOYX4TD64/i8PqjaN3ZFhKpGOIJXhrfSlPd8uRRNsI3R0MuU+DmhdQK43qKu0Ii9Yf70F4wNDJUP9+hZ1t8uHEmFo/4Wv3cyjdkaNHeGt28n+20ERHVZCw0iKhOMzQyhPdIN3iPdEP6tbvqLsfTg9YA4OaFVPw0ax2CP94Mr5FukASJ0cXDgV2OOkClUuF8THJZ92JXvHouxj9ZNDPHgCm+CJjmixbtrCs8nucwF0xZMhbr5m8DAJQUl+LT4V9jVcKyf/05IqKahoUGEdGfWrSzxrRl4zFp8WjE7U+EXBaGxMNn8fS4oaKCYig2RUGxKQq2DjYIlIrhP9EbDZuY6TFzqgpZD54gbGMk5MHhSE0uf+6FQCCAc38nSKT+cBvsDAPD53tbHTvnVaReSoNiUxQAIPtRDuYP/gIrY5eiQSNTrb0GIiJ9YqFBRPQPBoYG8BzmAs9hLrhz4x4OronAwXVH8OhOpkZcanIafnlvA9bM2QKP4S4IlPrDyduRXY4aTKVS4WzkRYTIwhCzOwHFRSXlxjVuboGAqb4YOM0X1q2tKn0egUCA2atnIP3aPfWQydTkNCwZ8y2WHpgDkQF3oiKimo+FBhHRv2jephmmLBmLiYtGISHkFEJkYTgRelqjy1FcVIIj247hyLZjaGnfHJIgMfwneaORpbkeM6fKyLyfhbANRyEPDkfalTvlxgiFAvQO6AFJkBgugT1fuhgwMjbEoj0fYKbLHNy7lQEASDx8Bj/PXo+3fpj2UscmIqoOWGgQET0HkYEI7kN7w31ob9xPycDBtUdwcG0EMm4/1Ii7ffkOVn+4CWvnbUXfV/tAIvVH936dIRRyN/HqRqlU4nTEeciDFTj223GUFJeWG2fZsgkGTvXFwKn9YGVnqdUcLKzM8dm+j/BO3/nIzykAAOz98SDsOrXEkDcGaPVcRES6xkKDiKiSrOwsMXHRKIyfPxwnDp6GPFiBhAOJUCr/7nKUFJcicmccInfGoXnbZpAE+aH/ZB80trbQY+YEAI/uZuLw+rLuxZ3r98qNEQoFcBnkjECpGL0Gdq/SoXpturbCvG2zsHDocvXv0I/vrIVNB2s4+3ersvMSEVU1FhpERC9IZCCC6yBnuA5yRsbthzi07ghC14TjfsoDjbg71+9hzdytWL9wB9yH9kJAkBjO/k7scuiQUqlEYthZyGUKxO07idKS8rsXVnZNIQkSY8AUHzS1aaKz/FwCnTH9q4n45b0NZfmWKvHZqBVYGfc57BxsdJYHEZE2sdAgItICy5ZN8NqCERg791WcCjuLkD8/0CpLleqY0pJSRO9OQPTuBFi3tsTAaX4YMKUfmrZorMfMa7cH6Y9waN0RHFwTjrs3M8qNEYqEcBvSC4FSMXr6O1Vp9+LfDJsViFsXbyN0TTgAIDcrDwsGL8MP8cu4qxkR1UgsNIiItEgkEqH3wB7oPbAHHt7JVHc57t64rxF392YG1i/Yjo2LdsJ1kDMkUjF6Deimtw+5tUlpaSlOHjoDuUyB+AOJGsXe06zbWEESJEb/yT5o0lz/S9oEAgFm/jgN6dfu4szRCwCA9Gv38OmIr/HFofkag/+IiGoCFhpERFWkSXMLjJs7DGM+fgV/hJ9DiEyB2N9PaCzbUZYqEbv3BGL3noClbRMETPPDwKm+sGypu2U7tcX91Ac4tPYIQteGIyP1YbkxIgMR3F/pjUCpGD38ula75WuGRoZY+Ot7mOk6F+lX7wIAzkZexMo3gvGubAa3TiaiGoWFBhFRFRMKhXD27wZn/27IvPcYhzdEQh6sUH+Q/EtG6kNsXLQTmxfvQh9JT0ikYvQJ6MGZCv+itKQUx0P/gFymwHH5KY0b8p/Wor11WfdikjcsmjXSbZKV1LCxGZbs/xgzXeciNysPAHBwbQRaObbEiHcH6zk7IqLnx0KDiEiHLJo1wugPh2Lk+4Nx5ugFyIPDEbM7XmNrVaVShfgDiYg/kIimNo0xYEo/BEzzQ7NW2t1atSa7dysDoWvCcXBtBB6mZ5YbY2hkgL7DXBAoFcPJ27HadS/+jW1HGyzc9R7mBCxVL/1a/cEmtLRvAddBznrOjojo+bDQICLSA6FQiB6+XdHDtyseZ2QhbGMU5LIw3L6sOSzuQdojbFmyG1uX7kGvgd0hCfKD6yBnGBjWvct3SXEJ4g8kQi5T4OShMxpDE59m27EFAoLE8J/oVaOHJvYUO+GtlVOx8s1gAGVTyz8f9x2+i1mCtk6t9JwdEdF/q3vvVERE1UwjS3OMfG8wRrw7COeikyCXKRD1azyKC4vVMSqVCidC/8CJ0D/Q2LpRWZcjyA/N2zTTY+a6cefGPYQGh+PQuiN4dPdxuTGGxobwGuEKiVSMrp6das29DINfH4CUpDT8vioUAJCfU4AFQ77AqoRl1X4JGBERCw0iompCIBDAycsRTl6OeOO7KVBsikKILAwpSWkacY/uPsa2Zb9h27Lf4Ny/GyRBfnAb0qtW7UpUXFSMuH0nESJT4FTY2QrjWjm2hEQqhniCFxo2rp1bwM5YMQm3r6Tj5KEzAID7KQ+waNhX+Cr8ExjVM9JzdkREFWOhQURUDTVsYoZhswLx6jsSXIi9BLlMgcidsSgqKNaISzx8BomHz6CRlTkGTPZBQJAfbNo311PWLy/t6h3IZeE4vOEoHt/PKjfGqJ4hvEe5QyIVo7N7x1rTvaiIyECE+dtn4233eeqi82LcZayQ/oKPNs6s9a+fiGouFhpERNWYQCBAl74O6NLXAa9/OxnhW6Ihlylw41yKRtzj+1nY8eVe7PhyL7r7dkGgVAz3V/rAyLj6dzmKCosR+/txhMgUOB1xvsK4Nl3tIJGK4TfeE2YWDXSYof6Zmpvis31lO1E9eZgNAAjfEg1bBxuMnzdcz9kREZWPhQYRUQ1hZtEAr7wVgKFvDkRSwhWEyhQ4uiMWBXmFGnGnI87jdMR5mDc1g/9EH0ikfrDtaKOnrCuWeikNclk4wjYeRdaD7HJj6tU3hs9od0im+8OhT/s6/e19i3bW+GT3+/jIf7F6l7L1C7bDzsEGnsNd9ZwdEdGzWGgQEdUwAoEAjq72cHS1x4wVkxCxNQYhMgWunb6pEZf1IBu/rtiPX1fsh5O3IwKlYngMc9Hruv6igiJE705AiCwM56KSKoxr1701AqVi+I7zgKm5qQ4zrN6cvBzxzi//h2+m/aR+bvnEH9CstSXsndvpMTMiomex0CAiqsFMzU0x+PUBGDSjPy4nXod8dRgitsWgIFezy3E28iLORl6EWeMG8J/gDYnUD60cbXWW562LqWXdi02RyH6UU25MPVNj+I71gGS6P+yd29bp7sW/GTilH1KTbmPn1/sAAIX5RVg4dDlWJSxDUxtOlCei6oOFBhFRLSAQCNCxVzt07NUO//fNJBzZVtbluJJ4XSMu+1EO9nwfgj3fh6CLhwMkQWJ4jXSFsYmx1nMqzC9E1K54hMjCcOHYpQrj7Hu1Q6BUDJ8xfVHfzETredRGU5eNQ+rldMTtOwkAeJieiYWvfIkVkYtRr772/18SEb0IFhpERLVMfTMTBE73R+B0f1w5dR1ymQIRW2OQl52vEXc+JhnnY5Lx06x1EL/mBYnUD226vvwguBvnbiFktQLhW6KR8zi3whx9x3lAIhWjQ8+2L33OukYkEmHO5rcxy2MBrp+9BQC4kngdX05ehfnbZ9eoKehEVHsJVBWNViWiakWxOQrLJ/6gfrzl1s+wsm2qx4yoJsnPycfRHbGQB4cjOeFKhXGdXDtAIvWH9yg3mJjWe/7j5xYgcmcc5LIwJMVXfHwHlw4IlIrLjt+A3YuXdT8lA2+5zEHmvb+3Ah4/bzgmfzZGj1lVjfMxSZjttVD9+Nuoxeji0UmPGRHRf2FHg4ioDjBpYIKAaX4ImOaH62dvQS5TQLE5CrlZeRpxSfFXkBR/BT/PXge/8WVdjvbd21R43Kunb0C+WoHwrdHIe5Jfboypef0/OyZitHV6+Y4J/c3KzhKLfvsQ7/dbpJ4kv2Xpbtg62MBvvKeesyOiuo6FBhFRHdPWqRXe+mEagpa/hqhdcQiRKXAxVvMeirwn+dj/8yHs//kQOvZuB4nUH/3GuMOkgQnysvNxdPsxyIMVuHTiWoXn6dy345/3gLjxvoEq5Ohqj/fXvoFl479XP/dN0M9o3tYKjm4d9ZgZEdV1LDSIiOqoevWN0X+SD/pP8sHNC6llXY5NkcjO1Lyv4tKJa7h04hp+emctmrWyxL2UDBTmFZV7TDMLU4gneEMiFaN1Z93talXX+Y71QErSbWxZshsAUFxYjE9e/QqrEpahWStLPWdHRHUV7xYjIiK07myLN76bgm23/4ePNs5EV89n174X5hchJTmt3CKjq1cnfLzpbWy7/T+88d0UFhl6MHHRKHiNdFM/fnw/CwuGfPHMJgBERLrCQoOIiNSMTYzhN94T0i8nwGO4C0QGon+NFxmI4DHMBdO/nADfcR5Vsk0uPR+hUIgP1r0J+15/D+67cS4Fy8Z/j9LSUj1mRkR1FQsNIiICAOQ8zsXeHw9iRo8P8LbbXMTsTkBpyb9/QC0tKUXMngTMdJ2LGT0+wN4fD1a4pS1VvXr1jfHp7x+iqU1j9XPxBxKx5uMtesyKiOoqFhpERHWYSqXChdhL+HLKKoyxmY5VM9eo5zI8rZFlQ4z6YCiWHZyHUe8PQSPLhs/EXD97C6tmrsEYm+n4auqPuBh3CdxBXfeatmiMxXs/0rgBf9c3+xG6JlyPWRFRXcSbwYmI6qAnj7IRvjkacpkCNy+kVhjX098JkiAx3If2gqGRIQCgV//umLxkDGL3noRcFoZTinMaP1OYX4TD64/i8PqjaN3ZFhKpGOIJXjCzaFClr4n+1qFnW3y4cSYWj/ha/dz3r8vQor01unl31mNmRFSXsNAgIqojVCoVzsckI0QWhqhd8eq5C/9k0cwcA6b4ImCaL1q0sy43xtDIEN4j3eA90g3p1+4idE0EDq2L0BgcBwA3L6Tip1nrEPzxZniOcEWg1B9dPBwgEAi0/vpIk+cwF0xdOg5r520FULbM7dPhX2NVwrIK/78SEWkTCw0iolou68EThG2MhDw4HKnJaeXGCAQC9BrQDQFBYrgNdoaB4fO/PbRoZ41pn4/DpE9HIW5/IuSyMCQePquxbKqooBjhm6MRvjkatg42kAT5wX+iN8ybPrsEi7RnzMevICX5NhSbogAA2Y9yMH/wF1gZuxQNGpnqOTsiqu1YaBAR1UIqlQpnjl6APFiBmN0JKC4qKTeucXMLBEz1xcBpvrBubfVS5zQwNIDnMBd4DnPB3Zv3cXBNBELXRuDRnUyNuNTkNPzv/Y1YO3crPIa7IFDqDydvR3Y5qoBAIMDs1TOQfu2eeihjanIaloz5FksPzPnPXcWIiF4GCw0iolok834WwjYchTw4HGlX7pQbIxQK0DugByRSMVwkPavkw6Z1aytM/mwMJnwyEgkhpyAPVuC4/A+NLkdxUQmObDuGI9uOwaZD87IuxyQfWFiZaz2fuszI2BCL9nyAt13n4O7NDABA4uEz+Hn2erz1wzQ9Z0dEtRkLDSKiGk6pVOJ0xHmEyBSI/f04SorL35LWsmUTBEzzw4Cp/WBl21QnuYkMRHAf2hvuQ3vjfkoGDq49goNrI5Bx+6FGXNqVO5B9tBnr5m9D31f7QCL1R/d+nSEUcnNEbbCwMsfifR/jHfd5yM8pAADs/fEg7Dq1xJA3Bug5OyKqrVhoEBHVUI/uZuLw+rLuxZ3r98qNEYqEcAnsiUCpGL0GdodIpL+lMlZ2lpi4aBTGLxiOkwdPI0SmQMKBRCiVf3c5SopLEbkzDpE749C8bTNIgvzQf7IPGltb6C3v2qJNFzvM2zYLC4cuV/83//GdtbDpYA1n/256zo6IaiMWGkRENYhSqURi2FnIZQrE7TtZ4UC9Zq0sy7oXU3zQ1KaJbpP8DyKRCC6BznAJdMaDtIc4tO4o5MEK3E95oBF35/o9rJm7FesX7oDbkF6QSMVw9ndil+MluAQ6Y/pXE/HLexsAAMpSJT4btQIr4z6HnYONnrMjotqGhQYRUQ3wIP0RDq09gtA14bh3K6PcGKFICPehvSEJ8kNPfye9di+eV1ObJhg/fzjGzHkFp8LOIuTPAkpZqlTH/DV9PGZPAqxbW2LgND8MmNIPTVs0/pcjU0WGzQpEStJtyIPLBvjlZuVhweBl+CF+GRo2MdNzdkRUm7DQICKqpkpLS3Hy4GnIg8MRfyBR48P306zbWEESJEb/yT5o0rxmLjESiUToPbAHeg/sgYd3/loSpsDdG/c14u7ezMD6BduxcdFOuA5yhkQqRq8B3WpEUVVdCAQCvLVqGtKu3sWZoxcAAOnX7uHTEV/ji0Pz1YMZiYheFgsNIqJq5n7qg7LuxdpwZKQ+LDdGZCBC31f7IFAqRnffLrVqOVGT5hYYO+dVjP5oKP4IP/fnTe4nNJaJKUuViN17ArF7T8DStgkCpur2JveaztDIEAt/fQ8zXeci/epdAMDZyItY+UYw3pXN4FbDRKQVLDSIiKqB0pJSJMhPITQ4HMflpzRukH5ai/bWZd2LSd6waNZIt0nqmFAohLN/Nzj7d0Pmvcc4vCES8mCF+oPxXzJSH2Ljpzux+bNd6CPpCYlUjD4BPTgj4j80bGyGJfs/xttu85DzOBcAcHBtBFo5tsSIdwfrOTsiqg1YaBAR6dG9WxkIXROOg2sj8DA9s9wYQyMD9B3mgkCpGN18OtfJb5stmjXC6A+HYuT7g3E28iJCZAoc26M5iFCpVCH+QCLiDySiSQsLDJzqi4BpfmjWylKPmVdvth1tsGDnu5gTsFS9NG/1B5vQ0r4FXAc56zk7IqrpWGgQEelYSXEJ4g8kQi5T4OShMxpD7J5m27EFJFIx/Cd6w7xpQx1nWT0JhUJ079cF3ft1weOMLIRtjEJosAKpl9I14h6mZ2LLkt3YunQPeg3sDkmQH1wHOcPAkG97/9RT7IS3Vk7FyjeDAZRNlf983Hf4LmYJ2jq10nN2RFST8YpLRKQjd67fgzw4HIfXH8Gju4/LjTE0NoTXSFdIgsTo6tmpTnYvnlcjS3OMfG8wRrw7COeikyCXKRD1azyKC4vVMSqVCidC/8CJ0D/Q2LoRBkzph4AgPzRv00yPmVc/g18fgJSkNPy+KhQAkJ9TgAVDvsCqhGW1fokeEVUdFhpERFWouKgYcftOIkSmwKmwsxXGtXJsCYlUDPEELzRszC1GK0MgEMDJyxFOXo544/spUGyKglymwK2LtzXiHt19jG3LfsO2Zb+hp78TAqViuA3pxV2W/jRjxSTcvpKOk4fOAADupzzAomFf4avwT2BUz0jP2RFRTcRCg4ioCty+cgehf3YvHmc8KTfGqJ4hvEe7I1DqD0c3e3YvtKBhYzMMeycQr74twYXYS5DLFIjcGYuigmKNuFNhZ3Eq7CwaWZmj/yQfSKR+sGnfXE9ZVw8iAxHmb5+Nt93nISUpDQBwMe4yVkh/wUcbZ/L3k4gqjYUGEZGWFBUW49hvxyEPVuB0xPkK49p0tYNEKobfeE+YWTTQYYZ1h0AgQJe+DujS1wGvfzsZ4VuiIZcpcONcikbc4/tZ2PnVXuz8ai+6+3ZBoFQM91f6wMi4bnY5TM1N8dm+jzHTdS6ePMwGAIRviYatgw3Gzxuu5+yIqKZhoUFE9JJSL6VBLgvH4Q1H1R/O/qlefWP4jHaHZLo/HPq057fDOmRm0QCvvBWAoW8ORFLCFYTKFDi6IxYFeYUacacjzuN0xHmYNzWD/8SyLodtRxs9Za0/LdpZY9GeD/Ch+FOUFJfNLlm/YDvsHGzgOdxVz9kRUU3CQoOI6AUUFRQhencCQmRhOBeVVGFcu+6tETjdH77jPGDasL4OM6R/EggEcHS1h6OrPWasmISIrTEIkSlw7fRNjbisB9n4dcV+/LpiP5y8HREoFcNjmEuduk+hq2cnzPrf/+HrqT+pn1s+8Qc0a20Je+d2esyMiGoSFhpERJVw80Iq5DIFFJujkP0op9wYkwb14DvWAwFSMeyd27J7UQ2Zmpti8OsDMGhGf1xOvA756jBEbItBQa5ml+Ns5EWcjbwIs8YN4D/BGxKpH1o52uopa90aMLkfUi7exs6v9wEACvOLsHDocqxKWIamNk30nB0R1QQsNIiI/kNBXiGif41HiCwMF45dqjDOvlc7BErF8BnTF/XNTHSYIb0ogUCAjr3aoWOvdvi/bybh6PZjCJEpcPnkNY247Ec52PN9CPZ8H4LOfTsiUOoPr5GuMDYx1lPmujF12TikXk5H3L6TAMrmkyx85UusiFyMevVr92snopfHQoOIqAI3zt1CyOqy7kVuVl65MfXNTOA33hMSqRjte7TRcYakTfXNTCCRiiGRinHl1HXIZQpEbI1BXna+RtyFY5dw4dgl/DRrHfzGeyJwuhhtutbOwXYikQhzNr+NWZ4LcP3MLQDAlcTr+HLyKszfPhtCoVDPGRJRdSZQVTSSloiqFcXmKCyf+IP68ZZbP8PKtqkeM6qd8nMLELkjFvJgBZLir1QY5+DSAYFSMbxHu8PEtJ4OMyRdys/JR+TOOITIFEhOqPj3oZNrB0ik/vAe5VYrfx/up2TgLZc5yLyXpX5u/LzhmPzZGJ3lcD4mCbO9Fqoffxu1GF08Ouns/ERUeexoEBEBuHr6BuSrFQjfGo28J/nlxpia14f4NS9IpGK0daqd32CTJpMGJhg41RcDp/ri+tlb6vtz/tnhSoq/gqT4K/h59jr4jfOEZLoY7bvXng6XlZ0lFv32Id7vt0g9eX3L0t2wdbCB33hPPWdHRNUVCw0iqrPysvMrXJP/tL/W5HuOcOW69DqsrVMrvPXDNAQtfw1Ru+IgD1Y8c89O3pN87P/lMPb/chgde7eDROqPfmPcYdKg5t+z4+hqj/fXvoFl479XP/dN0M9o3tYKjm4d9ZgZEVVXLDSIqM65nHgN8tUKRGyLQX5OQbkxZhamEE/whkQqRuvOdWOXIXo+9eobo/8kH/Sf5PP3LmSbIpGdmasRd+nENVw6cQ2/vLsevmM9IJkurvFbw/qO9UBqcho2f/YrAKC4sBifvPoVViUsQ7NWlnrOjoiqGxYaRFQn5D7JQ8TWGMhlClz940aFcV29OpV1L4bXrbkJ9GJad7bFG99NwbRl4xCz53i5c1XycwoQIlMgRKZAh55tEBAkrtFzVSZ8MhIpyWmI2hUHoGy6+oIhX+C7mCXcbY2INLDQIKJaS6VSIfn4VchXh5U7CfovDZuYof8kHwQE+cHOoe5NgqaXZ2xiDL/xnvAb74mU5DTIZQqEbYx8ZlL8lVM3cOUNGVa/vxE+Y/pCIhXXuEnxQqEQH6x7E3dv3FcvObxxLgXLxn+PRb99AJFIpOcMiai6YKFBRLVOzuNcKDZHITQ4HNfP3qowrnu/zpBI/dH31T4wMjbUYYZUm9k52GDGN5Mw9fNxOPbbcchlYTh95IJGTEFeIQ6ujcDBtRFo69QKEqkYfuM90aCRqZ6yrpx69Y3x6e8fYqbLHDxIewQAiD+QiDUfb8H0rybqOTsiqi5YaBBRraBSqXAx7jJCZGGI2hmHwvyicuMaWTZE/8n9EBDkh5Ydmus4S6pLjIwN0W9MX/Qb0xe3L6cjNDgchzccxeOMJxpx18/ewqqZayD7cBO8RrkhUOoPRzf7at/laNqiMRbv/Qjvei1Udwt3fbMftg42CJjmp+fsiKg6YKFBRDXak0fZUGwq617cvJBaYVxPfydIgsRwH9oLhkbsXpButbRvAemXEzB5yRjE7j0JuSwMpxTnNGIK84sQtiESYRsi0bqzbVmX4zVPNGxspqes/1uHnm3x4caZWDzia/Vz378uQ4v21ujm3VmPmRFRdcBCg4hqHJVKhfMxyWXdi13x6n39/6mxdSP0n9wPkiA/NG/bTMdZEj3L0MgQ3iPd4D3SDenX7iJ0TQQOrYvQGIQHADcvpOKnWesg+2gzvEa6IlDqjy4eDtWyy+E5zAVTl47D2nlbAQClJaX4dPjX+CH+c9i0Z9eQqC5joUFENUbWgycI2xgJeXA4UpPTyo0RCAToNaAbJFIxXAc5w8CQlzmqnlq0s8a0z8dh0qejELc/EaHBCpw8dAYqlUodU1xYjPDN0QjfHA1bBxtIgvzgP9Eb5k0b6jHzZ435+BWkJN+GYlMUACD7UQ4WDFmOlbFLa8x9J0SkfXwHJqJqTaVS4czRCwiRKXBsTwKKi0rKjWvSwkI9wdm6tZWOsyR6cQaGBvAc5gLPYS64e/M+Dq6JQOjaCDy6k6kRl5qchv+9vxFr526Fx3AXSILE6ObTuVp0OQQCAWavnoH0a/dwMbZsiGFqchqWjPkWSw/MgciAO1ER1UUsNIioWsq8n4WwDUchDw5H2pU75cYIhQL0DugBiVQMF0lPfpihGs+6tRUmfzYGEz4ZiQT5KchlCpwI/QNK5VNdjqISHNl2DEe2HYNNh+ZlXY5JPrCwMtdj5mU3vy/a8wHedp2DuzczAACJh8/gp1nrMHNVkF5zIyL9YKFBRNWGUqnE6YjzCJEpEPv7cZQUl5YbZ9myCQKm+WHA1H6wsm2q4yyJqp7IQAT3Ib3hPqQ37qdk4ODaIzi4NgIZtx9qxKVduQPZR5uxbv42uL/SB4FSMbr7doFQKNRL3hZW5li872PM6jsfedn5AIB9Px2CXaeWGPrmQL3kRET6w0KDiPTu0d1MHFp3FKFrwnHn+r1yY4QiIVwHOUMS5IdeA7tzKBjVGVZ2lpi4aBTGLxiOkwdPI0SmQELIKShLleqYkuJSRO2KQ9SuODRv2wySID/0n+yDxtYWOs+3TRc7zN02CwuHfKHuxPw0ax1a2jeHs383nedDRPrDQoOI9EKpVCIx7CzkMgXi9p1EaUn53YtmrSzLuhdTfNDUpolukySqRkQiEVwCneES6IwHaQ/Vxfm9WxkacXeu38OauVuxfuEOuA3pBYlUDGd/J512OVwkPTH9q4n45b0NAABlqRKfjVqBlXGfw87BRmd5EJF+sdAgIp16kP4Ih9YeKfcD0l9EBiL1B6Se4q7sXhD9Q1ObJhg/fzjGzHkFp8LOQh4cjti9JzS6HKUlpYjZk4CYPQmwbm2JgdP8MGBKPzRt0VgnOQ6bFYiUpNuQB4cDAHKz8rBg8DL8EL8MDZtU39kgRKQ9LDSIqMqVlpZWuOTjafpe8kFU04hEIvQe2AO9B/bAwzuZOLz+KOTBCty9cV8j7u7NDKxfsB0bF+3U2RJEgUCAmT8GIe3qXZw5egEAkH7tHj4d8TW+ODSfgzOJ6gAWGkRUZe6nPijrXqwNR0bqw3JjDAxF1eImVqKarklzC4yd8ypGfzRUvanCsd+OayxLVJYqEbv3BGL3noClbRMETK3aTRUMDA2w8Nf3MNN1LtKv3gUAnI28iJVvBONd2YxqsTUvEVUdFhpEpFWlJaUVbsv5tBbtrREoFVeLbTmJahOhUIieYif0FDsh895jHN4QCXmwQv1B/y8ZqQ+x8dOd2PzZLvSR9ERAkF+VbBPdsLEZluz/GG+7zUPO41wAwMG1EbDr1BIj3xus1XMRUfXCQoOItOKvQWMH10XgYXpmuTGGRgbVbtAYUW1m0awRRn84FCPfH4yzkRfLHXypVKoQfyAR8QcS1YMvA6b5oVkrS63lYdvRBgt2vos5AUvVSydlH26CbccWcB3krLXzEFH1wkKDiF5YSXEJ4g8kQi5T4OShM1Cpyu9e2DrYlA0Vm+gN86YNdZwlEQmFQnTv1wXd+3VB1oMnCNsYCblMgdRL6RpxD9MzsWXJbmxduge9BnSDRCqG6yBnGBi+/MeFnmInvPXDNKx8QwYAUKlU+Hzcd/guZgnaOrV66eMTUfUjUFX0yYCI9K64VInku9k4l5aFQ0eTcfL4NahEQghKleg/tBd6d2yGrjbmcLA2g6FId/c23Ll+D/LgcBxefwSP7j4uN8bQ2BBeI10RKPVHFw8Hdi+IqhmVSoVz0UmQBysQtSsexYXF5cY1tm6EAVP6ISDID83bNHvp8/749lr8vipU/djKrilWJSyDRbNGz8Q+fQ2MSryJ6PAL6mugp19neDm31ss1kIieDwsNomrodmYeth5PwZaEFGTll735iwCUqlSAQACoVDAQCVHy5/0P5iaGGO9ih3F97NDSon6V5FRcVIy4fScRIlPgVNjZCuNaObaERCqGeIIXGjbmFpZENcGTR9lQbIqCXKbArYu3K4zr6e+EQKkYbkN6vfCuUaUlpZg/eBlOHjqjfs7RzR5fhX8Co3pGACq4BgqAUuXf10CRUIDSPz/B6OIaSESVx0KDqBp5UlCMz0OSsONkKgQCoIL7qMslFAAqAKOdbTEvsBPM6mln68jbV+4g9M/uxeOMJ+XGGNUzhPdodwRK/eHoZs/uBVENpVKpcDHuMkJkYYjcEYuigvK7HI2szNF/kg8CgvzQskPzSp8nNysXb7vPQ0pSmvo5v/GeeH31DCyTJ1erayARvTgWGkTVRNTlDLy36wwe5hZW6s31n4QCoGkDY3w9ohu87F/sZs6iwmIc++045LIwnD5yocK4Nl3tEDjdH37jPdGgkemLpkxE1VB2Zg7Ct0RDLlPgxrmUCuO6+3aBJEiMvq/2gZHx83+4T792FzNd5+LJw2wAQG7rFngyxh95EOj9GkhE2sFCg6ga2BB7E5/svwBhJb/Bq8hfx1k8pDMmurV+7p9LSU6DXKZA2MZI9Zv/P9Wrbwyf0e6QTPeHQ5/27F4Q1XIqlQrJx69CvjoMR3fEoiCvsNy4hk3M0H+SDyRSP9h2tHmuY5+LTsKH4k/xoGsHZPi7AkoloIVZOi96DSQi7WKhQaRnG+NuYuG+irsGL+u/3miLCooQvTsBIbIwnItKqjCufY82kEjF8B3nAdOGXANNVBflZuUiYtsxhKwOw7XTNyuM6+rVCYFSf3gOd1Hfd1GRj789jO33y1+ipQ0sNoj0h4UGkR5FXc7AxHXHq/w8G6f0eWYJwc0LqZDLFFBsikR2Zm65P2fSoB58x3pAMl0Me+d2VZ4nEdUMKpUKlxOvI1SmQMS2GOTnFJQbZ9a4AfwneEMi9UMrR9tn/l2f10AiqnosNIj05ElBMfy+iXzpezL+y1/rlcPf9YahUonoX+MRIgvDhWOXKvyZjr3bQRIkhs+YvqhvZlJ1yRFRjZeXnY+j248hRKbA5ZPXKozr3LcjAqX+8BrpCmMTY71cA3mDOJFusdAg0pOPd5/FzsTU53qDVRbl40nCHhSmX0LRnctQFuSgiWQWGjiJn+tcQgHQuSgPojUHkJuVV25MfTMT+I33hEQqRvsebSrzUoiIAABX/7gBuUyB8C3RyMvOLzemQSNT+I33RFK3Tgi9nvmf18DCO5eRey4cBSnnUJJ1D0KThjBu0RGNvCbAsPHz3QsiFACjetnii2FOlX1JRPQSWGgQ6UFqZh68vjyC5/3jK3l8D2m/TIOooSUMGlmjMOVcpQoNAIBKhda//ArDJ5rLpDq5doBE6g/vUW4wMa33/McjIqpAfm4BInfEIkSmQHLClWf+vbhhA9ycMbxsJsZ/yPjtcxTeTkJ9Bw8YWrVGaU4msk8dgKqoANYTv4aRZevnykkgAKI/6Mc5G0Q6xEKDSA++PJSMXyKvPfdyAVVJMZQFORA1sEDhnSu4u2F25QsNpRIW8efQNPoPmJrXh/g1L0ikYrR1avViL4KI6DlcP3ur7H6wzVHqjuoDr57IdOnyXDtMFdxOgnHz9hCI/l72VPwoDelr3oKpQ180Hfz+c+UhEgAzvNvhgwEOL/ZCiKjSWGgQ6VhxqRK9lirU024r64ULDQCGxcVY2bUR+o10Q736xi90fiKiF1GQV4ioXXE4sCYcB3r2gNLk5a5Bd9a9AwBoPuX75/4ZcxNDnJwnhqHo5bfQJaL/xr80Ih1Lvpv9wkXGyyo2NIStuAeLDCLSuXr1jdF/kg+k295/6SJDpVKhNO8xhPUbVurnsvKLcelu+TOCiEj7WGgQ6di5tKw6fX4iqtu0cQ3KvXAUpdkPYergqZfzE9HzMdB3AkR1zfm0LBgIBSipyv0cKyASAJGJN9G1qPy5GUREVS3qXAZEAqD0BS+BxQ9T8SjsZxjbOMC0q1+lftZAKMC5tCyMfbFTE1ElsdAg0rH72YV6KTIAoFSpQrTiAq69GaGX8xMRpQ/zRWl72+faceqfSnMycX/XpxAam6LpK3MgEIoq9fMlShUycgorfV4iejEsNIh0rKikVH8nFwigMuCKSSLSH5VI+EJFhrIgF/d2fgJlQS6avbYcBmZNXuj8hcV6vAYT1TH8xEGkY0YGlfsGTqtUKghKlPo7PxHVeYJSJVDJDS9VJUW4/+tilGSmwWrkQhg1tXvh8xsb6vEaTFTHsKNBpGNWZsb6u0dDKICnuDPemu2j83MTEQHAqnMZCEvNfu57NFTKUmT8vhyF6cmwGj4fxjadXvjcBkIBLBtw1z0iXWGhQaRjXWzMsfV4SqV/7knifigLclGa8wgAkH/1OEqyHwAAGjoPhrCe6X8eo1QFeDu3Rpc+L/5tIBHRy/AyMsXBlHPPHZ8ZsQb5VxNg0r4PSvNzkHP+iMa/N+jS77mPVaJUoauN+XPHE9HLYaFBpGMv+ib3JOE3lD65r36cdzkWuBwLAGjQud9zFRovc34iIm2o7DWo6N51AGVfruRfPf7Mv1em0HiR8xPRi2OhQaRjDtZmMDcxrPTQvpZvrH3pc5ubGKKjtdlLH4eI6EVV9hpoPf4LrZ2b10Ai3eLN4EQ6ZigSYryLHYSV33TlpYgEwGsudjAU8c+eiPSH10CiuoN/bUR6MK6PXWU3XXlpSgBjeW8GEVUDvAYS1Q0sNIj0oKVFfYzuZauzb/SEAmB0L1u0tKivmxMSEf0LXgOJ6gYWGkR6Mi+wE5o2MK7yN1qhAGjawBjzJC++JSQRkbbxGkhU+7HQINITs3qG+HpEN1T1OA2lCvh6RDeY1TOs2hMREVUCr4FEtR8LDSI98rK3xOIhnav0HJ8N6Qwve8sqPQcR0YvgNZCodmOhQaRnE91aq99otbWE4K/jfDakMya4tdbOQYmIqgCvgUS1l0Cl0vW+D0RUnqjLGXj/1zN4kFP4UksJ/lqP/PWIbvwWj4hqDF4DiWofFhpE1ciTgmJ8HpKEHYmpEAIorcRfp0hQtn3jaGdbzAvsxPXIRFTj8BpIVLuw0CCqhm5n5mHb8RRsTkhRT881EApQ8tTXfE8/NjcxxGsudhjbx47bNxJRjcdrIFHtwEKDqBorLlXi0t1snEvLwrm0LGTkFKKwuBTGhiJYNjBGVxtzdLUxR0drM067JaJah9dAopqNhQYREREREWkdy38iIiIiItI6FhpERERERKR1LDSIiIiIiEjrWGgQEREREZHWsdAgIiIiIiKtY6FBRERERERax0KDiIiIiIi0joUGERERERFpHQsNIiIiIiLSOhYaRERERESkdSw0iIiIiIhI61hoEBERERGR1rHQICIiIiIirWOhQUREREREWsdCg4iIiIiItI6FBhERERERaR0LDSIiIiIi0joWGkREREREpHUsNIiIiIiISOtYaBARERERkdax0CAiIiIiIq1joUFERERERFrHQoOIiIiIiLSOhQYREREREWkdCw0iIiIiItI6FhpERERERKR1LDSIiIiIiEjrWGgQEREREZHWsdAgIiIiIiKtY6FBRERERERax0KDiIiIiIi0joUGERERERFp3f8Dn97BXX/3mGQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nodes = 6\n", + "edge_probability = 0.6\n", + "g = nx.generators.fast_gnp_random_graph(n=nodes, p=edge_probability, seed=42)\n", + "\n", + "# import graph plotter from openqaoa\n", + "from openqaoa.utilities import plot_graph\n", + "plot_graph(g)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Use the MaximumCut class to instantiate the problem.\n", + "maxcut_prob = MaximumCut(g)\n", + "\n", + "# The property `qubo` translates the problem into a binary Qubo problem. \n", + "# The binary values can be access via the `asdict()` method.\n", + "maxcut_qubo = maxcut_prob.qubo" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'constant': 0,\n", + " 'metadata': {},\n", + " 'n': 6,\n", + " 'problem_instance': {'G': {'directed': False,\n", + " 'graph': {},\n", + " 'links': [{'source': 0, 'target': 2},\n", + " {'source': 0, 'target': 3},\n", + " {'source': 0, 'target': 4},\n", + " {'source': 1, 'target': 2},\n", + " {'source': 1, 'target': 3},\n", + " {'source': 1, 'target': 5},\n", + " {'source': 2, 'target': 4},\n", + " {'source': 2, 'target': 5},\n", + " {'source': 3, 'target': 5},\n", + " {'source': 4, 'target': 5}],\n", + " 'multigraph': False,\n", + " 'nodes': [{'id': 0},\n", + " {'id': 1},\n", + " {'id': 2},\n", + " {'id': 3},\n", + " {'id': 4},\n", + " {'id': 5}]},\n", + " 'problem_type': 'maximum_cut'},\n", + " 'terms': [[0, 2],\n", + " [0, 3],\n", + " [0, 4],\n", + " [1, 2],\n", + " [1, 3],\n", + " [1, 5],\n", + " [2, 4],\n", + " [2, 5],\n", + " [3, 5],\n", + " [4, 5]],\n", + " 'weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]}\n" + ] + } + ], + "source": [ + "pprint(maxcut_qubo.asdict())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Extract the exact solution for a small enough problem\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ground State energy: -6.0, Solution: ['001110', '110001']\n" + ] + } + ], + "source": [ + "hamiltonian = maxcut_qubo.hamiltonian\n", + "\n", + "# import the brute-force solver to obtain exact solution\n", + "from openqaoa.utilities import ground_state_hamiltonian\n", + "energy, configuration = ground_state_hamiltonian(hamiltonian)\n", + "print(f\"Ground State energy: {energy}, Solution: {configuration}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAGFCAYAAACCBut2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABmDUlEQVR4nO3dd3iM2d8G8HtmUkikSRAiURLB6CVEiwy7rF11tei9BmHVRbpYLEvUKIkoQZBYbVk1CUKiZPUoIZUgRXqbmfP+4SfvWi2JmXmmfD/X9bveXYnz3PbFc895zjkPjzHGQAghhBCNxuc6ACGEEEK4R4WAEEIIIVQICCGEEEKFgBBCCCGgQkAIIYQQUCEghBBCCKgQEEIIIQSAVlm+SSqV4sWLFzAwMACPx5N3JkIIIYTIAGMMOTk5qFWrFvj8L88BlKkQvHjxApaWljIJRwghhBDFSkpKQu3atb/4PWUqBAYGBqUDGhoafnsyQgghhMhddnY2LC0tS+/jX1KmQvD+MYGhoSEVAkIIIUTFlOVxPy0qJIQQQggVAkIIIYRQISCEEEIIqBAQQgghBFQICCGEEAIqBIQQQggBFQJCCCGEgAoBIYQQQkCFgBBCCCGgQkAIIYQQUCEghBBCCKgQEEIIIQRUCAghhBACKgSEEEIIARUCQgghhIAKASGEEEIAaHEdgBBCCFEVeUVixKfnoVgshY4WH3VN9aGvqx63UvX4VRBCCCFy8uRVDoKiEnEx9jUSM/LB/vU1HgCrqnoQNaqOEe2t0KCGAVcxvxmPMca+9k3Z2dkwMjJCVlYWDA0NFZGLEEII4VRSRj4Wh97FpadpEPB5kEg/f7t8//UuNmZY/nMzWFbVU2DSzyvP/ZvWEBBCCCH/cSA6Ed/9EY7IZ+kA8MUy8O+vRz5Lx3d/hONAdKLcM8oaPTIghBBC/mXjhSdYfeZxhX6uRMogkTIsCr2LtNwizOjWQMbp5IdmCAghhJD/ORCdWOEy8F+rzzxG8HXVmSmgQkAIIYTg3ZoB92P3ZTqm29H7SMrIl+mY8kKFgBBCCAGwOPQuxF9ZK1BeYinD4tC7Mh1TXqgQEEII0XhPXuXg0tO0ry4eLC+JlOHS0zQ8fZ0j03HlgQoBIYQQjRcUlQgBnyeXsQV8HvZeU/61BFQICCGEaLyLsa9lPjvwnkTKcPHRa7mMLUtUCAghhGi03CIxEuW88C8xPR95RWK5XuNbUSEghBCi0RLS8yCfuYH/xwDEp+fJ+Srfhg4mIoQQonEYY8jOzkZaWhpuPXqhkGsWi6UKuU5FUSEghBCi8iQSCdLT0/HmzRukpaXhzZs3pf/797+//+e0tDQUFxcDALSr10OtcRvknlFHS7kn5akQEEIIUToFBQWfvJF/7iafkZGB/76rTyAQwMzMDNWqVUO1atVgZmaGhg0bfvDv1apVQxVjUww9mCzXxwY8AHVN9eV4hW9HhYAQQohcMcaQlZVV5k/vb968QV7ex8/b9fT0PriR16tXD+3atfvopv/+n42NjcHjlW0rodW5DCTIcWGhlake9HWV+5ar3OkIIYQoHbFYXDo9X5abfFpaGkpKSj4ax8TE5IMbeYsWLT55Y3//z3p68nulsKhRdey5liCXrYcCPg+ihtVlPq6sUSEghBANl5+fX65P75mZmR+NoaWl9dGNvHHjxqX//N+vmZqaQktLeW5BI9pbITAyXi5jS6QMI+2t5DK2LCnP/zcIIYR8M6lUWjo9X9abfH7+x1Pl+vr6H9zIra2tYW9v/9lP70ZGRmWenldGDWoYoIuNGa7EpUGWkwQCPg8d65vCprqB7AaVEyoEhBCixEpKSkqn3cvy6T0tLQ0SieSjcapWrfrBp/XWrVt/9tO7mZkZKleuzMGvlluddBMRUaIFnkAbkFG50eLzsPznZjIZS96oEBBCiIIwxkqn58v66f3t27cfjaOtrf3BzbtGjRpo2rTpBzf1f9/kq1atqlTT88qmuLgYCxYsgK+vL7pNXIo4U3uZje3Vrwksq8pv7YMs0e8QopHyisSIT89DsVgKHS0+6prqK/0KYKJ8pFIpMjMzy/zp/c2bNygsLPxonCpVqnxwI7e1tUWnTp0++uT+/t8NDQ1VenpemSQnJ2PIkCG4ceMGNmzYAGdnZ4xcvgdXckzx7nzBiv93nt+zIYbaKf/agffob0CiMZ68ykFQVCIuxr5GYkb+B3uOeQCsqupB1Kg6RrS3QoMayv+8j8hecXHxBwfXfO4m//7f09PTP5qe5/F4MDU1/eBGXrdu3c9+ejczM0OlSpU4+hVrtvPnz2PYsGHQ1dVFREQE7O3tcebMGRxwG4f+c3/HPZ3GEEtZuXYeCPg8aPF58OrXRKXKAADw2H9PcviE7OxsGBkZISsrC4aGhorIRYjMJGXkY3HoXVx6mgYBn/fFP9zvv97FxgzLf26mMlN95GOMMeTm5pbr03t2dvZH4+jo6HzxWft/v1a1alUIBAIOfsWkrKRSKVasWAFXV1d069YN+/btQ7Vq1RAbGwt7e3t06tQJx44dw4usIpX/u6M8928qBEStHYhOhPux+xVu+Z59m8CpnWq1fHUllUqRkZFRphv7+38vKir6aBxDQ8PPflr/1E2+SpUqND2vRjIzMzF69GicOHECrq6ucHd3h0AgQEZGBtq3bw8dHR1cvXr1g3td6ezio9dITP/E7KKpHkQNq2OkvZXS7SagQkAIgI0XnmD1mcffPM68HraY0a2BDBKRfysqKirTtPz7f87IyIBU+uHLYfh8PkxNTcv86d3MzAy6uroc/YoJ127duoVBgwbh7du32LNnD3766ScA73Zy9OrVC//88w+io6NRv379z46hauuPynP/Vt5fBSHf4EB0okzKAACsPvMY1Qx0Ve55oCIxxpCTk1OuT+85OTkfjaOrq/vBTdzS0hKtWrX67E3exMQEfL5yvzCGKAd/f384OzujadOmuHDhAurWrVv6tTlz5iA8PBxnz579YhkAAH1dLTSpZSTntNygQkDUTlJGPtyP3ZfpmG5H76OjtZnSPBeUN4lE8sH0fFm2yL1/c9y/GRkZfXAjb9q06Rc/yevr69P0PJGpgoICODs7Y+fOnZg8eTJ8fX0/WMS5ZcsWbNq0CVu3boWjoyN3QZUAFQKidhaH3oVYxueRi6UMi0PvYs/E9jIdV1EKCwvL9en9c2+O++/0fIMGDT776d3U1BQ6Ojoc/YoJAeLi4jBo0CDExsYiMDAQY8aM+eDrFy5cwMyZMzFr1ixMnjyZo5TKgwoBUStPXuXg0tM0mY8rkTJcepqGp69zOF809P7NceV5NWxubu5H41SuXPmDG3ndunVhZ2f3xTfH0fQ8URVHjx7FmDFjUK1aNURFRaF58+YffP3p06cYNGgQunXrhjVr1nCUUrlQISBqJSgq8avbgypKwOdh77VEePRtItNx//3muLLc5D/35jhjY+MPbuTNmzf/4mI7fX3lfjc7IRUhFovh6uqKFStWoH///ggMDISR0YfP/LOystCnTx9Uq1YNwcHBdIrj/9B/BaJWLsa+lksZAN7NElx89Boe+HIhyM/PL9en94yMjI/G0NLSKl0V//5G3qhRoy++OU5bW1suv25CVMWrV68wbNgwREREYNWqVZg3b95Ha1IkEgmcnJyQmpqKqKgomJiYcJRW+VAhIGojt0iMxIyP39omSwnpedi8zR/ZGW8+e5P/1Jvj9PT0PriR169fH+3bt//sp3djY2NaXEdIOVy+fBlDhgyBVCrF+fPn0bVr109+3/z583H27FmcOnUKtra2Ck6p3KgQELWRkJ4H+cwN/BsPs119YCDO+uBG3rJlyy8edKOnpxm7EwhRNMYY1q1bh/nz56Njx44IDg5GzZo1P/m9/v7+WLt2LTZs2IDvv/9ewUmVHxUCojaKxdKvf5MMRF6LRtt6Zgq5FiHk87KzszFhwgQcPnwY8+bNw/Llyz/76OzSpUuYNm0apk6dCmdnZwUnVQ1UCIja0NFSzAr4yrr0rJ4Qrt27dw8DBw7Ey5cvERISgp9//vmz3/v8+XP8/PPP6NSpE9avX0+P4z6D9hARtVHXVP8bXlRaNrz/XYcQwp2goKDS9w7cuHHji2UgJycHffv2haGhIQ4fPkyLb7+ACgFRG/q6WrCS80mCVqZ6Sn1uOSHqrKioCM7Ozhg5ciQGDhyIa9eufXFhoEQiwYgRI5CYmIjjx4/D1NRUgWlVDxUColZEjapDwJfTPIFUAoOcRLx48UI+4xNCPisxMREODg7YsWMH/Pz8sGvXrq+epbFkyRKcPHkSBw4cgFAoVFBS1UWFgKiVEe2t5HYOAfgChO3whqWlJXr37o3Q0NBPnt9PCJGtM2fOoHXr1khNTcXly5cxZcqUr64D2LNnD1auXInff/8dvXr1UlBS1UaFgKiVBjUM0MXGTOazBAI+D11szJD84AY2b96MN2/eYODAgbCwsMAvv/yCe/fuyfR6hBBAKpXCy8sLP/zwA+zs7HDr1i3Y2dl99eddu3YNEydOxLhx4zBnzhwFJFUPPPbfN5h8Qnnep0wI15Iy8vHdH+EokuE2RF0tPs790vWDtx3eu3cPO3fuxJ49e/DmzRvY2dlh/PjxcHJygrGxscyuTYgmSk9Px8iRI/H333/Dw8MDS5cuLdO7NBITE9GuXTs0aNAA586dg66urgLSKq/y3L9phoCoHcuqevCU8fsGvPo1+ejVx02bNsWaNWuQnJyM0NBQ1KhRA87OzqhZsyZGjhyJCxcuQCpVzNkIhKiT69evo3Xr1rh+/TpOnToFNze3MpWBvLw89OvXD5UqVUJISIjGl4HyokJA1JJTOyvM7fFu9XEZJsG+aH7PhhhqZ/XZr+vo6GDAgAE4fvw4kpKS4OHhgevXr6N79+6wtraGl5cXEhISvikDIZqAMQY/Pz907twZ5ubmuHXrFnr27FmmnyuVSjFmzBg8efIEx44dQ/Xq1eWcVv1QISBqS+95BNJPrYc2H+VeUyDg86CrxcfKgc3gLLIp88+rVasWFi5ciNjYWFy5cgXdu3fH77//jnr16qFHjx7Yv38/CgsLy/tLIUTt5efnY8yYMZg2bRomTZqEiIgIWFl9voj/l4eHB0JDQ7Fv376PXnVMyoYKAVFLDx8+xKxZszCsfR1cnN8NHeu/23/8tWLApBIAQMf6pjj3S9cvzgx8CY/HQ8eOHbFjxw68fPkSAQEBKCwsxPDhw1GzZk04Ozvj5s2b3zx7QYg6ePz4Mdq3b4+QkBAEBQVh48aN5ZruDw4Ohre3N5YvX46+ffvKMal6o0WFRO0UFhbC3t4excXFuHHjRumLhZ68ykFQVCIuPnqNxPT8D16ExMO7Q4dyHl2DOPYibl/6Wy7Hmz5+/BiBgYHYtWsXXrx4gebNm2P8+PEYMWIEzMzo/QhE84SGhmLs2LGoWbMmQkND0aRJ+db/3LhxA126dMGgQYOwe/duOpb4P8p1/2ZlkJWVxQCwrKyssnw7IZyaOXMm09XVZbdv3/7s9+QWlrB7KW/ZrYQMdi/lLcstLGGMMXbmzBkGgIWFhck1Y0lJCTt58iQbOHAg09bWZtra2mzQoEHsr7/+YmKxWK7XJkQZFBcXs7lz5zIAbNCgQRW6vyQnJ7NatWqx9u3bs4KCAjmkVH3luX9TISBq5dixYwwA27hxY4V+vlQqZUKhkA0YMEDGyT7v9evXbO3ataxZs2YMALOwsGCLFy9mT548UVgGQhTpxYsXrEuXLkxLS4utXbuWSaXSco+Rn5/P2rZty2rXrs1evnwph5TqgQoB0UjJycnM1NSU9e3bt0J/wbzn5+fH+Hw+e/78uezClYFUKmXXr19n06ZNY0ZGRgwAc3BwYIGBgSw3N1ehWQiRl7CwMFajRg1Ws2ZNdunSpQqNIZVKmZOTE6tcuTK7efOmjBOql/Lcv2lRIVELEokEo0aNQqVKlRAQEPBNzxFHjRoFIyMjbNy4UYYJv47H46Ft27bYvHkzXr58iX379kFHRwdjx46Fubk5Jk2ahMjISFqISFQSYwy///47unfvDqFQiJiYGHTu3LlCY/n4+ODAgQPYvXs3WrduLeOkGkzWDYMQLixbtozxeDx28eJFmYy3cOFCZmRkxHJycmQy3rd4/vw58/DwYHXq1GEAWMOGDdnKlStpmpSojLdv37L+/fszAGzRokWspKSkwmOFhIQwAMzT01OGCdUXPTIgGuXKlStMIBAwV1dXmY2ZmJjIBAJBhdciyINEImHnzp1jw4cPZ7q6ukwgELA+ffqwI0eOsOLiYq7jEfJJt2/fZjY2NszIyIgdPXr0m8aKiYlhenp6bMiQId/0WFCTlOf+TdsOiUp7+/YtWrZsCQsLC4SHh0NLS0tmYw8ZMgS3b9/Gw4cPy3RsqiJlZmbiwIEDCAgIwI0bN1C9enWMGjUK48aNK/e2LULkZdeuXZg2bRpsbW0REhICa2vrCo+VmpqKdu3aoXr16oiIiCjdTky+jN5lQDQCYwyTJ0/G27dvsW/fPpmWAQBwcXHB48eP8ffff8t0XFkwMTHBtGnTcP36ddy+fRvDhw9HYGAgmjZtCnt7e2zbtg1ZWVlcxyQaqrCwEFOmTMHYsWMxbNgwXL169ZvKQGFhIQYMGACxWIyjR49SGZAXWU85EKIo27dvZwDYoUOH5DK+VCplbdu2ZT169JDL+LJWVFTEDh8+zH788UfG5/NZ5cqV2ahRo9jFixeZRCLhOh7REM+ePWOtW7dmurq6bMeOHd88nlQqZaNHj2a6urosKipKBgk1C60hIGrvwYMHrHLlymzy5Mlyvc6ePXsYAPbgwQO5XkfWkpOT2W+//cYaNGjAALD69eszLy8vlpCQwHU0osZOnjzJTExMWL169WS2HXDlypUMAAsKCpLJeJqGCgFRawUFBax58+ascePGLC8vT67XKioqYubm5mzq1KlyvY68SKVSdunSJTZu3Dimr6/PeDwe69GjBztw4ACd7EZkRiwWM1dXVwaA9e7dm2VkZMhk3GPHjjEej8eWLFkik/E0ERUCotbKcjSxLHl6erLKlSuz9PR0hVxPXrKzs5m/vz/r1KkTA8BMTEzYjBkz2K1bt7iORlTY69ev2ffff8/4fD7z8fGR2eOpu3fvsipVqrD+/fvTI69vQIWAqK2jR49+09HEFfHq1Sumo6PDVq5cqbBryltsbCxbuHAhMzc3ZwBYy5Yt2fr161laWhrX0YgKuXr1KqtduzarVq0aO3funMzGff36Natbty5r0aKFUpwFospo2yFRSykpKWjevDm6dOmCI0eOKPStZuPGjcP58+fx7Nkzme9m4JJYLMbp06cREBCA48ePg8/no3///hg/fjy+++47CAQCriMSJcQYw6ZNm/DLL7+gbdu2OHToECwsLGQydnFxMb7//nvExsYiOjoaderUkcm4moredkjUjlgsZo6OjszCwoKTT7ExMTFy3dGgDF69esXWrFnDmjRpwgCw2rVrs6VLl7KnT59yHY0okZycHObk5MQAMBcXF1ZUVCSzsaVSKZswYQLT0dFhV65ckdm4moweGRC18/5oYnm/lvhLHBwcWKdOnTi7vqJIpVIWHR3Npk6dygwNDRkA5ujoyHbt2kUvWdJwDx48YI0bN2ZVqlRhwcHBMh9/3bp1DAALDAyU+diaigoBUSvyOJq4IkJDQxkAduPGDU5zKFJeXh7bu3cv69atGwPADAwM2KRJk9jVq1fp6FgNExwczPT19Vnjxo3lsg331KlTjM/ns/nz58t8bE1GawiI2nj79i1atGgBS0tLhIWFcfr8XiKRwMbGBl26dMHu3bs5y8GV58+fIzAwEDt37kRSUhIaN26M8ePHY9SoUahRowbX8YicFBcXY8GCBfD19cWwYcOwbds2VKlSRabXiI2NRfv27dGlSxccPXqU1q7IEK0hIGpBKpWywYMHM2NjYxYfH891HMYYY6tXr2ba2toa/aZBsVjMzpw5w5ycnJiuri7T0tJi/fr1Y0ePHqWXLKmZ5ORk1rFjR6atrc02bNggl1mh9PR0ZmNjw5o0aUL3GDkoz/2b3mVAlJa/vz8OHTqE7du3K81K4wkTJkBHRwdbtmzhOgpnBAIBvv/+e+zfvx8vXrzAunXrkJSUhH79+sHS0hILFizAw4cPuY5JvtH58+fRqlUrJCYmIiIiAjNmzJD5zp6SkhIMHjwYmZmZOHbsGM1Ac03WDYMQWbh//75CjiauCGdnZ1a9enVWWFjIdRSlEhMTw2bNmsWqVq3KALAOHTqw7du3098bKkYikTAfHx/G5/PZd999x16/fi23a02fPp1paWlxulhY3dGiQqLSCgoKWLNmzZhQKJT70cQVERsbSyuhv6CwsJAdOnSI9erVi/H5fKanp8fGjBnDwsLCaCGiksvIyGC9e/dmAJirqysTi8Vyu9amTZsYALZt2za5XYNQISAqbsaMGUxXV5fduXOH6yif1atXL9aqVSu6wX1FUlIS8/HxYdbW1gwAs7a2ZsuWLWNJSUlcRyP/cevWLVavXj1mYmLCTpw4IddrnTt3jgkEAubi4iLX6xAqBESFvT+aeNOmTVxH+aLTp08zACw8PJzrKCpBKpWy8PBwNmbMGKanp8f4fD774Ycf2MGDB+nRixLYsWMH09XVZW3atGHPnz+X67UeP37MTExMWI8ePVhJSYlcr0Vo2yFRUcnJyWjRogUcHBwQGhqq0KOJy4sxhiZNmqBx48YICQnhOo5Kyc7OxsGDBxEQEICrV6+iatWqGDlyJMaPH48WLVpwHU+jFBQUwNnZGTt37sTkyZPh6+uLSpUqye16b9++hb29PRhjiIqKgrGxsdyuRd4pz/2bdhkQpSCRSDBy5Ejo6enB399fqcsAAPB4PMyaNQt//vkn4uPjuY6jUgwNDTFx4kRERkbiwYMHmDBhAoKDg9GyZUu0adMGmzZtQkZGBtcx1V5cXBw6duyI/fv3IzAwEFu3bpVrGRCLxXBycsKrV69w/PhxKgNKiAoBUQq//fYbLl26hL1796Jq1apcxymTUaNGwdDQEJs2beI6ispq3LgxVq1ahaSkJBw9ehSWlpZwcXFBrVq1MGzYMJw9exYSiYTrmGrn2LFjaNOmDXJzcxEVFYUxY8bI/Zrz58/HuXPncOjQIdja2sr9eqQCZP0MgpDyunz5MhMIBMzNzY3rKOU2f/58ZmRkRK9olaHU1FS2evVq1rhxYwaAWVlZMTc3N/bs2TOuo6m8kpIStmjRIgaA9e/fn719+1Yh192+fbvCX1tO3qFFhURlZGRkMCsrK9a5c2eVXGCUkJDABAKB0i+CVEVSqZRdu3aNTZ48mRkYGDAATCQSsT179ijldlRll5qaykQiERMIBGzVqlUK2yETHh7OtLW12dSpU2lXDgdoUSFRCYwxDB48GOfPn8ft27dhZWXFdaQKGTx4MO7evYsHDx6Az6encPKQl5eH0NBQBAQEICwsDIaGhhg2bBjGjx8POzs7pV9zwrUrV65g8ODBkEqlCA4ORteuXRVy3efPn8POzg7NmzfH33//DW1tbYVcl/w/WlRIVMKOHTsQEhKCHTt2qGwZAAAXFxc8evQIZ86c4TqK2tLX18eoUaNw8eJFPH36FLNmzcLJkyfRvn17NGvWDH/88Qdev37NdUylwxjD2rVr4ejoCBsbG8TExCisDGRnZ6NPnz4wNjbGoUOHqAyoAllPORBSFu+PJp4yZQrXUb6ZVCplrVu3Zj179uQ6ikYRi8Xs9OnTbMiQIUxHR4dpaWmxAQMGsOPHj6vk4ydZy8rKYoMGDWIA2Lx58xT64imxWMx69+7NDA0N5fKqZFJ2tIaAKLX8/HzWrFkz1qRJE7V5Frxr1y4GgD18+JDrKBopLS2NrV+/nrVs2ZIBYObm5mzhwoUsNjaW62icuHfvHmvYsCEzMDBgISEhCr/+ggULGJ/PZ3/99ZfCr00+RIWAKDVnZ2dWqVIldvfuXa6jyExhYSGrUaMGmzZtGtdRNN6tW7fYzJkzmYmJCQPAOnXqxPz9/Vl2djbX0RRi7969TE9PjzVt2pQ9evRI4dd/X47/+OMPhV+bfIwKAVFaf/75JwPANm/ezHUUmfPw8GB6enosIyOD6yiEvXtJVnBwMOvZsyfj8XhMX1+fjR07lkVERKjlavfCwkI2ffp0BoCNGjWK5ebmKjzDlStXmI6ODhs/frxa/jdWRVQIiFJKSkpiVatWZf3791fLvyxSU1OZjo4OW7VqFddRyH8kJiYyb29vVr9+fQaANWjQgC1fvpwlJydzHU0mEhISWLt27ZiOjg7z8/Pj5M9XQkICq169OuvSpQsrKipS+PXJp9G2Q6J0JBIJunfvjri4ONy+fVtlTiMsrzFjxiAsLAxxcXHQ0tLiOg75D6lUioiICAQEBODw4cMoKirCDz/8gPHjx6NPnz7Q0dHhOmK5nTlzBsOHD4e+vj4OHz4MOzs7hWfIzc1F586d8fbtW1y/fh3VqlVTeAbyabTtkCid5cuX49KlSwgKClLbMgC824KYmJiIo0ePch2FfAKfz4ejoyN2796Nly9fYsuWLUhPT8egQYNgYWGBOXPm4O7du1zHLBOpVAovLy/88MMPsLOzw61btzgpA1KpFKNHj0ZcXByOHz9OZUCVyXrKgZD/unz5MuPz+czd3Z3rKArRpUsX1qVLF65jkHK4d+8emzt3LqtWrRoDwNq2bcs2b97MMjMzuY72SWlpaaxXr16Mx+MxT09PJpFIOMuydOlSxuPx2NGjRznLQD6P1hAQpaHqRxNXxOHDhxkAdvPmTa6jkHIqLi5mf/75J+vbty8TCASsUqVKbPjw4ezcuXOc3nT/LTo6mllZWTFTU1N2+vRpTrPs27ePAWArVqzgNAf5PCoERClIpVI2cOBAZmxszBISEriOozAlJSXMysqKjR49muso5Bu8fPmSrVq1ijVq1IgBYHXq1GHu7u7s+fPnnOSRSqXMz8+P6ejosHbt2nH+ZyoqKopVqlSJjRo1Si0XCasLKgREKWzdupUB4ORgFK79/vvvTEdHh6WmpnIdhXwjqVTKIiMj2cSJE1mVKlUYANa9e3cWFBTE8vPzFZIhLy+PjRo1igFgzs7OrLCwUCHX/Zzk5GRWs2ZNZm9vzwoKCjjNQr6sPPdvWlRI5OL+/ftwcXHB1KlT8fPPP3MdR+EmTJgALS0t+Pn5cR2FfCMej4cOHTpg+/btSE1NRWBgIEpKSjBixAjUrFkT06dPx40bN8C+vmGrQh4/foz27dsjJCQEQUFB2LhxI3R1deVyrbLIz89H//79IRAIcOTIEVSqVImzLES2aNshkbmCggK0b98eUqkU169fR+XKlbmOxInp06cjJCQEiYmJnP4FTuTjyZMnCAwMRGBgIF68eIFmzZph/PjxGDFihMxW2oeGhmLs2LGoVasWQkJC0KRJE5mMW1GMMQwbNgzHjx/H5cuX0apVK07zkK8r1/1b1lMOhEyfPl3tjiauiIcPHzIAbNeuXVxHIXIkFovZX3/9xQYNGsS0tbWZtrY2GzhwIDt58mSFF9IWFxezuXPnMgBs0KBBSnPsspeXFwPADh8+zHUUUka0hoBw5siRI2p7NHFF/PDDD6x169a06EpDvHnzhvn6+rLmzZszAKxWrVrs119/ZY8fPy7zGC9evGBdunRhWlpabO3atUrze+f97hkvLy+uo5ByoEJAOJGYmMhMTEzYgAEDlOYvMa6dOnWKAWCXLl3iOgpRIKlUym7evMmcnZ2ZsbExA8A6d+7MAgICWE5Ozmd/XlhYGKtRowarWbOmUv2euXXrFtPT02NDhw6lP9sqho4uJgonkUjQrVs3PHv2TK2PJi4vqVQKoVCIpk2b4vDhw1zHIRwoLCzEn3/+iYCAAJw7dw56enoYOnQoxo8fj44dO4LH44ExhtWrV+PXX3+Fg4MD9u/fjxo1anAdHQCQmpoKOzs7mJubIzw8HHp6elxHIuVQnvs3FQIiE97e3vDw8MDFixfh4ODAdRylsnnzZsycORPPnj1DnTp1uI5DOJSQkIBdu3Zh586diI+Ph62tLYYPH45r167h9OnTWLRoEby9veX+HgxpXh6KExPBiovB09GBjpUV+Pr6H31fYWEhRCIREhIScP36dVhYWMg1F5E9KgREoS5fvoyuXbvC1dUVHh4eXMdROrm5ubC0tMSkSZOwatUqruMQJSCVShEWFoY1a9bg1KlTYIzBzs4Ov/76K3766Se5vGSp6OlTZB4IRm5EOEqSkoF//9XP40HbsjaqOHSFidNQ6NrYgDGG0aNH4/DhwwgPD0e7du1knonIHxUCojCZmZlo0aIF6tatiwsXLtAb/j5j/vz52LFjB5KTk6H/iU9iRPPs2rUL06ZNg7W1NYYMGYLjx4+Xvilw1KhRGDduHJo2bfrN1ylOTkaqmzvyIiMBgQCQSD7/zf/7un7HjjhaqyZm+fhg3759GDZs2DfnINygtx0ShWCMYdKkScjNzcXevXupDHzBjBkzkJ2djd27d3MdhXCssLAQU6ZMwdixYzFs2DBER0fD1dUV0dHRuHv3LkaNGoXdu3ejWbNmaN++PbZu3YqsrKwKXSvz0CE8+6k38qKi3v3Al8rAv76ee+0aOh88hJ3DR1AZ0CBUCEiFbd++HSEhIdixYwesrKy4jqPU6tSpg/79+2P9+vWQSqVcxyEciY+PR+fOnbFr1y7s2LED/v7+Hxzc1bRpU6xZswYpKSkIDQ1F9erVMX36dJibm2PkyJG4cOFCmX//pPn5IdXVDayo6OtF4D94Uil0+Xy0v3kTaXTapsagQkAqRNOPJq6I2bNnIzY2FmfPnuU6CuHAX3/9hdatWyMjIwORkZGYMGHCZ79XR0cHAwYMwPHjx5GUlAQPDw9cv34d3bt3h7W1Nby8vJCQkPDZn5956BDerPP9pry8//3fN+t88ZZ2yGgEWkNAyq2goADt2rUDY0yjjyYuL8YY2rRpA3Nzc/z1119cxyEKIpFI4OnpCW9vb/Tp0we7du2CiYlJucdhjCEyMhIBAQEIDg5Gfn4+vvvuO4wfPx79+/cvfadAcXIynv3U+93MgIzwdHVR/+QJ6NSuLbMxiWLQGgIiV/PmzcPTp09x4MABKgPlwOPx4OLiglOnTiE2NpbrOEQB3rx5g169esHHxwfLly/Hn3/+WaEyALz7/dOpUyf4+/sjNTUV/v7+KCgowLBhw1CzZk3MmDEDt27dwks3dzCxWKa/DiYWI9XNXaZjEuVDMwSkXP78808MGDAAW7ZswdSpU7mOo3KKiopgZWWFQYMGYdOmTVzHIXJ07do1DB48GEVFRdi/fz+6d+8ul+s8fvwYO3fuxK5du6CXno7j9erL5ToAUP/kCehaW8ttfCJ7NENA5CIpKQnjx4/HgAEDMGXKFK7jqCRdXV1MmzYNu3btwtu3b7mOQ+SAMYaNGzfCwcEBlpaWiImJkVsZAABbW1v89ttvSExMxN5Ro1G+5YPlIBAgc/8BeY1OlAAVAlImEokEI0aMQJUqVbBjxw7weLyv/yTySVOnTkVxcTH8/f25jkJkLDc3F8OHD8fMmTMxffp0hIWFKex0Py0tLZglJkAgrwtIJMiNiJDX6EQJUCEgZeLj44MrV64gKCiI3lPwjczNzeHk5IQNGzZALONnvYQ7sbGxaNeuHU6cOIHg4GCsW7dOLicOfo4kN+/dCYRyVJKUBGlenlyvQbhDhYB81eXLl+Hp6Qk3Nzd06dKF6zhqwcXFBQkJCTh27BjXUYgMHDx4EHZ2dgCA6OhoDBkyROEZSpISPzyOWB4YQ3FionyvQThDhYB8UUZGBoYPH45OnTphyZIlXMdRG23atEHnzp3h6/tte8UJt4qLizF79mwMHToUffr0QXR0NBo3bsxJFlZcrFbXIYpHhYB81r+PJg4KCqKjiWXMxcUFERERiImJ4ToKqYCUlBSIRCJs3rwZGzZsQFBQEKpUqcJZHp6CHk8o6jpE8agQkM/atm0bQkND4e/vD0tLS67jqJ3+/fvDysqKZglU0Pnz59GqVSskJiYiIiICM2bM4HyhrY6VFSDvDDzeu+sQtUSFgHzS/fv3MXv2bEybNg0DBgzgOo5a0tLSgrOzM/bv349Xr15xHYeUgVQqxW+//YYePXqgRYsWuHXrFuzt7bmOBQDg6+tD21K+JwlqW1qCT2/rVFtUCMhHCgoKMHToUNjY2GDNmjVcx1FrEydOhJaWFrZu3cp1FPIVmZmZ6NevHxYvXowlS5bg9OnTqFatGtexPlDFoeu7VxjLg0CAKg4O8hmbKAUqBOQjc+fORVxcHB1NrABVq1bF6NGjsWXLFhTJ8Ox5IlsxMTFo06YNrly5gpMnT8LLywsCed14v4GJ09Byv9mwzCQSmAxzks/YRClQISAfOHLkCLZs2YJ169ahSZMmXMfRCLNmzUJqaioOHjzIdRTyCf7+/ujQoQOqVq2KW7du4ccff+Q60mfp2thAv2NH2c8SCATQ79iRji1Wc/QuA1IqKSkJLVq0gEgkwuHDhzlfJKVJevbsifT0dFy/fp3+uyuJgoICzJgxAwEBAZg8eTJ8fX1L3yiozOhth+Tf6F0GpNzEYnHp0cTbt2+nm5KCzZ49Gzdv3kRkZCTXUQiAuLg4dOzYEfv27UNgYCC2bt2qEmUAAHRq10aNpbI9M8TcdSmVAQ1AhYAA+P+jifft20dHE3OgZ8+esLW1pS2ISuDYsWNo06YNcnNzERUVhTFjxnAdqdxMBg9GtdkuMhmr2uzZMB40SCZjEeVGhYDg0qVL8PLygru7Ozp37sx1HI3E5/Mxa9YshIaGIpGOhuWEWCzGr7/+in79+kEkEuHGjRto3rw517EqzGzqVJh7e0GipQVxeY80FgjA09VFzWXeMJtKbzbVFFQINFxGRgZGjBiBzp0709HEHBszZgyqVKmCTZs2cR1F47x69Qo9evTA77//jlWrViE0NBRGRkZcx/pmen37YnxuDhIMDN79wNcWG/7v6/rt26P+yRM0M6Bh6CxaDcYYw8SJE5Gbm4u9e/cq5TYqTVKlShVMnDgR27dvh5ubG/TpABiFuHLlCoYMGQKJRILz58+ja9euXEeSGX9/f9xMSoL1qVOor62NzAPByI2IQElS0ocvQuLxoG1piSoODjAZ5kS7CTQU7TLQYH5+fpg2bRqOHDmC/v37cx2HAIiPj4e1tTU2bdqEqVOnch1HrTHGsG7dOixYsAAdOnRAcHAwatasyXUsmSkoKICNjQ26deuGPXv2fPA1aV4eihMTwYqLwdPRgY6VFZ1AqKbKc/+mQqCh7t27Bzs7O4wfP56mqJXMzz//jNjYWNy/f592e8hJTk4Oxo8fj8OHD2PevHlYvnw5tLW1uY4lU+vWrcO8efMQGxsLGxsbruMQjlAhIF9UUFAAOzs78Hg8REdH02mESiY8PByOjo74+++/0aNHD67jqJ379+9j4MCBePHiBQIDA/Hzzz9zHUnm8vLyUL9+ffTu3Rv+/v5cxyEconMIyBf98ssvePbsGR1NrKQcHBzQsmVL2oIoB0FBQWjXrh20tbVx48YNtSwDALBp0yZkZmbC1dWV6yhEhVAh0DChoaHw8/Ojo4mVGI/Hg4uLC/766y88evSI6zhqoaioCDNmzMDIkSMxcOBAXLt2Dba2tlzHkoucnBysWrUKEyZMQN26dbmOQ1QIFQINkpiYiAkTJmDgwIGYNGkS13HIFzg5OaFatWrYsGED11FUXmJiIhwcHLB9+3b4+flh165dar2Dw9fXF7m5ubSNmJQbFQINIRaLMXLkSBgYGNDRxCqgUqVKmDp1KgIDA/H27Vuu46isM2fOoHXr1khNTcXly5cxZcoUtf69//btW6xZswZTpkxBbTpqmJQTFQINsWzZstKjiU1MTLiOQ8pg2rRpKC4uRkBAANdRVI5UKoWXlxd++OEH2NnZ4datW7Czs+M6ltz98ccfKCoqwq+//sp1FKKCqBBogIiICHh7e8PDw4OOJlYhNWvWxNChQ7FhwwZI5PWOezWUnp6O3r17w8PDAx4eHjh58iRMTU25jiV3aWlpWLduHZydnWFubs51HKKCqBCouX8fTbx48WKu45BycnFxQXx8PI4dO8Z1FJVw/fp1tG7dGtHR0Th16hTc3NzA52vGX3O///47GGNYsGAB11GIitKMPyka6v3RxPn5+QgKCqKjiVVQ27Zt0bFjR9qC+BWMMWzduhWdO3eGubk5bt26hZ49e3IdS2FevXqFjRs3wsXFBdWqVeM6DlFRVAjUmJ+fH44cOQJ/f39aYKTCZs+ejfDwcPzzzz9cR1FK+fn5GDNmDKZOnYpJkyYhIiICVlZWXMdSqBUrVkBbWxtz587lOgpRYVQI1NTdu3cxZ84cTJ8+nd5ToOIGDBgAS0tLmiX4hCdPnsDe3h4hISEICgrCxo0boaury3UshUpJScGWLVvwyy+/0IJh8k2oEKih/Px8DBs2DLa2tli9ejXXccg30tLSgrOzM/bt24fXr19zHUdphIaGom3btiguLkZ0dDSGDx/OdSROLF++HPr6+pg9ezbXUYiKo0KghubOnUtHE6uZSZMmQSAQYOvWrVxH4VxJSQnmzZuHgQMHokePHrh+/brGnrqZkJCA7du3Y/78+fSeGfLNqBComZCQkNKjiYVCIddxiIxUrVoVo0ePxubNm1FcXMx1HM68fPkS3bt3h6+vL9auXYuDBw/CwMCA61icWbZsGYyNjTFjxgyuoxA1QIVAjSQmJmLixIl0NLGamjVrFlJTU3Hw4EGuo3AiPDwcrVq1QlxcHMLCwjB79my1PnXwa+Li4rBz504sWrQIVapU4ToOUQNUCNSEWCzGiBEjYGhoSEcTqymhUIjvv/8evr6+KMNby9UGYwy///47unfvDqFQiFu3bqFTp05cx+Kcl5cXqlevjmnTpnEdhagJKgRqYtmyZYiMjKSjidWci4sLbty4gatXr3IdRSGysrIwcOBALFiwAPPnz8eZM2dQo0YNrmNxLjY2Fnv37sXixYtpnRCRGR4rw0eN7OxsGBkZISsrixauKKHw8HB069YNHh4e9P5zNSeVStGoUSO0atUKwcHBXMeRqzt37mDgwIF48+YNdu/ejb59+3IdSWkMGzYMV65cwZMnTzRumyUpn/Lcv2mGQMWlp6dj5MiR6NKlCx1NrAH4fD5mzZqFkJAQJCUlcR1Hbnbv3g17e3vo6+vj5s2bVAb+5d69ewgODsbSpUupDBCZokKgwv59NPHevXvpaGINMWbMGOjr62PTpk1cR5G5wsJCTJkyBWPGjMGwYcNw9epVWFtbcx1Lqbi7u6Nu3boYN24c11GImqFCoML8/Pzw559/IiAggI4m1iAGBgaYMGECtm3bhvz8fK7jyEx8fDw6d+6MXbt2YceOHfD396fn4/8RExOD0NBQuLm5QVtbm+s4RM1QIVBR748mdnZ2Rr9+/biOQxRs5syZyMrKwt69e7mOIhN//fUXWrdujYyMDERGRmLChAlcR1JKbm5usLW1xciRI7mOQtQQFQIVlJ+fDycnJ9ja2uL333/nOg7hQL169dC3b1+V34IokUjg5uaGn376CZ07d8bNmzfRunVrrmMppaioKJw4cQLu7u7Q0tLiOg5RQ1QIVNAvv/yC58+f09HEGs7FxQUPHjzAuXPnuI5SIWlpaejVqxd8fHywfPly/Pnnn7Rl9gvc3NwgFAoxdOhQrqMQNUU1U8WEhIRg69at2LZtGx1NrOG6du2K5s2bw9fXF99//z3Xccrl2rVrGDx4MIqKinDmzBl0796d60hK7fLlyzhz5gwOHTpEi4eJ3NAMgQp5fzTxoEGDMHHiRK7jEI7xeDzMnj0bJ0+exJMnT7iOUyaMMWzcuBEODg6wsrJCTEwMlYGvYIxh6dKlaNGiBX7++Weu4xA1RoVARYjFYgwfPhyGhobYtm0bHU1MALw7oKZatWpYv34911G+Kjc3FyNGjMDMmTPh7OyMsLAwWFhYcB1L6V24cAHh4eHw8vICn09/ZRP5od9dKsLb2xvXrl3D/v376TkrKVWpUiVMmTIFgYGByMrK4jrOZ8XGxqJ9+/Y4fvw4goODsXbtWto2VwaMMbi6usLOzg59+vThOg5Rc1QIVEB4eDiWLVsGDw8PdOzYkes4RMlMmzYNhYWFCAgI4DrKJx08eBB2dnZgjCE6OhpDhgzhOpLKOH36NK5evQpvb2+aFSRyR+8yUHLp6elo2bIlrK2tcf78eVpQRD5p5MiRiIyMxJMnT5Tm90hxcTEWLFgAX19fDBs2DNu2baPX9JYDYwzt2rWDrq4uLl26RIWAVAi9y0BNMMYwYcIEOpqYfJWLiwueP3+O48ePcx0FAJCSkgKRSITNmzdjw4YNCAoKojJQTseOHcONGzdodoAoDM0QKLHNmzfD2dkZR48epZe7kK/q2LEjdHV1cfHiRU5znD9/HsOGDYOuri4OHToEe3t7TvOoIqlUilatWsHU1BQXLlzgOg5RYTRDoAbu3r2LX375BTNmzKAyQMrExcUFYWFhuHPnDifXl0ql+O2339CjRw+0aNECt27dojJQQSEhIbhz5w68vb25jkI0CM0QKKH8/HzY2dlBIBAgOjoalSpV4joSUQElJSWoV68eevbsCX9/f4VeOzMzE6NHj8aJEyfg6uoKd3d3esRVQRKJBM2aNYOVlRVOnz7NdRyi4miGQMXNmTMHz58/R3BwMJUBUmba2tqYMWMGgoKC8ObNG4VdNyYmBm3atMGVK1dw8uRJeHl5URn4BgcOHMDDhw/h5eXFdRSiYagQKJnDhw9j27ZtWL9+PRo3bsx1HKJiJk2aBD6fj61btyrkev7+/ujQoQOqVq2KW7du4ccff1TIddWVWCyGp6cn+vTpg3bt2nEdh2gYKgRKJCEhAZMmTcLgwYPp9a+kQkxNTTFy5Ehs3rwZxcXFcrtOQUEBJkyYgIkTJ2Ls2LG4fPky6tatK7fraYo9e/bgyZMnNDtAOEFrCJSEWCyGo6MjkpOT8c8//8DY2JjrSERF3bt3D82aNUNQUBCGDx8u8/Hj4uIwaNAgxMbGws/PD2PGjJH5NTRRcXExGjZsiDZt2uDw4cNcxyFqgtYQqCAvLy9cu3YN+/btozJAvknTpk3x3XffYd26dShD3y+XY8eOoU2bNsjNzUVUVBSVARnauXMnEhIS4OnpyXUUoqGoECiBsLAwLFu2DJ6ennQ0MZEJFxcXXL9+HdeuXSv9MWleHgofPkTB7dsofPgQ0ry8Mo8nFovx66+/ol+/fhCJRLhx4waaN28uj+gaqbCwEMuWLYOTkxOaNGnCdRyioeiRAcfS09PRokULNGjQAOfOnaPV2UQmpFIpGjZsiJ5NmmBpWzvkRoSjJCkZ+Pcfdx4P2pa1UcWhK0ychkLXxuaTY7169QrDhg1DREQEfvvtN8ybN49OzpOxDRs2YPbs2Xjw4AEaNmzIdRyiRspz/6ZCwCHGGAYMGIBLly7hzp079CpYIjPFycmIGjsOZsnJAJ8PSKWf/2aBAJBIoN+xI8y9PKFTu3bpl65cuYIhQ4ZAIpEgODgYXbt2VUB6zZKfnw9ra2v07NkTgYGBXMchaobWEKiIzZs34+jRo9i5cyeVASIzmYcO4dlPvWH28uW7H/hSGQAAiQQAkBcVhWc/9UbmoUNgjGHdunVwdHSEtbU1YmJiqAzIyZYtW5CWlgY3NzeuoxANRzMEHLlz5w7atWuHyZMnY/369VzHIWoizc8Pb9b5fvM452vUwMyIcMybNw/Lly+Htra2DNKR/8rNzUW9evUwYMAAbNu2jes4RA3RIwMll5+fj7Zt20JbWxtRUVF0GiGRicxDh5DqKrtPmS9+HoDuy5fLbDzyseXLl8PT0xNPnjyBlZUV13GIGqJHBkpuzpw5iI+Px4EDB6gMEJkoTk7Gq2U+Mh3T4uRfKE5OlumY5P9lZWVh9erVmDRpEpUBohSoECjYoUOH6GhiInOpbu5gYrFMx2RiMVLd3GU6Jvl/a9euRUFBARYvXsx1FEIAUCFQqPdHEw8ZMoSOJiYyU/T0KfIiI0sXB8qMRIK8yEgUxcXJdlyCjIwMrF27FtOnT0etWrW4jkMIACoECiMWizF8+HAYGxtj69attI+byEzmgeB3WwflQSBA5v4D8hlbg61evRoSiQQLFy7kOgohpagQKIiXlxeioqLoaGIic7kR4bKfHXhPIkFuRIR8xtZQb968wfr16zFz5kxUr16d6ziElKJCoAB0NDGRF0lu3rsTCOWoJCmpXMccky9buXIl+Hw+5s2bx3UUQj5AhUDO0tLSMGLECDg6OmLRokVcxyFqpiQp8cPjiOWBMRQnJsr3Ghri5cuX2LRpE+bMmQNTU1Ou4xDyASoEcsQYw4QJE1BUVIQ9e/bQewqIzLHiYrW6jrr77bffUKlSJcyZM4frKIR8RIvrAOps8+bNOHbsGI4dO0ZHExP5UNAJgjwdHYVcR50lJSVh69atcHNzo3VERClRIZCT27dvY+7cuZg5cyb69OnDdRyiJhhjiIuLw8WLF3Hx4kVcCwvDcQND8OW5a4XHgw4dnPPNfHx8YGBggFmzZnEdhZBPokIgB3l5eXByckKjRo2watUqruMQFcYYw/Pnz3Hx4kWEhYXh4sWLSElJAZ/PR5s2bTB41ChILl8BPz1dbhm0LS3B19eX2/ia4Pnz5/D398fy5cthYGDAdRxCPokKgRzMmTMHiYmJuHnzJh1NTMotISGhdAYgLCwMiYmJ4PF4aNWqFZycnCASidClS5fSc8lTl/kgc/9++Ww9FAhQxcFB9uNqGG9vb5iamsLZ2ZnrKIR8FhUCGTt06BC2b9+OHTt2oFGjRlzHISogKSmp9NP/xYsXER8fDx6PhxYtWmDgwIFwdHSEg4PDZ587mzgNRebevfIJJ5HAZJiTfMbWEE+ePMHu3buxZs0a6OnpcR2HkM+iQiBD8fHxpUcTjx8/nus4REm9ePHig0cAcf87GrhZs2bo27cvRCIRHBwcULVq1TKNp2tjA/2OHZEXFSXbWQKBAPrt20PX2lp2Y2ogT09PmJubY8qUKVxHIeSLqBDICB1NTD4nNTW19OYfFhaGx48fAwCaNGmCH374ASKRCF27doWZmVmFr2Hu5YlnP/UGk2Eh4GlpwdzLU2bjaaIHDx5g37592LRpEz0+JEqPCoGMeHp6Ijo6GpcuXaItRRru9evXCAsLKy0BsbGxAIBGjRqhe/fu8Pb2hqOjo0yPrdWpXRs1li5BqqubzMY0d10Kndq1ZTaeJvLw8ICVlRW9zIyoBCoEMhAWFgYfHx8sW7YMHTp04DoOUbC0tDSEh4eXzgDcv38fAGBrawtHR0e4u7uja9euqFmzplxzmAweDEl6Ot6s8/3msarNng3jQYNkkEpz3b59G4cOHcKOHTugQ+c4EBXAY+zr555mZ2fDyMgIWVlZpSubyTtpaWlo0aIFGjZsiLNnz9JphBogIyMDERERpYsA7969CwCwtraGSCSCo6MjHB0dOTuMKvPQIbxa5gMmFpdvTYFA8O4xgetSKgMy0L9/f9y7dw8PHz6EtoIOkCLkv8pz/6YZgm/AGMP48ePpaGI19/btW0RERJQ+Arh9+zYYY6hXrx4cHR0xf/58ODo6wtLSkuuoAN7NFOh36IBUN3fkRUa+ezXyl4rB/76u3749zL086TGBDFy/fh1Hjx7F7t27qQwQlUEzBN9g48aNmDlzJo4fP47evXtzHYfISFZWFi5fvlw6AxATEwPGGKysrD6YAahbty7XUb+q6OlTZB4IRm5EBEqSkj54ERIDoGNlhSoODjAZ5kS7CWSoV69eiI+Px7179+iDAuFUee7fVAgq6Pbt22jfvj2mTJkCX99vf2ZLuJOTk4PLly+XzgDcvHkTUqkUFhYWEIlEpSWgXr16Kr17RJqXh+LERLDiYixYsgRPc3NxKiyM61hqJzIyEp06dcKBAwcwdOhQruMQDUeFQM7y8vLQtm1b6Orq4tq1a7SdSMXk5eXhypUrpYsAr1+/DolEAnNz89ICIBKJYG1trdIF4Evc3d2xdetWpKamch1F7XTv3h1v3rzBP//8Az6fXihLuEVrCORs9uzZdDSxCsnPz8fVq1dLHwFER0dDLBajevXqEIlEGDNmDEQiEWxtbdW2APyXUCjEq1evkJ6eDlNTU67jqI2wsDBcuHABoaGhVAaIyqFCUE4HDx7Ejh074O/vT0cTK6nCwsLSAhAWFoaoqCgUFxfDzMwMjo6O8PX1hUgkQqNGjTSmAPyXUCgEADx8+BCdO3fmOI16YIzB1dUVrVu3Rv/+/bmOQ0i5USEoh/j4eEyePBlDhw7FuHHjuI5D/qeoqAhRUVH//0rga9dQVFSEqlWrwtHREatXr4ZIJIJQKKRPbf9ja2sLgUCABw8eUCGQkbNnz+Ly5cs4efKkxhZNotqoEJTR+6OJTUxM4OfnR3/gOVRcXIzo6OjSRYCRkZEoLCyEsbExunbtipUrV8LR0RHNmjWjAvAZurq6sLGxwYMHD7iOohbezw7Y29ujV69eXMchpEKoEJSRh4cHHU3MkZKSEty4caP0EcCVK1eQn58PQ0NDODg4wMfHByKRCM2bN6ctXuUgFAqpEMjIyZMnER0djbNnz9KHBaKyqBCUwcWLF7F8+XL4+PjQ0cQKIBaLcfPmzdIZgMuXLyMvLw8GBgbo0qULPD094ejoiFatWlEB+AZCoRCBgYFcx1B5jDG4ubnBwcEB3bt35zoOIRVGheAr0tLSMHLkSIhEIixYsIDrOGpJIpEgJiamdAbg0qVLyMnJgb6+Pjp37gxXV1eIRCK0bt0aWlr0W1ZWhEIhUlJSkJWVBSMjI67jqKwjR44gJiYG4eHhNDtAVBr97foFdDSxfEgkEty5c6d0EWBERASys7NRuXJldO7cGYsWLYJIJELbtm3p2Fc5+vdOA3t7e47TqCapVAp3d3d89913cHBw4DoOId+ECsEXbNy4EcePH8fx48dRq1YtruOoLKlUirt375Y+AoiIiEBmZiYqVaqEjh07lr4LoF27dvRWOAVq2LAheDweHjx4QIWggg4ePIh79+5h+/btXEch5JtRIfiM27dvY968eXBxcaH3FJSTVCrFgwcPSmcAwsPDkZGRAV1dXXTo0AEuLi4QiURo3749dHV1uY6rsSpXroz69evTwsIKEovF8PDwwI8//kiFiqgFKgSfkJeXBycnJwiFQqxcuZLrOEqPMYaHDx+WzgCEhYUhLS0N2trasLe3x4wZM+Do6Ah7e3tUrlyZ67jkX2inQcXt27cPjx49QlBQENdRCJEJKgSf8O+jiekT7McYY3j8+HHpzT8sLAyvXr2ClpYW2rVrhylTpkAkEqFDhw7Q09PjOi75AqFQiAMHDnAdQ+WUlJTA09MT/fv3R5s2bbiOQ4hMUCH4j+DgYDqa+D8YY4iLiyt9BBAWFoaXL19CIBDAzs4O48aNg0gkQqdOnaCvr891XFIOQqEQCQkJyM3NRZUqVbiOozJ27dqFZ8+e4ciRI1xHIURmqBD8y/PnzzF58mQ4OTlp9NHEjDE8f/689OZ/8eJFpKSkgM/no02bNhg1ahQcHR3RuXNnGBgYcB2XfIN/7zSws7PjOI1qKCoqgre3N4YMGYLmzZtzHYcQmaFC8D8lJSUYPnw4qlatqpFHEyckJHwwA5CYmAgej4fWrVvDyckJIpEIXbp0oddfq5n3s2APHjygQlBGO3bsQHJyMjw8PLiOQohMUSH4H09PT1y/fh2XL1/WiENakpKSSj/9X7x4EfHx8eDxeGjRogUGDhwIR0dHODg40DHNaq5KlSqoU6cOLSwso4KCAvj4+GD48OFo3Lgx13EIkSkqBAAuXLhQejSxum4fevHixQczAHFxcQCAZs2aoW/fvhCJRHBwcEDVqlU5TkoUjXYalJ2fnx9ev34Nd3d3rqMQInMaXwjeH03crVs3LFy4kOs4MpOamvrBNsDHjx8DAJo0aYIffvgBIpEIXbt2hZmZGcdJCdeEQiEtjiuDvLw8rFixAmPGjIGNjQ3XcQiROY0uBIwxjBs3DiUlJdi9e7dKvyr39evXpVsAL168iNjYWADvnhF3794dy5YtQ9euXVG9enWOkxJlIxQK8ccffyA/P5+2iX7Bxo0bkZmZCVdXV66jECIXGl0INm7ciBMnTuDEiRMqdzRxWloawsPDS2cA7t+/DwCwtbWFo6Mj3N3d4ejoCHNzc46TEmXXpEkTMMbw6NEjtGrVius4Sik7OxurVq3ChAkTULduXa7jECIXGlsI/vnnn9KjiX/66Seu43xVRkYGIiIiStcB3L17FwBgbW0NkUiEX3/9FY6OjrCwsOA4KVE17xfHPXjwgArBZ/j6+iIvLw9LlizhOgohcqORhUAVjiZ++/YtIiIiSh8B3L59G4wx1KtXD46OjqUvBLK0tOQ6KlFxhoaGqF27Ni0s/IzMzEysWbMGU6dORe3atbmOQ4jcqFUhkObloTgxEay4GDwdHehYWYH/iZPzXFxckJSUhFu3binN0cRZWVm4fPly6QxATEwMGGOwsrKCSCSCi4sLHB0dabqSyAXtNPi8P/74A8XFxVi0aBHXUQiRK5UvBEVPnyLzQDByI8JRkpQMMPb/X+TxoG1ZG1UcusLEaSh0bWwQHBwMf39/BAQEoGHDhpzlzsnJweXLl0tnAG7evAmpVAoLCwuIRCI4OzvD0dER9erV07hDkojiCYVC/PXXX1zHUDppaWlYt24dZsyYQetxiNrjMfbvO+inZWdnw8jICFlZWUpzUl1xcjJS3dyRFxkJCASARPL5b/7f13mtWqH/36fRqmdP7Nu3T6E32ry8PFy5cqV0BuDGjRuQSCQwNzeHSCQq/Z+1tTUVAKJw27dvx9SpU5Gfn680s2bKYOHChdi8eTOeP39OW3SJSirP/VslZwgyDx3Cq2U+YGLxux/4Uhn419fFMTE4UK06qvfqJfebbn5+PiIjI0tnAKKjoyEWi1G9enWIRCKMHTsWIpEItra2VAAI54RCIaRSKR4/foxmzZpxHUcpvHr1Chs3bsScOXOoDBCNoHKFIM3PD2/W+Vbo5woA8Hk8ZC3/DTr5+TCbOlVmuQoLC3H16tXSbYBRUVEoLi6GmZkZHB0d4evrC5FIhEaNGlEBIErn3zsNqBC8s2LFCmhra2Pu3LlcRyFEIVSqEGQeOlThMvDe+1vxm3W+0DIzg/GgQRUap6ioCFFRUaWPAK5du4aioiJUrVoVjo6OWL16NUQiEYRCoUofeEQ0Q9WqVWFubk4LC/8nJSUFW7ZsweLFi2FiYsJ1HEIUQmUKQXFyMl4t85HpmKney6Bnbw+dMmwlKi4uRnR0dOkMQGRkJAoLC2FsbIyuXbti5cqVcHR0RLNmzagAEJVEOw3+3/Lly6Gvr4/Zs2dzHYUQhVGZQpDq5v7/awZkhInFSHVzh1WA/0dfKykpwY0bN0pnAK5cuYKCggIYGhrCwcEBPj4+EIlEaN68OQQCgUxzEcIFoVCI8+fPcx2DcwkJCdi+fTu8vLyUZhE1IYqgEoWg6OnTd7sJZE0iQV5kJIri4iCoUwc3b94sXQR4+fJl5OXlwcDAAF26dIGXlxccHR3RqlUrKgBELQmFQvj5+aG4uBg6Ojpcx+HMsmXLYGxsjBkzZnAdhRCFUolCkHkg+OtbCytIyuNh1/DhmPfwIXJycqCvr4/OnTvD1dUVIpEIrVu3hpaWSvxnIuSbCIVCiMViPH36FEKhkOs4nIiLi8POnTuxatUqVKlShes4hCiUStzpciPC5VIGAIDPGBrl5WPRokUQiURo27YttLW15XItQpTZ+xLw4MEDjS0EXl5eqF69OqZNm8Z1FEIUTukLgSQ3790JhHJUTSLBIheXTx5zTIimqFatGszMzDR2YWFsbCz27t0LX19fVK5cmes4hCic0i+HL0lK/PA4YnlgDMWJifK9BiEqQJN3Gnh4eMDCwgKTJk3iOgohnFD6GQJWXKxW1yFEmQmFQly5coXrGAp39+5dBAcHY+vWrXR0M9FYSj9DwFPQamdFXYcQZdakSRM8evQIYhlv8VV27u7uqFevHsaNG8d1FEI4o/SFQMfKCpD3Ub883rvrEKLhhEIhiouL8ezZM66jKMytW7dw5MgRuLm50YJiotGUvhDw9fWhbfn1kwS/hbalJS0oJAQf7jTQFG5ubrC1tcXIkSO5jkIIp5S+EABAFYeu784hkAMJgGfGxsjOzpbL+ISokho1asDExERjCsG1a9dw8uRJuLu703kjROOpRCEwcRoqt3MIBACcjx9DrVq1MG3aNNy9e1cu1yFEFfB4PI3aaeDm5gahUIihQ4dyHYUQzqlEIdC1sYF+x46ynyUQCKDfsSPCnj7FvHnzcPToUTRv3hwODg44cOAAimnnAdFAmlIILl26hLNnz8LLy4uOIycEKlIIAMDcyxM8GU/p8bS0YO7lCQsLC3h4eCAhIQEHDx6EQCDAsGHDYGVlBVdXVyQlJcn0uoQoM6FQiIcPH0Iip1k5ZcAYg6urK1q2bIkBAwZwHYcQpaAyhUCndm3UWLpEpmOauy794NXH2traGDx4MC5evIh79+5h0KBB8PX1Rd26dfHzzz/j3LlzYPI+JIkQjgmFQhQWFiIhIYHrKHJz4cIFhIeHw8vLi15XTsj/qNSfBJPBg1FttotMxqo2ezaMBw367NebNGmCjRs3IiUlBRs3bsTjx4/x/fffo1GjRvD19cXbt29lkoMQZaPuOw3ezw60a9cOvXv35joOIUpDpQoBAJhNnQpzby/wdHXLv6ZAIABPVxc1l3nDbOqUMv0UAwOD0sWG4eHhaNWqFebNmwcLCwtMnjwZ//zzT/l/EYQoMQsLCxgYGKhtITh9+jSuXr0KLy8v8OR9xgkhKkTlCgHwbqag/skT0G/f/t0PfK0Y/O/r+u3bo/7JE1+cGfgcHo9XutgwKSkJixYtwl9//YVWrVqhY8eOCAoKQlFRUbnHJUTZvN9pcP/+fa6jyBxjDG5ubujUqRN69OjBdRxClIpKFgLg3ZoCqwB/1D9xHCbDhkH7Uyca8njQtrKCybBhqH/yBKwC/D9YM1BR5ubmcHV1RXx8PEJCQqCnp4eRI0fC0tISv/76q1o/eyWaQV13Ghw7dgw3btyAt7c3zQ4Q8h88VoZVctnZ2TAyMkJWVhYMDQ0VkatCpHl5KE5MBCsuBk9HBzpWVgo7gTA2NhZ+fn4IDAxETk4OfvrpJzg7O+P777+nRUtE5axevRoeHh7Izs5Wm9+/UqkUrVq1gqmpKS5cuMB1HEIUojz3b/X4k/4/fH19VGrcGJVbtEClxo0Vehxxo0aNsG7dOqSkpMDPzw+JiYn44YcfYGtrizVr1iAjI0NhWQj5VkKhEHl5eWq15TYkJAR37tyBt7c311EIUUpqVQiUgb6+PiZNmoSYmBhcuXIF9vb2WLx4MSwsLDB+/HjcvHmT64iEfJW67TSQSCRwd3dHz5490alTJ67jEKKUqBDICY/HQ8eOHbF3714kJSXBzc0N58+fR9u2bdG+fXvs2rULBQUFXMck5JOsrKygp6enNoVg//79ePjwIby8vLiOQojSokKgANWrV8evv/6KZ8+e4ejRozAxMcHYsWNRu3ZtLFiwQKNeNUtUA5/PR+PGjdWiEIjFYnh6eqJPnz5o164d13EIUVpUCBRIIBCgb9++OH36NB4/foyxY8di+/btsLGxwU8//YSTJ0+q9XGxRLU0adJELQrB7t278fTpU5odIOQrqBBwpEGDBlizZg1SUlKwY8cOpKamonfv3mjQoAFWrVqFtLQ0riMSDfd+66EqH9ddXFwMLy8vDBw4EC1btuQ6DiFKjQoBx/T09DB+/HjcuHED165dQ5cuXeDm5obatWtj9OjRiIqKUum/kInqEgqFyM7OxosXL7iOUmEBAQFITEyEp6cn11EIUXpUCJQEj8crXWyYnJwMLy8vXLp0Cfb29mjbti0CAgKQn5/PdUyiQVR9p0FhYSGWLVsGJycnNGnShOs4hCg9KgRKyMzMDAsWLMDTp09x4sQJmJubY+LEibCwsMAvv/yCJ0+ecB2RaIC6deuiUqVKKlsItm3bhpcvX8Ld3Z3rKISoBCoESkwgEJQuNnz69CkmTZqEXbt2wdbWFj179sSxY8doESKRG4FAgEaNGqlkIcjPz8fy5csxatQoNGzYkOs4hKgEKgQqon79+li1ahWSk5Oxa9cuvH37Fv369UP9+vWxfPlyvH79muuIRA2p6jsNNm/ejPT0dLi5uXEdhRCVQYVAxVSuXLl0seH169fRvXt3eHt7o3bt2hgxYgQiIyNpESKRmfdvPVSl31M5OTlYuXIlxo0bh/r163MdhxCVQYVAhb1fbJiSkoIVK1YgKioKnTp1QqtWrbBt2zbk5uZyHZGoOKFQiMzMTJWagdqwYQOys7OxdOlSrqMQolKoEKiBqlWr4pdffsHjx49x+vRp1KlTB9OmTYOFhQVcXFwQGxvLdUSiolRtp0FWVhZWr16NyZMnw8rKius4hKgUKgRqhM/no2fPnjh69CiePXsGZ2dn7N+/H40bN0b37t0RGhoKsVjMdUyiQqytraGtrY379+9zHaVM1q5di4KCAixevJjrKISoHCoEaqpOnTpYvnw5kpKSsHfvXhQWFmLgwIGoW7cuvL298fLlS64jEhWgpaWFhg0bqsQMQUZGBtauXYvp06ejZs2aXMchROVQIVBzurq6GDFiBK5cuYKYmBj8+OOPWLFiBaysrDB06FBERESo1IIxoniqstNg9erVkEgkWLhwIddRCFFJVAg0SMuWLbFt2zakpKRg9erV+Oeff9C1a1c0b94cW7ZsQU5ODtcRiRJShULw5s0brF+/HjNnzkT16tW5jkOISqJCoIGMjY1LFxueO3cODRo0wIwZM1CrVi04OzurzPNiohhCoRBv3rzBmzdvuI7yWStXrgSfz8e8efO4jkKIyqJCoMF4PF7pYsP4+HjMnj0bISEhaNq0KRwdHXHo0CGUlJRwHZNw7P1Og4cPH3Kc5NNevnyJTZs2Yc6cOTA1NeU6DiEqiwoBAQBYWlrC29sbiYmJOHDgAKRSKYYMGYI6derA3d0dKSkpXEckHGnQoAEEAoHSPjb47bffUKlSJcyZM4frKISoNCoE5AM6Ojqliw3v3LmDfv36Yc2aNahTpw4GDRqECxcu0CJEDaOjo4MGDRooZSFITEzE1q1bMW/ePBgbG3MdhxCVRoWAfFazZs2wZcsWvHjxAr6+vnjw4AG6d+8OoVCIDRs2ICsri+uIREGaNGmilIXAx8cHBgYGmDVrFtdRCFF5VAjIVxkaGpYuNrx48SKaNm2KOXPmwMLCAlOnTsWdO3e4jkjkTBl3Gjx79gwBAQFYuHAhDAwMuI5DiMqjQkDKjMfjlS42TExMxPz583Hs2DG0aNECnTt3xv79+1FcXMx1TCIHQqEQL1++RGZmJtdRSnl7e8PU1BTOzs5cRyFELVAhIBVSq1YtuLu7IyEhAYcOHYKOjg6GDx8OS0tLLF26FImJiVxHJDKkbDsNHj9+jN27d+PXX3+Fnp4e13EIUQtUCMg30dbWLl1seP/+fQwZMgTr169HvXr10L9/f5w9exZSqZTrmOQb2drags/nK81jA09PT9SsWRNTpkzhOgohaoMKAZGZ94sNU1JSsGnTJjx79gw9evRAo0aNsG7dOqWabiblU6lSJVhbWytFIbh//z7279+PJUuWoFKlSlzHIURtUCEgMmdgYICpU6fi9u3buHTpEtq0aYMFCxbAwsICEydORExMDNcRSQUoy8JCDw8PWFlZYcKECVxHIUStUCEgcsPj8UoXGyYmJmLx4sX4+++/0bp1a3To0AF79uxBYWEh1zFJGSlDIfjnn39w+PBhuLq6QkdHh9MshKgbKgREIczNzbF06VI8f/4cR44cQZUqVTB69GhYWlpi0aJFiI+P5zoi+QqhUIikpCRkZ2dzlsHd3R3W1tYYPXo0ZxkIUVdUCIhCaWlplS42jI2NxciRI+Hn54f69eujT58+OHXqFC1CVFLvdxrExsZycv3r16/j2LFjcHd3h7a2NicZCFFnVAgIZxo2bIi1a9ciJSUF27ZtQ3JyMn788Uc0aNAAq1evRnp6OtcRyb80atQIPB6Ps7dhurm5oVGjRhg+fDgn1ydE3VEhIJzT19fHxIkTcevWLURGRqJjx45YsmQJateujXHjxuH69etcRyQA9PT0ULduXU7WEURGRuL06dPw9PSEQCBQ+PUJ0QQ8VoY31WRnZ8PIyAhZWVkwNDRURC6i4V6/fo2AgAD4+fkhISEBbdu2hbOzM4YOHYrKlStzHU9j9e7dG4wxnDx5UqHX7d69O9LS0hATEwM+nz7HEFJW5bl/058sopSqV6+ORYsWIS4uDseOHYOZmRnGjRuH2rVrY/78+YiLi+M6okbiYqdBWFgYLly4AE9PTyoDhMgR/ekiSk0gEJQuNnzy5AnGjRsHf39/2NjYoFevXjhx4gQkEgnXMTWGUChEfHw88vLyFHI9xhhcXV3Rpk0b9OvXTyHXJERTUSEgKsPGxgarV69GcnIyAgIC8ObNG/Tp0wfW1tZYsWIF3rx5w3VEtafonQZnz57F5cuX4eXlBR6Pp5BrEqKpqBAQlaOnp4dx48bhxo0biIqKgqOjIzw8PFC7dm2MGjUK165dQxmWxpAKaNy4MQAo5LHB+9kBe3t79OrVS+7XI0TTUSEgKq1du3YIDAxEcnIyli1bhitXrqBDhw5o06YNduzYgfz8fK4jqhUDAwNYWVkppBCcOHEC0dHR8Pb2ptkBQhSACgFRC2ZmZpg/fz6ePn2KkydPolatWpg8eTIsLCwwZ84cPH78mOuIakMRCwulUinc3Nzg4OCA7t27y/VahJB3qBAQtcLn8/Hjjz/ixIkTiIuLw+TJk7Fnzx40bNgQPXr0wJ9//gmxWMx1TJWmiEJw5MgR/PPPPzQ7QIgCUSEgaqtevXpYuXIlkpOTsXv3bmRnZ2PAgAGoX78+fHx88OrVK64jqiShUIhnz56hoKBALuNLJBK4u7vju+++g4ODg1yuQQj5GBUCovYqVapUutjwxo0b6NGjB3x8fGBpaYnhw4fj8uXLtAixHIRCIaRSqdwewxw8eBD379+Ht7e3XMYnhHwaFQKiUd4vNkxJScHKlStx/fp1dOnSBS1btsTWrVuRm5vLdUSlJ8+dBmKxGB4eHvjxxx9hb28v8/EJIZ9HhYBoJBMTE8yZMwePHj3C33//jXr16mH69OmoVasWZs6ciYcPH3IdUWkZGxujVq1acikEQUFBePz4Mby8vGQ+NiHky6gQEI3G5/NLFxs+e/YMM2fORHBwMIRCIbp164aQkBCUlJRwHVPpyGNhYUlJCby8vNC/f3+0adNGpmMTQr6OCgEh/1OnTh34+PggKSkJQUFBKC4uxqBBg1C3bl14enri5cuXXEdUGvIoBIGBgXj27Bk8PT1lOi4hpGyoEBDyH7q6uqWLDWNiYtC7d2+sWrUKVlZWGDJkCMLDwzV+EaJQKMSTJ09QXFwsk/GKiorg7e2NIUOGoHnz5jIZkxBSPlQICPmC94sNX7x4gTVr1uDOnTtwdHRE06ZNsWnTJmRnZ3MdkRNCoRASiURmOw3eL/T08PCQyXiEkPKjQkBIGRgZGWHWrFl4+PAhzp07h0aNGsHFxQUWFhaYPn067t27x3VEhXr/kiNZPDYoKCiAj48Phg8fXrqDgRCieFQICCkHHo+H7t27IyQkBPHx8ZgzZw5CQ0PRrFkzdO3aFcHBwTKbRldmpqamqF69ukwKgZ+fH16/fg13d3cZJCOEVBQVAkIqqHbt2vDy8kJiYiIOHDgAAHByckKdOnXg5uaG5ORkjhPKlywWFubl5WHFihUYM2YMbGxsZJSMEFIRVAgI+UY6OjoYOnQowsPDcffuXQwYMABr165F3bp1MXDgQJw/f14tFyHKohBs3LgRmZmZcHV1lVEqQkhFUSEgRIaaNm2KzZs3IyUlBb6+voiNjcV3332Hxo0bY/369Xj79i3XEWVGKBTi8ePHFT6nITs7G6tWrcLEiRNRt25d2YYjhJQbFQJC5MDQ0BDOzs64d+8ewsLC0KJFC8ydOxcWFhaYPHkybt++zXXEbyYUClFSUoK4uLgK/XxfX1/k5eVhyZIlMk5GCKkIKgSEyBGPxytdbJiQkICFCxfi5MmTaNmyJTp16oR9+/ahqKiI65gV0qRJEwAV22mQmZmJNWvWYOrUqbCwsJB1NEJIBVAhIERBatWqBTc3N8THx+Pw4cOoVKkSRowYAUtLSyxevBiJiYlcRyyXatWqwdTUtEKFYM2aNSguLsaiRYvkkIwQUhFUCAhRMG1t7dLFhg8ePICTkxM2bdqEevXqoV+/fvj7778hlUq5jvlVPB6vQgsL09LS4OvrixkzZsDc3FxO6Qgh5UWFgBAOvV9smJKSgs2bN+P58+f44Ycf0LBhQ/zxxx/IzMzkOuIXVaQQrFq1CgCwYMECeUQihFQQFQJClECVKlUwZcoU3L59G5cuXYKdnR0WLVoECwsLTJgwATdv3uQ64icJhULExsZCIpGU6ftTU1OxceNGuLi4wMzMTM7pCCHlQYWAECXC4/HQuXNn7Nu3D0lJSViyZAnOnj2Ltm3bwt7eHrt370ZhYSHXMUsJhUIUFRXh+fPnZfr+FStWQEdHB3PnzpVzMkJIeVEhIERJ1ahRA0uWLMGzZ8/w559/wtDQEGPGjEHt2rWxcOHCMt+E5ak87zRITk6Gn58ffvnlF5iYmMg7GiGknKgQEKLktLS00K9fP5w5cwaPHj3CqFGjsHXrVlhbW6N3797466+/OFuEWLNmTRgZGZWpECxfvhz6+vqYPXu2/IMRQsqNCgEhKsTW1hZr165FSkoKtm/fjhcvXuCnn36CjY0Nfv/9d6SlpSk0T1l3GiQkJGDHjh2YP38+DA0NFZSOEFIeVAgIUUH6+vqliw2vXr2KTp06YenSpahduzbGjBmD6Ohohb0/oSyFwNvbG8bGxpgxY4ZCMhFCyo8KASEqjMfjwd7eHnv27EFycjI8PT0RHh6O9u3bw87ODgEBAcjPz5drBqFQiIdPn+Fe8lvEJGbi/oss5BWJS7/+9OlTBAYGYtGiRahSpYpcsxBCKo7HyvAxIjs7G0ZGRsjKyqLpPkKUnEQiwalTp7Bp0yacPn0aJiYmGDduHKZNmybTVww/eZWDoKhEnLwVj9cFDDwer/RrPABWVfUgalQdd//cgqunQxEXF4fKlSvL7PqEkK8rz/2bCgEhaiwuLg5+fn4ICAhARkYGevbsienTp+Onn36CQCCo0JhJGflYHHoXl56mQcDnQSL9/F8hfB4gZUAd3XzsdfkJllX1KvpLIYRUQHnu3/TIgBA1Zm1tjd9//x3JycnYuXMnMjIy0K9fP9SvXx+//fYbXr9+Xa7xDkQn4rs/whH5LB0AvlgGgHdlAACSS/Tx3R/hOBCtWu9rIESTUCEgRANUrlwZY8eORXR0NKKjo9GtWzd4eXnB0tISI0eORGRk5FcXIW688ASLQu+iSCz9ahH4L4mUoUgsxaLQu9h44cm3/FIIIXJChYAQDWNnZ4edO3ciOTkZPj4+pbsUWrduje3btyMvL++jn3MgOhGrzzyWyfVXn3mM4Os0U0CIsqFCQIiGMjU1xbx58/DkyROcOnUKtWvXxpQpU2BhYYHZs2fj0aNHAN6tGXA/dl+m13Y7eh9JGfLd/UAIKR9aVEgIKRUfHw8/Pz/4+/sjLS0N3333HXiiWYjLFZT7McGXCPg8dKxvij0T28tsTELIx2hRISGkQurWrYsVK1YgKSkJe/bsQaa0Eh5n82VaBoB3awouPU3D09c5Mh2XEFJxVAgIIR+pVKkSRo4cid4uK8Dnff37K0LA52HvNVpLQIiyoEJACPmsi7GvIePJgVISKcPFR+Xb9kgIkR8qBISQT8otEiNRzgv/EtPzPzjmmBDCHSoEhJBPSkjPg7xfj8QAxKd/vM2REKJ4VAgIIZ9ULJaq1XUIIV9GhYAQ8kk6Wor560FR1yGEfBn9SSSEfFJdU33IaYNBKd7/rkMI4R4VAkLIJ+nrasFKzm8ntDLVg76ullyvQQgpGyoEhJDPEjWqDoGcDiIQ8HkQNawul7EJIeVHhYAQ8lkj2lvJ/JTC9yRShpH2VnIZmxBSflQICCGf1aCGAbrYmMl8lkDA56GLjRlsqhvIdFxCSMVRISCEfNHyn5tBS8aFQIvPw/Kfm8l0TELIt6FCQAj5IsuqevDs20SmY3r1awJLOS9YJISUDxUCQshXObWzwrwetjIZa37PhhhqR2sHCFE2tN+HEFImM7o1gFkVXbgfuw+xlJVrsaGAz4MWnwevfk2oDBCipGiGgBBSZk7trHDul67oWN8UAL662PD91zvWN8W5X7pSGSBEidEMASGkXCyr6mHPxPZ48ioHQVGJuPjoNRLT8z94ERIP7w4dEjWsjpH2VrSbgBAVwGOMfXXeLzs7G0ZGRsjKyoKhoaEichFCVEhekRjx6XkoFkuho8VHXVN9OoGQECVQnvs3/YklhHwzfV0tNKllxHUMQsg3oDUEhBBCCKFCQAghhBAqBIQQQggBFQJCCCGEgAoBIYQQQkCFgBBCCCGgQkAIIYQQUCEghBBCCKgQEEIIIQRUCAghhBACKgSEEEIIARUCQgghhIAKASGEEEJAhYAQQgghoEJACCGEEFAhIIQQQggArbJ8E2MMAJCdnS3XMIQQQgiRnff37ff38S8pUyHIyckBAFhaWn5DLEIIIYRwIScnB0ZGRl/8Hh4rQ22QSqV48eIFDAwMwOPxZBaQEEIIIfLDGENOTg5q1aoFPv/LqwTKVAgIIYQQot5oUSEhhBBCqBAQQgghhAoBIYQQQkCFgBBCCCGgQkAIIYQQUCEghBBCCKgQEEIIIQTA/wENfnebb+tPEQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#plot the solution on graph\n", + "g_sol = np.copy(g)\n", + "pos = nx.spring_layout(g)\n", + "nx.draw_networkx_nodes(g, pos, nodelist=[idx for idx,bit in enumerate(configuration[0]) if bit == '1'], node_color=\"tab:red\")\n", + "nx.draw_networkx_nodes(g, pos, nodelist=[idx for idx,bit in enumerate(configuration[0]) if bit == '0'], node_color=\"tab:blue\")\n", + "nx.draw_networkx_edges(g, pos)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 2: Build the QAOA model\n", + " - Initialize the model (with default parameters)\n", + " - Optionally set the following properties for the model\n", + " - `model.set_device(...)`: Set the device\n", + " - The device properties include the location of the device `[local, qcs, ibmq]` and the device name. Full list of devices available at `openqaoa.workflows.parameters.qaoa_parameters.ALLOWED_DEVICES`\n", + " - `model.set_circuit_properties(...)`: Sets the circuit properties. Mainly used for:\n", + " - `p`: the number of layers\n", + " - `param_type`: the desired parameterisation to be chosen between `['standard', 'extended', 'fourier', annealing]`\n", + " - `init_type`: the initialisation strategy for param_type. To be chosen between `['ramp', 'random', 'custom']`\n", + " - `model.set_backend_properties(...)`\n", + " - `model.set_classical_optimizer(...)`\n", + "\n", + "\n", + " \n", + "For more details on the configurable properties, please refer to the documentation" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# initialize model with default configurations\n", + "q = QAOA()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# optionally configure the following properties of the model\n", + "\n", + "# device\n", + "qiskit_device = create_device(location='local', name='qiskit.statevector_simulator')\n", + "q.set_device(qiskit_device)\n", + "\n", + "# circuit properties\n", + "q.set_circuit_properties(p=2, param_type='standard', init_type='rand', mixer_hamiltonian='x')\n", + "\n", + "# backend properties (already set by default)\n", + "q.set_backend_properties(prepend_state=None, append_state=None)\n", + "\n", + "# classical optimizer properties\n", + "q.set_classical_optimizer(method='nelder-mead', maxiter=200, tol=0.001,\n", + " optimization_progress=True, cost_progress=True, parameter_log=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 3: Compile and Optimize\n", + "\n", + "- Once the QAOA model is configured, we need to compile it. **Compilation is necessary** because the QAOA solver has to interact with the problem in to be able to create the underlying QAOA circuit.\n", + "- The problem is ready to be optimized now. The user can call `model.optimize()` to initiate the optimization loop. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "q.compile(maxcut_qubo) " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "q.optimize()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 4: Accessing the results" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "opt_results = q.result" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0wAAAK9CAYAAAAXJOy/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACCkElEQVR4nO3dd3hUZd7G8XsS0ggpICUBQu+9K0UBRaqIvaGIBRtgQ1ZwVcCG7XVVFt1ddYG1lxW7KFIVkCpVQEB6b2mUkHLeP549mZkkA6lTMt/Pdc115pQ580wGMTe/pzgsy7IEAAAAAMgnxNcNAAAAAAB/RWACAAAAAA8ITAAAAADgAYEJAAAAADwgMAEAAACABwQmAAAAAPCAwAQAAAAAHhCYAAAAAMADAhMAAAAAeEBgAgCUW9OnT5fD4dCKFSvOeW2vXr3Uq1evsm8UACCgEJgAAMW2bds23X333WrQoIEiIyMVGxur7t2767XXXtOpU6dK/f1OnjypiRMnav78+aV+7+JYvHixJk6cqOTkZF83BQBQRir4ugEAgMD07bff6tprr1VERISGDRumVq1a6cyZM/rll180duxYbdiwQf/6179K9T1PnjypSZMmSVKpV4N+/PHHIr9m8eLFmjRpkoYPH674+PhSbQ8AwD8QmAAARbZ9+3bdcMMNqlu3rubOnavExMTccyNHjtTWrVv17bff+rCFRRceHu7rJkiSLMvS6dOnFRUV5eumAABElzwAQDG8+OKLSk9P1zvvvOMWlmyNGjXSAw88kLuflZWlp59+Wg0bNlRERITq1aunxx57TBkZGW6vW7Fihfr166eqVasqKipK9evX1+233y5J2rFjh6pVqyZJmjRpkhwOhxwOhyZOnHjO9mZkZOjhhx9WtWrVFB0drSuvvFKHDx92u6agMUxTpkxRy5YtVbFiRVWuXFmdOnXSBx98IEmaOHGixo4dK0mqX79+bnt27NhRpM9cr149XXbZZfrhhx/UqVMnRUVF6Z///Kd69uyptm3bFvh5mjZtqn79+p3zcwMASo4KEwCgyL7++ms1aNBA3bp1K9T1d955p2bMmKFrrrlGY8aM0dKlSzV58mRt3LhRM2fOlCQdOnRIffv2VbVq1TRu3DjFx8drx44d+vzzzyVJ1apV05tvvql7771XV155pa666ipJUps2bc75/qNHj1blypU1YcIE7dixQ6+++qpGjRqljz/+2ONr3nrrLd1///265ppr9MADD+j06dNau3atli5dqptuuklXXXWV/vjjD3344Yf629/+pqpVq+a2s7Cf2bZ582bdeOONuvvuuzVixAg1bdpUlSpV0ogRI7R+/Xq1atUq99rly5frjz/+0OOPP16onz0AoIQsAACKICUlxZJkDRkypFDXr1692pJk3XnnnW7HH3nkEUuSNXfuXMuyLGvmzJmWJGv58uUe73X48GFLkjVhwoRCvfe0adMsSVafPn2snJyc3OMPPfSQFRoaaiUnJ+ce69mzp9WzZ8/c/SFDhlgtW7Y86/1feuklS5K1fft2t+OF/cyWZVl169a1JFmzZs1yuzY5OdmKjIy0Hn30Ubfj999/vxUdHW2lp6eftW0AgNJBlzwAQJGkpqZKkmJiYgp1/XfffSdJevjhh92OjxkzRpJyxzrZkyZ88803yszMLI2m5rrrrrvkcDhy9y+88EJlZ2dr586dHl8THx+vPXv2aPny5UV+v8J+Zlv9+vXzdbGLi4vTkCFD9OGHH8qyLElSdna2Pv74Y11xxRWKjo4ucrsAAEVHYAIAFElsbKwkKS0trVDX79y5UyEhIWrUqJHb8YSEBMXHx+eGlp49e+rqq6/WpEmTVLVqVQ0ZMkTTpk3LN+anOOrUqeO2X7lyZUnS8ePHPb7m0UcfVaVKldSlSxc1btxYI0eO1KJFiwr1foX9zLb69esXeJ9hw4Zp165d+vnnnyVJP/30kw4ePKhbbrmlUO0AAJQcgQkAUCSxsbGqWbOm1q9fX6TXuVZ4PJ3/7LPPtGTJEo0aNUp79+7V7bffro4dOyo9Pb0kTVZoaGiBx+3KTUGaN2+uzZs366OPPlKPHj303//+Vz169NCECRMK/b7n+sw2TzPi9evXTzVq1NB7770nSXrvvfeUkJCgPn36FLoNAICSITABAIrssssu07Zt27RkyZJzXlu3bl3l5ORoy5YtbscPHjyo5ORk1a1b1+34BRdcoGeffVYrVqzQ+++/rw0bNuijjz6SVPgAUlqio6N1/fXXa9q0adq1a5cGDRqkZ599VqdPnz5re4r6mT0JDQ3VTTfdpM8++0zHjx/XF198oRtvvNFjAAQAlD4CEwCgyP7yl78oOjpad955pw4ePJjv/LZt2/Taa69JkgYOHChJevXVV92ueeWVVyRJgwYNkmS6x+Wt+LRr106ScrvlVaxYUZKUnJxcKp/jbI4ePeq2Hx4erhYtWsiyrNwxVvY4orztKexnLoxbbrlFx48f191336309HTdfPPNRfkYAIASYlpxAECRNWzYUB988IGuv/56NW/eXMOGDVOrVq105swZLV68WJ9++qmGDx8uSWrbtq1uvfVW/etf/1JycrJ69uypZcuWacaMGbriiivUu3dvSdKMGTP0xhtv6Morr1TDhg2Vlpamt956S7GxsbkBJCoqSi1atNDHH3+sJk2aqEqVKmrVqpXbtNulpW/fvkpISFD37t1Vo0YNbdy4UX//+981aNCg3AkvOnbsKEn661//qhtuuEFhYWEaPHhwoT9zYbRv316tWrXSp59+qubNm6tDhw6l/lkBAGfh20n6AACB7I8//rBGjBhh1atXzwoPD7diYmKs7t27W1OmTLFOnz6de11mZqY1adIkq379+lZYWJiVlJRkjR8/3u2aVatWWTfeeKNVp04dKyIiwqpevbp12WWXWStWrHB7z8WLF1sdO3a0wsPDzznFuD2teN6pyufNm2dJsubNm5d7LO+04v/85z+tiy66yDrvvPOsiIgIq2HDhtbYsWOtlJQUt3s9/fTTVq1atayQkBC3KcYL85kty0wrPmjQoLP9mK0XX3zRkmQ999xzZ70OAFD6HJZ1lhGvAADA51577TU99NBD2rFjR74Z/wAAZYvABACAH7MsS23bttV5552nefPm+bo5ABB0GMMEAIAfOnHihL766ivNmzdP69at05dffunrJgFAUKLCBACAH9qxY4fq16+v+Ph43XfffXr22Wd93SQACEoEJgAAAADwgHWYAAAAAMADAhMAAAAAeBBUkz7k5ORo3759iomJkcPh8HVzAAAAAPiIZVlKS0tTzZo1FRLiuY4UVIFp3759SkpK8nUzAAAAAPiJ3bt3q3bt2h7PB1VgiomJkWR+KLGxsT5uDQAAAABfSU1NVVJSUm5G8CSoApPdDS82NpbABAAAAOCcQ3WY9AEAAAAAPCAwAQAAAIAHBCYAAAAA8CCoxjABAAAAgcayLGVlZSk7O9vXTQkooaGhqlChQomXEyIwAQAAAH7qzJkz2r9/v06ePOnrpgSkihUrKjExUeHh4cW+B4EJAAAA8EM5OTnavn27QkNDVbNmTYWHh5e4WhIsLMvSmTNndPjwYW3fvl2NGzc+6+K0Z0NgAgAAAPzQmTNnlJOTo6SkJFWsWNHXzQk4UVFRCgsL086dO3XmzBlFRkYW6z5M+gAAAAD4seJWRlA6Pzt++gAAAADgAYEJAAAAADwgMAEAAACABwQmAAAAAKXuwIEDGj16tBo0aKCIiAglJSVp8ODBmjNnTonvPX36dMXHx5e8kYXALHkAAAAAStWOHTvUvXt3xcfH66WXXlLr1q2VmZmpH374QSNHjtSmTZt83cRCo8IEAAAABJgTJzw/Tp8u/LWnTp372uK477775HA4tGzZMl199dVq0qSJWrZsqYcffli//vqrJGnXrl0aMmSIKlWqpNjYWF133XU6ePBg7j3WrFmj3r17KyYmRrGxserYsaNWrFih+fPn67bbblNKSoocDoccDocmTpxYvIYWAoEJAAAACDCVKnl+XH21+7XVq3u+dsAA92vr1ct/TVEdO3ZMs2bN0siRIxUdHZ3vfHx8vHJycjRkyBAdO3ZMCxYs0OzZs/Xnn3/q+uuvz71u6NChql27tpYvX66VK1dq3LhxCgsLU7du3fTqq68qNjZW+/fv1/79+/XII48UvaGFRJc8AAAAAKVm69atsixLzZo183jNnDlztG7dOm3fvl1JSUmSpP/85z9q2bKlli9frs6dO2vXrl0aO3Zs7n0aN26c+/q4uDg5HA4lJCSU7YcRgQkAAAAIOOnpns+FhrrvHzrk+dq867ru2FHsJuWyLOuc12zcuFFJSUm5YUmSWrRoofj4eG3cuFGdO3fWww8/rDvvvFPvvvuu+vTpo2uvvVYNGzYseQOLiC55AAAAQICJjvb8iIws/LVRUee+tqgaN24sh8NR4okdJk6cqA0bNmjQoEGaO3euWrRooZkzZ5bonsVBYAIAAABQaqpUqaJ+/fpp6tSpOlHArBHJyclq3ry5du/erd27d+ce//3335WcnKwWLVrkHmvSpIkeeugh/fjjj7rqqqs0bdo0SVJ4eLiys7PL/sOIwAQAAACglE2dOlXZ2dnq0qWL/vvf/2rLli3auHGjXn/9dXXt2lV9+vRR69atNXToUK1atUrLli3TsGHD1LNnT3Xq1EmnTp3SqFGjNH/+fO3cuVOLFi3S8uXL1bx5c0lSvXr1lJ6erjlz5ujIkSM6efJkmX0WAhMAAACAUtWgQQOtWrVKvXv31pgxY9SqVStdeumlmjNnjt588005HA59+eWXqly5si666CL16dNHDRo00McffyxJCg0N1dGjRzVs2DA1adJE1113nQYMGKBJkyZJkrp166Z77rlH119/vapVq6YXX3yxzD6LwyrMqKxyIjU1VXFxcUpJSVFsbKyvmwMAAAB4dPr0aW3fvl3169dXZN6BSSiUs/0MC5sNqDABAAAAgAcEJj939Ki0bp2vWwEAAAAEJwKTn6tRQ2rTRlq71tctAQAAAIIPgcnP2bMlrlrl23YAAAAAwYjA5OeaNTPbBg182w4AAAD4RhDN0VbqSuNnR2Dyc6GhZpuV5dt2AAAAwLvCwsIkqUzXGCrv7J+d/bMsjgql1RgUz8qV0vPPS+PGSR075j8f8r9I66WFjAEAAOAnQkNDFR8fr0OHDkmSKlasKIfD4eNWBQbLsnTy5EkdOnRI8fHxCrWrEMVAYPKhVaukPn2k5GQpMlJ6993819gz5P32m3TppV5tHgAAAHwsISFBknJDE4omPj4+92dYXAQmH1mzxgSg5GSzv2nT2a+n6yoAAEDwcTgcSkxMVPXq1ZWZmenr5gSUsLCwElWWbAQmH1mzRjp+XGrUSNq61QQmy5I8VVntyR8AAAAQfEJDQ0vll38UHZM++MiwYdLMmdLixWZih/R0ad++/NdVrmy2BCYAAADA+6gw+dCQIWY7fbpUq5ZUpUr+a3JyzDaEaAsAAAB4HYHJD9x8s+dzKSlma491AgAAAOA9AVW3WLhwoQYPHqyaNWvK4XDoiy++8HWTvOa773zdAgAAACD4BFRgOnHihNq2baupU6f6uiml6uBB0y3v7bc9XxMe7rXmAAAAAPifgOqSN2DAAA0YMMDXzSh127ZJt90mJSVJd97pfm7IEOnLL6WqVX3TNgAAACCYBVRgKqqMjAxlZGTk7qempvqwNZ41bWq2u3eb2fIqVXKes2ePzMryfrsAAACAYBdQXfKKavLkyYqLi8t9JCUl+bpJBTrvPKlaNfP8jz/cz1X4X6TNzvZumwAAAACU88A0fvx4paSk5D52797t6yZ5ZK+ztGmT85hlSZ98Yp7v3+/9NgEAAADBrlx3yYuIiFBERISvm1EozZpJP/+cPzDZ7PWYAAAAAHhPua4wBZKCKkyuIemCC7zbHgAAAAABVmFKT0/X1q1bc/e3b9+u1atXq0qVKqpTp44PW1Zy5wpMPXt6tz0AAAAAAiwwrVixQr17987df/jhhyVJt956q6ZPn+6jVpWOrl2lH36Qmjd3HnMNTCHUAgEAAACvC6jA1KtXL1muA3vKkcqVpb593Y+5BqZjx6TYWO+2CQAAAAh21C38mGtgev1137UDAAAACFYBVWEq7159VTp5Urr7brM2k8PhPFdOC2sAAACAX6PC5Eeeflr661+lQ4fMfnS09Mgj5nloqO/aBQAAAAQrApMfsSd2cO2KV+F/NcCsLO+3BwAAAAh2BCY/UlBgsitL2dnebw8AAAAQ7AhMfsQOR3ZgOnxYevZZ85wKEwAAAOB9BCY/YleY7GqSa0iiwgQAAAB4H4HJj+TtkufaNe/ii73fHgAAACDYEZj8SN4uefY2IkK64QbftAkAAAAIZqzD5Ec+/lg6c0Zq3tzs24EphFgLAAAA+ASByY906eK+b49bOnVKOnrULGYLAAAAwHuoXfgx1zFM99zju3YAAAAAwYoKkx/54AMzlfhVV0lJSVJ4uPMcs+QBAAAA3keFyY8895z04IPSli1mv04d6a23zHPWYQIAAAC8j8DkR/LOkidJFf5XA6TCBAAAAHgfgcmP5F24VnKGKCpMAAAAgPcRmPxI3oVrN26Uhg0zz6kwAQAAAN5HYPIjeQNTRobzHBUmAAAAwPsITH4kb5c817FMgwZ5vz0AAABAsCMw+ZG8kz7YwalOHWnsWN+0CQAAAAhmrMPkR/7v/6TUVKl9e7NvByc7SAEAAADwLgKTH+na1X3fDkxpaVJKihQX5/02AQAAAMGMLnl+zA5MR45IF17o27YAAAAAwYgKkx+ZNUvavVvq3Vtq1EiKinKeY1pxAAAAwPuoMPmR//s/6a67pKVLzX6HDtLCheY504oDAAAA3kdg8iN5Z8mTpAr/qwFSYQIAAAC8j8DkR/IuXCs5QxQVJgAAAMD7CEx+JO/CtYsWSeef734MAAAAgPcQmPxI3i55aWnOc1SYAAAAAO8jMPmRvF3yXLvmXXml99sDAAAABDsCkx/J2yXPDkxdukhvvOGbNgEAAADBjHWY/MjYsdLNN0tt25p9OzCFEGsBAAAAnyAw+ZELLnDfd+2ad/q0FBnp/TYBAAAAwYzahR+zu+YtWybFxfm2LQAAAEAwosLkR379Vdq+XWrXTmreXKpYUQoPl86cYVpxAAAAwBeoMPmRN96QbrpJ+vZbsz9ggLRrl3menS1Zlu/aBgAAAAQjApMfsddhcq0mVXCpAbpOMw4AAACg7BGY/EjedZgkZ4iSWLwWAAAA8DYCkx/JG5i+/dZ95jzGMQEAAADeRWDyI3Y1yQ5MR45Imzc7z1NhAgAAALyLwORH7AqTXUlyrShdeSUL2AIAAADexrTifiRvlzx7O3iw9PnnvmkTAAAAEMwITH5k2DAzZql1a7NvByYqSwAAAIBvEJj8SJcu5mEjMAEAAAC+xa/ifswewzRzppkQYudO37YHAAAACDYEJj/y++/Sl19K69aZ/chIqXp18zwnh2nFAQAAAG8jMPmR//xHuuIKado0s3/HHdLBg1JcnNknMAEAAADeRWDyI3lnybPZ6zOxDhMAAADgXQQmP5J34Vpbhf9NzUGFCQAAAPAuApMfybtw7YcfSj17SocOmX0qTAAAAIB3EZj8SN4uebt2SQsXOs9TYQIAAAC8i8DkR/IGJteueX37SpUqeb9NAAAAQDBj4Vo/krdLnh2YRoyQ/vUv37QJAAAACGYEJj8yYIBUtarUrJnZtwNTCHVAAAAAwCcITH6kQwfzsBGYAAAAAN/iV3E/ZnfNe/NNKTZWmjPHt+0BAAAAgg2ByY/s3i399JO0bp3ZDwuToqPN87Q06cwZ37UNAAAACEYEJj/y+efSpZdKkyeb/SeekNLTpS5dzD7TigMAAADeRWDyI3lnybOFhpotC9cCAAAA3kVg8iN2MHJdf0mSKvxvag4qTAAAAIB3EZj8SN6Fa996y0w1/vPPZp8KEwAAAOBdBCY/krdL3saN0qxZzvNUmAAAAADvIjD5kbxd8ly75nXvLp13nvfbBAAAAAQzFq71I3m75NkVpccfl55+2jdtAgAAAIIZgcmPdOki/d//SQ0amH07OIVQBwQAAAB8gsDkR1q2NA8bgQkAAADwLX4V92N2YJo4UUpMlN55x6fNAQAAAIIOFSY/cvSo9McfUkyM1KqVZFnOcwcOSGlpvmsbAAAAEIyoMPmROXOkbt2kUaPM/r/+ZULTzTebfaYVBwAAALyLwORH8s6SZ6vwvzogC9cCAAAA3kVg8iP2Okx5K0l2YKLCBAAAAHgXY5j8SN4K06uvSr/8Ii1davapMAEAAADeRWDyI3kD07Jl0n//6zxPhQkAAADwLgKTH7G75NmByd7WqiVVqybVqOGbdgEAAADBisDkR/JWmOzt+PHSyJG+aRMAAAAQzAhMfqRxY+mpp8witZIzMIUwNQcAAADgEwQmP9KwofTEE859AhMAAADgW/wq7sfswPT661KjRtLEiT5tDgAAABB0qDD5kRMnpG3bpLAwqXlzZ2BKTZX27JEOHfJt+wAAAIBgQ4XJj/z2m9S2rXTFFWb/s89MiLr9drPPtOIAAACAd1Fh8iP2WCU7GIWHm0dkpNln4VoAAADAu6gw+ZG86zDlPU5gAgAAALyLCpMfybsO0wsvSL//Lp08afbpkgcAAAB4FxUmP5K3S96PP0r/+Y+Z8EGiwgQAAAB4G4HJj+Ttkmdvq1Uzi9omJPimXQAAAECwokueH8nbJc+uNA0bJl1zjW/aBAAAAAQzApMfqV5dGjdOiokx+3ZwCqEOCAAAAPgEgcmPJCRIkyc79+3AZHfVAwAAAOBd1C78mB2Yvv/eLGh7112+bQ8AAAAQbKgw+ZHMTGnnTvO8USNnYEpPl9auNZM/AAAAAPAeKkx+ZNcuMxtehw5mf/Zs6dAhqV8/s8+04gAAAIB3UWHyI3nXYYqLM9voaPfjAAAAALyDCpMfyTutuM2e9IEKEwAAAOBdVJj8SN6Fa59+Wtq/34xnkqgwAQAAAN5GhcmP5O2S99FH0ptvmnFMEhUmAAAAwNsITH4kb5c8e1upklSzJrPkAQAAAN5GYPIjdpc8yzIPOzD16iXt3Sv98IPPmgYAAAAEJcYw+ZGKFaXRo02lybKcXfNCiLUAAACATxCY/Eh0tPT66859u8JEYAIAAAB8g1/F/ZgdmDZvlrp1k664wqfNAQAAAIJOwAWmqVOnql69eoqMjNT555+vZcuW+bpJpcayzDTie/easGQHpowMackSaeVK37YPAAAACDYBFZg+/vhjPfzww5owYYJWrVqltm3bql+/fjpkz7sd4E6fNrPh1a4tnTxpQtKOHVL79uY804oDAAAA3hVQgemVV17RiBEjdNttt6lFixb6xz/+oYoVK+rf//63r5tWKlzHKuXkSLVqSXXrmskgJBauBQAAALwtYALTmTNntHLlSvXp0yf3WEhIiPr06aMlS5YU+JqMjAylpqa6PfyZa2ByDUf2dONUmAAAAADvCpjAdOTIEWVnZ6tGjRpux2vUqKEDBw4U+JrJkycrLi4u95GUlOSNphZb3grTk09KY8dKR46YY1SYAAAAAO8KmMBUHOPHj1dKSkruY/fu3b5u0lnlDUxTp0ovvyzZhTEqTAAAAIB3Bcw6TFWrVlVoaKgOHjzodvzgwYNKSEgo8DURERGKiIjwRvNKhcNhHvaitfYseRERUlyccywTAAAAAO8ImApTeHi4OnbsqDlz5uQey8nJ0Zw5c9S1a1cftqx02VUm12nF69SRkpOlfft81iwAAAAgKAVMhUmSHn74Yd16663q1KmTunTpoldffVUnTpzQbbfd5uumlZrbbzcVpqgoZ2AKCZhYCwAAAJQvARWYrr/+eh0+fFhPPvmkDhw4oHbt2mnWrFn5JoIIZP/6l/O5HZjsWfIAAAAAeJfDsizL143wltTUVMXFxSklJUWxsbG+bs45RUWZxWx//10aPdqMa/rhByk83NctAwAAAAJbYbNBQFWYgkFamglGMTHOCpPDIdlDt7KyCEwAAACAtxCY/ExSkpSSIv3xh7RmjQlNNWs6zzO1OAAAAOA9BCY/4zpLXrNm5nlmpvM8i9cCAAAA3sP8a37GDkyuwch10gcqTAAAAID3UGHyM3Y4ysqSnnjCBKhHH3Vf0BYAAACAdxCY/IxdYcrKkp55xjx/8EETpLKyqDABAAAA3kRg8jN2YHIdtxQSIkVGmrBkz5wHAAAAoOwRmPyMa5c8W0iImW4cAAAAgHcRmPzMkCHSsWNSXJzzWAhTcwAAAAA+QWDyM1OmmK1rRYnABAAAAPgGv4r7KdexSqGh0vDh0mWXSTt2+KpFAAAAQPAhMPmZ7GzpzJn8Y5h+/FH69lspOdlnTQMAAACCDoHJz7RqJUVESKtXSytWSMuWmQpThf91nmQdJgAAAMB7GMPkZ+zxSiEhUseOzuMFzZ4HAAAAoGxRYfIzdmDKu94SFSYAAADA+whMfsauJKWkSM8/L738svtxKkwAAACA99Alz8/YFabjx6Xx46WwMOmRR6gwAQAAAL5AhcnP2IEpM9Ns7coSFSYAAADA+6gw+Zm8wcgOUCtWmHMsYgsAAAB4D4HJz1x0kZSYKFWtavbtgBQW5rs2AQAAAMGKwORnXnrJbLduNVsqSgAAAIDv8Ou4n7KnFbcD09NPS9dfL/36q+/aBAAAAAQbApOfyhuY5s6VPvlE2rnTd20CAAAAgg2Byc/072/GKy1ZIi1YIH31lTnOtOIAAACA9zGGyc9kZ5sZ8iIizAQQNqYVBwAAALyPCpOfsbvg2V3ybFSYAAAAAO8jMPkZOzAdOCBNmSJNn272qTABAAAA3keXPD9jB6YdO6SpU6XataXhw6kwAQAAAL5AhcnP2IEpM9Ns7coSFSYAAADA+6gw+Rk7GNmByQ5Q06ZJ77wjRUb6pl0AAABAMCIw+Zm2baUTJ6SEBLNvB6boaN+1CQAAAAhWdMnzM5MmSbNnSwMHmv0QviEAAADAZ/h13E/Z04rbgek//5Fuv925kC0AAACAskdg8lN2YLLHNC1aZMYxrV7tsyYBAAAAQYfA5GfuvluKj5d+/ln67jvpjTfMcaYVBwAAALyPSR/8zKlTUkqKVLGiNGCA8zjTigMAAADeR4XJz9hjluwueTYqTAAAAID3EZj8jB2Ydu406y59/bXZp8IEAAAAeB+Byc/Ywei336Q775SeesrsU2ECAAAAvI/A5GfsCpNdSbL3qTABAAAA3sekD37GDkiZme77f/mLNGqUFB3tm3YBAAAAwYgKk59p2FDq2lVKTDT7dmCKjZUSEqSYGN+1DQAAAAg2BCY/88gj0uLF0u23m327Kx4AAAAA7yMw+Sl7cge7wjR3rjR6tPSf//iuTQAAAECwITD5KXsdJjswrV4t/f3v0o8/+qxJAAAAQNBh0gc/88wz0ptvSoMGSZ99JlWtao7bXfOYVhwAAADwHgKTn0lLk/btM5M7XH2187i9DhPTigMAAADeQ5c8P2N3wbO75NmoMAEAAADeR2DyM3Zg2rpV+ugj6eefzT4VJgAAAMD7CEx+xq4kzZ0r3Xij9MIL7sepMAEAAADeQ2DyM3aFKTPTfZ8KEwAAAOB9TPrgZ+yAZAcju7I0ZIjpphcd7Zt2AQAAAMGIwORnEhOltm2lw4fNbHl2gIqNNQ8AAAAA3kOXPD8zYoRZpPaxx8x+CN8QAAAA4DNUmPyUPa24HZi2bZPeeUeqUkV65BHftQsAAAAIJtQv/FTewLRnjzR5sglNAAAAALyDCpOfmT5deu45qVEjacYMqV49c7xiRbM9edJXLQMAAACCD4HJzyQnS1u2SJ06ScOGOY8TmAAAAADvo0uen7GnEbe75Nmiosz21CnvtgcAAAAIZgQmP2OPWdq8Wfr6a2nNGrPvWmGyLN+0DQAAAAg2BCY/Ywem1aulyy+Xpkwx+3ZgsiwpI8MnTQMAAACCDoHJz+Rdd8net7vkSYxjAgAAALyFSR/8TN7AZI9pCguTVq0ylaa4OO+3CwAAAAhGBCY/Ex8vNWxoFqqV3ANU+/Y+aRIAAAAQtOiS52euvVbaulV64gmzn7fiBAAAAMB7+HXcT9nTirsGpjfflB5/XNqxwydNAgAAAIIOXfL8VHa22boGpjfekNavl3r3lurV80mzAAAAgKBCYPIzs2ZJ48aZCtMbb0ht2jjPsXgtAAAA4F0EJj+TkmIWq+3VS7r3XvdzrovXAgAAACh7jGHyM/Y04vYYJld2YKLCBAAAAHgHgcnP2GOWNm2S5s6V/vzTeY4KEwAAAOBdBCY/YwemQ4ekSy6R/v1v5zl7DBOBCQAAAPAOApOfsbvk2VxnyaNLHgAAAOBdTPrgZ/IuVOu6/+ij0l13SbVre7dNAAAAQLAiMPmZqCgpMVHav9/suwamBg180yYAAAAgWNElz89cfLG0b5+pJEn5K04AAAAAvIcKk5/KzjZb18D022/Sjz9KjRtLV13lm3YBAAAAwYT6hZ+y12FyDUy//iqNGye9/75v2gQAAAAEGwKTn/ntN6l7d+nLL6WXXzZd9GyswwQAAAB4F13y/ExamrR4sdS0qTRmjPs5AhMAAADgXVSY/Iy9DpM9hskVgQkAAADwLgKTn7HHLG3dKi1dKh044DwXFWW2LFwLAAAAeAeByc+4TvJwwQXSp58696kwAQAAAN5FYPIzdpc8m2uAIjABAAAA3sWkD34m70K1rvsNG0rz5kmVKnm3TQAAAECwIjD5mbAwKTZWSk01+64Vp+hoqVcvnzQLAAAACEp0yfMzrVtLKSnS5Zeb/bwVJwAAAADeQ4XJT+XkmK1rYMrJkf7xDzOGaeRI56x5AAAAAMoGgclPFRSYHA5p1CjJsqSbbyYwAQAAAGWNDl9+Zs8eqW9f6bvvpEmTpHbtnOccDmbKAwAAALyJCpOfOX1amj1biomRnnwy//mKFaUTJwhMAAAAgDdQYfIzdhc8u0teXnY3vFOnvNMeAAAAIJgRmPyMHZhOnJDWrTMz5rmiSx4AAADgPQQmP+O67lKbNtKPP7qfJzABAAAA3kNg8jN5113Ku293ySMwAQAAAGWPSR/8zLkC00svmbDUpo332gQAAAAEKwKTnwkJkSpUkLKynPuuunb1fpsAAACAYEWXPD9To4aUmSl16WL28wYmAAAAAN5DhclP2dOK5w1MS5ZIa9dK7ds7QxUAAACAskH9wk95Ckwffijdc4/01VfebxMAAAAQbAImMD377LPq1q2bKlasqPj4eF83p8ycOiVdeaW0apX04INSgwbu51m4FgAAAPCegAlMZ86c0bXXXqt7773X100pUzk50hdfmOfPPis1bep+nnWYAAAAAO8JmDFMkyZNkiRNnz7dtw0pY65d8LKz858nMAEAAADeEzCBqTgyMjKUkZGRu5+amurD1hROaKjz+datUvPmUmSk85gdmOiSBwAAAJS9gOmSVxyTJ09WXFxc7iMpKcnXTTon1wpThw7S8uXu5+0xTFSYAAAAgLLn08A0btw4ORyOsz42bdpU7PuPHz9eKSkpuY/du3eXYuvLRt5Z8fLuU2ECAAAAvMenXfLGjBmj4cOHn/WaBnmniSuCiIgIRUREFPv1vnCuwNSjhzRzppSY6L02AQAAAMHKp4GpWrVqqlatmi+b4JdCQjyvw1S7tnkAAAAAKHsBM+nDrl27dOzYMe3atUvZ2dlavXq1JKlRo0aqVKmSbxtXyk6elBo2lPbuzR+YAAAAAHhPwASmJ598UjNmzMjdb9++vSRp3rx56tWrl49aVTYiIpxBKW9gSkmRvv3WPL/pJu+2CwAAAAg2DsuyLF83wltSU1MVFxenlJQUxcbG+ro5Z1W7tqkwrVol/S8bSpI2bTJTjVeuLB075rv2AQAAAIGssNmADl9+6I47TFi65hop7xAvFq4FAAAAvIfA5Ic+/dRsJ0/OP8GDHZgyMqTsbO+2CwAAAAg2BCY/ZI9bsmfKc2UHJom1mAAAAICyRmDyQ6GhZrtvn5SV5X4uMtL5nMAEAAAAlC0Ckx+yK0y9e0t//pn/nB2aGMcEAAAAlC0Ckx9ynUq8oHWYmPgBAAAA8I6AWYcpmNhd8qSCA9M//yk5HFLNmt5rEwAAABCMCEx+6FwVpmuu8V5bAAAAgGBGlzw/tH6987lrtQkAAACAdxGY/FB8vBQWZp4XVGFauFD6+GNp926vNgsAAAAIOgQmP2WvwVRQYHriCemGG6Rff/VumwAAAIBgQ2DyQ088IWVnSz16uC9Ua4uIMNuMDO+2CwAAAAg2BCY/9OmnZvvcc1JcXP7z4eFme+aM99oEAAAABCMCkx+yu+FlZxd8ngoTAAAA4B0EJj/kcJhtSopkWfnPU2ECAAAAvIPA5Ieyssz2iiuktLT856kwAQAAAN5BYPJDdoVJKniWPCpMAAAAgHdU8HUDcHYFBaZbb5W6dZM6dPB+ewAAAIBgQmDycwUFpu7dzQMAAABA2aJLnh/66ivn84ICEwAAAADvoMLkh6pWdT4vKDBt2yZt3CjVqiW1b++9dgEAAADBhvqFH8rJcT4vKDB98ok0eLD09797r00AAABAMCIw+aF//ctsGzVynzHPZk8rzix5AAAAQNkiMPmh2bPN9tlnCw5M9rTirMMEAAAAlK1iBaannnpKJ0+ezHf81KlTeuqpp0rcqGBnd8PLzi74POswAQAAAN5RrMA0adIkpaen5zt+8uRJTZo0qcSNCnbnCkx0yQMAAAC8o1iBybIsOQroK7ZmzRpVqVKlxI0Kdnv2mO0ttxR8ni55AAAAgHcUaVrxypUry+FwyOFwqEmTJm6hKTs7W+np6brnnntKvZFwR5c8AAAAwDuKFJheffVVWZal22+/XZMmTVJcXFzuufDwcNWrV09du3Yt9UbCXfv20pQpUu3avm4JAAAAUL4VKTDdeuutkqT69eure/fuqlCBdW/LQkEz47lq0EAaNco7bQEAAACCWbHGMMXExGjjxo25+19++aWuuOIKPfbYYzpDP7ESsxekLWjRWgAAAADeU6xfye+++2798ccfkqQ///xT119/vSpWrKhPP/1Uf/nLX0q1gcEoMdFsK1cu+HxamjR/vvTzz15rEgAAABCUihWY/vjjD7Vr106S9Omnn6pnz5764IMPNH36dP33v/8tzfYFpZwcs/VUYdqyRerdW7rxRu+1CQAAAAhGxZ5WPOd/v9X/9NNPGjhwoCQpKSlJR44cKb3WBalvvzXbSpUKPs8seQAAAIB3FCswderUSc8884zeffddLViwQIMGDZIkbd++XTVq1CjVBgaj1avN9v77Cz5vL1zLOkwAAABA2SpWYHr11Ve1atUqjRo1Sn/961/VqFEjSdJnn32mbt26lWoDg5HdFc/umpcXFSYAAADAO4o1L3ibNm20bt26fMdfeuklhYaGlrhRwe5cgcm1wmRZ556GHAAAAEDxlGghpZUrV+ZOL96iRQt16NChVBoV7FatMtuxY6VHHsl/3q4wWZaUnS2xHBYAAABQNor1q/ahQ4d0/fXXa8GCBYqPj5ckJScnq3fv3vroo49UrVq10mxj0LGss5+3K0ySqTIRmAAAAICyUawxTKNHj1Z6ero2bNigY8eO6dixY1q/fr1SU1N1v6eZClBqIiOlF16Q/vY3whIAAABQlhyWda56Rn5xcXH66aef1LlzZ7fjy5YtU9++fZWcnFxa7StVqampiouLU0pKimJjY33dHI9atZI2bDDPi/7tAAAAADiXwmaDYlWYcnJyFBYWlu94WFhY7vpMKL7x4822cmXftgMAAAAIdsUKTBdffLEeeOAB7du3L/fY3r179dBDD+mSSy4ptcYFq5o1zTYx0fM1v/0mLVoknTzpnTYBAAAAwahYgenvf/+7UlNTVa9ePTVs2FANGzZU/fr1lZqaqilTppR2G4OOXaQLOcu307ev1KOHtH27d9oEAAAABKNiTRmQlJSkVatW6aefftKmTZskSc2bN1efPn1KtXHBauVKs01P93wNi9cCAAAAZa9IFaa5c+eqRYsWSk1NlcPh0KWXXqrRo0dr9OjR6ty5s1q2bKmff/65rNoaNA4dMtvrrvN8jevitQAAAADKRpEC06uvvqoRI0YUOItEXFyc7r77br3yyiul1rhgZXfFO9v8GVSYAAAAgLJXpMC0Zs0a9e/f3+P5vn37aqXdnwzFZgem7GzP11BhAgAAAMpekQLTwYMHC5xO3FahQgUdPny4xI0Kdj/+aLZ/+5vna6gwAQAAAGWvSIGpVq1aWr9+vcfza9euVeLZ5sJGoWRmnvsau8JEYAIAAADKTpEC08CBA/XEE0/o9OnT+c6dOnVKEyZM0GWXXVZqjYNnd9whPf201KyZr1sCAAAAlF8Oy7Kswl588OBBdejQQaGhoRo1apSaNm0qSdq0aZOmTp2q7OxsrVq1SjVq1CizBpdEamqq4uLilJKSUuDEFf6idWvJLuQV/tsBAAAAUFiFzQZFWoepRo0aWrx4se69916NHz9edtZyOBzq16+fpk6d6rdhKZDceqs0dqxUp46vWwIAAAAEtyIvXFu3bl199913On78uLZu3SrLstS4cWNVrly5LNoXlGrXNttGjTxfs2ePdPSolJAgkVEBAACAslGkMUyuKleurM6dO6tLly6EpVJmr78UcpZv59FHpXbtpPff90qTAAAAgKBU7MCEsrNjh9nu3On5GtZhAgAAAMoegckP2WssXXDBua9hWnEAAACg7BCY/FBoqNnaXfMKwjpMAAAAQNkjMPkhe+zS2QKTXWGiSx4AAABQdghMfuijj8z2ww89X0OFCQAAACh7BCY/dPLkua9hDBMAAABQ9ghMfmj8eLO97jrP1/ToIY0bJ/Xv7502AQAAAMHIYVmW5etGeEtqaqri4uKUkpKi2NhYXzfnrHbskOrUOftaTAAAAACKp7DZoIIX24QiqFfP1y0AAAAAQGAKUOnp0sGDZixTUpKvWwMAAACUT3T4ClAzZ0qNGkl33unrlgAAAADlF4EpQNnTirMOEwAAAFB2CEwBimnFAQAAgLJHYApQdmCiwgQAAACUHQJTgLK75FFhAgAAAMoOgSlAUWECAAAAyh6BKUAxhgkAAAAoe6zDFKBq1pRGjZKqVvV1SwAAAIDyi8AUoJKSpClTfN0KAAAAoHyjSx4AAAAAeEBgClA5OdKBA9KuXaV7X8uSTp8u3XsCAAAAgYrAFKCOHJESE6W6dU3IKS0DB0pxceb+AAAAQLAjMAUoe5Y8ScrMLL37zpplZt774ovSuycAAAAQqAhMAcpeuFYqm7WYHI7SvycAAAAQaAhMAcq1wlQWazGFhpb+PQEAAIBAQ2AKUKGhzlBTmhWmDh3MNiGh9O4JAAAABCrWYQpg4eHSqVOlW2Hq319q3pzABAAAAEgEpoAWEWECU2lWmJ59tvTuBQAAAAQ6AlMAGzbMhKWYmNK53/Hj0mWXmSA2Zw4TPwAAAAAEpgD22mule78TJ6TFi83z7GypAn86AAAAEOSY9AG5Tp92Pn/nHd+1AwAAAPAXBKYAdvKkdPRo6U364DoWqiymKgcAAAACDYEpgHXvLlWtKs2bVzr3IzABAAAA7ghMAcxevLa0wo1rlzwCEwAAAEBgCmgREWZbWtOKU2ECAAAA3BGYAlhpV5hycpzPCUwAAAAAgSmglXaF6ZJLpEceMc8JTAAAAACBKaCVdoVJklq3lq64QmrZsvTuCQAAAAQqliYNYHaFqTQD07Bh5gEAAACAClNA69FDGjpUaty4dO739ddSv37Sc8+Vzv0AAACAQEeFKYCNGmUepWX7dunHH6XKlSXLkhyO0rs3AAAAEIioMAWZkyelzz6T0tLyn7PXYfr4Y+n6673bLgAAAMAfEZgCWE6OmSGvKLPkjRwpXXutNHx4/nOswwQAAAC4IzAFsL/+VYqMlMaPL/xrpk83288/z3/OrjBJUmZmiZoGAAAAlAsEpgBmTyteWuswUWECAAAA3AVEYNqxY4fuuOMO1a9fX1FRUWrYsKEmTJigM0H+W31pr8PkWmEK8h8tAAAAIClAZsnbtGmTcnJy9M9//lONGjXS+vXrNWLECJ04cUIvv/yyr5vnM/Y6TEWpMD3xhPTKK9Kjj+Y/l5PjfE5gAgAAAAIkMPXv31/9+/fP3W/QoIE2b96sN998M6gDU3EqTE89ZR4FeeMNafBgaeBAAhMAAAAgBUhgKkhKSoqqVKly1msyMjKU4VJ+SU1NLetmeVVpj2GSpBo1pD59Sm8xXAAAACCQBWRg2rp1q6ZMmXLO6tLkyZM1adIkL7XK++wueUWpBs2ZI+3eLTVqJPXokf98hw7S7Nml0z4AAAAg0Pl00odx48bJ4XCc9bFp0ya31+zdu1f9+/fXtddeqxEjRpz1/uPHj1dKSkruY/fu3WX5cbyuXj3piiukrl0Ld31mpqke3Xab1Lt3/vNPPCFdfbX0yy+l2UoAAAAgcDksy7J89eaHDx/W0aNHz3pNgwYNFP6/vmf79u1Tr169dMEFF2j69OkKCSla3ktNTVVcXJxSUlIUGxtb7HYHqiNHpGrVzPOICPdZ8SSpZ09p4ULpk0/M4rYAAABAeVXYbODTLnnVqlVTNfs3+HPYu3evevfurY4dO2ratGlFDkuQkpOdzzMyzKx4rj9GeyzUdddJSUnSrl1ebR4AAADgdwJiDNPevXvVq1cv1a1bVy+//LIOHz6cey4hIcGHLfMPliU5HOe+zjUwSdKpU1J0tHPfteKU91oAAAAgGAVEYJo9e7a2bt2qrVu3qnbt2m7nfNij0OcWLpQuuURq0kTasOHc1+cNQSdOuAcm19n2mFYcAAAA8PGkD4U1fPhwWZZV4COYhYVJWVn5xyJ5UlBgcuV6nzNnTOUKAAAACGYBEZhQsMhIsy2twORaYbIsKTu72E0DAAAAyoWA6JKHghU1MLVvL02cKH31lZkFr2pV9/N573PmjFSBPyEAAAAIYvw6HMDswHTqVOGu79jRPCZMKPj84cOm6hQXZ/bPnJEqVix5OwEAAIBARWAKYFFRZnv6dOFnyjub0FApJsYshPu/pa8AAACAoEZgCmB2hcmyTDUoIuLs1//xh5SZaZ6fPm3WWqpe3f0ah0NavLj02woAAAAEIiZ9CGBRUVKfPtJllxVugoaHHpJatTKPTp3MWCbbqVNmwdphw5hSHAAAALBRYQpgERHS7NmFv/74cbMNDzehyHWWvJMnpU8/Nc///e/SayMAAAAQyKgwBRF7WnF77V/XwGTPkBcaKnXpYrrqrV/v1eYBAAAAfofAFETswFSrltm6BiZ7DabISOnoUTNjXmGnKwcAAADKKwJTgGvRwoxl+u23c197tsBkh6OICOcMeYxlAgAAQLAjMAW4jAwTds5VDcrIcK7XdK4KE4EJAAAAMAhMAc6eWvxcgSklxWwdDikx0TwvKDC5VpjsYwAAAECwYpa8AGcvXmtXjzwJD5cmTjTXdesmPfaY1L6987wduKgwAQAAAE4EpgBX2ApTfLw0YYJzv2tX9/MXXmiqUNnZ0uWXm2MEJgAAAAQ7AlOAK2xgOpfQUCk21jxv1sxUomJiSnZPAAAAINARmAJcYbvkHT0qHTwoVatmgtCuXVJOjglHeb31Vum3EwAAAAhETPoQ4Fq3lnr2NAvNns1//yu1bCmNGGGmIG/aVBo40Hn+l1+kO+6Qpk4t2/YCAAAAgYQKU4B77rnCXWevwRQfL0VHm+eus+Rt3Cj9+9/SkSPSyJGl2UIAAAAgcFFhChLnCkyus+SNHSvVr0/XPAAAAIDAFCQKCkwnT0qWZZ67rsN09Ki0Y4d07JiXGwkAAAD4GQJTgHvuOTORw1//evbrjh832/h4qVIl89yynJNFsA4TAAAAkB+BKcBlZJhxR3YFyRPXClPFis7j6enO+0imwkRgAgAAAAwCU4Ar7DpMdmCqXFkKCXFOR26PY6LCBAAAAOTHLHkBrrDrMN1yi3TBBWY6cUl64AGztbvn2RWmyEgpO9s8JzABAAAg2BGYAlxhK0z33ee+P3my+/5zz0njx5sA9uqr5pgdogAAAIBgRWAKcIWtMJ1LpUrOalONGlKzZudeDBcAAAAo7whMAa4wFabsbGnzZjPhQ2Ki5HA4J4qoXl2KjXW//t57zQMAAAAIdkz6EOCqV5c6dpSaNPF8zYEDUsuWUp06znWXrrtOatxY+u47s//GG9L990tLl5Z9mwEAAIBAQYUpwPXuLa1YcfZrDh402+rVzQx5knPxWnta8a++kn74QerUSTr//LJpKwAAABBoqDAFgUOHzNZ1TJIdmPJOKx4RIX35pdS6tXT33d5rIwAAAOCPqDAFATsw1ajhPJY3MLlOK56WJq1fb8Y7AQAAAMGMClOA27JFql/fVIQ8ce2SZztbhYmFawEAAACDClOAczikHTukmBjP1xSmS55dYYqIMA+JwAQAAABQYQpwhZlWvKAuefaaS3krTJGRVJgAAAAAGxWmAGcHpsxMs95SaGj+awYOlKpUcZ/9rnNn6b77pO7dzb5rhYnABAAAABgOy7JX5in/UlNTFRcXp5SUFMXmXa01QJ044awWpac7u9oV1Z490qlTUlKStHy5dNFFUtOm0qZNpddWAAAAwF8UNhtQYQpwdoVJMt3qihuYatd2Po+ONvuuXfgAAACAYERgCnChoVJYmOmSd+pU/vOWJa1bZyZ8qFHDTBIhmeuPHTPd+GrWdH9Nhw7S7t1l33YAAADA3zHpQznQpo3Urp0JR3klJ0tt25o1lexxSpK0YIGUkCD162dC05gx0mOPSSdPeqvVAAAAgP+jwlQOrFjh+Zw9Q15cnHv3PddpxU+fll55xew/9ljZtBEAAAAIRFSYyrmCFq2V3AOTa+UpIkI6cEC64AKpa1fvtBEAAADwV1SYyrmC1mCS3NdhsgNTSIhUoYLp2rd0qdkHAAAAghm/EpcD114rNW4sLVyY/5wdmDxVmE6edE4WERFhJoWw12HKyTHjmwAAAIBgRWAqB3bvlrZuNRM85HWuLnmW5XydPcbJDkySWbz22DFp2bLSbDEAAAAQGAhM5UBUlNkWNK24py55FSs6nx85YrYREWabNzB16SKdf740f36pNBcAAAAIGIxhKgfsytDp0/nPXXqpOd+9u/vxkBBz7qKLzFpOrvfJG5i2bTPP16yRevUq1aYDAAAAfo3AVA6crcJ01VXmUZAff3S+7vffnes4ORzOxXAzMkyQOn1auvzy0m87AAAA4M8ITOXA2SpMhREVJTVv7n6sRg0TmFJSnPfNOw4KAAAAKO8Yw1QOnK3CtHattH+/mfGuICdOSJ98Iq1e7X58926zHpM9rik62tl1DwAAAAgWBKZyIDFRathQio11P376tNS2rVSzpqkUFeSRR6Trr5fat5feey//eXuWvRMnpMsuK912AwAAAP6OwFQOPPOMmVZ85Ej344cPm21YmBQfX/BrXcc3TZuW/7wdmCRTcQIAAACCCYGpHHNdtNbhKPga11nvli51Ph82zMygFx4uPfywOUZgAgAAQLAhMJVjnhatdRUWJsXEmOdZWc7jK1ZIP/9szj32mDl29KiZZhwAAAAIFgSmcuCDD8wYpEcfdT/uadHavJYvNwvTfvaZ85i9FtOZM1LlyiZYud4TAAAACAZMK14OHD9uZrlr1Mj9eGEqTJLUtKn066/ux+zANHu2WZ8p5H/R+sABqXbtEjcZAAAACAhUmMoBT+sw2WOOirN+kh2YXnpJ6tfPLGDrek8AAAAgGFBhKgc8rcN0551SerrUunXR72kHJluXLlKtWqZ7HgAAABAsCEzlgKcKU8uW0ltvFe+eeQPTjBlSs2bFuxcAAAAQqOiSVw54qjCVRKVKUgWXOH2uiSMAAACA8ojAVA7krTDt2CHddpu0cmXx7/nZZ9K2beZ5eLhZ+NaySjeUAQAAAP6OwFQOxMSYCtB555n9N9+Upk+Xxo0r2X1dZ9n7/ntTybr00pLdEwAAAAgkjGEqBzp1cs5ed/q09Pbb5vno0SW7rx2YatSQ4uLMTHnMkgcAAIBgQmAqZ1atko4dM1WhQYOKf5833jCPSy6R7r5bSkgwxwlMAAAACCZ0yStn1q0z2w4dpNDQ4t9n40ZpwwapWzfp2mudkz6cOGGmKgcAAACCAYGpHEhOli68UOrcWVq71hwrztpLruxpxc+cMdtKlcxDosoEAACA4EFgKgdCQqRffpFWrDAPqfQC01dfOccyuXbLmzHDjJ3au7dk7wMAAAD4MwJTOWBPKy5Je/aYbUkDU1iY2W7cKP30k3luB6Zt26Thw8205UuXlux9AAAAAH/GpA/lQFiYqTLl5JgKU1iYWTepJOwKk+Qcv9Szp1StmvTtt2a/USNpyJCSvQ8AAADgzwhM5YDDYapMJ0+aacUTE0t+T9fAVL262T7zjAllzZqZ/QceKNnEEgB858gR8w8eUVHOKjIAAMiPwFROuAam0hDi0lnTrjBJprq0ZYupYA0bZn7pqlq1aPc+eFD65hspM1O6555SaS6AIkpPlxYvdu/SCwAA8mMMUzkRFWW2vXtLc+aU/H5Dh5ptSIh7IHrlFbM9/3zpvPOktm2Lfu8dO6Q775Seftp5zLKk/fulX38tdpMBFEFGhtmePi1lZ/u2LQAA+DMCUzlx3nlme/CgWSuppA4dMtuqVZ3d7r7+Wpo/3zx/9lkpK8uEHHvqcZtlSX/5izR5csH3fvlls923z7mm065dUs2a0kUXmfsCKFuu/90ePeq7dgAA4O8ITOXEihXOcUclnSFPcgYme/ySJPXqJfXoYcYydeggRUSYcJR3avE1a6SXXpIee0xKS3M/d/So9Nlnzv0//jDb228328xM6c8/S95+AGdnV5ik/P/oAQAAnAhM5cSWLeaXnkqVpLp1S36/ihXN2IZGjZzHYmKkn3+W/vpXM9FEnTrm+K5d7q9t1875fPt293MbNrjvb95sJpJYssR5bOPGEjcfwDkQmAAAKBwCUzmxbp3ZtmrlPmFDcXXtKn3+ufSPf3i+xg5mO3fmP9e5s9nmrRYVFJh27pROnXIe27Sp6O0FUDSuIck1PAEAAHcEpnLihhvMdt++0rlfSIg0YID7DHl5eaowSVKDBmbrKTA5HGa7eXP+ihKBCSh7luV8ToUJAADPCEzlhL1Q7SWXeO89CwpM774r9e0rrVxp9j11ybvySrN1DUx2iKJLHlD2Lr7Y+d8wgQkAAM8ITOXEggVmkoXXX/fee3buLF1/vZli3DZzpjR7trOLT94K0++/m+3dd5vpz7/5xnnsqqvMdtMm93/9BlA27IliCEwAAHjGwrXlRJs25uFNAweahy0jQ/rxR/N89GgT4FynCE9Olo4fN8+7d5eio81zu6J0+eVmXFTz5mZdmAr86QTK1NVXS4cPF33xaQAAggm/kqLULFxo1oBKTJQefFB66CH30BMfb87v2OEMS5JUu7aUlCS1by8NG+blRgNB6rvvpFWrzFIBTZv6ujUAAPgvAhNKJDtbOnBAqlZN+uorc2zQICksrODrw8Kkxo3N87lzpZ9+ku64Q/rkE++0F4Cxc6fpPhsT4+uWAADg3xjDhBKpV89UiH77TfroI3PMHot0Lt99J02ebLa2lBSz1tPixaXeVAAu7HGGZ84whgkAgLMhMKFEatY023/+UzpyREpIkC691BybPFm64ALp00/N/r33Srfe6pwpz+4G9Mcfzvt9/rl00UXShAkmhDH5A1A27JD0zTfSf//r27YAAODPCEwoEXta4tRUE5RuvdU5bmnHDmnpUmn9ehN8PvtM+s9/nP+ybQemWbNM4JKkZs3M9tdfzex7114rnT5d/PZt2+a+KC4Aw3WxWipMAAB4RmBCidiBqV49M0Pe5MnOc66L1y5fbipQFStKLVqY464Dze01mJo3N9v0dCkz0xyPiJCOHcv/3j/8YNad2rrVeSw72/l8wACpUSMzTsN22WVSw4bO2fqAYEVgAgCgcAhMKJG8i9fawUdyD0wffmieDxkiRUaa59WrO69t1Mhs4+NNtz7JVJsmTzZd9Bo2dK8UWZaZunzuXOmFF5zHOnaUBg82C+ba9/z2W7PdsME8//NPZzdBIFi5hiQCEwAAnhGYUCJ2YFqyJP85OzBt2SJ9/LF5fuONzvMOhxk78dRTUu/ezuN33CE1aWLGMzVoYMJYcrL0xRfOa+bNM/eVzD0yMkzXvzVrTEXpvPPMbH2SCUmW5T4Tn2slCghGOTnO5wQmAAA8IzChRJKSzHbPHiktzf2cHZgOH5b27zfVo7593a+56irpiSfcK1PPPCNt3my654WESLfdZo7/+9/Oa/7xD+fz48dN9zw7EPXvL8XGSr16mS6Ae/eaIGWHthkzzAQUQDB7+WXnf1uu3fMAAIA7AhNKpGNH6cknzWQOeddzqVzZhCTb1Veb8UhFNXy42f70k/T77+b5ww+bRW7tGfm+/trZze7aa802MlLq08c8f+45E8IiIqQrrih6G4DyKDzcbKkwAQDgGQvXokQcDmnSJM/nmzSRli0zz2+4oXjvUa+e1K+fqSL17Cl9+aXUrZuZsnzrVtNlr0oV6e23TSAaPNj52kGDzIK6dpgaONBUn3JynFUsIFh16mQqtPx3AACAZ1SYUKZ+/dWMH8rJMTPaFde0aVKHDmamvYsvdoawRo3Mvr2OzIABJhDZBg50Ph89Wrr7btM9sFYtqX17ZzfCrCyzHk1prfuUleW+v2dP6dwXKC3PP28Wjb7jDmdVFgAA5EeFCWXKHpvkOkapOBITpYULpaFDzXiLDh2c51wndMj7i1/t2qbLYPv2ZmxTZKS5vlIl6cABaexY0y3pyy9NpWruXOcEFAcOmIknvv/eBKx77jHHMjOdVazvvzez+dWvb/YPH5bGjTMz+n3wgQmK48aZMVe//CK1aVOyn0Nx5OSYzxwa6v33hv9avNh0ZXX9RwUAAJAfgQkBIzraVJJOn3YujiuZGe86dZIOHXLvjmfL22XQ4ZCuucb8C7u9YK4kVasmHTxontsVMXvMlGSuDQkx771okXT0qJkmPSHBvG9IiPT++6aLU2io9H//Z2brW77cVLIGDTLBqXZtU4FaudKMw7KnWZ8/X/roI6l7d3NNhQqmradPmwDWvbvpeiiZ7oTr10thYVLduibQnTjhXK+qWTMpKsp8jhYtzCLCw4aZsV9165rPeeKEuV9iYsE/b8sy7czONqEyJE89+tgxKS6OIBao7IkeKlQw33MF/m8AAECBHJZVWp2Q/F9qaqri4uKUkpKiWNd+Wwh48+aZqlHnzoW7ft8+M0NYZKQZZ9WunZmxLyrKnJ8xw0w20aWLmSRizRoT1rKyTBXrvfdMYOrVS/rjD/d7t2snTZ1qxllJJkB16yZt2pS/HUuXmveQpL/8RXrpJc9tXr1aatvWPB83zrn+VEGWLzchUpJGjpTeeKPg63r3NlU1W8OGJkydOWMqaa4uvNBU+WxJSebnGBtrQlOFCs5tp07ObpKS+Tnt329+fpmZZpuVZQJdq1YmLNoGDzbVvrAwcy/XbVKS9M47zmtHj5Z27jRhumJF5yM62oTBUaOc137yiWlDeLgZ6xYbawKt/ahVy/PPszzq1UtasMA8v+MOMwYQAIBgUthswL8polxwXcepMGrWNJNIeHLLLeYXd7uiI5lwsH69qTyFhprKzKJF0rvvmlCUkWEGz998s/u/1leuLM2aZQLRpk3ml3bLMsHKdS2cyy4z+7/+au5nB4qoKPOoVs15bdOmpuJ0+rQJDEeOmBBQubKpSrkuCvzcc6ai9vrrpuuhZZnQEBMjVa3q/rl3784flGyun8myTPfDnByzRlZeecPHli3m51eQlBT3/U2bzGQeBWnc2H1/wQJp3bqCr61Z0z0w/d//Oce+5RUdLaWnO/dHjjSLH9eta4L4iRMmRDZqZL63Sy8N/MoaC9cCAFA4VJiAcqCwXaqOHzdd62Jj848rsyxTLQsLM4/wcLMNDXX+Qu0a2rKyTDfItDTTbc/uvpeVZao8LVs6r/31V3MPu1pkV4xCQsz7NGrkvHbJEhNeMjOd1Sj7eXS0qQTavv7a2b3w5EnzsJ/HxLhX7J580ny+zEwTNFNSTJXw6FFz7bZtzmu7djVtLkilSua1dhfFBQtMhapFi/zdFv1Zx47SqlXm+fXXm+6gAAAEk8JmAwITgKBnWe4BctEiaeNGU707fdoEtZAQcyw01HTJtDVrZsaU1awpvfaaqeZJJvRVquTdz1EUrVpJGzaY51deaSY4AQAgmNAlDwAKKW+1rXt38ziXM2dM98Pdu02Xw2uvNROB5OSYcVm7d5uJMfwRXfIAACicAOpAAgD+JTxcmjPHzBj4+OOmq+GXX5qugmlp0k8/Oa/NuzaXr23c6JzogcAEAIBnBCYAKKGICOnpp83shFddZSb4+P136eqrzfnt282YoSNHfNtOV6GhzkWeCUwAAHgWMIHp8ssvV506dRQZGanExETdcsst2udp2i0A8IF27cx06i+8YGZMtI0dK61da9bCcp0Z0ddq1TLrg11wga9bAgCA/wqYwNS7d2998skn2rx5s/773/9q27ZtusYeXQ0AfuzJJ82aX99/L734ovfeNyfHzGRYkGHDzELK06ebRZwBAEDBAnaWvK+++kpXXHGFMjIyFBYWVqjXMEseAF955x3pzjtNV7ixY6WHH3afpr0s3H67NG2aNHu21KeP+7kKFcw08Hv3mhn+AAAINoXNBgFTYXJ17Ngxvf/+++rWrdtZw1JGRoZSU1PdHgDgC7ffLt1xhwkpzz8v1asnTZ1atu85bZrZTpzofjw72zwkM3EFAADwLKAC06OPPqro6Gidd9552rVrl7788suzXj958mTFxcXlPpKSkrzUUgBw53BIb71lZtFr394srvvee87gUlbvKUm1a7sfd53koVo194WDAQCAO58GpnHjxsnhcJz1sWnTptzrx44dq99++00//vijQkNDNWzYMJ2tR+H48eOVkpKS+9i9e7c3PhYAFMjhkC6/XFq5Utq6VVqyxHTRKysPPmi2deu6H887K96pU2XXBgAAAp1PF64dM2aMhg8fftZrGjRokPu8atWqqlq1qpo0aaLmzZsrKSlJv/76q7p27VrgayMiIhQREVGaTQaAEnM4pIYNy/597EVzU1Lcj2dkuO8zrTgAAJ75NDBVq1ZN1Yo56jnnf3PzZuT9Pz8ABJDUVDODXlmMJbJnyMs7Ux6BCQCAwguIMUxLly7V3//+d61evVo7d+7U3LlzdeONN6phw4Yeq0sA4O/uusuMIZo1q2zu/8YbZpu3N3LegERgAgDAs4AITBUrVtTnn3+uSy65RE2bNtUdd9yhNm3aaMGCBXS5AxCwoqJMWPnii7K5/3nnme2MGe7H69c3la31680+gQkAAM8Cdh2m4mAdJgD+ZP58qXdvE2wOHDBrI5WmSpWkEyekP/80ISmvY8ecoSorq2wnoAAAwN8UNhv4dAwTAASzHj1MYDl6VLrsMjOWqUcP6ZFHSuf+p0+bbWRkwecjI6WePc34KQITAAAFIzABgI9UqCBdeaX09tvSDz+YY5s2SSNGOGe4K66sLOcaTz16SNu2Oc9t2iS9+KKZbnz+/JK9DwAA5R2BCQB86MUXpU6dTMBJSZHGjZNCSmF0qV1dkkyXvMxMKSzM7O/eLU2bJrVuLU2YUPL3AgCgPCMwAYAPVa4s3X136d/XNTBJJoxVrWqe25M8MGcOAADnFhCz5AFAMDl1Svr555LdIzzcfSxUcrLzub0OU0SEVK+e6f63Y0fJ3g8AgPKKwAQAfmTPHhNi+vaVDh8u/n1iY6WXXpJq1TL7KSnOc3ZgCg8304unpuZfzBYAABgEJgDwI7VqmckYTp82k0GUlD15hKcKU3i4+zEAAOCOwAQAfsThkG6+2Txftqz49zl92nSzy8w0+64VJnsMU3i4MzCxeC0AAAVj0gcA8DMtW5rt778X/x7Ll0sXXWSeJyZKrkuUF1RhIjABAFAwAhMA+JkWLcx261YTboozm509S16bNtKaNe7n7rxTuuYaM824HaoITAAAFIwueQDgZxISpPh4KSdH+uOP4t3DDkyRkfnPRUWZqlPVqs4wRmACAKBgBCYA8DMOh9S8uXle3G55ZwtMrtq2lbp1kypVKt77AABQ3tElDwD80MiR0tChUqdOxXu9HZgWLpR69JAuvlh66ilz7IsvpLlzpT59pOnTS6O1AACUXwQmAPBDQ4eW7PV2YJKkRYuk6tWd+wsXSlOmSBUrSpdfXrL3AQCgvKNLHgCUQ66BSfK8DhMAADg7AhMA+KGcHDM1+H/+41xLqShatZLuvVe68kqz72kdphEjpJo1pffeK3mbAQAoj+iSBwB+yOEw447S06UuXaRmzYr2+t69zWPxYmnmTM8VpuRkaf9+KTW1tFoOAED5QoUJAPxQacyUJ0lxcWbrWmFi4VoAAAqPwAQAfspewLY4gSklRTpyxDmteHKyZFnmuWuXPAITAABnR2ACAD9VksD02GNStWrSG2+Y2fCqV3dOBEGFCQCAwmMMEwD4qZJ0ybPDUdWq0okT7uemTTNjlqpXl1auNMfsEAUAANwRmADAT9kVps2bpexsKTS08K89dcps7S55rmrUMA+JChMAAOdClzwA8FP16pnudKdPS+vWFe21doWpoMDkqnZtqW1bZ4ACAADuqDABgJ8KDZVef11q1Misq1QUdmCKipIeeMB0vXv+ealHD+mVV8yEEHfcIT30kHkAAICCEZgAwI/dcUfxXudaYVq3Tlq0SNqzxxx76y1p0yapXz+pYcPSaScAAOUVXfIAoBxyDUx512KyJ3iwxy8BAADPCEwA4OeWLZNGj5Y++aTwrxkwQLr5ZqluXWdgSk42W3uCh4gI6b33pCZNpPvvL9UmAwBQbtAlDwD83Jw50t//Lm3fLl13XeFe88QTzufx8Wabt8IUESGlp0tbtkitW5dacwEAKFeoMAGAnxs82GznzMm/plJh5K0wuXbJY1pxAADOjsAEAH6uZUupfn0zLumnnwr3mpQUc71lnb3CRGACAODsCEwA4OccDmeV6fvvC/eaBg3MlOKbN5sKU1SUuY9luY9hIjABAHB2jGECgADQvr3Z7thRuOtdZ8m77Tbp9tvNvmVJv/9uqkznnUdgAgDgXAhMABAAqlUz28OHz32tZbkHJofDec7hkJo3d+4TmAAAODu65AFAALADkx2EziYrS8rJMc8jI89+bWysWby2Vq2StQ8AgPKKChMABICOHU1Yiog497WuoSoyUkpNNd3y9uyRZs2S/vY3qWJFadw4qUcPaevWsms3AACBzmFZluXrRnhLamqq4uLilJKSotjYWF83BwDKxOHDUvXq5nlOjpSdbSZ9yMqSfv5ZuvBCE5iKM0U5AADlRWGzAV3yAKCcsStMERFmzFKFClLt2ubYH3+YrT12CQAAnB2BCQACxMMPS/37Sxs2nP268HDphhukq65yHqtb12y3bDFbu2vftm1mBr4LLyz99gIAUB4QmAAgQCxYIP3ww7mnFq9RQ/rwQ+mDD5zH6tUz27wVpuxsafVqad26Um4sAADlBIEJAAJEUaYWz8uuMNmBya4wuU4rvnev6cLncJgFbwEAAIEJAAJGYQNTdraZ4MFV3gqTHZjs7Zkz7iGpsAvkAgBQ3hGYACBA2DPfnSswzZkjhYVJHTo4j9Wta6YYt4OUXVly7Zq3d6/z+uPHS6fNAAAEOtZhAoAAUdgKkz1LnutMeL16SSdPmjWZ/vgjf2CSpJ07nc+PHStxcwEAKBcITAAQIIoamCIjncdC/tefIC5O6tzZedw1MO3a5XxOhQkAAIPABAABwg5MJ0+e/bqCApMnYWFmVr2ICGnPHudxKkwAABiMYQKAADFggJSRIc2de/brPAWmxx+XQkPNmktffWWOhYRIBw6Y7nj26yQCEwAANipMABAgwsIKd50dfKKi3I9v3y7l5Ei//GImkLj8cvfzBw44n9MlDwAAg8AEAOWMpwqTPbW45JxO3NX335sJIRo2lOrUKbPmAQAQUOiSBwAB5I47pH79pP37PV9Tv7502WVSu3bux+3FayX3wDRkiHT++VJmpnTppVKDBlIF/jkNAABJVJgAIKDMmiXt22ceiYkFX3PtteaRl2uFyXV2vFWrzIQPqakF3+/1180177xjxkBJphr100/S888XvqsgAACBiMAEAAGkWjUTls41tXhBXCtMroHJfj5mjHTlldKmTVJ6uvSf/5jjDzxgtldfLQ0ebJ4PHGi2zZpJI0YUvS0AAAQKAhMABJDCrsVUENdxSSdOOJ/bgWn+fOngQWnjRrP/r39J2dnO644cMVvLKvg+AACUR4xhAoAAUpjAdPvtZsKHv/3N/bjrrHkFBSZJatLEucjt8ePuY6UuucRsXaccv+eewrcdAIBARIUJAAJIYQLTqVNmvaaQAv5JbOtWadcuKSnJecw1MNWsKcXHm1B0/LjzfZo0cVaodu92tqUwi+MCABDICEwAEEAKE5g8TSsumSnDGzZ0P+Y6Y15iolSliglMx46Z8VKSCVI2OzAx9TgAIBjQJQ8AAogdmM42duhsgakgcXHO54mJUuXK5vnx41J0tNSihVnU9osvzPFdu8x25Uqpd+9CNx0AgIBEYAKAADJ8uHTmjPThh56vKWpg+vZbqUMH8zwhwT0wXX65NGOGmTnvvvvM8c6dpWuuMc9/+63IHwEAgIBCYAKAABIRce51j4oamCRTQZKcXfIk5+QO9ninAwdMWOvSRfr3v82xlBQpLa3w7wMAQKAhMAFAOVOcwLR4sbRkidS8uVmo9vBhadQoM4V4tWpmYgjLco5piolxduXbu7d02w8AgD8hMAFAADl1Srr5ZqlfPzMTXkG6dJF69XKOdzqXF16QbrvNTOZQsaJ5XdWqUoUKUsuWUv36prIkmWsWLzaz7SUkmGN79pT4YwEA4LeYJQ8AAkhEhPTRR2ZB2c8+k2rXls4/372a9M9/Fu2eGzdK8+ZJAwa4H7csaccOE9Lq1DGTPezcacJVVpYJUxKBCQBQvlFhAoAAEhIiVa9unt98s6kk3Xlnye65ebPZzphhtqtWmQkeHnvMhCXJhDJJWr7chKXQUDP5g+QMTKdOSX/+WbK2AADgbwhMABBgnn1W6tFDat3a7P/4o6kGFdfatWa7YYPZ7tolvfmm9MYbZr9KFalxY/N80SKzrVnTLGbbuLHpxidJDz8s3Xijc5wTAADlgcOySvK/2cCSmpqquLg4paSkKDY21tfNAYASOX3aTL6QlWW6ztWta45Xq2YC1OrVpsveuTgczueWJS1YYCpXtlatpOnTpfXrzdilZ56RuneXfvnFeU1Ojhn3dPy4tGyZs/oEAIC/Kmw2oMIEAAEqMtJUdV56SYqKMscsSzpyRDp61MxsVxhPPWW2Y8earT2tuK1mTaljR+nWW6X4eHPMnmrctmmTCUtRUVK7dsX5NAAA+CcmfQCAAPbCC+779mx2UuGnFf/rX6UrrzRTikvOhWttNWs6n+/ebbZ5A5NdbbrgAlNtAgCgvKDCBADliL0Gk1T4wBQSYrrdhYaafdcKU+vW5mFZ0g8/SK+9Zo7XqWMmeejUySx2O3u2OT5vnlSpknTwYMk/CwAA/oDABAABzLLMuKIPPzRTjduByeGQwsKKd8+oKGd3vm++Md3+JOmaa8z2uuukbt1MINu0STpwwExxbsvKkn77rXjvDQCAvyEwAUAAy8kxY4ZuusmEFzswRUa6T+ZQFA6Hs8p07JjzmN0Nb8QIqUMHc8x1UomQEGnQIPOcwAQAKC8ITAAQwEJDTbc4ycxOZ6+bVNjueJ78+qt0+LDUpo3zmB2Y7HFMkntgattW6tnTPC9qYNq0ybx2/vxiNRcAgDJDYAKAANeli9kuW2a64fXo4VxotriSksw05fXqmeAkOWfIW7jQeV2tWmZ7+eXSiy9K7dub/VWrivZ+N99s7tu7d0laDQBA6SMwAUCAcw1MDRtKP/8sff99ye55+LB08qS0Z49z1rwjR8x2+nTndXaFKSlJ6tPHGZi2bZNSUgr3Xjk50sqVzv309BI1HQCAUkVgAoAAZwemVaukdetK556vv262liVV+N8CFD165L/ODkx79pjteeeZGfQkac2awr2Xa/e9rVvNLHsAAPgLAhMABLikJKlqVfP8oYdK554ff5z/2Lhx0sSJ0urVzmPVq5utZTmPXXGFdOONUnR0wfc+dsxMT56cbPa//db5uoYNS9RsAABKHQvXAkCAczikRx6RZsyQ+vUrnXtmZOQ/FhUlTZjgfuyyy6TRo93f116ryZMxY0y3vvnzpZkzzdTl9r0AAPA3Dsty/XfB8i01NVVxcXFKSUlRbGysr5sDAH7rxx+lAQOk55+Xxo4tvfumpUkJCWZ8lGQWw926Vfr6a+nf/zbhaeZMM4FEq1al974AAORV2GxAhQkAkE/fvmbShpKMJ5o1Szp0SBo2zHls7VrnmChJuv9+c+y++8z+F1+YCSt69jQL4j73nHTvvdK11xa/HQAAlARjmAAABSpJWPrpJ1Ohuu8+accO5/Hu3U0QWrLEjH/avNm9C9+AAWb70kvSpZdK8+ZJy5fnv/+ePdLIkVL//gV3HwQAoLQQmAAApe7ii6ULL5ROnJDuvtt9UoioKOmCC0x3v3r13IPZwIFme/So8z6TJjnPnz5txkA1amS68D3+uBQRUeYfBwAQxAhMAIBSFxIivf22CTM//mgmdPjiC/fgdOutZu2m5cudxxs0kHr1MovkfvyxNGeOCViSlJpqKlCvvGKqSp07O88Vx7Fj7u0BAKAgBCYAQJlo0kR69VUTnr77TrryStMNb+tWcz4kRHrrLVMpcjicr5szx3Tbu+4657F586S4ODOzXkyMmSRiwQKpY0dzfu1a6fLLzaQShfH662bNqBdfLI1PCgAozwhMAIAyc8890qZNZuKHkBBTObIXtvUkJMS9m92ePaZrniRVqWJC02WXOUNWVpZ09dUmRF155bnHNK1caaZhl6TJk83kFgAAeEJgAgCUqcaNzRpRBw6Y7nfh4UV7fe3aZrzTxRdLixdLHTq4n69QQfrgA7NQ7pw50g03SJ9/Ln31lenW59rtLj3dLKqbmWn2U1Kk998v2ecDAJRvrMMEACgXfvpJGjRIOnPG/Xh6uglTkpl576efpFq1pJdflipWNNWqkBBp/XozY9/tt0tdu3q//QAA72IdJgBAUOnTR/rySzMpxMmTpqteZKTpomcHpgMHTFe+994zk0tIpgL15pvSww+bWfi+/dZMdx4Tc/b327rVzNYnmZCWlWUC2NmkpkoF/T/Zsszrw8KK9JEBAF5AhQkAEBRycqRPPpGqVZMuucR5/JdfzBTokunel5UlPfqo6QboavFi09UvMdFMe/7SS9J//iO1aiXdcoupSr35prl261bT7a95c+nnn6V335X+/nepZUtz/UsvSTNnSnfdZbooDh4sZWebLoUhdJYHAK+gwgQAgIuQEDO+Ka8ePcwCu40aSQ0bSkOGmCrV7bebmf4kE26uv9459sn2xx9SQoK0Zo15nH++1KyZWXtq2zYzA+Dtt5v1qHbtMkEqLU266SYznistzVSzFi2S/vlP97C0YYO0bp2ZyCLvWlOpqWYGwnr1TFhznWUQAFC6qDABAPA/lmXGQX3/vZnW/OOPpc8+M0ErO9t0+6taVdqxQ+rfX3rySRNWRo82FSRX1atLv/1mJrx47DHn8b//XapRQ7r2WvNayzJd8WbPlnr2NOtDPfmkqVbl5Ej160vPPWeCU3i4ec2aNWZK9exsaehQE7aio6WDB81rEhKc916wwFzXpcu5uxnmlZlpwlmVKoQyAOVPYbMBgQkAABd//CH97W/S00+bcLR0qZks4oorTMWoQgF9M06cMBWojRtNYKlcWZoyRere3YyhatnSVJwaNDDXVKggdepkApUkvfOOqURZltlOn26Ox8W5T3u+a5eUlGSeDx1qZgeUpLp1TbjZt08KDTVjuMLDzf1q1ZL27zfHW7Y01x04YMZdnX++6QZoGzTIvDY62rzXpk3m+qpVTTfGjz5yXjt6tDkXHW0+j8Nh2pqcbKaOf+EF57VPPmm6MZ46ZcaJhYSYkBgWZq59/HHntVOmSMePm3OWZcJedrbpKlmlihlrZvvHP8xnCQkxn891GxNjKn22L76QDh0y5x0O044TJ8z3ExUljRnjfu3u3c5rLctsw8NNtW/oUGeAXLXKtCEnx7QzJ8e0PSLCXN+jh7mPZN4/I8N5Li1NOnLEbCtWlNq1c/75st8TQNkhMBWAwAQAKI5Nm8z06PYvvkX1yy/SAw+YENGnjzm2YIFZbPfBB6VJk8yxFSukbt3Me73+unTBBSa8vfSSqfTs32+qR7affzaVsAMHzL7DITVtakKZbdQos0bVrl3529Wjh7mHrW7dgq+TpL59pR9+cO5XrmzCUUG6djVjvmy1apkwV5A2bUzFzNa4sXNx47waNZK2bHHut2vn/lpXNWtKe/c697t1k5YsKfja+HgT0mx9+rgHSVcVKrh3zRw8WPrmm4KvlUxAsqfSdw25BUlONiFZkkaMMGPkoqMLfrz3nll8WTLf78qV7ucrVjTbmBgTzqOiPL8vEKwYwwQAQClp1qxkr+/Rw/xC66pnz/yL5nbqJB0+bH7JtcczPf64NG6cqYbk7VJ34YXS2rWmO1+dOiZA5P3F+O9/N489e0w1pFIl0yUwPNxUQ1z9+9/m/dPTzeQWLVuaSTI2bcp/7VNPmarR6dOm+pOdbX7Zj483Y6tcPfCAuWdUlJm50LJM6MjMNPd3ddNNJgBmZpoAGBpqQkpoqOnm6Oq660w4y8lxf2Rnm3a4uugi83r7mshIEygiIvL/zHr1MmEkO9t5zLJMVS5v1adxY9M90q5shYSYtmdkmOtdZz4MCTE/d3vq+woVzOePiXFW9mzp6ea6M2fcw5zNtR3ffCP961/5r7Ft3+78Tl57zVQw09JMCE9MNGGya1cTXlu2dLb511/N+Tp1il/tys4u/j80AP6CChMAAIAX2YExLMxzEElJMY8TJ5yPkyedz4cOdXbf+/BDUyl0vdZ+pKVJy5Y5A+Rttzm7fBZk926zWLQkDRggzZplwmOjRibQVapkgnmPHiZY2uEqK8u04cAB848BiYmmXRMnSvPnm4of4G/oklcAAhMAAAhmGzeaSUtiY01la+tW031y2TJThdy2zRniJk2SnnnGhKG8wsJMoIuKMkGufn0zRstWu7a5n2S6nf7tb+b5Aw+YcYFNmpjxguvXm26mN99sHvbaZp7k5JhxX/Hxzq6Okql0RkS4B9CjR83niYszXVWBvAhMBSAwAQAAFF5Ghpnefu9eE4yOHjVd9TIypE8/dV530UXS77+b7nurV5sqWkSE6VI6dqxzavy2bU030oL06iXNm+fcHzjQBCSHw3RNPHzYBLxTp0w3yBUrzHWnTpkxW1WqSB06mElKli83YUmS7rnHuUZaTo5ZRiA93exXq2YCW2qq+ZwjRphxaZIZU/bII2Zs38aNJlimppqxheefL915pxmfJ5l2/fe/5nOmpTknE4mKMm279FKzbIFklhKYNcuEvMxMU7WLjzddF9PSzLWNG5trd+6U5s41n79CBRMSQ0OdXVq7dzfrvUlmjOPcuc6uoXa3Xvs3/XbtnEslHD4s/fST85xkfs72o00b532Tkwse02eH06ZNTVdOybR/9uyCv1/J/AzatvV83tsYwwQAAIASiYgwY+s6dXIeGzUq/3UffWTGiFWoYCpNS5eaX7rr1nW/7osvzOQb27aZX95btjQBasYM9+pQdrb5hT7v2me2+vWdz6OiTLfBo0fNa1zVqmUCi23FCjMNvyctWjgD0++/mxks8/r+e/No3tyMo5PMWmrjxnm+7yefOAPTqlWm6ubJe+85A9PKlWbmTE/+9S9nsFm3zlTpPHn1VWdg2rzZjBf05Nlnnffdvl265hrP1z72mLleMqHt6qs9X/vAA6YdgYbABAAAgBJxHaNUvbozdORVv7572JGkVq3ML++u1Q7LMqFk1y4TpCIizMyMjRqZKlbeILV1q/TnnyaMHD5sKk3nn59/8o/QUOn5502wsyxz7f79JnS1bm0qZbaEBGnCBBMYGjUyk2PExTm7MLpOwpKU5PwMMTGmvadPm6rcyZOmza4/gxtuMBOPVKhgql3Jyab6FRPj/rOsVctU2sLDTYjMyDBbe1p+1wlWqlQxMzy6TnFvV4zse9ni481SAa4/b3trWe5BNzrajFnzxPXaqKizX9uggedz/owueQAAAACCTmGzQYgX2wQAAAAAAYXABAAAAAAeEJgAAAAAwAMCEwAAAAB4EHCBKSMjQ+3atZPD4dDq1at93RwAAAAA5VjABaa//OUvquk63yIAAAAAlJGACkzff/+9fvzxR7388suFuj4jI0OpqaluDwAAAAAorIAJTAcPHtSIESP07rvvqqLrks1nMXnyZMXFxeU+kpKSyriVAAAAAMqTgAhMlmVp+PDhuueee9SpU6dCv278+PFKSUnJfezevbsMWwkAAACgvPFpYBo3bpwcDsdZH5s2bdKUKVOUlpam8ePHF+n+ERERio2NdXsAAAAAQGE5LMuyfPXmhw8f1tGjR896TYMGDXTdddfp66+/lsPhyD2enZ2t0NBQDR06VDNmzCjU+6WmpiouLk4pKSmEJwAAACCIFTYb+DQwFdauXbvcJmzYt2+f+vXrp88++0znn3++ateuXaj7EJgAAAAASIXPBhW82KZiq1Onjtt+pUqVJEkNGzYsdFgCAAAAgKIKiEkfAAAAAMAXAqLClFe9evUUAD0JAQAAAAQ4KkwAAAAA4AGBCQAAAAA8IDABAAAAgAcEJgAAAADwgMAEAAAAAB4QmAAAAADAAwITAAAAAHhAYAIAAAAADwhMAAAAAOABgQkAAAAAPKjg6wZ4k2VZkqTU1FQftwQAAACAL9mZwM4IngRVYEpLS5MkJSUl+bglAAAAAPxBWlqa4uLiPJ53WOeKVOVITk6O9u3bp5iYGDkcDq+/f2pqqpKSkrR7927FxsZ6/f3hW3z/wYvvPnjx3QcvvvvgxXcfOCzLUlpammrWrKmQEM8jlYKqwhQSEqLatWv7uhmKjY3lP6AgxvcfvPjugxffffDiuw9efPeB4WyVJRuTPgAAAACABwQmAAAAAPCAwORFERERmjBhgiIiInzdFPgA33/w4rsPXnz3wYvvPnjx3Zc/QTXpAwAAAAAUBRUmAAAAAPCAwAQAAAAAHhCYAAAAAMADAhMAAAAAeEBg8qKpU6eqXr16ioyM1Pnnn69ly5b5ukkoZRMnTpTD4XB7NGvWLPf86dOnNXLkSJ133nmqVKmSrr76ah08eNCHLUZxLVy4UIMHD1bNmjXlcDj0xRdfuJ23LEtPPvmkEhMTFRUVpT59+mjLli1u1xw7dkxDhw5VbGys4uPjdccddyg9Pd2LnwLFca7vfvjw4fn+Hujfv7/bNXz3gWny5Mnq3LmzYmJiVL16dV1xxRXavHmz2zWF+Xt+165dGjRokCpWrKjq1atr7NixysrK8uZHQREV5rvv1atXvv/277nnHrdr+O4DE4HJSz7++GM9/PDDmjBhglatWqW2bduqX79+OnTokK+bhlLWsmVL7d+/P/fxyy+/5J576KGH9PXXX+vTTz/VggULtG/fPl111VU+bC2K68SJE2rbtq2mTp1a4PkXX3xRr7/+uv7xj39o6dKlio6OVr9+/XT69Onca4YOHaoNGzZo9uzZ+uabb7Rw4ULddddd3voIKKZzffeS1L9/f7e/Bz788EO383z3gWnBggUaOXKkfv31V82ePVuZmZnq27evTpw4kXvNuf6ez87O1qBBg3TmzBktXrxYM2bM0PTp0/Xkk0/64iOhkArz3UvSiBEj3P7bf/HFF3PP8d0HMAte0aVLF2vkyJG5+9nZ2VbNmjWtyZMn+7BVKG0TJkyw2rZtW+C55ORkKywszPr0009zj23cuNGSZC1ZssRLLURZkGTNnDkzdz8nJ8dKSEiwXnrppdxjycnJVkREhPXhhx9almVZv//+uyXJWr58ee4133//veVwOKy9e/d6re0ombzfvWVZ1q233moNGTLE42v47suPQ4cOWZKsBQsWWJZVuL/nv/vuOyskJMQ6cOBA7jVvvvmmFRsba2VkZHj3A6DY8n73lmVZPXv2tB544AGPr+G7D1xUmLzgzJkzWrlypfr06ZN7LCQkRH369NGSJUt82DKUhS1btqhmzZpq0KCBhg4dql27dkmSVq5cqczMTLc/B82aNVOdOnX4c1DObN++XQcOHHD7ruPi4nT++efnftdLlixRfHy8OnXqlHtNnz59FBISoqVLl3q9zShd8+fPV/Xq1dW0aVPde++9Onr0aO45vvvyIyUlRZJUpUoVSYX7e37JkiVq3bq1atSokXtNv379lJqaqg0bNnix9SiJvN+97f3331fVqlXVqlUrjR8/XidPnsw9x3cfuCr4ugHB4MiRI8rOznb7D0SSatSooU2bNvmoVSgL559/vqZPn66mTZtq//79mjRpki688EKtX79eBw4cUHh4uOLj491eU6NGDR04cMA3DUaZsL/Pgv6bt88dOHBA1atXdztfoUIFValShT8PAa5///666qqrVL9+fW3btk2PPfaYBgwYoCVLlig0NJTvvpzIycnRgw8+qO7du6tVq1aSVKi/5w8cOFDg3w32Ofi/gr57SbrppptUt25d1axZU2vXrtWjjz6qzZs36/PPP5fEdx/ICExAKRowYEDu8zZt2uj8889X3bp19cknnygqKsqHLQPgLTfccEPu89atW6tNmzZq2LCh5s+fr0suucSHLUNpGjlypNavX+82ThXBwdN37zoOsXXr1kpMTNQll1yibdu2qWHDht5uJkoRXfK8oGrVqgoNDc03S87BgweVkJDgo1bBG+Lj49WkSRNt3bpVCQkJOnPmjJKTk92u4c9B+WN/n2f7bz4hISHfpC9ZWVk6duwYfx7KmQYNGqhq1araunWrJL778mDUqFH65ptvNG/ePNWuXTv3eGH+nk9ISCjw7wb7HPybp+++IOeff74kuf23z3cfmAhMXhAeHq6OHTtqzpw5ucdycnI0Z84cde3a1YctQ1lLT0/Xtm3blJiYqI4dOyosLMztz8HmzZu1a9cu/hyUM/Xr11dCQoLbd52amqqlS5fmftddu3ZVcnKyVq5cmXvN3LlzlZOTk/s/WZQPe/bs0dGjR5WYmCiJ7z6QWZalUaNGaebMmZo7d67q16/vdr4wf8937dpV69atcwvNs2fPVmxsrFq0aOGdD4IiO9d3X5DVq1dLktt/+3z3AcrXs04Ei48++siKiIiwpk+fbv3+++/WXXfdZcXHx7vNlILAN2bMGGv+/PnW9u3brUWLFll9+vSxqlatah06dMiyLMu65557rDp16lhz5861VqxYYXXt2tXq2rWrj1uN4khLS7N+++0367fffrMkWa+88or122+/WTt37rQsy7Kef/55Kz4+3vryyy+ttWvXWkOGDLHq169vnTp1Kvce/fv3t9q3b28tXbrU+uWXX6zGjRtbN954o68+EgrpbN99Wlqa9cgjj1hLliyxtm/fbv30009Whw4drMaNG1unT5/OvQfffWC69957rbi4OGv+/PnW/v37cx8nT57MveZcf89nZWVZrVq1svr27WutXr3amjVrllWtWjVr/PjxvvhIKKRzffdbt261nnrqKWvFihXW9u3brS+//NJq0KCBddFFF+Xeg+8+cBGYvGjKlClWnTp1rPDwcKtLly7Wr7/+6usmoZRdf/31VmJiohUeHm7VqlXLuv76662tW7fmnj916pR13333WZUrV7YqVqxoXXnlldb+/ft92GIU17x58yxJ+R633nqrZVlmavEnnnjCqlGjhhUREWFdcskl1ubNm93ucfToUevGG2+0KlWqZMXGxlq33XablZaW5oNPg6I423d/8uRJq2/fvla1atWssLAwq27dutaIESPy/eMY331gKuh7l2RNmzYt95rC/D2/Y8cOa8CAAVZUVJRVtWpVa8yYMVZmZqaXPw2K4lzf/a5du6yLLrrIqlKlihUREWE1atTIGjt2rJWSkuJ2H777wOSwLMvyXj0LAAAAAAIHY5gAAAAAwAMCEwAAAAB4QGACAAAAAA8ITAAAAADgAYEJAAAAADwgMAEAAACABwQmAAAAAPCAwAQAAAAAHhCYAKAc2LFjhxwOh1avXu3rpuTatGmTLrjgAkVGRqpdu3YFXmNZlu666y5VqVLF5+33x59hcc2fP18Oh0PJycll/l4TJ070+P0CQHlAYAKAUjB8+HA5HA49//zzbse/+OILORwOH7XKtyZMmKDo6Ght3rxZc+bMKfCaWbNmafr06frmm2+0f/9+tWrVyittGz58uK644gq3Y0lJSV5tQyByOBz64osv3I498sgjHr9fACgPCEwAUEoiIyP1wgsv6Pjx475uSqk5c+ZMsV+7bds29ejRQ3Xr1tV5553n8ZrExER169ZNCQkJqlChQrHfr6RCQ0N93oZAVKlSJY/fLwCUBwQmACglffr0UUJCgiZPnuzxmoK6L7366quqV69e7r5d/XjuuedUo0YNxcfH66mnnlJWVpbGjh2rKlWqqHbt2po2bVq++2/atEndunVTZGSkWrVqpQULFridX79+vQYMGKBKlSqpRo0auuWWW3TkyJHc87169dKoUaP04IMPqmrVqurXr1+BnyMnJ0dPPfWUateurYiICLVr106zZs3KPe9wOLRy5Uo99dRTcjgcmjhxYr57DB8+XKNHj9auXbvkcDhyfwb16tXTq6++6nZtu3bt3O7hcDj09ttv68orr1TFihXVuHFjffXVV26v2bBhgy677DLFxsYqJiZGF154obZt26aJEydqxowZ+vLLL+VwOORwODR//vwCu+QtWLBAXbp0UUREhBITEzVu3DhlZWW5/bzuv/9+/eUvf1GVKlWUkJBQ4GfN6+2331bz5s0VGRmpZs2a6Y033sg9161bNz366KNu1x8+fFhhYWFauHChJOndd99Vp06dFBMTo4SEBN100006dOiQx/crzJ+75cuX69JLL1XVqlUVFxennj17atWqVbnn7WuvvPJKt+8r773P9WfD/jl//vnn6t27typWrKi2bdtqyZIludfs3LlTgwcPVuXKlRUdHa2WLVvqu+++O+vPFADKCoEJAEpJaGionnvuOU2ZMkV79uwp0b3mzp2rffv2aeHChXrllVc0YcIEXXbZZapcubKWLl2qe+65R3fffXe+9xk7dqzGjBmj3377TV27dtXgwYN19OhRSVJycrIuvvhitW/fXitWrNCsWbN08OBBXXfddW73mDFjhsLDw7Vo0SL94x//KLB9r732mv7v//5PL7/8stauXat+/frp8ssv15YtWyRJ+/fvV8uWLTVmzBjt379fjzzySIH3sH+x3r9/v5YvX16kn9GkSZN03XXXae3atRo4cKCGDh2qY8eOSZL27t2riy66SBEREZo7d65Wrlyp22+/XVlZWXrkkUd03XXXqX///tq/f7/279+vbt265bv/3r17NXDgQHXu3Flr1qzRm2++qXfeeUfPPPNMvp9XdHS0li5dqhdffFFPPfWUZs+e7bHd77//vp588kk9++yz2rhxo5577jk98cQTmjFjhiRp6NCh+uijj2RZVu5rPv74Y9WsWVMXXnihJCkzM1NPP/201qxZoy+++EI7duzQ8OHDi/TzyystLU233nqrfvnlF/36669q3LixBg4cqLS0NEnK/X6mTZt21u/rXH82bH/961/1yCOPaPXq1WrSpIluvPHG3DA6cuRIZWRkaOHChVq3bp1eeOEFVapUqUSfDwCKzQIAlNitt95qDRkyxLIsy7rgggus22+/3bIsy5o5c6bl+lfthAkTrLZt27q99m9/+5tVt25dt3vVrVvXys7Ozj3WtGlT68ILL8zdz8rKsqKjo60PP/zQsizL2r59uyXJev7553OvyczMtGrXrm298MILlmVZ1tNPP2317dvX7b13795tSbI2b95sWZZl9ezZ02rfvv05P2/NmjWtZ5991u1Y586drfvuuy93v23bttaECRPOep+8n92yLKtu3brW3/72N7djee8lyXr88cdz99PT0y1J1vfff29ZlmWNHz/eql+/vnXmzJkC39f1+7LZP8PffvvNsizLeuyxx6ymTZtaOTk5uddMnTrVqlSpUu5307NnT6tHjx5u9+ncubP16KOPevzMDRs2tD744AO3Y08//bTVtWtXy7Is69ChQ1aFChWshQsX5p7v2rXrWe+5fPlyS5KVlpZmWZZlzZs3z5JkHT9+3LKswv25yys7O9uKiYmxvv7669xjkqyZM2e6XZf33uf6s2H/nN9+++3c8xs2bLAkWRs3brQsy7Jat25tTZw40WPbAMCbqDABQCl74YUXNGPGDG3cuLHY92jZsqVCQpx/RdeoUUOtW7fO3Q8NDdV5552XrxtW165dc59XqFBBnTp1ym3HmjVrNG/ePFWqVCn30axZM0lmLJGtY8eOZ21bamqq9u3bp+7du7sd7969e4k+c1G1adMm93l0dLRiY2Nzfx6rV6/WhRdeqLCwsGLff+PGjeratavbpB3du3dXenq6W2XPtR2SlJiY6LF73IkTJ7Rt2zbdcccdbt/DM888k/sdVKtWTX379tX7778vSdq+fbuWLFmioUOH5t5n5cqVGjx4sOrUqaOYmBj17NlTkrRr165if96DBw9qxIgRaty4seLi4hQbG6v09PQi3bMofzZcf26JiYmSlPtzu//++/XMM8+oe/fumjBhgtauXVvcjwUAJUZgAoBSdtFFF6lfv34aP358vnMhISFuXa0k070qr7y/6DscjgKP5eTkFLpd6enpGjx4sFavXu322LJliy666KLc66Kjowt9z7JQkp+R/fOIiooquwYWoR15paenS5Leeustt+9g/fr1+vXXX3OvGzp0qD777DNlZmbqgw8+UOvWrXMD84kTJ9SvXz/Fxsbq/fff1/LlyzVz5kxJnifpKMzP9NZbb9Xq1av12muvafHixVq9erXOO++8Ek38cTauPzc7lNo/tzvvvFN//vmnbrnlFq1bt06dOnXSlClTyqQdAHAuBCYAKAPPP/+8vv76a7eB7JKpHhw4cMDtl9fSXPfH9ZfurKwsrVy5Us2bN5ckdejQQRs2bFC9evXUqFEjt0dRQlJsbKxq1qypRYsWuR1ftGiRWrRoUeLPUK1aNe3fvz93PzU1Vdu3by/SPdq0aaOff/65wKAlSeHh4crOzj7rPZo3b64lS5a4fVeLFi1STEyMateuXaT22GrUqKGaNWvqzz//zPcd1K9fP/e6IUOG6PTp05o1a5Y++OADt+rSpk2bdPToUT3//PO68MIL1axZs7NO+CAV7s/dokWLdP/992vgwIFq2bKlIiIi3CYEkUzIOdvPrTT/bCQlJemee+7R559/rjFjxuitt94q0usBoLQQmACgDLRu3VpDhw7V66+/7na8V69eOnz4sF588UVt27ZNU6dO1ffff19q7zt16lTNnDlTmzZt0siRI3X8+HHdfvvtksxA+mPHjunGG2/U8uXLtW3bNv3www+67bbbzhke8ho7dqxeeOEFffzxx9q8ebPGjRun1atX64EHHijxZ7j44ov17rvv6ueff9a6det06623KjQ0tEj3GDVqlFJTU3XDDTdoxYoV2rJli959911t3rxZkpnxbe3atdq8ebOOHDlSYLC67777tHv3bo0ePVqbNm3Sl19+qQkTJujhhx926y5ZVJMmTdLkyZP1+uuv648//tC6des0bdo0vfLKK7nXREdH64orrtATTzyhjRs36sYbb8w9V6dOHYWHh2vKlCn6888/9dVXX+npp58+63sW5s9d48aN9e6772rjxo1aunSphg4dmq9SV69ePc2ZM0cHDhzwOH1+afzZePDBB/XDDz9o+/btWrVqlebNm5cb/AHA2whMAFBGnnrqqXxds5o3b6433nhDU6dOVdu2bbVs2bICZ5Arrueff17PP/+82rZtq19++UVfffWVqlatKkm5//KfnZ2tvn37qnXr1nrwwQcVHx9f5ABw//336+GHH9aYMWPUunVrzZo1S1999ZUaN25c4s8wfvx49ezZU5dddpkGDRqkK664Qg0bNizSPc477zzNnTtX6enp6tmzpzp27Ki33nortxvYiBEj1LRpU3Xq1EnVqlXLVxGRpFq1aum7777TsmXL1LZtW91zzz2644479Pjjj5fo89155516++23NW3aNLVu3Vo9e/bU9OnT3SpMkumWt2bNGl144YWqU6dO7vFq1app+vTp+vTTT9WiRQs9//zzevnll8/6noX5c/fOO+/o+PHj6tChg2655Rbdf//9ql69uts1//d//6fZs2crKSlJ7du3L/C9SuPPRnZ2tkaOHKnmzZurf//+atKkidvU6wDgTQ4rb6dmAAAAAIAkKkwAAAAA4BGBCQAAAAA8IDABAAAAgAcEJgAAAADwgMAEAAAAAB4QmAAAAADAAwITAAAAAHhAYAIAAAAADwhMAAAAAOABgQkAAAAAPCAwAQAAAIAH/w8+7iLHsZy99AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# print the cost history\n", + "opt_results.plot_cost()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# prints a large output (commented by default)\n", + "# pprint(opt_results.intermediate)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'angles': [2.039379879135, 1.85430010043, 3.371558779473, 0.423487308243],\n", + " 'cost': -3.912605308686,\n", + " 'eval_number': 278,\n", + " 'job_id': '88acbfa4-4744-4525-9a0f-9af523aadb4e',\n", + " 'measurement_outcomes': array([ 0.01037872-0.03266485j, 0.02854275+0.04242491j,\n", + " 0.01992801+0.01011676j, 0.03301772-0.08366764j,\n", + " 0.01071382-0.02383742j, 0.00147702-0.05082654j,\n", + " -0.05344384-0.05764238j, -0.07464572-0.09532213j,\n", + " 0.02854275+0.04242491j, -0.03881939-0.03826365j,\n", + " 0.0062557 -0.00820243j, 0.01005339-0.01667559j,\n", + " 0.12574488-0.19773101j, -0.02571951-0.07330586j,\n", + " 0.01340228-0.05614634j, -0.05344384-0.05764238j,\n", + " 0.01992801+0.01011676j, 0.0062557 -0.00820243j,\n", + " 0.02594698-0.15520767j, 0.06817419-0.23743515j,\n", + " 0.00632935+0.0285614j , 0.04198336-0.02289478j,\n", + " -0.02571951-0.07330586j, 0.00147702-0.05082654j,\n", + " 0.03301772-0.08366764j, 0.01005339-0.01667559j,\n", + " 0.06817419-0.23743515j, -0.01645811-0.0988744j ,\n", + " 0.29998929-0.25070275j, 0.00632935+0.0285614j ,\n", + " 0.12574488-0.19773101j, 0.01071382-0.02383742j,\n", + " 0.01071382-0.02383742j, 0.12574488-0.19773101j,\n", + " 0.00632935+0.0285614j , 0.29998929-0.25070275j,\n", + " -0.01645811-0.0988744j , 0.06817419-0.23743515j,\n", + " 0.01005339-0.01667559j, 0.03301772-0.08366764j,\n", + " 0.00147702-0.05082654j, -0.02571951-0.07330586j,\n", + " 0.04198336-0.02289478j, 0.00632935+0.0285614j ,\n", + " 0.06817419-0.23743515j, 0.02594698-0.15520767j,\n", + " 0.0062557 -0.00820243j, 0.01992801+0.01011676j,\n", + " -0.05344384-0.05764238j, 0.01340228-0.05614634j,\n", + " -0.02571951-0.07330586j, 0.12574488-0.19773101j,\n", + " 0.01005339-0.01667559j, 0.0062557 -0.00820243j,\n", + " -0.03881939-0.03826365j, 0.02854275+0.04242491j,\n", + " -0.07464572-0.09532213j, -0.05344384-0.05764238j,\n", + " 0.00147702-0.05082654j, 0.01071382-0.02383742j,\n", + " 0.03301772-0.08366764j, 0.01992801+0.01011676j,\n", + " 0.02854275+0.04242491j, 0.01037872-0.03266485j])}\n" + ] + } + ], + "source": [ + "pprint(opt_results.optimized)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "variational_params = q.optimizer.variational_params" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
      ┌───┐                                                    ┌─────────────┐»\n",
+       "q0_0: ┤ H ├─■────────────■─────────────────────────■───────────┤ Rx(-4.0788) ├»\n",
+       "      ├───┤ │            │                         │           └─────────────┘»\n",
+       "q0_1: ┤ H ├─┼────────────┼────────────■────────────┼─────────────■────────────»\n",
+       "      ├───┤ │ZZ(6.7431)  │            │ZZ(6.7431)  │             │            »\n",
+       "q0_2: ┤ H ├─■────────────┼────────────■────────────┼─────────────┼────────────»\n",
+       "      ├───┤              │ZZ(6.7431)               │             │ZZ(6.7431)  »\n",
+       "q0_3: ┤ H ├──────────────■─────────────────────────┼─────────────■────────────»\n",
+       "      ├───┤                                        │ZZ(6.7431)                »\n",
+       "q0_4: ┤ H ├────────────────────────────────────────■──────────────────────────»\n",
+       "      ├───┤                                                                   »\n",
+       "q0_5: ┤ H ├───────────────────────────────────────────────────────────────────»\n",
+       "      └───┘                                                                   »\n",
+       "«                                                                             »\n",
+       "«q0_0: ──────────────────────────────────────────────────────────■────────────»\n",
+       "«                   ┌─────────────┐                              │            »\n",
+       "«q0_1: ─■───────────┤ Rx(-4.0788) ├──────────────────────────────┼────────────»\n",
+       "«       │           └─────────────┘             ┌─────────────┐  │ZZ(0.84697) »\n",
+       "«q0_2: ─┼─────────────■─────────────■───────────┤ Rx(-4.0788) ├──■────────────»\n",
+       "«       │             │             │           └─────────────┘┌─────────────┐»\n",
+       "«q0_3: ─┼─────────────┼─────────────┼─────────────■────────────┤ Rx(-4.0788) ├»\n",
+       "«       │             │ZZ(6.7431)   │             │            └─────────────┘»\n",
+       "«q0_4: ─┼─────────────■─────────────┼─────────────┼──────────────■────────────»\n",
+       "«       │ZZ(6.7431)                 │ZZ(6.7431)   │ZZ(6.7431)    │ZZ(6.7431)  »\n",
+       "«q0_5: ─■───────────────────────────■─────────────■──────────────■────────────»\n",
+       "«                                                                             »\n",
+       "«                                                 ┌─────────────┐              »\n",
+       "«q0_0: ──■───────────────────────────■────────────┤ Rx(-3.7086) ├──────────────»\n",
+       "«        │                           │            └─────────────┘              »\n",
+       "«q0_1: ──┼─────────────■─────────────┼──────────────■─────────────■────────────»\n",
+       "«        │             │ZZ(0.84697)  │              │             │            »\n",
+       "«q0_2: ──┼─────────────■─────────────┼──────────────┼─────────────┼────────────»\n",
+       "«        │ZZ(0.84697)                │              │ZZ(0.84697)  │            »\n",
+       "«q0_3: ──■───────────────────────────┼──────────────■─────────────┼────────────»\n",
+       "«      ┌─────────────┐               │ZZ(0.84697)                 │            »\n",
+       "«q0_4: ┤ Rx(-4.0788) ├───────────────■────────────────────────────┼────────────»\n",
+       "«      ├─────────────┤                                            │ZZ(0.84697) »\n",
+       "«q0_5: ┤ Rx(-4.0788) ├────────────────────────────────────────────■────────────»\n",
+       "«      └─────────────┘                                                         »\n",
+       "«                                                                 »\n",
+       "«q0_0: ───────────────────────────────────────────────────────────»\n",
+       "«      ┌─────────────┐                                            »\n",
+       "«q0_1: ┤ Rx(-3.7086) ├────────────────────────────────────────────»\n",
+       "«      └─────────────┘              ┌─────────────┐               »\n",
+       "«q0_2: ──■─────────────■────────────┤ Rx(-3.7086) ├───────────────»\n",
+       "«        │             │            └─────────────┘┌─────────────┐»\n",
+       "«q0_3: ──┼─────────────┼──────────────■────────────┤ Rx(-3.7086) ├»\n",
+       "«        │ZZ(0.84697)  │              │            └─────────────┘»\n",
+       "«q0_4: ──■─────────────┼──────────────┼──────────────■────────────»\n",
+       "«                      │ZZ(0.84697)   │ZZ(0.84697)   │ZZ(0.84697) »\n",
+       "«q0_5: ────────────────■──────────────■──────────────■────────────»\n",
+       "«                                                                 »\n",
+       "«                     \n",
+       "«q0_0: ───────────────\n",
+       "«                     \n",
+       "«q0_1: ───────────────\n",
+       "«                     \n",
+       "«q0_2: ───────────────\n",
+       "«                     \n",
+       "«q0_3: ───────────────\n",
+       "«      ┌─────────────┐\n",
+       "«q0_4: ┤ Rx(-3.7086) ├\n",
+       "«      ├─────────────┤\n",
+       "«q0_5: ┤ Rx(-3.7086) ├\n",
+       "«      └─────────────┘
" + ], + "text/plain": [ + " ┌───┐ ┌─────────────┐»\n", + "q0_0: ┤ H ├─■────────────■─────────────────────────■───────────┤ Rx(-4.0788) ├»\n", + " ├───┤ │ │ │ └─────────────┘»\n", + "q0_1: ┤ H ├─┼────────────┼────────────■────────────┼─────────────■────────────»\n", + " ├───┤ │ZZ(6.7431) │ │ZZ(6.7431) │ │ »\n", + "q0_2: ┤ H ├─■────────────┼────────────■────────────┼─────────────┼────────────»\n", + " ├───┤ │ZZ(6.7431) │ │ZZ(6.7431) »\n", + "q0_3: ┤ H ├──────────────■─────────────────────────┼─────────────■────────────»\n", + " ├───┤ │ZZ(6.7431) »\n", + "q0_4: ┤ H ├────────────────────────────────────────■──────────────────────────»\n", + " ├───┤ »\n", + "q0_5: ┤ H ├───────────────────────────────────────────────────────────────────»\n", + " └───┘ »\n", + "« »\n", + "«q0_0: ──────────────────────────────────────────────────────────■────────────»\n", + "« ┌─────────────┐ │ »\n", + "«q0_1: ─■───────────┤ Rx(-4.0788) ├──────────────────────────────┼────────────»\n", + "« │ └─────────────┘ ┌─────────────┐ │ZZ(0.84697) »\n", + "«q0_2: ─┼─────────────■─────────────■───────────┤ Rx(-4.0788) ├──■────────────»\n", + "« │ │ │ └─────────────┘┌─────────────┐»\n", + "«q0_3: ─┼─────────────┼─────────────┼─────────────■────────────┤ Rx(-4.0788) ├»\n", + "« │ │ZZ(6.7431) │ │ └─────────────┘»\n", + "«q0_4: ─┼─────────────■─────────────┼─────────────┼──────────────■────────────»\n", + "« │ZZ(6.7431) │ZZ(6.7431) │ZZ(6.7431) │ZZ(6.7431) »\n", + "«q0_5: ─■───────────────────────────■─────────────■──────────────■────────────»\n", + "« »\n", + "« ┌─────────────┐ »\n", + "«q0_0: ──■───────────────────────────■────────────┤ Rx(-3.7086) ├──────────────»\n", + "« │ │ └─────────────┘ »\n", + "«q0_1: ──┼─────────────■─────────────┼──────────────■─────────────■────────────»\n", + "« │ │ZZ(0.84697) │ │ │ »\n", + "«q0_2: ──┼─────────────■─────────────┼──────────────┼─────────────┼────────────»\n", + "« │ZZ(0.84697) │ │ZZ(0.84697) │ »\n", + "«q0_3: ──■───────────────────────────┼──────────────■─────────────┼────────────»\n", + "« ┌─────────────┐ │ZZ(0.84697) │ »\n", + "«q0_4: ┤ Rx(-4.0788) ├───────────────■────────────────────────────┼────────────»\n", + "« ├─────────────┤ │ZZ(0.84697) »\n", + "«q0_5: ┤ Rx(-4.0788) ├────────────────────────────────────────────■────────────»\n", + "« └─────────────┘ »\n", + "« »\n", + "«q0_0: ───────────────────────────────────────────────────────────»\n", + "« ┌─────────────┐ »\n", + "«q0_1: ┤ Rx(-3.7086) ├────────────────────────────────────────────»\n", + "« └─────────────┘ ┌─────────────┐ »\n", + "«q0_2: ──■─────────────■────────────┤ Rx(-3.7086) ├───────────────»\n", + "« │ │ └─────────────┘┌─────────────┐»\n", + "«q0_3: ──┼─────────────┼──────────────■────────────┤ Rx(-3.7086) ├»\n", + "« │ZZ(0.84697) │ │ └─────────────┘»\n", + "«q0_4: ──■─────────────┼──────────────┼──────────────■────────────»\n", + "« │ZZ(0.84697) │ZZ(0.84697) │ZZ(0.84697) »\n", + "«q0_5: ────────────────■──────────────■──────────────■────────────»\n", + "« »\n", + "« \n", + "«q0_0: ───────────────\n", + "« \n", + "«q0_1: ───────────────\n", + "« \n", + "«q0_2: ───────────────\n", + "« \n", + "«q0_3: ───────────────\n", + "« ┌─────────────┐\n", + "«q0_4: ┤ Rx(-3.7086) ├\n", + "« ├─────────────┤\n", + "«q0_5: ┤ Rx(-3.7086) ├\n", + "« └─────────────┘" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#create the optimized QAOA circuit for qiskit backend\n", + "optimized_angles = opt_results.optimized['angles']\n", + "variational_params.update_from_raw(optimized_angles)\n", + "optimized_circuit = q.backend.qaoa_circuit(variational_params)\n", + "\n", + "#print the optimized QAOA circuit for qiskit backend\n", + "optimized_circuit.draw()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 5: Running on Azure devices\n", + "\n", + "Now that we have demonstrated how to create a problem, configure the QAOA model, compile and access the opimization results, we will show how to execute the circuit using Azure Quantum backend." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# Once again we define the parameters for our QAOA\n", + "q_qpu = QAOA()\n", + "\n", + "# Set the properties you want - These values are actually the default ones!\n", + "q_qpu.set_circuit_properties(p=1, param_type='standard', init_type='ramp', mixer_hamiltonian='x')\n", + "\n", + "q_qpu.set_backend_properties(n_shots=500)\n", + "\n", + "# Set the classical method used to optimiza over QAOA angles and its properties, note that to make the computation leaner we set a tollerance of 0.05\n", + "q_qpu.set_classical_optimizer(method='cobyla', maxiter=100, tol=0.01, optimization_progress=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# Here are some of the simulators available through Azure Quantum, replacing the device with a real qpu\n", + "ionq_sim = 'ionq.simulator'\n", + "quantinuum_sim = 'quantinuum.sim.h1-1e'\n", + "rigetti_sim = 'rigetti.sim.qvm'\n", + "\n", + "# Set the backend you want to use here.\n", + "# WARNING: Quantinuum simulator usage is not unlimited. Running this sample against it could consume a significant amount of your eHQC quota.\n", + "backend_to_use = ionq_sim" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "# Connect to the Azure Quantum workspace through OpenQAOA\n", + "resource_id = ''\n", + "az_location = ''\n", + "\n", + "# Set a quantum device to run our instance\n", + "device = create_device(location='azure', name=backend_to_use, resource_id=resource_id, az_location=az_location)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "q_qpu.set_device(device)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "# We use the same MaxCut problem we define in the first step\n", + "q_qpu.compile(maxcut_qubo)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Job submission to the Azure backend is made internally in the optimization loop in OpenQAOA. You can submit Jobs one at a time using the optimization loop or group them with the help of the Azure Session feature.\n", + "\n", + "This cell can take a few minutes to execute (note that executing on real QPUs can take longer run time)." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "........................................................................................................." + ] + } + ], + "source": [ + "# Job submission to Azure Quantum is done internally\n", + "# q_qpu.optimize()\n", + "\n", + "# Jobs can also be grouped using Azure sessions\n", + "with q_qpu.device.backend_device.open_session(name=\"QAOA\") as session:\n", + " q_qpu.optimize()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "result_qpu = q_qpu.result" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0wAAAK9CAYAAAAXJOy/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACGJUlEQVR4nO3dd3hU1drG4WdISIBAEjoEQu8dAT3SgopiAbE37F1RLOixHUWwYG+I3YMe+9EjdlGkqahIb9Kl95qhJiTZ3x/r2wmBJKTMzJo987uva67ZmezseTOJMk/WWu/yOY7jCAAAAABwhHK2CwAAAACAcEVgAgAAAIBCEJgAAAAAoBAEJgAAAAAoBIEJAAAAAApBYAIAAACAQhCYAAAAAKAQBCYAAAAAKASBCQAAAAAKQWACAESsd955Rz6fTzNmzDjquX369FGfPn2CXxQAwFMITACAUluxYoVuuOEGNWnSRBUqVFBiYqJ69OihF198Ufv37w/48+3bt08PP/ywJk+eHPBrl8Zvv/2mhx9+WLt27bJdCgAgSGJtFwAA8KZvv/1W559/vuLj43X55ZerXbt2yszM1K+//qq7775bCxcu1BtvvBHQ59y3b5+GDx8uSQEfDfrxxx9L/DW//fabhg8friuvvFLJyckBrQcAEB4ITACAElu5cqUuuugiNWzYUBMnTlTdunVzPzd48GAtX75c3377rcUKSy4uLs52CZIkx3F04MABVaxY0XYpAAAxJQ8AUApPPfWU9uzZo7fffjtfWHI1a9ZMt912W+7HWVlZeuSRR9S0aVPFx8erUaNGuv/++5WRkZHv62bMmKF+/fqpRo0aqlixoho3bqyrr75akrRq1SrVrFlTkjR8+HD5fD75fD49/PDDR603IyNDd955p2rWrKmEhASdffbZ2rp1a75zClrDNGrUKLVt21aVKlVS1apV1bVrV3344YeSpIcfflh33323JKlx48a59axatapE33OjRo3Uv39//fDDD+ratasqVqyo119/XWlpaerYsWOB30/Lli3Vr1+/o37fAICyY4QJAFBiX3/9tZo0aaLu3bsX6/xrr71W7777rs477zwNHTpU06ZN08iRI7Vo0SKNHTtWkrRlyxadcsopqlmzpu69914lJydr1apV+vzzzyVJNWvW1KuvvqqbbrpJZ599ts455xxJUocOHY76/LfeequqVq2qYcOGadWqVXrhhRd0yy236JNPPin0a958800NGTJE5513nm677TYdOHBA8+bN07Rp03TJJZfonHPO0dKlS/XRRx/p+eefV40aNXLrLO737FqyZIkuvvhi3XDDDbruuuvUsmVLVa5cWdddd50WLFigdu3a5Z47ffp0LV26VP/617+K9doDAMrIAQCgBNLT0x1JzsCBA4t1/pw5cxxJzrXXXpvv8bvuusuR5EycONFxHMcZO3asI8mZPn16odfaunWrI8kZNmxYsZ57zJgxjiSnb9++Tk5OTu7jd9xxhxMTE+Ps2rUr97G0tDQnLS0t9+OBAwc6bdu2LfL6Tz/9tCPJWblyZb7Hi/s9O47jNGzY0JHkjBs3Lt+5u3btcipUqODcc889+R4fMmSIk5CQ4OzZs6fI2gAAgcGUPABAifj9fklSlSpVinX+d999J0m688478z0+dOhQScpd6+Q2Tfjmm2908ODBQJSa6/rrr5fP58v9uFevXsrOztbq1asL/Zrk5GStW7dO06dPL/HzFfd7djVu3PiIKXZJSUkaOHCgPvroIzmOI0nKzs7WJ598orPOOksJCQklrgsAUHIEJgBAiSQmJkqSdu/eXazzV69erXLlyqlZs2b5Hq9Tp46Sk5NzQ0taWprOPfdcDR8+XDVq1NDAgQM1ZsyYI9b8lEaDBg3yfVy1alVJ0s6dOwv9mnvuuUeVK1fWscceq+bNm2vw4MGaOnVqsZ6vuN+zq3HjxgVe5/LLL9eaNWv0yy+/SJJ++uknbd68WZdddlmx6gAAlB2BCQBQIomJiUpJSdGCBQtK9HWHjvAU9vnPPvtMv//+u2655RatX79eV199tbp06aI9e/aUpWTFxMQU+Lg7clOQ1q1ba8mSJfr444/Vs2dP/e9//1PPnj01bNiwYj/v0b5nV2Ed8fr166fatWvr/ffflyS9//77qlOnjvr27VvsGgAAZUNgAgCUWP/+/bVixQr9/vvvRz23YcOGysnJ0bJly/I9vnnzZu3atUsNGzbM9/g//vEPPfbYY5oxY4Y++OADLVy4UB9//LGk4geQQElISNCFF16oMWPGaM2aNTrjjDP02GOP6cCBA0XWU9LvuTAxMTG65JJL9Nlnn2nnzp364osvdPHFFxcaAAEAgUdgAgCU2D//+U8lJCTo2muv1ebNm4/4/IoVK/Tiiy9Kkk4//XRJ0gsvvJDvnOeee06SdMYZZ0gy0+MOH/Hp1KmTJOVOy6tUqZIkadeuXQH5Poqyffv2fB/HxcWpTZs2chwnd42Vu47o8HqK+z0Xx2WXXaadO3fqhhtu0J49e3TppZeW5NsAAJQRbcUBACXWtGlTffjhh7rwwgvVunVrXX755WrXrp0yMzP122+/6dNPP9WVV14pSerYsaOuuOIKvfHGG9q1a5fS0tL0559/6t1339VZZ52lE044QZL07rvv6pVXXtHZZ5+tpk2bavfu3XrzzTeVmJiYG0AqVqyoNm3a6JNPPlGLFi1UrVo1tWvXLl/b7UA55ZRTVKdOHfXo0UO1a9fWokWL9PLLL+uMM87IbXjRpUsXSdIDDzygiy66SOXLl9eAAQOK/T0XR+fOndWuXTt9+umnat26tY455piAf68AgCLYbdIHAPCypUuXOtddd53TqFEjJy4uzqlSpYrTo0cPZ9SoUc6BAwdyzzt48KAzfPhwp3Hjxk758uWd1NRU57777st3zqxZs5yLL77YadCggRMfH+/UqlXL6d+/vzNjxox8z/nbb785Xbp0ceLi4o7aYtxtK354q/JJkyY5kpxJkyblPnZ4W/HXX3/d6d27t1O9enUnPj7eadq0qXP33Xc76enp+a71yCOPOPXq1XPKlSuXr8V4cb5nxzFtxc8444yiXmbnqaeeciQ5jz/+eJHnAQACz+c4Rax4BQAA1r344ou64447tGrVqiM6/gEAgovABABAGHMcRx07dlT16tU1adIk2+UAQNRhDRMAAGFo7969+uqrrzRp0iTNnz9fX375pe2SACAqMcIEAEAYWrVqlRo3bqzk5GTdfPPNeuyxx2yXBABRicAEAAAAAIVgHyYAAAAAKASBCQAAAAAKEVVNH3JycrRhwwZVqVJFPp/PdjkAAAAALHEcR7t371ZKSorKlSt8HCmqAtOGDRuUmppquwwAAAAAYWLt2rWqX79+oZ+PqsBUpUoVSeZFSUxMtFwNAAAAAFv8fr9SU1NzM0JhoiowudPwEhMTCUwAAAAAjrpUh6YPAAAAAFAIAhMAAAAAFILABAAAAACFiKo1TAAAAIDXOI6jrKwsZWdn2y7FU2JiYhQbG1vm7YQITAAAAECYyszM1MaNG7Vv3z7bpXhSpUqVVLduXcXFxZX6GgQmAAAAIAzl5ORo5cqViomJUUpKiuLi4so8WhItHMdRZmamtm7dqpUrV6p58+ZFbk5bFAITAAAAEIYyMzOVk5Oj1NRUVapUyXY5nlOxYkWVL19eq1evVmZmpipUqFCq69D0AQAAAAhjpR0ZQWBeO159AAAAACgEgQkAAAAACkFgAgAAAIBCEJgAAAAABNymTZt06623qkmTJoqPj1dqaqoGDBigCRMmlPna77zzjpKTk8teZDHQJQ8AAABAQK1atUo9evRQcnKynn76abVv314HDx7UDz/8oMGDB2vx4sW2Syw2RpgAAAAAj9m7t/DbgQPFP3f//qOfWxo333yzfD6f/vzzT5177rlq0aKF2rZtqzvvvFN//PGHJGnNmjUaOHCgKleurMTERF1wwQXavHlz7jXmzp2rE044QVWqVFFiYqK6dOmiGTNmaPLkybrqqquUnp4un88nn8+nhx9+uHSFFgOBCQAAAPCYypULv517bv5za9Uq/NzTTst/bqNGR55TUjt27NC4ceM0ePBgJSQkHPH55ORk5eTkaODAgdqxY4emTJmi8ePH6++//9aFF16Ye96gQYNUv359TZ8+XTNnztS9996r8uXLq3v37nrhhReUmJiojRs3auPGjbrrrrtKXmgxMSUPAAAAQMAsX75cjuOoVatWhZ4zYcIEzZ8/XytXrlRqaqok6T//+Y/atm2r6dOnq1u3blqzZo3uvvvu3Os0b9489+uTkpLk8/lUp06d4H4zIjABAAAAnrNnT+Gfi4nJ//GWLYWfe/i+rqtWlbqkXI7jHPWcRYsWKTU1NTcsSVKbNm2UnJysRYsWqVu3brrzzjt17bXX6r333lPfvn11/vnnq2nTpmUvsISYkgcAAAB4TEJC4bcKFYp/bsWKRz+3pJo3by6fz1fmxg4PP/ywFi5cqDPOOEMTJ05UmzZtNHbs2DJdszQITAAAAAACplq1aurXr59Gjx6tvQV0jdi1a5dat26ttWvXau3atbmP//XXX9q1a5fatGmT+1iLFi10xx136Mcff9Q555yjMWPGSJLi4uKUnZ0d/G9GBCYAAAAAATZ69GhlZ2fr2GOP1f/+9z8tW7ZMixYt0ksvvaTjjz9effv2Vfv27TVo0CDNmjVLf/75py6//HKlpaWpa9eu2r9/v2655RZNnjxZq1ev1tSpUzV9+nS1bt1aktSoUSPt2bNHEyZM0LZt27Rv376gfS8EJgAAAAAB1aRJE82aNUsnnHCChg4dqnbt2unkk0/WhAkT9Oqrr8rn8+nLL79U1apV1bt3b/Xt21dNmjTRJ598IkmKiYnR9u3bdfnll6tFixa64IILdNppp2n48OGSpO7du+vGG2/UhRdeqJo1a+qpp54K2vfic4qzKitC+P1+JSUlKT09XYmJibbLAQAAAAp14MABrVy5Uo0bN1aFwxcmoViKeg2Lmw0YYQIAAACAQhCYUGLLlwem5SQAAAAQ7tiHCSWyd6/k7hl28KAUy28QAAAAIhgjTCiR9evzjjdutFcHAAAAEAoEJpTI1q15x6tX26sDAAAgWkRRj7aAC8RrR2BCiWzZkne8Zo29OgAAACJd+fLlJSmoewxFOve1c1/L0mAFCkqkXTupRg1p2zapbl3b1QAAAESumJgYJScna8v//8W6UqVK8vl8lqvyBsdxtG/fPm3ZskXJycmKiYkp9bUITCiR5s3zT8sDAABA8NSpU0eSckMTSiY5OTn3NSwtAhMAAAAQpnw+n+rWratatWrp4MGDtsvxlPLly5dpZMlFYEKJzJghZWdLzZqZtuJlDOwAAAAohpiYmIC8+UfJEZhQInfcIf36qzmuXFny+yWm0gIAACBSeaZL3quvvqoOHTooMTFRiYmJOv744/X999/bLivqbN6cd7xnj7Rrl7VSAAAAgKDzTGCqX7++nnjiCc2cOVMzZszQiSeeqIEDB2rhwoW2S4sqh683pLU4AAAAIplnAtOAAQN0+umnq3nz5mrRooUee+wxVa5cWX/88Yft0qLGgQNSero5btLE3BOYAAAAEMk8uYYpOztbn376qfbu3avjjz++0PMyMjKUkZGR+7Hf7w9FeRHLbSdevrzUoYP099/S6tV2awIAAACCyTMjTJI0f/58Va5cWfHx8brxxhs1duxYtWnTptDzR44cqaSkpNxbampqCKuNPO76pVq1pEaNzDEjTAAAAIhkngpMLVu21Jw5czRt2jTddNNNuuKKK/TXX38Vev59992n9PT03NvatWtDWG3kcdcv1a4tNWhgjglMAAAAiGSempIXFxenZs2aSZK6dOmi6dOn68UXX9Trr79e4Pnx8fGKj48PZYkRrVUr6YUXpMREs4bpoouk3r1tVwUAAAAEj6cC0+FycnLyrVFCcDVpIt12W97HaWn2agEAAABCwTOB6b777tNpp52mBg0aaPfu3frwww81efJk/fDDD7ZLAwAAABChPBOYtmzZossvv1wbN25UUlKSOnTooB9++EEnn3yy7dKixsyZUmammZpXtaqUlSVt3CjVqCFVrGi7OgAAACDwfI7jOLaLCBW/36+kpCSlp6crMTHRdjmec/LJ0k8/Se+9J116qdSmjbRokTRxonTCCbarAwAAAIqvuNnAU13yYNehbcUlqV49c0+nPAAAAEQqAhOKzQ1MtWub+4YNzT2b1wIAACBSEZhQLNnZ0rZt5tgNTOzFBAAAgEhHYEKxbN8u5eRIPp9p8iDljTARmAAAABCpCEwoFnc6XvXqUuz/91Z0R5iYkgcAAIBIRWBCsWzZYu7d6XhS/il50dNrEQAAANHEM/swwa5mzaQXXpASEvIeS02VLrrITM3LzJTi462VBwAAAAQF+zABAAAAiDrswwQAAAAAZcSUPBTL7NnSgQNSy5ZStWp5j2dlSRs3mkYQdevaqw8AAAAIBkaYUCwPPih17y6NHZv/8fvvN80fnnzSTl0AAABAMBGYUCxuW/FatfI/zua1AAAAiGQEJhSLG5gObSsusXktAAAAIhuBCUflOHn7MBU2wsTmtQAAAIhEBCYcld8vZWSY48MDkzvCtG2btG9faOsCAAAAgo3AhKNyp+NVrixVqpT/c0lJUpUq5njt2tDWBQAAAAQbgQlH5U7HO3z9kiT5fKxjAgAAQORiHyYcVaNG0osvSnFxBX/+0kulHTukevVCWhYAAAAQdD7HcRzbRYSK3+9XUlKS0tPTlZiYaLscAAAAAJYUNxswJQ8AAAAACkFgwlHNnSv99pu0fXvBn8/ONg0f5s8PbV0AAABAsBGYcFQjRkg9ekiffFLw53//3ezHNHBgaOsCAAAAgo3AhKNy24ofvgeTy928dt06M9oEAAAARAoCE46qqLbikpSSIsXESAcPSps2ha4uAAAAINgITDiqo40wxcbmtRRnLyYAAABEEgITinTggOT3m+PCRpikvM1rV68Ofk0AAABAqBCYUCR3Ol5cnJSUVPh57jomRpgAAAAQSQhMKJIbmGrVkny+ws9zR5gITAAAAIgksbYLQHirV08aNUoqd5RofeKJUlaWlJYWmroAAACAUPA5juPYLiJU/H6/kpKSlJ6ersTERNvlAAAAALCkuNmAKXkAAAAAUAgCE4o0b57066/S1q1HP3ftWmnqVNNZDwAAAIgEBCYU6YknpF69pPfeO/q5nTpJPXtKy5cHvSwAAAAgJAhMKNLRNq09FK3FAQAAEGkITCiS21a8qE1rXWxeCwAAgEhDYEKR3BGm4gQmRpgAAAAQaQhMKFR2trRtmzkuzpQ8RpgAAAAQaQhMKNS2bZLjSD6fVKPG0c9nhAkAAACRhsCEQrnrl2rUkGJjj34+I0wAAACINMV4G4xoVbu2NGqUlJNTvPObNZPuuUdq1CioZQEAAAAh43Mcx7FdRKj4/X4lJSUpPT1diYmJtssBAAAAYElxswFT8gAAAACgEEzJQ6EWLJB27ZKaNy9eW3HJtCFfvlxKSZEaNw5qeQAAAEDQMcKEQj37rNSrl/Tvfxf/a+69V+rZU/rww+DVBQAAAIQKgQmFcrvkFWcPJhed8gAAABBJCEwo1ObN5r640/Ek9mICAABAZCEwoVDuCBOBCQAAANGKwIQCOU7eCFNpp+RFT8N6AAAARCoCEwqUni5lZprjkowwpaaa+337pB07Al8XAAAAEEoEJhTInY6XmChVqFD8r6tQIS9g0fgBAAAAXsc+TChQtWrSyy/njTKVxAMPSDExZi8mAAAAwMt8jhM9K038fr+SkpKUnp6uxMRE2+UAAAAAsKS42YApeQAAAABQCKbkoUB//SVt3y41by7VqVOyr/X7pfnzTZe8nj2DUx8AAAAQCowwoUAvvST17i299lrJv3biRBOUhg4NfF0AAABAKBGYUCC3S15J9mByuZvX0iUPAAAAXkdgQoHcTWtLsgeTy928dvNm6cCBwNUEAAAAhBqBCQVyA1NpRpiqVZMqVTLH69YFriYAAAAg1AhMKJA7Ja80I0w+H9PyAAAAEBkITDjC/v3S7t3muDQjTFLetLw1awJTEwAAAGADgQlHcKfjxcVJSUmluwYjTAAAAIgE7MOEIyQlSaNHS/v2mel1pXHRRVKnTlL37gEtDQAAAAgpn+M4ju0iQsXv9yspKUnp6elKTEy0XQ4AAAAAS4qbDZiSBwAAAACFIDDhCIsXSz//LG3YUPprZGVJv/0mffSRlJMTuNoAAACAUCIw4QivvSalpUmjRpX+Go4j9eolXXJJXotyAAAAwGsITDhCWTatdZUvL6WkmGNaiwMAAMCrCEw4Qlk2rT0UrcUBAADgdQQmHCEQI0wSm9cCAADA+whMOIIbmAI1wkRgAgAAgFcRmJBPVpa0fbs5LusIE1PyAAAA4HUEJuSzbZvpcOfzSTVqlO1aTMkDAACA18XaLgDhpVIl6ZVXJL9fiokp27U6d5ZGj5aaNw9MbQAAAECo+RzHcWwXESp+v19JSUlKT09XYmKi7XIAAAAAWFLcbMCUPAAAAAAoBIEJ+SxdKk2ZIq1fH5jrzZ0rffSRtGJFYK4HAAAAhBKBCfm8/bbUp4/0zDOBud6//iVdcok0YUJgrgcAAACEEoEJ+QRq01qX2ymP1uIAAADwIgIT8tmyxdyXddNaF5vXAgAAwMsITMjHHWEKdGBihAkAAABeRGBCPsGakscIEwAAALyIwIRcjhO8KXnr1klZWYG5JgAAABAqBCbk2rVLOnjQHAdqhKlOHSk2VsrOljZuDMw1AQAAgFCJtV0Awkf58tKrr0o7dkgVKgTmmjEx0ltvSdWrS9WqBeaaAAAAQKj4HMdxbBcRKn6/X0lJSUpPT1diYqLtcgAAAABYUtxs4JkpeSNHjlS3bt1UpUoV1apVS2eddZaWLFliuywAAAAAEcwzgWnKlCkaPHiw/vjjD40fP14HDx7UKaecor1799ouLWIsXy5NniytXRvY665eLX38sfTjj4G9LgAAABBsnlnDNG7cuHwfv/POO6pVq5Zmzpyp3r17W6oqsvznP9Ijj0g33SS98krgrvvjj9L110unny6dckrgrgsAAAAEm2cC0+HS09MlSdWK6CSQkZGhjIyM3I/9fn/Q6/Iyt6V4oDrkudiLCQAAAF7lmSl5h8rJydHtt9+uHj16qF27doWeN3LkSCUlJeXeUlNTQ1il97ib1gZqDyaXuxfT6tVmrycAAADAKzwZmAYPHqwFCxbo448/LvK8++67T+np6bm3tYFenBNhgh2Ydu+W/n9gEAAAAPAEz03Ju+WWW/TNN9/o559/Vv369Ys8Nz4+XvHx8SGqzPuCNSWvUiWpRg1p2zYzLS85ObDXBwAAAILFMyNMjuPolltu0dixYzVx4kQ1btzYdkkRJ1gjTFLeOqbVqwN/bQAAACBYPBOYBg8erPfff18ffvihqlSpok2bNmnTpk3av3+/7dIiwr590p495jgYgcmdlkfjBwAAAHiJz3G8sQzf5/MV+PiYMWN05ZVXFusaxd3NNxrt32/aim/dKj3wgFTIy11qv/4q7dolde4s1asX2GsDAAAAJVXcbOCZNUweyXWeVbGidMMNwbt+z57BuzYAAAAQLJ6ZkgcAAAAAoUZggiTp77+lSZOC15Rhzx7po4+kUaOCc30AAAAgGAhMkGTCzIknSiNGBOf6+/ZJl1wi3XablJkZnOcAAAAAAo3ABEnB24PJVbOmFB8vOY60bl1wngMAAAAINAITJAV3DybJdN2jtTgAAAC8hsAESXmBKVgjTBKb1wIAAMB7CEyQlDclL1gjTBIjTAAAAPAeAhMkMcKE4MjKksaPN80+/vtf29UAAACUnGc2rkXwHDwobd9ujhlhQlnl5Ei//CJ98on02WfS1q3m8bffls49V4qJsVsfAABASRCYoJwc6fXXzShT9erBe56+faWvv5aaNQvecyA8XHppXjfEGjWk9HRp715p2TKpVSu7tQEAAJQEgQmKj5euvz74z1O/vrkhMjiONGeOGUmaOFH67TcpNlYqV0667jpp1SrpoovM/l69ekl//CHNnUtgAgAA3uJzHMexXUSo+P1+JSUlKT09XYmJibbLATzpr79MSPr4Y2np0rzHf/hBOuWUgr9m3jwpOVlKTTUt5gEAAGwrbjZghAlatUr6+2+pSROpUaPgPtdXX0mLFkkXXhj850JgTZpkmjfMn5/3WIUKUv/+5ufZs2fhX9uhQ/DrAwAACAYCE/TZZ9Ldd0uDBknvvx/c5xo50kzNatGCwBTu1qwxDUGaNjUfV61qwlL58tKpp5rpdgMGSFWq2K0TAAAgmGgrjtw9mILZUtzldsqjtXh42rRJGjVK6tHDtIEfPjzvcx07Sh99ZJqDfPWVdMklxQ9LjiM99ph0zjnmOQAAALyCESbk7sEUzJbiLncvJlqLh49t26TPPzdrkiZPNuFGMmuNdu3KO8/nM6NKpeHzmdHLxYtNg5FTTy1r1QAAAKFBYAIjTFHupJNMUwbXP/5h1iSdf75Ur17gnqdzZxOY5swhMAEAAO8gMCGkI0xsXmvPnj1mH6zPP5fefVeqVMk87m4me9FF0gUXBG9tWadOZkrfnDnBuT4AAEAwEJgQ0hEmd0oeI0yhsX+/9P33ZrrdN9+YjyUzgnTeeeb4gQekhx4Kfi2dOpl7AhMAAPASAlOUc5y8wBTKEaatW82b94oVg/+c0WjpUumRR6Qvv5R27857vGlTM5LUuXPeYzExoampY8e82vbulRISQvO8AAAAZUFginLZ2dLo0WZaXihGmJKTzUhHaqoUFxf854sWWVnSzp1SzZrm45iYvBbxqalmROmii6RjjrG3cWzt2lLdutLGjaY9+T/+YacOAACAkiAwRbnYWOm660L3fD6fdMYZoXu+SJaTI02daqbbffaZ1L27NHas+VzTptITT0i9eplgUi5MNhDo1MkEu7VrCUwAAMAbfI7jNhGOfH6/X0lJSUpPT1diYqLtcoAScxxp+nQTkv77X2n9+rzP1asnrVxpNpYNV9u2mVHGWP5UAwAALCtuNuBtS5Rbs0Zatkxq3Fhq0iQ0zzl9ujRxotS2rdS/f2ieM1Kcf770v//lfZyYaDaDvfBC0x48nMOSJNWoYbsCAACAkgmTiTqw5csvpb59pX/+M3TP+dNP0r33Sp9+GrrnjBS9eplmCRdfbH52W7ZIY8aYfY3CPSwBAAB4EYEpyoWyQ56LvZhK75przM/sww+lM8+U4uNtV1RyN90kdeggLVliuxIAAICjIzBFOXfT2lB0yHOxF1PJZWeb+8qV8zac9aq5c02XvNmzbVcCAABwdASmKGdzhGndurwggKINHGg6340bZ7uSsmMDWwAA4CUEpihnY4QpJcXsE3TwYN7zo2izZ0t//22aPHgdgQkAAHgJgSnK2Rhhio01LbAlpuUVx7Zt0oYN5rh9e7u1BAKBCQAAeAmBKcq5IzyhDEwSjR9KYu5cc9+0qVSlit1aAqFdO7OR7ubN0qZNtqsBAAAoGvswRTHHkZ5/3owy1a0b2ud+6SUzLa9p09A+rxe5galjR7t1BEqlSlLLltKiRWaU6dRTbVcEAABQOAJTFPP5pOuus/PcnTvbeV4virTAJEldupjfv4wM25UAAAAUjcAEhLlIDEz/+Y8JTAAAAOGOwBTF1q0zm4c2bCg1axba59640bxpzsqSHnggtM/tNd27m0YZbrOESEBYAgAAXuFzHMexXUSo+P1+JSUlKT09XYmR0J+5jN58U7r+eql/f+nrr0P73H/9JbVtKyUnSzt3hva5ET5ycsxaupgY25UAAIBoU9xsQJe8KGajpbgrNdXc79ol+f2hf37Yd/bZZl+pP/+0XQkAAEDhCExRzMamta4qVaSqVc0xrcULt2mTlJlpu4rgyMiQ9u5lPyYAABDeCExRzNYeTK6GDc09galwl14qVa4sffaZ7UoCjw1sAQCAFxCYopjNKXkSm9cejeOYDnkHD+aFy0hCYAIAAF5AYIpiNqfkSXmBafVqO88f7jZulLZtk8qVk9q1s11N4LmBad480y0RAAAgHBGYohhT8sKbu/9Sy5ZSxYp2awmGpk2lhATpwAFp2TLb1QAAABSMfZii2NNPm6YCbse6ULvkEunkk6VGjew8f7iLxA1rDxUTI3XoIP3+u5mW17q17YoAAACORGCKYldfbff5U1LMDQWL9MAkmcBco4ZUvbrtSgAAAApGYALCVDQEpuHDbVcAAABQNNYwRakNG6Tx46WlS+3W8fzz0uDBZmog8rvqKunCC6XOnW1XAgAAEL0YYYpSP/0kXXGFmRL144/26hg9WlqxwgSDOnXs1RGO7r7bdgWh4TimI2ByslSpku1qAAAA8mOEKUq5ezDZainuYi8m9O4t1asnTZliuxIAAIAjEZiilO2W4i5aixds7lzTajsnx3YlweeGZjawBQAA4YjAFKXCJTAxwlSwIUOkFi2kDz6wXUnwuRvYEpgAAEA4IjBFqXCZkueOMK1ebbeOcOI4eR3yOnSwW0soEJgAAEA4IzBFKUaYwteaNVJ6ulS+fHRs5uq2TV+2TNqzx24tAAAAhyMwRSk3MNkeYTo0MDmO3VrChTu61Lq1FBdnt5ZQqFXLbGDsONK8ebarAQAAyI+24lFq5EizF1PjxnbraNzYTMVyp+YhOjasPVynTub3cc4cqXt329UAAADkITBFqSuusF2BUb58dAWD4ojGwHTuuVLLlmzSCwAAwg+BCQgz0RiYrr7adgUAAAAFIzBFoU2bzFqRBg2kVq1sVyN9+aX044/SaadJ/fvbrsa+J56QZs9mtAUAACAc0PQhCk2ZIvXrJ91wg+1KjJ9/ll55RZo82XYl4eHcc6VHH5WqV7ddSWilp5vfha1bbVcCAACQh8AUhcJlDyYXrcUhSaefLqWlST/9ZLsSAACAPASmKBQuezC53MDE5rXSDz9I338v7dhhu5LQYwNbAAAQjghMUcgdYQqXwOS2FGeESRo+3Iy0/PCD7UpCj8AEAADCEYEpCoXLprUud4Rp0ybpwAG7tdiUk5O3cWs0dchzuYFp9mw2MQYAAOGDwBSFwm2EqXp1qWJFc7xund1abPr7b2nvXik+XmrRwnY1odeunVSunGn6sGmT7WoAAAAMAlMUCrcRJp+PaXlS3v5L7dpJsVHY8L9ixbw297Nn260FAADAFYVvyzBihBnJadbMdiV5vv1WqlpVSk62XYk90bhh7eE6dZL++susYzr9dNvVAAAAEJii0qWX2q7gSE2a2K7APgKTdPnlUo8e0gkn2K4EAADAIDABYYLAZDZUBgAACCcEpiizdatZH1K/vtSmje1q8ixcKL3yipmW9+ijtqux44svTGjq3Nl2JQAAAHDR9CHKTJ1q/op/1VW2K8lv2zYTmD75xHYl9nTqJF1xhZSYaLsSu+bPl95+W1qxwnYlAAAABKaoE24txV3uXkxr15r9iBC97r1XuvZa6ccfbVcCAABAYIo64dZS3FW/vmkvnpFhpg1Gm3fflUaNklautF2JfYduYAsAAGAba5iiTLiOMJUvL6WkSOvXS6tXh199wTZqlDRzplS3rtS4se1q7HID05w5NqsAAAAwGGGKMu4IUzgGkmjdvDYrS1qwwBxHc4c8lxuY5s83rw0AAIBNBKYo444whduUPClvHVO0BaalS81UxIQEqWlT29XY17SpeS0OHDCvDQAAgE0EpijjhRGmDRvs1hFq8+aZ+/btpXL8F6ly5fJG2piWBwAAbOPtWZQZNkx64gmpVSvblRzp7rulHTukp5+2XUlouRvWulPRwDomAAAQPmj6EGUuush2BYWrXt12BXa4gYn1S3muv1466yw28QUAAPYRmADL3Cl5BKY8vBYAACBcMCUvimzfLo0bl9eRLdxkZUmDB0sDBkh799quJnT++kv69Vem5AEAAIQjRpiiyPTp0mmnmb/eh+PakNhY6f33Jb/fdMpr3dp2RaGRmCj16GG7ivDz44/S5Mlmat6xx9quBgAARCtGmKJIOHfIc0XrXkw40n/+I40cKf30k+1KAABANCMwRZFw3oPJ5e7FtHq13TpC5cknpdtuC88RP9vcKYqzZ1stAwAARDkCUxTxwghTtG1e+9FH0ksvRU9ALAlaiwMAgHBAYIoi7ghTOAcmd0peNASIzEzT8EGiK1xB3Ndk+XJp9267tQAAgOjlqcD0888/a8CAAUpJSZHP59MXX3xhuyRPcUeYvDAlLxpGmBYtkg4elJKS8oIi8tSsKdWrZ47d1usAAACh5qnAtHfvXnXs2FGjR4+2XYoneWFKnhsctm2zW0couBvWdugg+Xx2awlXTMsDAAC2eaqt+GmnnabTTjvNdhme9cAD0sqVUtu2tispXNeu0o4dUnKy7UqCzw1MTMcrXMeO0rffSgsX2q4EAABEK08FppLKyMhQRkZG7sd+v99iNfadf77tCo4uLs7cogGB6ehuvlm69lqpUSPblQAAgGjlqSl5JTVy5EglJSXl3lJTU22XBORyp0gSmApXr57UuDFTFgEAgD0RHZjuu+8+paen597Wrl1ruyRrdu6Uvv/eG4vnX3pJGjBAGjfOdiXBNX++tGlT3jodAAAAhJ+IDkzx8fFKTEzMd4tWc+ZIp58uXXih7UqObsYM6Ztv8qasRbLataXy5W1XEd7ef1+64ALzOwEAABBqER2YkMcLHfJcbqe8aGgtjqP74w/p00+lKVNsVwIAAKKRpwLTnj17NGfOHM35/x7DK1eu1Jw5c7SGd9ZH5W5aG857MLncvZgiefPa226TzjiDEFActBYHAAA2eSowzZgxQ507d1bnzp0lSXfeeac6d+6shx56yHJl4c9LI0zRsHnt+PHSd99J+/bZriT8HRqYHMdmJQAAIBp5qq14nz595PCOqVS8NMLkTsmL1BGm/fulJUvMMR3yjq5tWykmxmxmvGGD6ZwHAAAQKp4aYULpeWmEye3+7vdL6el2awmGhQulnBypRg2pbl3b1YS/ihWlVq3MMdPyAABAqBGYooQbmLwwwpSQYMJE5cqm7XakOXTDWvYXKh7WMQEAAFs8NSUPpXfPPdKKFd6ZAvb33yYwRWKgODQwoXg6dTKd8nbtsl0JAACINgSmKHHOObYrKJkqVWxXEDwEppK76SZpyBApLs52JQAAINoQmIAQq1LF3AhMxZeQYLsCAAAQrVjDFAXS06Xvv/fW+o+JE6UBA6R777VdSeB9842ZWta+ve1KAAAAcDQEpiiwcKF0+unS2WfbrqT4duwwweLnn21XEhzlypkbiu/FF6XOnaU33rBdCQAAiCa8ZYsC7h5MXmgp7orUvZhycmxX4F1bt5pR0unTbVcCAACiCYEpCnippbirQQNzv3GjlJlpt5ZAuugiqWVL6euvbVfiPbQWBwAANhCYooAXR5hq1ZLi4yXHkdavt11N4MyeLS1dajZjRcm4gWn+fCkry2opAAAgihCYooA7wuSlwOTz5Y0yRcq0vD17zF5YEh3ySqNJE7M3V0aGtGSJ7WoAAEC0IDBFAXeEyUtT8qS8wLRmjd06AmX+fDNiVreuVLOm7Wq8p1y5vKDJtDwAABAqBKYo4MURJsk0fqhcWdq713YlgcGGtWXHOiYAABBqbFwbBYYONXsadeliu5KSefVV6a23zPS8SEBgKrtjjpFatJCSk21XAgAAogWBKQqceabtCkonLs52BYFFYCq7q682NwAAgFAhMAEhcswx0v79ZvNVAAAAeAOBKcLt2SP9/LNUp455w+4l27dLV15p1mBNm+b9qXkvv2y7gsiRk2P256pQwXYlAAAg0tH0IcItWSKdcYbUv7/tSkqucmXpm2+k6dNNeAIkacQIs4bpmWdsVwIAAKIBgSnCeXHTWld8vGnBLXl/L6Zt26SDB21XERkqVZJ276ZTHgAACA0CU4RzW4p7bQ8mV6TsxXTNNWbE7IMPbFfifbQWBwAAoURginBeHmGS8gKT10eY5s41a27q17ddife5XQZXrDAjTQAAAMFEYIpwXt201hUJI0y7duUFvg4drJYSEWrWlOrVM8fz5tmtBQAARD4CU4RzR5i8OiWvYUNz7+XA5L6pb9BAqlrVbi2Rwm3NzrQ8AAAQbASmCBcJI0yVK0uxHm6Az4a1gcc6JgAAECoefhuK4rjtNqlfP+m442xXUjoDBkh+v7f3YCIwBV6PHtLpp0tdutiuBAAARDoCU4Q74wxz86pyETAGSmAKvFNPNTcAAIBgIzABQXbBBVKjRoyGAAAAeFEE/P0ehdm3T/r2W2nGDNuVlM2tt5rRmSlTbFdSOnffLX36qdS4se1KIs/mzdLGjbarAAAAkYzAFMFWrpT69zdrmLxs+XLTaW75ctuVIJzce69Up4707LO2KwEAAJGMwBTBvN4hz+Xl1uJ//WWCq+PYriTyNG9u7umUBwAAgonAFMG8vgeTy9281t381UuGDpWaNJHefNN2JZHn0NbiBFIAABAsBKYIxgiTfW6HvPbt7dYRidq2lWJipO3bpfXrbVcDAAAiFYEpgkVKYHJHmLwWmLZuNQ0JfD4CUzBUqCC1bm2OmZYHAACChcAUwSJlSp47wrR2rZSTY7eWknBHl5o2lSpXtltLpDp0Wh4AAEAwEJgiWKSMMKWkSMnJZpF/errtaoqPDWuDj8AEAACCjY1rI9jgwVKfPlL37rYrKZvYWGnnTttVlByBKfj69JGGDJHS0mxXAgAAIhWBKYKdeqq5wQ4CU/B16WJuAAAAwUJgAoLkwQelmTOlbt1sVwIAAIDSYg1ThMrIkL75Rpo+PTL2qPnPf8xIzX332a6k+M47Txo5Uqpb13YlkW33bmnqVGnePNuVAACASERgilBr10oDBkgnnGDaWnvdvn3mDfFff9muBOHmqaeknj2ll16yXQkAAIhETMmLUJHSIc/lthZfvdpuHcU1ebKUmWmm41WtaruayEanPAAAEEyMMEWoSNmDyeW1zWsffVTq10/6/HPblUS+zp3N/YIF0sGDdmsBAACRh8AUoSJthMkNTDt3mjUr4cxx6JAXSo0aSYmJZt3ekiW2qwEAAJGGwBSh3MAUKSNMVarkTW0L91GmjRulbdukcuWktm1tVxP5ypXLC6ZMywMAAIFGYIpQ7pS8SBlhkvJGmcJ9HZM7utSypVSxot1aogXrmAAAQLDQ9CFCRdoIkyS1aSNlZYV/m3Sm44UegQkAAAQLgSlC3XCD1L271Lu37UoC58MPbVdQPASm0DvhBNNW/NhjbVcCAAAiDYEpQp18srkh9AhMode4sXTrrbarAAAAkYjABATY++9Ls2cz2gEAABAJCEwR6OBBadw40/Cha1fTRSwSLF0qXXCBlJMjzZtnu5rCHXOMuSG0Vq2SpkyR6taVTjnFdjUAACBSEJgi0KZN0plnSrGxZm+aSFGlipnuVq6caf4Qy28vDvH559LQodK55xKYAABA4ETI2AMO5bYUr1UrckaXJDNiVr68GWFav952NQX75BPplVekv/+2XUn0oVMeAAAIhgh6Ow1XJLYUl0z4S001x+G6ee3o0dLgwdKvv9quJPq4TTZWrJD8fru1AACAyEFgikCRuGmtq2FDcx+Ogclx8tZW0SEv9KpXzwvU4bzGDQAAeAuBKQK5I0yRGJgaNDD34RiYVq+W0tPNtMHWrW1XE52YlgcAAAKNwBSBDl3DFGncEabVq+3WURB3/6U2baS4OLu1RCsCEwAACDQCUwSK5BGmFi2ktm3DMwyyYa19BCYAABBopQpMI0aM0L59+454fP/+/RoxYkSZi0LZXHON9Pzz0okn2q4k8AYNkhYskMLx14z1S/b17i1995309de2KwEAAJHC5ziOU9IviomJ0caNG1XrsD/zb9++XbVq1VJ2dnbACgwkv9+vpKQkpaenKzEx0XY5iDDNm0vLl0s//SSddJLtagAAAFCU4maDUm396TiOfD7fEY/PnTtX1apVK80lgRJzHKmAX0Nr/vzTjDIdc4ztSgAAABAoJQpMVatWlc/nk8/nU4sWLfKFpuzsbO3Zs0c33nhjwItE8eXkSN98Y9b4dOsmxcTYrijw+vaVZs6UJk3KW7MSDqpWldLSbFeBOXOk//1PatxYuvpq29UAAACvK1FgeuGFF+Q4jq6++moNHz5cSUlJuZ+Li4tTo0aNdPzxxwe8SBTf9u3SwIHmODMzMgNTerq0a5fplBdOgQnhYdYs6dFHzRo+AhMAACirEgWmK664QpLUuHFj9ejRQ7GxpZrRhyByO+RVr272A4pEDRpIM2aE115ML71kAtygQUzJs+3QTnnhNm0TAAB4T6m65FWpUkWLFi3K/fjLL7/UWWedpfvvv1+ZmZkBKw4l5+7BFIktxV3huHntxx9Lzz0nLV1quxK0aSPFxko7dkjr1tmuBgAAeF2pAtMNN9ygpf//zvDvv//WhRdeqEqVKunTTz/VP//5z4AWiJJxR5jCcZ+iQAm3zWtzcmgpHk4qVJBatzbH7McEAADKqlSBaenSper0//NePv30U6WlpenDDz/UO++8o//973+BrA8lFMmb1rrCbYRpxQpp717zRr15c9vVQGIDWwAAEDilCkyO4ygnJ0eS9NNPP+n000+XJKWmpmrbtm2Bqw4lFg1T8sJthGnuXHPftq2ZCgb7CEwAACBQSvX2rmvXrnr00UfVt29fTZkyRa+++qokaeXKlaodye/UPSBapuS1aSM1amSmw5UrVewPHDcwMR0vfLiBadkyq2UAAIAIUKrA9MILL2jQoEH64osv9MADD6hZs2aSpM8++0zdu3cPaIEomcsvl9q3l3r0sF1J8NSoIS1caLuKPASm8HP88aYBR9OmtisBAABe53McxwnUxQ4cOKCYmBiVD9N+1n6/X0lJSUpPT1diYqLtchAhjjlGmj1bmjyZjWsBAAC8orjZoEwrLmbOnJnbXrxNmzY6hg1oEGLhMCVv5kxp40az9xUAAAAiS6neam7ZskUnnHCCunXrpiFDhmjIkCHq2rWrTjrpJG3dujXQNaKYHEf66ivpjz+krCzb1QTX8OFS1arSo4/arsRsjJqSIsXH264Eh/r1V+nii6WHHrJdCQAA8LJSBaZbb71Ve/bs0cKFC7Vjxw7t2LFDCxYskN/v15AhQwJdI4pp925p4ECzfiPS9w+OiZF27QqfTnkIP1u3mg2Fv/3WdiUAAMDLShWYxo0bp1deeUWt3d0hZabkjR49Wt9//33AikPJuB3yKleWKlWyW0uwhcteTPffL515pjRhgt06cCS3U96CBdLBg1ZLAQAAHlaqwJSTk1NgY4fy5cvn7s+E0IuGPZhc7l5MtgPTjz9KX38t7dxptw4cqVEjKTHRjLYuXmy7GgAA4FWlCkwnnniibrvtNm3YsCH3sfXr1+uOO+7QSSedFLDiUDLRsAeT69ARpsD1eSyZrCwzeiHRUjwc+XxsYAsAAMquVIHp5Zdflt/vV6NGjdS0aVM1bdpUjRs3lt/v16hRowJdI4rJDUzRMMJUr555Q3zggFmrYsPSpVJGhpSQwH4/4YrABAAAyqpUbcVTU1M1a9Ys/fTTT1r8/3NdWrdurb59+wa0OJRMNE3Ji4sznenWrzeNH2yMqrkb1nboYL+1OQpGYAIAAGVVord5EydOVJs2beT3++Xz+XTyySfr1ltv1a233qpu3bqpbdu2+uWXX4JVK44imqbkSVKfPtJpp5mOeTa4gYnpeOGrUycpNlbKzrZdCQAA8KoSjTC98MILuu666wrcCTcpKUk33HCDnnvuOfXq1StgBaL4LrlEatlSOu4425WExvvv231+AlP469BB2rOHPbIAAEDplWiEae7cuTr11FML/fwpp5yimTNnlrkolE7PntJtt0n/+IftSqJDfLxp305gCl8xMYQlAABQNiUaYdq8eXOB7cRzLxYbq622VuAjamVk2HlT/MUXTPUCAACIdCUaYapXr54WuH2UCzBv3jzVrVu3zEWhdL75Rvr9d7PvTDSYPFmqWlXq3t1eDTEx9tZQoXjGj5e6dZMGDbJdCQAA8KISBabTTz9dDz74oA4cOHDE5/bv369hw4apf//+ASsOxXfggDRggAkPe/fariY0qlWTdu0yXfJCzdbeTyi52Fhpxgzpjz9sVwIAALzI5zjFf+u3efNmHXPMMYqJidEtt9yili1bSpIWL16s0aNHKzs7W7NmzVLtMO1r7ff7lZSUpPT09AIbV3jZmjVSw4ZS+fJmiprPZ7ui4Nu1y4wwSWZhf0JC6J776quladOkRx6RzjkndM+LktuxQ6pe3Rzv2iUlJVktBwAAhIniZoMSjTDVrl1bv/32m9q1a6f77rtPZ599ts4++2zdf//9ateunX799degh6XRo0erUaNGqlChgo477jj9+eefQX0+r3D3YKpVKzrCkiQlJ0vu7/aaNaF97pkzpb/+MqMXCG/VqkkNGpjjefPs1gIAALynxNttNmzYUN999522bdumadOm6Y8//tC2bdv03XffqXHjxsGoMdcnn3yiO++8U8OGDdOsWbPUsWNH9evXT1vctBDF3D2YwnRwL2jcN8KhDEyZmdKiReaYDnnewAa2AACgtEocmFxVq1ZVt27ddOyxx6qqOy8qyJ577jldd911uuqqq9SmTRu99tprqlSpkv7973+H5PnDWbRtWutq2NDchzIwLVokHTxoRrjcwIbw5gam2bOtlgEAADyo1IEp1DIzMzVz5kz17ds397Fy5cqpb9+++v333wv8moyMDPn9/ny3SOUOskXrCFMoGz+4G9Z26BA90x+9jhEmAABQWp4JTNu2bVN2dvYRa6Rq166tTZs2Ffg1I0eOVFJSUu4tNTU1FKVaEa0jTF27SqeeKjVtGrrndAMT0/G8o1MnqUkTqVUrOhwCAICSiegl6/fdd5/uvPPO3I/9fn/EhqYLLjBvCDt3tl1JaF19tbmFEoHJexo3llassF0FAADwIs8Epho1aigmJkab3aGU/7d582bVqVOnwK+Jj49XfHx8KMqz7vjjzQ3B16aNmQIZbeEUAAAgGnlmSl5cXJy6dOmiCRMm5D6Wk5OjCRMm6HiSQtTbvVvKyQnNc730kmlPfcwxoXk+BI7jSOnptqsAAABe4pnAJEl33nmn3nzzTb377rtatGiRbrrpJu3du1dXXXWV7dKs++YbaepUs2ltNMnJMeu2EhOljRttV4Nw9t13Zk8mNhoGAAAl4ZkpeZJ04YUXauvWrXrooYe0adMmderUSePGjQv6ZrnhLjtbGjjQhIcNG6S6dW1XFDrlykkJCdLWraZTXr16wX2+XbukKlWkmJjgPg8Cr25d8/ObPduMNNHhEAAAFIenRpgk6ZZbbtHq1auVkZGhadOm6bjjjrNdknXbt5uw5PNJNWvarib0Qrl57U03SZUrS2PGBP+5EFht2kixsdLOndLatbarAQAAXuG5wIQjuX0wqlc3bwijTSj3Ypo7VzpwQCqkzwjCWHy8CU0S+zEBAIDiIzBFgGjdg8nVsKG5D/YI0/790pIl5piW4t7EBrYAAKCkCEwRYMsWcx+tS7lCNcK0cKGZ+lijRnStE4skBCYAAFBSBKYI4I4wRXtgCvYI06Eb1tIwwJsITAAAoKSicMVL5HFHmKJ1Sl7z5tKpp+atTwmWQwMTvKljR6lfPxOccnJMl0UAAICiEJgiwDnnSCkpUocOtiuxo2lT6fvvg/887qgEgcm7qlWTxo2zXQUAAPASAlME6NbN3BBcZ55p1i/xWgMAAEQPAhMixu7dZm1R5crBuf5ddwXnugi9bdvMZsetW9uuBAAAhDtm8EeA77+Xpk41ba+j1aBBUmKi9J//2K4E4e7bb80Gz4MG2a4EAAB4AYHJ4xxHOvtsqWfPvG550ahGDXMfrNbiy5aZLnyOE5zrI3Tc5iALFkiZmXZrAQAA4Y/A5HF+v5SRYY6jta24FPzW4vfeazbIHTUqONdH6DRqZEYjDx6UFi2yXQ0AAAh3BCaPc1uKV6kiVaxotxabGjY098EaYXJbirdtG5zrI3R8PvZjAgAAxUdg8jh3Gl607sHkCuYI0+7d0ooV5piW4pGBwAQAAIqLwORxbmCK5ul4Ut4I04YNgV+XMn++uU9JyVsrBW8jMAEAgOIiMHmcOyUv2gNTzZpSfLxpyrB+fWCv7U7HY3QpchwamGjkAQAAisI+TB7HlDyjXDnTJjo2VoqJCey1CUyRp00bafBgE5yysqTy5W1XBAAAwhWByeMGDDDTxNxWydHs7beDc10CU+SJj5deftl2FQAAwAsITB7XpYu5IXiGDpX+/FP6xz9sVwIAAIBQIzAhouzeLe3ZI9WtG7hrnneeuSGyHDhgRg937ZL69bNdDQAACFc0ffC4H36Qfv1V2rfPdiX2vfee2ZD0yittVwIv+OMPM2p44422KwEAAOGMwORxF1wg9eolrV1ruxL76tUz94Hci+m336SJE80oBCKLuyZt1Sp+vgAAoHAEJg87cEDy+81xtLcVl/JvXhuoVtFPPCGddJIZvUJkqVo1b/8ut7EHAADA4QhMHubuwRQXJyUl2a0lHKSmmvt9+6Tt2wNzTTrkRTY2sAUAAEdDYPKwQ/dg8vns1hIO4uOlOnXMcSCm5e3cmXedDh3Kfj2EHwITAAA4GgKTh7mBiel4edxpeatXl/1a8+aZ+4YNpeTksl8P4YfABAAAjobA5GHulDwCU55D1zGVFdPxIp8bmBYulDIzrZYCAADCFPswedihU/Jg9OsnVasmtW1b9msRmCJfw4bSiy9K7dtL5fjzEQAAKACBycNOO83sO9Sihe1Kwse115pbIBCYIp/PJw0ZYrsKAAAQzghMHtapU96UIgTea69Js2ZJPXrYrgQAAAC2EJgQcXbvltatk1q3Ltt1unY1N0S27dul7783e5rdfLPtagAAQLghMHnYjz9KFStKxxwjJSTYriY87NghVa9ujvftM68PUJS1a6XLLjOdEG+6iRb9AAAgP5Y5e9ill0q9e0srVtiuJHxUrZoXHteuLf11vvxSeuMNXtto0KaNVL68tGtXYLorAgCAyEJg8qisLGnbNnNMW/E8Pp/pfCaV7c3va69JN9wgjR8fmLoQvuLiTGiS2I8JAAAcicDkUdu3S45jAoI7BQ1GIPZiokNedGEDWwAAUBgCk0e5ezDVqCHFshItHzcwrV5duq/fulXauNGE0fbtA1cXwheBCQAAFIbA5FFsWlu4sk7Jc0eXmjaVKlcOTE0IbwQmAABQGAKTR23ZYu5Zv3Sksk7JYzpe9HF/1qtWSTt3Wi0FAACEGSZzeZQ7wkRgOlLHjtL115t266VBYIo+VatKP/xgmj8kJ9uuBgAAhBMCk0edfLI0erTUuLHtSsJP+/bS66+X/usJTNHplFNsVwAAAMIRgcmj2renIUGwTJggzZsnde5suxIAAADYRmBCRNq926xhSkkx061KokYN6cQTg1MXwtfGjWaz4l27pOeft10NAAAIFzR98KiffpJ+/tkEAxzptNOkdu3YeBbFl5EhPfywmeqamWm7GgAAEC4ITB511VVSWpq0aJHtSsJTaTvlvfmm9M9/SjNmBL4mhLeGDaWkJOngQf67AgAAeQhMHuQ4tBU/GncvppJuXvvxx9LTT5s1TIguPh/7MQEAgCMRmDwoPT1vyhAb1xasNCNMjkOHvGhHYAIAAIcjMHmQuwdTlSpSxYp2awlXpQlMGzZI27dL5cpJbdsGpy6ENwITAAA4HIHJg5iOd3SlmZLnji61bClVqBD4mhD+Dg1MjmOzEgAAEC4ITB7kjjARmArnjjDt3Fn8ToJMx0ObNlL58qZjnvvfGQAAiG7sw+RB7ggT65cKl5go3XqrCZXFHSkgMCEuTlq82IxQxsTYrgYAAIQDApMH9ekjvfKKlJpqu5Lw9tJLJTt/5UpzT2CKbk2a2K4AAACEEwKTB7VpY24IrD/+kNaulWrUsF0JAAAAwgVrmBCx9u2TFi6Uli4t3vk+n1n7VKlScOtCeFu/Xrr0UumUU2xXAgAAwgGByYMmTpSmTJH8ftuVhLfRo6V27aQRI2xXAi9JSJA++EAaP940DQEAANGNwORBN9xg1jG5TQpQsJLsxfToo9I550g//hjcmhD+kpOlRo3MMf+NAQAAApMH0Va8eEqyF9OPP0pjx0qbNgW3JngDG9gCAAAXgclj9u/P21eIwFQ0d4Rp/XopK6vw8xxHmjfPHNMhDxKBCQAA5CEweYy7B1NcnNlrCIWrU8dsQpqdLW3cWPh5q1dL6enm3NatQ1cfwheBCQAAuAhMHnPodDyfz24t4a5cuby9qoqalueuU2nTxgRRwA1Mf/0lZWZaLQUAAFhGYPIYd4SJ6XjFU5zGD25gYjoeXA0amP24WrRgXRsAANGOjWs9xh1hqlXLbh1eccUVUt++UocOhZ9DYMLhfD5pwwYzTRMAAEQ3ApPH9OghvfKKlJJiuxJvuPLKo5/j80kVKhCYkB9hCQAASAQmz2nVytwQOJ99VnQXPUQ3x2G9IAAA0YzAhIiWmSktWyZt3y717l34ebH8l4DDbNggnXuutHatuYVzaMrOlrZtM1N23Vt2tpmSCgAAyoa3iR4zebK579RJSk62WIhHrFwptWsnVa4s+f3h/aYX4aVGDWnmTOngQdNlsVGj0D7/wYOmycvhIeiaa/LOOeccaepUE5ZycvJ/fa1aBCYAAAKBwOQxt9wiLVwojR9vmhmgaG5b8T17pF27pKpV839+yBATQv/1L+mCC0JdHcJZXJzUtq3Zi2nOnMAEpoyM/AHIDUHXX593zllnSb/8Iu3YceTX16yZPzDt2pXXOdPnMyGvdm0TllJSmE4IAEAgEJg85tB9mHB0lSqZN5lbt5pRgsMD0/Tp0vz5R/51HpDMSK4bmM46q+Bz9u7NH4C2bDEh6Kab8s4580zp55/NBsmHq1Ejf2DavTsvLMXEmN/f2rXN7fAQ9MIL5uPatc11Dp9amp0tzZtnGli0a1eqlwAAgKhHYPKQrCyzFkciMJVEgwYmMK1Zk7chqWRC0vz55pgOeSiI+/vy1VdS9erSrbfmfe6MM6QpU0xgOlz16vkD0759eWGpfPm8UaDataW6dfOHoJdeygtB1aubDZgLU1S7fEl67DFp2DBp0CDp/feP+u0CAIACEJg8ZNs280aqXDnzRgrF07ChWYuyenX+x1esMG92K1SQmje3UxvCmxuYZs82vz+HBqbMzLywVKFC3ihQQSHo5ZfNfe3aZu1hUdPk2rYNXP09epj7KVOYngcAQGkRmDzEnY5Xo4aZqoPiadDA3K9Zk/9xd8Padu3okoeC9expQtK6dSbsHBo6Ro82f7yoXds0FSkqjNjaCuD4482I1rp1pgFKkyZ26gAAwMt4m+ghrF8qnYYNzX1hgYnpeChMTIyZIleQFi1CW0tpVKokHXus6aQ3ZQqBCQCA0ihidjzCjdsNq1Ytu3V4TVqaWctx1VX5HycwIRqkpZn7KVPs1gEAgFcxwuQhxx0nvfaa6ZqF4uvc2dwO17Sp1Lp1wZ8DIkVamvT443l7uAEAgJLxOY7j2C4iVPx+v5KSkpSenq7ExETb5QBA0O3ZYxpNZGdLq1blTVEFACDaFTcbMMKEqLB4sVn0fvzx5s0jEC0qVzYNKpo3l+rUsV0NAADeQ2DykClTzN5BnToduQErinbWWdKSJdLEidIJJ5jNQRMSit7jBogUN9xguwIAALyLt4secued0oknSr/9ZrsS7zm8tfjtt0uJidLrr1srCQAAAB5AYPIQ2oqXnrtuw928du5cs+lojRr2agJC6euvpTvukDZssF0JAADeQmDyCMfJaytOYCq5Q0eYsrKkBQvMx7QUR7QYMUJ64QVp0iTblQAA4C0EJo/YtUs6eNAc01a85NzAtHq1tHSplJFhFsOzkSeihbsfE+3FAQAoGQKTR7jT8ZKSpAoV7NbiRe6UvDVr8jasbd+epg+IHmxgCwBA6fB20SPcwFSrlt06vOrQKXmzZ5tjpuMhmvTqJfl80rJl0saNtqsBAMA7CEwewfqlsqlfX3rsMenNNwlMiE7JyWZLAolRJgAASoJ9mDyiSxfTApv9l0onLk66/35zvGWLVLGidOyxdmsCQi0tzfzBYMoU6aKLbFcDAIA3+BzHcWwXESp+v19JSUlKT09XYmKi7XIAIKS++EI6+2ypTx+65QEAUNxswAgTosbataadeL16UocOtqsBQu/kk6Xly+kOCQBASXhmDdNjjz2m7t27q1KlSkpOTrZdTsj98os0caK0fbvtSrxr1Cjp9NOlRx4x+1oB0SYhQWra1DR/AAAAxeOZwJSZmanzzz9fN910k+1SrLjnHumkk9hDpSzcTnmffSY99ZTdWgAAAOANnpmSN3z4cEnSO++8Y7cQS9y24nTJKz13LyZJat3aXh2ATStWSHffLe3cyTomAACKwzOBqTQyMjKUkZGR+7Hf77dYTdnQVrzs6tbNO3bbKwPRJilJGjvWHG/bJtWoYbceAADCnWem5JXGyJEjlZSUlHtLTU21XVKp7Nsn7dljjtm4tvTatjWBs3VryaO/CkCZ1ahh/luQzNpIAABQNKuB6d5775XP5yvytnjx4lJf/7777lN6enrube3atQGsPnTc0aX4eIlu6KVXsaK0bJk0axaL3hHd0tLMPRvYAgBwdFan5A0dOlRXXnllkec0KUP/2/j4eMXHx5f668PFoeuXeKNfNlWq2K4AsC8tTXrlFZrIAABQHFYDU82aNVWzZk2bJXiCO8LEdDwAgeCOMM2bZ5o/VK1qtx4AAMKZZ5o+rFmzRjt27NCaNWuUnZ2tOXPmSJKaNWumypUr2y0uyDp0kF5/nel4AAKjdm2pVStp8WKzjunMM21XBABA+PJMYHrooYf07rvv5n7cuXNnSdKkSZPUp08fS1WFRsOG0vXX264CQCQ5+WSpWjUp1jP/CgAAYIfPcRzHdhGh4vf7lZSUpPT0dCUyXAMgijkOayIBANGtuNmAvy16wG+/SQcOSO3bSyz5AhAIhCUAAIonovdhihT/+pd00knS+PG2KwEQadLT8xrLAACAIxGYPODQtuIAECgjRph1TE8/bbsSAADCF4HJAwhMAIKhcWMpJ4cNbAEAKAqBKcxlZUnbt5tj9mECEEjufkyzZkm7d9utBQCAcEVgCnNbt5r7cuWk6tXt1gIgsjRoYEaZsrOlqVNtVwMAQHgiMIU5dzpezZpSTIzdWgBEHneUiWl5AAAUjMAU5tzuVUzHAxAMbmCaPNlqGQAAhC32YQpzbdpIb74pVaxouxIAkahPH3M/Y4a0d6+UkGC1HAAAwg6BKczVry9de63tKgBEqkaNpMGDzcbYjmO7GgAAwg+BCQCi3Msv264AAIDwRWAKc7//bqbJdOjAOiYAAAAg1Gj6EOZGjJBOPln67jvblQCIVI4jLVwovfKKtG+f7WoAAAgvjDCFObetOKNLAIKpXz9p/XqpVSvpxBNtVwMAQPhghCnMuYGpdm27dQCIXD4f7cUBACgMgSmMOU7ePkwEJgDBxAa2AAAUjMAUxnbulLKyzHHNmnZrARDZ3P2Ypk2TDhywWgoAAGGFwBTG3Ol4yclSfLzVUgBEuObNpTp1pIwME5oAAIBBYApjTMcDECqHrmNiWh4AAHnokhfGmjeX3npLiouzXQmAaJCWJn3yCYEJAIBDEZjCWEqKdM01tqsAEC0GDpQaN5Z69LBdCQAA4YPABACQZP5Ik5JiuwoAAMILgSmMTZsm+f1S+/ZmMTYAAACA0KLpQxgbOVI65RTpyy9tVwIgWqxaJd1zj3T77bYrAQAgPBCYwpjbVrxWLbt1AIgeu3dLTz1lGs4cPGi7GgAA7CMwhTE3MNFWHECotG0rVasm7d0rzZxpuxoAAOwjMIUxdx8mRpgAhEq5clLv3uaY9uIAABCYwtbeveYmMcIEILTcDWwnT7ZaBgAAYYHAFKbc6XgVKkiVK9utBUB0cQPTr79KWVl2awEAwDYCU5hyp+PVri35fHZrARBdOnSQkpOlPXuk2bNtVwMAgF3swxSmGjUyXarKEWkBhFhMjNSrl/THH9KGDbarAQDALp/jOI7tIkLF7/crKSlJ6enpSkxMtF0OAISt9HQpMZERbgBA5CpuNmCECQBwhKQk2xUAABAeCExhasYMaedOsydKSortagBEK8cxjR/Kl7ddCQAAdrBCJkw9/bR0yinSp5/argRAtHr6aalePenll21XAgCAPQSmMOW2FWfTWgC2OI60cSP7MQEAohuBKUwd2lYcAGzo08fc//KLlJNjtRQAAKwhMIUpd4SJwATAlmOOMRtn79wpzZ9vuxoAAOwgMIWhgwelHTvMMVPyANgSGyv16GGOp0yxWwsAALYQmMLQ1q3mPiZGql7dbi0AoltamrlnHRMAIFoRmMKQu36pZk2pHD8hABa5gennn1nHBACITuzDFIbq1ZP+/W/enACwr2tXqWdP6bjjpP37pYQE2xUBABBaPsdxHNtFhIrf71dSUpLS09OVmJhouxwAAAAAlhQ3GzDhCwAAAAAKQWAKQ7NmST/+KK1bZ7sSADD27pUmTDCb2QIAEE0ITGHoxRelfv2kDz+0XQkASFlZUt26Ut++0pIltqsBACC0CExhyN20lj2YAISD2FipSxdzzH5MAIBoQ2AKQ25gql3bbh0A4GI/JgBAtCIwhSF3HyYCE4Bw0aePuZ8yhXVMAIDoQmAKMzk5eYGJKXkAwsVxx0lxcdLGjdLy5barAQAgdAhMYWbnTrPAWiIwAQgfFSua0CSxjgkAEF0ITGHGHV2qWtX8NRcAwoW7jonABACIJrG2C0B+tWtLY8ZImZm2KwGA/M47z4x8n3SS7UoAAAgdn+NEz/Jdv9+vpKQkpaenKzEx0XY5AAAAACwpbjZgSh4AAAAAFIIpeWFmzhxp0yapTRupQQPb1QBAfps3S19/bTp6Xn+97WoAAAg+RpjCzCuvSKedJr37ru1KAOBIc+dK110nPf647UoAAAgNAlOY2bzZ3NNSHEA46t5diomRVq82NwAAIh2BKcy4gal2bbt1AEBBKleWunY1x7QXBwBEAwJTmHH3YSIwAQhX7n5MkydbLQMAgJAgMIUZpuQBCHdsYAsAiCYEpjCyZ4+0b585ZoQJQLjq2VMqV076+29p3Trb1QAAEFwEpjDiTserVMmsEwCAcJSYKB1zjOTzSbNn264GAIDgYh+mMFKtmjRmjLR/v+1KAKBo774r1a0rVa1quxIAAIKLwBRGkpOlK6+0XQUAHF2bNrYrAAAgNJiSBwAAAACFIDCFkXnzpHHj2AwSgDe88YbUu7f0v//ZrgQAgOAhMIWRN9+UTjvN3ANAuFu0SPrlF+mnn2xXAgBA8BCYwgh7MAHwkj59zD37MQEAIhmBKYy4gYk9mAB4Qa9eprX4okV52yIAABBpCExhxH3DwQgTAC+oVk1q394c//yz3VoAAAgWAlMYYYQJgNekpZn7yZOtlhE29u2T7rxT+uor25UAAAKFwBQmMjOlnTvNMSNMALzCDUysYzKefFJ6/nnp/POl6dNtVwMACAQCU5jYutXcx8SYaS4A4AW9e5v/ZzVrJmVl2a7Grg0bpGeeMceZmdJ550nbt9utCQBQdrG2C4BRpYr0zjvS7t1SOWIsAI+oWdP8wYf/b0nDhpkped26mRkDy5dLN98sffKJ7coAAGVBYAoTiYnSFVfYrgIASo6wJDmOVKOGFB8vvfCClJAgXX+9NGKE7coAAGXlcxzHsV1EqPj9fiUlJSk9PV2JiYm2ywGAiLJhg5SSYrsKu7ZuNaNukglRPp/degAAhStuNuDvgmFiwQLp+++llSttVwIAJbN3r9SokVS/fl7zmmjlhiUpf1iaPFlavz7k5QAAAoDAFCbeeUc6/XRp9GjblQBAySQkSBUqmBGVX36xXU1o5eRIN94o/fln4ee884500knShRdKBw+GrDQAQIAQmMKEuwcTLcUBeFG07sf00UfS669Lp5wi7dlT8Dk9e0qVK0tTp0r33Rfa+gAAZUdgChNbtph7Nq0F4EV9+pj7aNqP6cAB6f77zfE995hQVJBmzcwokyQ9+6z0+echKQ8AECAEpjDhjjARmAB4kTvCNGeOlJ5utZSQGTVKWrPGrN26/faizz37bGnoUHN81VWm5TgAwBsITGHCHWFiSh4AL0pJMSMpOTnSr7/arib4tm+XHnvMHD/6qFSx4tG/ZuRIMz3P7zeb2u7fH9waAQCBQWAKAzk5TMkD4H3uKFM0TMt79FEzktahg3TppcX7mvLlzSa2tWpJc+dKH3wQ3BoBAIHBxrVhYMcOKTvbHB/akhYAvOScc6RKlaTTTrNdSXCtXJnX0fTpp6WYmOJ/bUqKaRSxdKl0zTXBqQ8AEFie2Lh21apVeuSRRzRx4kRt2rRJKSkpuvTSS/XAAw8oLi6u2NcJ141r9+41i4B37pSGDLFdDQCgKFlZponDL79I775ruxoAQGkVNxt4YoRp8eLFysnJ0euvv65mzZppwYIFuu6667R3714988wztssrs4QE6bLLbFcBACiO2Fjp2mvNrax27ZIeeMCsh0pOLvv1AACB54kRpoI8/fTTevXVV/X3338Xek5GRoYyMjJyP/b7/UpNTQ27ESYAiBQHDkjTpplpxieeaLuawHIcKTNTio8P3DVPOkmaOFE66ywz08DnC9y1AQBFK+4Ik2ebPqSnp6tatWpFnjNy5EglJSXl3lJTU0NUXcn89Zf07bfSihW2KwGAsvn4Y7Mn07/+ZbuSwPvyS6llS+m//w3cNZ98UoqLk774QnruucBdFwAQOJ4MTMuXL9eoUaN0ww03FHnefffdp/T09Nzb2rVrQ1RhyXzwgdS/v/TCC7YrAYCycTewnT7drM+MFAcPms1pV682e00FSteuef/vv+cesy4KABBerAame++9Vz6fr8jb4sWL833N+vXrdeqpp+r888/XddddV+T14+PjlZiYmO8WjtiDCUCkaNRIatDANEb4/Xfb1QTOW2+ZznY1aphgE0g33igNGmSmMV54Yd5G5gCA8GC16cPQoUN15ZVXFnlOkyZNco83bNigE044Qd27d9cbb7wR5OpCx/3HkT2YAESCtDTpvffMfkx9+9qupux275YeftgcDxsmJSUF9vo+n/Taa9Ls2WaK9sUXS+PHl6xdOQAgeKwGppo1a6pmMTceWr9+vU444QR16dJFY8aMUblynpxNWCACE4BI4gamyZNtVxIYTz1lZgI0by4dZSZ4qVWuLH32mdStm7R8ubR2rRmtAwDY54m24uvXr1efPn3UsGFDPfPMM9q6dWvu5+rUqWOxssBgSh6ASJKWZu7//FPav1+qWNFuPWWxfr307LPm+IknpPLlg/dcrVtLX38tdeggVa8evOcBAJSMJwLT+PHjtXz5ci1fvlz169fP9zmPdkXP5TiMMAGILE2bSvXqmbDxxx/SCSfYrqj0xo41oa9HD+nss4P/fIe/Vo5Dq3EAsM2z+zCVRnF7rYfS7t2SW8qePWYTWwDwum+/NX8E6tTJbPTqZVOmmP9Pd+4c2ucdM0Z65x3pxx8Du/cTAMAobjbw+D9j3hcbK/3nP9K2bYQlAJHjjDNsVxA47hTDUNq+XbrrLmnHDumOO6RXXgl9DQAAI3I6J3hUxYrSZZeZfxABAOFhwQJp40Z7z1+9utmjz+eTXn3VHAMA7CAwAQCCYuxY6ZprTPMHL8nJkS6/XGrWTPr+e3t1nHqq9OCD5vj6603LcQBA6BGYLFuyxMz1X7bMdiUAEFgffyz9+9/SuHG2KymZDz4weyLFxpo23zY99JDZy2rfPuncc826VwBAaBGYLPvkE6l/f+npp21XAgCB5a79mTLFbh0lsX+/9MAD5vi++6QaNezWExMjffih6Tq4eLEZaYqeVk0AEB4ITJaxBxOASNWnj7n//XcpM9NqKcU2apTZNLZ+fem222xXY9SsKf33v1JcnNSiBYEJAEKNLnmWsQcTgEjVurV5s791qzR9utnLKJxt3y49/rg5fvTR8Npwt3t3acUKE+QAAKHFCJNlBCYAkcrnk3r3NsdemJb3yCNSerrUsaN06aW2qznSoWHpwAFp1y5rpQBAVCEwWcaUPACRzF3HNHmy1TKKpVIlM+3t6afN2qFw9fffZsTp4otNRz8AQHARmCxjhAlAJHMD065d4b/25vHHpVWrpJNPtl1J0fbuNQ0gxo3Lm0IIAAgeApNFGRl5UyoITAAiUbt20qZNZi8mn892NUdXt67tCo6ufXuzma1k2o7/9JPdegAg0hGYLHvvPemZZ6TkZNuVAEDglSsX3n8Qchzp9tu9t7nuFVdI115r6r/4YmndOtsVAUDk8jlOuE+SCBy/36+kpCSlp6crMTHRdjkAEFVyckyACidjx0rnnGPWL61bJ1Wtarui4jtwwKxlmj3b3E+eLJUvb7sqAPCO4maDMPunCwAQabZulfr2lVJSpKws29XkOXhQuvdec3zHHd4KS5JUoYL06adSUpL022/SsGG2KwKAyERgsmjZMumbb6QlS2xXAgDBU62aNHOmaXIze7btavK8+aa0dKnZK+qf/7RdTek0bSq9+6507LHSDTfYrgYAIhOByaLPP5cGDKDLEYDIFhMj9epljsOlvbjfLz38sDl++GHJy7O0Bw6Ufv9datjQdiUAEJkITBaxBxOAaOG2Fw+XDWyfespMFWzRQrruOtvVlN2ha8MmTJD27bNXCwBEGgKTRezBBCBa9Olj7n/5RcrOtlqKNmyQnnvOHD/xRGQ1Snj6abNe7Oabw3/fKwDwCgKTRW5gYoQJQKTr1MlMe/P7pblz7dZSq5b04ovSeedJZ51lt5ZA69bNjDa9+67073/brgYAIgOBySJ3Sh4jTAAiXUyM1LOnObY9LS821kzD+/RTb2ymWxJ9+kiPPWaOBw8OryYbAOBVBCaLGGECEE1OP1069VS7zQkyM+09d6j8859S//5SRoYZRdu1y3ZFAOBtBCZLsrPNgmOJESYA0WHwYOn7781GsTaMH2+aPHzyiZ3nD5Vy5aT//Edq1Ej6+2/pyitZzwQAZUFgssRxzD9ozz1n9gABAARPTo4ZeVm92mzyGumqVpU++0yKi5O+/FL68UfbFQGAd8XaLiBaxcZKgwbZrgIAQm/DBmnPHjPaEyrvvy/NmWMaTzz4YOie16YuXaRXXzVdAPv1s11N8DiOtHat1KCB7UoARCpGmAAAITN6tFSvnnTffaF7zv37pX/9yxzff79Uo0bontu2q6+WLrvMdhWBt2uXGUG7/noz9bBZM2n37rzPH3oMAGVFYLJkxQrp66+lv/6yXQkAhE7nzub+559Dt67mxRfNCERqqjRkSGieMxxt2WKCalaW7UpKZ9EiafhwqXt3qXp16fzzpTfflNasMeu25s/PO/ess0xXxm+/Zf0WgLIjMFnyzTfSmWea//kDQLTo2lWqWFHati00fzDatk0aOdIcP/aYee5olJ0tpaWZjXofesh2NcWzbl3+Dn8//SQ9/LD0++9mTVqrVtJtt0nffSft2GGClGQC1NSp5ta/v9kD7KOPvBsUAdhHYLKEluIAolFcXN4b21Dsx/T552az3M6do3vdaExM3h/oRo40MxzCzf790g8/SHfeKbVta0YE//vfvM+fdpp07rnSG2+Y5h2LFkkvvGAer1Qp77wGDUx3wLvukipXlubNky65RGrZUnr9denAgZB/awA8jsBkiRuYaCkOINqkpZn7yZOD/1zXXy9NmiS98oqZthXNLrggb0ri5ZdLK1farUcyI0jPPiudcorp7HfqqdLzz5vRx3Ll8tfYrJlZt3TddUdv8JCSIj39tBltGjHCTOH7+2/pxhvNhsUAUBJR/s+HPVu2mHsCE4Bo06ePuZ8yJTTrS/r0kf7xj+A/jxc8/bR03HEmqJx3XuhHW7Zvzz8V03FMu/fx481Gu6mp0rXXmlBz6HTK0qpa1XRFXL3arGXr0UO68MK8z0+blrcnIgAUhsBkCVPyAESrY4+VKlQwfzhasiQ4z7FkibRxY3Cu7WVxcWaaW/Xq0qxZ0h13BPf5srKkX381oeXYY82+g9dem/f5qlWl22/PG1Vavdo0cjjvPPO5QElIMKNrv/5qXgO3tosukho2NGuh1qwJ3PMBiCwEJksYYQIQreLjTQOGDz+U6tYN/PUdx7TTbtZM+uqrwF/f6xo0kD74QPL5pAkTpPT0wD/H++9L55xjglmvXtKjj0rTp5ufzf790sGDeec++6wJTa1bm5pCZeNG02J+/37ppZekpk2lq66SFi8OXQ0AvIHAZIHjsIYJQHS7807p4oulpKTAX3vsWOm338z/a7t0Cfz1I0G/ftInn5gQU9afwd69ZkrdodMrx441N79fqlbNTIP7979N57vZs81muralpkp//mlqP/FEM+L0zjtSmzamuQTbfgBwxdouIBo5jvT22yY01aljuxoAiBwHD0r33muOhw41m+SiYOefn/9jxyneCI/jmM5zP/xgbr/+KmVmSkuXSs2bm3OuvNK08+7Xz4TWmJhAVx8YPp/Ut6+5TZtm2q5/8YXprjh0qO3qAIQLn+NEz5Zufr9fSUlJSk9PV2Jiou1yACCq/fmnNHGiGWlq2DAw13z5ZenWW8360OXLpSpVAnPdSOY45nX780/pP/8pPDRNn27O+/FHadOm/J9r2FAaM0Y64YTg1xtsf/1lQtP99+c9NmqUGZE680y6LQKRpLjZgBEmAIAVd90l/fKLWedy3XVlv156et5eQw8/TFgqrqVLzRTJrCypWzfTHCEz02wQW7++WdsjmZD0n/+Y40qVTDjq18/cmjcP7fqjYGrTxtxcW7dK99xj1jq1aWOOL744PKYVAggN/k4CALDC3Y8pUBvYPvmkaUXdsmX+TmwoWsuWpvGCZKah9e9vQmyfPmbUyNWnj2kBPmGCtGOH9M03ZjSvRYvICUsFiY01TSkSE83o0xVXmID48ssmRAGIfAQmAIAVgd6PKSbGtIx+8kn++l9St95q1jRlZUnffivt2WM6yB269qhKFfPannii6XQYLapWlR5/3LQdHznSTPdcvdq8Zg0bmgAJILKxhgkAYMW+fVJysmnUsGKF1KRJ2a+5bp1p9BDJIx7Bsnu3NGKECQj9+kmdO7NepyD795uRt6efljZskFaulFJSzOeK2zgDQHgobjYgMAEArOnRw7QA//e/zR44gFdkZUkzZkj/+EfeY2efbbrf3n13YP4AACC4ipsN+NsRAMCaQKxjuv9+88YVCKXY2PxhadEi013vtdfMuq5Bg6T5862VByCACEwAAGvcwPTnn6X7+h9/NOtKevQw3cwAW1q1kiZNkk45RcrOlj78UOrQwbQi//1329UBKAsCEwDAml69pKlTpTlzSv612dlm6pMk3XyzVLNmQEsDSsTnM41MfvjBjHief7557Ouvpe7dzegTAG8iMAEArKlUybyZjIsr+de+/740b56UlCT961+Brw0orS5dpP/+10zTu/pq003vtNPyPr9qlQn8ALyBwAQA8Jz9+/NC0gMPmH2DgHDTsqX09tvSkiV5rdizs6WTT5Zatzafy8y0WyOAoyMwAQCs2rRJuumm/H+BP5oXXjAtxBs0MPvhAOHs0H2rFi+Wtm+Xli0zGyw3aSI9/7xZx7dokdkDC0B4oa04AMAqv9/s/ZOTk7ePUlG2bpWaNjX7Br33nnTppaGpEwiU3bulN96QnnvO7OV0qM8/N+3JJenTT836vMqVzcbB7r17fNNN0nHHmXNXrjRNJwo6r0oVs+dZaaa+hjvHMTd3z7CMDDPlcf9+6cCBI+9btjRTJiXz/55Rowq/dufO0umnm+N9+0ywLUy7dtLAgeY4K8ts8lyYli2l887L+/jxxwvfvLtJE+nii/M+fvppMypZrpzUuLF53hYtIvNnGwrsw1QAAhMAhKeuXaWZM6UPPpAuuaToc7OyzFSmr74yC+rZXBVelZFhQv+bb0qbN5sg9emn0oknms+/8YZ0ww2Ff/3//iedc445/uQT6aKLCj/30L3OJk82YevwIOben3deXsv0LVukP/4o+LzKlaWYmLznOHhQSk/PCyfuzf24RQupUSNz7vr15ns99NxDw83555sOg5L011/S5ZcXHIAOHJAeekh6+OG8c9u2Lfx1GDpUeuYZc7x2rRmlLswNN5g28ZIZFaxRo/BzL73U/CwlU1PFioWfe8455mfniokxfzAqSL9+0rhxeR9XqXLkKGRsrAlhp56a971JbKRcHMXNBrEhrAkAgAKlpZnANHny0QNTbKx5I1PUG0nAC+LjzbS8a68t+PMXXmha5u/ebW579uS/b98+79yaNc1oSEHn7d1rwo1ryxYzNbAwbdrkBaZZs/JGTgry4ovSkCHmeOJE86a9MM8/L91+uzletUq6447Cz23ZMi8wZWWZ/z8U5sCBvOOKFc1oWsWKUoUKR943a5Z3bkKCdN11hV+3Z8+84/j4os91R/okE4CKOrdz5/wfX3tt4SNMh4e/K680QTszU1q6VFqwwPyMFy40r5nLcaS6dc2Ifbt25jrt2plbaipBqqQITAAA69LSzPSko21gm5VlAhMQDZKSzK04Tjwxb2TqcDk5+d+Qn3ii+eOEG6gOD1kdO+adW6mSCQOHn5eVlfd5lzuqEhdnwsmhQaVCBTP11lWnjplqdujnDw03PXrkndu4sfTttwUHoAoVpEMHBho3lnbuLN5rVq2aGcUrjsqVi39u+fLFP1eSXn+9+OcePoXQccxI2cKFZvTJtXatGbXcvNmE3kNVqWIC3bPP5j22ZYsJ3QSpgjElDwBg3c6dptOd45g1HXXrHnnO1KnSZZeZjWovvDD0NQIwHMeMcOzebYJLQoJ53A1mh07Tgx3Z2WZd24IF+W9Llpiw+89/5q2z2rJFql3bTDk8fDSqbdv8QTfSsIapAAQmAAhfnTubDWw//vjIQOQ45i/Ov/9upq+8+aaVEgHA0zIzTYfGhIS89WRTp5pNxAtLBA88ID36qDnev98ErzZt8oKyl7GGCQDgKWlp5i/WBw8e+bnPPzdhqVIlacSI0NcGAJEgLu7IdVE9epiplosX541ELVxo7tesMRsvu2bPNuf7fHld+g4dkWrZMn8b/UjBCBMAICwcPGjm/h8uM9P8g7x8uemGNXx46GsDgGjk95tOpG7TkG++MaP8mzcXfP6oUdItt5jj9evNH7ratTPNNsJx/SkjTAAATykoLElmQfTy5WaO/d13h7YmAIhmh2eI/v3NZuPbtuWNQh16O3T0asIE6YorzHFcnNS6tQlP/fsX3QI/HBGYAABhJSvLtEFOSjJ7urgjSsOH52+NDACwo0YNM406LS3vMXcTYVeFClK3biZY7dsnzZ1rbtWrey8wsd0fACBsvPqqafX7wAPm47FjzYaRrVpJ11xjtzYAQOF8vvwbiV9wgfTnn2Zt6ooVZrPxxx8vel+vcMUIEwAgbNSqZf5xdfdjuvJKs+C4XLnwnP8OAChauXJSkybmNmCA7WpKh39+AABho3dvc79ggZkjX6OGdMIJdmsCAEQ3puQBAMJGzZpmfw9J+vRTu7UAACARmAAAYcZdRHzzzWb/JQAAbCIwAQDCSs+eecedOlkrAwAASaxhAgCEmXPPlSZONOuZmjSxXQ0AINoRmAAAYSU+XnrrLdtVAABgMCUPAAAAAApBYAIAAACAQhCYAAAAAKAQBCYAAAAAKASBCQAAAAAKQWACAAAAgEIQmAAAAACgEAQmAAAAACgEgQkAAAAACkFgAgAAAIBCEJgAAAAAoBAEJgAAAAAoBIEJAAAAAApBYAIAAACAQhCYAAAAAKAQBCYAAAAAKASBCQAAAAAKQWACAAAAgEIQmAAAAACgEAQmAAAAACiEZwLTmWeeqQYNGqhChQqqW7euLrvsMm3YsMF2WQAAAAAimGcC0wknnKD//ve/WrJkif73v/9pxYoVOu+882yXBQAAACCC+RzHcWwXURpfffWVzjrrLGVkZKh8+fLF+hq/36+kpCSlp6crMTExyBUCAAAACFfFzQaxIawpYHbs2KEPPvhA3bt3LzIsZWRkKCMjI/djv98fivIAAAAARAjPTMmTpHvuuUcJCQmqXr261qxZoy+//LLI80eOHKmkpKTcW2pqaogqBQAAABAJrE7Ju/fee/Xkk08Wec6iRYvUqlUrSdK2bdu0Y8cOrV69WsOHD1dSUpK++eYb+Xy+Ar/28BGm9PR0NWjQQGvXrmVKHgAAABDF/H6/UlNTtWvXLiUlJRV6ntXAtHXrVm3fvr3Ic5o0aaK4uLgjHl+3bp1SU1P122+/6fjjjy/W87lfAwAAAACStHbtWtWvX7/Qz1tdw1SzZk3VrFmzVF+bk5MjSflGkI4mJSVFa9euVZUqVQodlcLRuWmckbrQ4nW3g9fdDl53O3jd7eB1t4PX3Y5wet0dx9Hu3buVkpJS5HmeaPowbdo0TZ8+XT179lTVqlW1YsUKPfjgg2ratGmxR5ckqVy5ckWmR5RMYmKi9V/0aMTrbgevux287nbwutvB624Hr7sd4fK6FzUVz+WJpg+VKlXS559/rpNOOkktW7bUNddcow4dOmjKlCmKj4+3XR4AAACACOWJEab27dtr4sSJtssAAAAAEGU8McKE8BIfH69hw4YxuhdivO528LrbwetuB6+7HbzudvC62+HF191qlzwAAAAACGeMMAEAAABAIQhMAAAAAFAIAhMAAAAAFILABAAAAACFIDCh2EaOHKlu3bqpSpUqqlWrls466ywtWbLEdllR5YknnpDP59Ptt99uu5SIt379el166aWqXr26KlasqPbt22vGjBm2y4po2dnZevDBB9W4cWNVrFhRTZs21SOPPCJ6EwXWzz//rAEDBiglJUU+n09ffPFFvs87jqOHHnpIdevWVcWKFdW3b18tW7bMTrERpKjX/eDBg7rnnnvUvn17JSQkKCUlRZdffrk2bNhgr+AIcbTf90PdeOON8vl8euGFF0JWX6Qqzuu+aNEinXnmmUpKSlJCQoK6deumNWvWhL7YYiAwodimTJmiwYMH648//tD48eN18OBBnXLKKdq7d6/t0qLC9OnT9frrr6tDhw62S4l4O3fuVI8ePVS+fHl9//33+uuvv/Tss8+qatWqtkuLaE8++aReffVVvfzyy1q0aJGefPJJPfXUUxo1apTt0iLK3r171bFjR40ePbrAzz/11FN66aWX9Nprr2natGlKSEhQv379dODAgRBXGlmKet337dunWbNm6cEHH9SsWbP0+eefa8mSJTrzzDMtVBpZjvb77ho7dqz++OMPpaSkhKiyyHa0133FihXq2bOnWrVqpcmTJ2vevHl68MEHVaFChRBXWkwOUEpbtmxxJDlTpkyxXUrE2717t9O8eXNn/PjxTlpamnPbbbfZLimi3XPPPU7Pnj1tlxF1zjjjDOfqq6/O99g555zjDBo0yFJFkU+SM3bs2NyPc3JynDp16jhPP/107mO7du1y4uPjnY8++shChZHp8Ne9IH/++acjyVm9enVoiooChb3u69atc+rVq+csWLDAadiwofP888+HvLZIVtDrfuGFFzqXXnqpnYJKgREmlFp6erokqVq1apYriXyDBw/WGWecob59+9ouJSp89dVX6tq1q84//3zVqlVLnTt31ptvvmm7rIjXvXt3TZgwQUuXLpUkzZ07V7/++qtOO+00y5VFj5UrV2rTpk35/l+TlJSk4447Tr///rvFyqJPenq6fD6fkpOTbZcS0XJycnTZZZfp7rvvVtu2bW2XExVycnL07bffqkWLFurXr59q1aql4447rsjpkrYRmFAqOTk5uv3229WjRw+1a9fOdjkR7eOPP9asWbM0cuRI26VEjb///luvvvqqmjdvrh9++EE33XSThgwZonfffdd2aRHt3nvv1UUXXaRWrVqpfPny6ty5s26//XYNGjTIdmlRY9OmTZKk2rVr53u8du3auZ9D8B04cED33HOPLr74YiUmJtouJ6I9+eSTio2N1ZAhQ2yXEjW2bNmiPXv26IknntCpp56qH3/8UWeffbbOOeccTZkyxXZ5BYq1XQC8afDgwVqwYIF+/fVX26VEtLVr1+q2227T+PHjw3debwTKyclR165d9fjjj0uSOnfurAULFui1117TFVdcYbm6yPXf//5XH3zwgT788EO1bdtWc+bM0e23366UlBRed0SNgwcP6oILLpDjOHr11VdtlxPRZs6cqRdffFGzZs2Sz+ezXU7UyMnJkSQNHDhQd9xxhySpU6dO+u233/Taa68pLS3NZnkFYoQJJXbLLbfom2++0aRJk1S/fn3b5US0mTNnasuWLTrmmGMUGxur2NhYTZkyRS+99JJiY2OVnZ1tu8SIVLduXbVp0ybfY61btw7b7j2R4u67784dZWrfvr0uu+wy3XHHHYyuhlCdOnUkSZs3b873+ObNm3M/h+Bxw9Lq1as1fvx4RpeC7JdfftGWLVvUoEGD3H9jV69eraFDh6pRo0a2y4tYNWrUUGxsrKf+nWWECcXmOI5uvfVWjR07VpMnT1bjxo1tlxTxTjrpJM2fPz/fY1dddZVatWqle+65RzExMZYqi2w9evQ4omX+0qVL1bBhQ0sVRYd9+/apXLn8f8eLiYnJ/Wskgq9x48aqU6eOJkyYoE6dOkmS/H6/pk2bpptuuslucRHODUvLli3TpEmTVL16ddslRbzLLrvsiLXB/fr102WXXaarrrrKUlWRLy4uTt26dfPUv7MEJhTb4MGD9eGHH+rLL79UlSpVcuezJyUlqWLFipari0xVqlQ5Yo1YQkKCqlevztqxILrjjjvUvXt3Pf7447rgggv0559/6o033tAbb7xhu7SINmDAAD322GNq0KCB2rZtq9mzZ+u5557T1Vdfbbu0iLJnzx4tX7489+OVK1dqzpw5qlatmho0aKDbb79djz76qJo3b67GjRvrwQcfVEpKis466yx7RUeAol73unXr6rzzztOsWbP0zTffKDs7O/ff2GrVqikuLs5W2Z53tN/3w4Np+fLlVadOHbVs2TLUpUaUo73ud999ty688EL17t1bJ5xwgsaNG6evv/5akydPtld0UWy36YN3SCrwNmbMGNulRRXaiofG119/7bRr186Jj493WrVq5bzxxhu2S4p4fr/fue2225wGDRo4FSpUcJo0aeI88MADTkZGhu3SIsqkSZMK/H/5FVdc4TiOaS3+4IMPOrVr13bi4+Odk046yVmyZIndoiNAUa/7ypUrC/03dtKkSbZL97Sj/b4fjrbigVGc1/3tt992mjVr5lSoUMHp2LGj88UXX9gr+Ch8jsMW6gAAAABQEJo+AAAAAEAhCEwAAAAAUAgCEwAAAAAUgsAEAAAAAIUgMAEAAABAIQhMAAAAAFAIAhMAAAAAFILABAAAAACFIDABQARYtWqVfD6f5syZY7uUXIsXL9Y//vEPVahQQZ06dSrwHMdxdP3116tatWrW6w/H17C0Jk+eLJ/Pp127dgX9uR5++OFCf74AEAkITAAQAFdeeaV8Pp+eeOKJfI9/8cUX8vl8lqqya9iwYUpISNCSJUs0YcKEAs8ZN26c3nnnHX3zzTfauHGj2rVrF5LarrzySp111ln5HktNTQ1pDV7k8/n0xRdf5HvsrrvuKvTnCwCRgMAEAAFSoUIFPfnkk9q5c6ftUgImMzOz1F+7YsUK9ezZUw0bNlT16tULPadu3brq3r276tSpo9jY2FI/X1nFxMRYr8GLKleuXOjPFwAiAYEJAAKkb9++qlOnjkaOHFnoOQVNX3rhhRfUqFGj3I/d0Y/HH39ctWvXVnJyskaMGKGsrCzdfffdqlatmurXr68xY8Yccf3Fixere/fuqlChgtq1a6cpU6bk+/yCBQt02mmnqXLlyqpdu7Yuu+wybdu2Lffzffr00S233KLbb79dNWrUUL9+/Qr8PnJycjRixAjVr19f8fHx6tSpk8aNG5f7eZ/Pp5kzZ2rEiBHy+Xx6+OGHj7jGlVdeqVtvvVVr1qyRz+fLfQ0aNWqkF154Id+5nTp1yncNn8+nt956S2effbYqVaqk5s2b66uvvsr3NQsXLlT//v2VmJioKlWqqFevXlqxYoUefvhhvfvuu/ryyy/l8/nk8/k0efLkAqfkTZkyRccee6zi4+NVt25d3XvvvcrKysr3eg0ZMkT//Oc/Va1aNdWpU6fA7/Vwb731llq3bq0KFSqoVatWeuWVV3I/1717d91zzz35zt+6davKly+vn3/+WZL03nvvqWvXrqpSpYrq1KmjSy65RFu2bCn0+Yrzezd9+nSdfPLJqlGjhpKSkpSWlqZZs2blft499+yzz8738zr82kf73XBf588//1wnnHCCKlWqpI4dO+r333/PPWf16tUaMGCAqlatqoSEBLVt21bfffddka8pAAQLgQkAAiQmJkaPP/64Ro0apXXr1pXpWhMnTtSGDRv0888/67nnntOwYcPUv39/Va1aVdOmTdONN96oG2644YjnufvuuzV06FDNnj1bxx9/vAYMGKDt27dLknbt2qUTTzxRnTt31owZMzRu3Dht3rxZF1xwQb5rvPvuu4qLi9PUqVP12muvFVjfiy++qGeffVbPPPOM5s2bp379+unMM8/UsmXLJEkbN25U27ZtNXToUG3cuFF33XVXgddw31hv3LhR06dPL9FrNHz4cF1wwQWaN2+eTj/9dA0aNEg7duyQJK1fv169e/dWfHy8Jk6cqJkzZ+rqq69WVlaW7rrrLl1wwQU69dRTtXHjRm3cuFHdu3c/4vrr16/X6aefrm7dumnu3Ll69dVX9fbbb+vRRx894vVKSEjQtGnT9NRTT2nEiBEaP358oXV/8MEHeuihh/TYY49p0aJFevzxx/Xggw/q3XfflSQNGjRIH3/8sRzHyf2aTz75RCkpKerVq5ck6eDBg3rkkUc0d+5cffHFF1q1apWuvPLKEr1+h9u9e7euuOIK/frrr/rjjz/UvHlznX766dq9e7ck5f58xowZU+TP62i/G64HHnhAd911l+bMmaMWLVro4osvzg2jgwcPVkZGhn7++WfNnz9fTz75pCpXrlym7w8ASs0BAJTZFVdc4QwcONBxHMf5xz/+4Vx99dWO4zjO2LFjnUP/Vzts2DCnY8eO+b72+eefdxo2bJjvWg0bNnSys7NzH2vZsqXTq1ev3I+zsrKchIQE56OPPnIcx3FWrlzpSHKeeOKJ3HMOHjzo1K9f33nyyScdx3GcRx55xDnllFPyPffatWsdSc6SJUscx3GctLQ0p3Pnzkf9flNSUpzHHnss32PdunVzbr755tyPO3bs6AwbNqzI6xz+vTuO4zRs2NB5/vnn8z12+LUkOf/6179yP96zZ48jyfn+++8dx3Gc++67z2ncuLGTmZlZ4PMe+vNyua/h7NmzHcdxnPvvv99p2bKlk5OTk3vO6NGjncqVK+f+bNLS0pyePXvmu063bt2ce+65p9DvuWnTps6HH36Y77FHHnnEOf744x3HcZwtW7Y4sbGxzs8//5z7+eOPP77Ia06fPt2R5OzevdtxHMeZNGmSI8nZuXOn4zjF+707XHZ2tlOlShXn66+/zn1MkjN27Nh85x1+7aP9briv81tvvZX7+YULFzqSnEWLFjmO4zjt27d3Hn744UJrA4BQYoQJAALsySef1LvvvqtFixaV+hpt27ZVuXJ5/4uuXbu22rdvn/txTEyMqlevfsQ0rOOPPz73ODY2Vl27ds2tY+7cuZo0aZIqV66ce2vVqpUks5bI1aVLlyJr8/v92rBhg3r06JHv8R49epTpey6pDh065B4nJCQoMTEx9/WYM2eOevXqpfLly5f6+osWLdLxxx+fr2lHjx49tGfPnnwje4fWIUl169YtdHrc3r17tWLFCl1zzTX5fg6PPvpo7s+gZs2aOuWUU/TBBx9IklauXKnff/9dgwYNyr3OzJkzNWDAADVo0EBVqlRRWlqaJGnNmjWl/n43b96s6667Ts2bN1dSUpISExO1Z8+eEl2zJL8bh75udevWlaTc123IkCF69NFH1aNHDw0bNkzz5s0r7bcFAGVGYAKAAOvdu7f69eun++6774jPlStXLt9UK8lMrzrc4W/0fT5fgY/l5OQUu649e/ZowIABmjNnTr7bsmXL1Lt379zzEhISin3NYCjLa+S+HhUrVgxegSWo43B79uyRJL355pv5fgYLFizQH3/8kXveoEGD9Nlnn+ngwYP68MMP1b59+9zAvHfvXvXr10+JiYn64IMPNH36dI0dO1ZS4U06ivOaXnHFFZozZ45efPFF/fbbb5ozZ46qV69epsYfRTn0dXNDqfu6XXvttfr777912WWXaf78+eratatGjRoVlDoA4GgITAAQBE888YS+/vrrfAvZJTN6sGnTpnxvXgO578+hb7qzsrI0c+ZMtW7dWpJ0zDHHaOHChWrUqJGaNWuW71aSkJSYmKiUlBRNnTo13+NTp05VmzZtyvw91KxZUxs3bsz92O/3a+XKlSW6RocOHfTLL78UGLQkKS4uTtnZ2UVeo3Xr1vr999/z/aymTp2qKlWqqH79+iWqx1W7dm2lpKTo77//PuJn0Lhx49zzBg4cqAMHDmjcuHH68MMP840uLV68WNu3b9cTTzyhXr16qVWrVkU2fJCK93s3depUDRkyRKeffrratm2r+Pj4fA1BJBNyinrdAvm7kZqaqhtvvFGff/65hg4dqjfffLNEXw8AgUJgAoAgaN++vQYNGqSXXnop3+N9+vTR1q1b9dRTT2nFihUaPXq0vv/++4A97+jRozV27FgtXrxYgwcP1s6dO3X11VdLMgvpd+zYoYsvvljTp0/XihUr9MMPP+iqq646ang43N13360nn3xSn3zyiZYsWaJ7771Xc+bM0W233Vbm7+HEE0/Ue++9p19++UXz58/XFVdcoZiYmBJd45ZbbpHf79dFF12kGTNmaNmyZXrvvfe0ZMkSSabj27x587RkyRJt27atwGB18803a+3atbr11lu1ePFiffnllxo2bJjuvPPOfNMlS2r48OEaOXKkXnrpJS1dulTz58/XmDFj9Nxzz+Wek5CQoLPOOksPPvigFi1apIsvvjj3cw0aNFBcXJxGjRqlv//+W1999ZUeeeSRIp+zOL93zZs313vvvadFixZp2rRpGjRo0BEjdY0aNdKECRO0adOmQtvnB+J34/bbb9cPP/yglStXatasWZo0aVJu8AeAUCMwAUCQjBgx4oipWa1bt9Yrr7yi0aNHq2PHjvrzzz8L7CBXWk888YSeeOIJdezYUb/++qu++uor1ahRQ5Jy//KfnZ2tU045Re3bt9ftt9+u5OTkEgeAIUOG6M4779TQoUPVvn17jRs3Tl999ZWaN29e5u/hvvvuU1pamvr3768zzjhDZ511lpo2bVqia1SvXl0TJ07Unj17lJaWpi5duujNN9/MnQZ23XXXqWXLluratatq1qx5xIiIJNWrV0/fffed/vzzT3Xs2FE33nijrrnmGv3rX/8q0/d37bXX6q233tKYMWPUvn17paWl6Z133sk3wiSZaXlz585Vr1691KBBg9zHa9asqXfeeUeffvqp2rRpoyeeeELPPPNMkc9ZnN+7t99+Wzt37tQxxxyjyy67TEOGDFGtWrXynfPss89q/PjxSk1NVefOnQt8rkD8bmRnZ2vw4MFq3bq1Tj31VLVo0SJf63UACCWfc/ikZgAAAACAJEaYAAAAAKBQBCYAAAAAKASBCQAAAAAKQWACAAAAgEIQmAAAAACgEAQmAAAAACgEgQkAAAAACkFgAgAAAIBCEJgAAAAAoBAEJgAAAAAoBIEJAAAAAArxfxTItND1isxTAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "result_qpu.plot_cost()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Congrats! You have run two instances of RQAOA locally and on an Azure backend to find the solution to a Maximum Cut problem.\n", + "\n", + "As a next step, you can try the recursive version of QAOA: [RQAOA](openqaoa-recursive.ipynb)\n", + "\n", + "You can also try other problem instances (see [OpenQAOA](https://el-openqaoa.readthedocs.io) for more examples), or run it on real QPUs using Azure Quantum." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "azure_nb", + "language": "python", + "name": "azure_nb" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 20c5104091ff73d93a07918730431472523ce587 Mon Sep 17 00:00:00 2001 From: KilianPoirier Date: Mon, 16 Oct 2023 07:31:25 +0000 Subject: [PATCH 08/10] Updated RQAOA notebook with sessions --- .../qaoa/openqaoa-recursive.ipynb | 810 +----------------- 1 file changed, 27 insertions(+), 783 deletions(-) diff --git a/samples/azure-quantum/qaoa/openqaoa-recursive.ipynb b/samples/azure-quantum/qaoa/openqaoa-recursive.ipynb index b9bfd37b4356..cb03dcf65cb9 100644 --- a/samples/azure-quantum/qaoa/openqaoa-recursive.ipynb +++ b/samples/azure-quantum/qaoa/openqaoa-recursive.ipynb @@ -90,763 +90,7 @@ "execution_count": 1, "id": "f1b38648-393a-4974-af43-a2c7d960fb17", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Cloning into 'openqaoa'...\n", - "remote: Enumerating objects: 12047, done.\u001b[K\n", - "remote: Counting objects: 100% (1926/1926), done.\u001b[K\n", - "remote: Compressing objects: 100% (533/533), done.\u001b[K\n", - "remote: Total 12047 (delta 1571), reused 1548 (delta 1387), pack-reused 10121\u001b[K\n", - "Receiving objects: 100% (12047/12047), 19.14 MiB | 17.08 MiB/s, done.\n", - "Resolving deltas: 100% (8926/8926), done.\n", - "Branch 'dev' set up to track remote branch 'dev' from 'origin'.\n", - "Switched to a new branch 'dev'\n", - "Processing ./src/openqaoa-core\n", - " Installing build dependencies ... \u001b[?25ldone\n", - "\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n", - "\u001b[?25h Installing backend dependencies ... \u001b[?25ldone\n", - "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n", - "\u001b[?25hRequirement already satisfied: pandas>=1.3.5 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (2.0.3)\n", - "Requirement already satisfied: sympy>=1.10.1 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (1.12)\n", - "Collecting numpy>=1.22.3 (from openqaoa-core==0.2.2)\n", - " Obtaining dependency information for numpy>=1.22.3 from https://files.pythonhosted.org/packages/9b/5a/f265a1ba3641d16b5480a217a6aed08cceef09cd173b568cd5351053472a/numpy-1.26.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n", - " Using cached numpy-1.26.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (58 kB)\n", - "Requirement already satisfied: networkx>=2.8 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (3.1)\n", - "Requirement already satisfied: matplotlib>=3.4.3 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (3.7.2)\n", - "Collecting scipy>=1.8 (from openqaoa-core==0.2.2)\n", - " Obtaining dependency information for scipy>=1.8 from https://files.pythonhosted.org/packages/18/44/7e8d208eb59a8224fcc474415104f13be9b378be8da63f76dfde12ec2b44/scipy-1.11.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n", - " Using cached scipy-1.11.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (60 kB)\n", - "Requirement already satisfied: docplex==2.25.236 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (2.25.236)\n", - "Requirement already satisfied: autograd>=1.4 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (1.6.2)\n", - "Requirement already satisfied: semantic-version>=2.10 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (2.10.0)\n", - "Requirement already satisfied: autoray>=0.3.1 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (0.6.6)\n", - "Requirement already satisfied: requests in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (2.31.0)\n", - "Requirement already satisfied: ipython>=8.2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (8.15.0)\n", - "Collecting sphinx>=4.5.0 (from openqaoa-core==0.2.2)\n", - " Obtaining dependency information for sphinx>=4.5.0 from https://files.pythonhosted.org/packages/b2/b6/8ed35256aa530a9d3da15d20bdc0ba888d5364441bb50a5a83ee7827affe/sphinx-7.2.6-py3-none-any.whl.metadata\n", - " Using cached sphinx-7.2.6-py3-none-any.whl.metadata (5.9 kB)\n", - "Collecting sphinx-autodoc-typehints>=1.18.1 (from openqaoa-core==0.2.2)\n", - " Obtaining dependency information for sphinx-autodoc-typehints>=1.18.1 from https://files.pythonhosted.org/packages/a4/a2/71ee28033c218b025348555747cb95993338179875bae75c197138be77ad/sphinx_autodoc_typehints-1.24.0-py3-none-any.whl.metadata\n", - " Using cached sphinx_autodoc_typehints-1.24.0-py3-none-any.whl.metadata (7.8 kB)\n", - "Collecting sphinx-rtd-theme>=1.0.0 (from openqaoa-core==0.2.2)\n", - " Obtaining dependency information for sphinx-rtd-theme>=1.0.0 from https://files.pythonhosted.org/packages/18/01/76f40a18e9209bb098c1c1313c823dbbd001b23a2db71e7fd4eb5a48559c/sphinx_rtd_theme-1.3.0-py2.py3-none-any.whl.metadata\n", - " Using cached sphinx_rtd_theme-1.3.0-py2.py3-none-any.whl.metadata (4.5 kB)\n", - "Collecting nbsphinx>=0.8.9 (from openqaoa-core==0.2.2)\n", - " Obtaining dependency information for nbsphinx>=0.8.9 from https://files.pythonhosted.org/packages/a3/a0/ca4aeb2f7f2608a483459a3bb486da250a7eb23eb76c9a0af154395f0cb2/nbsphinx-0.9.3-py3-none-any.whl.metadata\n", - " Using cached nbsphinx-0.9.3-py3-none-any.whl.metadata (2.1 kB)\n", - "Requirement already satisfied: nbconvert>=6.5.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (7.8.0)\n", - "Collecting pytest>=7.1.0 (from openqaoa-core==0.2.2)\n", - " Obtaining dependency information for pytest>=7.1.0 from https://files.pythonhosted.org/packages/df/d0/e192c4275aecabf74faa1aacd75ef700091913236ec78b1a98f62a2412ee/pytest-7.4.2-py3-none-any.whl.metadata\n", - " Using cached pytest-7.4.2-py3-none-any.whl.metadata (7.9 kB)\n", - "Requirement already satisfied: pytest-xdist in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (3.3.1)\n", - "Requirement already satisfied: pytest-cov>=3.0.0 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (4.1.0)\n", - "Requirement already satisfied: plotly>=5.9.0 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (5.16.1)\n", - "Requirement already satisfied: cplex>=22.1.0.0 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2) (22.1.1.0)\n", - "Requirement already satisfied: six in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from docplex==2.25.236->openqaoa-core==0.2.2) (1.16.0)\n", - "Requirement already satisfied: future>=0.15.2 in /home/kilian/.local/lib/python3.10/site-packages (from autograd>=1.4->openqaoa-core==0.2.2) (0.18.3)\n", - "Requirement already satisfied: backcall in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2) (0.2.0)\n", - "Requirement already satisfied: decorator in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2) (5.1.1)\n", - "Requirement already satisfied: jedi>=0.16 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2) (0.19.0)\n", - "Requirement already satisfied: matplotlib-inline in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2) (0.1.6)\n", - "Requirement already satisfied: pickleshare in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2) (0.7.5)\n", - "Requirement already satisfied: prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2) (3.0.39)\n", - "Requirement already satisfied: pygments>=2.4.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2) (2.16.1)\n", - "Requirement already satisfied: stack-data in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2) (0.6.2)\n", - "Requirement already satisfied: traitlets>=5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2) (5.10.0)\n", - "Requirement already satisfied: exceptiongroup in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2) (1.1.3)\n", - "Requirement already satisfied: pexpect>4.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2) (4.8.0)\n", - "Requirement already satisfied: contourpy>=1.0.1 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2) (1.1.0)\n", - "Requirement already satisfied: cycler>=0.10 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2) (0.11.0)\n", - "Collecting fonttools>=4.22.0 (from matplotlib>=3.4.3->openqaoa-core==0.2.2)\n", - " Obtaining dependency information for fonttools>=4.22.0 from https://files.pythonhosted.org/packages/ac/ed/9a33eca5e2cc35dc1fea0a968509c653db9a99a5979656ae57c6c019d66b/fonttools-4.43.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n", - " Downloading fonttools-4.43.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (152 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m152.4/152.4 kB\u001b[0m \u001b[31m13.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: kiwisolver>=1.0.1 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2) (1.4.4)\n", - "Requirement already satisfied: packaging>=20.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2) (23.1)\n", - "Requirement already satisfied: pillow>=6.2.0 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2) (10.0.0)\n", - "Requirement already satisfied: pyparsing<3.1,>=2.3.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2) (3.0.9)\n", - "Requirement already satisfied: python-dateutil>=2.7 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2) (2.8.2)\n", - "Requirement already satisfied: beautifulsoup4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (4.12.2)\n", - "Requirement already satisfied: bleach!=5.0.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (6.0.0)\n", - "Requirement already satisfied: defusedxml in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (0.7.1)\n", - "Requirement already satisfied: jinja2>=3.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (3.1.2)\n", - "Requirement already satisfied: jupyter-core>=4.7 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (5.3.1)\n", - "Requirement already satisfied: jupyterlab-pygments in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (0.2.2)\n", - "Requirement already satisfied: markupsafe>=2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (2.1.3)\n", - "Requirement already satisfied: mistune<4,>=2.0.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (3.0.1)\n", - "Requirement already satisfied: nbclient>=0.5.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (0.8.0)\n", - "Requirement already satisfied: nbformat>=5.7 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (5.9.2)\n", - "Requirement already satisfied: pandocfilters>=1.4.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (1.5.0)\n", - "Requirement already satisfied: tinycss2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.5.1->openqaoa-core==0.2.2) (1.2.1)\n", - "Requirement already satisfied: docutils in /home/kilian/.local/lib/python3.10/site-packages (from nbsphinx>=0.8.9->openqaoa-core==0.2.2) (0.18.1)\n", - "Requirement already satisfied: pytz>=2020.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from pandas>=1.3.5->openqaoa-core==0.2.2) (2023.3.post1)\n", - "Requirement already satisfied: tzdata>=2022.1 in /home/kilian/.local/lib/python3.10/site-packages (from pandas>=1.3.5->openqaoa-core==0.2.2) (2023.3)\n", - "Requirement already satisfied: tenacity>=6.2.0 in /home/kilian/.local/lib/python3.10/site-packages (from plotly>=5.9.0->openqaoa-core==0.2.2) (8.2.3)\n", - "Requirement already satisfied: iniconfig in /home/kilian/.local/lib/python3.10/site-packages (from pytest>=7.1.0->openqaoa-core==0.2.2) (2.0.0)\n", - "Collecting pluggy<2.0,>=0.12 (from pytest>=7.1.0->openqaoa-core==0.2.2)\n", - " Obtaining dependency information for pluggy<2.0,>=0.12 from https://files.pythonhosted.org/packages/05/b8/42ed91898d4784546c5f06c60506400548db3f7a4b3fb441cba4e5c17952/pluggy-1.3.0-py3-none-any.whl.metadata\n", - " Using cached pluggy-1.3.0-py3-none-any.whl.metadata (4.3 kB)\n", - "Requirement already satisfied: tomli>=1.0.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from pytest>=7.1.0->openqaoa-core==0.2.2) (2.0.1)\n", - "Requirement already satisfied: coverage[toml]>=5.2.1 in /home/kilian/.local/lib/python3.10/site-packages (from pytest-cov>=3.0.0->openqaoa-core==0.2.2) (7.3.0)\n", - "Collecting sphinxcontrib-applehelp (from sphinx>=4.5.0->openqaoa-core==0.2.2)\n", - " Obtaining dependency information for sphinxcontrib-applehelp from https://files.pythonhosted.org/packages/c0/0c/261c0949083c0ac635853528bb0070c89e927841d4e533ba0b5563365c06/sphinxcontrib_applehelp-1.0.7-py3-none-any.whl.metadata\n", - " Using cached sphinxcontrib_applehelp-1.0.7-py3-none-any.whl.metadata (2.2 kB)\n", - "Collecting sphinxcontrib-devhelp (from sphinx>=4.5.0->openqaoa-core==0.2.2)\n", - " Obtaining dependency information for sphinxcontrib-devhelp from https://files.pythonhosted.org/packages/c0/03/010ac733ec7b7f71c1dc88e7115743ee466560d6d85373b56fb9916e4586/sphinxcontrib_devhelp-1.0.5-py3-none-any.whl.metadata\n", - " Using cached sphinxcontrib_devhelp-1.0.5-py3-none-any.whl.metadata (2.2 kB)\n", - "Requirement already satisfied: sphinxcontrib-jsmath in /home/kilian/.local/lib/python3.10/site-packages (from sphinx>=4.5.0->openqaoa-core==0.2.2) (1.0.1)\n", - "Collecting sphinxcontrib-htmlhelp>=2.0.0 (from sphinx>=4.5.0->openqaoa-core==0.2.2)\n", - " Obtaining dependency information for sphinxcontrib-htmlhelp>=2.0.0 from https://files.pythonhosted.org/packages/28/7a/958f8e3e6abe8219d0d1f1224886de847ab227b218f4a07b61bc337f64be/sphinxcontrib_htmlhelp-2.0.4-py3-none-any.whl.metadata\n", - " Using cached sphinxcontrib_htmlhelp-2.0.4-py3-none-any.whl.metadata (2.2 kB)\n", - "Collecting sphinxcontrib-serializinghtml>=1.1.9 (from sphinx>=4.5.0->openqaoa-core==0.2.2)\n", - " Obtaining dependency information for sphinxcontrib-serializinghtml>=1.1.9 from https://files.pythonhosted.org/packages/95/d6/2e0bda62b2a808070ac922d21a950aa2cb5e4fcfb87e5ff5f86bc43a2201/sphinxcontrib_serializinghtml-1.1.9-py3-none-any.whl.metadata\n", - " Using cached sphinxcontrib_serializinghtml-1.1.9-py3-none-any.whl.metadata (2.3 kB)\n", - "Collecting sphinxcontrib-qthelp (from sphinx>=4.5.0->openqaoa-core==0.2.2)\n", - " Obtaining dependency information for sphinxcontrib-qthelp from https://files.pythonhosted.org/packages/1f/e5/1850f3f118e95581c1e30b57028ac979badee1eb29e70ee72b0241f5a185/sphinxcontrib_qthelp-1.0.6-py3-none-any.whl.metadata\n", - " Using cached sphinxcontrib_qthelp-1.0.6-py3-none-any.whl.metadata (2.2 kB)\n", - "Requirement already satisfied: snowballstemmer>=2.0 in /home/kilian/.local/lib/python3.10/site-packages (from sphinx>=4.5.0->openqaoa-core==0.2.2) (2.2.0)\n", - "Requirement already satisfied: babel>=2.9 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from sphinx>=4.5.0->openqaoa-core==0.2.2) (2.12.1)\n", - "Requirement already satisfied: alabaster<0.8,>=0.7 in /home/kilian/.local/lib/python3.10/site-packages (from sphinx>=4.5.0->openqaoa-core==0.2.2) (0.7.13)\n", - "Requirement already satisfied: imagesize>=1.3 in /home/kilian/.local/lib/python3.10/site-packages (from sphinx>=4.5.0->openqaoa-core==0.2.2) (1.4.1)\n", - "Requirement already satisfied: charset-normalizer<4,>=2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2) (3.2.0)\n", - "Requirement already satisfied: idna<4,>=2.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2) (3.4)\n", - "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2) (2.0.4)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2) (2023.7.22)\n", - "Collecting sphinxcontrib-jquery<5,>=4 (from sphinx-rtd-theme>=1.0.0->openqaoa-core==0.2.2)\n", - " Using cached sphinxcontrib_jquery-4.1-py2.py3-none-any.whl (121 kB)\n", - "Requirement already satisfied: mpmath>=0.19 in /home/kilian/.local/lib/python3.10/site-packages (from sympy>=1.10.1->openqaoa-core==0.2.2) (1.3.0)\n", - "Requirement already satisfied: execnet>=1.1 in /home/kilian/.local/lib/python3.10/site-packages (from pytest-xdist->openqaoa-core==0.2.2) (2.0.2)\n", - "Requirement already satisfied: webencodings in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from bleach!=5.0.0->nbconvert>=6.5.1->openqaoa-core==0.2.2) (0.5.1)\n", - "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jedi>=0.16->ipython>=8.2.0->openqaoa-core==0.2.2) (0.8.3)\n", - "Requirement already satisfied: platformdirs>=2.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-core>=4.7->nbconvert>=6.5.1->openqaoa-core==0.2.2) (3.10.0)\n", - "Requirement already satisfied: jupyter-client>=6.1.12 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbclient>=0.5.0->nbconvert>=6.5.1->openqaoa-core==0.2.2) (8.3.1)\n", - "Requirement already satisfied: fastjsonschema in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbformat>=5.7->nbconvert>=6.5.1->openqaoa-core==0.2.2) (2.18.0)\n", - "Requirement already satisfied: jsonschema>=2.6 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbformat>=5.7->nbconvert>=6.5.1->openqaoa-core==0.2.2) (4.19.0)\n", - "Requirement already satisfied: ptyprocess>=0.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from pexpect>4.3->ipython>=8.2.0->openqaoa-core==0.2.2) (0.7.0)\n", - "Requirement already satisfied: wcwidth in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30->ipython>=8.2.0->openqaoa-core==0.2.2) (0.2.6)\n", - "Requirement already satisfied: soupsieve>1.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from beautifulsoup4->nbconvert>=6.5.1->openqaoa-core==0.2.2) (2.5)\n", - "Requirement already satisfied: executing>=1.2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from stack-data->ipython>=8.2.0->openqaoa-core==0.2.2) (1.2.0)\n", - "Requirement already satisfied: asttokens>=2.1.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from stack-data->ipython>=8.2.0->openqaoa-core==0.2.2) (2.4.0)\n", - "Requirement already satisfied: pure-eval in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from stack-data->ipython>=8.2.0->openqaoa-core==0.2.2) (0.2.2)\n", - "Requirement already satisfied: attrs>=22.2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema>=2.6->nbformat>=5.7->nbconvert>=6.5.1->openqaoa-core==0.2.2) (23.1.0)\n", - "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema>=2.6->nbformat>=5.7->nbconvert>=6.5.1->openqaoa-core==0.2.2) (2023.7.1)\n", - "Requirement already satisfied: referencing>=0.28.4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema>=2.6->nbformat>=5.7->nbconvert>=6.5.1->openqaoa-core==0.2.2) (0.30.2)\n", - "Requirement already satisfied: rpds-py>=0.7.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema>=2.6->nbformat>=5.7->nbconvert>=6.5.1->openqaoa-core==0.2.2) (0.10.3)\n", - "Requirement already satisfied: pyzmq>=23.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-client>=6.1.12->nbclient>=0.5.0->nbconvert>=6.5.1->openqaoa-core==0.2.2) (25.1.1)\n", - "Requirement already satisfied: tornado>=6.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-client>=6.1.12->nbclient>=0.5.0->nbconvert>=6.5.1->openqaoa-core==0.2.2) (6.3.3)\n", - "Using cached nbsphinx-0.9.3-py3-none-any.whl (31 kB)\n", - "Using cached numpy-1.26.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB)\n", - "Using cached pytest-7.4.2-py3-none-any.whl (324 kB)\n", - "Using cached scipy-1.11.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB)\n", - "Using cached sphinx-7.2.6-py3-none-any.whl (3.2 MB)\n", - "Using cached sphinx_autodoc_typehints-1.24.0-py3-none-any.whl (17 kB)\n", - "Using cached sphinx_rtd_theme-1.3.0-py2.py3-none-any.whl (2.8 MB)\n", - "Downloading fonttools-4.43.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.5/4.5 MB\u001b[0m \u001b[31m170.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hUsing cached pluggy-1.3.0-py3-none-any.whl (18 kB)\n", - "Using cached sphinxcontrib_htmlhelp-2.0.4-py3-none-any.whl (99 kB)\n", - "Using cached sphinxcontrib_serializinghtml-1.1.9-py3-none-any.whl (92 kB)\n", - "Using cached sphinxcontrib_applehelp-1.0.7-py3-none-any.whl (120 kB)\n", - "Using cached sphinxcontrib_devhelp-1.0.5-py3-none-any.whl (83 kB)\n", - "Using cached sphinxcontrib_qthelp-1.0.6-py3-none-any.whl (89 kB)\n", - "Building wheels for collected packages: openqaoa-core\n", - " Building wheel for openqaoa-core (pyproject.toml) ... \u001b[?25ldone\n", - "\u001b[?25h Created wheel for openqaoa-core: filename=openqaoa_core-0.2.2-py3-none-any.whl size=280429 sha256=0785bb519d2eaa7cbb712bb0480953fb5b858e80c4fab48c0c2589bab9c2acde\n", - " Stored in directory: /home/kilian/.cache/pip/wheels/dc/6f/77/46b8e15fbe98080da2db04b8594ed330fa43c232bae768fd09\n", - "Successfully built openqaoa-core\n", - "Installing collected packages: pluggy, numpy, fonttools, scipy, pytest, openqaoa-core, sphinxcontrib-serializinghtml, sphinxcontrib-qthelp, sphinxcontrib-htmlhelp, sphinxcontrib-devhelp, sphinxcontrib-applehelp, sphinx, sphinxcontrib-jquery, sphinx-rtd-theme, sphinx-autodoc-typehints, nbsphinx\n", - " Attempting uninstall: openqaoa-core\n", - " Found existing installation: openqaoa-core 0.2.1\n", - " Uninstalling openqaoa-core-0.2.1:\n", - " Successfully uninstalled openqaoa-core-0.2.1\n", - "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", - "amazon-braket-default-simulator 1.20.0 requires pydantic<2.0,>=1.9, which is not installed.\n", - "qiskit-ibm-provider 0.6.3 requires qiskit-terra>=0.25.0, which is not installed.\n", - "qiskit-ibm-provider 0.6.3 requires requests-ntlm>=1.1.0, which is not installed.\n", - "openqaoa-qiskit 0.2.1 requires qiskit>=0.36.1, which is not installed.\n", - "qiskit-aer 0.12.2 requires qiskit-terra>=0.21.0, which is not installed.\n", - "openqaoa-azure 0.2.1 requires openqaoa-core==0.2.1, but you have openqaoa-core 0.2.2 which is incompatible.\n", - "openqaoa-qiskit 0.2.1 requires openqaoa-core==0.2.1, but you have openqaoa-core 0.2.2 which is incompatible.\u001b[0m\u001b[31m\n", - "\u001b[0mSuccessfully installed fonttools-4.43.1 nbsphinx-0.9.3 numpy-1.26.0 openqaoa-core-0.2.2 pluggy-1.3.0 pytest-7.4.2 scipy-1.11.3 sphinx-7.2.6 sphinx-autodoc-typehints-1.24.0 sphinx-rtd-theme-1.3.0 sphinxcontrib-applehelp-1.0.7 sphinxcontrib-devhelp-1.0.5 sphinxcontrib-htmlhelp-2.0.4 sphinxcontrib-jquery-4.1 sphinxcontrib-qthelp-1.0.6 sphinxcontrib-serializinghtml-1.1.9\n", - "Processing ./src/openqaoa-qiskit\n", - " Installing build dependencies ... \u001b[?25ldone\n", - "\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n", - "\u001b[?25h Installing backend dependencies ... \u001b[?25ldone\n", - "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n", - "\u001b[?25hRequirement already satisfied: openqaoa-core==0.2.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-qiskit==0.2.2) (0.2.2)\n", - "Collecting qiskit>=0.36.1 (from openqaoa-qiskit==0.2.2)\n", - " Obtaining dependency information for qiskit>=0.36.1 from https://files.pythonhosted.org/packages/21/23/51152bd3cfd912b1587dff8c3e3535ab762c336b48898d71bcc1283a1675/qiskit-0.44.2-py3-none-any.whl.metadata\n", - " Using cached qiskit-0.44.2-py3-none-any.whl.metadata (8.2 kB)\n", - "Requirement already satisfied: qiskit-ibm-provider in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-qiskit==0.2.2) (0.6.3)\n", - "Requirement already satisfied: qiskit-aer in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-qiskit==0.2.2) (0.12.2)\n", - "Requirement already satisfied: pandas>=1.3.5 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (2.0.3)\n", - "Requirement already satisfied: sympy>=1.10.1 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (1.12)\n", - "Requirement already satisfied: numpy>=1.22.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (1.26.0)\n", - "Requirement already satisfied: networkx>=2.8 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (3.1)\n", - "Requirement already satisfied: matplotlib>=3.4.3 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (3.7.2)\n", - "Requirement already satisfied: scipy>=1.8 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (1.11.3)\n", - "Requirement already satisfied: docplex==2.25.236 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (2.25.236)\n", - "Requirement already satisfied: autograd>=1.4 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (1.6.2)\n", - "Requirement already satisfied: semantic-version>=2.10 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (2.10.0)\n", - "Requirement already satisfied: autoray>=0.3.1 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.6.6)\n", - "Requirement already satisfied: requests in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (2.31.0)\n", - "Requirement already satisfied: ipython>=8.2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (8.15.0)\n", - "Requirement already satisfied: six in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from docplex==2.25.236->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (1.16.0)\n", - "Collecting qiskit-terra==0.25.2.1 (from qiskit>=0.36.1->openqaoa-qiskit==0.2.2)\n", - " Obtaining dependency information for qiskit-terra==0.25.2.1 from https://files.pythonhosted.org/packages/1d/f8/d406545c3d6c9ffca08a049fdc43fab2c8e33b3b33e12ed73b702e3e4786/qiskit_terra-0.25.2.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n", - " Using cached qiskit_terra-0.25.2.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (9.0 kB)\n", - "Requirement already satisfied: rustworkx>=0.13.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2) (0.13.1)\n", - "Requirement already satisfied: ply>=3.10 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2) (3.11)\n", - "Requirement already satisfied: psutil>=5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2) (5.9.5)\n", - "Requirement already satisfied: dill>=0.3 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2) (0.3.7)\n", - "Requirement already satisfied: python-dateutil>=2.8.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2) (2.8.2)\n", - "Requirement already satisfied: stevedore>=3.0.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2) (5.1.0)\n", - "Requirement already satisfied: symengine<0.10,>=0.9 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2) (0.9.2)\n", - "Requirement already satisfied: typing-extensions in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2) (4.7.1)\n", - "Collecting requests-ntlm>=1.1.0 (from qiskit-ibm-provider->openqaoa-qiskit==0.2.2)\n", - " Using cached requests_ntlm-1.2.0-py3-none-any.whl (6.0 kB)\n", - "Requirement already satisfied: urllib3>=1.21.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-ibm-provider->openqaoa-qiskit==0.2.2) (2.0.4)\n", - "Requirement already satisfied: websocket-client>=1.5.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-ibm-provider->openqaoa-qiskit==0.2.2) (1.6.3)\n", - "Requirement already satisfied: websockets>=10.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-ibm-provider->openqaoa-qiskit==0.2.2) (11.0.3)\n", - "Requirement already satisfied: future>=0.15.2 in /home/kilian/.local/lib/python3.10/site-packages (from autograd>=1.4->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.18.3)\n", - "Requirement already satisfied: backcall in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.2.0)\n", - "Requirement already satisfied: decorator in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (5.1.1)\n", - "Requirement already satisfied: jedi>=0.16 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.19.0)\n", - "Requirement already satisfied: matplotlib-inline in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.1.6)\n", - "Requirement already satisfied: pickleshare in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.7.5)\n", - "Requirement already satisfied: prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (3.0.39)\n", - "Requirement already satisfied: pygments>=2.4.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (2.16.1)\n", - "Requirement already satisfied: stack-data in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.6.2)\n", - "Requirement already satisfied: traitlets>=5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (5.10.0)\n", - "Requirement already satisfied: exceptiongroup in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (1.1.3)\n", - "Requirement already satisfied: pexpect>4.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (4.8.0)\n", - "Requirement already satisfied: contourpy>=1.0.1 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (1.1.0)\n", - "Requirement already satisfied: cycler>=0.10 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.11.0)\n", - "Requirement already satisfied: fonttools>=4.22.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (4.43.1)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (1.4.4)\n", - "Requirement already satisfied: packaging>=20.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (23.1)\n", - "Requirement already satisfied: pillow>=6.2.0 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (10.0.0)\n", - "Requirement already satisfied: pyparsing<3.1,>=2.3.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (3.0.9)\n", - "Requirement already satisfied: pytz>=2020.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from pandas>=1.3.5->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (2023.3.post1)\n", - "Requirement already satisfied: tzdata>=2022.1 in /home/kilian/.local/lib/python3.10/site-packages (from pandas>=1.3.5->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (2023.3)\n", - "Requirement already satisfied: charset-normalizer<4,>=2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (3.2.0)\n", - "Requirement already satisfied: idna<4,>=2.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (3.4)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (2023.7.22)\n", - "Requirement already satisfied: cryptography>=1.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests-ntlm>=1.1.0->qiskit-ibm-provider->openqaoa-qiskit==0.2.2) (41.0.3)\n", - "Requirement already satisfied: pyspnego>=0.1.6 in /home/kilian/.local/lib/python3.10/site-packages (from requests-ntlm>=1.1.0->qiskit-ibm-provider->openqaoa-qiskit==0.2.2) (0.9.1)\n", - "Requirement already satisfied: mpmath>=0.19 in /home/kilian/.local/lib/python3.10/site-packages (from sympy>=1.10.1->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (1.3.0)\n", - "Requirement already satisfied: cffi>=1.12 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from cryptography>=1.3->requests-ntlm>=1.1.0->qiskit-ibm-provider->openqaoa-qiskit==0.2.2) (1.15.1)\n", - "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jedi>=0.16->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.8.3)\n", - "Requirement already satisfied: ptyprocess>=0.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from pexpect>4.3->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.7.0)\n", - "Requirement already satisfied: wcwidth in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.2.6)\n", - "Requirement already satisfied: pbr!=2.1.0,>=2.0.0 in /home/kilian/.local/lib/python3.10/site-packages (from stevedore>=3.0.0->qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2) (5.11.1)\n", - "Requirement already satisfied: executing>=1.2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from stack-data->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (1.2.0)\n", - "Requirement already satisfied: asttokens>=2.1.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from stack-data->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (2.4.0)\n", - "Requirement already satisfied: pure-eval in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from stack-data->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-qiskit==0.2.2) (0.2.2)\n", - "Requirement already satisfied: pycparser in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from cffi>=1.12->cryptography>=1.3->requests-ntlm>=1.1.0->qiskit-ibm-provider->openqaoa-qiskit==0.2.2) (2.21)\n", - "Using cached qiskit-0.44.2-py3-none-any.whl (8.2 kB)\n", - "Using cached qiskit_terra-0.25.2.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.2 MB)\n", - "Building wheels for collected packages: openqaoa-qiskit\n", - " Building wheel for openqaoa-qiskit (pyproject.toml) ... \u001b[?25ldone\n", - "\u001b[?25h Created wheel for openqaoa-qiskit: filename=openqaoa_qiskit-0.2.2-py3-none-any.whl size=14973 sha256=790c7b25a1923746090d455e4806e6cde017f940896feaf630140a58edf47785\n", - " Stored in directory: /home/kilian/.cache/pip/wheels/88/8c/d3/e267d337fb24649ac2f6bc29ae1be76bbfaa224b637848d2c9\n", - "Successfully built openqaoa-qiskit\n", - "Installing collected packages: qiskit-terra, qiskit, requests-ntlm, openqaoa-qiskit\n", - " Attempting uninstall: openqaoa-qiskit\n", - " Found existing installation: openqaoa-qiskit 0.2.1\n", - " Uninstalling openqaoa-qiskit-0.2.1:\n", - " Successfully uninstalled openqaoa-qiskit-0.2.1\n", - "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", - "openqaoa-azure 0.2.1 requires openqaoa-core==0.2.1, but you have openqaoa-core 0.2.2 which is incompatible.\n", - "openqaoa-azure 0.2.1 requires openqaoa-qiskit==0.2.1, but you have openqaoa-qiskit 0.2.2 which is incompatible.\u001b[0m\u001b[31m\n", - "\u001b[0mSuccessfully installed openqaoa-qiskit-0.2.2 qiskit-0.44.2 qiskit-terra-0.25.2.1 requests-ntlm-1.2.0\n", - "Processing ./src/openqaoa-azure\n", - " Installing build dependencies ... \u001b[?25ldone\n", - "\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n", - "\u001b[?25h Installing backend dependencies ... \u001b[?25ldone\n", - "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n", - "\u001b[?25hRequirement already satisfied: openqaoa-core==0.2.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-azure==0.2.2) (0.2.2)\n", - "Requirement already satisfied: openqaoa-qiskit==0.2.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-azure==0.2.2) (0.2.2)\n", - "Requirement already satisfied: qdk in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-azure==0.2.2) (0.28.291394)\n", - "Requirement already satisfied: qiskit-qir in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-azure==0.2.2) (0.3.1)\n", - "Requirement already satisfied: qiskit-ionq in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-azure==0.2.2) (0.4.1)\n", - "Requirement already satisfied: azure-quantum[qiskit] in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-azure==0.2.2) (0.28.277227)\n", - "Requirement already satisfied: pandas>=1.3.5 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (2.0.3)\n", - "Requirement already satisfied: sympy>=1.10.1 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (1.12)\n", - "Requirement already satisfied: numpy>=1.22.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (1.26.0)\n", - "Requirement already satisfied: networkx>=2.8 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (3.1)\n", - "Requirement already satisfied: matplotlib>=3.4.3 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (3.7.2)\n", - "Requirement already satisfied: scipy>=1.8 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (1.11.3)\n", - "Requirement already satisfied: docplex==2.25.236 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (2.25.236)\n", - "Requirement already satisfied: autograd>=1.4 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (1.6.2)\n", - "Requirement already satisfied: semantic-version>=2.10 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (2.10.0)\n", - "Requirement already satisfied: autoray>=0.3.1 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.6.6)\n", - "Requirement already satisfied: requests in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (2.31.0)\n", - "Requirement already satisfied: ipython>=8.2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (8.15.0)\n", - "Requirement already satisfied: qiskit>=0.36.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-qiskit==0.2.2->openqaoa-azure==0.2.2) (0.44.2)\n", - "Requirement already satisfied: qiskit-ibm-provider in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-qiskit==0.2.2->openqaoa-azure==0.2.2) (0.6.3)\n", - "Requirement already satisfied: qiskit-aer in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-qiskit==0.2.2->openqaoa-azure==0.2.2) (0.12.2)\n", - "Requirement already satisfied: six in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from docplex==2.25.236->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (1.16.0)\n", - "Requirement already satisfied: azure-core<2.0.0,>=1.26.2 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2) (1.29.2)\n", - "Requirement already satisfied: azure-identity<2.0.0,>=1.12.0 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2) (1.14.0)\n", - "Requirement already satisfied: azure-storage-blob<13.0.0,>=12.14.1 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2) (12.17.0)\n", - "Requirement already satisfied: msrest<1.0,>=0.7.1 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2) (0.7.1)\n", - "Requirement already satisfied: deprecated<2.0,>=1.2.12 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2) (1.2.14)\n", - "Requirement already satisfied: aiohttp<4.0,>=3.7.0 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2) (3.8.5)\n", - "Requirement already satisfied: aiofile<4.0,>=3.7.2 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2) (3.8.7)\n", - "Requirement already satisfied: protobuf<4.0,>=3.14.0 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2) (3.20.3)\n", - "Requirement already satisfied: Markdown>=3.4.1 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2) (3.4.4)\n", - "Requirement already satisfied: python-markdown-math>=0.8 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2) (0.8)\n", - "Requirement already satisfied: qiskit-terra<1.0,>=0.19.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2) (0.25.2.1)\n", - "Requirement already satisfied: decorator>=5.1.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-ionq->openqaoa-azure==0.2.2) (5.1.1)\n", - "Requirement already satisfied: retry>=0.9.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-ionq->openqaoa-azure==0.2.2) (0.9.2)\n", - "Requirement already satisfied: importlib-metadata>=4.11.4 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-ionq->openqaoa-azure==0.2.2) (6.8.0)\n", - "Requirement already satisfied: pyqir==0.8.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-qir->openqaoa-azure==0.2.2) (0.8.0)\n", - "Requirement already satisfied: qsharp in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2) (0.28.291394)\n", - "Requirement already satisfied: jupyter-jsmol in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2) (2022.1.0)\n", - "Requirement already satisfied: varname in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2) (0.11.2)\n", - "Requirement already satisfied: ruamel-yaml in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2) (0.17.32)\n", - "Requirement already satisfied: basis-set-exchange in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2) (0.9.1)\n", - "Requirement already satisfied: jupyter-nbextensions-configurator in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2) (0.6.3)\n", - "Requirement already satisfied: pygments>=2.7.4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2) (2.16.1)\n", - "Requirement already satisfied: ipywidgets==8.0.4 in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2) (8.0.4)\n", - "Requirement already satisfied: ipykernel>=4.5.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2) (6.25.2)\n", - "Requirement already satisfied: traitlets>=4.3.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2) (5.10.0)\n", - "Requirement already satisfied: widgetsnbextension~=4.0 in /home/kilian/.local/lib/python3.10/site-packages (from ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2) (4.0.8)\n", - "Requirement already satisfied: jupyterlab-widgets~=3.0 in /home/kilian/.local/lib/python3.10/site-packages (from ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2) (3.0.8)\n", - "Requirement already satisfied: caio~=0.9.0 in /home/kilian/.local/lib/python3.10/site-packages (from aiofile<4.0,>=3.7.2->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (0.9.12)\n", - "Requirement already satisfied: attrs>=17.3.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (23.1.0)\n", - "Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (3.2.0)\n", - "Requirement already satisfied: multidict<7.0,>=4.5 in /home/kilian/.local/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (6.0.4)\n", - "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /home/kilian/.local/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (4.0.3)\n", - "Requirement already satisfied: yarl<2.0,>=1.0 in /home/kilian/.local/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (1.9.2)\n", - "Requirement already satisfied: frozenlist>=1.1.1 in /home/kilian/.local/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (1.4.0)\n", - "Requirement already satisfied: aiosignal>=1.1.2 in /home/kilian/.local/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (1.3.1)\n", - "Requirement already satisfied: future>=0.15.2 in /home/kilian/.local/lib/python3.10/site-packages (from autograd>=1.4->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.18.3)\n", - "Requirement already satisfied: typing-extensions>=4.6.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from azure-core<2.0.0,>=1.26.2->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (4.7.1)\n", - "Requirement already satisfied: cryptography>=2.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (41.0.3)\n", - "Requirement already satisfied: msal<2.0.0,>=1.20.0 in /home/kilian/.local/lib/python3.10/site-packages (from azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (1.23.0)\n", - "Requirement already satisfied: msal-extensions<2.0.0,>=0.3.0 in /home/kilian/.local/lib/python3.10/site-packages (from azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (1.0.0)\n", - "Requirement already satisfied: isodate>=0.6.1 in /home/kilian/.local/lib/python3.10/site-packages (from azure-storage-blob<13.0.0,>=12.14.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (0.6.1)\n", - "Requirement already satisfied: wrapt<2,>=1.10 in /home/kilian/.local/lib/python3.10/site-packages (from deprecated<2.0,>=1.2.12->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (1.15.0)\n", - "Requirement already satisfied: zipp>=0.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from importlib-metadata>=4.11.4->qiskit-ionq->openqaoa-azure==0.2.2) (3.16.2)\n", - "Requirement already satisfied: backcall in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.2.0)\n", - "Requirement already satisfied: jedi>=0.16 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.19.0)\n", - "Requirement already satisfied: matplotlib-inline in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.1.6)\n", - "Requirement already satisfied: pickleshare in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.7.5)\n", - "Requirement already satisfied: prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (3.0.39)\n", - "Requirement already satisfied: stack-data in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.6.2)\n", - "Requirement already satisfied: exceptiongroup in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (1.1.3)\n", - "Requirement already satisfied: pexpect>4.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (4.8.0)\n", - "Requirement already satisfied: contourpy>=1.0.1 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (1.1.0)\n", - "Requirement already satisfied: cycler>=0.10 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.11.0)\n", - "Requirement already satisfied: fonttools>=4.22.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (4.43.1)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (1.4.4)\n", - "Requirement already satisfied: packaging>=20.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (23.1)\n", - "Requirement already satisfied: pillow>=6.2.0 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (10.0.0)\n", - "Requirement already satisfied: pyparsing<3.1,>=2.3.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (3.0.9)\n", - "Requirement already satisfied: python-dateutil>=2.7 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (2.8.2)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from msrest<1.0,>=0.7.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (2023.7.22)\n", - "Requirement already satisfied: requests-oauthlib>=0.5.0 in /home/kilian/.local/lib/python3.10/site-packages (from msrest<1.0,>=0.7.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (1.3.1)\n", - "Requirement already satisfied: pytz>=2020.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from pandas>=1.3.5->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (2023.3.post1)\n", - "Requirement already satisfied: tzdata>=2022.1 in /home/kilian/.local/lib/python3.10/site-packages (from pandas>=1.3.5->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (2023.3)\n", - "Requirement already satisfied: rustworkx>=0.13.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra<1.0,>=0.19.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (0.13.1)\n", - "Requirement already satisfied: ply>=3.10 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra<1.0,>=0.19.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (3.11)\n", - "Requirement already satisfied: psutil>=5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-terra<1.0,>=0.19.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (5.9.5)\n", - "Requirement already satisfied: dill>=0.3 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra<1.0,>=0.19.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (0.3.7)\n", - "Requirement already satisfied: stevedore>=3.0.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra<1.0,>=0.19.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (5.1.0)\n", - "Requirement already satisfied: symengine<0.10,>=0.9 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra<1.0,>=0.19.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (0.9.2)\n", - "Requirement already satisfied: idna<4,>=2.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (3.4)\n", - "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (2.0.4)\n", - "Requirement already satisfied: py<2.0.0,>=1.4.26 in /home/kilian/.local/lib/python3.10/site-packages (from retry>=0.9.0->qiskit-ionq->openqaoa-azure==0.2.2) (1.11.0)\n", - "Requirement already satisfied: mpmath>=0.19 in /home/kilian/.local/lib/python3.10/site-packages (from sympy>=1.10.1->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (1.3.0)\n", - "Requirement already satisfied: argcomplete in /home/kilian/.local/lib/python3.10/site-packages (from basis-set-exchange->qdk->openqaoa-azure==0.2.2) (3.1.1)\n", - "Requirement already satisfied: jsonschema in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from basis-set-exchange->qdk->openqaoa-azure==0.2.2) (4.19.0)\n", - "Requirement already satisfied: regex in /home/kilian/.local/lib/python3.10/site-packages (from basis-set-exchange->qdk->openqaoa-azure==0.2.2) (2023.8.8)\n", - "Requirement already satisfied: unidecode in /home/kilian/.local/lib/python3.10/site-packages (from basis-set-exchange->qdk->openqaoa-azure==0.2.2) (1.3.6)\n", - "Requirement already satisfied: jupyter-contrib-core>=0.3.3 in /home/kilian/.local/lib/python3.10/site-packages (from jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.4.2)\n", - "Requirement already satisfied: jupyter-core in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (5.3.1)\n", - "Requirement already satisfied: notebook>=6.0 in /home/kilian/.local/lib/python3.10/site-packages (from jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (7.0.2)\n", - "Requirement already satisfied: pyyaml in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (6.0.1)\n", - "Requirement already satisfied: tornado in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (6.3.3)\n", - "Requirement already satisfied: requests-ntlm>=1.1.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-ibm-provider->openqaoa-qiskit==0.2.2->openqaoa-azure==0.2.2) (1.2.0)\n", - "Requirement already satisfied: websocket-client>=1.5.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-ibm-provider->openqaoa-qiskit==0.2.2->openqaoa-azure==0.2.2) (1.6.3)\n", - "Requirement already satisfied: websockets>=10.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-ibm-provider->openqaoa-qiskit==0.2.2->openqaoa-azure==0.2.2) (11.0.3)\n", - "Requirement already satisfied: qsharp-core==0.28.291394 in /home/kilian/.local/lib/python3.10/site-packages (from qsharp->qdk->openqaoa-azure==0.2.2) (0.28.291394)\n", - "Requirement already satisfied: qsharp-chemistry==0.28.291394 in /home/kilian/.local/lib/python3.10/site-packages (from qsharp->qdk->openqaoa-azure==0.2.2) (0.28.291394)\n", - "Requirement already satisfied: jupyter-client>=7.3.4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qsharp-core==0.28.291394->qsharp->qdk->openqaoa-azure==0.2.2) (8.3.1)\n", - "Requirement already satisfied: ruamel.yaml.clib>=0.2.7 in /home/kilian/.local/lib/python3.10/site-packages (from ruamel-yaml->qdk->openqaoa-azure==0.2.2) (0.2.7)\n", - "Requirement already satisfied: executing<2.0,>=1.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from varname->qdk->openqaoa-azure==0.2.2) (1.2.0)\n", - "Requirement already satisfied: cffi>=1.12 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from cryptography>=2.5->azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (1.15.1)\n", - "Requirement already satisfied: comm>=0.1.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipykernel>=4.5.1->ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2) (0.1.4)\n", - "Requirement already satisfied: debugpy>=1.6.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipykernel>=4.5.1->ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2) (1.8.0)\n", - "Requirement already satisfied: nest-asyncio in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipykernel>=4.5.1->ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2) (1.5.7)\n", - "Requirement already satisfied: pyzmq>=20 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipykernel>=4.5.1->ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2) (25.1.1)\n", - "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jedi>=0.16->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.8.3)\n", - "Requirement already satisfied: setuptools in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-contrib-core>=0.3.3->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (68.0.0)\n", - "Requirement already satisfied: platformdirs>=2.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-core->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (3.10.0)\n", - "Requirement already satisfied: PyJWT[crypto]<3,>=1.0.0 in /home/kilian/.local/lib/python3.10/site-packages (from msal<2.0.0,>=1.20.0->azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (2.8.0)\n", - "Requirement already satisfied: portalocker<3,>=1.0 in /home/kilian/.local/lib/python3.10/site-packages (from msal-extensions<2.0.0,>=0.3.0->azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (2.7.0)\n", - "Requirement already satisfied: jupyter-server<3,>=2.4.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (2.7.3)\n", - "Requirement already satisfied: jupyterlab-server<3,>=2.22.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (2.25.0)\n", - "Requirement already satisfied: jupyterlab<5,>=4.0.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (4.0.6)\n", - "Requirement already satisfied: notebook-shim<0.3,>=0.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.2.3)\n", - "Requirement already satisfied: ptyprocess>=0.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from pexpect>4.3->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.7.0)\n", - "Requirement already satisfied: wcwidth in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.2.6)\n", - "Requirement already satisfied: pyspnego>=0.1.6 in /home/kilian/.local/lib/python3.10/site-packages (from requests-ntlm>=1.1.0->qiskit-ibm-provider->openqaoa-qiskit==0.2.2->openqaoa-azure==0.2.2) (0.9.1)\n", - "Requirement already satisfied: oauthlib>=3.0.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests-oauthlib>=0.5.0->msrest<1.0,>=0.7.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (3.2.2)\n", - "Requirement already satisfied: pbr!=2.1.0,>=2.0.0 in /home/kilian/.local/lib/python3.10/site-packages (from stevedore>=3.0.0->qiskit-terra<1.0,>=0.19.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (5.11.1)\n", - "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2) (2023.7.1)\n", - "Requirement already satisfied: referencing>=0.28.4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2) (0.30.2)\n", - "Requirement already satisfied: rpds-py>=0.7.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2) (0.10.3)\n", - "Requirement already satisfied: asttokens>=2.1.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from stack-data->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (2.4.0)\n", - "Requirement already satisfied: pure-eval in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from stack-data->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa-azure==0.2.2) (0.2.2)\n", - "Requirement already satisfied: pycparser in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from cffi>=1.12->cryptography>=2.5->azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2) (2.21)\n", - "Requirement already satisfied: anyio>=3.1.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (4.0.0)\n", - "Requirement already satisfied: argon2-cffi in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (23.1.0)\n", - "Requirement already satisfied: jinja2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (3.1.2)\n", - "Requirement already satisfied: jupyter-events>=0.6.0 in /home/kilian/.local/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.6.3)\n", - "Requirement already satisfied: jupyter-server-terminals in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.4.4)\n", - "Requirement already satisfied: nbconvert>=6.4.4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (7.8.0)\n", - "Requirement already satisfied: nbformat>=5.3.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (5.9.2)\n", - "Requirement already satisfied: overrides in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (7.4.0)\n", - "Requirement already satisfied: prometheus-client in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.17.1)\n", - "Requirement already satisfied: send2trash>=1.8.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (1.8.2)\n", - "Requirement already satisfied: terminado>=0.8.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.17.1)\n", - "Requirement already satisfied: async-lru>=1.0.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyterlab<5,>=4.0.2->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (2.0.4)\n", - "Requirement already satisfied: jupyter-lsp>=2.0.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyterlab<5,>=4.0.2->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (2.2.0)\n", - "Requirement already satisfied: tomli in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyterlab<5,>=4.0.2->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (2.0.1)\n", - "Requirement already satisfied: babel>=2.10 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyterlab-server<3,>=2.22.1->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (2.12.1)\n", - "Requirement already satisfied: json5>=0.9.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyterlab-server<3,>=2.22.1->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.9.14)\n", - "Requirement already satisfied: sniffio>=1.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from anyio>=3.1.0->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (1.3.0)\n", - "Requirement already satisfied: MarkupSafe>=2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jinja2->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (2.1.3)\n", - "Requirement already satisfied: python-json-logger>=2.0.4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-events>=0.6.0->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (2.0.7)\n", - "Requirement already satisfied: rfc3339-validator in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-events>=0.6.0->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.1.4)\n", - "Requirement already satisfied: rfc3986-validator>=0.1.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-events>=0.6.0->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.1.1)\n", - "Requirement already satisfied: beautifulsoup4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (4.12.2)\n", - "Requirement already satisfied: bleach!=5.0.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (6.0.0)\n", - "Requirement already satisfied: defusedxml in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.7.1)\n", - "Requirement already satisfied: jupyterlab-pygments in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.2.2)\n", - "Requirement already satisfied: mistune<4,>=2.0.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (3.0.1)\n", - "Requirement already satisfied: nbclient>=0.5.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.8.0)\n", - "Requirement already satisfied: pandocfilters>=1.4.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (1.5.0)\n", - "Requirement already satisfied: tinycss2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (1.2.1)\n", - "Requirement already satisfied: fastjsonschema in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbformat>=5.3.0->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (2.18.0)\n", - "Requirement already satisfied: argon2-cffi-bindings in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from argon2-cffi->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (21.2.0)\n", - "Requirement already satisfied: webencodings in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from bleach!=5.0.0->nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (0.5.1)\n", - "Requirement already satisfied: fqdn in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2) (1.5.1)\n", - "Requirement already satisfied: isoduration in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2) (20.11.0)\n", - "Requirement already satisfied: jsonpointer>1.13 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2) (2.4)\n", - "Requirement already satisfied: uri-template in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2) (1.3.0)\n", - "Requirement already satisfied: webcolors>=1.11 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2) (1.13)\n", - "Requirement already satisfied: soupsieve>1.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from beautifulsoup4->nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2) (2.5)\n", - "Requirement already satisfied: arrow>=0.15.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from isoduration->jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2) (1.2.3)\n", - "Building wheels for collected packages: openqaoa-azure\n", - " Building wheel for openqaoa-azure (pyproject.toml) ... \u001b[?25ldone\n", - "\u001b[?25h Created wheel for openqaoa-azure: filename=openqaoa_azure-0.2.2-py3-none-any.whl size=6144 sha256=fb30dcb7ab0c07060ac70ae9e16bb0232e57e6c82c9e4972474bc3480c87e2cc\n", - " Stored in directory: /home/kilian/.cache/pip/wheels/81/d4/50/1f4163db3264691f88fb9a8b1ab9d5af62996d928a6610de28\n", - "Successfully built openqaoa-azure\n", - "Installing collected packages: openqaoa-azure\n", - " Attempting uninstall: openqaoa-azure\n", - " Found existing installation: openqaoa-azure 0.2.1\n", - " Uninstalling openqaoa-azure-0.2.1:\n", - " Successfully uninstalled openqaoa-azure-0.2.1\n", - "Successfully installed openqaoa-azure-0.2.2\n", - "Processing /home/kilian/Codebase/Quantum/samples/azure-quantum/recursive-qaoa/openqaoa\n", - " Installing build dependencies ... \u001b[?25ldone\n", - "\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n", - "\u001b[?25h Installing backend dependencies ... \u001b[?25ldone\n", - "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n", - "\u001b[?25hRequirement already satisfied: openqaoa-qiskit==0.2.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa==0.2.2) (0.2.2)\n", - "Requirement already satisfied: openqaoa-core==0.2.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa==0.2.2) (0.2.2)\n", - "Requirement already satisfied: openqaoa-azure==0.2.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa==0.2.2) (0.2.2)\n", - "Collecting openqaoa-pyquil==0.2.2 (from openqaoa==0.2.2)\n", - " Obtaining dependency information for openqaoa-pyquil==0.2.2 from https://files.pythonhosted.org/packages/0d/f0/4f6244b71fb729543c62448a1237ec51eb3cd55540c017d93eb0df67ee50/openqaoa_pyquil-0.2.2-py3-none-any.whl.metadata\n", - " Using cached openqaoa_pyquil-0.2.2-py3-none-any.whl.metadata (4.9 kB)\n", - "Collecting openqaoa-braket==0.2.2 (from openqaoa==0.2.2)\n", - " Obtaining dependency information for openqaoa-braket==0.2.2 from https://files.pythonhosted.org/packages/bc/ea/a93cbf6e3ed58c26a00fe4078ac37f93f8a4aa07a46ce88b56e5d28ab635/openqaoa_braket-0.2.2-py3-none-any.whl.metadata\n", - " Using cached openqaoa_braket-0.2.2-py3-none-any.whl.metadata (4.6 kB)\n", - "Requirement already satisfied: qdk in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.28.291394)\n", - "Requirement already satisfied: qiskit-qir in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.3.1)\n", - "Requirement already satisfied: qiskit-ionq in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.4.1)\n", - "Requirement already satisfied: azure-quantum[qiskit] in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.28.277227)\n", - "Requirement already satisfied: amazon-braket-sdk>=1.23.0 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-braket==0.2.2->openqaoa==0.2.2) (1.54.0)\n", - "Requirement already satisfied: pandas>=1.3.5 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (2.0.3)\n", - "Requirement already satisfied: sympy>=1.10.1 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (1.12)\n", - "Requirement already satisfied: numpy>=1.22.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (1.26.0)\n", - "Requirement already satisfied: networkx>=2.8 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (3.1)\n", - "Requirement already satisfied: matplotlib>=3.4.3 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (3.7.2)\n", - "Requirement already satisfied: scipy>=1.8 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (1.11.3)\n", - "Requirement already satisfied: docplex==2.25.236 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (2.25.236)\n", - "Requirement already satisfied: autograd>=1.4 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (1.6.2)\n", - "Requirement already satisfied: semantic-version>=2.10 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (2.10.0)\n", - "Requirement already satisfied: autoray>=0.3.1 in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (0.6.6)\n", - "Requirement already satisfied: requests in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (2.31.0)\n", - "Requirement already satisfied: ipython>=8.2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-core==0.2.2->openqaoa==0.2.2) (8.15.0)\n", - "Collecting pyquil<4.0.0,>=3.1.0 (from openqaoa-pyquil==0.2.2->openqaoa==0.2.2)\n", - " Obtaining dependency information for pyquil<4.0.0,>=3.1.0 from https://files.pythonhosted.org/packages/04/da/45dfa58a121da5e6cafddad62f0004fcbf5986522a44e670389553752341/pyquil-3.5.4-py3-none-any.whl.metadata\n", - " Using cached pyquil-3.5.4-py3-none-any.whl.metadata (11 kB)\n", - "Requirement already satisfied: qiskit>=0.36.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (0.44.2)\n", - "Requirement already satisfied: qiskit-ibm-provider in /home/kilian/.local/lib/python3.10/site-packages (from openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (0.6.3)\n", - "Requirement already satisfied: qiskit-aer in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (0.12.2)\n", - "Requirement already satisfied: six in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from docplex==2.25.236->openqaoa-core==0.2.2->openqaoa==0.2.2) (1.16.0)\n", - "Requirement already satisfied: amazon-braket-schemas>=1.19.1 in /home/kilian/.local/lib/python3.10/site-packages (from amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (1.19.1)\n", - "Requirement already satisfied: amazon-braket-default-simulator>=1.19.1 in /home/kilian/.local/lib/python3.10/site-packages (from amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (1.20.0)\n", - "Requirement already satisfied: oqpy~=0.2.1 in /home/kilian/.local/lib/python3.10/site-packages (from amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (0.2.1)\n", - "Requirement already satisfied: setuptools in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (68.0.0)\n", - "Requirement already satisfied: backoff in /home/kilian/.local/lib/python3.10/site-packages (from amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (2.2.1)\n", - "Requirement already satisfied: boltons in /home/kilian/.local/lib/python3.10/site-packages (from amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (23.0.0)\n", - "Requirement already satisfied: boto3>=1.22.3 in /home/kilian/.local/lib/python3.10/site-packages (from amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (1.28.29)\n", - "Requirement already satisfied: nest-asyncio in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (1.5.7)\n", - "Requirement already satisfied: openpulse in /home/kilian/.local/lib/python3.10/site-packages (from amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (0.4.2)\n", - "Requirement already satisfied: openqasm3 in /home/kilian/.local/lib/python3.10/site-packages (from amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (0.4.0)\n", - "Requirement already satisfied: future>=0.15.2 in /home/kilian/.local/lib/python3.10/site-packages (from autograd>=1.4->openqaoa-core==0.2.2->openqaoa==0.2.2) (0.18.3)\n", - "Requirement already satisfied: backcall in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (0.2.0)\n", - "Requirement already satisfied: decorator in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (5.1.1)\n", - "Requirement already satisfied: jedi>=0.16 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (0.19.0)\n", - "Requirement already satisfied: matplotlib-inline in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (0.1.6)\n", - "Requirement already satisfied: pickleshare in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (0.7.5)\n", - "Requirement already satisfied: prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (3.0.39)\n", - "Requirement already satisfied: pygments>=2.4.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (2.16.1)\n", - "Requirement already satisfied: stack-data in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (0.6.2)\n", - "Requirement already satisfied: traitlets>=5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (5.10.0)\n", - "Requirement already satisfied: exceptiongroup in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (1.1.3)\n", - "Requirement already satisfied: pexpect>4.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (4.8.0)\n", - "Requirement already satisfied: contourpy>=1.0.1 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa==0.2.2) (1.1.0)\n", - "Requirement already satisfied: cycler>=0.10 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa==0.2.2) (0.11.0)\n", - "Requirement already satisfied: fonttools>=4.22.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa==0.2.2) (4.43.1)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa==0.2.2) (1.4.4)\n", - "Requirement already satisfied: packaging>=20.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa==0.2.2) (23.1)\n", - "Requirement already satisfied: pillow>=6.2.0 in /home/kilian/.local/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa==0.2.2) (10.0.0)\n", - "Requirement already satisfied: pyparsing<3.1,>=2.3.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa==0.2.2) (3.0.9)\n", - "Requirement already satisfied: python-dateutil>=2.7 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from matplotlib>=3.4.3->openqaoa-core==0.2.2->openqaoa==0.2.2) (2.8.2)\n", - "Requirement already satisfied: pytz>=2020.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from pandas>=1.3.5->openqaoa-core==0.2.2->openqaoa==0.2.2) (2023.3.post1)\n", - "Requirement already satisfied: tzdata>=2022.1 in /home/kilian/.local/lib/python3.10/site-packages (from pandas>=1.3.5->openqaoa-core==0.2.2->openqaoa==0.2.2) (2023.3)\n", - "Requirement already satisfied: deprecated<2.0.0,>=1.2.13 in /home/kilian/.local/lib/python3.10/site-packages (from pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (1.2.14)\n", - "Requirement already satisfied: lark<0.12.0,>=0.11.1 in /home/kilian/.local/lib/python3.10/site-packages (from pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (0.11.3)\n", - "Requirement already satisfied: qcs-api-client<0.22.0,>=0.21.0 in /home/kilian/.local/lib/python3.10/site-packages (from pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (0.21.6)\n", - "Requirement already satisfied: rpcq<4.0.0,>=3.10.0 in /home/kilian/.local/lib/python3.10/site-packages (from pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (3.11.0)\n", - "Requirement already satisfied: tenacity<9.0.0,>=8.2.2 in /home/kilian/.local/lib/python3.10/site-packages (from pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (8.2.3)\n", - "Requirement already satisfied: types-deprecated<2.0.0.0,>=1.2.9.2 in /home/kilian/.local/lib/python3.10/site-packages (from pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (1.2.9.3)\n", - "Requirement already satisfied: types-python-dateutil<3.0.0,>=2.8.19 in /home/kilian/.local/lib/python3.10/site-packages (from pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (2.8.19.14)\n", - "Requirement already satisfied: types-retry<0.10.0,>=0.9.9 in /home/kilian/.local/lib/python3.10/site-packages (from pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (0.9.9.4)\n", - "Requirement already satisfied: qiskit-terra==0.25.2.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit>=0.36.1->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (0.25.2.1)\n", - "Requirement already satisfied: rustworkx>=0.13.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (0.13.1)\n", - "Requirement already satisfied: ply>=3.10 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (3.11)\n", - "Requirement already satisfied: psutil>=5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (5.9.5)\n", - "Requirement already satisfied: dill>=0.3 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (0.3.7)\n", - "Requirement already satisfied: stevedore>=3.0.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (5.1.0)\n", - "Requirement already satisfied: symengine<0.10,>=0.9 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (0.9.2)\n", - "Requirement already satisfied: typing-extensions in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (4.7.1)\n", - "Requirement already satisfied: mpmath>=0.19 in /home/kilian/.local/lib/python3.10/site-packages (from sympy>=1.10.1->openqaoa-core==0.2.2->openqaoa==0.2.2) (1.3.0)\n", - "Requirement already satisfied: azure-core<2.0.0,>=1.26.2 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.29.2)\n", - "Requirement already satisfied: azure-identity<2.0.0,>=1.12.0 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.14.0)\n", - "Requirement already satisfied: azure-storage-blob<13.0.0,>=12.14.1 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (12.17.0)\n", - "Requirement already satisfied: msrest<1.0,>=0.7.1 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.7.1)\n", - "Requirement already satisfied: aiohttp<4.0,>=3.7.0 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (3.8.5)\n", - "Requirement already satisfied: aiofile<4.0,>=3.7.2 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (3.8.7)\n", - "Requirement already satisfied: protobuf<4.0,>=3.14.0 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (3.20.3)\n", - "Requirement already satisfied: Markdown>=3.4.1 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (3.4.4)\n", - "Requirement already satisfied: python-markdown-math>=0.8 in /home/kilian/.local/lib/python3.10/site-packages (from azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.8)\n", - "Requirement already satisfied: retry>=0.9.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-ionq->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.9.2)\n", - "Requirement already satisfied: importlib-metadata>=4.11.4 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-ionq->openqaoa-azure==0.2.2->openqaoa==0.2.2) (6.8.0)\n", - "Requirement already satisfied: pyqir==0.8.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-qir->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.8.0)\n", - "Requirement already satisfied: charset-normalizer<4,>=2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2->openqaoa==0.2.2) (3.2.0)\n", - "Requirement already satisfied: idna<4,>=2.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2->openqaoa==0.2.2) (3.4)\n", - "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2->openqaoa==0.2.2) (2.0.4)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests->openqaoa-core==0.2.2->openqaoa==0.2.2) (2023.7.22)\n", - "Requirement already satisfied: qsharp in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.28.291394)\n", - "Requirement already satisfied: jupyter-jsmol in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2022.1.0)\n", - "Requirement already satisfied: varname in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.11.2)\n", - "Requirement already satisfied: ruamel-yaml in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.17.32)\n", - "Requirement already satisfied: basis-set-exchange in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.9.1)\n", - "Requirement already satisfied: jupyter-nbextensions-configurator in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.6.3)\n", - "Requirement already satisfied: ipywidgets==8.0.4 in /home/kilian/.local/lib/python3.10/site-packages (from qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (8.0.4)\n", - "Requirement already satisfied: ipykernel>=4.5.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (6.25.2)\n", - "Requirement already satisfied: widgetsnbextension~=4.0 in /home/kilian/.local/lib/python3.10/site-packages (from ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (4.0.8)\n", - "Requirement already satisfied: jupyterlab-widgets~=3.0 in /home/kilian/.local/lib/python3.10/site-packages (from ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (3.0.8)\n", - "Requirement already satisfied: requests-ntlm>=1.1.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-ibm-provider->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (1.2.0)\n", - "Requirement already satisfied: websocket-client>=1.5.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qiskit-ibm-provider->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (1.6.3)\n", - "Requirement already satisfied: websockets>=10.0 in /home/kilian/.local/lib/python3.10/site-packages (from qiskit-ibm-provider->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (11.0.3)\n", - "Requirement already satisfied: caio~=0.9.0 in /home/kilian/.local/lib/python3.10/site-packages (from aiofile<4.0,>=3.7.2->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.9.12)\n", - "Requirement already satisfied: attrs>=17.3.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (23.1.0)\n", - "Requirement already satisfied: multidict<7.0,>=4.5 in /home/kilian/.local/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (6.0.4)\n", - "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /home/kilian/.local/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (4.0.3)\n", - "Requirement already satisfied: yarl<2.0,>=1.0 in /home/kilian/.local/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.9.2)\n", - "Requirement already satisfied: frozenlist>=1.1.1 in /home/kilian/.local/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.4.0)\n", - "Requirement already satisfied: aiosignal>=1.1.2 in /home/kilian/.local/lib/python3.10/site-packages (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.3.1)\n", - "Requirement already satisfied: opt-einsum in /home/kilian/.local/lib/python3.10/site-packages (from amazon-braket-default-simulator>=1.19.1->amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (3.3.0)\n", - "Collecting pydantic<2.0,>=1.9 (from amazon-braket-default-simulator>=1.19.1->amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2)\n", - " Obtaining dependency information for pydantic<2.0,>=1.9 from https://files.pythonhosted.org/packages/e0/2f/d6f17f8385d718233bcae893d27525443d41201c938b68a4af3d591a33e4/pydantic-1.10.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n", - " Using cached pydantic-1.10.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (149 kB)\n", - "Requirement already satisfied: antlr4-python3-runtime==4.9.2 in /home/kilian/.local/lib/python3.10/site-packages (from amazon-braket-default-simulator>=1.19.1->amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (4.9.2)\n", - "Requirement already satisfied: cryptography>=2.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (41.0.3)\n", - "Requirement already satisfied: msal<2.0.0,>=1.20.0 in /home/kilian/.local/lib/python3.10/site-packages (from azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.23.0)\n", - "Requirement already satisfied: msal-extensions<2.0.0,>=0.3.0 in /home/kilian/.local/lib/python3.10/site-packages (from azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.0.0)\n", - "Requirement already satisfied: isodate>=0.6.1 in /home/kilian/.local/lib/python3.10/site-packages (from azure-storage-blob<13.0.0,>=12.14.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.6.1)\n", - "Requirement already satisfied: botocore<1.32.0,>=1.31.29 in /home/kilian/.local/lib/python3.10/site-packages (from boto3>=1.22.3->amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (1.31.29)\n", - "Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /home/kilian/.local/lib/python3.10/site-packages (from boto3>=1.22.3->amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (1.0.1)\n", - "Requirement already satisfied: s3transfer<0.7.0,>=0.6.0 in /home/kilian/.local/lib/python3.10/site-packages (from boto3>=1.22.3->amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (0.6.2)\n", - "Requirement already satisfied: wrapt<2,>=1.10 in /home/kilian/.local/lib/python3.10/site-packages (from deprecated<2.0.0,>=1.2.13->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (1.15.0)\n", - "Requirement already satisfied: zipp>=0.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from importlib-metadata>=4.11.4->qiskit-ionq->openqaoa-azure==0.2.2->openqaoa==0.2.2) (3.16.2)\n", - "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jedi>=0.16->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (0.8.3)\n", - "Requirement already satisfied: requests-oauthlib>=0.5.0 in /home/kilian/.local/lib/python3.10/site-packages (from msrest<1.0,>=0.7.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.3.1)\n", - "Requirement already satisfied: mypy-extensions>=0.2.0 in /home/kilian/.local/lib/python3.10/site-packages (from oqpy~=0.2.1->amazon-braket-sdk>=1.23.0->openqaoa-braket==0.2.2->openqaoa==0.2.2) (1.0.0)\n", - "Requirement already satisfied: ptyprocess>=0.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from pexpect>4.3->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (0.7.0)\n", - "Requirement already satisfied: wcwidth in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (0.2.6)\n", - "Requirement already satisfied: PyJWT<3.0.0,>=2.4.0 in /home/kilian/.local/lib/python3.10/site-packages (from qcs-api-client<0.22.0,>=0.21.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (2.8.0)\n", - "Collecting attrs>=17.3.0 (from aiohttp<4.0,>=3.7.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2)\n", - " Using cached attrs-21.4.0-py2.py3-none-any.whl (60 kB)\n", - "Requirement already satisfied: httpx<0.24.0,>=0.23.0 in /home/kilian/.local/lib/python3.10/site-packages (from qcs-api-client<0.22.0,>=0.21.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (0.23.3)\n", - "Requirement already satisfied: iso8601<2.0.0,>=1.0.2 in /home/kilian/.local/lib/python3.10/site-packages (from qcs-api-client<0.22.0,>=0.21.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (1.1.0)\n", - "Requirement already satisfied: retrying<2.0.0,>=1.3.3 in /home/kilian/.local/lib/python3.10/site-packages (from qcs-api-client<0.22.0,>=0.21.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (1.3.4)\n", - "Requirement already satisfied: rfc3339<7.0,>=6.2 in /home/kilian/.local/lib/python3.10/site-packages (from qcs-api-client<0.22.0,>=0.21.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (6.2)\n", - "Requirement already satisfied: toml<0.11.0,>=0.10.2 in /home/kilian/.local/lib/python3.10/site-packages (from qcs-api-client<0.22.0,>=0.21.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (0.10.2)\n", - "Requirement already satisfied: pyspnego>=0.1.6 in /home/kilian/.local/lib/python3.10/site-packages (from requests-ntlm>=1.1.0->qiskit-ibm-provider->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (0.9.1)\n", - "Requirement already satisfied: py<2.0.0,>=1.4.26 in /home/kilian/.local/lib/python3.10/site-packages (from retry>=0.9.0->qiskit-ionq->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.11.0)\n", - "Requirement already satisfied: msgpack<2.0,>=0.6 in /home/kilian/.local/lib/python3.10/site-packages (from rpcq<4.0.0,>=3.10.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (1.0.5)\n", - "Requirement already satisfied: python-rapidjson in /home/kilian/.local/lib/python3.10/site-packages (from rpcq<4.0.0,>=3.10.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (1.10)\n", - "Requirement already satisfied: pyzmq>=17 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from rpcq<4.0.0,>=3.10.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (25.1.1)\n", - "Requirement already satisfied: argcomplete in /home/kilian/.local/lib/python3.10/site-packages (from basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (3.1.1)\n", - "Requirement already satisfied: jsonschema in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (4.19.0)\n", - "Requirement already satisfied: regex in /home/kilian/.local/lib/python3.10/site-packages (from basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2023.8.8)\n", - "Requirement already satisfied: unidecode in /home/kilian/.local/lib/python3.10/site-packages (from basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.3.6)\n", - "Requirement already satisfied: jupyter-contrib-core>=0.3.3 in /home/kilian/.local/lib/python3.10/site-packages (from jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.4.2)\n", - "Requirement already satisfied: jupyter-core in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (5.3.1)\n", - "Requirement already satisfied: notebook>=6.0 in /home/kilian/.local/lib/python3.10/site-packages (from jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (7.0.2)\n", - "Requirement already satisfied: pyyaml in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (6.0.1)\n", - "Requirement already satisfied: tornado in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (6.3.3)\n", - "Requirement already satisfied: qsharp-core==0.28.291394 in /home/kilian/.local/lib/python3.10/site-packages (from qsharp->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.28.291394)\n", - "Requirement already satisfied: qsharp-chemistry==0.28.291394 in /home/kilian/.local/lib/python3.10/site-packages (from qsharp->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.28.291394)\n", - "Requirement already satisfied: jupyter-client>=7.3.4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from qsharp-core==0.28.291394->qsharp->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (8.3.1)\n", - "Requirement already satisfied: ruamel.yaml.clib>=0.2.7 in /home/kilian/.local/lib/python3.10/site-packages (from ruamel-yaml->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.2.7)\n", - "Requirement already satisfied: executing>=1.2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from stack-data->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (1.2.0)\n", - "Requirement already satisfied: asttokens>=2.1.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from stack-data->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (2.4.0)\n", - "Requirement already satisfied: pure-eval in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from stack-data->ipython>=8.2.0->openqaoa-core==0.2.2->openqaoa==0.2.2) (0.2.2)\n", - "Collecting urllib3<3,>=1.21.1 (from requests->openqaoa-core==0.2.2->openqaoa==0.2.2)\n", - " Obtaining dependency information for urllib3<3,>=1.21.1 from https://files.pythonhosted.org/packages/48/fe/a5c6cc46e9fe9171d7ecf0f33ee7aae14642f8d74baa7af4d7840f9358be/urllib3-1.26.17-py2.py3-none-any.whl.metadata\n", - " Using cached urllib3-1.26.17-py2.py3-none-any.whl.metadata (48 kB)\n", - "Requirement already satisfied: cffi>=1.12 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from cryptography>=2.5->azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.15.1)\n", - "Requirement already satisfied: httpcore<0.17.0,>=0.15.0 in /home/kilian/.local/lib/python3.10/site-packages (from httpx<0.24.0,>=0.23.0->qcs-api-client<0.22.0,>=0.21.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (0.16.3)\n", - "Requirement already satisfied: rfc3986[idna2008]<2,>=1.3 in /home/kilian/.local/lib/python3.10/site-packages (from httpx<0.24.0,>=0.23.0->qcs-api-client<0.22.0,>=0.21.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (1.5.0)\n", - "Requirement already satisfied: sniffio in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from httpx<0.24.0,>=0.23.0->qcs-api-client<0.22.0,>=0.21.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (1.3.0)\n", - "Requirement already satisfied: comm>=0.1.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipykernel>=4.5.1->ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.1.4)\n", - "Requirement already satisfied: debugpy>=1.6.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from ipykernel>=4.5.1->ipywidgets==8.0.4->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.8.0)\n", - "Requirement already satisfied: platformdirs>=2.5 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-core->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (3.10.0)\n", - "Requirement already satisfied: portalocker<3,>=1.0 in /home/kilian/.local/lib/python3.10/site-packages (from msal-extensions<2.0.0,>=0.3.0->azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.7.0)\n", - "Requirement already satisfied: jupyter-server<3,>=2.4.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.7.3)\n", - "Requirement already satisfied: jupyterlab-server<3,>=2.22.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.25.0)\n", - "Requirement already satisfied: jupyterlab<5,>=4.0.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (4.0.6)\n", - "Requirement already satisfied: notebook-shim<0.3,>=0.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.2.3)\n", - "Requirement already satisfied: oauthlib>=3.0.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from requests-oauthlib>=0.5.0->msrest<1.0,>=0.7.1->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (3.2.2)\n", - "Requirement already satisfied: pbr!=2.1.0,>=2.0.0 in /home/kilian/.local/lib/python3.10/site-packages (from stevedore>=3.0.0->qiskit-terra==0.25.2.1->qiskit>=0.36.1->openqaoa-qiskit==0.2.2->openqaoa==0.2.2) (5.11.1)\n", - "INFO: pip is looking at multiple versions of jsonschema to determine which version is compatible with other requirements. This could take a while.\n", - "Collecting jsonschema (from basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2)\n", - " Obtaining dependency information for jsonschema from https://files.pythonhosted.org/packages/0f/bf/a84bc75f069f4f156e1c0d9892fb7325945106c6ecaad9f29d24360872af/jsonschema-4.19.1-py3-none-any.whl.metadata\n", - " Using cached jsonschema-4.19.1-py3-none-any.whl.metadata (7.9 kB)\n", - " Obtaining dependency information for jsonschema from https://files.pythonhosted.org/packages/b5/5c/ae834dd4160bbe9a4feb6e1f3e6189ab7772408823e294bd12eb6b4b4f44/jsonschema-4.18.6-py3-none-any.whl.metadata\n", - " Using cached jsonschema-4.18.6-py3-none-any.whl.metadata (7.8 kB)\n", - " Obtaining dependency information for jsonschema from https://files.pythonhosted.org/packages/d3/a4/54273ac37a667c3fcf93916fda59b36f0ad79950e4e56ad839ef2e3e1159/jsonschema-4.18.5-py3-none-any.whl.metadata\n", - " Using cached jsonschema-4.18.5-py3-none-any.whl.metadata (7.7 kB)\n", - " Obtaining dependency information for jsonschema from https://files.pythonhosted.org/packages/a1/ba/28ce987450c6afa8336373761193ddaadc1ba2004fbf23a6407db036f558/jsonschema-4.18.4-py3-none-any.whl.metadata\n", - " Using cached jsonschema-4.18.4-py3-none-any.whl.metadata (7.8 kB)\n", - " Obtaining dependency information for jsonschema from https://files.pythonhosted.org/packages/3a/34/ea34f7979d4f9ed1fa3b5c66000bc4e445c570f642ad478796f5ebaae45a/jsonschema-4.18.3-py3-none-any.whl.metadata\n", - " Using cached jsonschema-4.18.3-py3-none-any.whl.metadata (7.9 kB)\n", - " Obtaining dependency information for jsonschema from https://files.pythonhosted.org/packages/03/83/9a89e40dba1498ce9777865fa0bec0bfc3c1831679cdee814ec8dd223904/jsonschema-4.18.2-py3-none-any.whl.metadata\n", - " Using cached jsonschema-4.18.2-py3-none-any.whl.metadata (7.8 kB)\n", - " Obtaining dependency information for jsonschema from https://files.pythonhosted.org/packages/1d/85/984ef667a097ce4e671c6a5d8251a2b4a80845922a3937c6e77c8e6954f7/jsonschema-4.18.1-py3-none-any.whl.metadata\n", - " Using cached jsonschema-4.18.1-py3-none-any.whl.metadata (7.8 kB)\n", - "INFO: pip is still looking at multiple versions of jsonschema to determine which version is compatible with other requirements. This could take a while.\n", - " Obtaining dependency information for jsonschema from https://files.pythonhosted.org/packages/8a/38/2c55180702a637be0fbb8aa95358213a750d25cad3e59869726a54309996/jsonschema-4.18.0-py3-none-any.whl.metadata\n", - " Using cached jsonschema-4.18.0-py3-none-any.whl.metadata (10 kB)\n", - " Using cached jsonschema-4.17.3-py3-none-any.whl (90 kB)\n", - "Collecting pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2)\n", - " Using cached pyrsistent-0.19.3-py3-none-any.whl (57 kB)\n", - "Requirement already satisfied: pycparser in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from cffi>=1.12->cryptography>=2.5->azure-identity<2.0.0,>=1.12.0->azure-quantum[qiskit]->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.21)\n", - "Requirement already satisfied: h11<0.15,>=0.13 in /home/kilian/.local/lib/python3.10/site-packages (from httpcore<0.17.0,>=0.15.0->httpx<0.24.0,>=0.23.0->qcs-api-client<0.22.0,>=0.21.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (0.14.0)\n", - "Requirement already satisfied: anyio<5.0,>=3.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from httpcore<0.17.0,>=0.15.0->httpx<0.24.0,>=0.23.0->qcs-api-client<0.22.0,>=0.21.0->pyquil<4.0.0,>=3.1.0->openqaoa-pyquil==0.2.2->openqaoa==0.2.2) (4.0.0)\n", - "Requirement already satisfied: argon2-cffi in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (23.1.0)\n", - "Requirement already satisfied: jinja2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (3.1.2)\n", - "Requirement already satisfied: jupyter-events>=0.6.0 in /home/kilian/.local/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.6.3)\n", - "Requirement already satisfied: jupyter-server-terminals in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.4.4)\n", - "Requirement already satisfied: nbconvert>=6.4.4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (7.8.0)\n", - "Requirement already satisfied: nbformat>=5.3.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (5.9.2)\n", - "Requirement already satisfied: overrides in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (7.4.0)\n", - "Requirement already satisfied: prometheus-client in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.17.1)\n", - "Requirement already satisfied: send2trash>=1.8.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.8.2)\n", - "Requirement already satisfied: terminado>=0.8.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.17.1)\n", - "Requirement already satisfied: async-lru>=1.0.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyterlab<5,>=4.0.2->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.0.4)\n", - "Requirement already satisfied: jupyter-lsp>=2.0.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyterlab<5,>=4.0.2->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.2.0)\n", - "Requirement already satisfied: tomli in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyterlab<5,>=4.0.2->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.0.1)\n", - "Requirement already satisfied: babel>=2.10 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyterlab-server<3,>=2.22.1->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.12.1)\n", - "Requirement already satisfied: json5>=0.9.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyterlab-server<3,>=2.22.1->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.9.14)\n", - "INFO: This is taking longer than usual. You might need to provide the dependency resolver with stricter constraints to reduce runtime. See https://pip.pypa.io/warnings/backtracking for guidance. If you want to abort this run, press Ctrl + C.\n", - "Collecting jupyterlab-server<3,>=2.22.1 (from notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2)\n", - " Obtaining dependency information for jupyterlab-server<3,>=2.22.1 from https://files.pythonhosted.org/packages/96/cd/cdabe44549d60e0967904f0bdd9e3756b521112317612a3997eb2fda9181/jupyterlab_server-2.25.0-py3-none-any.whl.metadata\n", - " Using cached jupyterlab_server-2.25.0-py3-none-any.whl.metadata (5.9 kB)\n", - " Obtaining dependency information for jupyterlab-server<3,>=2.22.1 from https://files.pythonhosted.org/packages/a7/0d/6d4eab0391bd4df1c43f308368d5e177b0fa8ac632267222a23b71317091/jupyterlab_server-2.24.0-py3-none-any.whl.metadata\n", - " Using cached jupyterlab_server-2.24.0-py3-none-any.whl.metadata (5.8 kB)\n", - "Requirement already satisfied: MarkupSafe>=2.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jinja2->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.1.3)\n", - "Requirement already satisfied: python-json-logger>=2.0.4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-events>=0.6.0->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.0.7)\n", - "Requirement already satisfied: rfc3339-validator in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-events>=0.6.0->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.1.4)\n", - "Requirement already satisfied: rfc3986-validator>=0.1.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jupyter-events>=0.6.0->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.1.1)\n", - "Requirement already satisfied: beautifulsoup4 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (4.12.2)\n", - "Requirement already satisfied: bleach!=5.0.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (6.0.0)\n", - "Requirement already satisfied: defusedxml in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.7.1)\n", - "Requirement already satisfied: jupyterlab-pygments in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.2.2)\n", - "Requirement already satisfied: mistune<4,>=2.0.3 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (3.0.1)\n", - "Requirement already satisfied: nbclient>=0.5.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.8.0)\n", - "Requirement already satisfied: pandocfilters>=1.4.1 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.5.0)\n", - "Requirement already satisfied: tinycss2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.2.1)\n", - "Requirement already satisfied: fastjsonschema in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from nbformat>=5.3.0->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.18.0)\n", - "Requirement already satisfied: argon2-cffi-bindings in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from argon2-cffi->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (21.2.0)\n", - "Requirement already satisfied: webencodings in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from bleach!=5.0.0->nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (0.5.1)\n", - "INFO: pip is looking at multiple versions of jsonschema[format-nongpl] to determine which version is compatible with other requirements. This could take a while.\n", - "INFO: pip is still looking at multiple versions of jsonschema[format-nongpl] to determine which version is compatible with other requirements. This could take a while.\n", - "Requirement already satisfied: fqdn in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.5.1)\n", - "Requirement already satisfied: isoduration in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (20.11.0)\n", - "Requirement already satisfied: jsonpointer>1.13 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.4)\n", - "Requirement already satisfied: uri-template in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.3.0)\n", - "Requirement already satisfied: webcolors>=1.11 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.13)\n", - "Requirement already satisfied: soupsieve>1.2 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from beautifulsoup4->nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=6.0->jupyter-nbextensions-configurator->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (2.5)\n", - "Requirement already satisfied: arrow>=0.15.0 in /home/kilian/miniconda3/envs/azure_nb/lib/python3.10/site-packages (from isoduration->jsonschema->basis-set-exchange->qdk->openqaoa-azure==0.2.2->openqaoa==0.2.2) (1.2.3)\n", - "Using cached openqaoa_braket-0.2.2-py3-none-any.whl (13 kB)\n", - "Using cached openqaoa_pyquil-0.2.2-py3-none-any.whl (13 kB)\n", - "Using cached pyquil-3.5.4-py3-none-any.whl (223 kB)\n", - "Using cached urllib3-1.26.17-py2.py3-none-any.whl (143 kB)\n", - "Using cached pydantic-1.10.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB)\n", - "Using cached jupyterlab_server-2.24.0-py3-none-any.whl (57 kB)\n", - "Building wheels for collected packages: openqaoa\n", - " Building wheel for openqaoa (pyproject.toml) ... \u001b[?25ldone\n", - "\u001b[?25h Created wheel for openqaoa: filename=openqaoa-0.2.2-py3-none-any.whl size=767646 sha256=1735c254514bad2afed461219384800f3b75c0237f8f712ef529d50896aab333\n", - " Stored in directory: /tmp/pip-ephem-wheel-cache-kcy9ulf0/wheels/db/02/91/5f3b6b8e46d61121b2ea3aa3d46bb26d9fdf1d92620bf4d11b\n", - "Successfully built openqaoa\n", - "Installing collected packages: urllib3, pyrsistent, pydantic, attrs, jsonschema, pyquil, openqaoa-pyquil, openqaoa-braket, jupyterlab-server, openqaoa\n", - " Attempting uninstall: urllib3\n", - " Found existing installation: urllib3 2.0.4\n", - " Uninstalling urllib3-2.0.4:\n", - " Successfully uninstalled urllib3-2.0.4\n", - " Attempting uninstall: attrs\n", - " Found existing installation: attrs 23.1.0\n", - " Uninstalling attrs-23.1.0:\n", - " Successfully uninstalled attrs-23.1.0\n", - " Attempting uninstall: jsonschema\n", - " Found existing installation: jsonschema 4.19.0\n", - " Uninstalling jsonschema-4.19.0:\n", - " Successfully uninstalled jsonschema-4.19.0\n", - " Attempting uninstall: jupyterlab-server\n", - " Found existing installation: jupyterlab_server 2.25.0\n", - " Uninstalling jupyterlab_server-2.25.0:\n", - " Successfully uninstalled jupyterlab_server-2.25.0\n", - "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", - "referencing 0.30.2 requires attrs>=22.2.0, but you have attrs 21.4.0 which is incompatible.\u001b[0m\u001b[31m\n", - "\u001b[0mSuccessfully installed attrs-21.4.0 jsonschema-4.17.3 jupyterlab-server-2.24.0 openqaoa-0.2.2 openqaoa-braket-0.2.2 openqaoa-pyquil-0.2.2 pydantic-1.10.13 pyquil-3.5.4 pyrsistent-0.19.3 urllib3-1.26.17\n" - ] - } - ], + "outputs": [], "source": [ "try:\n", " import openqaoa_azure\n", @@ -1067,8 +311,8 @@ " 'schedule': [1, 1, 1, 1],\n", " 'number_steps': 4,\n", " 'intermediate_steps': [{'counter': 0,\n", - " 'problem': ,\n", - " 'qaoa_results': ,\n", + " 'problem': ,\n", + " 'qaoa_results': ,\n", " 'exp_vals_z': array([0., 0., 0., 0., 0., 0., 0.]),\n", " 'corr_matrix': array([[ 0. , 0.15351551, -0.22415966, 0.06753463, 0.28993212,\n", " -0.28993212, -0.15351551],\n", @@ -1085,8 +329,8 @@ " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ]])},\n", " {'counter': 1,\n", - " 'problem': ,\n", - " 'qaoa_results': ,\n", + " 'problem': ,\n", + " 'qaoa_results': ,\n", " 'exp_vals_z': array([0., 0., 0., 0., 0., 0.]),\n", " 'corr_matrix': array([[ 0. , 0.1595476 , -0.35002771, 0.03823884, -0.29664148,\n", " -0.08613327],\n", @@ -1101,8 +345,8 @@ " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. ]])},\n", " {'counter': 2,\n", - " 'problem': ,\n", - " 'qaoa_results': ,\n", + " 'problem': ,\n", + " 'qaoa_results': ,\n", " 'exp_vals_z': array([0., 0., 0., 0., 0.]),\n", " 'corr_matrix': array([[ 0. , 0.99999992, -0.99999992, -0.9999999 , -0.99999992],\n", " [ 0. , 0. , -0.9999999 , -0.99999992, -0.99999993],\n", @@ -1110,17 +354,17 @@ " [ 0. , 0. , 0. , 0. , 0.99999992],\n", " [ 0. , 0. , 0. , 0. , 0. ]])},\n", " {'counter': 3,\n", - " 'problem': ,\n", - " 'qaoa_results': ,\n", + " 'problem': ,\n", + " 'qaoa_results': ,\n", " 'exp_vals_z': array([0., 0., 0., 0.]),\n", " 'corr_matrix': array([[ 0. , 0.22076627, -0.37883018, 0.00745541],\n", " [ 0. , 0. , 0.16551932, -0.22076627],\n", " [ 0. , 0. , 0. , 0.37883018],\n", " [ 0. , 0. , 0. , 0. ]])}],\n", - " 'atomic_ids': {0: 'd08d3022-5a77-479f-9cfa-16a812402643',\n", - " 1: '307746fa-79ea-429a-b851-325de86b5d73',\n", - " 2: '9c45c810-b05b-483c-a0f0-1f48611e1f8d',\n", - " 3: 'ebde1362-3258-495f-ba05-a875d8484a4b'}}" + " 'atomic_ids': {0: '1f40ddeb-3973-49dc-908f-35dcc4c46e19',\n", + " 1: '642f7c83-e19d-4d54-8a85-910d74bf0fd4',\n", + " 2: '4bed9c07-2f1c-41a7-a0ee-534db2969955',\n", + " 3: '49bc9121-d5f2-40de-bf88-1613b26a76db'}}" ] }, "execution_count": 10, @@ -1268,7 +512,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 13, "id": "f9999c24-a924-4126-9514-a0d2d9189e9b", "metadata": {}, "outputs": [], @@ -1290,7 +534,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 14, "id": "a5e416ae", "metadata": {}, "outputs": [], @@ -1307,7 +551,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 15, "id": "4e0c0346-575c-4e32-96a4-dfd8deb14b36", "metadata": {}, "outputs": [], @@ -1315,8 +559,6 @@ "# Connect to the Azure Quantum workspace through OpenQAOA\n", "resource_id = ''\n", "az_location = ''\n", - "resource_id=\"/subscriptions/55f152d4-8edb-44bb-9bf6-4385f01b0561/resourceGroups/L3Concept/providers/Microsoft.Quantum/Workspaces/TestingOpenQAOA\"\n", - "az_location=\"westus\"\n", "\n", "# Set a quantum device to run our instance\n", "device = create_device(location='azure', name=backend_to_use, resource_id=resource_id, az_location=az_location)" @@ -1324,7 +566,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 16, "id": "af73063b-6710-4b3e-a8cf-9d113e5a7520", "metadata": {}, "outputs": [], @@ -1334,7 +576,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 17, "id": "bc5265d1-fdd1-42c3-bea1-43ea1147205e", "metadata": {}, "outputs": [], @@ -1347,14 +589,14 @@ "id": "f5dc395e", "metadata": {}, "source": [ - "Job submission to the Azure backend is made internally in the optimization loop in OpenQAOA.\n", + "Job submission to the Azure backend is made internally in the optimization loop in OpenQAOA. You can submit Jobs one at a time using the optimization loop or group them with the help of the Azure Session feature.\n", "\n", "This cell can take a few minutes to execute (note that executing on real QPUs can take longer run time)." ] }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 18, "id": "2ef2a984-e1c7-43b5-9501-c669a9d26944", "metadata": {}, "outputs": [ @@ -1362,20 +604,22 @@ "name": "stdout", "output_type": "stream", "text": [ - "................................................................................................................................................................................................................................................................................................................................" + ".............................................................................................................................................................................................................................................................................................................................................................................................................." ] } ], "source": [ "# Job submission to Azure Quantum is done internally\n", "# r_qpu.optimize()\n", + "\n", + "# Jobs can also be grouped using Azure sessions\n", "with r_qpu.device.backend_device.open_session(name=\"RQAOA\") as session:\n", " r_qpu.optimize()" ] }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 19, "id": "24512456-8bc7-4820-9ac7-fd678a43b1a2", "metadata": {}, "outputs": [], @@ -1391,7 +635,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB4kAAAKaCAYAAAAjwm9WAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xUZfbH8e8kkNBD7713RJrAqiAddBcUFlddARX5KYiKFRs2xF1RUVQU1t5FxAoI0pUiRRSQgID03hJqgGR+f5wdQpaWMjPPlM/79ZrXc5PM3HvIlif3nuc5x+P1er0CAAAAAAAAAAAAAESFGNcBAAAAAAAAAAAAAACChyQxAAAAAAAAAAAAAEQRksQAAAAAAAAAAAAAEEVIEgMAAAAAAAAAAABAFCFJDAAAAAAAAAAAAABRhCQxAAAAAAAAAAAAAEQRksQAAAAAAAAAAAAAEEVIEgMAAAAAAAAAAABAFCFJDAAAAAAAAAAAAABRhCQxAAAAAAAAAAAAAEQRksRAmFm+fLl69uypSpUqKU+ePCpXrpw6dOig0aNHZ3jfM888oy+//NJNkJIOHTqkYcOGqXPnzipatKg8Ho/eeecdZ/EAAOBv4TInL1q0SIMGDVK9evWUP39+VaxYUX//+9+1Zs0aZzEBAOBP4TInr1y5Ur169VLVqlWVL18+FS9eXJdddpm++eYbZzEBAOBv4TIv/6/hw4fL4/Gofv36rkMBgsbj9Xq9roMAkDnz5s1T27ZtVbFiRfXp00elS5fW5s2btWDBAq1bt05r16499d4CBQqoZ8+ezhKzGzZsUJUqVVSxYkVVrVpVs2bN0ttvv62+ffs6iQcAAH8Kpzm5Z8+e+umnn9SrVy81bNhQO3bs0CuvvKJDhw5pwYIF3AADAMJaOM3JkyZN0ssvv6yWLVuqbNmyOnLkiCZMmKC5c+fqjTfe0K233uokLgAA/CWc5uXTbdmyRbVq1ZLH41HlypW1YsUK1yEBQZHLdQAAMm/48OFKSEjQokWLVLhw4Qw/27Vrl5ugzqFMmTLavn27SpcurcWLF6tZs2auQwIAwG/CaU4eMmSIPvroI8XFxZ36Xu/evdWgQQM9++yz+uCDDxxGBwBAzoTTnNy1a1d17do1w/cGDRqkJk2a6IUXXiBJDAAIe+E0L5/u3nvv1SWXXKLU1FTt2bPHdThA0FBuGggj69atU7169c6YYCWpZMmSp449Ho8OHz6sd999Vx6PRx6PJ8MO3q1bt+qmm25SqVKlFB8fr3r16umtt97KcL5Zs2bJ4/Ho008/1UMPPaTSpUsrf/78+utf/6rNmzdfMNb4+HiVLl062/9WAABCWTjNya1atcqQIJakGjVqqF69elq1alXW/uEAAISYcJqTzyY2NlYVKlTQgQMHsvV5AABCSTjOy3PmzNHnn3+uUaNGZfWfC4Q9dhIDYaRSpUqaP3++VqxYcd7SkO+//75uueUWNW/e/NRK5GrVqkmSdu7cqUsuuUQej0eDBg1SiRIlNHnyZN18881KTk7WXXfdleFcvl4MDzzwgHbt2qVRo0apffv2WrZsmfLmzRuwfysAAKEs3Odkr9ernTt3ql69eln7hwMAEGLCcU4+fPiwjh49qqSkJH399deaPHmyevfunf1fAgAAISLc5uXU1FTdcccduuWWW9SgQYOc/eOBcOQFEDamTp3qjY2N9cbGxnpbtmzpvf/++73ff/+99/jx42e8N3/+/N4+ffqc8f2bb77ZW6ZMGe+ePXsyfP/aa6/1JiQkeI8cOeL1er3emTNneiV5y5Ur501OTj71vs8++8wryfvSSy9lOu5FixZ5JXnffvvtTH8GAIBQFq5zss/777/vleR98803s/xZAABCSTjOyQMGDPBK8kryxsTEeHv27Ondt29fFv7VAACEpnCbl1955RVvQkKCd9euXV6v1+u9/PLLvfXq1cvKPxkIa5SbBsJIhw4dNH/+fP31r3/Vr7/+qn//+9/q1KmTypUrp6+//vqCn/d6vZowYYKuuuoqeb1e7dmz59SrU6dOSkpK0tKlSzN85sYbb1TBggVPfd2zZ0+VKVNGkyZN8vu/DwCAcBHOc3JiYqIGDhyoli1bqk+fPln6LAAAoSYc5+S77rpL06ZN07vvvqsuXbooNTVVx48fz9o/HACAEBRO8/LevXv12GOP6dFHH1WJEiWy9w8GwhxJYiDMNGvWTF988YX279+vn3/+WUOHDtXBgwfVs2dP/f777+f97O7du3XgwAGNHTtWJUqUyPDq16+fJGnXrl0ZPlOjRo0MX3s8HlWvXl0bNmzw678LAIBwE45z8o4dO9StWzclJCTo888/V2xsbKY/CwBAqAq3Obl27dpq3769brzxRn377bc6dOjQqYfhAACEu3CZlx955BEVLVpUd9xxR9b/kUCEoCcxEKbi4uLUrFkzNWvWTDVr1lS/fv00fvx4DRs27JyfSUtLkyTdcMMN59w51LBhw4DECwBApAqXOTkpKUldunTRgQMHNHfuXJUtW9av5wcAwLVwmZP/V8+ePTVgwACtWbNGtWrVCui1AAAIllCel//44w+NHTtWo0aN0rZt2059/9ixYzpx4oQ2bNigQoUKqWjRojm+FhDKSBIDEaBp06aSpO3bt5/6nsfjOeN9JUqUUMGCBZWamqr27dtn6tx//PFHhq+9Xq/Wrl1LMhkAgLMI1Tn52LFjuuqqq7RmzRr98MMPqlu3bqauCQBAuArVOflsjh49KskWdAEAEIlCbV7eunWr0tLSNHjwYA0ePPiMn1epUkV33nmnRo0alakYgHBFuWkgjMycOfOs5ad8/RVOX3GcP39+HThwIMP7YmNjdc0112jChAlasWLFGefZvXv3Gd977733dPDgwVNff/7559q+fbu6dOmS3X8GAABhL5zm5NTUVPXu3Vvz58/X+PHj1bJly/O+HwCAcBJOc/L/lseUpBMnTui9995T3rx5WcQFAAh74TIv169fXxMnTjzjVa9ePVWsWFETJ07UzTfffMF/LxDuPF4angBho379+jpy5Ih69Oih2rVr6/jx45o3b54+/fRTVahQQb/88osKFy4sSerWrZtmz56tJ598UmXLllWVKlXUokUL7dy5Uy1atNDu3bvVv39/1a1bV/v27dPSpUv1ww8/aN++fZKkWbNmqW3btmrQoIE8Ho/69eunnTt3atSoUSpfvrx+/fVX5cuX77zxvvLKKzpw4IC2bdumMWPG6Oqrr1bjxo0lSXfccYcSEhIC+vsCACBQwmlOvuuuu/TSSy/pqquu0t///vczfn7DDTcE5HcEAEAwhNOc3KNHDyUnJ+uyyy5TuXLltGPHDn344YdKTEzU888/ryFDhgTjVwYAQMCE07x8Nm3atNGePXvOmqAGIpIXQNiYPHmy96abbvLWrl3bW6BAAW9cXJy3evXq3jvuuMO7c+fODO9NTEz0XnbZZd68efN6JXn79Olz6mc7d+70Dhw40FuhQgVv7ty5vaVLl/a2a9fOO3bs2FPvmTlzpleS9+OPP/YOHTrUW7JkSW/evHm93bp1827cuDFT8VaqVMkr6ayvP//80x+/EgAAnAinOfnyyy8/53zM7QAAINyF05z88ccfe9u3b+8tVaqUN1euXN4iRYp427dv7/3qq6/89vsAAMClcJqXz+byyy/31qtXL1ufBcIRO4kBnJVvJdb48ePVs2dP1+EAABC1mJMBAAgNzMkAAIQO5mUg5+hJDAAAAAAAAAAAAABRhCQxAAAAAAAAAAAAAEQRksQAAAAAAAAAAAAAEEXoSQwAAAAAAAAAAAAAUYSdxAAAIMu2bt2qG264QcWKFVPevHnVoEEDLV682HVYAAAAAAAAAIBMyOU6AAAAEF7279+v1q1bq23btpo8ebJKlCihP/74Q0WKFHEdGgAAAAAAAAAgE6Kq3HRaWpq2bdumggULyuPxuA4HABCmvF6vDh48qLJlyyomJvqKcjz44IP66aefNHfu3GyfgzkZAOAP0T4n+wNzMgDAH5iTc445GQDgL5mdl6MqSbxlyxZVqFDBdRgAgAixefNmlS9f3nUYQVe3bl116tRJW7Zs0ezZs1WuXDndfvvt6t+//zk/k5KSopSUlFNfb926VXXr1g1GuACAKBCtc7I/cJ8MAPAn5uTsY04GAPjbheblqCo3XbBgQUn2SylUqJDjaAAA4So5OVkVKlQ4Na9Em/Xr12vMmDEaMmSIHnroIS1atEiDBw9WXFyc+vTpc9bPjBgxQk888cQZ32dOBgDkRLTPyf7AfTIAwB+Yk3OOORkA4C+ZnZejaidxcnKyEhISlJSUxEQLAMi2aJ9P4uLi1LRpU82bN+/U9wYPHqxFixZp/vz5Z/3M/+4k9v2hEq2/QwCAf0T7nOwP/A4BAP7AfJJz/A4BAP6S2TmFBhEAACBLypQpc0ap6Dp16mjTpk3n/Ex8fLwKFSqU4QUAAAAAAAAAcIMkMQAAyJLWrVtr9erVGb63Zs0aVapUyVFEAAAAAAAAAICsIEkMAACy5O6779aCBQv0zDPPaO3atfroo480duxYDRw40HVoAAAAAAAAAIBMIEkMAACypFmzZpo4caI+/vhj1a9fX0899ZRGjRql66+/3nVoAAAAAAAAAIBMyOU6AAAAEH6uvPJKXXnlla7DAAAAAAAAAABkAzuJAQAAAAAAAAAAACCKkCQGAAAAAAAAAAAAgChCkhgAAAAAAAAAAAAAoghJ4ij1+OPSPfdIXq/rSAAAiG6ffir17i0dPuw6EgAAAAAAws+WLdL110sPPeQ6EgAIL2GVJN66datuuOEGFStWTHnz5lWDBg20ePFi12GFnX37pCeekF54QVq3znU0AABEL69XuvZa6bPPpDFjXEcDAABOt2yZ9MEHUlKS60gAAMD59OghffSRNGKEdPSo62gAIHyETZJ4//79at26tXLnzq3Jkyfr999/1/PPP68iRYq4Di3sFC0q1a9vx6tXu40FAIBo9uuv6cc7driLAwAAnOmaa6R//lP65RfXkQAAgPN54430402b3MUBAOEmbJLE//rXv1ShQgW9/fbbat68uapUqaKOHTuqWrVq5/xMSkqKkpOTM7xg6ta1MTHRbRwAAESzSZPSj9evdxcHAADIaMkSqWZNO16xwm0sAAAgo6lTpddfT//64ovTn3dv3OgmJgAIR2GTJP7666/VtGlT9erVSyVLllTjxo01bty4835mxIgRSkhIOPWqUKFCkKINXcePS2lpUq1a9jU7iQEAcKdjR6lBAztetcptLAAAwOzbJzVvLk2ZYl+vXOk2HgAAYI4ckQYNkjp1kgYPln77Lf1nlSrZyE5iAMi8sEkSr1+/XmPGjFGNGjX0/fff67bbbtPgwYP17rvvnvMzQ4cOVVJS0qnX5s2bgxhxaHrzTal8eem77+xrdhIDAOBO06a2AnrIEOmBB1xHAwAAJJub09LSv2YnMQAA7v38s9S4sfTqq/b1gAFS9erpP/clidlJDACZl8t1AJmVlpampk2b6plnnpEkNW7cWCtWrNDrr7+uPn36nPUz8fHxio+PD2aYIW/iRGn7dunSS6WlS0kSAwDgWunS0vPPu44CAAD4+NpBdOxoCeOVKyWvV/J43MYFAEA0OnFCGj5cevppKTVVKltWeucdqUOHjO8jSQwAWRc2O4nLlCmjur7GAv9Vp04dbaJ+RKbt3y/NnGnHvt1Khw5JBw+6iwkAgGj10Uf24PnYMdeRAAAAn7Q0afJkOx4yRIqJsXvpHTvcxgUAQDRKS5OuuEJ64glLEF97rbR8+ZkJYknq1cvusZ9+OvhxAkC4CpskcevWrbX6fxrorlmzRpV8S4RwQd99J508KdWrJ118sfVnOHRIKljQdWQAAESXtDR78NypkzRvnnTggPTjj9KyZa4jAwAgui1eLO3ZIxUqZA+lfWUsKTkNAEDwxcRI3btLhQtLH39sr6JFz/7eatUseVyxYjAjBIDwFjZJ4rvvvlsLFizQM888o7Vr1+qjjz7S2LFjNXDgQNehhY2JE23s0cPGChVsogUAAMG1bJm0c6dUoID0l79YT6VLL5VeeMF1ZAAARLfTS03nzi09+6z07bdS06Zu4wIAIFps3Zpxcdbdd0urVtkuYgCAf4VNirBZs2aaOHGiPv74Y9WvX19PPfWURo0apeuvv951aGHh6FFpyhQ79iWJAQCAG74ylu3aSXFxUp069vWqVe5iAgAA6Unirl1t7NFD6tZNKlLEXUwAAESLTz6RGjSQrrlGOnLEvhcTI5UunbnPf/ihlabesydwMQJAJMnlOoCsuPLKK3XllVe6DiMsTZ1qE2ulSlLjxva9hQttx1LZstKLL7qNDwCAaOJ7AN2li42+JHFiouT1Sh6Pm7gAAIh2r79u87RvjgYAAIG3b580cKAliSVr97Bvn5QvX9bO8+ij0p9/2oLsv/zF/3ECQKQJm53EyJmaNa334W23pT94Tk6WPvssfTcTAAAIvH37pAUL7Nj3ALp6dSlXLunQISutBQAA3Lj4YumRR9J3LKWkSOPHS08/bQu5AACAf02daruHP/lEio2VHn9c+uknqXz5rJ+rUiUbN270a4gAELHCaicxsq9OHen55zN+r1YtG9etk06csH5LAAAgsKZOldLSpHr1pIoV7Xu5c0vVqkmrV1vJ6ezcDAMAAP/zeKTrrpNOnpT69JEqVHAdEQAAkeH4cemee6RXXrGva9aU3n9fat48++f0JYk3bcp5fAAQDdhJHMXKl7eSHSdPSuvXu44GAIDoMG+ejf9bxpK+xAAAuHPypDRggFXbOnEi/ftxcfbQWpJWrHATGwAAkSh3bmnNGjseNEj65ZecJYil9IXY7CQGgMwhSRwFPvtMmjYt442uJMXEpO8mXr06+HEBABCNXnpJWr7c+i2d7vS+xAAAILgWLJDGjrUWTTH/86SkXj0bV64MflwAAESSEyekI0fs2OOR3npLmjJFGj066/2Hz4Zy0wCQNSSJI1xamvUi7thR+v77M39OkhgAgODyeKT69aXKlTN+v3t36dVXpf79XUQFAEB0mzTJxs6drR/i6erXt5EkMQAA2bd6tdS6tTR4cPr3ypWTOnXy3zVIEgNA1pAkjnCLF0tbt0oFCkjt25/589q1bWTXEgAAbjVvLt1+u9S4setIAACIPr4kcdeuZ/7Mt5OYctMAAGRdWpr1HW7cWFq0SPriC2nHjsBc6/Ry015vYK4BAJGEJHGEmzjRxq5dpTx5zvx5rVrWYyklJbhxAQAQja66SrruOumPP1xHAgAAfLZulX791ap9nG03k28n8e+/24NuAACQOVu3WpWOO+6Qjh6VOnSw9kulSwfmepUrS1OnWn9jAMCFkSSOcL4kcY8eZ//51VdLhw9LH3wQvJgAAIhGe/dK330nffyxlDfv2d+zbJn0zjvSn38GMzIAAKLb5Mk2tmghFS9+5s+rVbPF1UeOSBs2BDU0AADC1scf20KradNs89Lo0dZ/uFy5wF0zLs4S0TVr2uIvAMD5kSSOYKtWWa+HuLizl8yS7Ge5cgU3LgAAotHUqVbuqkEDqXz5s7/n/vulfv2kGTOCGxsAANHsfKWmJbtn/vZba9Pk63UIAADOLSlJuvNO6cABqWlT29k7aJAUQzYCAEIK6cEI9sUXNrZrJxUq5DYWAACinW+XUpcu535PnTq2ynrVquDEBABAtPN6pZ077fhcSWLJdiUBAIDMSUiQxo2z5PDDD0u5cwfv2rNmSbNnS61aMX8DwIWwdieCLVpk49VXn/99//qX1KSJ9OGHgY8JAIBolJZmZbWk8yeJa9e2kSQxAADB4fFIP/0kbdwoNW7sOhoAACLH3/4mPf54cBPEklX/ePzx9EohAIBzI0kcwSZOtN6G11xz/vdt3SotXSr9+mtQwgIAIOosWSLt3i0VLCi1bn3u99WpY2NiYnDiAgAApmLF85fA3LFDGjFCeuih4MUEAEC46dRJ6t7dFl+54msN4TIGAAgXJIkjmMcjNWokFSly/vf5di3xQBoAgMDwlZru0OH8q6h9SeI//5SOHg18XAAARLtjxzL3vkOHLEH8wgtSampgYwIAIBylpFj7pK++kvLkcRcHSWIAyDySxBEqKzettWrZuHp1YGIBACDalStnrR26dTv/+0qWtMVdXq+0Zk1wYgMAIFr9+afNu3/7m7WGOJ8qVaS8ee0B+Lp1wYkPAIBwsnGj3cvmz2/3tq6QJAaAzCNJHIF275ZKlZL++U/pxIkLv9+3k3jdOun48cDGBgBANLr5ZmnxYqlfv/O/z+OhwgcAAMEyebLtJD5w4PylpiUpNja94sfKlQEPDQCAsONbRFW1qt3buuJLEu/dKx0+7C4OAAgHJIkj0Dff2CS4cuX5S1r6lC0rFShgu49ZEQ0AQOBk5kb5ySel77+30tQAACBwJk2ysWvXzL2/fn0bSRIDAHCm05PELhUuLBUqZMebNjkNBQBCHkniCDRxoo09emTu/R4PJacBAAiUpUutj2FmtW8vdewoFS0auJgAAIh2R49KM2bYcWaTxPXq2bhiRWBiAgAgnK1fb2O1am7jkCg5DQCZlct1APCvgweladPsOLNJYslWRB88mLny1AAAIHPS0qROnaTkZOnnn6VGjVxHBAAAJGn2bEsUly+fvkP4QthJDADAufl2EodCkvjdd603cuXKriMBgNDGTuIIM3mylJIiVa+evso5M95+23YR9+oVuNgAAIg2ixdLe/ZIefJIdetm7jPHj0sffSQ99pi1ggAAILOeffZZeTwe3XXXXa5DCXmnl5rObN9E3z32unXSyZOBiQsAgHCVK5eUL5/7ctOS1LixVLOmFBfnOhIACG0kiSPM6aWmM3ujK2XtvQAAIHMmT7axQwcpd+7MfSY2VrrpJumpp6QNGwIWGgAgwixatEhvvPGGGjZs6DqUkOf1St99Z8eZLTUtSRUrSsuWSfv22YNwAABON2LECDVr1kwFCxZUyZIl1b17d62Oot5+EyZYq6UOHVxHAgDILJLEESQlJf1GNyulpk/n9doLAADk3Om7lDIrNlaqVcuOV63yf0wAgMhz6NAhXX/99Ro3bpyKFCniOpyQl5oq3X67PcRu1y7zn/N4rHVEnjyBiw0AEL5mz56tgQMHasGCBZo2bZpOnDihjh076vDhw65DCxqPx+5pXduwQXriCWnECNeRAEBoI0kcQVJSpCFDpPbtpRYtsvbZ1FSpdWupaFFp9+7AxAcAQDTZvVtatMiOO3fO2mfr1LExMdG/MQEAItPAgQPVrVs3tW/f/oLvTUlJUXJycoZXtMmVS7rnHmnqVKlAAdfRAAAixZQpU9S3b1/Vq1dPjRo10jvvvKNNmzZpyZIlZ30/c3Lg7NghPf64NGaM60gAILSRJI4ghQrZ5DdtmhSTxf9kY2Ol7dulAwd4IA0AgD98/71V52jUSCpbNmufrV3bRnYSAwAu5JNPPtHSpUs1IpNbZUaMGKGEhIRTrwoVKgQ4wsiydKl0yy3Sww+7jgQAEOqSkpIkSUWLFj3rzyNpTh4/3u59hw1zHYmpWNHGrVulEyfcxgIAoYwkMU7xlbaMolYZAAAEjK8fcZcuWf+sbycxSWIAwPls3rxZd955pz788EPlyWQN5KFDhyopKenUa/PmzQGOMrQcOiS9+660c2f2Pr9nj/Tmm9IXX/g3LgBAZElLS9Ndd92l1q1bq379+md9TyTNyb//Lv32m7Rtm+tITOnSUlyclJYWOjEBQCjK5ToA+MeqVTYZd+4s5c+fvXPUri1NmcJOYgAA/OHJJ6VLLpEuvzzrnz09Sez1Wl8nAAD+15IlS7Rr1y5dfPHFp76XmpqqOXPm6JVXXlFKSopi/6cxYHx8vOLj44MdasiYMUPq21eqVk1auzbrn/c95//jD2v5FMW/SgDAeQwcOFArVqzQjz/+eM73RNKcvH69jVWruo3DJyZGqlBBWrdO2rhRqlTJdUQAEJrYSRwh/vMfqWdPaeDA7J/DV9qSJDEAICueffZZeTwe3XXXXa5DCSnVqkl33CE1bJj1z9asaTe1Bw5Iu3b5PTQAQIRo166dli9frmXLlp16NW3aVNdff72WLVt2RoIY0qRJNman0ocklSkjFS4spaZShQsAcHaDBg3St99+q5kzZ6p8+fKuwwmKdetsrFbNbRyn8yWGN250GwcAhDJ2EkcAr1eaONGO//rX7J+HctMAgKxatGiR3njjDTXMTiYU55Qnj/U0rlxZKlHCdTQAgFBVsGDBM0pY5s+fX8WKFTtnacto5vWmJ4m7ds3eOTweqV496aefpJUrs7cYDAAQmbxer+644w5NnDhRs2bNUpUqVVyHFDS+JHGo7CSW0pPEmza5jQMAQhk7iSPAb79Jf/5pD5Q7dcr+eXw7if/808pmAQBwPocOHdL111+vcePGqUiRIq7DCSn33SeNGyclJWX/HO3bS9Wr245iAACQcytXSps3271zmzbZP0+9ejauWOGXsAAAEWLgwIH64IMP9NFHH6lgwYLasWOHduzYoaNHj7oOLaCOHJF27LDjUEwSs5MYAM6NncQR4IsvbOzUKfv9iCWpVClbBV2unJW3LFXKL+EBACLUwIED1a1bN7Vv315PP/30ed+bkpKilNNWICUnJwc6PGd27ZJGjrTjK6+UEhLcxgMAiC6zZs1yHULI8u0ivuIKKW/e7J/Ht0l75cqcxwQAiBxjxoyRJLX5n5VIb7/9tvr27Rv8gILE14+4cGGpaFGnoWTQv7907bVSxYquIwGA0EWSOAL4Sk336JGz83g80q+/5jweAEDk++STT7R06VItWrQoU+8fMWKEnnjiiQBHFRq+/97Gxo2tb2F2/fmn9P77Uq5c0kMP+Sc2AACiWU5LTfv4dhIfOJCz8wAAIovX63UdghOHD9vcGGoFxsqWdR0BAIQ+ChiGuXXrpOXLpdhY6aqrXEcDAIgGmzdv1p133qkPP/xQefLkydRnhg4dqqSkpFOvzZs3BzhKdyZPtrFLl5ydZ8cOadgw6bXXch4TAADR7vBhad48O87pHP2Xv0jJyRKbtgEAkFq0sBYMc+e6jgQAkFXsJA5zvpvSNm38W87j6NGcld8CAESuJUuWaNeuXbr44otPfS81NVVz5szRK6+8opSUFMXGxmb4THx8vOLj44MdatClpqbvJM7pA+jatW3cutUeRBcqlLPzAQAQzfLnt37Ec+fmvF9iXJy9AABA6PJ6paeftipdI0eGVilsAAgVJInD3M03S23b2sNjf5g1S+rVy26aFy70zzkBAJGlXbt2Wr58eYbv9evXT7Vr19YDDzxwRoI4mvz8s7Rvn/ViuuSSnJ2rSBGpVClp505p9WqpWTO/hAgAQNQqVUrq2dN1FAAAIBg8Hun116Vt26TbbydJDABnQ7npCFC1qnTRRf45V4kS0p49UmKirbYCAOB/FSxYUPXr18/wyp8/v4oVK6b69eu7Ds8pX6npjh2tl3BO1alj46pVOT8XAADwn88+s4pew4e7jgQAALeaN5caN7aWiKGmUiUbN250GwcAhCqSxGEsEEnc6tWlmBjbmbxjh//PDwBAJNuxw+bRrl39cz6SxAAA5Nwvv1gFrldf9d859+6VZs9O73MMAEA0Sk2Vfv1VWrZMKljQdTRnqljRRpLEAHB2YZskfvbZZ+XxeHTXXXe5DsWZHj2kv/1N+u03/50zPl6qUsWOV6/233kBAJFt1qxZGjVqlOswnBs7Vtq9W7rmGv+cz9eXODHRP+cDACAaffedtVb64Qf/nbNePRtXrvTfOQEACDfbtknHj1slrfLlXUdzJnYSA8D5hWWSeNGiRXrjjTfUsGFD16E4s3+/3eh+/bWUJ49/z80DaQAAsq9oUalAAf+cy7eTeM0a/5wPAIBoNGmSjf6q9CGlJ4k3bpQOHvTfeQEACCfr1tlYubJ/Wi75G0liADi/sEsSHzp0SNdff73GjRunIkWKuA7Hme++k06elOrWlWrW9O+5SRIDAJB1x475/5ytWkm//26luwAAQNbt2SMtWGDHXbr477zFikmlS9vx77/777wAAIST9ettrFrVbRznQpIYAM4v7JLEAwcOVLdu3dS+ffsLvjclJUXJyckZXpFi4kQbe/Tw/7lr1bKRctMAAGTOyZNShQpS69ZWbstf8ue33cS5c/vvnAAARJOpUyWvV2rY0P9lMCk5DQCIdr4kcbVqbuM4F1+SeNMmt3EAQKgKqyTxJ598oqVLl2rEiBGZev+IESOUkJBw6lWhQoUARxgcR49KU6bY8dVX+//8F10ktW8vtWzp/3MDABCJfv7ZdiqtWiWVKuU6GgAA4BOIUtM+9evbSJIYABCtfOWmQzVJXLOmVcvcssV1JAAQmsImSbx582bdeeed+vDDD5Unk014hw4dqqSkpFOvzZs3BzjK4Jg6VTpyxFZCNW7s//M3ayZNmyY99pj/zw0AQCTyPYDu1EmKjfXvub/7TurTR3r3Xf+eFwCASJeamr7AOhBJ4nr1rOQ0FT8AANGqXDmrfuWrTBlq4uIstrx5XUcCAKEpBNvJn92SJUu0a9cuXXzxxae+l5qaqjlz5uiVV15RSkqKYv/nqWx8fLzi4+ODHWrA+UpNd+8ueTxOQwEAAJImT7bRn70OfZYvl957zx509+nj//MDABCp9u+3CllLlwamUtbNN0v9+/v/vAAAhIuRI+0FAAhPYZMkbteunZYvX57he/369VPt2rX1wAMPnJEgjmStW1spj0CUmj5dcrI9kC5SJLDXAQAgnO3YYQ+fJdtJ7G+1a9u4apX/zw0AQCQrXlz65hu7rw3EI4OYsKnNBgBA9Pr0U+n776UePaSrrnIdDQCElrC5pSlYsKDq16+f4ZU/f34VK1ZM9X2NgKJE//7S3LnSZZcF7hp33iklJEivvBK4awAAEAl8ZSybNg1MP+I6dWxMTJTS0vx/fgAAIl0w1pR7vYG/BgAAoSQtLTzmv59+kt5+W5o3z3UkABB6wiZJjOAqW9bGxES3cQAAEOoCWWpakqpVs16HR45IW7YE5hoAAESa5GRp48bAX+fRR6Xy5aVx4wJ/LQAAQsnEiVaBsl8/15GcX6VKNgbj7wIACDdhnSSeNWuWRo0a5TqMoElLkz78UNq7N/DXqlXLxtWrA38tAADCWffu1gIiUGWrcuWSatSwY0pOAwCQOV98IVWuLP3jH4G9ztGj0tat0ooVgb0OAAChZt06KSlJOnHCdSTnV7GijSSJAeBMYZ0kjjaLF0s33CBVry6dPBnYa/n6HyYmhkfZEAAAXPnHP6QJE6RmzQJ3DfoSAwCQNZMm2VizZmCv4+t+tXJlYK8DAECoWb/exqpV3cZxIewkBoBzI0kcRiZOtLFjR9tVFEhVq1rfpsOHbVU0AABwp04dyeORdu50HQkAAKHvxAlp6lQ77to1sNeqV89GksQAgGizbp2N4ZIk3rZNOn7cbSwAEGpIEocRX5K4R4/AXysuznogSpScBgDgXD74QFq7NvDXue8+W7g1YkTgrwUAQLibP9/KXxYvLjVtGthr1alj486d0p49gb0WAAChxJck9j1DDlUlSkjx8VYtc8sW19EAQGghSRwmVq2yZG1cXOBXQvucXnIaAABktH279M9/WhnLQD8UTkiQ8uYN7DUAAIgUvlLTnTtbhaxAKlBAqlLFjtlNDACIFidOSJs22XGo7ySOiUnvS0zFTADIKMBFi+Evvl3E7dpJhQoF55rdukllykh16wbnegAAhJMpU2xs2tR2KgEAgNDgSxIHa4F1vXrSn39akvjyy4NzTQAAXNq0SUpNlfLksefHoW7GDKlYMRZfA8D/IkkcJoJZatrn1luDdy0AAMKN7wF0ly7Bud5DD0lz5kgvvCA1bx6cawIAEG42b5aWL7ddQx07BueaLVtKBw5IRYoE53oAALh28qQtxvJ4bM4NdeXLu44AAEITSeIwsGuXtHSpTbp/+5vraAAAwIkT0rRpdhysXUpLl0o//ST9+itJYgAAzqVoUWn8eGubVKxYcK750EP2AgAgWtSqJX33nesoAAA5RZI4DJQsKW3bJs2fb8fBdOSItGaNVKeOFB8f3GsDABCq5s+XkpLs4XPTpsG5Zu3a0vff20NvAABwdvnzSz17uo4CAACEkt9+k156yVpF/etfrqMBgNARBsUgIEmlSknduwf/upUrS40bS6tWBf/aAACEqsmTbezUSYqNDc4169SxkTkZAIDQdOSIdPy46ygAAAi8o0ddR5A1+/ZJb70lffGF60gAILSQJMZ51axpI7uWAABIF+xS0xJJYgAALuTnn6Unn7TWDMHWsaNUoIA0d27wrw0AQLC1amUtHubMcR1J5lSqZOPmzVJamttYACCUkCQOce+9J7VtK332mZvr165tI0liAADSzZwpffml1KVL8K7pm5M3brSdSgAAIKNPPpGGDZNefjn4186fX/J6pRUrgn9tAACCyeuV1q2T9u+XSpRwHU3mlC8vxcRIKSnSrl2uowGA0EGSOMSNHy/NmuUuSVurlo2rV7u5PgAAoahgQelvf7OV08FSooRdz+uV1qwJ3nUBAAgXkybZGMxKHz7169u4cmXwrw0AQDDt3SsdPGjHlSs7DSXTcueWypa1440b3cYCAKGEJHEIO3gwvZzl1Ve7iYGdxAAAhAaPR6pbV6pQwVZsAwCAdOvW2eLmXLmk9u2Df/169WxkJzEAINKtX29juXJS3rxuY8mKihVtJEkMAOlIEoewKVOsBEb16uk3nMHmSxKvXk2/BgAATpyQLrtMeuQR6fDh4F9/xgxp0yZrRQEAANJNnmzjX/4iJSQE//q+e/aVK63qBwAAkWrdOhurVnUbR1b5+hKTJAaAdCSJQ9jEiTb26GG7h1yoUsXKcRw9Km3Z4iYGAABCxbx50ty50tixblZM584d/GsCABAOXJaalqxVU65cUnKytHWrmxgAAAgG307iatXcxpFVviTx7t1u4wCAUJLLdQA4u5QU6dtv7bhHD3dx5Mol3XefVLhweJUPAQAgEHwPoDt1kmJYagcAQEg4ckSaOdOOXSWJ4+KkGjWkVaus5HT58m7iAAAg0MJ1J/GDD0qPPirly+c6EgAIHSSJQ9SMGdaTuEwZqUULt7EMH+72+gAAhApfKcsuXdxcf/9+6ZprbOX22rW2mAsAgGiXmGhJ2pIlpbp13cXRvbvUvLlUrJi7GAAACLRGjaTOnaWLL3YdSda4aEcBAKGOR4shqkABewBdsyY7lQAACAVbtkjLl1sLiI4d3cSQkCAtWGBtIP7803YsAQAQ7S6+WNqzx3oMumrVJEnPPOPu2gAABMudd9oLABD+SD+GqEsvtZKWL77oOhLp+HFp5UppzhzXkQAA4M6UKTa2aCEVL+4mhpgY63koWTlLAABgcueWqld3HQUAAAhVqanSzTdL7dtLSUmuowGA0ECSOMS5XAXts3SpVL++dN11riMBAMAdXz9iV6WmferUsTEx0W0cAACEgpMnJa/XdRTpfIus09JcRwIAgP8dOyYdOOA6iuyJjZW+/FKaPt2qjwAASBKHpDVrpE2bQudG17djaetW65MMAEA0KlXKegyGSpKYncQAAEgvv2w7iMeMcR2J7VAqWtQWWW/a5DoaAAD8b8YMqUgR6fLLXUeSPZUq2cg8DQCGJHEIuvdem7Bef911JKZIEalkSTtes8ZtLAAAuDJmjLRzp9Skids4ate2kSQxAABW6WP9etvB61psrFS1qh2vWOE2FgAAAmHdOhuLFXMbR3b5ksTsJAYAQ5I4BC1fbmPdum7jOJ3vgTSlLQEA0Sw21voCu3T6TuJQqToCAIALBw9Kc+bYcdeubmPxqVfPxpUr3cYBAEAgrF9vY7VqbuPILpLEAJARSeIQk5wsbdhgxw0aOA0lA1/J6dWr3cYBAIALiYmhk5CtUUMqW1a6+GLp0CHX0QAA4M706dKJE1ZuukYN19GY+vVtZCcxAESfOXPm6KqrrlLZsmXl8Xj05Zdfug7J73w7iX2VM8IN5aYBICOSxCHGdyNZrpz1MgoV7CQGAESrzZtt926VKlJKiutopPh4aetWaeZMqWBB19EAAODOpEk2hsouYomdxAAQzQ4fPqxGjRrp1VdfdR1KwPiSxOG6k7hiRRvZSQwAJpfrAJCRr9R0KO0ilkgSAwCi1+TJNpYtawlaAADgntcbmkli307iVauk1FRrVQEAiA5dunRRly5dMv3+lJQUpZy2Ejk5OTkQYfmN15tebjrcdxIfPuw2DgAIFewkDjG//WZjw4Zu4/hfjRtLw4fbCwCAaOJLEofSA2ifkyddRwAAgBvLl1tljbx5pcsvdx1NuipVpDx5pGPH0h+kAwBwNiNGjFBCQsKpV4UKFVyHdF7bt9v8FhOTnmwNNxddZAli3zN4AIh27CQOMaG6k7hMGemhh1xHAQBAcB0/Lv3wgx1nYUF4wE2dKt1yi1SzZnp8AABEk7x5pdtvt926efK4jiZdbKx0111S/vxSgQKuowEAhLKhQ4dqyJAhp75OTk4O+UTxbbdJhw5JuXO7jiR7cuWyFwDA8H+JIebOO6WWLe0FAADcmjfPboBLlrSqGqGiUCHrlZya6joSAADcqFFDCtWWjyNGuI4AABAO4uPjFR9GPY3KlpVee811FAAAf6LcdIi55hrpX/+SqlVzHcmZNm+WvvpKWrzYdSQAAATHTz/Z2KaNldQKFXXq2Lhtm5SU5DYWAIBbI0aMULNmzVSwYEGVLFlS3bt31+rVq12HBQAAEJJGjZI6dJAmTnQdCQC4F0KPOxHqXn9d6t5devNN15EAAFyKpofRCxbYGGoVPhISrBWEJCUmuo0FAODW7NmzNXDgQC1YsEDTpk3TiRMn1LFjRx0+fNh1aAHz66/S3LnSyZOuIzm7tDRp7Vpp+nTXkQAA4D+bN0sHD7qOIud+/93aNv36q+tIAMA9ksQhZPFiu4nct891JGdXu7aNPIwGgOgWTQ+j77hDeuABW2Ucany7iVetchsHAMCtKVOmqG/fvqpXr54aNWqkd955R5s2bdKSJUtchxYwL74oXXaZ9OijriM5u02brBx2167SiROuowEABMuhQ4e0bNkyLVu2TJL0559/atmyZdq0aZPbwPykd29rfRTuO3ArVbJx40a3cQBAKKAncQh58UXpo4+kZ56Rhg51Hc2ZSBIDACR7GH26d955RyVLltSSJUt02WWXOYoqMDp2tFcoqlNHmjGDeRkAkFHSf/sQFC1a9Kw/T0lJUUpKyqmvk5OTgxKXv6SlSZMn23GoztEVK0r580uHD9uOYt/CLgBAZFu8eLHatm176ushQ4ZIkvr06aN33nnHUVT+s26djb4ka7giSQwA6UgSh5Dly21s0MBtHOdSq5aNO3ZY/8OEBLfxAABCw4UeRkvh/0A6FLGTGADwv9LS0nTXXXepdevWql+//lnfM2LECD3xxBNBjsx/li6Vdu2SChaUWrd2Hc3ZxcRIdetKixZJK1eSJAaAaNGmTRt5vV7XYQTEoUM2/0pS1apuY8kpX5I4QjZ4A0COUG46RBw/nv6QN1STxIUKpfc/jNDWkwCALMrMw2jJHkgnJCScelWoUCGIUWbPt99KU6ZIoZrPvugiqVUrqVEj15EAAELFwIEDtWLFCn3yySfnfM/QoUOVlJR06rV58+YgRphzc+faePnlUlyc21jOx/dn0YoVbuMAAMAf/vzTxqJFpcKFnYaSY74k8ebNVqEEAKJZ2CSJR4wYoWbNmqlgwYIqWbKkunfvrtURlKlcvVo6edISsRUruo7m3Cg5DQA4XWYeRkvh+UD6kUekLl2kqVNdR3J2rVtLP/0kPfmk60gAAKFg0KBB+vbbbzVz5kyVL1/+nO+Lj49XoUKFMrzCyc8/23jJJW7juJB69WxcudJtHAAA+IOv1HS47yKWpLJlpdhY27S1Y4fraADArbBJEs+ePVsDBw7UggULNG3aNJ04cUIdO3bU4cOHXYfmF6eXmvZ43MZyPr6S0xGUnwcAZFNmH0ZL4fdA+tCh9Lm5ZUu3sQAAcD5er1eDBg3SxIkTNWPGDFWpUsV1SAG1cKGNLVq4jeNCfDuJSRIDACLB+vU2VqvmNg5/yJVLKl9eKl5c2rPHdTQA4FbY9CSeMmVKhq/feecdlSxZUkuWLNFll13mKCr/+e03G0O11LRP375SmzZSs2auIwEAuOL1enXHHXdo4sSJmjVrVkQ+jF60yMpOVagglSvnOprzO3bMVkCHeN4dABAgAwcO1EcffaSvvvpKBQsW1I7/bolJSEhQ3rx5HUfnX7t3p5e7bNrUbSwX4ttJvGaNlJIixce7jQcAgJyIpJ3Eks3Pody2AgCCJWySxP8rKSlJklS0aNFzviclJUUpKSmnvk4O1aaCSt+t1LCh2zgupEWL0F+xDQAIrGh4GD1/vo2hXsryvvukF16Qhg2THnvMdTQAABfGjBkjSWrTpk2G77/99tvq27dv8AMKoMKFpXnzrP1RqPdDLFfO5ufatSWv13U0AADkzBVXSKmpUgTs1ZJEghgAfMIySZyWlqa77rpLrVu3Vn1fDaezGDFihJ544okgRpZ9Tz8tde8utW3rOhIAAM4vGh5G+5LEoV5qunhx2/GcmOg6EgCAK94oykDmzm1zc6jPz5K1kXr8cddRAADgH9dcYy8AQGQJyyTxwIEDtWLFCv3444/nfd/QoUM1ZMiQU18nJyerQoUKgQ4vWxo3tlc4mDZNWrFC+sc/pNKlXUcDAAi2SH8Y7fVKCxbYcag/hK5Tx8ZVq9zGAQAAAABAuJgzR3rqKeux/PrrrqMBAHfCLkk8aNAgffvtt5ozZ47Kly9/3vfGx8crnsY/fnfvvdZDuWZNqVs319EAAOBf69ZJe/ZY+alQX8DlSxKvXm07imNi3MYDAECgeL3SkCFSo0bStddKefK4jujCkpJs4dmxY9Lf/uY6GgAAsufQIWn9eutHXKCA62j84+hR6YcfpP92zwKAqBU2jxK9Xq8GDRqkiRMnasaMGapSpYrrkPxmzhzpjTek3393HUnm1KplI6UtAQCRqEoVWwz1ySdSqK81q1LFktlHj0qbNrmOBgCAwPnjD2nUKOm226TYWNfRZM7ixVLnztJ997mOBACA7Fu0yBZpNWniOhL/qVTJxo0bbSEaAESrsEkSDxw4UB988IE++ugjFSxYUDt27NCOHTt09OhR16Hl2EcfSf/3f9L777uOJHNq17Zx9Wq3cQAAEAixsVKDBlKPHq4jubBcuaQaNeyYktMAgEj28882Xnyx9SYOB/Xr27h2rS3oAgAgHK1bZ2O1am7j8KeKFW08eFA6cMBpKADgVNgkiceMGaOkpCS1adNGZcqUOfX69NNPXYeWY8uX29iggds4MoudxAAAhA76EgMAosHChTY2b+42jqwoWVIqVsx2KHH/DAAIV+vX21i1qts4/ClfPqlECTveuNFtLADgUtgkib1e71lfffv2dR1ajni94ZckZicxACBSHT4s3Xij9NprUmqq62gyp2NHi9mXLHZh+nTrE3nsmLsYAACRzZckbtHCbRxZ4fFI9erZ8YoVbmMBACC7fDuJIylJLKXvJqZ1E4BoFjZJ4ki1caOVtcidO32HbqirWdPGXbukffvcxgIAgD8tWmTtH0aMCJ9+h/37S+++K3Xp4ub6hw9L7dtLL74ovfGGmxgAAJEtJUVatsyOw2knsZSeJF650m0cAABkl28ncSSVm5Yy9iUGgGhFktgx3y7i2rWluDi3sWRWwYJSuXJ2zG5iAEAkmT/fxksucRtHOBk3Lv34hx/cxQEAiFzLlkknTkjFi0tVqriOJmt8fYlJEgMAwlWk7iSuVMlKTp886ToSAHAnl+sAol24lZr2efttqUiR9BteAAAigS9J3LKl2ziy6sQJae1aqXJlKW/e4F332DHpuefs+KqrpI8/Dt61AQDRw1equXlzK+EcTig3DQAIZ/v320uKvCTxyJHSCy+4jgIA3CJJ7Nhvv9nYsKHbOLKqQwfXEQAA4F9er7RggR2HW5K4bl1LEs+eLV12WfCu+8470rZtUvny0uefh09VFABAeLn5ZluMlJTkOpKsu+gimy9ZYA0ACEcej/Tss9LOnVL+/K6j8a8YaqwCAEli1159Vfq//0vvgQAAANxYv17avdsSnRdf7DqarKle3ZLEiYnBSxKfOCH96192fP/9JIgBAIFVsqS9wk1CgtSnj+soAADInsKFpQcecB0FACBQWC/jWLFiUps24ddXae9eafRo6cknXUcCAIB/+EpNN24sxce7jSWr6tSxcdWq4F3T65WGDJGaNJFuucX+Nnj4Yal79+DFAAAAAABAdhw9atUya9WyYwCIRiSJkS2HD0uDB0tPP207iQAACHcbNlgprXArNS25SRLHxUl33CEtWmR9kOPirD/xV19Ja9YELw4AQGSbOVPq1MmqcIWrP/6w+CdMcB0JAABZs2yZtHx5ZCZR8+SxxeJr1kibN7uOBgDcIEns0IwZVp5x6lTXkWRd+fJSvnyWIP7zT9fRAACQc488Ih04IA0d6jqSrPMliRMTg39tj8fGggXTS11PmhT8OAAAkWnOHLtnXrDAdSTZN3OmNGiQNG6c60gAAMiae+6RGjaUxo93HYn/eTzpLSA3bnQbCwC4QpLYoe+/T99xE25iYqSaNe149Wq3sQAA4C+FCoVnv0NfknjjRqv2EUhpaVLv3tKHH0onT2b8WbduNn73XWBjAABEj59/trFFC7dx5ET9+jauXOk2DgAAsmrdOhurVXMbR6BUrGgjSWIA0YoksUO//WZjw4Zu48iu2rVtdLFrCQAApCtWTCpRwo4DvXjr22+lzz6TbrtNOngw48+6drVx9uwzfwYAQFZ5vdLChXbcvLnbWHKibl0bt2yxqiUAAISD48fTyzBXreo2lkBhJzGAaEeS2KHly21s0MBtHNlVq5aN7CQGAIS7UaOk1q2l9993HUn2DRwoPfGEJYwDxeuVhg9Pv16RIhl/XrOmrTA/cUKaPj1wcQAAosP69dLevdb3vlEj19FkX+HCUrlydvz7705DAQAg0zZtskpSefNKpUu7jiYwSBIDiHYkiR3Zt0/autWOfaWnwg07iQEAkWLmTGnePGnXLteRZN+wYdJjj6Xf5AbCDz9Y2c+8eaW77z7z5x5P+m5iSk4DAHLKV2q6cWMpPt5tLDlVr56NlJwGAIQLX6npqlXtXi8S+e6fN21yGwcAuJKtJPGTTz6pI0eOnPH9o0eP6sknn8xxUNHAt4u4cmXrfxiOfDuJSRIDgDvMyTnn9UoLFthxy5ZuYwl1vl3Et9567t7N3brZbuZw/fsGALKLOdn/IqHUtI9vcfiKFW7jAIBowJzsH+vX2xip/YglezZfooSUkOA6EgBwI1tJ4ieeeEKHDh064/tHjhzRE088keOgokG4l5qWrK/SvHnSmjWuIwGA6MWcnHN//mk7iHPnli6+2HU02ZeWZjfxs2YF5vxz51qv4bg46d57z/2+9u2lnTul558PTBwAEKqYk/3P67VFRy1auI4k59hJDADBw5zsH6fvJI5UrVrZ84CvvnIdCQC4kSs7H/J6vfKcpcbEr7/+qqJFi+Y4qGjg6+Mbzkni+Hh2XAGAa8zJOTd/vo2NG0t58riNJSc2b7YV3rlzS4cP2+hPvl3EfftK5cuf+32xsf69LgCEC+Zk/3vpJenFF6XUVNeR5FzXrtKPP6YniwEAgcOc7B89ekjFi0dGRQ8AwNllKUlcpEgReTweeTwe1axZM8Nkm5qaqkOHDun//u///B5kJHr5Zen++6Vc2UrTAwCiHXOy//iSxOG+8KlCBSlfPunIEdtR7GsL4S9DhkjHj0sPPJC593u90tq1Uo0a/o0DAEINc3JgxcTYK9yVLm0vl5KSpPHjpd69pYIF3cYCAIHAnOxfrVvbCwAQubKUohw1apS8Xq9uuukmPfHEE0o4rVh/XFycKleurJbh/oQ1SDwee5gb7n76Sfr8c9sRfdNNwbvu0aO22+ssiwIBICowJ/tPpPQjjomRateWli6VVq3yf5K4Y0d7ZUZysu2U2rbNSncVK+bfWAAglDAnB8bJkyyq9qfUVKlzZ/u75/ffpRdecB0RAPgfczKy4777pK+/tupZPXu6jgYAgitLt1x9+vSRJFWpUkWtW7dWLu7Yot6vv0qjRklXXRXcJPF119lDg9dei4xkOwBkFXOyf3i91l9py5bwTxJLUp066Uni7t3dxVGokFSkiP1ev//e5m0AiFTMyYFxyy1WnvnZZyPnge20adKkSVK7dtKVVwb32m+8kb4wbvRoaeTIyNihDQCnY072n0OHpJkzraVR3bquowmsXbukNWusEhYARJts3RIULFhQq1atOvX1V199pe7du+uhhx7S8ePH/RZcpJoxw3o6vPGG60hyzrdLyddjORi+/NJeU6ZIBw7YHy0AEK2Yk3PG45E++0zavj0yFh3Vrm1jYqL/znn77dJjj0n79mXtc9262fjdd/6LBQBCGXOyfy1YIK1bZ60UIsUPP9gi68mTg3/tm26yxLtkC67nzQt+DAAQLMzJObdihfTXv1oVikhXqZKNGze6jQMAXMhWknjAgAFas2aNJGn9+vXq3bu38uXLp/Hjx+v+++/3a4CRaN48S3L+9JPrSHLO9zB63TrrUxhoBw9KgwbZ8TXXSP/8p/U6TEsL/LUBIBQxJ/uHxxMZLQzq1LHxtOchOfLHH7ao7amnpE2bsvZZX5J4yhQrcQkAkY452X8OHEhfiNy8udNQ/Kp+fRtXrgz+tfPkkcaNk2680b7+7LPgxwAAwcKcnHPr1tlYtarbOIKBJDGAaJatJPGaNWt00UUXSZLGjx+vyy+/XB999JHeeecdTZgwwZ/xRaTffrOxYUO3cfhD2bJSgQL28Hf9+sBf75FHpK1b7Q+UN96wMiA7dkjLlwf+2gAQipiTc2bvXis5HSl8SeLERP/8u5591hZiXXml9N//mmXaJZdYyel9+6SFC3MeCwCEOuZk/1m0yMZq1aTixd3G4k/16tm4YkVw/v7weqUPP8y4WKtXLxs//5zF1gAiF3Nyzvme81ar5jaOYKhY0UaSxACiUbaSxF6vV2n/vZv44Ycf1LVrV0lShQoVtGfPHv9FF6F8Cc0GDdzG4Q8eT3rJaX+WtjybRYusd5Ikvf66lJAgtWljX3//fWCvDQChijk5+7xee1hbtmzg57BgqV5devhhacyYnO/e3bhReu89O3744ax/PlcuqVMnO6bkNIBowJzsP77FRZG0i1iyxVwejy1S27Ur8Nd76SXphhtssZcvKd2hg1SypNS0adZbSQBAuGBOzrlo3UkcSYvIASAzspUkbtq0qZ5++mm9//77mj17trr9t57gn3/+qVKlSvk1wEhz7Jj032onEZEkloLTl/jkSenWW22ivv56u7GV0h8+kyQGEK2Yk7NvwwZp5057UFu5suto/CMuTnr6aZsrc+XK2bmee87m33btbFdwdvz3WYwmTcpZLAAQDpiT/efnn21s0cJtHP6WN2/6jqxAl5xevFjyVVS96qr0thrx8dLmzdLXX0fWLm0AOB1zcs5F407iw4dZQAUg+mQrSTxq1CgtXbpUgwYN0sMPP6zq1atLkj7//HO1atXKrwFGmt9/t5JORYtKZcq4jsY/fH2JN2wI3DU2bZKSk+339sIL6d/3JYl//NEmcgCINszJ2Td/vo2NG1ufPqTbvl36z3/sODu7iH06d5buvlsaOdI/cQFAKGNO9g+vN30ncaQliaXg9CVOTpauvVY6cULq0UO67baMP4+LC9y1ASAUMCfnXDTtJM6Tx6qMNWlicygARJNs7TFp2LChlp+lCexzzz2n2NjYHAcVyXy/toYN01fyhrvbbpMGDJBKlAjcNapWtd/dypVWGsunRg0rCbJxozR7dvqOJQCIFszJ2edLErds6TYOf9u3z3YP5c4ttW2bvXO88IKUkiK1apXe2iE7SpTIuLgLACIZc7J/HDsmde8uLVki/bedZESpV0/68ktp7drAnN/rtfvzdetsZ9Sbb5772cP69VJsbHqZTQCIFMzJOXP0qLRtmx1Hw05iSVqxwnUEAOBGjgoRLlmyRKtWrZIk1a1bVxdffLFfgopk+/ZZialIKTUtBa9EVb58UrNmGb/n8dhu4rFjreQ0SWIA0Yo5OesWLLAxu6WUQ9W330p9+lhyN7tJ4gEDpAMHpJ49I2dRGwAEC3NyzuTNK73xhusoAueOO+x1+uJnf3rrLemTTyz5+/HHUpEiZ3/fsGHSk09KgwZJo0cHJhYAcI05OXs8HptDNm60qo4AgMiVrSTxrl271Lt3b82ePVuFCxeWJB04cEBt27bVJ598ohKB3FIa5u6+Wxo8WDpyxHUk4eHLL61f0u23203u2fToYSvcOnYMamgAEBKYk7Pn6FFp2TI7jrSdxHXq2JiYmP1zVK8ujRvnn3jS0qQZM6QpU6Thw60XIgBEIuZkZEYgW2EeOpTeh/jpp60iyLk0b27jhAnSSy9JMdlqRgYAoYk5OWfy5LG2BQCAyJet24A77rhDhw4d0sqVK7Vv3z7t27dPK1asUHJysgYPHuzvGCNObKxUsKDrKPzr3/+W/vpXK2/pLwcOWCnrwYNtp/C5dO4svfee1K2b/64NAOGCOTl7Fi+WTp6UypSxUoyRpHZtG3fssLk0K7xev4cjSfrnP6Xnn5fmzAnM+QEgFDAn+8eqVdLx466jCE8FCkizZtl9tC9ZfC4dOkgJCdL27dJPPwUlPAAIGtdz8quvvqrKlSsrT548atGihX7++eeAXxM58+WXUq1a0g03uI4EAIIrW0niKVOm6LXXXlMd31YVWcmOV199VZMnT/ZbcAgfM2dK33wj/fKL/845dKg94K5ZU7rpJv+dFwAiCXNy9pQoYdU9+vWLvHLKBQtK5crZ8X8rq2Xas89Kf/+7f/sxxcSkt4OYNMl/5wWAUMOcnHMnTkhNmthctnGj62gC56WXpKuukn780f/nbtBAeu21C+8Mjouz3s+S9Nln/o8DAFxyOSd/+umnGjJkiIYNG6alS5eqUaNG6tSpk3bt2hXQ6/rT7NnWxmjHDteRBE9MjLRmTc4qcgFAOMpWkjgtLU25c+c+4/u5c+dWWlpajoOKVHPm2A3bvfe6jsT/fLuW/DWRzpsnvf66Hb/xxoVLU6alWdnQiRP9c30ACBfMydlTu7b0wgtW/jgS+Z6FZCVJfOiQ7fYdP1769Vf/xuOr9vHdd/49LwCEEubknFuxwlpC5M0rVajgOprAmTvXHr77a2PZt99KCxZk/XO9etk4YYKUmuqfWAAgFLick1944QX1799f/fr1U926dfX6668rX758euuttwJ6XX967jlbzPTVV64jCZ5KlWzctMltHAAQbNlKEl9xxRW68847tW3btlPf27p1q+6++261a9fOb8FFml9+sZvedetcR+J/tWrZuHp1zs91/Lh066123K+f1KbNhT+zaJHUuLHtOD55MucxAEC4YE7G2WQnSTx2rLR3r1StmtS7t3/jad9eyp1b+uMPewFAJGJOzjlf0rR588jukVu/vo0rV+b8XOvXS9dfL116adbbOlByGkCkcjUnHz9+XEuWLFH79u1PfS8mJkbt27fX/Pnzz3h/SkqKkpOTM7xCwfr1Nlar5jaOYPK1odq9WzpyxG0soS411aqE/fOf0ssvu44GQE5l67brlVdeUXJysipXrqxq1aqpWrVqqlKlipKTkzV69Gh/xxgxli+3sUEDt3EEgj93Eo8caTfLxYvbyrXMaNpUKlzYei8uWpTzGAAgXDAnZ93evdKMGbZzNlJlNUl87Fj6nPvgg1KuXP6Np1Ahe3gtUXIaQORiTs65hQttbN7cbRyBVq+ejTlt73D8uPSPf0jJyfY7a9kya58/veT0hAk5iwUAQomrOXnPnj1KTU1VqVKlMny/VKlS2nGW2s0jRoxQQkLCqVeFECijkZaWniSuWtVtLMFUuLC1u5DYTXwuGzZIjz0mVa5s1cI++EC6807pzTddRwYgJ7L1CLBChQpaunSpfvjhByX+NytYp06dDKukcKbffrOxYUO3cQSCbyfxn39KKSkXLg99LgcOSCNG2PGLL0rFimXuc7Gxtkvp88+lqVOzfnMMAOGKOTnrpk6VrrvOHqb6HkZHmg4dpLffli66KHPvf/tt6zdVvrx0442BialbN0vOf/ed3UgCQKRhTs4537zcooXbOALNt5P499/tYXx2d00//LDtvi5cWProI6vakVV33GFzdNeu2YsBAEJRuMzJQ4cO1ZAhQ059nZyc7DxRvH27PduNjU3fXRsNPB4rOb1ihbRxY/qGKNju6htukKZNk7xe+17Rovb8fedO6a9/dRsfgJzJ0q3IjBkzVLduXSUnJ8vj8ahDhw664447dMcdd6hZs2aqV6+e5s6dG6hYw1paWnopqUjcSVy6tO0SSkuT1q7N/nkKF7b+THffbSWzsqJTJxu//z771weAcMGcnH2+Kl+R/AC6enWpb9/MJYlPnJCefdaOH3jAdhUFgu/h87p1tIYAEFmYk/0jOTm9Akak7ySuXt0SuocOZX+30uTJVoVLssVevl6KWdWkifUmzp8/e58HgFDiek4uXry4YmNjtXPnzgzf37lzp0qXLn3G++Pj41WoUKEML9d8bRIrVfJ/halQ50uKb9zoNo5QsH9/+nGxYtZi0uu1TVqffCJt2yZ98409xy9Rwl2cAHIuS0niUaNGqX///medsBISEjRgwAC98MILfgsukqxfb/0M8uSxG8JI4/HYbuICBWwnUk5cdJH0wgt2zqzo2NHGhQttRzIARDLm5OxbsMBGqk6Yjz6yB9SlSkk33xy469SqZa031q6NvocNACIbc7J/LF5sDx8rVbI5KZLlzp1ejSs7fYm3bUuv/DFoUHrJaACIdq7n5Li4ODVp0kTTp08/9b20tDRNnz5dLcPkBjQa+xH7NGxoi6eideHUkSPSu+9aq6jata2thWQVT95+2xYQTJsm9e5tVUQ9Hst1+PznP9Ls2W5iB5B9WUoS//rrr+rcufM5f96xY0ctWbIkx0FFIl+p6bp1rVxHJJo2zVZ/t2uX9c/u3Zveszm7Kla0CSwtTTrtbzEAiEihMCe/+uqrqly5svLkyaMWLVro559/Duj1/OHoUemXX+w4TO7Rs23pUmnMGBvP55prbCfSk09KefMGLh6Px8prZnURGACEulCYkyNB1apW2WLwYNeRBEf9+rbIes+erH923Dj73EUXSc89l/NYDh60vwPatZNSU3N+PgBwJRTm5CFDhmjcuHF69913tWrVKt122206fPiw+vXrF9Dr+otvJ3E09SP2GTHCFq1ltbpluFu6VLr9dqlMGatI9uOP9qx+0aL097Rte/7/TnzxhdS/v3TVVenPXACEhywliXfu3Knc52lykytXLu3evTvHQZ1POD6QlixxWbeudPHFriMJnISE7D/4ve8++928+mrOYvCVnP7hh5ydBwBCnes5+dNPP9WQIUM0bNgwLV26VI0aNVKnTp20a9eugF3TH5YssVLHpUtnvyxjuHjlFbvR++ab87+vQAHpnnukW28NTlySPYD29TICgHDnek6OFJUrW9uD01ozRrRx42yRdZ8+Wf/sY49JL78sffppxh082RUfL734ojRjhvTTTzk/HwC4Egpzcu/evTVy5Eg99thjuuiii7Rs2TJNmTJFpcKkTMaNN0offpi9+Qnh5ccf7Xl8kya2wDw5WapSRRo+3KqNtW6d+XN17SpdfrktPOvcWfrjj8DFDcC/spQkLleunFasWHHOn//2228qU6ZMjoM6l3B9IC1JPXtaGamxY11HEnpmzbKSFSdPZq534vkMGGAJ4lGj/BAYAIQw13PyCy+8oP79+6tfv36qW7euXn/9deXLl09vvfVWwK7pD6eXmo70Ha116tjo6+/4v7xeN4naAQOsjKivygoAhDvXczLCU4EC2f9bxOOR7rhDqlnTP7HExaWXrP7sM/+cEwBcCJU5edCgQdq4caNSUlK0cOFCtWjRIuDX9JcaNaTrrov8ylvnE6kLmr1eS+L6JCTYrt+4OOnaa+2Z+tq10kMPSWXLZu3cefJIX39tSeddu6QOHaStW/0bP4DAyFKSuGvXrnr00Ud17NixM3529OhRDRs2TFdeeaXfgvtf4fpA+nSR/EB6927p6qul5s0zP5mmpEj/9392PGBA1lYonU2dOlYiKz4+Z+cBgFDnck4+fvy4lixZovbt25/6XkxMjNq3b6/58+ef9TMpKSlKTk7O8HLBF1403PBeKEnsu4H7+uvgxSRZH8W9e6VJk4J7XQAIFNf3yZFgzx7pk0+kP/90HUno2rtXuvPOjA93/envf7dxwgRKTgMIX8zJyIl9+6RataRChWwzU6TYvdtaTNWpI912W/r3GzSQ3n/fkrkff2zP1GOylC3KqFAhafJkW2iwcaNV/Ny3L+fxAwgsj9eb+bUxO3fu1MUXX6zY2FgNGjRItWrVkiQlJibq1VdfVWpqqpYuXRqQ8hnHjx9Xvnz59Pnnn6u7b4mrpD59+ujAgQP66quvzvhMSkqKUlJSTn2dnJysChUqKCkpSYUKFfJ7jOeSlmZjTv5PNhykpEj58tm/d9s262NwIY8/Lj3xhJX9XLVKKlw40FECQM4lJycrISEh6PPJ6VzOydu2bVO5cuU0b948tTwt23r//fdr9uzZWrhw4Rmfefzxx/XEE0+c8f1g/w5/+02aO1e64or0JGqkWrvWbs7y5JEOHZJiY9N/5vVKLVpYj6EHH7TeS8Hy+ut2Y9q6tZW3AoCciPY52R9C4Xc4YYJV32rc2PriRYsbb7Teh998I1Wrdu73eb3SX/8qffut1K2bjf52/LhV+jhwwKp9XX65/68BILKFwnzCnJwzhw9btcdq1axkcCRvdjqbtDS7fz5xQtqwIbxbVKWl2c7gceOkr76yf5MkFStmSeFAbrDasMHu97dtky65xP6uYEMXEHyZnVNyZeWkpUqV0rx583Tbbbdp6NCh8uWXPR6POnXqpFdffTVgk+yePXuUmpp6xvlLlSqlxMTEs35mxIgRZ30gHWxLllhz98svl777znU0gRMfb30L1q2TVq++cJI4MTH9ofRLL/kvQbxunTR6tK1+Hj3aP+cEgFDjck7OjqFDh2rIaU0GfQu3gq1hQ3tFgypVbG4+dsxW8Vatmv6zadMsQZw3r3T33cGNq2tXG+fPt11RxYoF9/oA4G/hNieHIt/6subN3cYRbMuX22LpFSvOnyR++WVLDMfHS08/HZhY4uKkHj0sOTB+PEliAOGJOTln1q61dgbFi9vu02gTEyNVqCCtX2/30OGaJB47VnrmGfs3+DRrJvXvL/XuHfiEbeXK0tSp0mWX2eK2uLjAXg9AzmQpSSxJlSpV0qRJk7R//36tXbtWXq9XNWrUUJEiRQIRX46EygPp5cttJdZpm5ojVu3alqRNTJTatDn3+7xeKzN9/Lg9LO7Vy38xHDpkSed8+ayUBiuVAEQqV3Ny8eLFFRsbq507d2b4/s6dO1W6dOmzfiY+Pl7x/B9yUMXGWq9C3wPo05PEvgfMAwZIJUsGN66KFaX69e2B+NSp0j/+EdzrA0AguL5PfvXVV/Xcc89px44datSokUaPHq3mYZRx/flnG8OoZaNf1K8vLVsmrVwp/e1vZ3/PkiXSfffZ8fPPSxddFLh4evWyJPHnn9s99elVSAAgXLiek8PZunU2nn7vGG0qVbIk8aZNriPJPN8u4dy5bdy3zxLEhQtL//yndPPNUqNGwY2pXj3LD5QoEdzrAsi6bBdALlKkiJo1a6bmzZsHZZLN7gPpQoUKZXi5sHy5jQ0aOLl8UP23iotWrz7/+9LSpO7d7cH0q6/6t3xJw4ZWvvrIEemnn/x3XgAIVcGek+Pi4tSkSRNNnz791PfS0tI0ffr0DOWnQ80nn0j/+Y+0ZYvrSILHV1L79KIrc+ZYye24OOnee93E1a2bjZFcYQVAdAr2nCxJn376qYYMGaJhw4Zp6dKlatSokTp16qRdu3YF5fo5lZpqJZel6EsS16tn44oVZ/95crLt+Dlxwnb53n57YONp184ejnfoYNcGgHDmYk4Od+vX23i+6haRzrd7+PRduKFs4kTb/fz55+nf69dP+uADK/f88svBTxD7nJ4gPnTIcgCZb3wKIFjCpktuuD6QlqIrSVy7to3nqAB+SmysdNdd1qOgcmX/xuDxSB072vHUqf49NwDADBkyROPGjdO7776rVatW6bbbbtPhw4fVr18/16Gd04svWnmlOXNcRxI8999v/96bb07/3vDhNvbrJ5Ur5yYuX8npKVMsOQAAyL4XXnhB/fv3V79+/VS3bl29/vrrypcvn9566y3XoWXKypVWeatgwfRFx9Gifn0bV64882e+6lvr1lkVjjffDHxvyLg4SxC8/75EPgUAog87iW3OlcIjSZyWJt16q7RzpzRhQvr3S5WSrr/e2kuFgtRUqVMnadAgadgw19EA+F9ZLjft0pAhQ9SnTx81bdpUzZs316hRo0L+gbQk/fabjdHQAzEzO4lPnpRy/fe/eYGarDp2lN57T/r+e+nZZwNzDQCIZr1799bu3bv12GOPaceOHbrooos0ZcqUkO3vdOyY9Msvdhzia8v8qkmTjF8vW2YLqGJjpQcecBKSJKlVK+nSS+119KhUoIC7WAAgnB0/flxLlizR0KFDT30vJiZG7du31/z588/6mZSUFKWc1gsp2fGWUV+p6WbNoq+8sW8ncWJixvtkSdqxQ5oxw34nH38cvKRtTNhsJQAA+Bs7icNrJ/GSJdKePVKhQtKHH7qO5txiY63s9bx50lNPScWKSXfe6ToqAD5hlSQOtwfSkq3k2b3bVvzWres6msCrXVvKk8d6HqSmnnmTP22aNHCgNGaMlbIKlA4dbFy2zP4zCOH/igBA2Bo0aJAGDRrkOoxMWbLESjWWKuX/ChbhpFEj6euvraxllSru4siVK7p2dANAoOzZs0epqaln3BOXKlVKieco7zRixAg98cQTwQgvUxYutDHaSk1L9iA6Xz5rlbR2bXplLkkqU0b69Vdp9mxbXBVMXq8tds+fX6pePbjXBgC4w05iqWZN6eKLM87JoWrKFBvbt5fi493GciH/93/S3r3SI49YddFixaQbbnAdFQApjMpN+wwaNEgbN25USkqKFi5cqBYhfifpKzVdvbrd/EW6EiWsVNjSpWcmiI8elW67TfrjD3tAHUglS9qELlliGgAQ3XybqVq2DHypxlDz9tvSPffYCmOPR7rqKum0DWcAgCgzdOhQJSUlnXpt3rzZaTyPP2599K67zmkYTsTEWNWPRo3O3gO4VCnp738PflxDh0oXXWStOgAA0eHkyfTds9G8k/gvf7FF5i+95DqSC5s82cbOnd3GkVkPPWQJYknq21f67juX0QDwCbskcbjJm1f661+t7n408HjOXZ7qqadsRVr58tLTTwc+lo4d7VrHjgX+WgCA0LZggY2XXOI2Dheeflp64YX0ctuh5NAhWzi2e7frSAAgPBUvXlyxsbHauXNnhu/v3LlTpUuXPutn4uPjVahQoQwvl8qVk665Jr0/b7SZPdsqYDVvbl/fd5/0ySdOQ1KbNjZOmGAVwgAAkc/jsWpP778vlS3rOhpcyL596dVYwiVJ7PFIzz9vpadTU6WePaW5c11HBYAkcYC1bi199ZU0erTrSNxavlx67jk7fuUVqWDBwF9z2DBp0ybpllsCfy0AQOjyejPuJI42derY2LGjNHy4/T5CRefO0t/+FvgKIwAQqeLi4tSkSRNNnz791PfS0tI0ffp0tYzGSS8MnV7hZPx4aeRI21X9++/uYmrXznog79zJw1sAiBaxsXa/fMMN9KeX7L45lBdK/fCDlJYm1asnVajgOprMi4mR3nzTKpwVKiQVKOA6IgD8Xz787quvrFyWLzmbliYNGGBlS3r0sIfBwZAnT/SVFAUAnGn7dmnbNuuD27Sp62iC7/ReSgsXhtbc2KGDjZMmuY0DAMLZkCFDNG7cOL377rtatWqVbrvtNh0+fFj9+vVzHdoFTZxoFS+WLXMdiXvr1qXfQz/4oFS3rrtYcue2e3fJEtcAAEST3r2tbeSXX7qO5NxatbKS2Hff7TqSrMudW/r0U6v41rix62gAkCQOoNRUaevW0NqxEwxer/Tbb+k3+m+8YTu4ChaUXn45+PGkpkq7dgX/ugCA0FC2rLR3rzRzpt3oRZsqVdKPH37YXRxn062bjdOmScePu40FAMJV7969NXLkSD322GO66KKLtGzZMk2ZMkWlSpVyHdoFffih9OijNg9EqwMHrNR29erWl7hVK+nJJ11HJfXqZSMlpwEgOnz3nfTqq24rWYSSY8fSezSHovLlpcGDpZtvdh1J9uTNm/FZxYIFtsAfQPCRJA4gX//dihWjK1Hs27G0erX9u33lqYYPt99HME2ZIpUsKV17bXCvCwAILUWLSn/5i+so3Oja1W7AevWSWrRwHU1GF18slSolHTwo/fij62gAIHwNGjRIGzduVEpKihYuXKgWofZ/+Ofg66Xn68cbjRISpJUr07/++GOrfuIaJacBILq88440aJA0darrSNyrVMnGTZvcxhEtpk+XrrhC6tRJ2r/fdTRA9CFJHEC//WZjmTKhVdox0KpWtT4Whw5Zec8PP7Qykrff7iaWffvswfPhw8G/PgAArlWpYnPhxx+7juRMMTFSly52/N13bmMBAATXtm3Sli02FzRp4joadzwea8kUEyN98YUtMg8Fp5ec/uort7EAAAJv/Xobq1Z1G0co8CWJQ3Un8VdfSf/5T+TsvK1aVSpcWFq+XLrySunIEdcRAdGFJHEALV9uY4MGbuMItri49D8oEhPtprdLF0scB1uNGlLlytKJE9KsWcG/PgDArWPHpPbtpaFDpZQU19G4kyePm3k4M7p2tZG+xAAQXX7+2cb69aUCBdzG4tpHH1klMl9SNlTceaf0/ffSv//tOhIAQCB5vTYPSVK1am5jCQWhniR+8UWpf39bXBYJqlSxHeyFC0vz5kk9e9KOCggmksQBFK1JYim9rPS8eW7j8Hikjh3t+Pvv3cYCAAi+pUutdNGbb9oiJoSejh2trGZiorRhg+toAADBQqnpdPny2eLmUNOwoc3TuXO7jgQAEEj790tJSXZ8ep/YaBXK5aaTk6WffrJjX1WuSFC/vi0cz5dPmjxZ6ttXSktzHRUQHUgSB5Cv3HTDhm7jcKFmTRsfe8x9P+ZOnWykpwYARJ/5821s2TK6Wj+Ek4QEa02xZk1oPiAHAASGbydxmLRPBgAgYvl2EZcpY0m6aOdLEu/dG3rtC2fMkE6etOqZkVYavGVLacIEW0T+8cdW0cR1XgGIBiSJA+Tw4fReDtG4k/j++6Xeve3G3/VD+SuusBKbq1eHbpkQAEBgLFhgY8uWbuPA+f3973aTCwCIDl6v9PvvdkySOLQlJUn33Wc7vk+edB0NACAQfM+wKTVtChWSLrvM2kCEWpJ4yhQbO3d2G0egdO4svfee5RO2bOFvDyAYcrkOIFKtXGk3vqVKSSVKuI4m+KpWlT75xHUUpnBhe/Awb56VnL71VtcRAQCC5fSdxAAAIDR4PFbCceVKqW5d19HgfPLlk956S9q3T5ozxxZhAwAiiy9JHGk7U3Ni9mzXEZzJ67VSzFLkJokl6R//sJzKZZfZrmIAgcVO4gApUkS65x6pXz/XkUCSbrlFeuQRqXVr15EAAIJl82Zp61arJtG0qetocCETJkjXXEN7CACIFrlzSxddZPM0Qlfu3LaTSpLGj3cby//at891BAAQGQYMkH780Z5lI3QlJtoiu/h4qU0b19EE1hVXpCeIvV5p6VK38QCRjCRxgNSoIY0cKY0Y4ToSSJasf+opqV4915EAAILFt4u4USMpf363seDCZsyQvvhCmjjRdSQAAOB0f/+7jRMmhE7Zx40bperVpQcekE6ccB0NAIS3okVtY03Dhq4jCS1er3T0qOso0v3yixQTI11+efT0jj55Urr5ZqsS6ttFDcC/SBIDAICIdOCA3exSajo8dOtm43ff2c04ACBy9e4t3XST9OefriNBZrRta39T7d5tJaddS02V/vlPaf9+W1z2/PPSoEGuowIARJL//McSsbfc4jqSdNddZ3Px6NGuIwmemBjp2DFLFl9zjbWTBOBfJIkDwOu1Eh3797uOBKc7eFD66it7+AwAiHy33irt2SP961+uI0FmtGkj5cljZcJXrHAdDQAgUI4csR2pb79tpYwR+nLnlq6+2o4/+8xtLJL07LPS3LlSgQLS2LHS0KHSa69JO3e6jgwAwk9KinTvvdKYMaFTLSIUJCRYcnLjRteRZFS0qFSzpusogicmRnrnHalLF9vV3a2btHy566iAyEKSOAB27JAuvVQqXtwmE4SGTz+VuneXnn7adSQAgGDxeCg1HS7y5bO+Q5I0aZLbWAAAgbN0qe0ELVNGKlfOdTTIrF69bPziC7dJhIULpWHD7PjVV22RWZMmtlj/66/dxQUA4WrjRqvIcN99Umys62hCR8WKNoZKkjiaq23FxUmffy61amUV4zp2lNavdx0VEDlIEgeAbzVLjRq2IwahoWNHG3/+OXR2eScl2S43AIB/paa6jgDZcXrJaQBAZPr5ZxtbtLDFXAgPbdtK9epJPXtKhw65ieHgQen66+3vvN69reS0JPXoYePEiW7iAoBwtm6djVWrMi+frlIlG7dtk06ccBuLJA0ZIv3lL9HblzdfPunbb6UGDWyDXocONgLIOZLEAfDbbzY2bOg2DmRUsaJUu7aUliZNn+46GksQN2ok1aol7dvnOhoAiCwvvWQ3dc895zoSZEXXrjbOmxc6C7oAAP61cKGNLVq4jQNZkzu3LYh/7TWpcGE3MQwebMmMihWl119PT2b4SmFPny4lJ7uJDQDClW9HZrVqbuMINSVLSvHx9hx561bX0ViC9KefpOPHXUfiTpEi0vffS1WqSBs2sLgc8BeSxAHg20ncoIHbOHCmTp1snDrVbRySlcjauNESxFOmuI4GACLLggXSpk30VAo3lSvb308tWrAqGAAilS9J3Ly52ziQda53mLVtaz0iP/ggY6K6Th1bfH38OC0rACCrTt9JjHQxMaFTcnrtWnvlypXeoilalSlju6lXrpRuvtl1NEBkIEkcACSJQ5cvSfz99257Ofz6qzR6dPrXrHwCAP+aP9/Gli3dxoGsW7zYVkjXqeM6EgCAv+3caQ9aPR6paVPX0SA70tKkuXOlVauCf+0bb7T//lx66Zk/o+Q0AGQPO4nPzVdy2nWS2Le56C9/kQoWdBtLKKhVy6qFAvAPksR+dvKk9PvvdkySOPRcdpk1u9+0SVqzxk0MXq80cKDdXNepI5UoYS8AgH9s2WKv2FipWTPX0SCr4uJcRwAACJTt2+2hXr16UqFCrqNBdtx7r91XjxoVnOulpmZsQZGQcPb39egh5cnD3xEAkFXsJD63yy6TuneXSpVyG4cvSdy5s9s4QtHvv0u//OI6CiC8kST2sz/+kFJSpPz5rT4+Qkv+/OmrjufOdRPD4cNShQoWy5QpVk4zWDfYABANFiywsWFD+/9ahKf9+6U9e1xHAQDwp4sush2oS5a4jgTZ1aWLjV98EZy2Hv/6ly3Anznz/O9r1sz+bnj//cDHBACRwutN30lMkvhMjz5qFSp8lSldOHZMmjHDjn1zMMyHH9rfCP/3f24rhgLhjiSxnxUvLr32mk0iMfx2Q9Jzz1ky/5Zb3Fy/QAHp44+l1auttwX/PQEA/6LUdPgbNsyqbLz8sutIAACBwG7P8NW2rVSsmCVkZ80K7LV+/tn+Jti69cKlPj0eFgcCQHb88YdtpGGzU2iaO1c6etR68VK1NKP27aW8ee3vhS++cB0NEL5IT/lZiRLSbbdJDzzgOhKcS+PGUvXqrqOQypVLP/Z6pZUr3cUCAJHElyS+5BK3cSD7qlSx8pKTJrmOBADgL15vcHaeIrBy5ZKuvtqOx48P3HUOHZKuv97+O/P3v0t9+mT+s+vW8d81AMgMj0cqW9Z63ebO7Tqa0OT1Svv2ubt+gQLWUqFXL/vPC+lKlZKGDLHjhx9m7geyiyQxECTLlknXXmt9Mk937JjtKK5fX9q82UloABBRWrWSmjSxEeHJV0ZryRLrXwkACH9r1lg/2S5dKAkY7nr1sjGQJacHD5bWrrVWTa+/nvkH41dcYYvCf/opMHEBAKLHli1WpaJcOXd/u7RsafPtSy+5uX6ou/deq+y6erX09tuuowHCE0liP/v4Y2nRIunECdeR4HxmzrTVz8OHB+d6aWnS7bdLn35qK5tOlyePJYkldkwBgD+MHCktXixVq+Y6EmRXqVJS06Z2PGWK21gAAP6xcKF05IjtEGUnTHgLdMnp8ePtQa/HI33wgVSkSOY/67u3puwkAFzY+PFWDXP2bNeRhKaSJW1zz7Fj0q5drqPB2RQqlP6s/fHH7W9NAFlDktiPDh6UrrtOat5cSk52HQ3OZ9s2aeJE6fPPg3O9d9+18qf580vPPHPmz7t1s/G774ITDwAAoY65EQAiy8KFNjZv7jYO5NzpJaf9vZhr82bp1lvteOhQ6bLLsvb5Hj1s/PJLdqwDwIV88430739L8+a5jiQ0xcVZOW5J2rgx+NdfudJaKOD8brtNqlTJnvePHu06GiD8kCT2oxUrbCxb1lbVInR16GDjsmXSzp2Bvdb+/dL999vx449n7EXs43sQPn26rU4DAGTP6tXS0aOuo4A/+ObGqVOl48fdxgIAyLmff7axRQu3ccA/7r7bkgr//rd/z1uwoNS5sy0mePzxrH++Y0cpXz5p0yZp6VL/xgYAkWb9ehurVnUbRyirVMlGF0niRx+1FgqjRgX/2uEkPl568kmrPFKokOtogPBDktiPfvvNxgYN3MaBCytZUmrc2I6nTQvstR55xMpw1a0r3Xnn2d/TsKFUvryVxAhEuS4AiBYdOthNwaJFriNBTjVpYvP1wYP0FQSAcHfsmPTrr3ZMkjgy1KljfRJj/PxUqXBh6aOPpB9+kHLnzvrn8+a1vteSVQ8DAJybb5cqrZrOzVWS+PhxmwslqXXr4F47HF1/vS16uO0215EA4YcksR8tX25jw4Zu40DmdOpk4/ffB+4aS5ZIY8bY8auvnvsm1+ORuna1Y8pqAkD2bN1qJQrT0uzBJcJbTIwttHrjDal+fdfRAABy4pdfpBMnbPGPr2csIoc/yjrv3p1+Ho/HdhRnl6/kNH2JAeDcjhyRduywY5LE5+b7uyXYSeL5823BdPHitoAa5xcbawvNAGQdSWI/8iWJ2UkcHnxJ4qlTLaEQCM88Yze6110ntWlz/vee3nuR3kkAkHXz59vYoIFUoIDbWOAfd9xhfQlLlHAdCQAgJ04vNe3xuI0F/rN/v83TdetKJ09m/zyHDtkuqWuukfbty3lc3bpZ3+RVq6wVCQAEy/Dhw9WqVSvly5dPhUM8Y+UrNV24sJXpxdn5dhJv2hTc606ZYmOnTv6v2hHJvF7p66/tmTyAzMnlOoBI4fWSJA43rVpJ+fNLu3ZZqfCLLvL/Nd5913az3X77hd/brp10773pO4oBAFmzYIGNLVu6jQMAAGRUsaIl7jp0cB0J/KlgQSvpvGePNHNm9v/zvfNO6Y8/pKNH/bOIoHBhafhwqUYNdq4DCK7jx4+rV69eatmypd58803X4ZyXL0nMLuLza9hQ6t49+CWffUliXwsFZM6vv0p/+5sl1q++Wqpd23VEQOgjSewnW7faKtrYWEpchou4OLuJ3b3bSqwEQoEC0tNPZ+69+fNLzz0XmDgAIBr4dhKTJI4smzZJX30lVa4sXXWV62gAANnRo0d6CWBEjly57AHs2LHS+PHZSxJ//rn01luWHP7gA//tZrv/fv+cBwCy4oknnpAkvfPOO24DyQRfkrhqVbdxhLrWrYOfIN6+XVq2zObGjh2De+1wd9FF0l//aruJH35YmjDBdURA6KNYgZ8UKyZNm2Y3R/HxrqNBZk2YIP34o+0q9qcffwxcCWsAwJmOH7c+8BJJ4kjzySfS4MHSmDGuIwEAAP/r73+38YsvrO90VmzebOWqJenBB6XLL/dvbAAQ6lJSUpScnJzhFSyDB0tbtkj//nfQLolM+v57G5s0ofVSdjzzjO0k/uILaeFC19EAoY8ksZ/kzSu1by/ddJPrSJAVgejpsGiRdNlltsrs2LGsfdbrtT8EBg+WDhzwf2wAEKl++UVKSZGKF5eqV3cdDfypWzcbZ84MXOUPAEDg7NhhlbcQmS6/3P7+2rtXmjUr859LTZVuvNEqsjVtKv13851fJSZKw4ZJn33m/3MDgD+MGDFCCQkJp14VKlQI2rVjYqRy5axiE87P67V2hcG6H73mGunLL6XHHgvO9SJNvXr2N4Zki9C8XrfxAKEuLJLEGzZs0M0336wqVaoob968qlatmoYNG6bjx4+7Dg0RYv9+K+WRU6mp1n/Y67X+R3nyZO3zHo90993S6NHS1Kk5jwcAokWFCtILL1hvd3/0skPoqFvX+gkeO2aJYgBAeBkzRipf3hbCIvLkymUPs6WsJWNHjrSkcv780kcfSblz+z+2b7+VnnxSeuMN/58bQPR48MEH5fF4zvtKTEzM1rmHDh2qpKSkU6/Nmzf7OXr4Q8uWUqlS0owZwblewYLWV5d2S9n3xBNW7XXWrPSd2QDOLiySxImJiUpLS9Mbb7yhlStX6sUXX9Trr7+uhx56yHVop4waZTc2SUmuI0FWjRhhK5+ffTbn5/rPf6TFi6VChbLfX9i3Y+q773IeDwBEi7JlbZHNAw+4jgT+5vGkz40jR1rfwmw+gwEAOPDzzzbWru02DgROr142TpyY+ZLTrVrZIrCXX7YF1oHg64M9e7btdAaA7Ljnnnu0atWq876qZrOxb3x8vAoVKpThFQxpadK119ouy8OHg3LJsFa6tI2bNrmNA5lXsaI0cKAdP/ggbSGB88nlOoDM6Ny5szp37nzq66pVq2r16tUaM2aMRo4c6TAyc+KEdP/9Nm7YICUkuI4IWVGrlk0UOV1VtGePNHSoHT/9tK0wy45u3ewh+OTJFlcgSmIDABBOrrrKdqLNmmWvZ59NTzYkJlo/w8qVM76qVLGda4HYmQQAyByvNz1J3Ly521gQOJdfLl1yidSmjXT0aObm3ksvlVautJ3EgVKtmtSggbR8ue0q7tMncNcCELlKlCihEhHWGHbrVunTT60axPDhrqMJfZUq2bhxY+Cv9Z//2HWuu06qUyfw14tkDz1kPYkfeICKc8D5hEWS+GySkpJUtGjR874nJSVFKSkpp75OTk4OSCyrV1uCuFAhW6WC8NKunRQba/85btyYPvFn1dChVra6USPpttuyH0/r1rbQYPdu62/cokX2zwUA0WDPHqu+0KpV4HaiwK3Ona1U5NKltiCvYcP0n/3xhzR3rr3+V0yM9NJL0qBB9vWOHbYIy5dIJokMAIG1bp20b5+V+zv9/7sRWXLlkubPz9x7d+5MX1BdoEDgYvK5+mpLEk+cSJIYQOBt2rRJ+/bt06ZNm5Samqply5ZJkqpXr64Cwfg/vUxat87GypXtmSjOz/e8PxhJ4nHjbIFd1aokiXOqWDHpxx9dRwGEvrDco7h27VqNHj1aAwYMOO/7RowYoYSEhFOvChUqBCSe5cttrF+fVSnhKCHBVj1L2e8DvGCBrfSSpFdftZvk7MqdW+rY0Y4pOQ0AFzZ7ttS3r9Szp+tIECgej+0Wfv11acoUqUuX9J81bSp9/LG1jxgwQOrUyaqExMdbRY7ixdPfu2iRdNNN0hVX2E13njy2OOzyy+3B8fvvB//fBgCRbOFCGy++WIqLcxsL3JswwebfceOCd01fyenvv6ekKoDAe+yxx9S4cWMNGzZMhw4dUuPGjdW4cWMtXrzYdWgZrF9vY7VqbuMIF8HaSezbMCTZfS38i5LTwNk5TRI/+OCD8ng8530l/k/Tua1bt6pz587q1auX+vfvf97zDx06VElJSademzdvDsi/47ffbGzQICCnRxD4krLZLTkdH28PPvr2tZ3AOUVfYgChasOGDbr55ptVpUoV5c2bV9WqVdOwYcN0/PhxZzEtWGBjy5bOQoBDZcqk99PyJZETE6UjR6Tt29PnVMlKWnbsKNWsmZ5E3rRJmjNHeu89FvsBgL/5ksSUmo4OKSlW1tn3jOR0W7ZI/fvb/OxLTgRDw4bWguLYsZy3mAKAC3nnnXfk9XrPeLVp08Z1aBn4dhJns5Vy1AlWknjaNGvV0aiRVLZsYK8VTY4fl557TqpXTzp0yHU0QOhxWm76nnvuUd++fc/7nqqnzVbbtm1T27Zt1apVK40dO/aC54+Pj1d8fHxOw7wg305iymeFr06dpGHDpB9+kE6ezPpO4MaNrRTI0aP+iadLF3tQvXevrXYOZJ8mAMiKxMREpaWl6Y033lD16tW1YsUK9e/fX4cPH9bIkSOdxOQrb0iSGKeLiZFKl874vSuusJdkCeKdO6189YYN9vD62mvT3/vWW9aK4t57pQhrQQYAQePrR0wLnehw333S6NHSLbdk3C2clibdeKO1Z2raVHriieDF5PHYbuK33rIdWgAAdhJnlS9JvH27LYgKVLphyhQbO3cOzPmjlccjjR0rrV0rvfCC9NhjriMCQovH6/V6XQeRGVu3blXbtm3VpEkTffDBB4rNRsOE5ORkJSQkKCkpSYUKFfJbbJUqpe9CufRSv50WQZSaag+A9++X5s0LjUTD2rX2xxq7moDQE6j5JFw999xzGjNmjNafZ1tISkqKUlJSTn2dnJysChUq5Ph3ePy4VKiQ3aitXm07RIGcSkmxOXjrVluoNWiQJYtPL10NIDQwJ+dcIH+H48dbL7h77knv54fINWOG1K6dVLSotGOHtVKSpH//W3rgASlfPmnZMqlGjeDGlZRk1/bFAyAwmJNzLli/w+bNrazxF1+kl+XHuXm9Uu/etrv3ySftGYS/paVZlaxdu6SZM6UQ23we9j791BaFFyhgiyRYCI5okNk5JSx6Em/dulVt2rRRxYoVNXLkSO3evVs7duzQjh07XIempCRLEEvWkxjhKTZWevRRW1WUlRvW22+31Uf+2kF8uurVSRADCA9JSUkqWrToed8zYsQIJSQknHpVqFDBL9f+9VdL6BUrFvwHjohccXFWurpJE6vo8a9/SZUrS0OHSnv2uI7uTCdPWmmyfv2kDh2kAHVYAYAs69VLeuklEsTR4rLL7KHrvn32gFuSliyRHn7Yjl9+2c3fawkJJIgB4HRbtthIuenM8Xikzz6TRo0KTIJYkn75xRLEBQpIrVoF5hrRrFcvaxV56JA0fLjraIDQEhZJ4mnTpmnt2rWaPn26ypcvrzJlypx6uVawoK0+mTRJKlLEdTTIibvvth5Jmd0lNG+eNGaM9NRTZ++55C8nT9pOZwAIRWvXrtXo0aM1YMCA875v6NChSkpKOvXa7Kcslq/U9CWXsLAG/uPxSFdeaavrv/7abiYPH5aefdaSxe+/7zpCW82+YIE0eLBUrpz1Wn7nHWudMXCg6+gAANEoVy7pmmvs+LPPbO687jq7p73mGummm9zG5/VK27a5jQEAQsHmzbbpqW5d15HAZ9Mmq8TRvr0tWoZ/xcTY/bxkz/M3bHAaDhBSwiJJ3LdvX3m93rO+XIuJkapUsR6yiB4nT9ouYkm6+ebA9di66y6pZMn0VdgAECgPPvigPB7PeV+JiYkZPrN161Z17txZvXr1Uv/+/c97/vj4eBUqVCjDyx9OTxID/ubxSFddJS1enDFZXLu268ikt9+29hijR9uK82LF7OF77tz2kD4QVU4AICsmTbKWTEeOuI4EwdSrl40TJ9rzkt69bSf52LFuF/StXm075po2tZKeABDNYmOlChWospAVXq/1tt++PTDn79HD7uvGjQvM+WFVt9q1s7Zl9CUG0oVFkhgIlnXrrATWjz+e/31jxliJ0yJFpBEjAhfPwYPWJ/m77wJ3DQCQpHvuuUerVq0676vqabWotm3bprZt26pVq1YaO3ass7hfekn66it7AAkEyunJ4p9+kpo1S//ZQw/Za+/ewF1/40YreT1xYvr3rrzSymfecIP9nbB9u/Tmm9KKFdZbLG/ewMUDAJlx993S5ZdbohjR47LLbKHzvn32n/2TT0q//267o1yqUsVi2r5dWrjQbSwAgPDz7LM2v/laKARCbGzmK1wie3y7iT/+mOoigA9J4hx69FErN0zvt8jwyivSnXdK77577vfs3Ck98ogdP/NMYBvdd+tmI0liAIFWokQJ1a5d+7yvuP/WPNq6davatGmjJk2a6O2331ZMjLs/J0qWlP76V/oRIzg8noz9oXbskF54wRaMVa5sDwz8lSzevdsWpV16qZ37wQdtUYRPyZK20vz996WuXdN3AdSs6Z/rA0BO7N8vrVljx82bu40FwZUrl3T11XbsWyCQP7+7eHzi4myBlWSLqQAgWn3wgS2y/vRT15GEl/Llbdy40f/nPnLEdioj8Jo2lZ5/3jZ/lS3rOhogNJAkzgGv13adPvaY3QQj/HXsaOPUqeeenO+/X0pOlpo0sR7GgdShgz30/eMPewGAa74EccWKFTVy5Ejt3r1bO3bs0I4dO1yHBgRdqVL2cOWii6RDh2zxWE6TxR9/bEnfMmWstcWPP1pyuk0b2zV8+t8n5+tVtXOn1KeP7d4CgGD7+Wcbq1d3v4MUwXfvvVbZYvhw15Fk1KOHjRMn8jAeQPSaO9f6xq9c6TqS8FKpko2BSBIPHmzn/+wz/58bZxoyhH7cwOlIEufApk2WLMyVKzR60yHnLr9cio+3/2xXrz7z59u3S59/bg9rX3vNyoAEUsGCVq5LYjcxgNAwbdo0rV27VtOnT1f58uVVpkyZUy8g2ng80t/+Ji1dKn35ZcZkcZUq0uTJFz7HyZMZv373XftcaqotSHv+eatYM3OmdMstme/nOGSI9N57lmjmQTiAYPMliVu0cBsH3KhWTapXz3UUZ+rc2e73162zJDYARKP16208rZsUMsGXJN682b+97b1eacoUO2/hwv47LzJn3TrulwGSxDmwfLmNtWuffycHwke+fFbWUZK+//7Mn5cpYyvtxowJXtk0X8npb78NzvUA4Hz69u0rr9d71hcQrU5PFk+cKDVqZMnfiy8++/tTU6UZM6wiSalS0pYt6T8bOFB6/HFbrLZ4sSV7y5XLekzDh1tf4tmzpQ8/zNY/CwCyzdfzlSQxQkmBAlKnTnY8caLbWADAlXXrbKxWzW0c4aZsWSkmRjp+3Ko2+cuKFdLWrXbv5tsohOC4805r1/T1164jAdwiSZwDviRxgwZu44B/nV5y+mwqV5YGDAhaOKeSxHPmSAcPBu+6AAAgazweqXt3SxYvWmQJYJ+ePaWHHrKkb4UKUrt20n/+I+3bl/FB9VVXScOG5by3cOXK1hJFku65h9YoQCTasGGDbr75ZlWpUkV58+ZVtWrVNGzYMB0/ftxpXF5vepKYfsQINb6S0/QlBhCNTpyw6okSSeKsyp07ffGuP0tOT5liY9u2Up48/jsvLqxAAdsV/tBDtpAbiFYkiXPgt99sbNjQbRzwL9/K4lmzpJQUO96+3Xp2uFCzpt3IPvigrVYDAAChLSYmY5nNxYulCROkESOkF1+0vyuKFJFuvdX+3hg4MDBxDBliFW927ZIeeSQw1wDgTmJiotLS0vTGG29o5cqVevHFF/X666/roYcechrXhg3Snj1Wbeuii5yGApzhqqusFcPIkZSXBBB9Nm+2ZFiePFLp0q6jCT+B6EvsSxJ37uy/cyJz7r9fKlpU+v13a9UERKtcrgMIZ+wkjkwNGtgfSnv3WsmPJk2k++6zUo3Dh9vqomBjlTMAAOHr4ottLn/jDUsOX3edLUoLdLuSuDjptdekK66wVhl9+0rNmgX2mgCCp3Pnzup82hPFqlWravXq1RozZoxGjhzpLK5y5aQFC6znYXy8szCAsypWTHr1VddRAIAbvlLTVavawlZkzTXX2L2dv/o5HzqUvimJJHHwJSTYc/5777VqXv/4B7u5EZ1IEmfTyZO2QloiSRxpPB5p8mSpenUrO+Hr5efxpJeiBgAAyKyYGKsK4itxGUxt20o33CB98IH0xBPSt98GPwYAwZOUlKSiRYue9z0pKSlK8ZVMkpScnOzXGOLirBcx/YgBAAgtu3db2WR/JTmjzV13+fd8M2ZYCfBq1aQaNfx7bmTOwIHSSy/ZLvtXX7VWTUC0Yc1QNuXKZb3dVq60vnKILBddZAniEyfSS0AOGCA1beoupoMHrWehb9UfAABAZowcaaujP/zQdSQAAmnt2rUaPXq0BgwYcN73jRgxQgkJCadeFbihRRSaO1e6+25p507XkQBA8Fx3nXT0qC0ghXtVq1ri+eabXUcSvfLkscXUkvTMM1JSktt4ABdIEudA7txS3bq2wxSRafRoWwhQvLiVmnapXz/p6qt5wAsAALKmVCnpueesnBaA0Pfggw/K4/Gc95WYmJjhM1u3blXnzp3Vq1cv9e/f/7znHzp0qJKSkk69Nm/e7LfYfYts337bjoFQdc890qhR0ldfuY4EAIIrNpb7guzyem039sqV/jlf/frSiy9KQ4f653zInhtvtBxPWpr066+uowGCj3LTwDk89pj01FN2/K9/WSN7lzp3liZMkL77zmIDAADIKq9X+vFH6dJLXUcC4Fzuuece9e3b97zvqXpancht27apbdu2atWqlcaOHXvB88fHxys+QM2Cf/vNeqEXKWJ90IFQ1aOHtGiRVeu69VbX0QAAwkFioiUTCxVix2kkiY2VPv1UKlfO/oYFog1J4my6804rN33PPVKjRq6jQSB4vTZWrBgaDzi6drVx0SJp1y6pZEm38QAAgPBy8qTUqZP1vpoxw/oVAwg9JUqUUIkSJTL13q1bt6pt27Zq0qSJ3n77bcXEuC0W9vPPNjZvTsUthLYePaSHHpKmT7cH/eyqAxDpvF7piiuk0qWlV16RihVzHVH4qVjRxuRk6cABqXDh7J9r7lzp+HHpL3+RArR2D1lQv77rCAB3KDedTV98Ib3/vnTokOtIECj33y/9+9/SggWS42ctkqSyZaXGje2PusmTXUcDAADCTa5cUu3adnz77fZQAkD42rp1q9q0aaOKFStq5MiR2r17t3bs2KEdO3Y4i2nhQhubN3cWApAptWvb68QJq9YFAJFu715p1izpk0+k/PldRxOe8ue3loSStGlTzs71zDNS+/aWsEfo8Hqlb7+V1q51HQkQPCGQ+go/+/dLW7bYMatMIlfBgtJ990llyriOJF23bjZyEwsAALJj+HCrRpKYKD3/vOtoAOTEtGnTtHbtWk2fPl3ly5dXmTJlTr1c8e0kbtHCWQhApvXoYePEiW7jAIBgWLfOxnLlpDx53MYSzipVsnHjxuyf4+hRS9hL1l4QoeOhh6SrrrIRiBYkibNh+XIbK1WiJBGCy5ck/v57W/EMAACQFYULpyeHn3pK2rDBZTQAcqJv377yer1nfbmQlGQLUCR2EiM8+JLEkyfbA3sAiGTr19tYrZrbOMKdP5LEs2dLx45JFSpYj2OEjuuus5Yp48dLixe7jgYIDpLE2eBLEjdo4DYORJ9mzaysSXKy9SYGAADIquuvl9q0sQfigwe7jgZApFi0yEr0VakiZbKlMuBU06ZS+fK2gMq3wy5anDxpO6hZLAZED9//z1Wt6jaOcOfrS5yTJLGvjWDnzpaQROho0EC64QY7fvBBt7EAwUKSOBt++81GksQItthY6cMPrS9Cq1auowEAAOHI45Fee816FH/zjfT1164jAhAJfv/dRkpNI1x4PNK8edZXMppaia1bZ/87vfpqG33t1ABENt9OYpLEOeOPncRTpthIqenQ9OSTUlycNH26NG2a62iAwCNJnA2+ncQNG7qNA9GpY0dKwwAAgJypU0e69157KF6ypOtoAESCwYOlXbukESNcRwJkXoUKUkyUPRkrWlTats2Od+2yZPGxY25jAhB4vp3EPFPMmUsusb95fC0Lsmr9emnNGluw266df2ODf1SuLN12mx0/+KCUluY0HCDgouxPYf84edJuIthJDAAAgHA1bJi0dKk96AAAfyhRwh6sAeEmNdXaOkWqpUutHLwkFSkiTZhgu6iLFrVS8bffnv5zAJHJ67XEJDuJc+aSS6SXXpL+8Y/sfX76dBtbtZISEvwXF/zr4YelggVt/hw/3nU0QGCRJM6Gn3+WDh2Satd2HQmi1aRJUvfu0ptvuo4EAACEqzx5pNy507/m4TAAIBq9845Upoz0yCOuI/G/ffukm2+WmjSx1lU+rVpJLVtKn3ximyDeflsaM8ZdnAACb84c6ehRqVkz15FEt5tvln75RXr2WdeR4HxKlLDKW3XrSsWKuY4GCCySxNmUN6/1hwVcWLFC+uor6fPPXUcCAADCXUqKNHy41K0biWIAQPQpWlTavVv68svImQe9Xumzz6y9xFtvWf/lxMQz39ehQ3qiYsQI6ciR4MYJILhy5eJ5tj/s2SMtWSIdPJj1z8bESBddZAt1ENoeeED67TepfXvXkQCBRZIYCEPdutk4c6Z0+LDbWCRp61bphx9shz0AAAgvO3ZYknjy5Iy7jAAAiAYdOkj580ubN9tD/3C3ebP0t79JvXtbz+E6daQff5Sefvrs77/3Xunxx6X586V8+YIaKgCEpcsuk5o2lRYudB0JAik+nkUViA4kiYEwVLeuVKmS7fyZMcN1NNIXX9iNdeHC9kfSXXfZLucdO1xHBgAALqRSJemxx+z4nnuk/fvdxgMAQDDlzSt16WLHEye6jSWnPvnEnhd88421lHj8cStr2qrVuT/j8UjDhknlywctTABB9vbb1kt31CjXkUSGSpVs3Lgxa58bMULq08cW5SB8HDsmPf+8NHq0m+sfPy6tXSvNmiVt3+4mBkQ2ksRAGPJ40ncTf/ed21gki6dSJSk11VZev/SS1KuX9XWqXl1atcp1hAAA4HyGDJFq17YdR5HYkxEAgPPp0cPGcE8Sly1rFb5atZKWLbPkb3x81s7xxRe28DtSSm8DkH791Xa9bt3qOpLIkN0k8UcfSe+9l/XPwa1vvrGqG488Iu3d6//ze7220Wr+fGn69Iw/a97cFrPVqCG1bWsLutq3t4UfSUn+jwXRiSQxEKZOTxIH++bt+HHp+uttRbIkDRokbdggbdokffyxNHCg1KiRJY83bJAqVkz/7NNP2w3488/bH6gnTgQ3dgAAcKa4OOm11+x4zBhp0SK38QAAEEzdutnO21Wrzt67N1SlpEjz5qV/fdllVm1s7lzbUZxV69bZgu+XXpLGjvVfnADcWr/exqpV3cYRKXxJ4k2bMv+ZLVukFSusJ3GHDoGJC4FxzTXWRzo5WXrmmZyf7803pTvvlK66SqpfXypQwDZatWol3XprxvfGxkppaVKePFLlynY8fbp0003SX/6S81gAiSQxELbatrWVRFu2SMuXB/faDzxgq9+6dpWOHk3/foUK0rXXSq+8YquW9++XZs+2/k4+33wjffmlrcC65BIpIUG64gorczl1qk12AAAg+Nq2lW64wRaf3XabVQgBACAaJCRI7drZcbjsJv7pJ6lxY9tR5EsASTafx2TzaV+1atLw4XZ8xx12DQDhb906G6tVcxtHpPBthsnKjuApU2xs3lwqVsz/MSFwYmKsVLhkz7zPtjjgxAmbi6dPl8aNkx56yJ6Rt2hhz79PN26c9PLL0rffSitXSkeO2EarihVtIcfpm8Hee0/ats3e8+ef9r/l4cNtIdg116S/79gxacAA6YcfuI9H1uVyHQCA7MmbV+rUSdq9Wzp8OHjX/fzz9B4mb7xhcZxLQoLUunXG7738sjRnjq1s/uknad8+aeZMe5Upk7H0zU8/2eRYpozf/xkAAOAsRo60BV3Ll1sLiebNXUcEAEBw3HKLVcS68krXkZxfcrL04INW+UOSSpa0RIW/dgg+8ID9DfD551LPnnZctqx/zg0g+LxedhL7W3bKTfuSxJ07+z8eBF6nTlKbNtYX+LbbbOPUwIHpP7/0UquYeTa5clniNjbWvv7HP+xcVarYq2pVSxDHxZ352Ro1Mn5dtaoloIcOlU6eTP/+pElWAWTsWKl0aUtQX3ed1LSpJaCB8/F4vdHTZSQ5OVkJCQlKSkpSoUKFXIcD5NjpE0wwrFljk8vBg9L990v/+lfOzpeWZqW8fvzRXkWLpiegvV6pVClLglerJt13n5XcYGJDKGA+yTl+h0Do+vZbqVatM29IgVDEfJJz/A6B8PH119Ltt6cvrr7pJum55+xe2p8OHZJatrTSqJdcYg/Fs9rbGNGH+STnAvE73L7dFnrExlo1wNy5/XLaqLZ5syX1cuWyHZwXejZ74oRUvLgt8lm4kIW44WrhwvRdwblz2/+efP/ZX3utVc48PfF7+tiwYfarfGTGihW2y3n8eNuQ5VOjhiWL/+//LHmM6JLZOYUkMYBMOXLESmSsWGF9jqZPtz+GAmXvXiub9euv6WU2unSxvg3sLIZrzCc5x+8QAOAPzCc5x+8QCH1er/TPf0offmhfV6tmu4WuuCJw11y7VmrWTDpwQOrfnx7FuDDmk5wLxO/wxx9tl2OVKhlL0yP7Tp6U7rnHdhQPHHjhRTS+/wyKFZN27gzuhh/419NP2zPxSpUsKVuggH3/0CEpX77AJoIz4/hxa+f44YfSV1+lt4lMTLSF4FLwN53BnczOKfQkBiLA3r3Shg2BO7+vN+GKFba795NPApsgluwPp19+sb7Gzz9vf3BNnizVry999llgrw0AAMzChdKCBa6jAAAgOFJSrKLGc8+5jiQjj8cSw7GxVg56+fLAJoglqXp16eOP7YF3gQJWCQxA+DlyxBLENWu6jiRy5MolvfSSNGRI5qosHD5sO0k7dSI5F+4eecRaJr7zTnqCWLJj1wliyUpWX3mlzd+7dkkffCANHpyeIJZsZ3H79tJbb9lCMICdxECYe+016Y47pN69pY8+Csw1jh2TevSwlUjTp1vfhGD7/XfpxhutH5LHI61cKdWpE/w4AIn5xB/4HQKh75NP7AayVi2r7HG2HkmAa8wnOcfvEEj3559WGjI21nZ7FSvmLpY//rAdQfXq2dcpKdLq1ZZoCKbff5fq1g3uNRGemE9yLpC/Q6+XFm6unThBuW+4dfiwlT4/dsy+jouTunWTrr/exjx53MYH/2InMRAlGja0Fb1TpmRsWO9PefJI330nzZnjJkGs/2fvvsOjqL4+gH83CUlISAKhhUgCobdQQwsgVaogVlBEuuUHCtJBOkgTBAUUFQVEEBtNkCa9N4kU6S3U0EkBErI77x/n3fSym+zu7M5+P8+zD2R3dubOZjNnZs6950IuSvftA8aMAUaMYIKYiIjI2lq3BgoXltJUM2eq3RoiIiLrCwkBqlWTUox//qlOG549A6ZOlWv9rl2Tr/M9PGyfIAZSJ4ifPZNKZkTkeJggtqxHj2Qgy9mzpr+HCWJSm7e3dP769FOJ7wkJwMqVwGuvSfXQTz9Vu4WkBiaJiRxcvXpAgQJSltnS5SATEpL/7+ICNGhg2fWbK08eYPz41AHr7Fng44+lfA4RERFZTv78ycnhiROtO7UFERGRvXj5Zfl35Urbb3vHDpkHeMQIGeVTqJAkIuxBVBTQvDnQoUPqewVERM5oxgwgLAyYNSvr5W7c4D1Lsi8hIcDIkTKt5L//yjQWQUFAdDSQN2/ycjExwMGDUoWAtI1JYiIH5+YmI30AGe1rKYoCvP460KtX8iT39kZRpAT17NlAjRoSuIiIiMhyunSRKiJPnshcRpS9xETg6lW1W0FERDllTBJv3AjExtpmm0eOyFyVTZrIDVt/f2DxYmmDmiWvU4qOBo4dA/buBfr3V7s1RPbn8uXL6NWrF0JCQpA3b16ULl0aY8eORYLKvSqqVgXCw4ErV1RthuYEB8u/2X2ugwfLMf2HH6zfJiJz6HRyfJg6VTqE79wJvP128ut//AHUrSvzmY8dK9NgkDYxSUykAe3ayb+WTBJ/9hmwZo1McG9O6RRb0umACROAwEBpY3i4BK1nz9RuGRERkTbodMBXX0mntD//lHMDytzp0zKiIDhYbvT/9Rd7XhMROZrQUJmXOD5epnWytv37JXZs2iTx9oMPgFOnpEO0PZWHLVsWWLZM2jR/PrBggdotIrIvp0+fhsFgwDfffIOTJ09i1qxZmD9/PkaOHKlam2JjgePHZfq2/PlVa4YmlSgh/2aVJNbr5dgeHy+JNiJ75eICNGoEFCmS/FxUFODlBZw/L/ffy5WTe+9ffw3cv69eW8nyHC5JHB8fj+rVq0On0yEiIkLt5hDZhdat5WB+/DgQGZn79e3YIWUnAGDOHJmTyV61bCnlMd58U06+JkwA6teXi2oiIiLKvYoVpQc8AHz4IRAXp2577NXWrUCtWjICDJDzqXbtJNmwaBFLcxIROQqdzvolp58+Tf5/3boyjVTXrsCZM9I5K+VNWnvStq1MQQEAfftafsorIkfWunVrLFy4EC1btkSpUqXQoUMHDB48GCtWrFCtTRcvyr/+/oCfn2rN0KSUSeLMOoUeOSLzuPv5yXGeyJEMGyaJ4qVLk3MP+/YB//sf8NxzTBRricMliYcOHYrAwEC1m0FkVwoWTD7Z+Ouv3K3r1i2gc2dJuHbtCvTpk/v2WVuBAtKjefly+f+RI1J+et8+tVtGRESkDaNHSwJ0zJjU8xRRslq15KZ+8+bA4cPAkCGAjw9w8iTw8ccygoCIiByDMUl84YJlK0JERUmp5tKlpXwzIEnpHTuAH3+UEcz2bsQI+XwSEoBXX5V7CESUsUePHsHf3z/T1+Pj4xEdHZ3qYUnGJHHp0hZdLSG53HRcHPDgQcbLrF8v/77wglSKIHI0+fIBb70l3+Vr14CZM2UwWXi4dD4xmjcPOHCAVbQclUMlidevX49NmzZhxowZJi1v7UBLZE8GDQK++w7o2DHn60hMlATxrVtAlSpSPsKeyltlp1MnGVXcqpW0PyxM7RYlY5AkIiJH5uUFHDoE9OolPYgBKT3t7KfXp04lx3g/P5nHadMmSRhPny5zE0+bJkl2Hx9ZTlHk4vrGDfXaTUREWatfH/jvPxkpa4lr4ocPgVGjJFHz5ZcSA37/Pfl1d/fcb8NWXFxkvuSKFWU/evVSu0VE9un8+fOYM2cO3nvvvUyXmTJlCvz8/JIeQUFBFm3DhQvyryN0QHE0efMmV33IrOS0ccqC1q1t0yYiaypWDBg4EIiIAFatSn7+1i3go49kAFuFCsCkSTLHMTkOh0kSR0VFoU+fPliyZAm8vLxMeo+1Ay2RPXnlFaB3byAgIOfrGD1aejDnyycXrN7elmufrQQGSu+mjRuBPHnkuYQEKRNm60Stokgv69q1pS01asicyYcPAwaDbdtCRESUWylvkp87J+ceISHA1Kky35kz0euBTz+VUtLffJP8fFBQchIdkMTx0KFyMW30999SvrtkSaBnT0lCEBGRfXFxkSRobj1+LJ2FSpWSuBEXB9SpI7GgZ8/cr18tPj5yg7huXen4RKRlw4cPh06ny/Jx+vTpVO+5fv06Wrdujddffx19sijRN2LECDx69CjpcfXqVYu23TiSmEli68hqXuJ794CDB+X/rVrZrk1EtmDsAA0AT57INJBeXsDZs5JfCAkBmjQBfviBHcsdgUMkiRVFQffu3fH+++8jzIyhgdYOtERa07ixlK7+4QegfHm1W5NzOp3sh9G4cXIj+7XXgDt3rLPNR4+AdeuAL75I3Y5t2yQprNdLT6sJEyRpXLx48vyOREREjubOHaBMGZmHaMQIufE0c6bcDNe669eBFi1kRJheL3HeHN7eQKNGwLNnwMKFQOXKQPv2MgqZlUeIiOzP06c56+QbEwOUKwcMHy6lSCtVks7L+/fL1ASOrlw5meKpQgW1W0JkXYMGDcKpU6eyfJRKkYW9ceMGmjZtivDwcHz77bdZrtvDwwO+vr6pHpZkHEnMctPW8f77cg1UuXL61/7+W2JHlSpyD5BIq0JCgJ9+khHFixYBzZolT6XRq5dMD0nZe/hQOpaocU9A1Wr4w4cPx7Rp07Jc5tSpU9i0aRNiYmIwYsQIs9bv4eEBDw+P3DSRyKHcuAH89puMWv3f/8x/f+vWwPnzQP78Fm+aqvz8ZO6PFSuAPXuABQuAF1/M3TofPQJ27wa2b5fHP//IyZ+rq/QIN/aoGjpUbirUrCkH+jVrpNzMzZtAZGTy+hRFgmazZkDRorlrGxERkbWFh8tcu8uWAePHyw2owYOBzz6TpPF77wGenmq30vLWrAF69JDkuLc38NVXQNeu5q0jPFwSwvv3y+e1ciWwdq086tSRbfBcgIjIPrz3nsS6DRuABg2yX15Rkitv+PgATZvKdeOECTKnn6urddtraymrjGzbJrGxTh312kNkDYULF0bhwoVNWvb69eto2rQpatWqhYULF8LFRd3xWQEBUr2mTBlVm6FZWVWEqF8f+PxzwMJ5fyK75eMDdOsmj6tXgaVLgV9+AV5/PXmZJUvkHvo77wDVqzvWNJeWcusW8O+/wOnTqR+3bsnrUVHJpextRaco6vVXv3PnDu7du5flMqVKlcIbb7yBP//8E7oU3xq9Xg9XV1d06dIFixcvNml70dHR8PPzw6NHjyzeM4vIHqxZA7z0kpwAXrxo2oH26VM5CJUsae3WqevoUbmJe/Kk/Ny7t5yspSyPYarhw+Wmbtre5GXKSCmNCRNknobMPH0qieUCBaQ8FyDBoGJF+Z3VrQt06CCPSpWcM2DaO8aT3ONnSKQdiYlysTdhgsw95OcHXLokcU4rnj4FhgwB5s6Vn2vWBH7+WUZR5dbZs3JOsmiRjPI4fjy5ZHXKZANljPEk9/gZEmWuSxdJEg8aBMyYkflyigKsXi0dp379FShbVp6/f1+mc3KkOYdzYu1aoGNHSUgdOcLOTpagKFLCtkgRKeHpCJw9nly/fh1NmjRBiRIlsHjxYrim6BUSYOLccM7+GRKRttWtm1yGvUoVSRa/9Rbw3HPqtsvSnj6VKbqMCeCPPpL7JADw8cfA7NkZvy8wEPjrL6BaNcu0w9SYomqS2FSRkZGITlG8/MaNG2jVqhV+//131K1bF8VNrNnAQEtaFxcnZZbj4yUZWqlS9u95/30Zwbp0KdCunfXbqKanT6U05OefywVXSIiMvK5VK/2y0dGpRwovWZJcgvurr4C+fZOTwk2aSKnu3JSP2bsX6N8/fcnKkBBJFr/7rmm/T7INxpPc42dIpD0JCZLoTExMrmiiKDJStn17qXTiqA4elNEABoMkCiZPtvwN/6go4Nq15POSx49liorOneXzTDmVBiVjPMk9foZEmfvjD5m2qFQpqbqVUcedv/8GRo4EDh2Sn3v2BL7/3rbtVFt0tNz4PX1aplT4+2/tJ8atQVGk8/9ff8nj2jWgUCFg4kTp6O6maj3I7Dl7PFm0aBF69OiR4Wum3n539s/Q0Tx9Kvdfo6OlcgQRZU5RZKrGH3+UWBcfL8/rdDKdU8+ecu3riPbskQqmxqTwpUupy0bv3Sv3EwCZ5nPmTJmuI+WjfHnLVx7QVJI4rcuXLyMkJARHjx5F9erVTX4fAy05g9atgY0bgenTZcRLVpYskR47Op2Uz2rZ0jZtVNuOHVL64u5dKe9QujQQGyulH41J4SNHUo8Unj9fSo0BMp9UXJx15hS5fl16Yf/5p1xYGwPm2rXJSfzbt+VGu5ZGaDkaxpPc42dI5Bw2bADatJFOT2PGAG+/bf83ODPzxRdy4da6tW229/33ckMYkBFEvXtLr2OtV38xF+NJ7vEzJMpcXJwk6Z4+BSIiUo/s2L8f+OQTYOtW+dnLS47TgwdrbwonU5w5I52bYmKAfv2AOXPUbpH9UxSZNizlCKpq1YBjx9IvW6WKjDyy5/msGU9yz5KfISvSWF9EBFCjhoz4j4pKfn71aqkk0bYtKysQZeThQxm49eOPMkgLkI7la9YkL2MwJFfYUpNeL0nflKWhT50C5s2TktmAVBz78MPU78ufX6qGVqgg54ehobZuuekxxUFv0RBRZtq1kyTxunVZJ4lPnEhOeo4d6zwJYkBG/R47JnMglC4tz+3YkX6e4pQjhVu0SH6+QAHrJWife05+L++9JzckNm+W32WzZsnLzJol5a4bNZJRxu3bc34ZUkd8fDzq1q2Lf//91+yOW0TkHKKj5abJpUsyl+/kyXLe0bmzfc/L+OCBlIQaOVIu7ACp+GFL3bpJwmH6dLkB9eWXciH6xhtyjlejhm3bQ0TkjLy95Vp5zRqpjGFMEnfvDhhnPnN3lwpdI0c6dzKgfHngp59kCqy5c6UyRvfuarfK/jx5Ih3TjaOFr18H7t2T7xog50sXLkhyqUEDuYE+dqzcw9mxw76TxGRffvgBGD1aSrlmVS6fcq5ECfn39m35286bV37+/HMZiPLVV8AHH6jXPiJ7lT8/0KePPC5elPMH45SMgDzXuLFM+/H885IwTkyUhK1eL88Zq/ifPi3xUa9PvYzx/6+9llwd9OhRqaaadhnjv++9lzzid+1aYMQImR4qISH9Phw/npwkbtAAGDAgeVRwxYpA4cKO01HHIUcS5xR7tJEzuHhREp+urjJSNqMezDExQFiYHORatpQLE3u+UWsLjx4BdepIkLFE+WhreuUVuUGRUsWKwKuvSjnKrOZDtldnzkiv6Nu35aZCx46WL7FhSYwnon///jh37hzWr1/P6h5ElKm4OLlBMm2a3AQFJG6NGycXbPbQOzilPXvkZlpkpJwvHTyo7sWdokh1kc8+k85jgLTn4kWOKgYYTyyBnyFR1hYvlmRn1apSiQoAJk2SxN0770g8MyYKSOZlHjcO8PAAdu2S0cXO7urV5DLSW7fKyHSjPHkkaRwenvn779+XpNPw4TLHNSD3cwoVAvz9rdp0szCe5J4lP8MRI4CpU2W6tLlzLdRASkVR5N5VbKwkqsqXl/uLBQtKwunCBZmugIjMM3myVGvJzIYNQKtW8v8FCyTZnJk//pB76QDw889yrZ+ZH38EunaV/69fLx22AMDTU/6+U5aHbtTI/udS5khiIidVqpQcqE6fBjZtktEmKSmKlCs8e1aSoEuXMkEMyOTxZ86o3QrTrFghN4b//FMuNHfulDIXkyZJWexr1+SC3BEcPiwXLStWJM/VsGKFjJy6cUN+L2Sf1q9fj02bNuGPP/7A+vXrs10+Pj4e8cb66ZATFSJyDt7eMvL1/fel9OSMGRK3xo+XDk72Qq8HPv1U2mUwSKe7r75Sv/evTge88II8jh6VZPGzZ6kTxMYSqGq3lYhIi9q3l3/j46WcaNGiMlrk1VeTq01QstGjZfqmP/8EfvnFOZPECQlyLuHpKT///jswcGDy68WLy43ntm2lapiPT9br8/eX630jg0FGV128KOct770nyWailC5elH+ZpLQenU46CZ08CVy5IkmkLVvkuqJcOX72RDk1aJDkN5Yulapkbm7ycHWVR8pBcSEhMtjI1TV5mZTLpuzIV7Gi3JtIu4zx/zVrJi9br5507qpYEQgOtr/O7ZbEJDGRBrVrJyeDV66kf23ZMuDXX+Xg99tv0vOUHE+pUlL2sn9/mcfhr7+kBGX9+skJYkWR0hdVq6ra1ExNnw4MG5b880svyQ3uX38FAgNTJ4inT5fXmjd33LkstSQqKgp9+vTBqlWr4OXlZdJ7pkyZgvHjx1u5ZURkz3x8pBRn374yv2+1askd1Z48kZE1bduqk+i8dk1utu7cKT937SpxNbubtrZWo4acyxkMyc9dviwjnitXlhFGr7/OWElEZEn+/nJsvXBBplAAZDQnE8QZc3EBliyRxGjPnmq3xnauXZNRR3/9JRVAvvxSSkcDcn6zerX826aNzC+cm/OdqCg5d7p/X+ZAnDdPRhq3aWOZfSFtuHBB/jVOs0bWkTJJDMgIR4B/j0S54eEho3+NI4Cz0ry56VMxVK+eXCI6OwUKOM/fMctNE2nQ3bvSY9VYhiil+HjpwVq+vMy1R9ry7FlyD+Jdu6R8duPGwNChEtjUHGGk10sJHmPy97//JDC/+aa0r3JleV5RZA5L43K3bkn5DoNBbsq8/rq8p3599XpxOXM8URQFbdu2RYMGDTBq1ChcvnwZISEh2ZabzmgkcVBQkFN+hkSU3uzZwMcfy2ijTz6RZGhgoG2SnSdPSry8f1/Onb7+Gnj7betv11JWr5b2xsbKz6VLSyesd96xz8oier2U1Xz0yLSL/uw4c0y2FH6GRNl78gS4c0dGkpD5Nm2SyiJhYfYZm3IiMRHYty95buFjx1K/3qOHzAlrze1/952M3DZO59G6NTBzJlCpkvW2mxXGk9yz5Gfo7w88eCDfzdBQCzWQ0vnf/+T6YdQoYMIEiRPGTiOtW6vdOiJyZqbGFA0PkiZyXoUKZZwgBuSCbN48Joi1KmWJqYgI+XnHDhldXrWq9Oh+9sy2bUpIkIvjypWll7NRpUrA9esyx5cxQQxIIjvlKOLERClRWqiQzFk8bx7QsKGUExk2zHHKhNu74cOHQ6fTZfk4ffo05syZg5iYGIwYMcKs9Xt4eMDX1zfVg4jIKCFBpho4dEhKRZUoIecsQUFAgwbSyc3o2DGZE/LBg+SpCnLDOLdQWJiUc3akBDEglTgiI+WmVMGCMmrk3Xel6sjnnwOPH6vdQunotXs30K+fdPxq0UI6LTpPd2UicnR58zJBnBuDBsk1nJ+fdMz65BNJoDx6pHbLTBcbm1y+F5CKXo0by/RJx47JdWz9+sDEiVJue8EC67bHzQ344APg/Hn5fPPkkRGMVasCBw5Yd9tk/x48kAfAksfWZixle+WKDIa4dk0G7jRurG67iIhMxZHERBr39KlcLCxeLCNKWH7QuVy7JqOzvvkmeYRRUJCM1urbF3B3t962Y2OlZ/PMmZIMBoDChWUuCW9v89f37JnM7fLzz8DKlUBMjDy/YAHQq5f8X1FsM1pai/Hkzp07uGfsgp6JUqVK4Y033sCff/4JXYoPWq/Xw9XVFV26dMHixYtN2p4WP0Miyp3bt4Fp04BVq4CrV5M7NeXPn3yTC5BSjcap0PPlk5v2QUHyb3CwlLQ2VpowGDKuOnH6tHQ2Mo5munNHblxbMy7aQlycxN4ZMyT2+vjIDasCBdRt15Ah0iYjf3/gtdfkHCGzjo2mYjzJPX6GRGRNej3QqZNM6XDnTurXdDqZ83n1anXalpm4OOk4duQIcPiw/Hv6NFCnDrB/f/JyL74o5ylt2wItW6o7nde5c1Kh69o1SRKrUXWL8ST3LPUZHjkiHSCLFpXqbGQ9R45IlZywMDnv7t5djgfGstNERGoxNaYwSUykURERMv+Pi4tcdI0bJxcwa9aoW3KY1PHwITB/viSMo6KAMmXkItc4F6Ql3b0LzJ0LzJkjpTsBKRk6cKCMbLLE/I5PngDr1gG//AJ8+23yze/Zs2WuxjfflBsRgYG531ZGnDmeREZGIjo6OunnGzduoFWrVvj9999Rt25dFC9e3KT1OPNnSETZMxgkXkVGSgxr1Sr5tU6dgG3b0t9oBtInlNu3lxs3xgRycLAkgmfNktE3n39u7T1RR3y8VA+JiwP695fnFEXmR3zjDaBYMetsV1FkNNUvvwCvvgrUqiXPb9smI8Rffhno3FnmjEpZ/SQ3GE9yj58hEdmCokgic9cuqS6xa5dUv+jWDVi0SJbR6yV2VK0KNGoko48rVLDuPYyUUzYBcs7x999yLpJWmTLA2bP2fU8lNja5A1ZsLNChg1yLt2tn/XYznuSepT7Dw4elk17BgjI/ONnO3btyL6xcObVbQkTOjkniDPBkhZxJVBQQECD/1+nkguzHH4GuXdVtF6nr6VO5aZw/v8zta3xu1Cgp6VymTO63MWWKjOICgLJlpTdz1662mXsqPFzmhQLke9+4MfDWW3Kj2t/fctthPElm6pzEafEzJKLcevxYRstERiY/9Hop82gUGgqcOJHx+9u0kc5zzlJlZds2oFkzicc9e8qNw5AQy6z79GlJDC9fLv8HZGqTL76Q/+v1chPe09My20uJ8ST3+BkSkVpu3pTrUWM8iogAatRIvUyhQpIsbthQYndu5tt98kSmrEg5Qvj2bWmHMYH6yitSuSowUEYG1qqV/G/Rojnftho+/VSu9QHghRekc1yVKtbbHuNJ7vEzJCIiS2GSOAMMtORs6tSRuf0A4L33ZCQpUVoLFgB9+sio81dflaRuWJjp7z91SkYqGd/z8KGMFurbVy6wrTFaOTO3bwO//SajiffuTX4+Tx7pQf3bb5bpPc14koxJYiKyZ3fupE4iR0YCN25IJ6J331WnFKNa9u2TOQuNnalcXaUj1fDhObvh/vSpVPD45Re5qW/k4SFlN3v1klFL1sZ4knv8DInIXjx+nDzKeNcuKZv89Gny62PHSpU0QOYzPnQIqFcv+6kLZs6UztInTkjHpbSuXEmec/r8eZkeyVpVN2wpOhqYPFkqqCQkyHnPu+8CEybIVFCW3x7jSW7xM3RMEREyZ3mzZjIog4jIHjBJnAEGWnI2kycDn3wC1KwJ7NljndEb5PgOHJCLxL/+Sn6uaVNg2DCZRyWzpOrBg8DUqTJ3ZJ06ctPZnspuXbkiI5qWLZPSly+9JG21BMaT3ONnSERke4oic0JOngxs2pT8fMeO0mmsYMGs35+yhKXBIDfUr1+X0dgtW0op6ZdeAmx5WGc8yT1+hkRkrxISZLSvMXE8ZIiUoQbk2u7ll6XTU40a8nxIiFz7HT4MbN2aPC3R0KHAZ5/J/4sUkQ7OxtHBtWrJqGF7upa1tIsX5freWHbY1xcYM0bKUFtyvxlPco+foWMqXVr+znQ6YP361FPlEBGpxdSY4iTF1Yic08CBUnK6QwcmiClzdevK/L7Hj8uF888/S0nKbduAatWkg4G3tyyrKMDmzZIc3rYteR3Fislo4ux6cNtSiRJyITxsGPDff0BiototIiIiUpdxKobGjeUG+pQpwIoVEiczG/Vw+7bcVF6+XOaSvHpVksIuLnKD2cVFbtJnl2AmIiIyl7s7UL++PIYMSf1aXJx0VoqMlJh2+HDq1//5B2jeXP7ftSvQoIEkhJ97TtsJ4YyUKiVVtXbuBAYMAI4elVHYzvY5EFlLcLAkiRUFiI9XuzVERObhSGIiIkolMlLKUX33nfTGXr9ent+yRXpg//OP/OzmBnTpIs/lZl4oR8R4knv8DImI7MOpU1KW+/nn5eenT4FOneQcYONGGYllMCQvf+CAVBCxF4wnucfPkIgcWWRk8kjj69eB0FBJBjdpAvj7q906+2MwAIsXS1ncEiXkuWvXpHx35cq5WzfjSe7xM3RMDRokT3kWHQ34+KjbHiIigCOJiYgoh4KDJUk8ejTw4EHy8w8eSILYy0vmMB44MHneJiIiInJMFSvKw2jxYmDNGnkY1akjiePXXweCgmzfRiIioswEBwNvvSUPyp6LC9CjR+rnhg8HPvxQnfYQaUHRosn/Z4KYiBwNk8RERJQhf//UPa9ffhmYMQPo1g0oVEi9dhEREZH1vPQScOmSdAxr2lSSw6VKqd0qIiIisobERBkFWbeu2i0hclyzZ8sc6p98onZLiIjMxyQxERGZxNUVGDRI7VYQERGRNQUEAFOnqt0KIiIisgU3N+CDD9RuBZFjCw4G1q5VuxVERDnjonYDiIiIiIiIiIiIiIiIiIjIdpgkJiIiIiIiIiIiIiIiIiJyIkwSExERERERETmw+Ph4VK9eHTqdDhEREWo3h4iIiIiIiBwAk8REREREREREDmzo0KEIDAxUuxlERERERETkQJgkJiIiIiIiInJQ69evx6ZNmzBjxgy1m0JEREREREQOxE3tBhARERERERGR+aKiotCnTx+sWrUKXl5eJr0nPj4e8fHxST9HR0dbq3lERERERERkxziSmIiIiIiIiMjBKIqC7t274/3330dYWJjJ75syZQr8/PySHkFBQVZsJREREREREdkrJomJiIiIiIiI7MTw4cOh0+myfJw+fRpz5sxBTEwMRowYYdb6R4wYgUePHiU9rl69aqU9ISIiIiIiInvGctNEREREREREdmLQoEHo3r17lsuUKlUKW7duxb59++Dh4ZHqtbCwMHTp0gWLFy/O8L0eHh7p3kNERERERETOh0liIiIiIiIiIjtRuHBhFC5cONvlvvzyS0yaNCnp5xs3bqBVq1b45ZdfULduXWs2kYiIiIiIiDTAqZLEiqIAAKKjo1VuCREROTJjHDHGFTIfYzIREVmCM8fk4ODgVD/ny5cPAFC6dGkUL17c5PUwJhMRkSU4c0y2FMZkIiKyFFPjslMliWNiYgAAQUFBKreEiIi0ICYmBn5+fmo3wyExJhMRkSUxJuccYzIREVkSY3LOMSYTEZGlZReXdYoTde8yGAy4ceMGfHx8oNPp1G5OlqKjoxEUFISrV6/C19dX7ebkCPfBPnAf7AP3wT5Yah8URUFMTAwCAwPh4uJiwRY6D8Zk2+I+2Afug33gPtgHxmT74Ugx2UgLfwMpaW1/AO3tk9b2B9DePmltfwDH2yfG5NxzxJiclqN9by3FGfeb+8x91jIt7LepcdmpRhK7uLiYVXbLHvj6+jrsl9CI+2AfuA/2gftgHyyxD+wZnTuMyergPtgH7oN94D7YB8Zk9TliTDbSwt9ASlrbH0B7+6S1/QG0t09a2x/AsfaJMTl3HDkmp+VI31tLcsb95j47B2fcZ8Dx99uUuMxuXUREREREREREREREREREToRJYiIiIiIiIiIiIiIiIiIiJ8IksZ3y8PDA2LFj4eHhoXZTcoz7YB+4D/aB+2AftLAPZHta+N5wH+wD98E+cB/sgxb2gdSjte+P1vYH0N4+aW1/AO3tk9b2B9DmPpH2Oev31hn3m/vsHJxxnwHn2m+doiiK2o0gIiIiIiIiIiIiIiIiIiLb4EhiIiIiIiIiIiIiIiIiIiInwiQxEREREREREREREREREZETYZKYiIiIiIiIiIiIiIiIiMiJMElMREREREREREREREREROREmCS2I1OmTEHt2rXh4+ODIkWKoGPHjjhz5ozazcqVqVOnQqfTYcCAAWo3xSzXr1/H22+/jYIFCyJv3rwIDQ3F4cOH1W6WyfR6PUaPHo2QkBDkzZsXpUuXxsSJE6EoitpNy9TOnTvRvn17BAYGQqfTYdWqValeVxQFY8aMQbFixZA3b160aNEC586dU6exmchqH549e4Zhw4YhNDQU3t7eCAwMxDvvvIMbN26o1+AMZPd7SOn999+HTqfD7NmzbdY+U5iyD6dOnUKHDh3g5+cHb29v1K5dG5GRkbZvLNktxmT7wZisDsZl+8C4TJRMi7E5LUeN1Sk5etxOy1HjeEpaiOkpaSG+p6WFeE/kDHE6O1qI46bQWqw3hRbOB7KjtfMFU2jxnCInmCS2Izt27EDfvn2xf/9+bN68Gc+ePUPLli0RFxendtNy5NChQ/jmm29QtWpVtZtilgcPHqBBgwbIkycP1q9fj//++w8zZ85EgQIF1G6ayaZNm4avv/4ac+fOxalTpzBt2jRMnz4dc+bMUbtpmYqLi0O1atUwb968DF+fPn06vvzyS8yfPx8HDhyAt7c3WrVqhadPn9q4pZnLah8eP36Mf/75B6NHj8Y///yDFStW4MyZM+jQoYMKLc1cdr8Ho5UrV2L//v0IDAy0UctMl90+XLhwAQ0bNkSFChWwfft2HDt2DKNHj4anp6eNW0r2jDHZPjAmq4dx2T4wLhMl01psTstRY3VKWojbaTlqHE9JCzE9JS3E97S0EO+JtB6ns6OFOG4KLcZ6U2jhfCA7WjtfMIUWzylyRCG7dfv2bQWAsmPHDrWbYraYmBilbNmyyubNm5XGjRsr/fv3V7tJJhs2bJjSsGFDtZuRK+3atVN69uyZ6rlXXnlF6dKli0otMg8AZeXKlUk/GwwGJSAgQPnss8+Snnv48KHi4eGh/Pzzzyq0MHtp9yEjBw8eVAAoV65csU2jzJTZPly7dk157rnnlBMnTiglSpRQZs2aZfO2mSqjfejUqZPy9ttvq9MgcliMyepgTLYPjMv2gXGZKDVHjs1pOXKsTkkLcTstLcTxlLQQ01PSQnxPSwvxnkhRtBWns6OVOG4KLcZ6U2jtfCA7WjtfMIUWzylMxZHEduzRo0cAAH9/f5VbYr6+ffuiXbt2aNGihdpNMduaNWsQFhaG119/HUWKFEGNGjXw3Xffqd0ss4SHh2PLli04e/YsAODff//F7t270aZNG5VbljOXLl3CrVu3Un2f/Pz8ULduXezbt0/FluXOo0ePoNPpkD9/frWbYjKDwYCuXbtiyJAhqFy5strNMZvBYMC6detQrlw5tGrVCkWKFEHdunWzLOdFBDAmq4Ux2T4xLtsPxmVyZo4cm9Ny5FidkhbidlpajOMpaTWmp+SI8T0tR4/35Jy0FKezo5U4bgotxnpTaP18IDvOcL5gCi2cU2TETe0GUMYMBgMGDBiABg0aoEqVKmo3xyzLly/HP//8g0OHDqndlBy5ePEivv76awwcOBAjR47EoUOH8NFHH8Hd3R3dunVTu3kmGT58OKKjo1GhQgW4urpCr9fj008/RZcuXdRuWo7cunULAFC0aNFUzxctWjTpNUfz9OlTDBs2DG+++SZ8fX3Vbo7Jpk2bBjc3N3z00UdqNyVHbt++jdjYWEydOhWTJk3CtGnTsGHDBrzyyivYtm0bGjdurHYTyQ4xJquHMdk+MS7bD8ZlclaOHJvTcvRYnZIW4nZaWozjKWkxpqfkqPE9LUeP9+R8tBSns6OlOG4KLcZ6U2j9fCA7Wj9fMIVWzikywiSxnerbty9OnDiB3bt3q90Us1y9ehX9+/fH5s2bHXYeMYPBgLCwMEyePBkAUKNGDZw4cQLz5893mGD366+/YunSpVi2bBkqV66MiIgIDBgwAIGBgQ6zD1r27NkzvPHGG1AUBV9//bXazTHZkSNH8MUXX+Cff/6BTqdTuzk5YjAYAAAvvfQSPv74YwBA9erVsXfvXsyfP583oylDjMnqYUwmW2BcVg/jMuWUo8bmtLQQq1PSQtxOi3HccTlqfE9LC/GenI9W4nR2tBbHTaHFWG8Kng84N62cU2SG5abtUL9+/bB27Vps27YNxYsXV7s5Zjly5Ahu376NmjVrws3NDW5ubtixYwe+/PJLuLm5Qa/Xq93EbBUrVgyVKlVK9VzFihURGRmpUovMN2TIEAwfPhydO3dGaGgounbtio8//hhTpkxRu2k5EhAQAACIiopK9XxUVFTSa47CGFSuXLmCzZs3O1TPo127duH27dsIDg5O+vu+cuUKBg0ahJIlS6rdPJMUKlQIbm5uDv83TrbDmKwuxmT7xLhsHxiXyVk5cmxOSwuxOiUtxO20tBjHU9JSTE/JkeN7WlqI9+RctBSns6O1OG4KLcZ6U2j9fCA7Wj1fMIWWzikyw5HEdkRRFHz44YdYuXIltm/fjpCQELWbZLbmzZvj+PHjqZ7r0aMHKlSogGHDhsHV1VWllpmuQYMGOHPmTKrnzp49ixIlSqjUIvM9fvwYLi6p+4C4uromjdZwNCEhIQgICMCWLVtQvXp1AEB0dDQOHDiADz74QN3GmcEYVM6dO4dt27ahYMGCajfJLF27dk03v0qrVq3QtWtX9OjRQ6VWmcfd3R21a9d2+L9xsj7GZPvAmGyfGJftA+MyORstxOa0tBCrU9JC3E5Li3E8Ja3E9JQcPb6npYV4T85Bi3E6O1qL46bQYqw3hdbPB7KjxfMFU2jtnCIzTBLbkb59+2LZsmVYvXo1fHx8kuq5+/n5IW/evCq3zjQ+Pj7p5prw9vZGwYIFHWYOio8//hjh4eGYPHky3njjDRw8eBDffvstvv32W7WbZrL27dvj008/RXBwMCpXroyjR4/i888/R8+ePdVuWqZiY2Nx/vz5pJ8vXbqEiIgI+Pv7Izg4GAMGDMCkSZNQtmxZhISEYPTo0QgMDETHjh3Va3QaWe1DsWLF8Nprr+Gff/7B2rVrodfrk/7G/f394e7urlazU8nu95A2GObJkwcBAQEoX768rZuaqez2YciQIejUqROef/55NG3aFBs2bMCff/6J7du3q9dosjuMyfaBMVk9jMuMy5bCuEyWooXYnJYWYnVKWojbaTlqHE9JCzE9JS3E97S0EO+JtBins6O1OG4KLcZ6U2jhfCA7WjtfMIUWzylyRCG7ASDDx8KFC9VuWq40btxY6d+/v9rNMMuff/6pVKlSRfHw8FAqVKigfPvtt2o3ySzR0dFK//79leDgYMXT01MpVaqU8sknnyjx8fFqNy1T27Zty/D7361bN0VRFMVgMCijR49WihYtqnh4eCjNmzdXzpw5o26j08hqHy5dupTp3/i2bdvUbnqS7H4PaZUoUUKZNWuWTduYHVP24fvvv1fKlCmjeHp6KtWqVVNWrVqlXoPJLjEm2w/GZHUwLtsHxmWiZFqNzWk5YqxOydHjdlqOGsdT0kJMT0kL8T0tLcR7ImeJ09lx9DhuCq3FelNo4XwgO1o7XzCFFs8pckKnKIqSLnNMRERERERERERERERERESa5JL9IkREREREREREREREREREpBVMEhMREREREREREREREREROREmiYmIiIiIiIiIiIiIiIiInAiTxEREREREREREREREREREToRJYiIiIiIiIiIiIiIiIiIiJ8IkMRERERERERERERERERGRE2GSmIiIiIiIiIiIiIiIiIjIiTBJTERERERERERERERERETkRJgkJs27fPkydDodIiIi1G5KktOnT6NevXrw9PRE9erVM1xGURS8++678Pf3V7399vgZ5tT27duh0+nw8OFDq29r3Lhxmf5+iYickT3GE8Zk9TAmExGpyx5jCuOyehiXiYjUY4/xhDFZPYzJZEtMEpPVde/eHTqdDlOnTk31/KpVq6DT6VRqlbrGjh0Lb29vnDlzBlu2bMlwmQ0bNmDRokVYu3Ytbt68iSpVqtikbd27d0fHjh1TPRcUFGTTNjginU6HVatWpXpu8ODBmf5+iYjUwJicHmOy9jAmE5GjYFxOj3FZexiXicgRMCanx5isPYzJlBEmickmPD09MW3aNDx48EDtplhMQkJCjt974cIFNGzYECVKlEDBggUzXaZYsWIIDw9HQEAA3Nzccry93HJ1dVW9DY4oX758mf5+iYjUwpicGmOyc2BMJiJ7xbicGuOyc2BcJiJ7xJicGmOyc2BMJiaJySZatGiBgIAATJkyJdNlMiptMHv2bJQsWTLpZ2MvocmTJ6No0aLInz8/JkyYgMTERAwZMgT+/v4oXrw4Fi5cmG79p0+fRnh4ODw9PVGlShXs2LEj1esnTpxAmzZtkC9fPhQtWhRdu3bF3bt3k15v0qQJ+vXrhwEDBqBQoUJo1apVhvthMBgwYcIEFC9eHB4eHqhevTo2bNiQ9LpOp8ORI0cwYcIE6HQ6jBs3Lt06unfvjg8//BCRkZHQ6XRJn0HJkiUxe/bsVMtWr1491Tp0Oh0WLFiAl19+GV5eXihbtizWrFmT6j0nT57Eiy++CF9fX/j4+KBRo0a4cOECxo0bh8WLF2P16tXQ6XTQ6XTYvn17huU6duzYgTp16sDDwwPFihXD8OHDkZiYmOrz+uijjzB06FD4+/sjICAgw31Na8GCBahYsSI8PT1RoUIFfPXVV0mvhYeHY9iwYamWv3PnDvLkyYOdO3cCAJYsWYKwsDD4+PggICAAb731Fm7fvp3p9kz53h06dAgvvPACChUqBD8/PzRu3Bj//PNP0uvGZV9++eVUv6+0687uu2H8nFesWIGmTZvCy8sL1apVw759+5KWuXLlCtq3b48CBQrA29sblStXxl9//ZXlZ0pElBJjMmMyYzJjMhHZD8ZlxmXGZcZlIrIPjMmMyYzJjMnOiElisglXV1dMnjwZc+bMwbVr13K1rq1bt+LGjRvYuXMnPv/8c4wdOxYvvvgiChQogAMHDuD999/He++9l247Q4YMwaBBg3D06FHUr18f7du3x7179wAADx8+RLNmzVCjRg0cPnwYGzZsQFRUFN54441U61i8eDHc3d2xZ88ezJ8/P8P2ffHFF5g5cyZmzJiBY8eOoVWrVujQoQPOnTsHALh58yYqV66MQYMG4ebNmxg8eHCG6zAejG/evIlDhw6Z9RmNHz8eb7zxBo4dO4a2bduiS5cuuH//PgDg+vXreP755+Hh4YGtW7fiyJEj6NmzJxITEzF48GC88cYbaN26NW7evImbN28iPDw83fqvX7+Otm3bonbt2vj333/x9ddf4/vvv8ekSZPSfV7e3t44cOAApk+fjgkTJmDz5s2Ztnvp0qUYM2YMPv30U5w6dQqTJ0/G6NGjsXjxYgBAly5dsHz5ciiKkvSeX375BYGBgWjUqBEA4NmzZ5g4cSL+/fdfrFq1CpcvX0b37t3N+vzSiomJQbdu3bB7927s378fZcuWRdu2bRETEwMASb+fhQsXZvn7yu67YfTJJ59g8ODBiIiIQLly5fDmm28mncD07dsX8fHx2LlzJ44fP45p06YhX758udo/InIujMmMyYzJjMlEZD8YlxmXGZcZl4nIPjAmMyYzJjMmOyWFyMq6deumvPTSS4qiKEq9evWUnj17KoqiKCtXrlRSfgXHjh2rVKtWLdV7Z82apZQoUSLVukqUKKHo9fqk58qXL680atQo6efExETF29tb+fnnnxVFUZRLly4pAJSpU6cmLfPs2TOlePHiyrRp0xRFUZSJEycqLVu2TLXtq1evKgCUM2fOKIqiKI0bN1Zq1KiR7f4GBgYqn376aarnateurfzvf/9L+rlatWrK2LFjs1xP2n1XFEUpUaKEMmvWrFTPpV0XAGXUqFFJP8fGxioAlPXr1yuKoigjRoxQQkJClISEhAy3m/L3ZWT8DI8ePaooiqKMHDlSKV++vGIwGJKWmTdvnpIvX76k303jxo2Vhg0bplpP7dq1lWHDhmW6z6VLl1aWLVuW6rmJEycq9evXVxRFUW7fvq24ubkpO3fuTHq9fv36Wa7z0KFDCgAlJiZGURRF2bZtmwJAefDggaIopn3v0tLr9YqPj4/y559/Jj0HQFm5cmWq5dKuO7vvhvFzXrBgQdLrJ0+eVAAop06dUhRFUUJDQ5Vx48Zl2jYioqwwJjMmGzEmMyYTkfoYlxmXjRiXGZeJSF2MyYzJRozJjMnOhiOJyaamTZuGxYsX49SpUzleR+XKleHikvzVLVq0KEJDQ5N+dnV1RcGCBdOVaKhfv37S/93c3BAWFpbUjn///Rfbtm1Dvnz5kh4VKlQAIHMrGNWqVSvLtkVHR+PGjRto0KBBqucbNGiQq302V9WqVZP+7+3tDV9f36TPIyIiAo0aNUKePHlyvP5Tp06hfv360Ol0Sc81aNAAsbGxqXrApWwHABQrVizT0hlxcXG4cOECevXqler3MGnSpKTfQeHChdGyZUssXboUAHDp0iXs27cPXbp0SVrPkSNH0L59ewQHB8PHxweNGzcGAERGRuZ4f6OiotCnTx+ULVsWfn5+8PX1RWxsrFnrNOe7kfJzK1asGAAkfW4fffQRJk2ahAYNGmDs2LE4duxYTneLiJwcY7JtMCYzJhMRmYJx2TYYlxmXiYiyw5hsG4zJjMlkH5gkJpt6/vnn0apVK4wYMSLday4uLqnKMABSeiGttMFBp9Nl+JzBYDC5XbGxsWjfvj0iIiJSPc6dO4fnn38+aTlvb2+T12kNufmMjJ9H3rx5rddAM9qRVmxsLADgu+++S/U7OHHiBPbv35+0XJcuXfD777/j2bNnWLZsGUJDQ5NOsuLi4tCqVSv4+vpi6dKlOHToEFauXAkASEhIyHC7pnym3bp1Q0REBL744gvs3bsXERERKFiwYKbrzK2Un5vxRMb4ufXu3RsXL15E165dcfz4cYSFhWHOnDlWaQcRaRtjcu4wJjMmMyYTkSUxLucO4zLjMuMyEVkKY3LuMCYzJjMmOxYmicnmpk6dij///DPVZOaA9LK5detWqgNeyonmcyvlgToxMRFHjhxBxYoVAQA1a9bEyZMnUbJkSZQpUybVw5zA6uvri8DAQOzZsyfV83v27EGlSpVyvQ+FCxfGzZs3k36Ojo7GpUuXzFpH1apVsWvXrgyDMwC4u7tDr9dnuY6KFSti3759qX5Xe/bsgY+PD4oXL25We4yKFi2KwMBAXLx4Md3vICQkJGm5l156CU+fPsWGDRuwbNmyVL2wTp8+jXv37mHq1Klo1KgRKlSokGnPLyNTvnd79uzBRx99hLZt26Jy5crw8PDA3bt3Uy2TJ0+eLD83S343goKC8P7772PFihUYNGgQvvvuO7PeT0RkxJicc4zJjMkAYzIRWRbjcs4xLjMuA4zLRGQ5jMk5x5jMmAwwJjsSJonJ5kJDQ9GlSxd8+eWXqZ5v0qQJ7ty5g+nTp+PChQuYN28e1q9fb7Htzps3DytXrsTp06fRt29fPHjwAD179gQgk6nfv38fb775Jg4dOoQLFy5g48aN6NGjR7YBJ60hQ4Zg2rRp+OWXX3DmzBkMHz4cERER6N+/f673oVmzZliyZAl27dqF48ePo1u3bnB1dTVrHf369UN0dDQ6d+6Mw4cP49y5c1iyZAnOnDkDAChZsiSOHTuGM2fO4O7duxkG4//973+4evUqPvzwQ5w+fRqrV6/G2LFjMXDgwFSlVMw1fvx4TJkyBV9++SXOnj2L48ePY+HChfj888+TlvH29kbHjh0xevRonDp1Cm+++WbSa8HBwXB3d8ecOXNw8eJFrFmzBhMnTsxym6Z878qWLYslS5bg1KlTOHDgALp06ZKuR1vJkiWxZcsW3Lp1Cw8ePMhwW5b4bgwYMAAbN27EpUuX8M8//2Dbtm1JJ4tEROZiTM45xmTGZMZkIrI0xuWcY1xmXGZcJiJLYkzOOcZkxmTGZMfCJDGpYsKECenKNlSsWBFfffUV5s2bh2rVquHgwYMYPHiwxbY5depUTJ06FdWqVcPu3buxZs0aFCpUCACSesjo9Xq0bNkSoaGhGDBgAPLnz2920Pjoo48wcOBADBo0CKGhodiwYQPWrFmDsmXL5nofRowYgcaNG+PFF19Eu3bt0LFjR5QuXdqsdRQsWBBbt25FbGwsGjdujFq1auG7775LKhHRp08flC9fHmFhYShcuHC6nkMA8Nxzz+Gvv/7CwYMHUa1aNbz//vvo1asXRo0alav96927NxYsWICFCxciNDQUjRs3xqJFi1L1xAKkZMe///6LRo0aITg4OOn5woULY9GiRfjtt99QqVIlTJ06FTNmzMhym6Z8777//ns8ePAANWvWRNeuXfHRRx+hSJEiqZaZOXMmNm/ejKCgINSoUSPDbVniu6HX69G3b19UrFgRrVu3Rrly5fDVV1+Z/H4iorQYk3OGMVkwJjMmE5FlMS7nDOOyYFxmXCYiy2FMzhnGZMGYzJjsKHRK2mLmRERERERERERERERERESkWRxJTERERERERERERERERETkRJgkJiIiIiIiIiIiIiIiIiJyIkwSExERERERERERERERERE5ESaJiYiIiIiIiIiIiIiIiIicCJPEREREREREREREREREREROhEliIiIiIiIiIiIiIiIiIiInwiQxEREREREREREREREREZETYZKYiIiIiIiIiIiIiIiIiMiJMElMREREREREREREREREROREmCQmIiIiIiIiIiIiIiIiInIiTBITEZHD2LlzJ9q3b4/AwEDodDqsWrUq2/ds374dNWvWhIeHB8qUKYNFixalW2bevHkoWbIkPD09UbduXRw8eNDyjSciItKIKVOmoHbt2vDx8UGRIkXQsWNHnDlzJtv3/fbbb6hQoQI8PT0RGhqKv/76ywatJSIi0jZrXScTERGReRzxWplJYiIichhxcXGoVq0a5s2bZ9Lyly5dQrt27dC0aVNERERgwIAB6N27NzZu3Ji0zC+//IKBAwdi7Nix+Oeff1CtWjW0atUKt2/fttZuEBERObQdO3agb9++2L9/PzZv3oxnz56hZcuWiIuLy/Q9e/fuxZtvvolevXrh6NGj6NixIzp27IgTJ07YsOVERETaY43rZCIiIjKfI14r6xRFUWyyJSIiIgvS6XRYuXIlOnbsmOkyw4YNw7p161IF1c6dO+Phw4fYsGEDAKBu3bqoXbs25s6dCwAwGAwICgrChx9+iOHDh1t1H4iIiLTgzp07KFKkCHbs2IHnn38+w2U6deqEuLg4rF27Num5evXqoXr16pg/f76tmkpERKRplrpOJiIiotxzhGtlN6tvwY4YDAbcuHEDPj4+0Ol0ajeHiMgiFEVBTEwMAgMD4eKiToGIp0+fIiEhwez3KYqS7njs4eEBDw8Pi7Rr3759aNGiRarnWrVqhQEDBgAAEhIScOTIEYwYMSLpdRcXF7Ro0QL79u2zSBsoY4zJRKRF9hCTAdvH5UePHgEA/P39M11m3759GDhwYKrnWrVqZVJJTLIuxmQi0iJnjcmmyO46mdTDmExEWmUPcVmNmOwI18pOlSS+ceMGgoKC1G4GEZFVXL16FcWLF7f5dp8+fYqQvHlxKwfvzZcvH2JjY1M9N3bsWIwbN84ibbt16xaKFi2a6rmiRYsiOjoaT548wYMHD6DX6zNc5vTp0xZpA2WMMZmItEytmAzYPi4bDAYMGDAADRo0QJUqVTJdLrOYfOtWTlpKlsSYTERa5kwx2VTZXSfnzZs319ugnGFMJiKtc6b7145yrexUSWIfHx8A8kX09fVVuTVERJYRHR2NoKCgpGOcrSUkJOAWgKs6Hcw5skYDCIqNTXdMttQoYrJvjMlEpEVqx2TA9nG5b9++OHHiBHbv3p2j9pL6GJOJSIucMSaT42NMJiKtUjsuqxGTHeVa2amSxMYh4b6+vgy0RKQ5apci8nVxga85bVAUQK+36jE5ICAAUVFRqZ6LioqCr68v8ubNC1dXV7i6uma4TEBAgFXaRIIxmYi0TO2YDNgmLvfr1w9r167Fzp07s+0NnllMZrxVH2MyEWmZs8Rkc2R3nUzqYUwmIq1TOy7bKiY70rWyepNyEBGRtri4mP+wsvr162PLli2pntu8eTPq168PAHB3d0etWrVSLWMwGLBly5akZYiIiBySFeOyoijo168fVq5cia1btyIkJCTb92QXk4mIiDTLzq6VGZOJiMhpWTkmO+K1slONJCYiIitycQHM7YllptjYWJw/fz7p50uXLiEiIgL+/v4IDg7GiBEjcP36dfz4448AgPfffx9z587F0KFD0bNnT2zduhW//vor1q1bl7SOgQMHolu3bggLC0OdOnUwe/ZsxMXFoUePHma3j4iIyG5YMS737dsXy5Ytw+rVq+Hj45M0V5Kfn1/SCKR33nkHzz33HKZMmQIA6N+/Pxo3boyZM2eiXbt2WL58OQ4fPoxvv/3W9DYSERE5IitfK1vjOpmIiEiTrByTHfFamUliIiKyDBskiQ8fPoymTZsm/Txw4EAAQLdu3bBo0SLcvHkTkZGRSa+HhIRg3bp1+Pjjj/HFF1+gePHiWLBgAVq1apW0TKdOnXDnzh2MGTMGt27dQvXq1bFhwwYULVrU7PYRERHZDSvG5a+//hoA0KRJk1TPL1y4EN27dwcAREZGwiVFr+vw8HAsW7YMo0aNwsiRI1G2bFmsWrUKVapUMb2NREREjsjK18rWuE4mIiLSJCvHZEe8VtYpSg7u0juo6Oho+Pn54dGjR5zXgYg0Q+1jW9L2vb3NmtMhWlHgFxfHY7KTUvt7S0RkDfZwbGNcJnPZw/eWiMjS7OHYxphM5rKH7y0RkTWofXxjTM4cRxITEZFl2GAkMREREZmIcZmIiMg+MCYTERHZB8bkdJgkJiIiy2CQJSIish+My0RERPaBMZmIiMg+MCanwyQxERFZBoMsERGR/WBcJiIisg+MyURERPaBMTkdJomJiMgydDoJtKYyGKzXFiIiImfHuExERGQfGJOJiIjsA2NyOkwSEzmBuPhEXL4Xh4REA9zdXFCyoDe8PfjnT0SkdTz+E78DRESUEuMCERER8XyAiIz4l0+kUeeiYrD0QCS2nbmNyPuPkbIwgg5AsL8XmpYvgi51g1G2qI9azSQtcXExrycWEVkFj//E7wABYFwmoiSMC0QqY0wmIjvA8wEiMCZngEliIo25ev8xRq48jl3n78LVRQe9IX3dfAXAlfuPseTAFSzadxmNyhTC5JdDEeTvZfsGk3YwyBKpisd/4neAUmFcJnJ6jAtEdoIxmYhUxPMBohQYk9Php0GkIcsPRaLFrB3Ye/EeAGQY9FMyvr734j20mLUDyw9FWr2NpGHGIGvOg4gsgsd/4neA0mFcJnJqjAtEdoQxmYhUwvMBojQYk9PhSGIijZi77RxmbDqbo/fqDQr0BgXDVxzH3dh49Gta1sKtI6fgJIGTyN7w+E/8DlCGGJeJnBbjApGdYUwmIhXwfIAoA4zJ6fDTINKA5Ycicxz005qx6Sx+YS8xygn2xCKyOR7/id8ByhTjMpFTYlwgskOMyURkYzwfIMoEY3I6HElM5OCu3n+MsWtOZvja0yvHEPXzyAxfC+g6Ax7PVcjwtTFrTiK8dCHOO0HmcZLASWQvePynrL4DaT3a+wse7lyCPIWCEdj7q0yX43dAQxiXiZyOOXEBMC02MC4QWQBjMhHZUFbnAwl3ruDR7mVIuHUe+riH0OXxQJ6CQfCt+wq8ytbNdJ08HyDNYExOh0liIgc3cuVxJGYzn4RPrfZwL1Yu1XNuBYplunyiQcHIlcexpFfmJwdE6TDIEtkUj/9kyncAABKj7+LRvl+hy+OZ/bL8DmgH4zKR0zE1LgCmxwbGBSILYEwmIhvK6nxAH30bhoQn8A5tDtd8/lCexePxmb2488dE+LfuB5/qrTN8H88HSDMYk9NhkpjIgZ2LisGu83ezXc4jqDK8KzQ0eb16g4Jd5+/i/O0YlCnik5smkjNhkCWyGR7/ydTvAAA82PY9PALLQzEYYHgSneWy/A5oCOMykVMxJy4ApscGxgUiC2BMJiIbye58IG/p2shbunaq53xqvYibiwYg+uCqTJPEPB8gzWBMToefBpEDW3ogEq4uOpOWNcQ/hmLQm7xuVxcdftrP+SbIDDqdefM56Ez77hJRejz+k6nfgaeRJ/D49B4UaP6uyevmd0AjGJeJnIo55wbmxgbGBaJcYkwmIhsx53zASOfiCjefQjDEx2a5HM8HSBMYk9PhSGIiB7btzG3oTSgndu+vL6AkPAF0LvAIqowCTXvCo1jZLN+jNyjYdvY2xqGypZpLWmduTyzFtFJ4RJQej/9kyndAMehxf/N85KvWEu5FSpq8bn4HNIJxmcipmHpukJPYwLhAlEuMyURkI6aeDxgSnkJJjIch/jGenDuAJxePwKtioyzfw/MB0gTG5HSYJCZyULHxiYi8/zjrhVzzwKt8OPKWCoOLlx+e3Y1E9MGViFo6DAFvfwb3gNJZvj3y3mPExSfC24OHCjIBgyyRTfD4TyZ9BwDEHl2PxOg7KPrmp2Zvg98BDWBcJnIapsYFIOexgXGBKBcYk4nIBsw5H3iwdQFiIzbIDzoXeJWrD/+WH2T7Pp4PkMNjTE6Hf81EDurKvThkd4jyLF4RnsUrJj9Rti68KjTAze8/xIMdi1G004Qs368AuHwvDpUD/XLdXiIisgxbHf8Pn4lDucI8/tujs3ey/w7on0Tj4a6lyB/eCa5e5v8eeQ5AROQ4TDk3AHIXGxgXiIiI7Jup5wMA4Fv7JXhVaAh9zD08Pr0bimIA9M+yfR/PB4i0h0liIgeVkGjI0fvyFAhE3rJ18fjsXigGPXQurlbZDjkh9sQisglbHf9/+8OAwmb8SZPt3DFk/x14uHMJXPLmg09Y+xxvh+cADo5xmchpmHq8zm1sYFwgyiHGZCKyAXPidJ6CQchTMAgAkC+0OaKWj8bt3ycg4J3PoctmDlaeD5BDY0xOh0liIgfz7Bnw33/A+r05v3Pv5lsI0CdCeRYPnYdXlsu6uzFDQCZikCWyidwcl805/r/+qgvKFc7xpsiKzt5xwdqfM3/92f3riI3YiALN+0Afcz/peUX/DIpBj8SHUdB5eME1r0+W2+E5gINjXCZyGqYcry0RGxgXiHKIMZmIbCA3cdqrQgPc3zAXifevI0/B4lbbDpHqGJPTYZKYyI4ZE8JHjiQ//v0XePoUcHH3RtDHALLu3JWhxIe3oHNzh87dM8vldABKFvTOUdvJCTHIEtlEyYLe0AEml5FKyZzjf1h5b3h75KSFZG2+/ll/B/Qx9wDFgAd/f4MHf3+T7vXr83vBJ6wD/Fu8m+k2eA6gAYzLRE7DlHOD3MYGHYCS/l5yrMhmhBERpcGYTEQ2kJt7BcqzeACAIT4uy+V4nUgOjzE5HSaJiexEVglhnQ6oUAGoVQt48035t3p1N7T72gtX7j/OdJ36x4/SzTWVEHURj88dRN5StaDTZX1ADC7oBW8PHibIRAyyRDbh7eGGYH8e/51Zdt+BPIVLoPArn6R7/uHOJTAkPIF/i3fhlr9Yltvgd0ADGJeJnIYp5wa5jQ2p4kLa4wWTxkRZY0wmIhsw6V5B3EO4eudP9ZyiT0Tcia3QuXkgT6HgLLfB60RyeIzJ6fAvmkgFiYmSED582NSEMJAvX/r1NC1fBEsOXIHekPHB6s6qaXDJ4w6P5yrCxcsPz+5eRey/G6DL44ECTbpn2UZXFx2aliuS+50l58EgS2QzPP5TVt8BVy8/eJWrn+756EOrASDD11K9n98BbWBcJnIq2Z0b5CY2SFzIYg6KlMcPJoyJ0mNMJiIbye584N6GuVASHsMjqApcfQpCH/sAcf9tR+K9ayjQrBdc3PNmum5eJ5ImMCanwyQxkZWZmhDu3BkIC8s8IZyRLnWDsWjf5Uxf9ypXD3EntyP64CoYEh7//42BcPg1fBN5CgRmuW69QcHb9bLuPUaUCoMskc3w+E8tQrL+DuQGvwMawbhM5FSyOzfIDYkLJVIngDM7ZnCUMVF6jMlEZCPZnQ94V2yE2GObEXP0LxiexMDFPS/cA8qgQJMe8CpbN8t18zqRNIExOR0miYksyJgQPnIkOSmcWUK4Vi2gRg3TE8IZKesFNEqIwl7XgtC7pv9z9g3rAN+wDuav2KBDzecKokwRn5w3jpyPTmdekDUYrNcWIo0rW9QHjcoUwt6L9zLsIZzT47+riw7hpXj8t2ePHwNbtgD//OODkp6FcDX+HvQmXrQEdJma7TL8DmgI4zKRU8nu3CAz2cWGTONC2uSvKUljJozJWTEmE5GNZHc+4F2pMbwrNTZ7vbxOJM1gTE7HjE+DiFJKTASOHQMWLgT69QPq1QN8fIBq1YBevYBt24CyZYEpU4CdO4FHjySBvGQJMGAA0KhR7hLE2LsXqF4dk3+eCDc3V0vtllB02DQ5FPPmOUVnGbIUY08scx45MG/ePJQsWRKenp6oW7cuDh48mOmyTZo0gU6nS/do165d0jLdu3dP93rr1q1z1DYiW5r8cijcXCx7s9XNRYfJL4dadJ1kGQaDdD6bOxc4eRJo3RpY3DcUbq78DlAmrByXd+7cifbt2yMwMBA6nQ6rVq3Kcvnt27dnGJNv3bqVi50kopRUPTfQ6ZIfmVGU1A8iZ2GDa2VzrpMXLVqULh57enrmZg+JyI5Mfqky3KAAsFys5XUiaYaN7l87Eo4kJjJByhHCxlHCKUcIly8vpaKNI4SrV5eEsVU8ewaMHy/Z5zp1ELRkCcY/cMfwFccttokJHSpjf6wX+vUD1q4FfvgBKFbMYqsnrTI3cOYgyP7yyy8YOHAg5s+fj7p162L27Nlo1aoVzpw5gyJF0s+LsmLFCiQkJCT9fO/ePVSrVg2vv/56quVat26NhQsXJv3s4eFhdtuIbC3I3wvjO1S2+PE/yN/LYusjy7h+HfjrL+DGDemM1qKFsaMZvwOUBSvH5bi4OFSrVg09e/bEK6+8YvL7zpw5A19f36SfM4rfRJQzdnNukJNRxhm9j0grrByTzb1OBgBfX1+cOXMm6Wcd//6ItCExEUGnIzA+KAHDr7hbbLW8TiTNsMH9a0fDJDFRGmkTwkeOABERqRPCKUtGWzUhnNbp08Dbb0uDxo0DRowA3NzQGcDd2HjM2HQ215sY0rI83mkYjHcaAi++CPTsCYSGAt9+C5hx/4+ckQ2C7Oeff44+ffqgR48eAID58+dj3bp1+OGHHzB8+PB0y/v7+6f6efny5fDy8kqXJPbw8EBAQIDZ7SFSW+fawRY9/neqzfmF7ElyaWmgaFGgRw8gOM2viN8BypSV43KbNm3Qpk0bMxslSeH8+fOb/T4iMk3nagG4O/srzAhulOt1DdFfRKfa7bJfMDumzGWc9jUmrEhLrByTzb1OBiQpzGtgIo2Jjwd27wYePULnjuG4eyqG14lEaTFJnA6TxJSluPhEXL4Xh4REA9zdXFCyoDe8PbTztckoIfzvv8CTJ6kTwp06qZAQTklRgK++AoYMAYKCgH37gNq1Uy3Sr2lZFMrngbErIpBoAPQuZpSgNujg4a7DhA6VUwX9tm2B48eBd98FXn0V6N4d+OILIMXgD6Jci46OTvWzh4dHhiN5ExIScOTIEYwYMSLpORcXF7Ro0QL79u0zaVvff/89OnfuDG9v71TPb9++HUWKFEGBAgXQrFkzTJo0CQULFszB3hDZXtLx/48IJCrmHf910MHdLf3xn9RlMEhieOtW+X+bNlKxJLNrk35Ny8LfywNjVp2EAQoMZpQVc4UCNzdXfgcoialxOaeqV6+O+Ph4VKlSBePGjUODBg0stm4ip6cowPvvo9/vS1FoYUuMPRWPRINi1hzFri46uLnoMMHrJjqN/Agolxfo3dtybeQoYyKTmRKTc3qdHBsbixIlSsBgMKBmzZqYPHkyKleubNkdICLbiYsDdu0CEhKAJk0Af3/0CwiQewVrTub8fIDXiUSap51sH1nMuagYLD0QiW1nbiPy/uNUtxl1AIL9vdC0fBF0qRuMskUdZ7J6UxPCb7whN2JVSwindfOmDOfdsAH44APgs8+ANAkuo84BOjT44UOM7DkZu5Afri66LE8AjK8/uVIQH7cIRafa6cuGFC4MrFgBLFoEfPQRsH27zKvcsKGF9o+0I4c9sYKCglI9PXbsWIwbNy7d4nfv3oVer0fRokVTPV+0aFGcPn06280dPHgQJ06cwPfff5/q+datW+OVV15BSEgILly4gJEjR6JNmzbYt28fXF0tPN83kZV0LqKgwQ/9MLL3VOxS/Ew+/ge6FsRH9TI+/pM6UpaWrl4daN7cWFo6a6URjJc9CiGy6HEciLxr8ncgXBeNyW83QFB5XvhrjpXjsrmKFSuG+fPnIywsDPHx8ViwYAGaNGmCAwcOoGbNmrlePxEBmD4dWLgQWLIEnd9qhgb3H2PkyuPYdd6MuFCqICa/HIqgAnmBa0fkGjQkRAKSNeQkacyEMTkaK8bknFwnly9fHj/88AOqVq2KR48eYcaMGQgPD8fJkydRvHhx09tJRPbh4UNJELu6As2apbqA7Fw7GA1KF8r5+QBLTJPWcCRxOkwSU5KrJlxAKgCu3H+MJQeuYNG+y2hUppBdBozERODUKZk7OLuEcK1aQI0adpIQTmvlSqBPH8DNDVi3Tob2ZmX0aAQpT7BkRHuce6KTZP/Z24i8l0Gyv6AXmpYrgrfrBWP4/3wwcwLwbhcgb970q9XppMRl48bAO+/Iv8OGScVrd8tNb0GOLodB9urVq6nmJrTWfMDff/89QkNDUadOnVTPd+7cOen/oaGhqFq1KkqXLo3t27ejubVuhhFZ2siRCHJJwJKRHXAuTjH5+H/luA/27wceNQT8/NRqPAGpS0sHBEj/sDT3BTP15AmwYwfQqKYXOnSom9zhL7vvQO3iKPPbYmD/dqDcO7zprjV2FpfLly+P8uXLJ/0cHh6OCxcuYNasWViyZIlFtkHk1P74Axg+HBg9WqYogsxRvKSXGXGhXjDKFElxYfzFF8CFC1JWav9+oEIF6++HKaWpOcqYHI2dxeT69eujfv36ST+Hh4ejYsWK+OabbzBx4kSLbIOIbOT2bWDPHkkMN2oEeHqmWyTX5wNEWsIkcTpMEhMAYPmhyKTSEwCyLT9hfH3vxXtoMWsHxneojM4qlZ4wJoSPHElOCjtkQjilmBigf3/pBd6xo0wIXLhw1u/591/gxx+BuXMBX1+U9QXGdaiMcaiMuPhEbNgTh7feNmDZTy5o3SB12fApU4BKlYAvv5Tkb2ZKlZKb0NOmAWPHAhs3Aj/9BFSsaJndJgeXwyDr6+ub6sI3M4UKFYKrqyuioqJSPR8VFZXtXEpxcXFYvnw5JkyYkO12SpUqhUKFCuH8+fNMEpNjOHQIWLZMYkW+fCibL/Xx//CZOPz2hwGvv+qCsPKpj/9BDYGjR4Ft2yTckO2ZW1o6I7t2yflQ06byc9miPqm+A5dPX0bC7yvg/torKFmhZOqpQ1q2BH7+GTh/Hihb1rI7R+qycly2hDp16mD37t022RaRph06BHTtKvMkjR+f7uV0cWHPESS8/Q7cf/oRJRvUynxKKTc34JdfgPBwoF074MABoFAhK+9MCixNTVphxZicm+tkozx58qBGjRo4f/686W0kIvVduyaxuXBhoH59IE+eLBdPez6Q1b1iIs1ikjgd7e8hZWvutnMYvuI44hMNZs1NAEiyOD7RgOErjmPutnNWamGyxESZI3fRIqBfP4l/vr5A1aoy4ubvv4HSpYFPP5Vk5qNHkkD+6Sfg44+B5593gATx7t1AtWrAb78B338vtZ6zSxADwNChcnO3T590L3l7uCEkvx8SbhZASH6/dEG/bFng/feByZOBu3ez3oyrKzBypHQkf/wYqFkTmDMn8+t1ciLGIGvOwwzu7u6oVasWtmzZkvScwWDAli1bUvWCzshvv/2G+Ph4vP3/oyqycu3aNdy7dw/FihUzq31EqlAUYPBgoEoVCYRpeHu4oVxhPxR2KYByhdMf/z08ZLqif/+V2Q3Itq5fBxYskGIh5csDH34I1Klj3uHxwQPg4EGgQYOMz3G8PdxQubAXarjEoXJhr/QX/uXLAyVLSs8vvT5X+0N2xspx2RIiIiIYb4lyKzIS6NBBriEXLsw2Qert4YbK+fOgxs2zqJw/T/Y3hP38JFDFxgIvvwzEx1uw8WbS6ZIfWVGU5AeRPbBiTM7NdbKRXq/H8ePHGZOJHMn588C+fUDx4jInYDYJ4rSyu1dMpFkOcJ1sa/zrd3LLD0VixqazFlnXjE1nUTifh8Ums085Qtg4SjjlCOFy5RxwhHBWEhKkfvO0aUC9epLxLlXKtPdu2iSPFSvMPikwGjNGBiJPnChVxbJTq5b8XoYOlbmK166VexKBgTnaPGmBDXpiDRw4EN26dUNYWBjq1KmD2bNnIy4uDj169AAAvPPOO3juuecwZcqUVO/7/vvv0bFjRxQsWDDV87GxsRg/fjxeffVVBAQE4MKFCxg6dCjKlCmDVq1amd0+IptbvRrYuRNYv1568eRAzZrS+XjTJplSgINvrO/xYwnzR4+aX1o6rS1bZKoIE+8BpqfTyWjib7+VBoWF5XBFZHesHJdjY2NTjTi6dOkSIiIi4O/vj+DgYIwYMQLXr1/Hjz/+CACYPXs2QkJCULlyZTx9+hQLFizA1q1bsWnTJrO2S0QpxMQA7dtLr69VqzKeO8gSSpaU9TdtCvTuLReOap8wcJQxORIrx2Rzr5MnTJiAevXqoUyZMnj48CE+++wzXLlyBb179zZru0SkAkUBTpwATp+Wm+NVqzK2EZmDI4nTYZLYiV29/xhj15zMcpn4W+fxaPcyxF/7D0riM7jlL4p81VvDN6xDhsuPWXMS4aULmT1HcdqE8JEjQESEhhPCaZ06JfNGHTsGTJggNZ/dTPzz1OslU9ugQa5qhRYuLFNYjRkjI5nKlMn+PV5eUt36xRdlzuLQUOCbb4DXXstxM8iR6XTmBc4cnMR26tQJd+7cwZgxY3Dr1i1Ur14dGzZsQNGiRQEAkZGRcEnThjNnzmD37t0Z3oR2dXXFsWPHsHjxYjx8+BCBgYFo2bIlJk6caLW5kYks5tkzOf6/8AKQi04NLi6yip9/Bs6dk5hL1mEsLb1li1zb56S0dErXrgEnT8oAMnf3XDTsuefk5sK2bRLMefzTBivH5cOHD6OpscY55AY1AHTr1g2LFi3CzZs3ERkZmfR6QkICBg0ahOvXr8PLywtVq1bF33//nWodRGQGvR54803g8mVg717g/8+HraZ+fWDxYqBzZzlZGD3autszV06SxrypTrZi5Zhs7nXygwcP0KdPH9y6dQsFChRArVq1sHfvXlSqVMms7RKRjRkMctP88mW5fitfXu0WETkeG9y/djRMEjuxkSuPJ81BnJEnl/7B7d8nwL1oafiFd4bO3ROJD29BH5N5PeJEg4KRK49jSa+6mS9jYkL4tdfkxqnmEsIpKYpkWYcOBUqUkDIh5o7g+eknGWK9d2+uD1r9+wPz5kk56V9/Nf19rVtLGfD33gNef11Gon35pVQmIydio55Y/fr1Q79+/TJ8bfv27emeK1++PJRMbhLlzZsXGzduzFE7iFT3zTdSYur333N9/C9bFggJATZvlk5CTtBR0uauXQP++kvKelevDrRoAXh753x9iiKjv4sWlQqjuda8OfDff8CePUCzZhZYIanOynG5SZMmmcZXAFi0aFGqn4cOHYqhQ4eatQ0iysKgQcCGDVIKunJl22yzUyfg7FnpWVy2rCSM7VXKcyOOMia12eBa2Zzr5FmzZmHWrFlmb4OIVJSYKPeNo6KAunWBYMtU8iRyOhxJnA6TxE7qXFQMdp3PPNlriH+Mu2s/R97StVH45RHQ6Uz7Y9AbFOw6fxfnb8egTBEfsxLCxhHCvr4W2kl7d+OGDL/dtAno2xeYPl2G5prjyRNg1Cj5AHNcZzKZlxcwaZI068ABOecwVaFCkqf48UcZibxjB7BkCdCoUa6bRY6CQZbIdh49kikKevSQHsS5pNPJaOJvv5VYXbt27ptIwpKlpVM6dQq4elUKkVjkcJo/v0x3sXevdFhzmhMyDWNcJtKur76SOYK++ipX1URyZNQoSRR37y4dnS1wHWp1LE1NamNMJqLciI8Hdu8GoqPlRqu1q4cQaZmVY/LOnTvx2Wef4ciRI7h58yZWrlyJjllUf92+fXuG1bVu3ryJgIAAs7adU0wSO6mlByLh6qKDPpORxHH/bYch7iEKPP8OdDoXGBKeQpfH3aRksQt06DMtEvH7KiclhAGpgOG0CeG0fv9dht26u8s8kq1b52w9X3wB3LoFTJ5ssaZ17Qp8/jkweLBMc2nOdbFOB3TrBjz/vIwmbtxYBklPmJDLMpjkGHjhS2Q7kydLgJ040WKrLFZMRqRu3y55Z1Yczp2UpaUBoG1bOf+xxKFPr5fEc5kyQOnSuV9fkkaNkhv98ssWXDGpgnGZSJs2bAA++kjKQH3wge23r9MBCxZIqcuXXpLexSEhtm9Hbpgyyjjta0wYU24wJhNRTsXFyQ3aZ8+AJk2AAgXUbhGRY7NyTI6Li0O1atXQs2dPvPLKKya/78yZM/BNkSwrUqSIWdvNDSaJndS2M7czTRADwNPLEdB5eCEx9h5ur5iExPvXocvjCe8qTeHfvA90bpln/AxQcCnhNhqEVGZCOK3oaLmgX7wYeOUVKRVaqFDO1nXnDjBlitwYKFvWYk10dQU++0zy1qtX52ya45AQSTJ89plUItu4Uapi26oKGqmEF75EtnH5snQSGj4cCAy06KqbNZM5bnfvlurDlDOWLi2d1qFDwMOHVqjy6ekJNG0qja9XT3oOkONiXCbSnhMngDfekIu1mTPVa4eHB7BypZSeevFFqULhqHMNcZQx2QJjMhHlxMOHwK5dcrO2WTMgXz61W0Tk+Kwck9u0aYM2bdqY2ShJCufPn9/s91kCzzqcUGx8IiLvP85ymWf3bwAGPe78MRF5Q2qi8Msjka/qC4g9uh53183Odhu6fI/x7Q+JGDhQRpMyQQwJ6tWqAStWAAsXymjinCaIAakLDQCjR1umfSm0aiVlR4cNk45qOeHqKvmLAwekKkqtWpLTMBgs21ayI8Yga86DiMz3ySfSe3jwYIuv2tdXqkbu3y8Vrck8cXHAmjXA99/LveSePWWQlSUTxE+eSEfyGjUAq3QsrVULKFhQpsPIanQV2T/GZSJtiYqShGxICPDzz3LBpaZChWQ+5Bs3JHGdmKhueyxFp0v9yIyiJD+IssOYTETmun0b2LYNyJuXCWIiS8phTI6Ojk71iI+Pt2izqlevjmLFiuGFF17Anj17LLru7PCswwlduReH7C5jlGdPoTyLh3eVZvB/4T14lQ+H/wvvIV/11nh8aiee3b+e9fsBXL4XZ7E2O7SEBGDECMmWP/cc8O+/Mn9Tbnoenz8v808NHw4ULmyxpqY0fTpw7pxUEsuNGjVkfsv33gMGDJBO79ez/voQEVFmDh4Eli2TMtNWukhs0EAGCG3dapXVa5LBIKN7586VuYLbtgX69LHM3MNp7dol9+EzmLLGMlxdpafYxYtyIkBEROp78kR6HcXHA2vXAj4+ardIVKggnZ+3bpWKWVpMmJqbMNbiZ0BERLZ19apc+BUsKCWmPT3VbhGR0wsKCoKfn1/SY8qUKRZZb7FixTB//nz88ccf+OOPPxAUFIQmTZrgn3/+scj6TcFy004oITH7oZzGctLeFRunet67UhPERmxA/PXTyOP/XK63o3knTwJvvy1lwT79VCbotUSP75EjgYAAybpaSfXqMj/xuHGyC7m5D5E3r4wibtdO8uOhocD8+dLhnDSEJbSIrEtRZPRwlSpAjx5W24yHh1yHrlvHisOmsHZp6ZQePJB+Ao0aWbkjefnyQMmSMpq4dGn1R6tRzjAuE2mDwSBx/9gxKSVhjR5IudG8OfD119I7qnx5mStZq1iamnKKMZmITHXuHBARAQQHA7Vr83hAZGk5jMlXr15NNWewh4eHRZpTvnx5lC9fPunn8PBwXLhwAbNmzcKSJUssso3s8CjjhNzdsv+1u+YrKP9650/9vLfMM2R4GpvtOk7/54LHWVe11i6DQbKitWpJb+8DB2Q0sSVusu7fD/z2m5Sbzps39+vLwqRJUm70s88ss76WLYHjx+U+QqdOkoRmOVMNYQktIutavVp6E8+YYfWkXc2aUkWSFYczZ4vS0mlt2QJ4eUlJcKvS6WTuiTt3gKNHrbwxshrGZSJtGDcO+OUX4KefgLAwtVuTsd69pSPbwIEy0tlZmDLKGOAoY2JMJqLsKYrcNI2IkE5XderwWEBkDTmMyb6+vqkelkoSZ6ROnTo4f/681dafFo80TqhkQW9k14/VPaA0ACAx5l6q5xNj7gMAXL38sny/ogBdOnjDx0dGjXbvLiUY9+2D9hPH169LTeUBA4B335VayzVrWmbdxlFkVavK8F4rCwqS3Zg5U6aasoSCBYFffwV+/FFurletCuzYYZl1k8p44UtkPQkJUo2iZUtJ3lmZi4tUHL58GTh71uqbcyi2LC2d0tWrUqCkaVPA3d262wIABAZKkN66VTq8keNhXCZyfEuWyBQTU6cCr7yidmuyNnUq0KED0LmzTLHkbHIylzGTxs6DMZmIsmK8yDx9GqhWTa7DWIWCyDocICZHRESgmA3L+vGswwl5e7gh2N8r62UqNAIAxB7blOr52GObABdXeASHZvn+kgW9cHi/G+bPB8LDpdrywIHyf19fSRz36KHBxPGvv8rOnTgBbNgAfPmlZUf7rl4N7NkjQ3ttVPpxxAjZhbFjLbdOnU5GER87JtUsmzaV3AfvQTs4nc68AMsTXiLTffMNcOGCjCK2kbJlgZAQYPNmQK+32Wbt2rVrwIIFUl66YkWgXz/bVABTFPk9FC0q9wxspnlzCc67d9two2QxjMtEjm3XLhmh27OnXCzZO1dXGe1cvjzw4osyD4Mzy0nSmLSLMZmIMpOYKPd6IyOBunWBcuXUbhGRtlk5JsfGxiIiIgIREREAgEuXLiEiIgKRkZEAgBEjRuCdd95JWn727NlYvXo1zp8/jxMnTmDAgAHYunUr+vbta7Fdzg7nJHZSTcsXwZIDV6A3ZHwh4h5QGt5VX0Dcsc24YzDAM7gKnkYex+PTu+Fb/3W4+RTMdN2uLjo0LV8ENWvKANo+feT5hATJnR4+LINrjxwBli4Fnj2T68lKlaQ6s/FRrZqUVHQIjx7JneKffgJee00m3C2Y+WeUI8+eAcOGydCuli0tu+4s+PkBo0dLkn/AAKByZcutu0QJGaA0cyYwapSUNf3pJ5lukxyQub2r2DuayDQPHwLjx0vvqtCsO2lZkk4n4eabb4B//pFkqLOKiwP+/lsqfxUrBvTqBRQvbrvtnzolI4m7drXxoTN/fqltvW+flDj1y7qSDNkZxmUix3X+PPDyy9LL+uuvHSdh5O0t5aLq1pVRxTt2ONBFvZWl/B1yLmPnw5hMRBmJj5dOYTExQKNG0iuYiKzLyjH58OHDaNq0adLPAwcOBAB069YNixYtws2bN5MSxgCQkJCAQYMG4fr16/Dy8kLVqlXx999/p1qHtTFJ7KS61A3Gon2Xs1ymYKu+cPMtjNhjf+Px2X1w8yuMAs37wLf2S1m+T29Q8Ha94HTPu7sjKXFsFB8viWNj0tghE8c7d8pd2wcPgMWL5f/WuJhbsAA4d05GK9vYBx8Ac+ZIjtrSU0y5uiZXUH37bbkHPWUK0L8/r4scDi98iaxj8mTgyRNgwgSbbzogQGLv9u2Sn/b0tHkTVGUwyLnJ1q3yc9u2cj5iy8OXXi8J6jJlgFKlbLfdJA0bSi+BrVslYUGOg3GZyDE9eCAjcQsWBP74w0ZzDFjQc88Bf/4p8aNrV+C333h8SSvt/QImjbWPMZmI0oqLk3vKz54BTZoABQqo3SIi52DlmNykSRMoWVSIWbRoUaqfhw4diqEqVw1ikthJlS3qg0ZlCmHvxXuZjibWubohf8O3kL/hWyav11UxILx0IZQp4mPS8h4eyQlgI4dJHMfHA2PGSOnnhg2ll3TJktbZVkwMMG4c8M47Nq4zKdzdJXH7xhvAtm1SHtrSqleXUeYjRsio5XXrgEWLbDtSi3KJF75Elnf5MvDFF8DIkTJHrAqaNZO5cPfskerDzuLaNSkrffMmUKOG7Lu3t+3bceiQDCbv3Nn22wYgPQOaNJEPo149GUpNjoFxmcjxPHsmlanu3AH27wf8/dVuUc7UqAH8/DPQsaOcw0ydqnaL7Jspo4zTvsaEsWNhTCailB48kCl93NzkgjtfPrVbROQ8GJPTYZLYiU1+ORQtZu3INElsPgVuic8w+YeRQP05Oa4ZnNvEcViY5FEtORVwOidOyLDX//6T7OngwdadI3j6dCA6Gpg40XrbyMZrr0nVsMGD5Ya1NY6Pnp7ArFlAu3ZA9+4yau3rr1W8MU7mYZAlsryRI2Uk0eDBqjXB19e5Kg6rXVo6pSdPpA9ajRpAkSLqtAGAnGAdOABs3Ah068Yb046CcZnIsSiKlHDatUsCUdmyarcodzp0AGbMAAYNkvkVe/ZUu0WOgaOMtYkxmYiMoqKAvXsBHx8ZdORs5bqI1MaYnA6TxE4syN8L4ztUxvAVxy20Rh0mhAcgaMMdi9cMNiVxfPhwxonjsLDkEce5ThwbDDKia8QIoHRpuWFao0YuV5qNGzdk0t4BA4CgIOtuKws6nQyafv55YPly4C3TB5ibrUUL4NgxuUfy5ptSrWzePJkakewYgyyRZR08KKNwFixQZwhrCg0aaL/icNrS0u3ayRQZah6qdu6UdtlwKpqMubrKvBDLlsnUF+XKqdwgMgnjMpFjmTED+P57Kaf0/PNqt8YyPv4YOHsWeO89ICTEDgKaA8pJ0thOE8Zx8Ym4fC8OCYkGuLu5oGRBb3h7OMltScZkIgKAyEi5zi9aVHpiuznJMZDInjAmp8MjkZPrXDsYd2PjMWPTWUABkItriSEty6NT0zJA28My8snKNYOzSxwfPpzxiGNj0tjsxPG1azK8dcsWSX5PmWLl4cr/b8wYqac9fLj1t5WNRo2Al16SX+8rr1i3s5u/vySjO3QA+vaVDvWLF/O+gl1jkCWyHEWRkTehoRJ7VObhIcfftWulqoRKla+t5upVqaZ865b0/WrRQqWpLFJ48EDuHzRubCfVx8qVkxv8mzZJRzlrVlAhy2BcJnIcK1cCw4bJhVa3bmq3xnJ0OmDOHODiReDVV6UsSfnyarfKsZlSmtqORhmfi4rB0gOR2HbmNiLvP0bKlukABPt7oWn5IuhSNxhli5o2bZlDYkwmonPnpFxViRJyc5p/50TqYExOR/t7SNnq17QshjQOhaJ3gc7MLLErFHi4uWDaK6Ho27SMPOnpCXz+uZTIOn1abnAvX26FlqdnTBy/+y7w7beSJI6JkYTxV1/JVHr//isdmuvXl8oe1apJ5at582TapydPMljx8uWyH6dOyc3R2bNtkyA+cQJYuFASxXZS33PaNMmXz51r/W3pdECXLjKquHRpmQ9y8GDpDEB2yBhkzXkQUcZWrZI5imbMsJtkXI0aQOHCEgazmi7PkcTFAatXAz/8IDGnVy/pnKR2ghiQ0yhvbzlfsQs6nYwmvnNHhpWT/WNcJnIMR47IRc9rr6k6vZDV5MkD/PorEBAgZTru3VO7Rdqh06V+ZEZRUj9s4Or9x+j6/QG8MHsnlhy4gitpEsSAjFO4cv8xlhy4ghdm70TX7w/g6v3HNmmfzTEmEzkvRZEbmxER0lGqdm3+jROpiTE5He3vIZnkwLJgJKxsjHohBQEAri5ZJ4uNr4ffPI2/+9ZHp9rB6Rdq3hw4fhxo3VpqBnfpAjx8aOmmZyurxPG8eTIiKtPE8WePsb/VWDx5s4fcGD1+HHjhBds1ftgwGbXz/vu222Y2ypeXz/LTT4H7922zzeBgGcA9fbp0RK9dW34VRESalJAADB0KtGolscdOuLhICLxyRSpHOjKDQUbpzp0r/dnatQN691Zv7uG0rl4F/vsPaNZM7q3bjcBAOUnatg14+lTt1hAROb5r14D27aVD8uLF2r0JlT+/lCN59EhKUrHXr3WYkjAGrJ4wXn4oEi1m7cDei9IhQG/IejvG1/devIcWs3Zg+aFIq7SLiMjmDAbg0CHgzBmgenWgalW7nRKAiJwXy00Tjh4FfvoJ+PprL7z3bt3kckBnclPeSgABAABJREFUbyPyXgblgAp6oWm5Ini7qAFlGrwEhOqkJGZGChSQ+RTbtwf+9z+7qRmcWanq48eT5zg+sj0GPy30wDOMh6vLWFQ+rUOtwbqclarOia1bpfblr78C7u5W3JD5xo4FliyRRPHMmbbZpouLjCJu2VL6G4SFAZMnS3Jfq/dSHA7LdRBZxvz5UpZx5Uq1W5JOmTJAqVLA5s3yfzsZ5GyWlKWla9aUPm32MHLYSFFktHZAgNxDsDvNmwMnTwJ79sj/yX4xLhPZt9hYuU7Ok0fKWtiiUpWaSpWS/WzWTOYoXriQN8qtKSdzGWf0PjPN3XZOpjPLAb1Bgd6gYPiK47gbG49+Tcvmqi12hTGZyPkkJgJ79wK3b0tpy6AgtVtERABjcgaYJHZyigIMGSKjQ3v1kufKFvXBuA6VMQ6VERefiMt7jiDh7Xfg/tOPKNmgFrw9Unxt3n0XmDQJ6NFDJpHNzFtvAQ0byvxKzZvLfMWffirZWjvh4SGJx7DQeOD8KOD8TMQ3ao7jQ37EkRvFkpLHP/2UPMdx5crJyeawMLmZa5Fre4NBfjF160rZMTtTtKgMcps0CejXTwY720rVqtIJ75NPJGm8bp30O+C5lh3Q6cwLnLwpRJTew4fA+PFSzqJKFbVbk45OJ6OJv/lGYmKdOmq3yHRxcVLCOSJCBsT27g0895zarUrvv/9kYFnXrnZ6LeLnJ6VX9u6Vkx87mQ6DMsC4TGS/9Hq5Rr5wQTrdBASo3SLbCA+XOR66dJG57keOVLtFziMnSWMz48LyQ5E5ThCnNWPTWRTO55Fx1TpHxJhM5FyePpXpo2JigOefB4oUUbtFRGTEmJwOk8RObuNGKeO7ejXglsG3wdvDDZXz5wFungXy5wE80ixkHFI6ebLMm5gVY83gWbPkYnDTJmDpUimtZS+OHwfeflvmHp42DR4DByLM1RVhKRZJN+I4k8RxWJj8m6PE8c8/y3x/u3bZ7YFo4EDg668lWbtsmW237ekpI5jbtZN+B6GhMuf0W2/Zth2UBntiEeXep59KoJkwQe2WZCogQCpl7dghMc7TU+0WZc1gkCkmtm2TkNqunYwgtsdDUGKinCqVLSsDruxWw4ZynrJli5QNJfvEuExkv4YOld6ua9fa1/WwLbz1lsxb8cknEvBef13tFjmnlPcZLDDK+Or9xxi75mSGryXcuYJHu5ch4dZ56OMeQpfHA3kKBsG37ivwKls303WOWXMS4aULIcjfjkq+5BRjMpHziI2V+7mJiVJJM39+tVtERCkxJqej/T2kTOn1Mlj1+eelylWOGIeUzpkDXLqU/fIuLlKa+tAh+TksTLJ9BkMOG2AhBgPw+efSHr1e2jdkSIZ1NI0jjt97L/Ucx4cOJc9xHBEBDBgg1USMcxz36iWJzAMHgCdPsmjL06dywdyxo9yEtVPe3pLD+PlnufmuhmbNgGPHgLZtpTP6m28CDx6o0xZCcpA150FEyS5dAr78UuJqsWJqtyZLTZvK1Mm7d6vdkqxdvQp89x2wfj1QqZJUvwgLs9/Dz6FDMpj8hRfUbkk2PD3lS3DsGHDjhtqtocwwLhPZp2++kWvPL74A2rRRuzXqGDtWLt7eeUcukEldKecyzqqTesq5jNMkkEeuPI7ETOYe1kffhiHhCbxDm6NAiz7wC+8EALjzx0TERGzIdHOJBgUjVx43f3/sEWMykXN48ECmDwTkpiUTxET2hzE5HY4kdmI//gicOCHXZLkarGocUjpqlIwMNkXVqsDBg/KeIUPUrRl89aoMR922TSa4nTzZ7GFRSaWqUww5Tjni+PBh+ffHH6UjmaurVBE1lqo2znHs6Qlg7lypM7lxo2X30wq6dwdmz5ayz8YRWrZWoICMZG7fHvjgA/lqLVrEaRJVwZ5YRLkzciRQsKB0prJzvr5SMXLPHol99nbt6yilpVN68gTYuVNGORcurHZrTFCzJrB/v1SG6dbNbiufODXGZSL7s3kz0Lev9Frq10/t1qhHp5Oy01euAC+9JDclSpRQu1VkZMoo4xSvnYuKwa7zdzNdLG/p2shbunaq53xqvYibiwYg+uAq+FRvneH79AYFu87fxfnbMShTxMf09tsjxmQi7YuKkil5fHyARo3saopFIkqBMTkd7e8hZejxY8nPdupkgfkEjUNKly0zb0ipp6eUqN6yBTh/Xsps2bpu8bJlst2zZ+Vu8uefW6xuZsoRx999J1UZY2NllNDcuUDt2sDRo0D//skjjquHJqLXJ0XxVfhPOPCwPJ4+tUhTrMbNDZg2TUqOrlunblvefFOS8mXLAi1aSN8Fe//8NIc9sYhy7sABYPlymezd21vt1pgkPFxCprGjtD0wGKQP2pw5wJkzwIsvSiUPe08QA5IgNhiAJk3UbomJXF2Bli1lBPxZy8w/SBbGuExkX/77D3jtNTl2zpqldmvU5+kJrFoFeHlJwI6OVrtFlBETRhkvPRgJVxfzOovpXFzh5lMIhvjYLJdzddHhp/2RZq3bLjEmE2lbZKSUmC5USC7omCAmsl+Myelofw8pQ7NmAXfuyKBZi+jeXSbjHTIk656mGTGWK2zXznY1gx88kO106SIlvo4ft8nQU2Pi+P330yeO58wBauMwjiaGov++TsmJ4+rJpaoPHrS/xGfbtvIrHDZMRkmrKShIcv0zZ0rp79q1gX//VbdNToVBlihnFEVGD1etKiMyHYSHhxz/jx+3j4rDkZEyDcT69XJK0q+fVOpwhEPN/fsS4xs0APLlU7s1ZihXDggJkdHEer3araG0GJeJ7Mft25IIDQ6WTmFuLOoGQEpnrF0rQbxzZ/UvKCl7GSSNt525A30mpaZTMiQ8hf7xIzx7cBPRB1fhycUj8CxRLcv36A0Ktp29bZGmq4oxmUi7zp6VTt/BwXJBxxhPZN8Yk9PR/h5SOrdvy+jPvn2BUqUstFLjkNLt24G//jL//fnzS6nqn38GNmyQG+XWGpq0dausf/365G0WKGCdbZkgKXHc6hK+O9sY/4xfi5gYXdJIqJQjjuvWtb/EsU4HfPaZdIxfuFC9dhi5uMgo4sOHpW116kj7eO/aBmwUZOfNm4eSJUvC09MTdevWxcGDBzNddtGiRdDpdKkenmmqBSiKgjFjxqBYsWLImzcvWrRogXPnzuWobUQ5snKl1G2eMUNGZzqQGjXk/u6mTeb3EbOU2FgZiLRwoXx8vXvLFAReXuq0Jye2bJEB5PXrq90SM+l0QKtWwL170vON7IuV4/LOnTvRvn17BAYGQqfTYdWqVdm+Z/v27ahZsyY8PDxQpkwZLFq0KGf7RuRInj4FOnaUcl5r18qcDZSsUiXg99/lZOLjj9VuDZkpNkGPyPuPTVr2wdYFuPZlF9z4pg8ebPsBXuXqw7/lB9m+L/LeY8TFO3gHAhtcK5tznQwAv/32GypUqABPT0+Ehobir5zcyyNyZooiI1P+/ReoUEFu4DpBMonI4TFJnI7295DSmTBBvtujRll4xcYhpUOH5rwHcOfOMqq4XDkZ2WvJmsFPn8r6mjeXmsTHjgFvvWWZdVvCJ5/IXJQffwxPTzm3SDniOCYGJiWOv/7a9onjWrXkoxwzRm7W24PQUBmh/dFHMsq5eXOZ8oqsyAZB9pdffsHAgQMxduxY/PPPP6hWrRpatWqF27cz713u6+uLmzdvJj2upPkiTJ8+HV9++SXmz5+PAwcOwNvbG61atcJTexu2T9qUkCAHqdatgRdeULs1ZnNxkWZfuSLlnW3JYJAO23PnSudtRyotndLVq9LRqlkzIE8etVuTA8WKSee7bdvsr9yJs7NyXI6Li0O1atUwb948k5a/dOkS2rVrh6ZNmyIiIgIDBgxA7969sXHjxpzsHZFjUBSgZ0+5eFuzhvPuZuaFF6QU1Ny5csFLDuPKvTiY2k/Qt/ZLKNJ5Egq2+xh5S9WCohgA/bNs36cAuHwvLlftVJ2VY7K518l79+7Fm2++iV69euHo0aPo2LEjOnbsiBMnTlhib4m0zzjP0dmzckM2NDTTkvxEZGeYJE5H+3tIqZw9C3zzTXI+0qJSDinNzaiAoCBg82aZH/irryxTM/jYMVnPvHkyUuvvv6UMiL04fFhGNE+cmOlclKYmjj/6KHXiuHdvSRxb+1z/00+lXObnn1t3O+bw8JCv5NatwMWLcg/7p5/UG+2meTYIsp9//jn69OmDHj16oFKlSpg/fz68vLzwww8/ZPoenU6HgICApEfRokWTXlMUBbNnz8aoUaPw0ksvoWrVqvjxxx9x48YNk0ZEEeXa11/LAeqzz9RuSY6VKSOVSf7+23ZVG4ylpTdscLzS0ikpigycCggAqmVdbdG+NW8OxMcDu3er3RJKycpxuU2bNpg0aRJefvllk5afP38+QkJCMHPmTFSsWBH9+vXDa6+9hlmcm5W0bPx4uc778UcpcUSZe+896dQ9YEDOqpORKhISDSYvm6dgEPKWrI58oc1R5PWxUBKe4vbvE6CYcIFuznbskpVjsrnXyV988QVat26NIUOGoGLFipg4cSJq1qyJuXPnWmJvibTt2TO57rl2DahXTwYiEZHjYJI4He3vIaUyYgQQGAh8+KGVNpBySGlcLnp6urhIqanDh+X/Oa0ZrNfL+2rXliT2oUMy76M9/XErCjB4sNzl7t7drLeakjg+ckQSx8ZpLt96KzlxbMkRxyVLyvdq+nTg1i3LrNNSmjSRfgLt2wNdu8qA9fv31W4VGUVHR6d6xMfHZ7hcQkICjhw5ghYtWiQ95+LighYtWmDfvn2Zrj82NhYlSpRAUFAQXnrpJZw8eTLptUuXLuHWrVup1unn54e6detmuU4ii3jwQMp79OoFVKmidmtyTKeTAUD37knMsSYtlJZO6b//5N5Cy5YO3vHczw8IDwf27QMePVK7NZRLpsZlc+3bty9VvAWAVq1aMd6Sdi1dKkniTz8FXn9d7dY4hunTpTRIp05yAUd2z90t5/dWvCo0QMLNc0i8f92q23FkpsTknFwnMyYT5dDTp8COHXLx26iRDHQiInJwznmW5aT27AFWrJBr1DRTclrWp59KsJw5M/frqlJFMpn9+5tfM/jKFVl+2DDJXh48KENJ7c26dXKCMX26ReaiTJs4PnpUEsc//iivV6iQnDg2jjiuUcMyieNPPgHc3eVeiL3Jn19GES9fLqO2qlaVUW9kQTqdeb2w/j8jEhQUBD8/v6THlClTMlz93bt3odfrU40EBoCiRYviViY9E8qXL48ffvgBq1evxk8//QSDwYDw8HBcu3YNAJLeZ846iSzm009l9OWECWq3JNcCAqR6xfbt1qk4nFFp6d69Ha+0dEqJiRKHypYFQkLUbo0FNGwoJTy2bFG7JWRk5bhsrlu3bmUYb6Ojo/HkyROLbIPIbuzZI2Wmu3WTntpkGldXSa6XKSPBnufjdq+kvxdy2s9NeSYJT0N81gMMdABKFsy44prDsGJMzsl1cmYxmdfARFmIjZVShU+eyHSLRYqo3SIiyokcxmQtc1O7AWQbigIMGSLJQKtPw5tySOl77wFpTjzN5uEh62rXDnjnHcnuzZsHdOmS8R+posiFZd++MrJlyxYJ3vYoMVHmcG7WDGjTxmqb8fSUgcqADPKuWVNu4h8/LoO1jxyRx+LF0iQ3N8nP16olj7AwmV4ju84FBQrIXNdDh0pev0IFq+1SjnXqBDRoIIO2X3hB2jllCpA3r9ot0wBzS3D8/7JXr16Fr69v0tMeHh4Wa1L9+vVRv379pJ/Dw8NRsWJFfPPNN5g4caLFtkNktosXpeTDqFGSYdWApk2Bkyel8laagQm5EhkpVSejoiQmNWvmuCOHUzp0SAbdWv28zFY8PORLsHatlF0LDFS7RWSHcZnIKVy8CHTsKMfCb791ihtLFpUvH/Dnn9Kj+aWXpAcaL9bsR5rS0N4ebgj298KV+48zfYs+7iFcvfOnXo0+EXEntkLn5oE8hbKeCiy4oBe8PRz89iVjMpFje/AA2LULyJNHLkgzmSqQiBxADmOyljn4WRaZasUKqQD49982+l5/8gnwww/AuHEyPNUSGjeWklP9+knN4D//lHX7+ycvc/8+8MEHwK+/yl3XefNkCKm9+uEH4NQpYMkSm988MI44rl07+TlTE8dhYfJvRonjvn0l7zFsGLB6tU13yWTFi8to4i+/BIYPlymwly6VUXCUCzkMsr6+vqkufDNTqFAhuLq6IioqKtXzUVFRCDAxyZYnTx7UqFED58+fB4Ck90VFRaFYsWKp1lmdXwiyppEjgUKFZO49jfD1BerXl8FTYWG5D7+xsXLe8u+/km/s00c7ecfHj4GdO6XTVuHCarfGgmrWlCHfGzdKbywmRtRl5bhsroCAgAxjuK+vL/IyAURa8fChdG7On18uwt3d1W6RYypeHFizBnj+eRmNvXy5U9ygs0smzBfctHxhLDkQCb0h42XvbZgLJeExPIKqwNWnIPSxDxD333Yk3ruGAs16wcU98xjg6qJD03IaGK1nxZick+vkzGKyqdfVRE4lKgrYu1cueI3Vk4jIcTFJnI7295Dw7Jkkwtq0kerLNmEcUvrdd8Dp05Zbr5+fJFR/+UUyeylrBv/9t/y8aRPw88+S9bPnBHFsLDB2rIyIrlVL7dYASE4cf/ABsGBBcqnqAwckoVqrliSOP/xQpolOWap6/nwZFaUowOTJck2/c6fae5Q5FxdgwABJiOfJI/szbZr5015TCuaU6jA3IANwd3dHrVq1sCVFKVODwYAtW7akGi2cFb1ej+PHjyclhENCQhAQEJBqndHR0Thw4IDJ6yQy2/79EscmTdJcD+QGDWSwz9atOV9H2tLS7dtLnNFKghiQ+GgwAE2aqN0SC3N1lQmWL1+WXx6py8px2Vz169dPFW8BYPPmzYy3pB3Pnsncw1FRMqVQwYJqt8ix1aol1/S//w6MHq12a5yLoiQ/MqPTJT261C2RaYIYALwrNgJ0Log5+hfub/wKMYdWwc2nEAq/Ohq+dV7Osil6g4K362U90tghWDEm5+Q6mTGZyERXrsgI4kKFZPASE8REjs/OrpPtAUcSO4FvvpGKVytW2HjDxiGlw4cDq1ZZdt1vvJG6ZnD16kBEhJT8WLQICAqy7PasYeZMGfk8aZLaLcmSp6ckUOvUSX7u6VMZ1G0cbZzRiONChaTT9y+/ANWq2e95VJUqkowYM0amC1u3TuZvLllS7ZY5IBv0xBo4cCC6deuGsLAw1KlTB7Nnz0ZcXBx69OgBAHjnnXfw3HPPJc3VNGHCBNSrVw9lypTBw4cP8dlnn+HKlSvo3bs3AECn02HAgAGYNGkSypYti5CQEIwePRqBgYHo2LGj2e0jypaiAIMGyYHxnXfUbo3FubtLxWFjlUhz5wzWamnplO7fl05VTZpIRU3NKVsWKFVKOu2VKSOJY1KHleNybGxsUmUOALh06RIiIiLg7++P4OBgjBgxAtevX8ePP/4IAHj//fcxd+5cDB06FD179sTWrVvx66+/Yt26dWZtl8guKYr0pN2+XTozlyundou0oWNH6ck7dKh8pt26qd0ibTJhtDCATCuElC3qg0ZlCmHvxXsZJou9KzWGd6XGZjfL1UWH8FIFUaaIj9nvtTtWjsnmXif3798fjRs3xsyZM9GuXTssX74chw8fxrfffmvWdok07cwZuflZsqRcnDpBoojIKXAkcTpMEmvco0fA+PGSSw0NtfHGPTxkSOlbb0mvq0aNLLv+556TC8a2bSVBXLQo8NlnjpEgvnVL2vrRRw6ZjTQlcRwTA1y4IEkCNzf5/hnnOK5VSwZ920vi2MMj+atknPZ67lypap6TSplx8Ym4fC8OCYkGuLu5oGRBb8efQ8kUNgiynTp1wp07dzBmzBjcunUL1atXx4YNG1D0/+c+j4yMhEuK9T548AB9+vTBrVu3UKBAAdSqVQt79+5FpUqVkpYZOnQo4uLi8O677+Lhw4do2LAhNmzYAM/sJuEmyokVK6RU1ebNmk2eVa8unW82b5Z7uaYcR1OWln7uOW2Vlk5ryxZJDterp3ZLrESnk9HE33wjJwQpTxbItqwclw8fPoymTZsm/Tzw/8vnd+vWDYsWLcLNmzcRGRmZ9HpISAjWrVuHjz/+GF988QWKFy+OBQsWoFWrVmZtl8guzZolx70fftBgmQiVDR4s1Sn69JFr58bmJxspA6Ykhs24GJ78cihazNqR5Yhic7m56DD5ZVvfyLISK8dkc6+Tw8PDsWzZMowaNQojR45E2bJlsWrVKlSpUsWs7RJpkqLIDc6zZ4GKFYHKlTmNDpGWMEmcjhNkLZzb9OlAXBwwYYJKDejUCfj8c7mw27/fckFVr5eRuKNGScCeP1+y4fXqARMnyvbs+eb7uHEy3GrkSLVbYjEZJY7btpUb/sOHy7+HDslA78REKfFsnOPYXhLHxmmvP/xQEht//ilfLVMqxZ2LisHSA5HYduY2Iu8/RspLYx2AYH8vNC1fBF3qBqNsUQ30hM6IjYJsv3790K9fvwxf2759e6qfZ82ahVmzZmW5Pp1OhwkTJmCCagdKchoJCTJhe5s2QIsWarfGalxcpMjH0qXS+bpChcyXNRgkNmzbJu9r316mMdDqNXhkJPDffzIwKk8etVtjRcWKyWj57dsluLPTjTqsHJebNGkCJYskw6JFizJ8z9GjR83aDpHdW7NGrj+HDQP+f9QeWZBOB3z1lZRHe+UVua9QtqzarXI8uRwtnJ0gfy+M71AZw1ccz9H7MzKhQ2UE+WukpIwNrpXNuU4GgNdffx2vv/662dsh0jTjBWpkpFyYlimjdouIyNKYJE6HSWINu3ZN8rODBplf7tFiXFxkxGzTpsBvv0mZ6Ny6fFkyeLt2ycX4xImSWWzTRub4tfeawadOyYS/06fL3M0aNmOGjCDW62WXgdQjjg8fzjpxHBYm77dl4tjPT7467dsD770n21+0SAZFZeTq/ccYufI4dp2/C1cXXYY9pxUAV+4/xpIDV7Bo32U0KlMIk18O1c4FrxGDLFHWvvoKuHQJWL1a7ZZYXZkyQOnSMpq4bNmM+21duQKsX59cWrp5c5nPWKsURSowBwRI3lTzmjUDTp4Edu/WdKcIu8a4TGR9R48Cb74JvPyyVNEi68iTR+Ymrl8faNdOEsX+/mq3yr5ZOSmckc61g3H35z8wwyP35daHtCyPTrU1MBexEWMykf179kyqft29K/GmeHG1W0RE1sCYnI7299CJjR4N+PjI9D2qatIEePFFSd4mJOR8PYoi2buqVSVRvG2bJFqNGUQPD2DqVBm1Ehkpy/34o+kXR7YyfLiUxO7bV+2WWF2lSkCvXpLHf/hQnjOOOP7gA+D776VSeEyMlCadPVs66h06JKN5a9eW73DNmlJd7JtvJLEcH2/9tr/+OnD8uCStW7WSyuBPnqReZvmhSLSYtQN7L94DgGxLaxlf33vxHlrM2oHlhyKzXN7hGIOsOQ8iZ/HggZT16N1bylU5gRdekPl3jxxJ/XxsLLBypXTAcXOT4/uLL2o7QQzICOLr16XTkVZHSqfi5yc3V/btSz4JINtiXCayruvXpWdppUrAkiX8G7K2AgWkM/j9+8Crr+bu3oJWKUryIzM6XeqHJc2Zg36zBmJqoQfwcHOBq4t563d10cHDzQXTXglF36YaG73HmExk354+lfvJ9+/LdIlMEBNpF2NyOtrfQyd17BiweLEMrPX1Vbs1kAlfL18Gvv46Z++/d09GIXfrBrz0kuxgZnMRPf+81DZ++WVZ/o035P32YOdOKUc2ebL9TMhrZePHy7nWlCmZL2NMHP/vf1knjvv2tW3i+LnngA0bgC++AL77Tka6/fOPvDZ32zkMX3Ec8YkGs+dd0hsUxCcaMHzFcczdds7yDVeLTmdegHWKLAnR/5s0SXomjx+vdktspmhRmZ94+3aJAwaDDPyZOxc4d07uq/fqpd25h1NKTJQ5l8uVA0JC1G6NDTVsKEF+yxa1W+KcGJeJrCcuTgKZTifXd14aqxBkr0qXlp5me/cC779vfx3CbS1lUtjUxLC1/PUXMGAAMHAgOg96G39/3BjhpWTepuySxcbXw0sVxN8fN9bWCGIjxmQi+xUbC2zdKhetTZsCRYqo3SIisibG5HRYblqjhg6V8o7vvqt2S/6fcUjphAmSuM2f3/T3btoEdO8uwfqXX0wrWe3nJ1lyU2sG24KiSHnssDCZq9lJFCsmuz1tmiSBS5Qw7X0ZzXH85ElyqeojRyRxvHChlLM2lqoOC0suV22JUtUuLjKKuEULoEsXmfa68yeR2Pn0bO5W/P9mbDqLwvk8tHEhzHIdRBm7eBGYMwcYM0ZqDTsRY8XhdeuA27flERYmz2t95HBKBw8Cjx4Bb72ldktszMNDbrT8+aeMKnaGHgH2hHGZyDr0erkwOHdOSuoXK6Z2i5xLo0bSs7hrV6B8eZkL2pmYkhi39c3MY8fkHseLL0q1N8gcxUt61cW5qBgsPRCJbWdvI/LeY6RsvQ5AcEEvNC1XBG/XC0aZIj62bbctMSYT2af79yWWu7vLYCRvb7VbRETWxpicDpPEGrR5M7BxI7BihSTO7Mb48cDSpVISeurU7Jd/8kQu+ObMkQzdokXmT6782mtAeDjQo4fUDP7wQ8lWqnFn+tdfJau5bZtTHFxSGjxYRvyOHi0VwHMqb16gbl15GKVNHB88CPzwQ3LiODQ0OWmcm8RxpUoysnnQ2MdYHXMSLm6Qq9osPNr7Cx7uXII8hYIR2PurTJcbs+YkwksX0t4cxUQkRowAChcGBg5UuyU2p9NJdcgTJ2RkcZ8+zpcnfPwY2LVLYlDhwmq3RgU1asgQ8o0bpdOfE/TCJSKNGz5cOr+sWQNUq6Z2a5zT228DZ8/K76JMGSk/rVUqzC1sllu3JDlcpozc73F1TfVy2aI+GNehMsahMuLiE3H5bhwS9Aa4u7qgZCFveHvwtiQRqeTWLalM4ecnFZCcpOIjEVFaPBvTGINBRhE3aAB07Kh2a9JIO6Q0OIuRk//8Ixd+Fy9KveEPP8x5YjUwEFi/Hpg3Tz6cv/8GfvpJ6hXbSny8JAlefFHmaHYyPj7AuHHya//4Y7lfbCmmJI4PHLBM4tjdHXhY5jjcLijIrsJ0YvRdPNr3K3R5PLNdb6JBwciVx7GkV91sl7Vr7IlFlN6+fdJJaOFCpypFaTBIp53t2+VP3cNDEqTOliAGZKYJg8Epw79wdZVKLkuXAmfOABUqqN0i58G4TGR5330HzJgh16jt2qndGuc2frwkirt2lXsLtWur3SLLsPekcEqPH8t0YHq9dJzIly/Lxb093FA5MMV8aPawD7bCmExkX65ckYE8AQFSMtCNKRIip8GYnI7299DJ/PSTzOf62Wd2er49eLCUmh49OuPX9XqZvLZePbmjfOQI0L9/7v8YXVwk0XzkiNQxrltXtqPX5269pvr6azkBmTbNNtuzQ717SzWwIUOsP3WUMXFsnOP4339ljuP9++V+TvXqkjhOOcdxrVpSnv2bb+RrktEcx+eiYrDr/F0YTNiBB9u+h0dgebgHlMl2Wb1Bwa7zd3H+doz5O2tPzJnPwdyATOSIFAUYNEgOOl27qt0am7lyRY6lGzdKJ5wPP5Qc4YkTwPXrarfOtu7dk3sPDRs6eeWysmWBUqWk3I2tzr2IcZnI0rZskQuM//1P5qMhdel00gmvWjWgQwcgMlLtFuWcufMK28PNHoNBphI7cUJG1RcvrnaL7BtjMpF9UBTpuHrwoMyHFx7OBDGRs2FMTkf7e+hEnjwBRo2SSkv166vdmkwYh5QuWSLZ7JQuXZJhNp98IiU5DxwAKle27PYrVZJM4ZAhsp0mTWS71vTwITBxomRJK1Wy7rbsmJub5Mi3bJHEga1llziuVi05cRwWljpx/O23kjj+cW8kXF2yvyB/GnkCj0/vQYHmpk8K7uqiw0/7HfjGBsAgS5TWH3/ISOIZM9KV3tOimBhg5UqZHSJPHikt3a6dHH+rVweKFAE2bbJ+RyF7smWLDKqpV0/tlqhMp5OeAvfuSUAl22BcJrKcU6fkQrt5c+CLL+wjSUdykrFqlXQwb99eTkYcQcqksKmJYXszerSc6y5dKhfOlDXGZCL1KYrcDDx2DKhYUW7+8W+NyPkwJqej/T10Il9+Cdy8KQNk7VraIaWKIneUq1UDrl6V2pRTp0ptX2twdwcmT5b6j9euyXYXLbLeXespU2RY6rhx1lm/A2nfHmjUSH719jCQKGXi+IcfUieOZ81KThz/739y7rhw423os6kzrRj0uL95PvJVawn3IiVNboveoGDb2du53COVMcgSJYuPB4YNA9q2lRvKGmYwyHFz7lzg/HkZzNOrV+rS0i4uwAsvyCCf06fVa6stRUZKTqFZM0maO71ixSSwbtsGPH2qdmucA+MykWXcvSvTBhUvDvzyC0cc2ZuiRYF164DLl4E337SPC82MOOJo4cwsWiT3VKZPt8N5zuwUYzKRuvR6ucF37pzMgVelin0fZ4nIehiT09H+HjqJu3flHP2DD6Sin10zDin9+2/gt9+A114DevQAXn5ZsnTPP2+bdjRsKNt79VXZ/muvyQdpSVeuSE/zwYPl5qiT0+lkQN2JE8CPP6rdmowZE8d9+6ZOHG/dmQi3Ao+zfX/s0fVIjL6D/M+bX1o28t5jxMUn5qTZ9oFBlijZV1/JzcrPPlO7JVaVsrR01apAv35yzZ3R9XaZMkDp0hL+7fX+raUoioyaLlZMPhf6f82bA8+eAbt2qd0S58C4TJR78fFynRobC6xdC/j5qd0iykjlysCvvwIbNshUH/ZAC6OFM7Jjh5Tb6t3bfj5rR8CYTKSeZ8+A3btl7qP69eXClIicF2NyOtrfQycxaZL8m9lUv3anfXvptdWli4wo+e03YPFi2190+/rKPEZ//CEXO6GhcmFpKaNGyRzMgwdbbp0Ork4doFMn+WgeZ59ztQt58wJFSsdlu5z+STQe7lqK/OGd4Opl/ndZAXD5XvbbsVsMskTi/n2ZZqBPH81OMxATA6xYIQNJ3N3lXqGxtHRWXngBePAAOHzYJs1UzcmTcg/ihRcc556vTfj6yrxf+/fLdBxkXYzLRLmjKJIIO3QIWL0aKFlS7RZRVlq1kvJqX3whnfVsLSdJYUc7STh3DnjlFSkP9tVXjtd+NTEmE6nj6VOpWPnggQxK4vzpRMSYnI7299AJXLgg5+fDhwOFC6vdGhM8fgx8+KEMJ01MlMz2a6+p26ZXXgGOH5dJE9u0kaFQuc1gHj0K/PQTMH68TEhISSZPBu7ckbmAHUVCoiHbZR7uXAKXvPngE9beqtuxWwyyRGLSJOmtPH682i2xOL1eplmeO1fOPzp0AHr2NL1YRtGiEmp37NBuxeHERJmLuFw5ICRE7dbYoQYNAE9P+ZDIuhiXiXJn0iS5nlu8mJPLO4r//Q/o3x/46CMpc2JtWk8Kp3T/vvQILFwY+P13zqVhLsZkItuLiQG2bpULz6ZNHeSmORFZHWNyOtrfQycwciRQpIhcC9m9I0eAWrWA77+XXr6vvw7MnGkfQ0qLFQP++kvufH//vbTzyJGcrUtRZOLdChVkYkZKpVQpKec8dSpw2wGm4Y2PB86fzfpw+ez+dcRGbIRPrQ7Qx9xH4sMoJD6MgqJ/BsWgR+LDKOifxGS7LXc3Bz4s63TmBVhHvklClJkLFySODB8uGVENuXIF+PZbYPNmmVo2q9LSWWnaVBKpWq04fPAg8OiRjCKmDHh4yJfg2DEZbk3Ww7hMlHPLlwNjxgATJkgZJHIcM2cCrVsDb7whHdMtSaslpLOTkCAd6+/fl/mfCxRQu0WOhzGZyLbu35cEsYuLTHnD6SKIyMjKMXnnzp1o3749AgMDodPpsGrVqmzfs337dtSsWRMeHh4oU6YMFi1alLN9yyEHzkYQABw4IFPvTJoEeHmp3Zos6PXAp59KD+y8eSX5+uGHyVlCexlSqtNJ9vLoUcDbW9r76adyN9scGzfKCJlp02QOZkpn1Cg5zk6YoHZLUouPlzKo8+dLpdiaNQEfH6BTW+8s7wPoY+4BigEP/v4G1+f3Snok3DiDxPvXcX1+Lzza83OW29YBKFnQ27I7ZEvsiUUEjBghPbc+/ljtllhM2tLSffoAbdtmX1o6Mz4+UnH4wAHtVRx+/BjYuVP6mRUqpHZr7FiNGvJ3smlT1jfZKXcYl4lyZt8+oHt34O235aKFHIurK/Dzz1Ie/MUXgaio3K3PmUYLZ0RRgPffl7+LVauA0qXVbpFjYkwmsp1bt6TEtI+PdE616xvmRGRzVo7JcXFxqFatGubNm2fS8pcuXUK7du3QtGlTREREYMCAAejduzc22qIqzv9j9sqBKYpMdVu1KtC1q9qtycLFi9LA/fuBYcOAcePkLjOQekhpnz72U/qjQgVg717JYI4ZIyOMlyyR9mZHr5dRxM8/L3MvU4YKFpRR8J98ItXAypWzfRvi46XK+JEjkhg+ckQ6mz97Jrn9ypXlRn+fPkCtWm4YvN0LkQ8yHvWep3AJFH7lk3TPP9y5BIaEJ/Bv8S7c8mddjzW4oBe8PRz4sGxu4OSFL2nN3r3Ab79JNlUDF6J6vYyK3b5djokdOkipaEvc+wwPl2Puli3Aq6/mfn32YscOOT9r0kTtltg5V1egZUsp43rmjJx3keUxLhOZ79Il4KWXgNq1gQULtJfwcxY+PsDatUCdOkDHjjKazNTebaZ2XnKW78b06cDChXI/pGFDtVvjuBiTiWzjyhXg0CEgIEAG/nDgDhGlZeWY3KZNG7Rp08bk5efPn4+QkBDMnDkTAFCxYkXs3r0bs2bNQqtWrczadk7xSOnA1qwBdu8GNmyQe212R1HkRvlHH8lwmh07Mr6oGDVKLjomTADmzLF5MzPl7i5DtNu0kSR3tWrAF18APXpkfUG4eLFkGg8ccJ4Lxxz66CNg3jwZePfHH9bdVsqEsDEpbEwIu7oCVapIQrh3byAsTDpfeHqmXkezW0Ww5MAV6A3pbxy4evnBq1z9dM9HH1oNABm+lur9Ljo0LVck5ztoD3jhS85MUYBBgySLatc9t0xz+bL0j7p7V46JTZvmfORwRtzd8X/snXd8zPcfx1+XSRDEihFbzVhBiE2M0qJUKWrUqtJhj9p71VajpVqjaNVq/RARmyAoUjVLrMQWCRJJ7vfHqyc7uUvu7vu9u/fz8biHNrn7ft93ubv39/N5vd+vN5o04bWMtzdQpIjxjq0Ujx8ztzRuTDMSIR1Kl2Y30t69QJkyKr2YtXAkLwuCYTx/zs7THDmArVtpjy9YLh4evNBo2JBr+A0bUv6eE1E4dbZs4QiVcePYWS9kHMnJgmBatFoWn164AJQoQVtA+RwJgpASGczJ4eHhiX7s7OwMZyOsF44fPw5fX99EP2vRogW+/vrrTB9bX+Tb0kJ584ZNuc2aAWYqKDCMhw/ZGvTpp8CHHwJ//ZV61amupXT5cuDKFfPGqQ916zL+jz7ifOH27fn8UuLlSy6gOnVi1bKQJlmyUIf//Xfg6FHjHVdnGb1iBdCvH8XfHDnYEDBwIDvjqlWjy/mJE7RSPXeOo6g//5x/uqQCMQB09S6aokBsDGLjtOhWu6hJji0Ighn47Td+oXz7rUUvRnXW0j/9xL3xzFpLp0WVKnQc9vOzDsdhf38ge3aK3oIeaDTsJn7yhElbEARBSWJiuN67d48zV2VmgHVQsyZdKzZtoqOZDn0spAHrtZDWh1OnWPjYqRMwaZLS0QiCIKSOVst92wsXgAoVuAlowWtyQRDUiYeHB3LmzPn2NmPGDKMcNzQ0FAUKFEj0swIFCiA8PByvXr0yyjnSQzqJLZRVq6inbtyodCQpsGsXxeGYGFaetm+f/mO++AJYsoRi8W+/mT5GQ8mRgy/6e+9RdfT0BFav5s55QubPp4A8fboycVogXbsC8+bRofvoUcPX30k7hIOC+P9JO4R79+a/lStnXOwo45YF9fEMx2KzI9Zev69P964z072PvZ0GPiXzoHT+HBkLTC1IdbRgq0RFsXKrdWu2x1ogSa2l27aliGvKPVE7u3jH4X/+AcqXN925TM2tW8ClS8AHHwCOjkpHY0G4u7P7/sABvuFSqtASMo7kZUHQD62WFkf799OmSyzwrYv27YEZM2hfVbp02o4vtigGp0RICOeMVKlC1zd5XTKP5GRBMA2xsSxquX2b3cMyN10QhPTIYE6+ffs2XF1d3/7YGF3EakFEYgvkxQtgwgSubapWVTqaBLx8ySHJy5YBLVtSRC2Y9gzWt2TNCkybBnTvzpmOPj6mjTWjfPABUKcORfDWrYEBA4C5czl78sEDYNYstqrqM7tYAMDv2Tlz2BX/++9pz6Y0pyCcjH/+Abp1w/Sb9+HbdzlijXRYAHCw02D6B55GPKJCyMJXsFWWLuVm2p9/Kh1JhjC1tXRalCrF/dp9+zib3hIdh7VaOiYXLMgaMsFAmjTh/IfDh3kxIBgPycuCoB+LFnEN+/33QNOmSkcjGIuEXcIjRrDKvm9foHhxoH59/lzEz+S8eAG8/z4tZbZtM99FobUjOVkQjM+bN9xDfvSIe7XWMMNIEATTk8Gc7OrqmkgkNhbu7u4ICwtL9LOwsDC4uroiq5muw0QktkDmzOG4pKlTlY4kAadOcUZNSAg7gj//3PAFV8KW0iNH1Ltgc3enELB8OedP+vuzDeqnn/ilMXas0hFaHL6+rCsYNYoFy46OFIQvXqQDZUqCcMWKFDNMIggnRKsFvvuO78uiReGxezsmafNj1O8XjHaKyW0qwsPNxWjHUwxZ+Aq2yJMnwJQp3HS0sFbYFy8obl68yLF9/foxxZmbZs2YUk+ftkyr5uBgupP26KHeSxdV4+rK4sCjR2kLmiuX0hFZD5KXBSF9/vgDGDyY1/p9+igdjZAZ0rKO1mhYCPDvv+wsPnGCVWpCYmJjgY8/ZgXhsWNAEutDIRNIThYE4/LqFYtMX74EGjQA8uVTOiJBECwFleXkOnXqYNeuXYl+5ufnhzp16pj0vAkRkdjCuHeP4w6//pobuooTE0PrpsmTaUV09mzG7bkStpRu3aqfTbVSaDTsIm7ShOK4jw8QF8du6Dx5lI7O4oiKAnr25Hq0USPg9evkgrDJOoTT4v59do3v3s3ChzlzABcXdAbwKCIKc/dmfob28OZl0ammlcwiVlmSFQSzMGUKc2HCOXcqJzYWCAwEDh40n7V0WuTPT2eUgwfN+P1uJGJi2AVdtiwbk4QMUrcuq8H27QM+/FDpaKwHycuCkDZ//QV07sxEODP9ETGCykhvnrAO3QWOszPHYdWpwzFSx48DuXObLj5LZOhQrn3//JOLcMF4SE4WBOPx4gVw6BDzQOPGQM6cSkckCIIlYeKcHBERgWvXrr39/3///Rfnzp2Dm5sbihYtitGjR+Pu3bv4+eefAQCfffYZlixZghEjRuDTTz/F/v37sXnzZvxpRrdCEYktjAkTuHk6erTSkQC4fp2e14GBDGj8eMDJKXPHTNhS+v776h/sV7YsK2wrV6Yd8datQMeOMgMjDXQdwkFB8V3COkFYo+HbqXNnarM1aigoGPz+O9vqHB3pw/ruu4l+PahxGeTN7owxW4IRq9VCY6fnJgU4g9jBToPJbSpaj0AMyMJXsD2uXaPV9MSJFtNpkdRaukkTdYyBbdw43nG4eXOlo9GfwEAgPJz1YkImcHbmm3HHDm7eFy6sdETWgeRlQUid+/cpFJYtS1coef9bBoYKw0lxc2P3eO3aLEravVv9ew7m4rvvgIUL+W+LFkpHY31IThYE4/D4Md0nnZ3ZQexiBa58giCYFxPn5NOnT6Nx48Zv/3/IkCEAgB49emDNmjW4f/8+QkJC3v6+RIkS+PPPPzF48GAsXLgQRYoUwQ8//IAWZrweE5HYgggO5pjf+fMVLpLSaoFVq9jOXKAAd3SNOUN41iy2FK1cyfm+aufkSQrE48cD69ezHWvBAra92rjvZHR04hnCp0+n3CGsE4Td3PjyFSum4J8+PBz46itgzRrOoF65EsibN8W7Vs9ZFPd+yIsaAy7gTswj2NtpEBuX+saF7vc+JfNg+gee1mExnRBZ+Aq2xujRzINff610JHrh78/6LiWtpVMjRw42kx4+TMdhS2jsefmS8daokWqaEAyhWjXaf+7ZA/TqZfPXUEZB8rIgpMzLl5xxo9UCO3cC2bIpHZGQGpkVhVOiTBkWd/v60i1q5UrJObt3A19+yXXwgAFKR2OdSE4WhMxz/z5dIHLlAurVy3yjkiAItomJc3KjRo2gTeMads2aNSk+5uzZswadx5iISGxBjBwJlCgBfPaZgkE8fMi5i9u3U9lbsIA7u8akcmV6D0+axE5lEwwENxpaLedXVavGNu/hwznTqm9fbjh8/z19NG2ApIJwUBBw/nzKgrCXF8XglDqEBw/maOoBA4AiRcz8JI4c4Xvu0SNWZPTsmeaGwejRQIFsLtj3jTduP3+B9YEhCLjyACGPXyJhKtAAKJrHBY3fyY9utYuidH4jf2bUgkZjWOK09c0YwbI5ehT47TfOo1dx9XJsLN00AeDuXeWtpdOiTh3mDn9/y3AcPniQ/zZsqGwcVoOdHdvI161j8Z2FzfhWJZKXBSE5cXG83r90iZU+hQopHZGQFH2E4cx+XzVowLV6z57sJh82LHPHs2QuXgQ++oiObt9+q3Q01ovkZEHIHDdvsvOkYEG6QdjbKx2RIAiWiuTkZEhpmoUQEMCxMDNmKFgodfgwUKkSN8a3bmU3sbEFYh2TJwMREewqVjO//84qtjlz+OWSPTsXm9u20Yba05N/OCsjOpob+StXAv37s4sqRw7++/nnbASqXJld78ePc1zIX39Rdx04kNdzqVlIjxzJY40fb+YnNGYMd/oLF2aw6XQxHTvGP//UqbRqLVMgBya2qYiDwxrj4sQW+LNZXmz9aQj+bJYXFye2wMFhjTGxTUXrFYiB+EosQ24ZYOnSpShevDiyZMkCb29vnDx5MtX7fv/996hfvz5y586N3Llzw9fXN9n9e/bsCY1Gk+jWsmXLDMUm2AhaLWe2Vaumap/hf/8FVqygJTIAdOpEow61Xt86OdF2OjgYuHNH6WjS5vFj7lHUqycNaEalTBmO7PDzY4WDkDnMkJcNyclr1qxJlm+zqMHvXrAtxozhWvaXX5jHBeXRahPfUkOjib8Zgx49+H4YMYLrd1skLIy26yVK8DMhoovpMNNaWR+ePHmCrl27wtXVFbly5ULv3r0RERGR5mMaNWqULId/pmgHi2AzaLUsID11it9VderId5UgCJlDRTlZLVj/M7QC4uLYoOrtrVBnzatX/Pfrr9kCeuEC0K6dac9ZpEh8S6lad4qjozk7+d13gaZNE/+ubVtW5NasyUXXZ58BkZHKxJlJ0hOEjx+nIDxvnuGCcEq4urIpe80adiKbnEuXeJE5Zw4wZQpbw0qWTPMhWi2LzatWBbp2Tf77bM4OqJjLEdXuX0HFXI7I5mwjpg1mSLKbNm3CkCFDMGHCBJw5cwZVqlRBixYt8ODBgxTvf+DAAXz88ccICAjA8ePH4eHhgebNm+Pu3buJ7teyZUvcv3//7e2XX37J0Esg2Ai//krlde5cVV4shocDW7YAP//MIpb27flzZ2dl49KHKlXo4L13r/4Ok0qwbx9zobe30pFYIc2bA0+eUIUXMoeJ87KhORkAXF1dE+XbW7duZfZZCoL+rF7NIuS5c4H331c6GtslI6KwqSrcpkwBOnTgoi4oyDTnUCuvXnHfIiqKc5pN1QAgEBVtSHft2hXBwcHw8/PDH3/8gUOHDqFfv37pPq5v376Jcvjs2bNNFqMgAGCOOHeO+9AVKgDVq6ty/S0IgoWhopysFmxEubBsNm7keuXwYQW6f06eBD7+mP89ahQwfbr5ghg5kl2548dzQa82Vq4EbtxgO2lKFChAy+mVK4EhQ4D9+2mhWKuWeeM0gOhoatunT8dbRl+4wJ/b2/OarEYNNtmmZRmdWfr1AxYuZFH37t3GPz4AXmwuWcKTFC/O9mcvL70eunUrBXE/P5vIE/pjhjlL8+bNQ9++fdGrVy8AwPLly/Hnn39i9erVGDVqVLL7r1+/PtH///DDD9iyZQv8/f3RvXv3tz93dnaGu5oGtArqJSqK+fC994AmTZSOJhGxsdSuDx4EHB1Zz1W5MhAaqnRk+mNnBzRrxnR56RLzjtq4dYvF7B98wNdZMDLu7qzCOnCAb2BTXGjYCibOy4bmZADQaDSSbwVlCAhgxWv//ixGFsyLKWYLGwM7O1bVNWrEwoGTJxWYeaQAcXFc1J8/Dxw6BHh4KB2R9aOSmcSXLl3C7t27cerUKdSoUQMAsHjxYrRq1Qpz585FoTQs+F1cXCSHC+YjNpbfyXfuUBwuVUrpiARBsBZUkpPVhPU/Qwvn9Ws6ILVrR0tDsxETw5nAPj60UAaAjh3Nu2hL2FJ64YL5zqsPz5/z9enZk5bSqaHRcCPi7Fkgd26+npMm8fVVmOho4MwZ6vAJO4S9vOI7hD09E3cInz+f8Q5hQ3B0BGbOBPbsoRBrdO7d48ylL78E+vShGq6nQPzmDfWhli0BX18TxGaDhIeHJ7pFRUWleL/o6GgEBQXBN8ELb2dnB19fXxw/flyvc718+RJv3ryBm5tbop8fOHAA+fPnR9myZTFgwAA8fvw4409IsG6WLAFCQgCVVc7rrKX37aO+NmiQemcPp0epUkDp0nwuanMc1mrZ5VyoUNrpX8gkTZow4R4+rHQkNok+eTmjOTkiIgLFihWDh4cH2rZti+DgYJM8B0FIxOXL7BZt3BhYvNgyk6OloaZu4fTImhXYvp2L0Pff59gra2fiRGDTJlbl/ScUCupE37Wyvhw/fhy5cuV6KxADgK+vL+zs7BCom1GTCuvXr0fevHlRqVIljB49Gi9fvsxULIKQKrp1wL173EcVgVgQBMGkiEiscpYuZdHUzJlmPOnVq1SkJ0+mQr1mjRlPnoR+/bhTPGKEcjGkxKxZtI+ePFm/+7/zDnDkCDB2LC2t6tbl62wmoqPZkQUA06YlFoQHDIgXhL/9lv8dHk5B+McfTS8Ip8YHH/BacMQIFjobjd9+45O9cIFtyosXAy4uej98xQrg2jXV6UPqIIN2HR4eHsiZM+fb24wZM1I8/KNHjxAbG4sCBQok+nmBAgUQqmer5MiRI1GoUKFEm9otW7bEzz//DH9/f8yaNQsHDx7Eu+++i1i1qVOC8jx+zEHk/foB5csrHQ2A5NbS/fpxCoKlj/ls1gx49oyjp9TExYvcq2jWTDQGk+LqymulwEDg6VOlo7FcTJiXM5KTy5Yti9WrV2P79u1Yt24d4uLi4OPjgztqHS0jWAePHwOtW9OlYPNmsYAwJZYiCqeEuzstl69fB7p0UV+VmjFZu5Z7EjNnxs8kEUyPidfK+hIaGor8+fMn+pmDgwPc3NzSXFN36dIF69atQ0BAAEaPHo21a9eiW7dumYpFEFLk1Su6fzx7BjRsCBQurHREgiBYG2I3nQyxm1YxT57E70WXLWuGE2q1bCsdPBgoWJCiZp06bDdVCl1LaYcObClSQ+vmnTvA/PnA0KGGXaw4OrJi9913gW7d2Oo1fz7Qt69RF8g6y2idXfTp0/GW0QDF33r12ASts4w2QCM1GxoNxwTXrQusXw988kkmD/j8OTuHf/6Z76cVK4A8eQw6RHi4fg3kNksG7Tpu374NV1fXtz92NtHg1JkzZ2Ljxo04cOAAsiRQ0Dp37vz2vz09PVG5cmWUKlUKBw4cQNOk88YF22bKFG4aTpyodCSpWkurab81M+TPD1SrRgdEU402MJSYGMDfn9dkxYsrHY0N4OPDixh/f+DDD5WOxjJRWV6uU6cO6tSp8/b/fXx8UL58eaxYsQJTpkwxyjkEIRFRUaw8ff6cSTNXLqUjsi7UaiGdUTw92V373nusVP72W6UjMj6HD9NJ69NP1VeIb+2YOCePGjUKs2bNSvOQl3SdAxkg4cxiT09PFCxYEE2bNsX169dRSro8BWPx4gUXgFot3T9y5lQ6IkEQrBGxm06GiMQqZvp0bkhOmGCGkz14wMXCzp38d/78eJtppdG1lA4fTtVT6Q/muHFsw83oosrbm/bTQ4fS53nnTuCHHzjD2ECSCsJBQRSBE84Q9vKiqJk9O8cObdrEcR6WgI8P9dxvvuH+cIZFgsOHqTI/ecLO+O7dM7RZYWgDuc2RwSTr6uqaaOGbGnnz5oW9vT3CwsIS/TwsLCzd2Uhz587FzJkzsW/fPlSuXDnN+5YsWRJ58+bFtWvXRCQW4rl6lfYekydTwVSQf/8Fdu1ic1TNmlw/W3rncEo0bswip8OHgebNlY6G+sKLF0YoWhL0w9mZttM7dtDSxBZmRBobE+blzORkHY6OjqhWrRquXbumf4yCoC9aLautT54E9u8HSpZUOiLLx9pE4ZR4911g4ULgiy/oBta/v9IRGY9r1+L3VpYts+y/kyVi4rXy0KFD0bNnzzTvU7JkSbi7u+PBgweJfh4TE4MnT54YNG/Y29sbAHDt2jURiQXj8Pgxm5WyZAHq11dnN4sgCNaBiMTJEJFYpfz7L11wx47NkHZoGDt3Ar1787+3bwfatDHxCQ3E6C2lmeD8eeCnn/jH0eNCPVWyZ2cn63vv8bX39ARWreIMpFRISxC2swMqVqQg3KNHyh3CSjaEZ4YZMyh2L1oEjBxp4IOjo4Hx4+kNXbcucOBAhtu/7tzhfOYhQ2SfOlVMnGSdnJzg5eUFf39/tGvXDgAQFxcHf39/DBo0KNXHzZ49G9OmTcOePXsSzV5KjTt37uDx48coWLCgQfEJVs7o0bQi/PprxUIID+c83OBgoGhRFtEYsJdjcWTPzq/uw4cphufOrVwsL18yDi8vg00ohMxQrRpw4gTf+L16yYa2oZgwL2c0JyckNjYWFy5cQKtWrfSPURD0ZcYMOgitX09RTMgYtiAMJ2XQIM6xHjiQxQXNmikdUeZ5+pR7D3nycE6Jk5PSEdkeJl4r58uXD/ny5Uv3fnXq1MGzZ88QFBQELy8vAMD+/fsRFxf3VvjVh3PnzgGArJkF43D/Pmff5c7NBaB8RwmCYEpEJE6GiMQq5ZtveP0+ZIgJTxIRwRN8/z3nNK1aZQZFOoMkbCnt2FG5lqkRIzgjOYHVTqZ4/30qv336UJzv2xeYNw/RTtnTFIQrVOBc4dQEYWuiTBngs8/YWd+7N5A3r54PDA6mrXdwMB88fDjbqzPI+PFsIDdYqLYlzJBkhwwZgh49eqBGjRqoVasWFixYgMjISPTq1QsA0L17dxQuXPjtrKZZs2Zh/Pjx2LBhA4oXL/52zlL27NmRPXt2REREYNKkSejQoQPc3d1x/fp1jBgxAqVLl0aLFi0Mjk+wUo4ciR/8q4DvcWwsdbKDB7letjZr6bSoU4c5UGnH4QMH+G/DhsrFYJPY2QEtWnB+4j//qGYWuMVg4rxsaE6ePHkyateujdKlS+PZs2eYM2cObt26hT59+hh0XkFIl82buW6cOJHzZQX9sUVROCXmz+d84g8/pHBRoYLSEWWcN2/4PB4+5AWlm5vSEdkmKtmQLl++PFq2bIm+ffti+fLlePPmDQYNGoTOnTujUKFCAIC7d++iadOm+Pnnn1GrVi1cv34dGzZsQKtWrZAnTx6cP38egwcPRoMGDdJ16RKEdPn3Xy74Chake1Am9u0EQRD0QiU5WU2ISKxCTp8GfvmF2m22bCY6yYkT7Mi9dw9Yvpyip9oXeglbSpWYn+PnB+zZQ6HA0dFoh43OlR/BE7fjRa4fUOvHwXjwcwC6xq7FkZjabwXhtDqEbYHx49nAPXUqsGBBOneOi2On98iRrPwODGQnUiY4f54u1ZltILd6NBrDEmcGvnM6deqEhw8fYvz48QgNDUXVqlWxe/duFPivwCUkJAR2CWJYtmwZoqOj8WESdWnChAmYOHEi7O3tcf78efz000949uwZChUqhObNm2PKlCkmm40sWBhaLccDVK8OdO1q9tPfuAH8739036pVC2jUyDqtpVPDyYmOw9u3c1qDh4f5Y3j0iPsWTZqY8LpMSJ3SpXnbu5eVYw6yfNEbE+dlQ3Py06dP0bdvX4SGhiJ37tzw8vLCsWPHUMGSxRdBfQQGcuHUpQsXEUL66CMMq32vwNg4OAAbN7Kj7b33+L7So0tTdWi1wIABtEPZt495VFAGM6yV9WX9+vUYNGgQmjZtCjs7O3To0AGLFi16+/s3b97g8uXLePnyJQC6h+zbt+9tMZiHhwc6dOiAsWPHmixGwQbQalkEevEi9+6qV7e9XCMIgjKoKCerBdllURlaLRseK1akq57RefOGStu0aVQc//yTs3YsgaQtpeb0e4yL4x+mbl3O8ckg0dFsbA0KYjFAfIewBnZ2fdGiVGMsftoNB5/Uw91Pv0GeeWPhktN4grSlki8fMGoUmwG++AJIdeTN3bv84Pj5AV9+CcycaZSuv5EjjdtAbrWYqRJr0KBBqVpZHtC1+/3HzZs30zxW1qxZsWfPngzFIdgImzfHzzM0Y/VgUmvpDz9Ur9mHqalcmbVtfn7KOA77+9NJwgAHPsHYNG/O+YmnT7PDQNAPM+RlQ3Ly/PnzMX/+fIPPIQh6c+sW3ZmqV6dLlg1s6GQIrTZeGE5LILb118/VFfjjD14AtGvHCwJLq9SbO5efhTVrgAYNlI7GtlFR15Kbmxs2bNiQ6u+LFy8ObYLvBg8PDxw8eNBk8Qg2iFYLnDvHWekVK9ItyNZzjiAI5kNFOVktWP8ztDB27aKl4ezZJnDYuHKFIue0aRx2fOSI5QjEOsaPp2A7dap5z7tuHfDXX5yNrOeFS3Q0cPYs8MMPLN6tWZObzNWrA/37A0eP8lpo7lzg2DHgxQtg15XSKHX/COwmjIfHT9Pg0qwu/24Cvv4ayJ8fGDMmlTts3szZzsHBVFYWLjSKQLxvH7B7N/VmIzaQWye6JGvITRDUzOvXrFB5/32gcWOznDI2lvlhyRLg5k3uSfbsabsCMcCviubNgdu3gUuXzHvumzdZ4N60qTSwKkqBAnQFOXgQePVK6WgsB8nLgi0RHs6Oz2zZgG3bLE/MMyU6UTihOJwSGk3imwAUKwbs2AGcOQN8+qn+dtxqYOtWVjuPGcPuekFZJCcLAtHNUrp2jc1LFSpIzhEEwbxITk6GbHepiJgYuig3bgy8+64RD6zVAitW0C6zUCHuPltqO0zCltJBg9JoKTUir15RVO/QgcMRUyBhh7CuSzjpDGEvL6B7d/5btWoaltEODhTDW7bkTN2qVYF586gs2/CFk4sLMGUK1+ZDhiR4Cz9/zvfCunWcV718udHmLOkayH18MtVAbjtIJZZgbSxZQmXyf/8zy+ls3Vo6LUqWpKHIvn1A2bLmGVWl1bJ7uVAhoFIl059PSIcmTYALF2iZ2by50tFYBpKXBVshJgbo3Jk5+9gxy7QFNjaGzBa24TWmXtSqBfz8M/DRR7wImTBB6YjSJyiIY1I+/JCLaEF5JCcLAt0tjx7lgrduXS60BEEQzI3k5GSISKwifvwR+Ptvrj+Mtk4LC6M1859/0iv322+B7NmNdHCF+Ppr4LvvgG++4ZwgU7NoEXD/Pmcig9c0Fy/GC8JBQWwyTk0QrlIlgzMMa9ViK/KwYWxF/uMPtiW7uxv3+VkQ3bsD8+dTuD14ENAcOsgfPnvGD063bkbd5Fi/ng44R4/K3oleSJIVrInHj+la0b8/UK6cSU8l1tL64evLOqBTp8zjOHzxInDvHju5JQeogBw5uJl0+DDtWXLnVjoi9SN5WbAVBg9mIt29m4sxW8QQUTjhv4J+dOxIR7ZvvmHVWpcuSkeUOnfu0AXH0xP46Sf5blcLkpMFW+fVK17Hv3wJNGwI5M2rdESCINgqkpOTISKxSoiMZPNoly4UFo3C9u1Anz58I+/YwYWCNZC0pbRWLZOd6s39R7CbOh3/NBiAJfPKvJ0hHBWVWBD+5JNMCsKpkS0bZ/C99x6fr6cnheK2bY14EsvB3p6O3y1bAjvar0Hb7Z8C9etTIC5WzKjnevWKewAdOrCTWNADSbKCNTF5Mu0ETNgtonPaOngQcHKiY4Gnp+zbpkb+/PGOw1WqGGWiQKq8ecPRg+XKGT29CJmhbl1W5+3bxw17IW0kLwu2wOLFdP5YvpzVRLaEPsKwXFQYj9GjOQqqVy9eHNStq3REyYmI4L6PoyP3g0x5sSQYhuRkwZYJD6dArNXSHcjVVemIBEGwZSQnJ8P6n6GF8O23wJMnLE7NNBERFIfbtaM98oUL1iMQ6+jenTvpw4YZbS7QmzfsGtXNEK5VC1juMRUREUCTgHE4fJii8Jw57CwND+dLu2YN8MUXFBKNKhAnpHVrtjTVrcu/a58+HGJsgzQvdBG+2U9g5LY6eDN9DrB/v0l28BcvTtRALgiCLXH1Kh0rxoyhMmkCbtzgfra/P2fVDxoEVK4se7np0bgxtftDh0x7nsBApllb0xtUj5MTN5YuXmSnlCAIts2uXXSZGjKEzh/WTkZmCwvGQ6PhGK/atbkmv3FD6YgSExvLroPr1+lCZsMOZIIgqIjHj4GAAI7WE4FYEARBlUgnsQoIDQVmzwa+/BIoXjyTBzt+nJa7YWHAypUUE61xcWhvzxft3XeBnTuBNm0MevibN7T1PH063jI6YYdw+fLAu+9cx+dnvsOd/pNw49t8phOA9SVfPmDrVmD1auCrr3iRtW5dqnOSrY64OGDhQmhGj8acwq1RPfI3rMo1FJ+ZYC7l48fA9OnAZ5/RTUzQE6nEEqyFUaOAggX5XWtkwsOBPXs4XkKspQ0ne3bWSx08yGIuUzgOR0YCR44ANWoAefIY//hCJqlalS34e/bQZcUar3ONheRlwZo5fx7o1ImOS7NnKx2NaTDUQlowPc7OwO+/Uyh+7z3OwM6VS+moyIgRHDP2xx8sqBfUheRkwRa5d4/X7blzcxHn5KR0RIIgCJKTU8D6n6EFMGkS8+SYMZk4yJs3wLhxQL16FBPPnQP69rXuBWOLFmzxGTkSiIlJ9W66DuFVq+I7hHPkoGVl//50PClfnnsLug7hixeBOY5jYO+eH8XmfaW8QKxDo+GM6b/+oqpQrx7/7m/eKB2ZablzB2jenF0CAwagavB6fPKJBhMmmKahesoUatLjxxv/2FaNLskachMEtXH4MDf/pk83qkVfbCyFxyVLgJAQWkv37CkCcUaoU4fOHfv2meb4Bw/y34YNTXN8IZPY2fGaICQEuHRJ6WjUjeRlwVoJDaVAV7o0sH49C4itBX06hQHpFlaSPHkoxIaGcvSBGtbiK1YA8+YBCxeykF5QH5KTBVvj339ZSOPuDjRoIAKxIAjqQXJyMqSTWGH++Qf4/nsKlBnuhrl8md3DZ89yduKYMbTxsHY0Gr5wXl70iP7ss7cdwrru4NOnk3cIe3nx5apRI40ZwoGBwObNwI8/cgay2ihVil6bM2eyymD3bnYVly2rdGTGZ+NGqvvZsgF+fm+9P6dMATZtAubO5UtgLK5fp8vsxImstxAMQCqxBEsnLg4YOpSJoksXox32xg06Yj55Anh7A40asRFFyBiOjnQq274duH0b8PAw3rEfPeK1Q9Om6kz/wn+ULs2bnx/wzju2cd2bESQvC9bIy5dA27asvtq5kxYTlox0C1smZcsCW7awaOmLL4Bly5T7G/n5AQMHcnbJoEHKxCCkj+RkwVbQarnZffEi9y6rVZMcJgiCupCcnAzrf4YqZ9Qobm4OHJiBB2u1VLOqVQOeP2eF1vjxNrNR9uYNcE5TDVdrd0P4kAloXOPF2w7hfv2ooeo6hI8cie8Q/uknWnunOkNYq+Ws48qVgU8+Mfvz0hsHB2DsWFqMv3jBJ750qdFmNCvOs2dA167Axx+za/z8+UTDIYsW5QiyuXPpYGMsdCNIv/7aeMe0GTQaw6qwZKEgqI3Nm4FTp/jFYoSLwOfPgV9/Bdau5R52//78OhOBOPNUrsyi9L17jZv29u3jmCxvb+MdUzARzZsDT59S1RdSRvKyYG3ExQE9enBRt2MHUKSI0hFlDEPnCstnU500bswRXytWAPPnKxPD339zdknz5srFIOiH5GTBFtBq2cB08SJQqZIIxIIgqBPJycmwDTVRpRw+zC6YDRsysGEcGso5bP/7Hwenzp2biuJpHSTtEA4KouNyVBRQTDMVl7EZX72Ziw9mT4KXF8fVZfjl2LGDqvLu3ZZhXVajBnDmDDB8OCuH//iDc4sLFlQ6sowTEMANoPBwdkh36ZLiF/KoUWwinzCBHfmZRddAvnq1dJBlCKnEEiyZ16/5pdKmDVt9M0FsLOt3Dh1ifv/gA46Gs4HrSrNhZwc0a0YB/u+/gYoVM3/MmzdpztK+vc3U21k2BQpw4+nAAVrDGNEe3mqQvCxYG+PGsXvz99/p+mEpSLew9dKrFy8ehg2jw0WbNuY794MHtF0vWpTuW3Lxom4kJwvWTmwsN9Xu3uU+ZYkSSkckCIKQMpKTkyFXkQqha1atUQPo1MnAB2/dynnDDg4UBFu3NkmMSpGWIGxnB5Qrx9eta1f8JwgXhfPkr9BuyVyg42eZE0ffvOGM42bN2O5lKbi4sIv4vfdYPODpSdX0gw+UjswwoqKAb77hPKWGDdn2XbRoqnfPlYt7RUOGsPM3MyKBVkud3dMT6N4948exaSTJCpbM4sWcf75nT6YOc/0667fEWtr0lCwJlCkD+PvT9TEze6NaLbuSCxdm0btgITRpwk6FQ4cs67rNXEheFqyJNWuA6dOBOXOAdu2UjiZtRBS2LaZPB65eZWHz4cMsYDI1r1/zc/DyJQusXV1Nf04hc0hOFqyZ6Gjg6FG6/NStCxQqpHREgiAIqSM5ORkiEivEr78CJ0/yel7v99mLF8BXX3FObtu2FAEtfGjqmzfsADp9Wl9BOJUO4dGjgVWr2FK6cmXGA1q1CrhyhZW4lsi77wIXLtBvu317VjYvXAjkyKF0ZOlz4QL/0Jcvc/Nn8GC9PhwDBgCLFlHb/+OPjJ9+xw6u6S2lgVyVSJIVLJVHj4Bp0+jMkcHZ7s+fU2T8+2+gWDHgo49oXS+YlmbNOAbw1CmgTp2MH+fCBeD+faBnT9mztyhy5OBG1KFDQK1aQO7cSkekLiQvC9bCwYNc3/TpAwwdqnQ0KSPCsO1iZ0drk4YNgfffZydd4cKmO59Wy8Lws2f52ShWzHTnEoyH5GTBWnn1itfir1/zezBPHqUjEgRBSBvJyckQkVgBoqKoab73ngGOlkePcj7ugwf01/30U4tbYOoE4aCgeFE4qSDs5aWHIJwSCVtKv/oqYy2lL15QZP7kE57cUsmblzZsa9Zw+PKBA1y0Zq2rdGQpExfH+UljxgDvvMOd/sqV9X64kxMwYwY78gMCOBrKUGJiKDL7+nKck5BBJMkKlsrkydxwmzDB4IcmtZZu356dqBaWoi2WfPmA6tX5+letmjHH4Tdv2I1crpzss1okPj68sNy3D+jYUelo1IXkZcEauHqVybV+feC779STYEUUFhLi4sKq41q1aDl96JDpxoFNmgT88gvnJNWqZZpzCMZHcrJgjYSH8/tOo+FmnLgaCIJgCUhOToaIxAqwfDnn3u3cqcedo6O5CJg5k76Vfn5AqVKmDjHT6CsId+nCTuFMzRDWoWspHTVKzxc3CXPmsBVs6tRMBqICNBp2ETdsSO/kBg1QqOcoOGICACelo4vn9m3OHg4IoMA/bRqQJYvBh+nYEfj2W9pFnzxp+Hf3Dz+wgfyXX2QfJ1NIkhUskStX2Io6darB7hxiLa0OGjViJ3BGHYcDA4GICBYKCRaIkxPQtCmwbRtQuzbg4aF0ROpB8rJg6Tx5wtFK+fIBv/0GODoqG48+wrAsJmyXggVpbVWvHtCtGwu3jf29un4994emTZPCKEtDcrJgbTx6BBw5wiKZ+vUzVq0rCIKgBJKTkyEisZl59owNS717AxUqpHPnS5e4uDh/nguBUaMyN3DPRCQUhHWisE4Q1miA8uXjBWFdh3D27CYIJGFL6YEDBrRpA7h3jyrj119b1+ZiyZK0oJo1CwXGT8Bx7EaWf9cB1csrHRmwYQPw+ee0ivT351zBDKLRAHPnAg0a0Cm8Sxf9H6trIO/WzTzjo6waSbKCJTJqFGcmffWV3g95/pyjiy9dEmtpNZA9Ox2HDx4EatYE3Nz0f2xkJEcN1KghzmgWTZUqbOnfuzeZ205kVAxuPo5EdEwcnBzsUDxPNmRzVt/1tEmQvCxYMtHRQIcOFIoDA5Wxk5duYcFQqlRh5XHbtrzGnD3beMc+epQ5rkcPWtMJloXkZMGauHcPOHGCubluXe7HCoJgcdjsWllycjJs4K9uftL6gM2YwTENkyalcQCtFli6lG2RxYpx06tGDfMEnw5JBWFdh/Dr12YWhFMjYUtpYKD+H+IJE1j1Zo2LLXt7YMwY/FOsBVy6dUPZrtWBe7OBQYOU2dB4+pTi8MaNwMcf871uhE2f+vW5Fh8zhvtJ+nbzzZ1rPQ3kiiNJVlAhaV70HjoEbN3Krgw9XAxiYpiSDx8Wa2m1UacOi9T8/Q1rrDlwgH+/hg1NFppgDuzs2Eb+88/ApUu4mscD6wNDEHD5AUKevERCmUcDoKibCxqXzY+u3kVRpkAOpaI2PZKXBZWh90aUVgt89hlw7Bi/2M3lpCWisGAM3nsPmDePBejvvMNZ2pnlxg2gXTs6ZqxcKe9BS0RysqAyMiwO3bjBzeDChWmnZW9v+mAFQTAaV8NeyFpZcnIyRCQ2Evp8wGoUzo/la4ti2LAcKFgwlQPdu8fq0D17KKTNmUPrDgXQCcI3twNtwYLVzdeSC8Iff6yQIJwSCVtKN21icOkRHAysXs2FXM6cpo9RIV6V90I9BOFmu5HI/+WXtML68Ud20JkLf3+gZ0+2727YoN/fxwBmzqRgs2QJMHRo+ve/d49vl6+/BooWNWoogiAoiH4XvfnQdf5MlKlRA+jcOd1jirW0unF0jHccvn1bP1OQR4+4v+Hrq9illmBMSpXC7WJlMWZTMA5H/wt7Ow1i45ILPloAt568xNrAW1hz/Cbql86L6R94wsNN3gSCYAoytBE1ezbXKWvX0rrXlIgwLJiCL78ELl/mSKwSJXiRklGePaPteq5cwO+/S8eeIAgZJlPikFZLK63gYBZvVasmuVEQLIjbT15izNYLOHztkayVhWSISJxJDPmA3Xp8C/l63MSVwnlx+0kKH7AtW4B+/XjRv2sX8O675nkSSLtDuDooEhctCszsoyJBODUStpS2b5/+Lv7IkVy4DRhgnvgU5BVccGfEYuTv9R5nFnt6AitWAB9+aNoTv37Nv8f8+bSVXrPGJLbe5coBffuyK7hXr/QtRydOZAP5qFFGD8U2kUosQWEMuug9fhNrag9E/Tz2mP7sdaoXvWItbTlUrkzXsxQch1Nk3z7WhtWqZZ74BNOy8VQIJtzIhZjYOABI8fOfEN3vj914DN/5BzGpTUV0rmllFWOSlwUFyfBGVNa78Bg1Chg3jvNgjI2IwoI50GiARYtYZdihAy9QypUz/Dhv3tAiJSyMx5DZGJaL5GRBQTItDmm1wJkz7CKuVInfZ5InBcFi2HgqBBN2BCPmv8++za+VJScnw/qfoQnZeCoEvvMP4tiNxwDS/4BBw9+fvMUP2MZTIfx5eDi7Kz/8kH6HFy6YVCCOieGY49WrgYED6Vjk6krht08fICAAKFOGXZmHD/MGAFOmcGRjvXoqFoh1zJzJVqKlS9O+X0AA8Oef9AG3pYrcFi34PmvcmIvOnj35PjQFf/3FIZHffcdubT8/k859njiR7/Hp09O+X3AwsGoV959y5TJZOLaFRhOfaPW5yaJCMCKG5uRY8P137Glc4pz8HzExzH9LlzKdtG9PRw0RiNWLRgM0bw7cucPCt7S4eZMNPk2bAg5SMmnxLAm4ilG/X0BUrPbtZ1tfYuO0iIqJw6jfL2BJwFUTRagQkpcFhTA4J+s2oq4/gu9ZYGPvb9KZz2QgWm38LTU0msQ3QcgsDg7A5s20ZG3dmhYmhqDVAl98wdkYv/9O62rBcpGcLChEhnPyf+LQxsCbnLn0778chVi+vLw/BcGCeLtWjolLX7tKgtWulSUnJ0O2xTLIkoCrmLv3SoYeGxunRWycFqN+v4BHF69g0OS+XDD8+CN3oI34xouJie8QPn06+QzhcuXYGdy5M3N9ih3CZ4wWjvlI2lKa0szbuDjOLvb2Nn0nrRrJkwf49VfO7/viC+DgQf53/frGOX5sLEXhsWP59zh9mhWHJqZAAWDECP7pBw5kk3hKjBwJFC9uEw3k5kMqsQSFMFpOjojCoMZlcO0araWfPmUhVcOGYi1tKZQowT3UffuAsmVTFoC1WnYbFy4MVKxo/hgF47LxVEiGP/9Jmbv3CvJld0Yna6mSlrwsKECmcrIWiLV3wqh8dfDowDUMalwmY0FIt7CgFnLmZFG6tzfwwQe8QNH3onL+fLp+rV7NOSeCZSM5WVAAo6yTtwXjUeEYDOpQF6nPThQEQY3IWjkVJCcnQ0TiDJDWB0wb8wbPDq9DZHAA4l5HwDFfceRq8AmylqiW4v3nXolCvurvotOcYUDJkpmKyyiCsDUxcSLnWE2fztnOSdm4kS/S4cO2u0Gg0bAwoUEDoHt3KiEjR7JyPzOd1bdu8biHDgHDhrEN3YwKy5AhwLJl1KfXr0/+e10D+aZNttVAbnIkyQoKYNScvPcKbv7jjBwPiqJ4caBTJ+kctkR8fZkDTp0C6tRJ/vsLF4D791lDZqvp31q4/eQlJuwITvF30Q9v4fmRDYgOvYbYyGfQODrDMY8HXL3bw6WMd6rHHL8jGD6l8lrH3CXJy4KZMUpO/u+L2aCNKBGFBTVTvDiwbRtdvPr0YWF2eu/FHTu4jh45khcsguUjOVkwM0ZdJ991QL47b9BJNGJBsBjSWitH3b+CyAv+eB1yATHPw2CX1RXOhcoiV4NP4OhWONVjWs1aWXJyMqz/GRqZtD5gAPDoz/kIP7UN2So0Qm7fftDY2eHBrxPx+nZqj9FifIX3cTuXu0Fx6Cyjf/wRGDSInU45cgBVqgC9e8dbRs+YQZ0uPJwC8tq1wNdfW4hldGbRtZQuWkRfyYToZuS2a8cXw9YpUYI2VtOnA99+yzdUel6dKaHVAuvWcTDkjRvA/v3A7Nlmb8HLlg2YPBnYsIEFEwnRNZDXqkWnbcGIGGLVYWhCFoQUMH5OBraGBKNui5fo3l0EYkslXz6genVe/7x8mfh3b94A/v50SStqBQWwts6YrRfezlVKSmz4A8RFv0I2z6bI7dsXOX06AQAebpmCF+d2p3rMmDgtxmy9YJJ4zY7kZcGMmCInj98RjNtPXqb8S30spAGxkBbUQZ06wE8/ca08dWra9z17Fvj4Y3YepzdDSbAcJCcLZsTsOVkQBNWR1lo5/MRveHn5GLIUq4Lcvv2QvUoLvL59Efd//ArRD2+mekyrWStLTk6G9T9DI5PWByzq3mW8vHQIuRr2QO4mnyJH1ZYo8PF0OLjmx7MDP6ZyRE26H7CkgnCdOokF4f37EwvCz58nFoTr17cBQTg1hg4F3NyAb75J/POlSzm0cOZMZeJSI/b2wKhRQGAgRXQvLwrscXH6Pf7JE7apf/IJ8P77fNMqaIvVsydQoQIF4YR7R5s2sYF87lzZKzI6kmQFM2P8nAzAToufgi/I94OF07gx09ehQ4l/fuIEEBHBbmPBsrka9gKHrz1Kda5S1lI1UaDTZOSq1wU5qraEa822KNBlOhzzl0D4yW2pHjc2TovD1x7h2oMXJorcjEheFsyIKXJyonVyQlFYZgsLlkinTqxkHj+ei9KUuHuXa+kKFbihI9/L1oPkZMGMmDwnC4KgatJbK+eo+QEKf74abs36I0eVFshVtzPcu86CNi4W4Sd+S/W4VrNWlpycDOt/hkYkvQ/Yy8tHAY0dclRt+fZnGgcnZK/SDFF3/0FM+MMUH5fwA5aSIOzqGi8I+/sDpUunLQjnyGGKZ2+hJGwpDQriz548YfVuv34cWCgkplo1vlb9+gFffQW0bMnFalrs28fu4b17aeO9bh2QK5dZwk0NBwc2MR84AOzaxZ9FRbGBvG1b441eFhIgSVYwI+bIyYLlki0bjUJOnWLaB4DISODIEaBmTdaPCZbN+sAQ2NsZJgBp7OzhkCMv4qIi0ryfvZ0G606EZCY8dSB5WTATJs/JYWnkZBGFBUti7FigWzeOZjp+PPHvIiMpEGs0tJt2sXArRyExkpMFMyHrZEEQ0lsrZylSHhp7x0Q/c3QrDKe8RfHm0e00j20Va2XJycmw/mdoRNL7gEWH3YCjW2HYOSe+mHcq+M7b36eGRqtBm6EhKQrC06fHC8KXLokgbDC9eiVuKZ0+ne3ZEyYoHZl6yZoVWLiQom9wMODpCWzenPx+r17xzdisGYdeX7jACmmV0KoVu8lGjOCffMkS4PZtaSA3GWZKskuXLkXx4sWRJUsWeHt74+TJk2ne/9dff0W5cuWQJUsWeHp6YpeuauA/tFotxo8fj4IFCyJr1qzw9fXF1atXMxSbYD5MmZOt4qJXQO3adFLZt4//f+AAv3YaNFA0LMFIBFx+kOrmV0Liol8j9uVzvHl6H+Ent+HVjSBkKVYlzcfExmkRcOWBsUJVDjPkZWPnZMEyMXlODryV+IciCguWikYD/PADK9bato0fixUbC3TtCly9CvzxB1BQBn9aHSrakJ42bRp8fHzg4uKCXHoW98ua2XKQdbIgCPqulROi1WoR+/IZ7Fxc07yfVayVVbh/vWbNGmg0mkS3LFmyZPQZGoyIxAaQ3gcsNuIJ7LPnTvZz++xub3+fGlqNFnEFHoggbAp0LaUBAcDq1cDixVQNCxRQOjL106wZhV9fX4q/n3zCNycAnDsH1KgBLF8OLFhAQblIESWjTYZGA8yZw277pUvZQN63L/VswQSYIclu2rQJQ4YMwYQJE3DmzBlUqVIFLVq0wIMHKV+gHDt2DB9//DF69+6Ns2fPol27dmjXrh0uXrz49j6zZ8/GokWLsHz5cgQGBiJbtmxo0aIFXr9+neGXQjA9pszJVnHRK8DREWjShNdT58/TJKN+fWnMsQYiomIQoudMtKf7f8CdRV1xb0VfPA1YDZd36sCt+YB0Hxfy+CUio2IyG6qymDgvmyInC5aJ6XPyQxGGBevB2RnYupUbPO+9x/X1qFHAzp105aqSdiGTYKGoSCSOjo5Gx44dMWBA+tdDOmTNbDnIOlkQbBtD1soJiQw+gNgXj5GtXPrWmxa/Vlbh/jUAuLq64v79+29vt27dSvW+xsbBbGeycPT5gGljooEkrfoAbTve/j4Nohxfou+AGGRzlj+L0WnVivNxhwyhx+SQIUpHZDm4uXFm0vvv0wP90CFaUP/4I1CxInfdK1ZUOspU8fICunThWGqtFpg4UemIrBhDE2cGkuy8efPQt29f9OrVCwCwfPly/Pnnn1i9ejVGjRqV7P4LFy5Ey5YtMXz4cADAlClT4OfnhyVLlmD58uXQarVYsGABxo4di7Zt2wIAfv75ZxQoUADbtm1D586dDY5RMD3myMm6i17JyZZN5cqcQ/y//3F8R61aSkckGINbjyOhb120a822cClXD7EvHuPlP0eg1cYBsW/SfZwWwM3HkahYKGemYlUUE+dlY+dkwTKRnCwIGSBvXuDPP2l74uPDquYFC4DWrZWOTDAVZlgr68ukSZMAsGtJH2TNbDlIThYEM6PVqu5269FrvdfKOt48vo0nfsvgXLgcsnk2Tf9pw8LXyircvwYAjUYDd3d3g89lDOQbXU/02YzSODiluOmkS7C6hJsaFv8BUzMaDW2nDxwA2rXjsEJBfzQadhGXKMGF68qVgLc3u4dd07ahUAOffcax1I0bSwO5GgkPD0/0/87OznB2dk52v+joaAQFBWH06NFvf2ZnZwdfX18cTzrT6z+OHz+OIUmKQlq0aIFt27YBAP7991+EhobC19f37e9z5swJb29vHD9+XBa8KkVysqAvGg2F4r17+a+DXPlaBdExcXrf1zGPBxzzeAAAsns2RdjGcXjw22S4d58HTTodiYacx5rQJy+bIicLlonkZEHIIOXKsZJ5xAgWXX/xhdIRCSpE37WyKZE1s+Vgtpy85yAq5rBTXAwz2g1QPgalbk9LAFgAfPUV4HpN+Xgs6T2gUqILvgP0mKf3/WMjnuLBr5Ng55wNeduNhsbOXr/z2OBa2ZT71wAQERGBYsWKIS4uDtWrV8f06dNR0UyNebJVpif6vPHts7sh9sXjZD/XWXXorDsyex4hA2i17HzNmRPw8wMiI0UoNgStlt7ngwYBuXMDH39M6+4GDYD161XdSQzQETtbNuDkSSAsTIRiU6GFBlrobwGou6+Hh0ein0+YMAETU2j5fvToEWJjY1EgyR+wQIEC+Oeff1I8R2hoaIr3Dw0Nfft73c9Su4+gPiQnC/qi1dJqOksW4MoVTlEQodjycXLIeHeNS7m6eLJ7CWKe3IVjnrTHZGTmPGrAlHnZFDlZsEwkJwtCBrl0CZg2DahQAQgO5lisr75SOirBRJh6rWxKZM1sOZgtJ3/2OXD/iuEBmoOE4yn0vWX0cdZw02Fnx3lNSsej5OugdAxGujm9iAOOvdLr4xL3OhJhmycg7nUkCnSbBYccefT+qFnyWlmN+9dly5bF6tWrUblyZTx//hxz586Fj48PgoODUcQM4z1lm0xP9HnjO+UvifBb5xEX9RJ2zvED76LvMXE6FSiZ7jF+3WiHF7WBatVkBrFR2bWLXcSrVgEDBgDz5gHjxikdlWXw+DFbcX/7jd3EixdTbP/sM6BbN/o5z5wJfPmlSS2RMsrp0+wiXrAAmDSJdtPLlikdlXUSF8ebIfcHgNu3b8M1QUe6uSujBcvDXDnZki96BXL+PBAaCnzwAbBtG4uFfHyUjkrILMXzZIMGMNhGCwC0b6IAAHFRkWneT/PfeSwZycuCOZCcLAgZ4NEjziMuUgQ4ehSYOpUjsUqV4s8Fq8PUOXnUqFGYNWtWmse8dOkSypUrp38QgsVhtpz8+29A3qyKi2EpCn2CYZwB4AVg/nygutLBCMageFQMNMf2pLtW1sZE48FvkxHz9C4KdJ4Kp7xF9T6Hpa+V1bhOrlOnDurUqfP2/318fFC+fHmsWLECU6ZMMdp5UkNEYj3RZzPKpVxdhJ/8HS/O7UZO7/YAAG3MG0Rc8INTobJwcM2X9km0wMJp2TAjnLntnXeAGjWowXl5iXCcYWJiaOHUuDEtp//+G5g9G+jXT1pK02PvXqBnT+D1a2DzZqBjx/jfVa1KBXb0aGDwYOCPP4A1a7jQVQlaLTB8OIuzBw7kW2HkSBZoy9rI+GQ0ybq6uiZKsqmRN29e2NvbIywsLNHPw8LCUp3Z4O7unub9df+GhYWhYMGCie5TtWpVfZ+KYGbMkZMt/aJXAN68AfbvB8qXp9X07dvA4cNMXy4u6T5cUDHZnB1Q1M0Ft9KYuRYb+Qz22XIl+pk2NgaRF/dD4+AMx3QWwUXzuFj8rDVT5mVT5GTBMjFLTtZqUXzFQqBlM6BmTbGEECybqChWr0VEAP7+LMCeORO4dg3o3JmicZUqSkcpGBlTr5WHDh2Knj17pnmfkiXTF/9SQtbMloPZ1snVygMWfp0sCNaKPmtlbVwsHm6bhah7/yB/h7FwLlzeoHNY+lpZjfvXSXF0dES1atVw7do1/QPNBFKOqye6D1haOBcqC5dy9fDs4E94GrAaL87tRtgvYxDz/AFyN+qV7jmK5XXB88cOOH+eTr7NmgE3bnBMTcOGXDuUL8/mzfnzgUOHgBcvjPUMrZgff6QwPGcO1fcxY7ixMGmS0pGpl1ev2BncogVQqRJw4UJigVhHlix8M/r5Af/8A3h6Ahs3mj/eVNA1kM+ezT/5oEGAhweQynx4IZPokqwhN0NwcnKCl5cX/P39E5wzDv7+/omqrRJSp06dRPcHAD8/v7f3L1GiBNzd3RPdJzw8HIGBgakeU1Aec+RkS7/oFYATJ7j/qhuf1qgRv3cOHVI0LMFINC6bH/Z2qXcMPN69BGG/jMGzIxvw4q89eHZ0I+6tHoTosOvI1aAb7JyypvpYezsNGr+T3xRhmxVT5mVT5GTBMjFLTn7zAtkWL6AVRL58XJf88AOrfwTBktBqgT59gFOngO3bgeLF+XN7e2DdOqBsWXYS37+vaJiC8TH1WjlfvnwoV65cmjcnp7RnzaaGrJktB1knC4IApL9Wfrp/FV5dC0TWkl6IfRWBiIsBiW5pYQ1rZTXuXyclNjYWFy5cSFScZUrkW90AGpfNj7WBtxAbl3pNVt73huDZoXWIvBiA2NcRcMpfHPk/HI8sRSuleWzdB8zBgTqbpycbOAF2P166BAQFxd+2bGFzp0bDdYSu21g6jpMQGQmMHw906cIXBwDc3ICxY9lS+uWX0lKalDNnWInw77/AokVswU3PRtrXl56en3/OecU7dwJLlwK5cpkl5JTQNZA3agS0asWfOTsD06fz7XD4MFC/vmLhWSUZrcQyhCFDhqBHjx6oUaMGatWqhQULFiAyMhK9enEx0717dxQuXBgzZswAAHz11Vdo2LAhvv32W7Ru3RobN27E6dOnsXLlSgCARqPB119/jalTp6JMmTIoUaIExo0bh0KFCqFdu3aGByiYDXPkZMFyiYgAjhxhw5nbf2O1smUD6tVj8VDNmkAe/cftCCqkq3dRrDl+M9XfZytfHxHn/fDi7C7EvXoBO6escHIvjdyNesGljHeax46N06Jbbf3tttSKqfOysXOyYLmYPCc3rAzMfkhhbfduYM8eoH9/vmkrVGBha4sWQIMGQNbUC0AEQXGmTqUYvHEjULt24t9lywbs2AF4ewNt2gAHD4r1iRVhjrWyvoSEhODJkycICQlBbGwszp07BwAoXbo0smfPDgAoV64cZsyYgQ8++EDWzBaGrJMFQUhvrRwddgMA8OraSby6djLZ77NXapzqY61hrazG/evJkyejdu3aKF26NJ49e4Y5c+bg1q1b6NOnj+EnzwAiEhtAeh8wANA4OCF3k0+Ru8mnBh07rQ+YPsLx6dMiHKfIt98CT54A06Yl/vnAgZytO3o0sHWrMrGpjdhYttyOH883W1AQN130xc0N+OUX4P33+foePgz89BNtvhVgzRo2kP/8c+LRJJ068W0xbBi7zGRsifEwR5Lt1KkTHj58iPHjxyM0NBRVq1bF7t27UeA/6/iQkBDYJShq8PHxwYYNGzB27FiMGTMGZcqUwbZt21CpUvziZ8SIEYiMjES/fv3w7Nkz1KtXD7t370aWLFkMD1AwGybPyd6WfdFr6xw4wPqmhg0T/7x2bV4z+fsDH32kSGiCkSjz7B7qO0XiWLQLYpE8mWer0BDZKjRM4ZFpY2+ngU/JPCid3/IvnE2dl02RkwXLxCzrZHt7fonXrg1MnMg1nr8/BeNff6W7UZYsFIp1onGFCnKxL6iHjRu51p48mYvSlChcmAXX9eoBn3zC93Z6BduCRaAmkXj8+PH46aef3v5/tWrVAAABAQFo1KgRAODy5ct4/vz52/vImtlyUGrvWhAE9VCmQA7UL50Xx248TrFgxL3rzAwd11rWymrcv3769Cn69u2L0NBQ5M6dG15eXjh27BgqGKLNZAKNVqtNb4611RAeHo6cOXPi+fPnevmHp8QnqwJT/YBlFPu4WPh4uGLtoEaZOk5C4fj0af577lzKwnGNGhSO/ysSTJszZ/igoCCgugVNsQ8LA0qVAgYMoNV0UjZsALp2pe+kDbSUpvln/PdfoHt3zj8aNYobLxm0IgIAhIQAPXqw+nnoUFZMG3GYe3pERgJlylCfXr8++e8DAoAmTYBNm0woEpjxc2OM7zZjnP/OHcPOHx4ejiJFlItbUBbV5mRo4aMJx9oyUUDr1kB+y6+Uvn8fWLkS6NcPMJNTjaI8fAgsW8axHSk5+Zw/z/qwXr2Aorayx3HvHrBiBTvvChVSOprM8eQJ8L//AVeu4LZHGfjeckNUjPG+A5wd7LBvcEN4pGPVlxpK5+SEMUheFvRFtTn5v42otb3T7v6HVsuFsK7L+NAhLoKLFIkXjH19gdy5jRabxWOpa3xL5fhxLk47dkxexZwSO3YA7drRGmtmxjZyVUvCLUgTF3FIThYsEYvPyYJFIZcD1svtJy/hO/8gomKMV3Vk6WtlycmpIyWJBjL9A084pOHpnhEc4mIxffqnnJ2bCc1e13HcsyewZAnXIS9ecDN01SqgaVPg+nWO5G3QAHB1jZ9xvGABGz8jIoz2tJRHJ3SOGZPy7zt3ZiYcPjxTr7tFo9Wy5bZKFeDOHW6oTJ+eOYEY4K67vz87kxctAmrV4lxjMzFvHvD4cfIGch2NG1P7GT0aiIoyW1hWj6lnOghCUkySkx3sMb1jVSbQZcu44fz6tVHPIZiWffuAnDlpKZ0Snp4Uy/futd30b5G8ecMqr6VLWQjYqRM8enfFpDbG7UKd3KZihhe9akPysmBOTJKT7TSY/oFn+nfUaNg1PGQIReInT5i/O3bkovijj4C8eVk5NHEifxYba9RYBSFV/v0XaNuWFyY//KCfMNqmDTB3LjBrFveJBItHcrJgToydk7VawA565mRBEFSBh5sLJrWpaNRjWstaWXJyckQkNhCTfcBaNAQ+/RTo0IEtMEZCJxz36pW2cDx6dOrC8cuXRgvHfPzzD/D995w9nFrFuJ0dO4wDA4HffjNvfGrg0SPgww/55ujQAfjrL9paGQs7O3o6nzrFb9MaNajemvibNSyM2vQXXwDFi6d+v9mzgZs3geXLTRqOTSFJVjA3JsvJ1SpwxnqTJrTmWLKEiVMURdXz77/AlStsGHNIZaiKRgM0bw7cvQsEB5s3PiGDXL5McfjwYYo8gwa9tZHtXLMohjV/xyinGd68LDrVtJ72csnLgjlR1UZU1qzsHp43j1/0ISF0UyhSBFi4EPDxAfLlo3i8ahWLZQXBFDx/Drz3Hmd/bd1qmLvW4MF0AOnXj0VSgkUjOVkwJ8bOyRoNELarIvy2Wb44JAi2hKyVU0ZycnJkJnEG6FyzKB5FRGHu3iuZPtbw5mXRqX5poP6PnOXarx9V3dWrgVatjBBtchLOOP5vVjZiYji/VTfjOCgofsZxdQBBoN6at3n8jGO9rKqVYtQowMODs3HTImFLadu2me+gtRR27+YfPzqaAnmHDqY7V+XKFIq/+YbW03/8wVnFHh4mOd3EiXyPp9ZArqNCBaB3b46E6tEDyJXLJOHYFFqtYYlT9DbBGBg9J+sueh0cOIrA05NdSVu2MDm2agX8N0NEUBdaLbuDixThd3xaFC/OMRz79gHlyqUuKAsKk8BaGqVKsYoxb95kdxvUuAzyZnfG+O3BiIrWQmOvf4Kxt9PAwU6DyW0qWs2iV4fkZcHcGDcnv2O8z6SHB9CnD28xMVyb7NnDW79+/KBUqEBhuWVL5v+sWY1zbsF2iYlhIcK9e6zWTyF/pYlGAyxeDNy4wfX6iRPAO8bZ6BXMj+RkwdwYMycP9S2LS8+LondvjjIaM8bkbvGCIBgJ3Vp5wo5gxMRpDbKht9a1suTk5EgncQYZ1LgMZrb3hLODHewNtPDQQANnBzvMau+JgY1Lx/+ifXta8larRuHy88/N1sbr4EAtL2nH8V9/ARMm8D637yTuOK5QAfjkExVaVR8+DGzfTttkfSp1Z81i69GyZaaPTQ3Mmgm8+y4tpi9cMK1ArCNLFuDbb2lBffUqRZcNG4x+moQN5G5u6d9/0iQWQljbmCelkEosQSlMkpN15MoFdOrEue0vXtB+QCyoVcn580BoKLuE9dm08PUFwsOBkydNH5tgIClYS+OTT9LcYO9csyiKXmwIzcM8AJDud4Hu9z4l82Df4IZWtejVIXlZUILM5GR7uwQ5uVFp0+zIODgktp1++BDYtAmoXRvYvJlCsZsbxeL581lJbQs7Q4Jx0WqBL78E9u9nUXa5chk7jqMj35fu7twjevzYuHEKZkNysqAExsrJXzQtjaVLgSlTuN82aJBMbRAES6JzzaLYN7ghfErKWhmQnJwSIhJngox+wKJu5cGGrql8wAoWBHbtolL7448UjE+dMnrs+qATjtu04f//tCZeOF61ii6c166pTDjWamlxXKMGNxT1oWJFWn1PmQI8e2bS8BTl0t/8d9t2ViT/739AoULmjaFJE+7it2oFdO0KfPwx8PSp0Q6vayAfNEi/+xcsyLfLggV0oRMEwXLJaE4uqMmDJa30uOgtVSqxBfXixWJBrSLevGEdUoUK+htV5M1Ld5RDhyx0tIa1koa1dFr4+QH+213w7Xve8Pu6AT7xLoZieVyQ9FEaAMXyuOAT72LYN7gB1vb2toq5SoKgJjK9EVUjwRe5qfOsm1u87fTt28DFi8C0aTzv6NFcKxYrxi7kX3816tpFsGIWLWIR+rJlnPGVGXLlohvXs2dsLIiKMkaEgiDYCMYShzQaCsTff8+66Y8+krppQbAkPNxcsLa3rJWFlBFzvUyi+4BdDXuB9YEhCLjyACGPXyLhUlYDoGgeFzR+Jz/aVCiK5rVzYEV2YOXKVA6q0dAmuWlT2ur5+ADjx3ORqrAfok441nUdA8mtqk+fZrHs69d8KuXKcRNWdzOpVfWvv7IlKCCAM3H1ZdIkdrbOnGl9baUxMeyWnrAdwEk+zw4llIsnd27G8P77wIABfDP99BOFl0ygayBfv96wUU/DhvECd+xY4OefMxWCzWNodZUtVGIJ5sXQnNytdlEEBeRAcCDQqAabNdJEZ0FduTK7ibdsYdJr3VosqBXm+HEgMtLwfdhGjaj1HzxIkw1BQRJaS5cunaq1dErExjKf163L/XONJgcmtqmIiaiIyKgY3HwcieiYODg52KF4nmzI5mwbSyDJy4KSZCQnl86fI/6XCcVhrdY8vpYaDUXhihWBIUNYQXToULw19apVXGN6e7PjuEULoGZNwN7e9LEJlsMff3Ce8PDhLC4wBiVLAtu2cc3cvz8bCsTr1aKQnCwoSaZzcgL69OHSt1MnpsHt22V8myBYEmUKyFpZcnJyrP+vbiYM+YCNG8c151dfcf2ZKuXKAceOcWjqxIncOFu7lt1MKiIl4fjNG+DSpXjROCgodeG4Rg2galUjCMdRURTS33uPu76GUKgQ5+XOns1OsaJWYqNw4wZbu0+cAHouAlYDKKGgQJyQjz8G6tXjQOCmTbmQnj6d1tQGomsg9/ICOnc27LE5crBG4PPPGUK1agafXvgPSbKCWjAkJ+f2Bb77DggM5FeSXuTMyVXx9et0/1i+nBvGjRpl6DtMyBwREcDRo0CtWvqNGkhItmzU/QMC+Pg8eUwTo5AGb96w0uvoUf5BOnfmhaIBm98//0yx/8SJ5A/L5uyAioVyGjloy0DysqAGMrwRpdEoIxQnxMWFttMtW/L/Q0KAvXspGM+fzzV67tycX9CyJecdFCli3hgFdfHXX8xjbdsav/i8bl2Kw127cjbxmDHGPb5gUiQnC2rAWOLQ++/Txem997iW2r0bKFzYxMELgmB0bHWtLDk5OSISm4D0PmADBtB9aNQoYOfOdA7m5ARMnUp73k8+4RzZBQuA3r1VXTnq6Ji6cKwTjVMTjmvU4L8GC8fLlwM3b+rxoqbC8OHAihVU8X/6KWPHUAtaLReQX30F5MvHCvisdSkSqwkPD2DfPr6nR4+mV+T69XzjGICugXz/fsMayHX06cMQRozgvo+KP1qqRpKsoEbSy8l58jDvHDnCIpFs2Qw4eKlSTOrHj7MV9cIFllN7esoXiRk5cIDf/Q0aZOzx3t68Ntm3T/9JFYIR0GppLf2//3GeSd263GVycjLoMJGRwDff8G/n7W2iWC0UycuC2jB4I0oNQnFCihblwqFPH7o1nTwZ32Xcty8/RBUrxncZN2ggxWO2xP37VEzKlgXWrcvYwjQ9unSh48Y33wBlygAdOxr/HIJJkJwsqI3MikN16nAN3bIl/3vPHqB8eSMGKAiCYCIkJydHZhIrgJMTMGMGXYgOHNDzQT4+wLlz3AHr2xf44APg4UMTRml8dMLxp59y1NyJE0B4OIttf/gBaNwYuHqV4nn9+vEzjrt3BxYu5MVHqjOOnz1jx3Xv3nxQRtC1lK5dy9faUnn4kF6LvXtzSMhff3HjVa3Y2bG1/vRpbvrUrAnMnav3N3B0NPXl1q35HsoIDg505N63jyKxkDF0SdaQmyCogYYN+e/Bgxl4sM6C+osvOLNwyxYW6YSFGTVGIWUePgTOnOE+fNasGTuGoyPdG//5B7h1y7jxCanw5AmLwn75hZbSujErBgrEAPDtt8Djx7y2FhIjeVmwCpKKwqaeUawvDg5co0+axIXtw4fApk2sVtm0iSJx7tzcPV+wgNXSaoldMD4vXwJt2vBvvHOngVWHBjJhAl25unenFY5gEUhOFqyR8uVpgJkrF7cdjx1TOiJBEIT0kZycHBGJFaJjR9oaDh9uwBstRw7OQdq6lZZ8lSoBf/5p0jhNTWrC8blz8cLxlSuJheOKFVMQjmfMYEvypEmZC6h3b1o3jRhhjKdnfnbtYgfb4cPA77/z/ZIj5TkiqsPTEzh1CvjyS77+TZvqtVu/bBkbyGfNytzp27The2z4cM42FAxHkqxgqbi48PN/+jTw6FEGD5IzJwtzundna+Py5eyQfP3aqLEKifHz46ZEzZqZO46nJ1CwIAuFZA/fhERH0/Zj6VLgwQNacnbrlmGf7/v3OSnkyy/VM01DTUheFqwGS3DncHPjdcCqVcDt23QXmTqVH6xRo1jIXKwYC75/+w14+lTpiAVjERdH17dLlygQFypk2vNpNMDq1UD16rS1lgo3i0BysmCtFC5M80JPT05fyKi5oyAIgrmQnJwcEYkVQqNhs+Tp0yw0Noh27bjo9PKindFnn3FD2kpwdKSrdmrCcaNGFI5HjuSmfsUcIYiasxBbSw/Dws0F0+441ufks2Zx13nPHiM+KxPz8iWH6rZuzcXihQvsNrc0nJ2BOXO4gXz9OisI1q1Ldcde10D+6afpzPfWA42Gp75wgbMNBcORJCtYMt7eLETaty+TB9JZUDdtyhbXxYvp6CDKo9G5cYMOJE2bsqErM2g0HCV57x5w8aJx4hMSoNWyVXvpUlb4+fgAgwax/SAT4s/48bx0kLGMKSN5WbAqEn5XqD2najQs6B46lNVHT56wcKxDB34HduxIFwVdJ3JgoFSpWjJjxrCQ/5dfOLvEHGTJAmzbxkrH997jhomgaiQnC9ZMrlzcQm3VilvWP/ygdESCIAipIzk5OSISK0j9+iz8HDMGiIoy8MHu7uwi/u47KlrVqnEmkpWSknD84gWFY/86YxGVJRcWOQ57KxznzJm841hvHb1NG6BePXazWsJi/dQp/v3XrOGL8+efbIeyZBo1As6fB95/n1XZnTtzcyUJM2eySW/yZOOc1tubDQDjxlF3FwxDkqxgyTg4sPL58mW6E2T6YPXqUQQrVozODmJBbVTi4rjvXqRIxqdMJKV4cY4R9PfnqEnBSDx+bDRr6YRcuMBGqgkT6OgqJEfysmDVqF0oToiLC22n589nt+mtW3QcKVSIP6tdG8ifn6OlVq8G7t5VOmJBX1avZpH53Llcu5qTfPk4wywkhOtluXhRNZKTBWsnSxY2QQ0YQNOMqVMtK1ULgmA7SE5OjojECjNzJt2oli7NwIM1Gmbfs2epiuoqkW1kceDoCFSJO4vSJ9bBdd5EBJzO8VY4/v576oyXL8d3HCe1qj56NBXhWNfmff485xOrlZgYYMoU/t1dXfk++Pxzy7Bj04dcudhFvHEjlYDKlRO1+IWEcLzXsGHG1cSnT6cD5oIFxjumraDVGpZgZcEgqI2KFWmXZTTLYbGgNhnnz1Nzb97cuGnP15fNODLizwgY2Vo6KSNGACVL0lBHSBnJy4LVodb5xIZStGi87fSjR1yYDhrEKrU+fVgBVakSFzp+fnLdoFYCAoD+/XkbPFiZGCpU4Pto717lYhD0QnKyYAvY29NIa9o0Nl98/rll9N4IgmBbSE5OjojEClOuXHyFVYbHEpUtCxw7xpbkyZPZvXT1qlHjVCVaLXcIy5blYhrJO44DA5FIOG7YMF44rlcvsXC8aFEC4VjXUjp2rDpbSq9fBxo0ACZOBEaP5t+/bFmlozINnTqxXahcOaBZM+Drr4FXrzBuHPWXYcOMe7pSpXghO3Mm8PChcY9t7UgllmDp6CyH79/n147REAtqo/LmDbXHChUADw/jHjtvXqBGDeDwYXWmf4sgqbV03bpGsZZOyN69wO7dbN7KZEOyVSN5WbBKrEUo1uHgkNh2+uFDFsnWqkUHhubNOe/43XdZxXrpkuU/Z2vg8mXahzduzOs6JQu1mzVjzl2yhDdBlUhOFmwFjYbb06tWcR+2Y0epdRIEQV1ITk6OiMQqYMIENltMn56Jgzg6UiA+coTVyFWrAitXWvcCcs8edpbOmpXmMMKEwvF33yUWjleujBeOR4xILBwPi56O2NAHuDlkoXpGPmu1HO5RpQq7co4c4d/d0VHpyExLkSLcEZ4/H1i+HK8q1cD5n89h0iQgRw7jn27cOMDOzng21raCJFnBGihalFqWvz/FSKORmgV1aKgRT2IbHD/Ogi5fX9Mcv2FD/nvwoGmOb9UktJbOl89o1tIJiY1lgVi9esAHHxjtsFaJ5GXBarE2oTghefLE207fucOqtSlT+OU3ahQrpIoXZ6X5li3As2dKR2x7PH4MtG7NEWCbN6tjLd6/PzBkCPDVV8CuXUpHI6SA5GTB1vj0U2D7dhZ2Nm+eicYoQRAEIyM5OTkiEqsAd3cKlIsWGWEOYp06VD+7dOFCoW1bionWRmwsX7T69TM0+0cnHPfunVg4Pns2Xjg+fK8UvsPncFsxAyVzPETFikCPHkk6js3JgwdAu3bcEPj4Y/6d69QxcxAKYmcHfP01tKdO494DRwSiFvo+nW0S75o8eVj5uHw5cOWK0Q9vtUiSFayFpk2BiAgTWQ7rLKh79GAiWbFCLKgNICKC9VG1apluDm22bBQgT5/mPrCgB9HRrKxYupRdcB9/DHTtajRr6YT89BM1k7lzrWfChqmQvCxYNbbwBaDR0HZ66FAWzD55QgHwgw+YDD/8kBYYdeuyujUwUHw9TU1UFF//5885DzhXLqUjimf2bOC99zjewaiWOIIxkJws2CKtW9MBKjiY27d37igdkSAIguTklBCRWCUMHUoXqW++McLBsmenp8f27cCJE1xY7txphAOriJ9/NvoOoaMjG7ATCsef3R6LbNk12N94Cho2pHtiwo7jSpXMJBz/+Sfg6Ulb6W3b+PfNnt1EJ1M3e+9VQoWIQNz6YDDsvxkFNGlihOqK5HzxBWcdjxlj9EMLgqBy8uSJtxw22fd6yZJiQZ0BAgI466pBA9Oep3ZtOlXs22fa81g8Wi2tT5cu5YVQvXrsHi5XziQCTkQEJ4F07szJIIIg2DgJv2dsIX+6uCS2nb55E1i2jFXn8+YxeeXPz07kH38E7t5VOmLrQqsF+vUDTp7kXkvJkkpHlBh7e7p5lCpFsVjcagRBUAG1a3OZEBHB6Qp//610RIIgCEJSRCRWCdmysfh3wwYgKMhIB23ThkJqrVr87379mJUtnZcv6QfcqROfmwlxLJgX9mPHoOKhZfhu8NVkHccNGphYOI6MBD77jIu8mjWBixfZHW6jxMYCw4cD3vWdUXrLLKoFN28ClSuzcMCIm0NZswLTptHF7dgxox3WqpFKLMGaaNiQe88HDpjwJAktqIsXpwX16tWyqZcKDx4w/zZsyO9oU+LgQP3+n3+AW7dMey6LRWctvXFjvLV0kyYmHRL87bc87YwZJjuFVSF5WbAJbE0oTkixYvG2048esbt44ECuj3r35sgeT0969Pv5iWtJZpkxg2vO1aupdKiR7NnZIPDmDfcNXr1SOiLhPyQnC7ZMuXLcV8udm8vfo0eVjkgQBFtGcnJyRCRWEb16ccTQ8OFGXN8WKMBFwvLl3MirVo3dxZbMggXcKc7UEGcD+PJLtpSOHg0g5Y7jpMLxpUtGEI5PnuTfa+1a/v127uTf04bRNZDPmfPfflDDhsD587Th7tGDFq5G9Abt2pV/62HDbG/PKSNIkhWsCRcXfp8HBXHf1aTkzAl07MjvsVevaEG9a5ds5iZh3z66OtasaZ7zVaoEFCpEh0/JAQkwo7V0Qu7fp5PmV1+xpkJIH8nLgk1iq1/YDg6JbacfPmQRT40anBPfvDmty1q1AhYuBP79V+mILYvNm2n7NnEiR3upmSJFuHdw8SKvLeXLXRVIThZsnUKFgEOHOPrP15eGDIIgCEogOTk5IhKrCAcHbn4FBHA8odHQaDif+OxZLgzr1QMmTGB1qaXx4AEwcyYrpM1l75Q1KzB1Kiu0jx9P8S5JheOTJxMLx/Xrpy0cHzvGBmkAQEwMMGkSq5Nz5+ZB+ve3jblbaaBrIP/ooyQWkzlzUj3evJmb1p6e3NE3AnZ2FKSPHwe2bjXKIa0aSbKCtVGrFr9i/PzMdMKSJeke0bQpv/sXL+b8eVvd8E7AjRvA1avcULC3N885NRruqd+7x31WmyehtfSxYya3lk7KuHG8JJMxEPojeVmwGZJ+B0neZOGOznb6zh0W1k6ezD2AESM4zxiIX+c+e6ZouKomMJAL9y5dgPHjlY5GP7y82CTw229MoILiSE4WBK6t//c/miW2b89JeoIgCOZGcnJyRCRWGa1aAY0acd0WE2Pkg7/zDi2oxo6lj27dusCVK0Y+iYmZMoXK3dix5j1vt24sdzOgpTShcLxsWdrCcd26nH3YqsxVXCtYD3GTp+B2j7F4ufcI/25C+g3kHTuyzbhSJaBFC3aAG8Fey9cXaNkSGDXKMusqzIkkWcHa0FkOX7lixoabpBbUW7favAV1XBxrfzw8gPLlzXvuYsWogfr7m+C6zJJ4/BhYty7eWvrzz01uLZ2Q8+f5MZgwgd3kgn5IXhZsChGKU0ejSWw7/fQpK5UB4MwZCsZ58/L6Y8oULlxjY5WNWS3cukXb5urVgVWrLKtwu107YNYsLqB/+knpaGweycmCQLJk4ZLi8885FXHyZEnZgiCYF8nJyRGRWGVoNOxcDA4G1qwxwQkcHWmRdPQoF4fVqtHK2BIy8pUrjHXMGJNbGiZD11J67FimWkpTFY7PaHGg60psvVkVTi8eo4HdURRdPRE53BxRqRLQsycbyhJ1HNsQDx+ygfzzz4FSpdK4Y+HCwO7dtFD7/ntWUJ85k+nzz5oFXLtGcV9IHUmygjVSsSK/Wvz8zJwqk1pQL19OC2obnC13/jwQFsauXiX2Zn19masDA81/bsVJaC396JHZrKWTMmIEULo0jVUE/ZG8LNgcIhTrh4sLq5QB4PffOcP4u+842mjuXNo25c8PdO7MTuR79xQNVzHCw9nu5uICbNtGZcPSGDYM6NOHs6sPHlQ6GptGcrIgxGNvz1ql6dNZBDpggNQmCYJgPiQnJ0dEYhVSowb34MaP13N2bUbw9mZLa7duzMbvv88dWDUzZgyHWHz5pTLnb9aMHapGbil1fBKGquPboP7a/nD+tBuKPjqL/ZHeOHOGYynr1wf+/pvrO13Hsa0Jx5MnU6fXyynLzo7vkaAgwNkZqF0bmDEjU1eclSvz9Z40iXsFQspotYYlWNm3EywBneXw/fsUK82OzoK6WTObtKCOjgb276dYX6SIMjHkycOao8OHTXhdpjZ01tJLlsRbSw8aZDZr6YTs2cPbrFlma1y2GiQvCzaJJXV6qoVixdjOtWULnSOOHGF17o0brG4uXJidyMOHA/v2Aa9fKx2x6YmJoUgeEgL88QddNCwRjYYFAPXr09v16lWlI7JZJCcLQmI0GmD0aNYi/fADTS1ssB5aEAQFkJycHBGJVcr06VyfzZtnwpNkz04VcscO4NQpKo/bt5vwhJng2DEuWqdOVbaCd/Zs47aU7tzJBXdgIP8OK1YA2bPDyYlN3n36JO44Tks49vS0TuFY10A+erSBjUsVKvB1HToU+OYb+rhnwi928mQgIoKb1ELKSCWWYK0ULUqb4/37FbKdd3Dgl/0XXwAlStiUBfXx48xnTZsqG0ejRvzXJppwElpL58/PucNNmtAOxczExvJap359umYKhiF5WbBZEgrFtrCrY0x01xw62+kHD4BffmEl+/r1LFpzc+OcrIULgX/+sc7XePBgzrr47TeuKy0ZR0c+j3z5gNatgSdPlI7IJpGcLAgp07Mnt0P37mWKka8oQRBMjeTk5IhIrFKKF+de8OzZZmjwff99znKtU4c7cH36UA1TC1otdwirVqXFoZJUrkzrz8y2lEZEsFq7TRt2ul68yL9DGqQnHNerl7Zw/NdfGQ9XScaMAQoWzGADuZMTu4gPHgRu3+Zc6TVrMrSRUaQI9wrmzQPu3MlALDaA2pLskydP0LVrV7i6uiJXrlzo3bs3ItL4bnvy5Am++OILlC1bFlmzZkXRokXx5Zdf4vnz54nup9Fokt02btxo2icjKI6vL7+6T5xQMAhXV1pQ9+xpExbUERGcjlGrFpA7t7KxuLhQqAwKouuyVRIdzQ6xpNbSbm6KhbRmDS+R5s6V5sCMoKa8bGhOBoBGjRoly7efffaZ6YIUrBdrFDHNRd688bbTd+/SVmXyZOaMESNYRVeiBOcB/P47kOS62SJZvJhOGkuXUrGwBnLnBv78k+pLhw78+wlmRU05edq0afDx8YGLiwty5cql12N69uyZLCe3bNnSdEEKNkWrVizI/ucfrrlu31Y6IkEQrBk15WS1ICKxihkzhoW8kyaZ4WT587OLeOVKdo5UqcL2HTWwdStjmTOHVsJKM2UK1dnZszP2+BMnqPauX8/Xe/t2vv4ZQB/hODiYwvGnn/IxH30ULxzrOrTUiq6BfNo0IGvWTByofn1uaLRvD/TqRR+bDOzyjxzJBvzx4zMRixWjtiTbtWtXBAcHw8/PD3/88QcOHTqEfv36pXr/e/fu4d69e5g7dy4uXryINWvWYPfu3ejdu3ey+/7444+4f//+21s7aXGzetzcgJo16cCouOVwiRIcFZHUgtrKrlwDAngdVL++0pEQb28WYO3bp3QkRkarZZXZkiW8MFDQWjohERHA2LHUqmvVUiwMi0ZNednQnKyjb9++ifLt7Ixefwu2h8wnNj4aDauQhw1jMnzyhMJj27Ysyu3QgdZP9erFdyJb2pDJXbuAr78Ghgyh8G1NlCrFvZVjxzjKRD4TZkVNOTk6OhodO3bEgAEDDHpcy5YtE+XkX375xUQRCraItzcLhF++BHx8uJcpCIJgCtSUk9WCChQ3ITXc3Lg5tnIlq6lMjkYD9O3LjeZ8+bi4GzeO83iU4s0bzgBu2ZJtXGogYUvp3bv6P+7NG2DCBL6uefLwde7b1+gbsEmF41OnKByvX8/fV6kSLxz7+CTvOFaLcKzVcuyV0RrIXV3ZkvTbb8CBA3zSu3cbfIgJE3iYCxeMEJOVoaYke+nSJezevRs//PADvL29Ua9ePSxevBgbN27EvXv3UnxMpUqVsGXLFrz//vsoVaoUmjRpgmnTpmHnzp2ISfI9mCtXLri7u7+9ZVHSBl8wGw0asFbpwAGlIwFgbx9vQV2yJDf9fvzRaiyoHzyg/t2gQSaLhIyIgwNtry9fBm7eVDoaI/HoEa2lN20CChRQ1Fo6KXPnAk+fcgSLkDHUkpczkpN1uLi4JMq3rq6upglSsE5EKDYt2bIltp3+91/Ov82fn1/i3t7MLR9/zAVUOp93xTl/HujUCXjvvYwXhKud+vWBVat4zWitz1GlqCUnA8CkSZMwePBgeHp6GvQ4Z2fnRDk5t9JWP4LVUbYs61h09UZHjigdkSAI1oiacrJaEJFY5QwcSE1y9GgznrR0aWbiCRNo1duzpxlPnoSVKzkDWG0LmJEjuSjWt6X0yhVu5k+bxsccOQKUKWPaGBPg5MSGIIDjeXXCsa7juG7d1IVjXWORuYVjXZGz0RvIO3SgwlulCvDuu+yWMuDJ9e/Pj8iIEUaMycYJDw9PdIuKisr0MY8fP45cuXKhRo0ab3/m6+sLOzs7BAYG6n2c58+fw9XVFQ4ODol+PnDgQOTNmxe1atXC6tWroZVNR5sgoeXww4dKR/Mfrq50R7AyC2o/PyBXLnZvq4lKlYBChRifRX/sddbS331HobhLF8WtpRNy7x7z/1dfcQSLYF6MnZczk5PXr1+PvHnzolKlShg9ejReqqGSUbAsRCg2H8WLc6TS778ztxw+TOeT69dpa1W4MMc3DR/OHGSEa36jERpKcbh0aVZX29srHZHp6NaNzQCjRvFvJagaU6yVM8qBAweQP39+lC1bFgMGDMDjx48Vi0WwXgoWpDlFtWo0ztq2TemIBEEQrB8RiVVOlizsoNi2jWsss+HgQDHz2LH4+cSbN5t3UR0eTq/tnj2pWKqJnDkpov/4Y9otpVotN+yrVQOePePrOX48X1+FSdhxvHx5YuF4+fJ44XjoUArHrq78M/TqZXrhWNdA3qKFiRrICxUC/vc/tk6vWgV4eVH10QNHR2DmTDYhW53laCbJaCWWh4cHcubM+fY2Y8aMTMcSGhqK/Els3B0cHODm5oZQPTstHz16hClTpiSzw5w8eTI2b94MPz8/dOjQAZ9//jkWL16c6ZgFy6BWLaYA1X3+rciC+vp11of5+qpvj1ajAZo3p4hpkY4SSa2l69dnsVTZskpHlohx49hBbtYiSStELXk5ozm5S5cuWLduHQICAjB69GisXbsW3bp1y1Qsgo0iQrH5cXRMbDv94AGwYQNQvTodLJo1Y2FS69bAokW06VDq7/LyJS2zY2OBnTs5X8jamTSJXdPdugGnTysdjU2glpycUVq2bImff/4Z/v7+mDVrFg4ePIh3330XsZZmKS9YBDlzcsuuTRv2eaxYoXREgiBYE9JJnBzllSohXTp3prPx8OHczzPreLhatYBffuECb9YsWjCtXg24u5v+3LNmUaCePNn058oI/frRWmvkSHZtJSU0lArsn39y5s/cuew+VjE64bhaNTphA2w2uniRGqrutmEDf25vD1SoQI1Vd6tShd12mUHXQP7bb5l/Tqmi0XBjvGlTLo5r1wYmTqQ6nY4q8cEHFM6HD+froYZR2WrA0MSpu+/t27cT2Uc6Ozun+phRo0Zh1qxZaR730qVL+geRCuHh4WjdujUqVKiAiRMnJvrduHHj3v53tWrVEBkZiTlz5uDLL7/M9HkF9ePgQPHyt9/oqliihNIRJUBnQe3pCezdS0uG06cB77YA8ikdnV7ExbFL18MDKF9e6WhSplgxunPs388YVeDMrD+7dgF37gDvvEM3DZV0Difk/HnW4C1axG5yIeOYOi+bOicnLNLy9PREwYIF0bRpU1y/fh2lSpXK8HEFG0WjEXFYSfLmpe30xx/z73DhArBnD2/Dh9M6olgxVgm3aME1Ws6cpo8rLg7o0YML3kOHaONmC2g0TLZNmgDvv08h38ND6aisGrXk5HI6izkD6dy589v/9vT0ROXKlVGqVCkcOHAATZs2zdAxBSEtnJ25He3uzi3V+/fZq2PWPXFBEKySjOZka0ZEYgvAzo6We02acFO6Y0czB6AbBrhgAe2nK1UCvv+eSpmpuHOHyviQIepdqDk5saX0ww8Bf38uZHVs306B2M4O+OMPVkhbKE5OLPiuXt08wnHCBvLKlU32tOIpX57VF5Mmsct71y5g7VrO+EwFjYafybp16Ub2ySdmiNMCyGiSdXV11XvG4NChQ9EzHQv8kiVLwt3dHQ8ePEj085iYGDx58gTu6RS5vHjxAi1btkSOHDmwdetWOKajAHl7e2PKlCmIiopKU+AWrIcKFeiYuHcv64VUt1DVWVB7ebFQacvvgKY/8Po1AHXPz/7rLyAsDOjdW4WvawJ8fenUHBjIOjpVEx3NzV8AeP6c1tIq6xxOyPDhdPvs31/pSCwfU+dlc+TkhHh7ewMArl27JiKxkDESCsVarboTjTWj0XChp7Oejoykt+ju3RSNV67korJOnXjR2MvLNJW548YBW7bQdtnLy/jHVzNZs9KyztubVttHjnDulGAS1JKTjUXJkiWRN29eXLt2TURiwWTY2XErulAh9nPcu8c1mArMGQVBsGBEJE6OfK1aCI0bU2ccPZpOSE5OCgRRvz43Fvv2Bdq3p+/wwoWmWUiMH8/jjhxp/GMbk/btuXgdPpzdWpGRwODBtDBu25Ziej7L6N4yBFMKx4o0kDs5cV50q1ZUfKtU4Xu7V69UN498fPjn/+YbFm5kSaC7REbF4OazN4gu+A6cnr1B8agYZHO2/q9bcyTZfPnyIZ8en6k6derg2bNnCAoKgtd/Gz779+9HXFzc203mlAgPD0eLFi3g7OyMHTt2IEuW9AW1c+fOIXfu3CIQ2xAaDfcrV69m12OVKkpHlAo6C2q/i0AggE2bgBaVGbAKLRCio9mdW7GieuvDdOTJA9Sowf3UatVUahSi1QKXLnHTXTc65KOPgKJFlY0rDXbvjm+Ct6gObZVi6rxs6pyclHPnzgEAChYsaFiggpAaIhSrg2zZuA5r1Yr/f/NmfJfxnDkUcvPkoUW1TjQ2xvfAmjWc7TVnDtCuXeaPZ4kUKMCidh8fdnlv366+WR9WglpysrG4c+cOHj9+LDlZMDkaDbeG3d1ZSBwWBmzcGN/PJAiCYCgiEidHfTuEQqrMmkVry+XLFQwiXz7u3P3wA2cUV6kCHD1q3HOcP88F24QJ7IZSMxoNbaTPnmUnatWqvFr54Qe+TlYoEKeGTjju2zfxjOOgIGDZMq47L1xIPOO4cuX4GccnTgBXr7KBfPBghQSCunU5w7NjR159tm8PPHyY6t1nzqTlzaJFwNWwF5i4IxgN5wSg0sQ9aO33CB/0mIfWfo9QaeIeNJwTgIk7gnE17IX5no+Z0WoNm+dgSse/8uXLo2XLlujbty9OnjyJo0ePYtCgQejcuTMKFSoEALh79y7KlSuHk/912IWHh6N58+aIjIzEqlWrEB4ejtDQUISGhr6dtbRz50788MMPuHjxIq5du4Zly5Zh+vTp+OKLL0z3ZARV4uHB4pf9+zlHXbXY28er2IULs2Nk9Wp+eamM48eBV68SG3OomYYN+e/Bg8rGkSKPHtEVY9Mm7qh89BF/ruKy+5gYYNgwoEED1tkJmUcteTkjOfn69euYMmUKgoKCcPPmTezYsQPdu3dHgwYNUNksVjOC1SLzidVP8eK0k/j9d+azQ4foNXrtGvDpp2wpq1IFGDGCjl5RUYaf4+BB2sH06cMFqi1TqRLw66+s1LL118KEqCUnA0BISAjOnTuHkJAQxMbG4ty5czh37hwidEWFAMqVK4etW7cCACIiIjB8+HCcOHECN2/ehL+/P9q2bYvSpUujRYsWpgtUEBLQowfHxu/bR1enJ0+UjkgQBEtFTTlZLYhIbEFUrMg10eTJwLNnCgai0VBA++svbjw2aMB2yuho4xx/5Ej6DCaYQ6ZqatbkcMLJkykK//WX+n0yzURS4fj06cTCcZ06FI6HDOF/ly1LseXmTWDpUgrHr16ZOWhXVwooW7YAhw9ztmdKM6cBlCkDdB/wEgvPB6LZgkNYG3gLt568RNLcoQVw68lLrA28hWYLDuGTVYG4/eSlyZ+KuTEkwRpatZUR1q9fj3LlyqFp06Zo1aoV6tWrh5UrV779/Zs3b3D58mW8fMm/xZkzZxAYGIgLFy6gdOnSKFiw4Nvb7du3AQCOjo5YunQp6tSpg6pVq2LFihWYN28eJkyYYNonI6iSpk3ZoHnihNKR6ImvL738o6KAFStoRW32L9mUefGCNWe1agG5cysdjX64uNBk5fRp7mGrguho7px89x13Trp04U3tRXdgfWBwMGvv5BLKOKgpLxuak52cnLBv3z40b94c5cqVw9ChQ9GhQwfs3LnTdEEKtoMIxZaDoyOT7dSprEJ+8IB2VdWqsRjK1xdwc6Pt2qJFwJUr6f89r15lMXD9+syXknTYnb1oEd20vvtO6WisEjXl5PHjx6NatWqYMGECIiIiUK1aNVSrVg2nT59+e5/Lly/j+fPnAAB7e3ucP38ebdq0wTvvvIPevXvDy8sLhw8fFjctway8+y4QEMCv+nr1gJAQpSMSBMESUVNOVgvqbScQUmTSJK6JZs7kTVFKlWJV78yZDGz3bmDdOs54zSj79vE4W7ZYhs/g5ctAt25caNrZcU6zzEhLk9SsqrdupcOVtzdf1l9/pWCc0Kq6Ro14q2qTW8vorMQ//ZSbDgMGcOc6gUf2xlMhOOIaDIes3IiIjUt7Q0L3+2M3HsN3/kFMalMRnWuq1/bTUNRm1+Hm5oYNGzak+vvixYtDm2ATqVGjRon+PyVatmyJli1bGi1GwbJxc2OdkM5yOHt2pSPSgxIl2I0TGAgcOEBVrlkzxS2oAwLY5Fq/vmIhZAhvb+5Z79sHdO6sYCAJraUjI/lC1qtnGddSYLHFuHHUs2vWVDoa60FNednQnOzh4YGDqmzTF6yGhPOJAbGethTy5uWi8eOP+Tc7fz7emnr4cOCrr9iJrLOlbtIEyJkz/vFPnnBtly8f8NtvFpMnzcLnn1N5+fJL7mlIh6hRUVNOXrNmDdasWZPmfRLm5KxZs2LPnj2mC0gQDKBWLRYXt2hBl8Ldu2mIIAiCoC9qyslqQTqJLYxChegAtGCBSiqmHByAsWPpERkZSeVvyZKMVWPHxXFh5+NDsVXNaLWssK1Wje1PJ05QRJwxA3j8WOnoLA4nJ3YQlS5NzeL0aW4YBwXxZdZ1HA8ezP/OkYNW1Z9+auKO44IF2UW8dCkDrFaNagCAJQFXMer3C4iKjYPGzrD3e2ycFlExcRj1+wUsCbhqgsCVQSqxBFukYUNqqwcOKB2JAdjbM9cOGgSULKm4BXVYGJ3+Gza0vNlSDg5sYrp8mS4YipDUWnrgQKBxY4va+J4zB3j6lKMhBeMheVkQ0kFEYctGo0lsO/3kCefrvv8+q8/at+csY10n8vHjQIcOvN+ff1qOdYk5+fZboGVLjqm4eFHpaKwKycmCYDzeeYdf6fny8Sv+0CGlIxIEwZIwV05eunQpihcvjixZssDb2/vtaKXU+PXXX1GuXDlkyZIFnp6e2JWKs6kpEJHYAhk+nMWw48YpHUkCatQAzpyhavfFF/QAuXfPsGOsX89d4jlz1L1gDw1l9fHAgRyoe+YMn//48fzWmDpV6QgtDl0D+YwZ8Xvauo7jfv3oiqqzqj59Ol44Pn8+sXBcpYoJhGONhlXVZ8/SrtPHBxsnfIe5e68Y4eDA3L1XsOmUGio+Mo8sfAVbJGtWTl04cybNEebqxNUV+PBD5jIFLaj37eM+bY0aZj2t0ahYkeOe9+41s2NpdDTg55fcWtrNzYxBZJ67d3np9/XXQLFiSkdjXUheFgQ9SLjuFNtpyyZbtnjb6cuXgRs3WMCeNy8waxYL5A4cAKpWpQ2MQsVxqsbeHvjlF3Zjv/ceK/kEoyA5WRCMi7s7x8tXrw40b84x9oIgCPpgjpy8adMmDBkyBBMmTMCZM2dQpUoVtGjRAg8ePEjx/seOHcPHH3+M3r174+zZs2jXrh3atWuHi2Yq2hOR2ALJkYPuzmvXUlNVDS4uVOd27eJcXk9P2kbrw6tXnGvcoQMXb2pl61b6mJw9G99hqrMfzp+f85SXLuWCVNALXQN5nTos9k4LZ2faTacmHNeubULhuGxZ4Ngx3B45ARMi3VPcRIp+eAsPt87A3WW9ETK3A24v7ILQdSPx8mpgmocevyPYKmYUy8JXsFVq1gRy5aJeZ5EUL04L6ubNmb8XL2aeM8OH9Pp14No1duPa25v8dCZBo+FLd/8+XS9MjlZLm/DFi5nYGjRg4VrZsmY4ufEZN477+qNHKx2J9SF5WRAygAjF1oNuxMbWrfFJpk0b4PlzFsgVKpS4EzkqStl41UKOHOzIjooC2rUze/GgtSI5WRCMj6srt2Y/+IC1z8uWKR2RIAiWgDly8rx589C3b1/06tULFSpUwPLly+Hi4oLVq1eneP+FCxeiZcuWGD58OMqXL48pU6agevXqWLJkSSafrX6ISGyh9O5Ne40RI5SOJAXefZe7pA0bMkv37AmEh6f9mMWLubs6Y4ZZQjSYFy+oNLZvz83YCxf4PJMyeDD9TsaMMX+MFoqugXzu3Iw1kOsjHP/1l5GEY0dHjCnRDDFOzikGGxv+AHHRr5DNsyly+/ZFTp9OAICHW6bgxbndqR42Jk6LMVvNoSyYFln4CraKgwPQtCnH01tsjZDOgvqLLziHbts2YNUqw11BDCAujt23RYsC5cqZ7DRmoWhRoHx57jG/eWPCEz18CPz8M7B5M0ciDBoENGpkUdbSCfnrL05zmDgx8chIwThIXhYEPUl6XS9CsXWxZQsL0seNA7Zv5/igsDAuRKtWZfW9ry+dON57j3sTV67Y9vvAwwPYsYOJulcvSRBGQHKyIJgGZ2d+nX/1FU0Ax4+37a9vQRDSJ6M5OTw8PNEtKpUCw+joaAQFBcHX1/ftz+zs7ODr64vjx4+n+Jjjx48nuj8AtGjRItX7GxsRiS0UR0c6Jvn5AXv2KB1NCuTNy8XYjz/y3ypVgMOHU77v48ccQvfZZ0CZMuaNUx+OHmX8v/7KmY1btvD5pYSLCzBlCucCpuMzLwCvX3O93r69cRvIkwrHQUGGCceBgSkLx1fDXuDwtUeITeWCM2upmijQaTJy1euCHFVbwrVmWxToMh2O+Usg/OS2VOONjdPi8LVHuPbghXFeAEEQzE6FCkCRIszLFr0ozZGDrh69etHOeOVKdpOYoIvkr7+ABw+AZs3UPWVCX5o2BSIimEOMTlQU31zLlnF4b9eutJa24HmKWi0wbBgv/fr1UzoaQRBsHhGKrZNTp4BPPgE6daIdm458+ZhHf/qJBXHnzgETJvB6Z9gwunOULMk9im3b0i96t0Zq1gTWrePexsSJSkcjCIKQKnZ2wLx5wOzZ3JLt2xeIiVE6KkEQrA0PDw/kzJnz7W1GKs2Ojx49QmxsLAoUKJDo5wUKFEBoaGiKjwkNDTXo/sbGwSxnEUxCmzZAvXrsJlalTaNGwy7iBg2A7t3ZWTxyJBdnTk7x95s6lSUZ48crFmqKREcz1pkzqSTu28eFYnr06AEsWEAP5QMHrGPn20QsWmS+BnKdcOzlFf+zqCjg4kWKyKdP899169gFZm/POZNeXpyT6eUF7LwXAns7DWLj9N800tjZwyFHXkSFXk3zfvZ2Gqw7EYKJbSpm9CkqjqEVz1IdLVgTOsvh1aspflatqnREmURnQX3yJBAQQHvjZs34xOwyX2MYHQ3s388JDkWKZPpwqiBPHuaLw4eBatVooZxptFrg77+B3buBly95TVW3rsV2Didk925eWm3bZhVPR5VIXhYEA9FoEovDWq2s5SyZkBBumlSpwuL11P6WGg3vo7OejojgOn7PHt5WrKBtTJ06QIsWvFWvbpTrIdXTvj33Q0aNopVdt25KR2SxSE4WBNOi0XAb1t2dDSAPHgAbN8ZPCBQEQdCR0Zx8+/ZtuLq6vv25s7OzkSNTDhu4qrVeNBpa9J4/T4ck1VKyJHDwIMXguXPZxvn33/zd9ets3Rw1itW8auHSJS4CdWVoBw/qJxADVBdnzwYOHQJ27jRtnBaMroG8f3+uN5UgYcfxypWJO46XLgW8vSn2fP0137Zr9jzQSyCOi36N2JfP8ebpfYSf3IZXN4KQpViVNB8TG6dFwJWUh9dbCmKhJdg6Hh7sKN6/38SWw+bC3p658IsvgNKladFoJAvqY8fYrNO0qRHiVBENG/L67MABIxzMyqylExITw0athg25fy+YBsnLgpABpKPYOnjxAnj/fS74tm0DsmbV/7HZsye2nb5xg/+dJw/t3GrWBAoUiO9Evn/fZE9DFYwYQcWld2/gyBGlo7FYJCcLgnn45BNuxe7fz4aqx4+VjkgQBLWR0Zzs6uqa6JaaSJw3b17Y29sjLCws0c/DwsLg7u6e4mPc3d0Nur+xEZHYwvH2Bj76CBg7lg0mqsXennN6dQNgvbzYRjp6NJA/P1U4NaDVAkuWsDL45UvGO2aM4W3aLVpw53vkSPE4SQVdA/mECUpHkhidcNy/f2Lh+NCxGDjk1u9D9nT/D7izqCvureiLpwGr4fJOHbg1H5Du40Iev0RklOW+X2ThKwj86o+MBMw0NsQ8GNmC+sULisTe3kCuXMYNVWlcXNjsGxQEPHqUwYNYobV0Un78kfWCc+dKk54pkbwsCBlEvpgsm9hY4OOPgZs3gT//pKCbGUqUoLvK1q1UGw4eZJXxlSt0TitUiE4rI0dSlUhlPp3FotHwmsTHB2jXjoX+gsFIThYE89GyJc2wrl2jA+etW0pHJAiCmjB1TnZycoKXlxf8/f0TnDMO/v7+qFOnToqPqVOnTqL7A4Cfn1+q9zc2IhJbAdOn00Zj4UKlI9EDLy/unPbpA3z1Fef8DhmiDv+Pe/eAd99lx1SfPowzoTexIWg0wJw5wD//sOtKSIRaG8hTw9kZcCsWqff9XWu2Rf7OU5Gn9WBkLekFrTYOiE2/rVAL4OZj/c+jNrRawxKsNGYI1oibG1CrFsfZR0QoHY2R0VlQt2hBG5NFi4AzZwy+Yg4IoGtj/fqmCVNpatUCcuakzmsQWi1tvZcsYZFagwbAwIHK2W2YiBcvgHHjqH3XqKF0NNaN5GVByAQJhWL5cFgWQ4dypsHmzZwfZEwcHZmfp02j/dSDB8D69bSq/uknVgvmycNO5CVLgKtXreP94+QEbNnCC93WrVnEJhiE5GRBMC81a3JNHhXFGpcLF5SOSBAEtWCOnDxkyBB8//33+Omnn3Dp0iUMGDAAkZGR6NWrFwCge/fuGD169Nv7f/XVV9i9eze+/fZb/PPPP5g4cSJOnz6NQYMGGetpp4mIxFZAqVLA559zruvDh0pHowcuLtxYrlSJu8RTplAsVpItWwBPT256795NO6nMCtfVqnFmz4QJ3BEV3vLNN+pqINeH6Bj9RRDHPB7IWrwqsns2Rf6OE6CNfo0Hv02GVo+sYsh51IZURwsCadCAY+qMYjmsNjJpQR0WBpw9S5vhLFlMHKtCODhwj/jKFeDff/V8UEJr6UKFrMpaOilz5gDPnrHIUTAtkpcFwYiIYmMZfPcdq+cXL2ZRm6nJly/edvrePV7kjBtHV7IhQ1joVaoUMGAAba/Dw00fk6lwc2Nn9sOHwIcfWslsFfMhOVkQzE+ZMnSwKlCABcoHDyodkSAIasAcOblTp06YO3cuxo8fj6pVq+LcuXPYvXs3CvzncBMSEoL7CUaW+Pj4YMOGDVi5ciWqVKmC3377Ddu2bUOlSpWM9bTTRERiK2HcOG5IT5midCR6snMncPEisGEDd1I/+gjo3h14/ty8cYSH0yLqww+Bxo1ZWmbMxeTUqdwJ/fZb4x3Twjl5Eti0ie9VNTSQ68OrV8DlSxn/unQpVxfR968i5snddO/r5GC5X8uy8BUEkjUrheIzZyykeCsjJLSgfvMm3oI6ndkXfn7cY7T2DtKKFYHChfl809QVoqKAvXtp4/jsGdtrP/7YqqylE3L3Li2mBw8GihZVOhrrR/KyIGQSmU9sWezZA3z5JR3LBqQ/6sfo2Nkltp1+8oT7Hq1bA/7+wAcfsMu4QQNWSgUFWd4Xb5kywO+/A4cPs1NBPhN6IzlZEJTB3Z3F2zVqcLt3yxalIxIEQWnMlZMHDRqEW7duISoqCoGBgfD29n77uwMHDmDNmjWJ7t+xY0dcvnwZUVFRuHjxIlq1apWJZ2kYlqtGCInIk4fjfZcto6ORqomJ4cLJ15fi7K+/AmvWsLK2ShXg0CHzxHH4MM/3++88/6+/8oU0JsWKcZE6Zw6QoDrEVtFqgWHD2LTdvbvS0aTMq1d0+VyyhNpH5crUQrq8ny3Da2DtG86liotK20paA6B4nmwZO4kKkIWvIMRTsybn7RpsOWxpFC/OIe46C+rFi1Pd9Lx2jeMGfH3ZkGzNaDRA8+ZM/efPp3AHrZbFckuWAIGBbK3+/HOrs5ZOytixQLZsHDchmB7Jy4JgBEQotgwuXmThecuW6inQzp6dttOLF9Ne5Pp1Oqq5uQEzZ1KxcHdngdjPPwOhoUpHrB8NGwLffw/88IN6XmsLQHKyICiHqyuwaxfQvj3QsSNNJwRBsF0kJydHRGIr4ssvgYIFKRarmh9+AC5fpnCq0fDWowd3UT08aK84ciS7a0xBdDRfpIYNgSJFgL/+4vmTbgAYi9Gj6ak5caJpjm9B7NxJbX72bHUIBDpBeOnSxIJwnTp0B7twgf+9bBlw+oQDirml3focG/ks2c+0sTGIvLgfGgdnOOZNu22qaB4XZHN2yMxTUhRJsoIQj4MDxdCrV4EbN5SOxsQktKAuUwbYsSOZBXVcHAXzokWBcuUUjNWMFC0KlC/PZqJEjow6a+lff423lm7Y0CqtpRNy7hzdOCdN4sxmwfRIXhYEIyFCsboJC6MYW7w48Msv6lhopkTJkvG2048f0/e0b1/ujfTowc2cqlVZSRUQwH0LtdKjBzBmDDBiBJ+PkC6SkwVBWZycgHXrOPZu4EAWr0o6FwTbRHJycixXjRCSkTUr3Y179ACOH+d+rep48YIzej/5hAughBQvTg+QOXOA8eNpF7V+PT0bjcXff3NO8MWLtHgaPtz0i8hcuegHPnQou4orVDDt+VRKwgZyc4yHSsqrV6wHCAri7fRpvh1iY7kvX7kyPzODBrGou1IlXkQmpMmd/FgbeAuxcSlfST7evQTa6Jdw9qgE+xx5EBvxFJF/H0DM4zvI3aQ37JyyphqfvZ0Gjd/Jb8ynbHYMTZy2kGQF26Z8edYi7d0L9OtHF0KrJkcOlmd7eXFm3cqV/O+mTXHuHxc8eAD06WO6miw14uvLQqQTJ4D6taK4IXz8OK8NunWjqG4D6JxE3nmH++GCeZC8LAhGRKNJvJus1dpWQlMrr14B7dqxwPyPP3gtYgk4OtJ2ukEDYNo04MEDVtPt2UOXs1mzaL3RuDEXzy1aAKVLq+s9N2UKO6S7dqUbnJeX0hGpGsnJgqA8dnbAvHkcCzRsGF2fVqxggbcgCLaD5OTkyNegldGtGzB/PpPdkSPqWkMA4CC6589TH55sb8/K2RYtuNjw8qIV05dfZm53PS6Olo4jRwIlStDasVq1jB/PUAYMoLXUyJFsp7VBdA3kGzaY/n2ZVBAOCgKCg1MWhL28KAg7O6d/3K7eRbHm+M1Uf5+tfH1EnPfDi7O7EPfqBeycssLJvTRyN+oFlzLeqT4OAGLjtOhWO+1OY7UjSVYQEqOzHF69mmYZSWujrJZixWhBffIkEBCA6OCrCMAXqFTRAYULq+3CxLS4uQE1a2px5FAcqp9YhWxRT+iY4uNj9Z3DCfnf/ziOcft2m3raiiN5WRCMTFKhWFCWuDjaQf31F4uwPDyUjijj5M/P/Y+uXfm8zp+nYLx7Ny2u3rzhPkbLltwradJEeUHczo7OKI0aAe+/z+u+IkWUjUnFSE4WBPUwdCjd/nv2pBnF5s2AS9rGgYIgWBGSk5MjIrGVYWfHRtxmzej688EHSkeUgPv3KRJ//TU9GNOiWjUqe6NGAYMHsyp4zZqMLTru3uXi0c+PYvPMmWy7NifOzsCMGUDnzuyWbtTIvOdXGF0Debduxtfm9RGEa9emnYwhgnBKFMudAwW0eREa9xga++QbRNkqNES2Cg0NPq69nQY+JfOgdH4LqXxPBUmygpAcDw8aYuzfz39tRiDTWVBXqoRj6+7gVRjQ9OFG4F5DWizbCg8fosHdffjrTTscyNYMrfvkBXLnVjoqsxITQ+MW3R6yYD4kLwuCCUgoFEs3sbJMnAhs2gRs2QLUrKl0NMbDzo6VhVWrssg8IoL203v28LZsGdvefHziu4yrVVPGsiZrVlaAeXszyR8+zFnMQjIkJwuCuujaFciXj0ZYTZuynydvXqWjEgTBHEhOTo61Gx/aJDo735Ejk8zAU5oJE7iIGDVKv/tnzQosXEifzkuXAE9PLgIN4ddf+bjgYB5n4ULzC8Q6PvqIi9fhw23j2yUB6TWQ60vCGcKffgpUqRI/Q3jwYIrFtWsD331HO+kXL/jvihW0evXyyrhAHBzMte/5HzzhYG/czSAHOw2mf+Bp1GMKgqAemjYFIiPpMmxrvEAOHHtaHt6eL5FL+5QW1Dt3Ai9fKh2aaYmK4nXHd9/BJeIB6lePQFB4GTyMsS2BGGAn/d9/81pAtBRBEKwO6SxWhrVrubicOZM7/NZM9uwUYJcsAa5eBa5fp0tZ7twsRK9Rgy1x3brxdQkLM2987u4s6r9+HejShdXaqRAZFYPge+E4e/sZgu+FIzIqxoyBCoIgJKZ5c/bxXL8O1KsH3LypdESCIAjKIJ3EVsrs2Sw8XbmSHZSKExwMrFrF4Q+5chn22GbNgAsXgM8+Yyfuzp1cIKV1nOfPgS++4CKpY0dg+XJ6PiqJRsMd0oYNKXZ//LGy8ZgJXQP5V1/RgVRfXr2iy9bp0yl3CHt6UrQ1RodwWsTFAYsXs+iiZEngmJ8LLsdUxKjfLxjtHJPbVISHm+V720glliCkTO7cQK1aHANRvbptNVjs389ml/qtcwKO/YFTp/jDv/9mVZtSnS+mQqtlstq9G3j9+q21dC2NI079C+zbZzPpHwCLtcaN4761jCo0P5KXBcFEyHxiZTl8GOjTh1XDI0YoHY35KVmS46wGDACio1mFqOsyXr+e96laNb7LuG5dwMnJtDHpCvrfe49/k2+/ffurq2EvsD4wBAGXHyDkyUskLKvQACjq5oLGZfOjq3dRlClg2c5aaSE5WRDUSY0awLFjdPP38eEyrnJlpaMSBMGUSE5OjojEVkrlykCPHsCkScAnnwCurgoHNGoUULw4FzIZwc2Ni4733+cg2UOH4uffJOXQIaB7d+DpU96nWzf1LNobNADatAHGjGHFsylUTZUxYQKQJQswenTq99EJwkFB8aJwSoLw55/zAs5UgnBSUnMqr4aieBQRhbl7r2T6HMObl0WnmpY9i1iHVmtY4pTGC8GWaNAAOHeOboG2YrkbFsbn/O67zAOAPe0eKlbkF+uOHfzCb90aKFxY4WiNwIMHwK5dwL//AuXLc6fhv4I2B1AT/+03/rpECUUjNRuzZwPh4cC0aUpHYptIXhYEEyJCsTJcu8aZWj4+tF229dfcyYlF6A0bAtOn81rEz48qx48/ArNmAdmyAY0bx88zLl3aNLG8+y6d2774AnjnHdzu+AnGbL2Aw9cewd5Og9i45ElGC+DWk5dYG3gLa47fRP3SeTH9A0+rKKBOiuRkQVAvpUsDR48CrVoB9evTRd/GpgQKgk0hOTk5VtS6ISRlyhSOr5k9W+FADhyg/dCMGZmrYNVoqHifP8/d1SZNaN0cFcXfR0Wx3bNRI7asnj/P+6tt4ThzJnD7Nj2TrRxdA/m4cfGN369eAYGBtIROaBlduzbHVf/1FwXhpUvjLaODgtgV379/5iyjDWHz5rSdygc1LoOZ7T3h7GAHezvD3mP2dho4O9hhVntPDGxsokW6AugqsQy5CYKtkDUr9+/OnuX+nS3g58car2QdpDlysFDq0085sPb77y3bgjoqKn5G4PPnLE7r3DmZ40mFCtTC9+61jUXGnTtsJBo8GChqHbVQFofkZUEwMUnXmbbw5a4kT5+yUzVPHs4hNnV3rCWSPz8Hba5dS0uvM2eAsWO5MTR4MFCmDFCqFKuvt2/nYtuYDBoEDBqEjcu3wffbABy78RgAUhSIE6L7/bEbj+E7/yA2ngoxblwqQHKyIKibAgW4fe3tzXqa335TOiJBEEyF5OTkiEhsxRQpwnXAvHnsiFSEuDgKubVq0fbZGBQrRqvKWbOo3NWqBWzdykw+fz5F2P37DfM2Nifly9Mea+pULnStmOHDgYIF6STau3fagvCpU8oJwgl5/py1BZ06sevrwgU6nqdE55pFsW9wQ/iUzAMA6YrFut/7lMyDfYMbWk0HsQ5JsoKQNjVrUjf081M6EtNz7RpnOzVrBtjbp3KnYsX4Zd+yJb9sFy9mdZClfDlotfFxnzrFIrWBA7kBmwIaDTccQkNZx2btjB1La/VRo5SOxHaRvCwIZkBtBcnWyps3wIcfAg8fsgBd6VFSloCdHcd6jBpFK5vHj+ni0rIlK9batePr2KgRC/rPnDFKIljSdhBGtRyEqFhtuuJwUmLjtIiKicOo3y9gScDVTMeiJiQnC4L6yZGDKaZjR+CjjzjpUBAE60NycnLEbtrKGTGCgtv48ezoNDubNnHD99Ah4y6g7e2pQDZtSpvK9u0Bd3fgxAkOfFQ7EycC69bREmrOHKWjMQoJLaODgoCDBykQAMCwYYkto728+P9qc9s+eJBO5c+e6e9U7uHmgrW9veNnLV15gJDHKcxayuOCxu/kR7faRVE6v3XOWpKZDoKQNvb2LD759Vd+P5YqpXREpiEujnuPxYoBZcumc2f7/yyoK1Wier5zJzcp1W5BnYa1dFp4eLCjeP9+/uvoaPpQleDsWebRpUtVMPLEhpG8LAhmIqH1tNhOGx+tlmOrDh8G9u1LtRhLSIccOTjzRDf35Pr1+FnG06dzJFb+/Kzwa9ECaN6crXUGsPFUCOb6X+P/ZPJzMHfvFeTL7mw1hdWSkwXBMnBy4jrG3Z3u+ffvs8dHUrsgWA+Sk5MjIrGVkzMnZ8J++SU7Nz09zXjyqCguNNq25VAHY3PnDlXw0FBWyJ49S+F4zRruwqoZd3fGOn06u46KF1c6IoN4/ZpdwDpBOCgIuHgxfoZwxYrsyC1enLbNlSurTxBOSFQULbHnzuVb9eefDW9EL1MgBya2qYiJqIjIqBjcfByJ6Jg4ODnYoXiebMjmbP1ft5JkBSF9ypdnivLz4+QEOyv0dDl3jo0+ffoYsJjOnp0zBr28gD//pAW1lxeLwVxUNJcuKoo+ZCdOUBTu1s3gzeqmTSmenjhhmssjpdFqWRxWtizfA4JySF4WBIUQodi4zJ3Livc1a4AGDZSOxnrQ2U5//jkQHQ0cP07BePduYP163qdaNQrGLVpwDnQaFt+3n7zEhB3BKf4u6v4VRF7wx+uQC4h5Hga7rK5wLlQWuRp8Ake31IsCx+8Ihk+pvFYxo1hysiBYDnZ2TD0FC3Jdc+8eG7CstcBXEGwNycnJscKtSSEp/fsDpUtzXK9ZWbqUs3dnzjT+sTdtouL9zz/caT9zhv9evkxF8pdfjH9OYzN0KO2dxo5VOpI0ef06foZw795A1arxltFffUVtvmbNxJbRI0YAjx4BP/3E36lZIL54kR3OCxYYz6k8m7MDKhbKiWpFc6NioZw2IRADYtchCPqg0bAxIyyMxTbWRnQ0HQ09PTPYCFy0KNCvHztzL14EFi1ShwV1Umvpxo3TtJZOCzc35sYjRzgi0NrYtYu5dPZs2UhRGsnLgmBGZD6xadi2jRsZY8YAPXooHY314uQENGzIIvYzZ1iIv3Ytq79Xr+Z1T548QJs2XPhfu5bsEGO2XkBMKvbS4Sd+w8vLx5ClWBXk9u2H7FVa4PXti7j/41eIfngz1bBi4rQYs/WCsZ6lokhOFgTLY+hQ1sysX0+H/shIpSMSBMEYSE5OjojENoCjI0fM/O9/gL+/mU769Cn9OPr2BcqVM95xnz1j107nzqxmPX+e3p0A/z1/nj/v0oU3Nc/8zZ4dmDSJVxtBQUpHA4CC8MmT6QvCuj3yiAiuIb//nsUINWrwOGPGcP2o5kLvuDiOsK5RA4iJ4fMeMSKN2ZlCuqgtyT558gRdu3aFq6srcuXKhd69eyMiHUWmUaNG0Gg0iW6fffZZovuEhISgdevWcHFxQf78+TF8+HDExMSY8qkIVkaRItxzCwigqGpNHD3K8QNNmmTiIDoL6i++YDvqzp3ADz8Ad+8aLU6DePCAVU+//cY/3qBBTHAOGS8AatiQFeoHDhgvTDUQE0OjlMaNgffeUzoaQU15edq0afDx8YGLiwty6WHNDgBarRbjx49HwYIFkTVrVvj6+uLqVeuaUSlYGSIUG5egIKBrV84injJF6WhsiwIFuO+ydi29Vs+c4SI/PJwWdWXKsBN54EBgxw5cvRGKw9cepTqDOEfND1D489Vwa9YfOaq0QK66neHedRa0cbEIP/FbqmHExmlx+NojXHvwwkRP1HyoJSffvHkTvXv3RokSJZA1a1aUKlUKEyZMQHQ6i5LXr19j4MCByJMnD7Jnz44OHTogLCzMNEEKgoro0oVGV4cOcY376JHSEQmCkFnUkpPVhIjENkL79kCdOty4M8sbe9o07nxPnGi8Yx44wC7hP/7gPN9ffmE7TkLc3PjzdevYylK5MttZ1Mqnn9J7dPhws28i6AThZcsSC8Le3ukLwp99RnE1pQ5hXQP5rFlmfToGcecOO/mGDOF4q9On+fyFzKG2JNu1a1cEBwfDz88Pf/zxBw4dOoR+/fql+7i+ffvi/v37b2+zZ89++7vY2Fi0bt0a0dHROHbsGH766SesWbMG48ePN+VTEayQpk2Bly/p7GcthIcDx45R39VTA0obnQV1796cZ/D998COHXzhzEFUFG0Xly3jk/vkExapGeHJZc1KnfnMGVpzWwurVgGXLtGeTZxWlUdNeTk6OhodO3bEgAED9H7M7NmzsWjRIixfvhyBgYHIli0bWrRogdevX5suUEHILCIUG4c7dzg7t1IlFmpZ43wOS8HOjrbTo0dzT+bJE2D7drq+7NkDtG2L9QMmwV6behLJUqQ8NPaJ7UUc3QrDKW9RvHl0O83T29tpsO5EiDGeiaKoJSf/888/iIuLw4oVKxAcHIz58+dj+fLlGDNmTJqPGzx4MHbu3Ilff/0VBw8exL1799C+fXvTBCkIKqNZM+DgQeDmTaBuXf4rCILlopacrCZswwNVgEbDDbu6dYENG1gUajJu3qSy+M03rEDNLFFRtGT+9lu23vz0E+0oU0OjYcVx/fq0pGralGrgtGlAliyZj8eYODjQj/H999nq3aqVSU7z+jVdOwE2L9+6BQQHs+PHwYG2oDVrUvz18uL/Z+SlMlUDuTHZuJHCcLZsdCjXNaILmcfQxGnKJHvp0iXs3r0bp06dQo3/WtwXL16MVq1aYe7cuShUqFCqj3VxcYG7u3uKv9u7dy/+/vtv7Nu3DwUKFEDVqlUxZcoUjBw5EhMnToRTGnO6BCEhuXMDtWqx87Z6dRbpWDoBAXQvqVfPyAfWWVCfPs3Cr7//5pd39eqm2TTWapk09+xhAm3cmHP4MtE5nBI1a7JYy8+PFeqWTng4MH48tfTq1ZWORgDUlZcnTZoEAFizZo1e99dqtViwYAHGjh2Ltm3bAgB+/vlnFChQANu2bUPnzp1NFaogZB6NJrE4LDOKDSMigutjR0eKkVmzKh2RkJAcOWgb1qYN///aNQSsuYjYWMOuybRaLWJfPoNj3jT2dsBu4oArDzARFTMasSpQS05u2bIlWrZs+fb/S5YsicuXL2PZsmWYO3duio95/vw5Vq1ahQ0bNqDJf3ZBP/74I8qXL48TJ06gdu3apglWEFRE9eosiG7Zkk1Yu3cDVaooHZUgCBlBLTlZTUg5pg3h48OO4m++4Z6nyfjmG86rGTo088e6cIG76IsWUUz1909bIE5I0aK8/5w5wJIlPM7585mPydi0bk3xe8QIqraZJGGHcJ8+8R3CuhFOly/HdwifPMkZwgk7hGvWzLiWrmsgnzAh00/D6Dx7xtqBjz9O7lQuKEt4eHiiW1RUVKaPefz4ceTKleutQAwAvr6+sLOzQ2BgYJqPXb9+PfLmzYtKlSph9OjReJmga/H48ePw9PREgQQFMC1atEB4eDiCg4MzHbdgW9SvT93RGiyHQ0OBc+eARo1MVI9lb0+ri4QW1N9/b3wL6gcPgDVraC3t4WEUa+nUcHBgHrp6Fbhxw+iHNzuzZ1MonjZN6UiEzGKKvGwo//77L0JDQ+Gb4GItZ86c8Pb2xnFrsmAQrBcRhTNGbCwrp65fp4NYKoWbgnqI8CiOkFjH9O+YhMjgA4h98RjZytVP974hj18iMso2x/uYIyc/f/4cbkld+hIQFBSEN2/eJMrJ5cqVQ9GiRSUnCzZFqVIs8i5cmEvEgAClIxIEQTAOIhLbGDNmAPfuUSA0CUFBbFWePJmtmhklLg6YN4+exnFx9DseNszwjiE7Oz7u1ClWcNesyZZqNZWA6Nq8g4PZJW0ASQXhatXiLaO//JJ/Dp0g/PPPfMyGDcYRhJOiayAfMUJ9a/mAADqP//ln6k7lQubRag2z6tA1WHh4eCBnzpxvbzNmzMh0LKGhocifP3+inzk4OMDNzQ2hoaGpPq5Lly5Yt24dAgICMHr0aKxduxbdElgvhIaGJhKIAbz9/7SOKwgpobMcPnuW2qSlotWyGzZPHrpRmJSEFtRxcfEW1JGRmTtuQmvpFy/YDtupk5F8s1OnQgWOOfbzs2xH0jt3aPgyZAi1dUEdqCkvG4oup6aUcyXfChZDQqHYkr/kzcmIEVy0bdpEeytB9dx6HAlD391vHt/GE79lcC5cDtk8m6Z7fy2Am48zea2nMGrNydeuXcPixYvRv3//VO8TGhoKJycn5EpyXSw5WbBF8udnkXft2uwq3rxZ6YgEQTCUjOZka0bspm2Md94B+vdnl8enn3JD12hotZytW6EC0LNnxo9z+zYfv3+/8WyiK1emUPzNN4zxzz/Tt602JzVqsMV13DjOO0xBYH/9mt2vQUHxt4sX4y2jK1Xi5nz//ilbRp85Y9qn8M03FF6HDDHteQwhKopxzZunn1O5kDkyatdx+/ZtuLq6vv25c0rDrv9j1KhRmJXOwOtLly7pH0QSEs4s9vT0RMGCBdG0aVNcv34dpUqVyvBxBSE1atZkevLzo9uBJXLtGjthO3Viw69ZSMmCumlTJkBDCsrMZC2dGhoN0Lw5sHo18NdfdP+wRL75BnB1BUaOVDoSISGmzsv65uRyap1BIgjmRmyn02bFCi7cFi8G3n1X6WgEPYmOMawAPzbiKR78Ogl2ztmQt91oaOz0u3g09DxqQ405+e7du2jZsiU6duyIvn376h+cINg42bPT2Kp3b27hhoXR8EoQBMtA7KaTIyKxDTJ+PLtKp04F5s834oF37WLL5h9/ZHxz9ZdfgM8/Z8b19wf+m3diFLJkYZtL69b0Xq5cGVi6lHZWalisT5vGQb7z5+P1sLF6CcL9+lFfzugMYWOhayBfuZJ/OjVw4QIFl8uXaYE5ZIhpRlcK8WQ0ybq6uiZa+KbF0KFD0TOdIpSSJUvC3d0dD5K0ZsbExODJkyepzhtOCW9vbwCssC5VqhTc3d1x8uTJRPcJCwsDAIOOKwg67O1pObx5M50VLa0WIS6OAnexYnSBNis6C+qKFRnEH3+wIqp1a7bnpseDBywau3mTBW4tWpi8czglPDx4+v37+VQcDXdsVJQzZ4C1a4HvvqNQLKgHU+dlfXNyRtDl1LCwMBQsWPDtz8PCwlDVUqspBNtE5hPrh58fMHAgxzwMGqR0NIIBODnov8iOex2JsM0TEPc6EgW6zYJDDv27Fgw5jxpRW06+d+8eGjduDB8fH6xcuTLNx7m7uyM6OhrPnj1L1E0cFhYma2DBZnFyYiNKwYJ0crx3D5g+XVK8IFgCIhInR0RiGyR/fnZ6TJrESqcM7t0kJiaG1lCNGwOtWhn++KdPuSj85Rd21C5dCuTObYTAUqBJE7bkDhwIdOvG8q9ly0x3vnR4/ZqC5unTJVDqnUGoO2EW3pnYF/diCyQThL28qG0rKQgnJWEDea9eSkfDL+7584ExY9g5f+oUXzPB9JgjyebLlw/58uVL93516tTBs2fPEBQUBK///G/379+PuLi4t8KvPpw7dw4A3m5Q16lTB9OmTcODBw/e2ln7+fnB1dUVFSpUMPDZCAIpV45CoZ8fUKKEZRW0nD0LPHwI9O2r4IJYZ0Ht5UXR94cfgOrV2Vmc0uiL16/pERYYyNz/ySdA6dJmDzshTZvy0uf4cVqQWwpaLad6lC3LsReCujB1XtY3J2eEEiVKwN3dHf7+/m9F4fDwcAQGBmLAgAEmOacgmAwRitPm77+BDz+ktYZRq9gFc6CJ1G/MmDYmGg9+m4yYp3dRoPNUOOXV3+JLA6B4nkyMM1MBasrJd+/eRePGjeHl5YUff/wRduksPry8vODo6Ah/f3906NABAHD58mWEhISgTp06hgUqCFaEnR2bUgoWZGPKvXtcilpa0a8g2BoiEifHgrYhBWMyeDDF4jFjjHTANWu4uJszx/AF7/79VPF27WI76oYNphdsc+eOP9fu3WzF9fc37TnBfelTp4DlyxPPEK5Vi5Vn0/AN4OCAPT6TEBjIsYhnz/IiY8AA3k9NAjEQ30A+a5bZ3DlT5fZtduQNG8YCdBGIzYsh8xwMTciGUr58ebRs2RJ9+/bFyZMncfToUQwaNAidO3dGoUKFAHBxXK5cubedwdevX8eUKVMQFBSEmzdvYseOHejevTsaNGiAyv+9kZo3b44KFSrgk08+wV9//YU9e/Zg7NixGDhwYJo22YKQFjrL4bAwWg5bClFR/P739AT++1gpS9GinLnw7rtAcDDtKk+div+y0WpZJLZkCW2qmzShe4nCAjHAcQ21agFHjwIREUpHoz9//sn3wJw5yl8DCMlRU14OCQnBuXPnEBISgtjYWJw7dw7nzp1DRII3fLly5bB161bg/+3deVyU5f4//tcMq+CCbAoKueWGWh40hdRASNDMMrMszfSQniwqSy3zuGuWxS9N87SaekyPpyzP1zwlopKaCyrFyfwoiokYiqiECCjbzO+Pt+zbzDDLPTOv5+PBQ2Fm7vsaHO/3dV/v63pfAFQqFaZPn46lS5di+/btOHHiBCZOnAh/f388+uijpmsokanUvEe2h83NdJGdDYwcKTF8yxYGEytQUCDx/+WXZZJYUFdHlP7p1uBrtJoyXP3PchRdOg2fR2fDpV0Pvc4Z6OUGdxfr/mwoJSZnZmYiLCwMgYGBiIuLw9WrV5GVlVVtb+Ga98mtWrVCTEwMXnvtNSQmJiI5ORmTJ09GSEgIBg4caJqGElmRV1+VNU//+hfwyCNynSQi5VJKTFYS6+5lkcHc3IAlS2Rf4tdek4FJgxUUSA3rp5+WVTy6un27csPY8HCp0xEQ0ISGGOCpp4BBg6T8dGQkMH068PbbRsnElq8QTk6WseiGSkZXrhD2BOL+jl6zZwOtXgFczV27Uz/lC8jDwqS6pyVt3ixj/S1aGL9SOelGaTOxNm3ahNjYWERERECtVmPMmDFYtWpVxeMlJSVITU1FYWEhAMDZ2Rm7d+/GypUrUVBQgICAAIwZMwZz586teI2DgwN27NiBadOmISQkBO7u7nj22WexePFi074Zsnnt20tcKC857Oxs6RY17tAhiXWKut6q1ZUlqHfvrixBHRIigdjCpaUbMmQIkJIii5xHjrR0axpXWiqVRIYOtXwfgOqmpLg8f/58bNiwoeL7vn37AgASExMRFhYGQFYl3bhxo+I5r7/+OgoKCjB16lTk5uZi0KBB2LlzJ1yVNmOSSFc1VxTbu9u3gUcfBQoLZcYR9yxQJK1WxjXi42V+/U8/AcXFQIcO0p165x3gaJkvvvrlAso0dX++/9y7FrfSktCsy30ou5WP/N8Sqz3evFd4ved3UKsQ3tXXmG/JIpQSkxMSEpCWloa0tDS0r7E9i/bO9anmfTIArFixouKeuqioCFFRUfjHP/5hmkYSWaFx4wAfHylwFR4uk2lMVHCHiJpIKTFZSZgktmMTJ0o1p1mzZEDS4IpX778PXL8ue+rq6tdfpdRzaqrsEzx9uuXqawYEyEDyBx8Ab74p9T43bQLuuUfnQxQVodoewsePV08IBwXJ3sE6lYyOjZVVTrNnA3dWUyhV+QLyDRssVzHtzz8lObxli+krlVPDlBZkPT09sXnz5nof79ChQ8WNMAAEBARg3759jR73rrvuwvfff2+UNhJVNXRoZcnhBx6wdGsalpcnSeKBAxWXaxXNm8vAc+/ewNatwDffAC4uwBNPSFBWoGbNJFGckCB5bqUPKnz+uXTjNm9m1VSlUlJcXr9+PdavX9/gc7Q1kmcqlQqLFy/mRCyyLVUTxfZcdlqrlRnrv/wC7NsH3HWXpVtEVVy7Jv2R+Hhg1y7g8mVZaBAWJtVDoqJka6fyj2+vK4H4V3J6vccrvvI7AOBW2lHcSjta6/GGksRlGi0mDNS9NLVSKSUmT5o0qdG9i2veJwOAq6sr1qxZgzVr1pimYUQ2ICJCQtrw4cD998s1tGNHS7eKiGpSSkxWEiaJ7ZiDg+ydMHy4bMs7apQBB7lyRQ7y0ksylbQxGo0klf/+d6lNdPy4DOBamlot9UEefBAYPx7o3x9YuhSYMUN+UVXUTAgnJ8vM2qoJ4SbtIezqKgn3CROAAweAwYON+16NpHwB+VNPSQLcEvbsASZNkrLcmzdLW8hyGGSJmqZ168qSw3/5i1RGUKrERFntPGiQpVtSj6rLXkpKpM+Rni4dnsJCCdAK3Py5f3+pkJ2QIAValCovT/oAzzwjW2eQMjEuEykUE8XAokVSl/Orr5pY1oyMoaQESEqSlcLx8TLGodXKUM2ECZIUHjRI5tvV5e42LTC4izcO/X69ztXEbce/Y1C7HNQqhHbyQhdfBXeKdcSYTGQf+vaVydRRUUBoqGzRx/slImVhTK6NSWI7FxUlVZbfeAMYMcKALYAWLQKcnCTp25iMDCnrvG+fJF+XLq3/LsNSevUCjh4F5s0DZs9G0Xe78OusjUi+5FeREP7tN7mJcnCoLBn93HOSKNU7IVyfp56SZPqsWbKkTIEDB4YsIDeW27dlP+0VKyxXqZxqY5AlarryksOJiQZO3jKDrCxp4/DhRop5xnblitT3unBBSktHRwOtWslmv1VLUD/0kNT5VhBHR5mBvnUr8PvvQKdOlm5R3ZYvlwlalugDkO4Yl4mshL0lijdvlnGEt94Cxo61dGvsVnq6JITj42XydV4e4OUl8+ZffBEYNgzw99f9eMtG90bkin31lpw2hKNahWWjFbCowAgYk4nsR6dOMvF75EipELZtm9zjEZEyMCbXxiSxnVOpZCFwcDCwdi3wt79Vf7ygqBTpuSUo9usK59wSdCgqhbvLnY/N6dPAp5/KSGFD9X21WrkRfPFF2Wdo716pU6QwlSuEXZD857tI7jIPv/3kgpKfnOGg1qBXbxWCg1V47rnKFcLNmpmoMWq11HEqHylW2M1z+QLy2Fjzl0753/9kNvOZM5avVE7VabX6BU5uyUZUm6ur3EjGx0vJ4TZtLN2i6rRaKTvo5SWxUFFu35b9M5KSAE9P2Vejc+fKx8tLUAcHSxL5s89kyXZkJODubqlW19Kzp+Sud+2SqiRKi3EXL8pEsRkzFJdjpxoYl4kUrOb+xPaSKD54EJg8WSaPv/mmpVtjVwoKZL5++d7CZ87IxPeQEJmbHhUl3aIahdR0FuDphkWjgjD72xNGa/PiUUEI8HQz2vEsiTGZyL74+srw99ixMrn6n/+UfYuJyPIYk2tjkpjQt68k3RYskErLlwtuYlNSBhJTs5GRUwgtADz7PpBwDaqEeAR6uiG8my/Gb4rD3QEBkimsz59/AtOmAf/+txz8ww8VsXlhUZFUoTx+HPWvEB7cAs9NLUTw7rfQJ/5dNOv6MPDexzLwbA5Dh8ry7jffBB55ROp6KsSiRbLaSZcF5MZSViaD0nPnKqtSOVXiTCwi4+jXT4paJCRIfFaStDTg/Hm5wTV0ENHoqpaWLiqS+BkSUn95lIAAyb4ePy5LZ06dkklZCilBrVLJ6p0vvpDJa/fea+kWVff3v8ucvzfesHRLqDGMy0QKZ2+J4t9/l8laAwfKZHNbfq8KULV7FB8vO1kVF8v2z1FRwNtvS/enVSvjnXNc/0Bcyy9C3K4zTT7WrGHd8GR/69+LuBxjMpH9ad4c2L5dqk8+9ZQsuHnlFUu3iogYk2tjkpgAAEuWAN/sLMSwZSdwSXsNDmpVnWWCtAAu5BRi45F0rO/0OAb3eQTLCsoQUFfV6D17ZIZwQQGwZQvw5JMmfx91KU8IJydXJoXrKxlde4WwGzBzEfDvnsDzz0tWcv16qcFkDsuXA/fcA3z8MfDyy+Y5ZyPKF5C/84758uUXLshHaf9+5VYqJyIyFgcHWdz61VeSlO3SxdItEhqNJK7vugvo2tXSrbmjamnpoCAZ9dRltFOtlj0Qg4LkTe3YIR2EkSMVsTw2IEBWFO/dK010crJ0i8TPPwMbN0q3RMl7ZhMRWQ17SRTn5kqM9fAAvv1WUROgbcn169KtKU8MX74sYxvh4VKoLCpK+nCm/IjFht8N7+YuWLD9JEo1Wr3KTzuoVXBUq7B4VJBNJYiJyH45Ockwsp+fVEK8dEkm6ShgbjIRUQUmiQkAcDg7A23/ehKZZVqo1Gi0I1925+FDhc6IXLEPi0YFYVx5J/72bVn9unKlTE1dv95sA65VE8LlSeGqCeGgIFmhpXfJ6CefBO6/H5g0SZb3vPyyZElNVm/6jl69pBzX4sVSNlMBq7Bnz5Z/zoYWkBuLVgts2iSVylu1UmylcrqDM7GIjKd7dyAwUAb6OnVSxk3kL78AV68CU6YoYPz69m3ZuPno0bpLS+vK3V2xJagjI6UAy+HDsle1pWm1MlGrRw8gJsbSrSFdMC4TWYmaiWJbU1Ii9TazsiSoeXlZukU2o7QUOHKkMil8/Lh8lHr3lkJuUVHAoEGynYk5jesfiPs7e2POthM4kFb/IoRy5Y+HdvLCstG9babEdFWMyUT2S6WSIWQ/P+DVV2UCz9q1ypkITGRvGJNrY5KY8GHiWSkHpNJ/0LfszszQ2d+ewLX8IsR6FsrdSFoasGKFJFNNNLKtS0K4/hXCBijfIHDVKsmU7t4NfPml1Os2pcWLZU/n5ctlupkFHTgA/L//J4lbU99o5uTI4u2vv1ZUpXJqAIMskfGUlxz+/HMgJUXylpZUVCQ52T59AH9/CzZEq5UazLt2Sc3EiAgpW1lfaWld1VWCeuhQmVlmoQx969ay2Pmnn+Tfv3lzizSjwo4dsuXzjh1N/3WTeTAuE1mRqoliW1pNrNUCL70kAWTXLtk3iJrkwoXKfYX37AHy8mS+3IMPAi+8IP1Hi/bV7gjwdMPGmAE4e+XOdmZnspFx/c52ZneoAAR6uSG8qy8mDAxEF1/bLVPCmExEr7wCtG0LPPMMkJ0NbN1q+Xs8InvEmFwbh3js3JZjGUbZLwYA4nadgU/8h3jS0VEGWXv1MspxgdoJ4eRk+b5mQjgmRsZzm5wQro9aLfVBIiNlo8gBAySJO2uW6TZn9PeXpTtxcXLXFxBgmvM0QquVt/mXv8helKa0e7eUly4stGilctITgyyRcbVrJ6E0MVH+tGRlxoMHK7f7tRhDS0vrqmoJ6t275Vw//ww89JDFYu+QITJJIDERePhhizQBgPS3Zs2SnPyIEZZrB+mHcZnIitlKonjFCuCTT4AvvpCax6S3wkLJsZevFk5NlaGHgQOBmTOlOxQcbLrhiKa6u00LLBwVhIUIQkFRKdKvF6C4VANnRzU6eLnD3cU+hiUZk4kIkPFNHx8pZhUeLrecvr6WbhWRfWFMrs0+emNUp4s5hViw/WSdj2mKbyEv6VsUXUpF8eUz0NzOh9eI6WjeJ7L+A2q1mD9sGkKnD0FAWw+D26VrQvivf5U/77nH9FWfa+nVC0hKAhYsAObMAb7/HvjnP4EOHUxzvtdfl42A582T8t0WsHWrvOW9e023qOrWLalU/sEHZq9UTkbAIEtkfBERUknh0CHLldvPy5PqkAMHGjcnqzNjlZbWlbs78MgjMivqv/+V5dx9+8oSHTOXoG7WDHjgAVl8NWCA5QYQPv8cOHNGJm7ZQs7CXjAuE1kZW9ufePt2yWK+8YZsoUQ60WqlQlp5Unj/fimeEhgIREcDy5bJpD1rrLLl7uKIIH9LdCYtjzGZiMoNHSrX9uHDZWfD+HjZYoqIzIMxuTYmie3YnG0nUFrPvjCawjzcOPgvOLT0gZNvRxRlnGj8gCoVStWOmPPfVGyMGaBTG6wiIVwfFxfZVGLECBmw7tMHWL1a/m7sm/kWLYCFC2Vz3ldflV+EGRUXS/L2oYdMNwE8JUXKSp87Z/JK5WQiDLJExufhIcnBQ4ckDrawQBW+vXtlFfOgQWY+salKS+uqagnqvXulBHVEhNlLUPfvL/nxhASJk+aWlydz4iZOBO691/znJ8MxLhNZIVtJFP/yC/DUU8Do0ZLVpAZdvy5xPj5euj2XLsm4R1gY8O67slq4Wzfr/CiQYEwmoqruvVfu8aOigNBQWXtk6S2miOwFY3JtTBLbqbNXbuJA2rV6H3do7on2sRvh0Lw1ii6fRdaGV3U6bplGiwNp15CWfbPWfjJFRTIj9vhxK0wIN2TIEOB//5O9liZNAr77TkpqeXkZ9zzPPQesXCn1HnftMu6xG/HRR8D587IfsbGVlUkl7XnzgJ49jV6pnMyIQZbINAYPlrHWxERg1CjznvvyZQlxI0bI3CizycqSO2VTlZbWlQJKUDs4yC4XX38tE6lMuYi6Lu+8A+TnA0uXmve81HSMy0RWytoTxZmZskdCz57Axo2c+VuH0lKp0lW+WvjYMfln7tULePpp6fYMGgS4ulq6pWQsjMlEVFPHjrKt00MPSfWobdvkvo+ITIsxuTYmie3UpqQMOKhVKKtnJbHK0QkOzVsbdGwHtQobDmbg0cAgJCdXJoWrJoR79pSFOFaXEK5Pq1ZSbvrhh4G//Q3o3RtYt07u7ozFyQlYvlxmY+/aBQwbZrxjNyA3F1iyRP6tgoKMe+z0dFmZ9NNPkvtevNjMSQgyKgZZItNwdZWbxp07ZVVxmzbmOa9WK6tavL3NOKu5ZmnpZ59VRu0tC5eg7tFDctIJCTKYYK7x9owMqe4xcya3f7BGjMtEVsxaE8UFBXJPrFJJuWk3N0u3SDEuXKhMCu/ZA9y4IV2dBx8Enn9ebu/btbN0K8lUGJOJqC4+PnL7O3asTMzesEEKcRCR6TAm18YpnXYqMTW73gRxU5VptFgXn41+/YAXXgCOHJFKzCtWyJ6GN29K9cgvvpDqyQMHWnmCuKqxYyUb3quXbBj00ktAYaHxjv/II7JhxaxZsgTXDN55R/YKXrTIeMfUaiWn3qeP3CwnJkr+mwli66bVVgZaXb60prkEEdmkfv1kIDEhwXznPHtWqkhERsoEL5PSamXJ8urVslI3IgKYNk0ZCeKqyktQjxwJnD4NrFolCW0T3zWoVDJ4fOWK/JrM5e9/l3lwr79uvnOS8TAuE1k5a0gKV1VWJvsinD0L7NgB+PlZukUWVVgI/PADMH060L070KGDdG2ysoDXXpOVxNnZwJYtsmUzE8S2jTGZiOrj7i6VG59+Wr5WrLB0i4hsm5Jick5ODsaPH4+WLVvCw8MDMTExyM/Pb/A1YWFhUKlU1b6ef/75JrWDK4ntUH5RKTJyjJi4rINj60IkHijFfX9xtL/Jw+3ayXKvDz8E3nhDylNu2mScZVgqldRmDgkBvvxSVliZUEaGVLh+/XXA3984x7x+XRZbf/MN8Mwzkg+wRAVRMj7OxCIyHQcHWWny738DaWlAly6mPZ9GIwnpDh2Arl1Ney5kZcnq3IwMmWQ1bJiyA4NaLRsF9+xp1hLU7dtLRY/ERPnT2dlkpwIgVWC+/FJ20LDEXtjUdIzLRDag6opipa8mnj1btl7avl1KhdkZrVa21ypfLXzggGy5FRgoBcbeekvmwHl4WLqlZAmMyUTUECcnKUjp7y8TiS5dksU03LGByPiUFJPHjx+Py5cvIyEhASUlJZg8eTKmTp2KzZs3N/i6KVOmYPHixRXfuzUxAccksR26cL0A5piU6NOpAG5uCh7kNSW1Gnj5ZVl+NX681AddtEiSxk1djjVwoKxYnjsXeOIJky7DnjdPxulnzTLO8eLjZZb07dvAV1/J2yDboaQgS2SLunWTgcaEBFlga8obxp9/Bq5dAx57zITj0bdvA3v3ykZ8Siotrav6SlBHRgLNm5vklBERwJo1UpnlgQdMcgoAMtA9c6bkwf/6V9Odh0yLcZnIBik1Ufz55zKZeeVKmTRlJ65fl/li5YnhS5fk9vyBB2RwPypK+m9K/Ccj82JMJqLGqFTAsmVSiOOVV4DLl6UKp6knBxPZG6XE5FOnTmHnzp04duwY+vXrBwBYvXo1RowYgbi4OPg3sGLPzc0Nbdu2NVpbOB/FDhWXmqe3aa7zKFrPnlJHatYsSeo+8IDU7myqZcuk5uTKlU0/Vj1SUoCNG4GFC5u+gujWLcmZR0fLIrETJ5ggtkX6lOrQNyATUWXJ4exsuUabSlER8OOPsiWASSpFarXyBlavBn75RbmlpXVVswT16tUS+01wkWvdGrjvPuDgQdm+w1S++04+A++9BzhySqnVYlwmshE1M4xKq0O7Z4/E8RdekJs+G1ZaChw6BMyfL/PAfXyAceNkvttTTwG7dgE5OVJm+pVXpMw0E8QEMCYTke5eekm2Ivj6a+Dhh01730dkjwyNyXl5edW+ioqKmtSOw4cPw8PDoyJBDACRkZFQq9VISkpq8LWbNm2Ct7c3evXqhTfffBOFTdzulEliO+TsaJ5/dnOdR/GcnSWpu38/kJkpo+7r1jXt5r5LF7kRf/tt4OpV47W1itdflxKjzz3XtOP8/DMQHAx89hnwwQdSiZv7LRERGaZdO6B3byk5XFxsmnMcPCiJ4qFDTXDwrCyZDr1tm9Syjo0FBg2y/kxkeQnql16SCWLffw98+ilw8aLRTzV4sPy6fvzR6IcGAJSUSB8gMhIYPtw05yAiIj0pNVF8+jQwZoxM+PrgA5vMiGZkyL3s448D3t7A/ffLzlIdOgBr1wJ//CGToOPiZGsQV1dLt5iIiKzdE0/I+OmRI0B4uKwTIiLLCggIQKtWrSq+3n777SYdLysrC76+vtV+5ujoCE9PT2RlZdX7uqeffhpffvklEhMT8eabb2Ljxo2YMGFCk9pi5SNyZIgOXu5QAaYtOa0FFs9yx31/kQThX/4CtGxpyhNagUGDgP/9T6YU//Wvskzn00/lTtMQ8+YB69cDS5YAq1YZtanx8VLOdNs22RfDEGVlwLvvyizrXr1kb8OePY3aTFIYpZTrILJ1Q4fK4OShQ0BYmHGPnZcnpYwHDjTytsC3bklm++hRiXvWVlpaV+UlqIODTVaCulkzYMgQWa00YABQ456iyT77DDhzRmav2+BYv11hXCayMVX3JwYsX3r62jUpLd2uHfDvf1v/hK87CgtlfvfOnXJffPq0zAUbOFD2iYyKAvr1a/ouUmRfGJOJSF/h4RKPhg+XCUrx8UDnzpZuFZH1MzQmX7x4ES2rJLhcXFzqfP7s2bOxfPnyBo956tQp3RtQw9SpUyv+3rt3b/j5+SEiIgLnzp1DZwMvErbRiye9uLs4ItDTDRdymrYMvcFzaN3wR7ojdvxHbrIAWZUaHFz5ZZeJ45YtZRXxyJFSmrJ3b1lRZchSHW9v4M03JVn80kvA3XcbpYllZVIde9AgGec2xPnzwMSJshrtjTdkO2buoWH7eONLZB4eHpIcPHRI4mlTtwSoau9euV4PGmSkA2q1MkFq1y5ZohoZKaOsNjKQXK/27YEpU2SG1J49wKlTkt3v398om0n37y/59oQEYPx4I7T3jhs3gAULJId/773GOy5ZBuMykQ2qmSi2lKIiYPRoID9f4pxRZ5aZl1YLnDxZua/w/v3y9gICJCG8ZIkslG7d2tItJWvGmExEhrjnHrnvj4oCQkOlYFVwsKVbRWTdDI3JLVu2rJYkrs+MGTMwadKkBp/TqVMntG3bFtnZ2dV+XlpaipycHL32Gx4wYAAAIC0tjUli0k94N19sTLqAMk39N5h5yd9Bc7sAZfk5AIBbaUdRevMaAKBl8MNQu7rX+ToHtQpjQ3yxcLns2XP6tIyRln/95z+yoAiw48TxmDFASIisKB4xQvZveu89wM1Nv+O88gqwZg0wZ45sVmEEGzdKuawjR/SfmK7VAhs2yFZUnp7Avn1SFpPsA298icxn8GDZznfvXsMn9NR0+bLkc0eMAOqZEKmfrCxZTZuRISUlhg2z6kFkvZWXoO7ZUwbQf/hB9mB46CEgMLBJh3ZwkHz7118D584Zb0b5O+8ABQXA0qXGOR5ZFuMykY2qmii2xGpirVb2JDp2TKqEdOhg3vMbQU6OTLSKj5d5bJmZUiY6LExiYVQU9xMm42JMJiJDdeggi3BGjpQ49e23sr0BERnG1DHZx8cHPj4+jT4vJCQEubm5SE5ORvCd2R979+6FRqOpSPzqIiUlBQDg5+enX0OrYJLYTo0fEIj1h9MbfE5e0jaU5VXOZig8cwg4cwgA0DwovN4kcZlGiwkDZfDT0VHGhXv1klUpgH6J4379pEqjTSaO/f1lwHjNGlm6u2cP8OWX8qZ11ayZjOROmiT1QUNCmtSkwkJg7lxg7FhZpaaPa9eAv/1NOivPPisVsG3y343qxRtfIvMpH8j84QdZmNumTdOOp9XKIKm3txFmJttLaWldubsDo0bJTLj//lc2MLz3Xrmzb0IJ6h49ZJVTQgLQsWPTFyhnZAArVsh+xO3aNe1YpAyMy0Q2zJKJ4qVL5b51y5Ym33+aS2mpdEvKVwsfOybXvKAg4MkngehomYDH/YTJVBiTiagpvL1l2PiJJ2RS9/r1xq0oRWRPlBKTe/TogejoaEyZMgUff/wxSkpKEBsbi3HjxsHf3x8AkJmZiYiICPzzn//Efffdh3PnzmHz5s0YMWIEvLy88Ouvv+LVV1/FkCFD0KdPH4PbwiSxnbq7TQsM7uKNQ79fr3c1cfsXvtD7uA5qFUI7eaGLb/21L3VJHB8/XnfiuF8/+dNmEscqFRAbK/WrJkyQm+wFC4DZs3UvxTlhgozqzpoFHDjQpAGCDz4AsrMBffdd/+EHWRRdXAxs3SoLpcn+KCXIEtmL4GAgKUmSuxMmNG18+OxZID0deOqpJiQbNRrg118rS0s/+KDMOLL10tK6qlmC+vRpKUFt4MaGKpUszl67VlaA9+3btObNmSOlzGfNatpxSDkYl4nsiLkSxVu2APPnA4sXS3ZVwS5elITwzp0SdnNzpWT0gw/Kzk/DhkloJjIHxmQiaip3dxkr/9vf5P4/KwuYMcPSrSKyPkqKyZs2bUJsbCwiIiKgVqsxZswYrFq1quLxkpISpKamovDOfq7Ozs7YvXs3Vq5ciYKCAgQEBGDMmDGYO3duk9rBUTs7tmx0b0Su2NdgyWl9OapVWDa6t/6vMzBxXJ40tvrEcY8eshJ40SJJEn//vdR91qV+pIODlKoeNkx+QaNHG9SEq1clOTxtmu5lKwsLZTD5H/+QklxffCELpMk+abX6BU4lbKdGZM0cHGSg89//lpLDXboYdhyNRlajdujQhO3ta5aWjoqy4qBsQkYuQd2+vayC2rtX/nR2NqxZx48DmzYBn3xi3D2uybIYl4lsXM39iU2dKD58WCpYTZgg5acU5tYt2e6ofLXwqVMSdgcMAKZPl65J//4GzcsiajLGZCIyBicnmSTs7w/MnAlcuiRDwk2tKkVkT5QUkz09PbF58+Z6H+/QoQO0VRoQEBCAffv2Gb0dTBLbsQBPNywaFYTZ354w2jEXjwpCgKee++rWo7HE8fHj8ue2bTaSOHZ2Bt56S+qGPPOMlKJcuVKW6DZ2s//gg5IkfuMN2aTCyUnv0y9eLKeZN0+35ycnS2mTCxeA1auBF1/knk32TkkzsYjsRbduwF13yeLdTp0Muzn8+WfZMuCxxwy4jtcsLT1pktQ+poYZsQR1RITsXHH4MPDAA/o3RauVAYagIOlykO1gXCayA+ZKFJ8/DzzyiGRZP/9cETd+Wi3wf/9XmRTetw8oKpKtGKKi5P42IkJWDxNZGmMyERmLSiU7P/j5AS+9JPO1160zfMIwkb1hTK6N80zs3Lj+gZg5rKtRjjVrWDc82V//VTD6KE8cP/usJCYPHQLy8oATJyQgDhsm969z58pejR4eQPfuksx8/325cczLM2kTm+7++6Vu5BNPAM89J6P2V682/rp33wXS0oDPPtP7lGfPAh9/LKUmvb0bfm5pqeSyBw6UMe6ff5aK2QoYJyALKw+y+nyZUk5ODsaPH4+WLVvCw8MDMTExyM/Pr/f56enpUKlUdX59/fXXFc+r6/EtW7aY9s0Q1UOlkrzi1avAL7/o//qiIsnx3nOP3GTqTKMBUlIkGP/yizRi2jQmiPVVXoL64YeB1FT5fR45ApSV6XyI1q2B++4DDh4Ebt7Uvwnbt0v/6L33WBnc1igpLr/11lsIDQ2Fm5sbPDw8dHrNpEmTasXb6Oho0zWSyFrVvBEz9nKHGzdkInKLFjJD28XFuMfXQ04O8NVXQEyMFODo1Qv4+9/lV/D228DJkzKJ+bPPgMcfZ4KYlEMpMTk9PR0xMTHo2LEjmjVrhs6dO2PBggUoLi5u8HVhYWG1YvLzzz9vmkYSkU5efFFi4tatUpjKkHtBInuklJisJBwKIsSG3w3v5i5YsP0kSjVavcpPO6hVcFSrsHhUkMkTxPWpuuJ40iT5WfmK4/LVxlVXHKtUlXscK3bFcYsWsqpo5EgZPO7dW2o5jxhR/2vuuQeYOBFYuFBKgFV5QwVFpTifWwBnPw3O56rRrcgd7i6V//3ffFOSAy+/3HCzfv9dFjkfOSLbJi9YwJlqVElpM7HGjx+Py5cvIyEhASUlJZg8eTKmTp1abxmPgIAAXL58udrPPv30U7z33nsYPnx4tZ+vW7eu2kC1rgPeRKbQrp2EicRE+bPqdbmgqBRnrhbgqkaDM1fVaOlZ/fr/00+yn3x4uB4nvHxZVr9evCgnHDZMYUHUyqjVUgalZ09g927ZPPGXX/QqQT14sOTsExNlgXJVBUWlSL9aiGKNO5yvFqKDV2nFZ6CkBHj9dSAyEmDuzfYoKS4XFxdj7NixCAkJwdq1a3V+XXR0NNatW1fxvYsFk1NEilZzRXEDCopKkZ5bgmK/rnDOLUGHotJqfYNqSktl8vKlS1KyorEZxUZWWgocOyahMT5e/q7RSPWLJ56QFcODBwPNmpm1WUR6U0pMPn36NDQaDT755BN06dIFv/32G6ZMmYKCggLExcU1+NopU6Zg8eLFFd+7uRmniiARGe7xxyU0P/KILJb6/nugTRvdXtvYWDGRrVJKTFYS/s8nALKi+P7O3piz7QQOpF2Dg1rVYLK4/PHQTl5YNrq30UpMG0t9ieNTpyqTxg0ljvv1k8SxxfflGz1aluzGxMhg8fPPA3FxsoS3LkuXyuaU772Hs7GvY1NSBhJTs5GRUwgtAL9ngRkJwMwEINDTDeHdfBHkGohvvmmBDRvqv7nWamWl9iuvAD4+wP79suCZqColBdlTp05h586dOHbsGPr16wcAWL16NUaMGIG4uDj417F5toODA9q2bVvtZ9u2bcMTTzyB5jXKv3p4eNR6LpElDR0qJRcPHgTa97xZ6/oPADv+BahQef0fFRSII0daICQEaNVKh5PcuiWb3x47xtLSpuDmJhne4GBgxw69SlA3ayalpuPjZe/FPNT1GQgCtqRChdSKz4Dq90CcPdsCX33FiiC2SElxedGiRQCA9evX6/U6FxcXxlsiXVVNFNcoO332Sh1x4dn3gYRrUCXEV8SF8QMCcXebFpXHePllif07d0qJLjO4eLGyhPTu3UBurqwIjoyU+dNRUVKIg8iaKCUmR0dHV5vs3KlTJ6SmpuKjjz5qNEns5ubGmEykQGFhwIEDwPDhQGioxM8uXep+bl39gbrGiqv1B4hsjFJispIwSUwVAjzdsDFmQGXAOJONjOuVg8vAncFlLzeEd/XFhIGB6OJrPQHD0VEWPPXurX/iuHyfY4skjv38ZMXWRx/JpoF79gBffim1JWtq3x4Xp8/GnHNOOLByf73Jfi2ACzmF2Jh0AWWadHSO8cYDI3oDqJ3sv3oVmDoV+M9/gMmTZZtkLhgjY8qrUQPexcWlySuFDh8+DA8Pj4oEMQBERkZCrVYjKSkJo0ePbvQYycnJSElJwZo1a2o99uKLL+K5555Dp06d8Pzzz2Py5MlQMcNCFuThAXS+pxBz95xA5q76J3tVvf6vP5yOACdvPNmz7ut/BY1GtkFISJClpw8+KBOYHBxM9XbsW7t2Mgr+888yOn76tCz17t+/wd95v35AwqFCPP3ZCZwr0OEzcOQCyrTpuGe6NzwDGvkMkF0xRVw21I8//ghfX1+0bt0aQ4cOxdKlS+Hl5WWRthBZHa0WF/+81ehE8Jp9g8FdvGUi+MbP5B70s89kc18TuXVLJiHHx0su+tQpKbIxYAAwfbokhRsJgUQ2yxwx+caNG/D09Gz0eZs2bcKXX36Jtm3b4uGHH8a8efO4mphIIfr0kS0Zo6IkUfz993J/WO5iTqHh/QGFLQwjIuNjkphqubtNCywcFYSFCJJSVNcLUFyqgbOjGh28bKv0hK6J42+/BW7frkwclyeNzZY4VqmAF16Qm/MJEyTiz58vmwhX2UBwy7EMLHC8D6UBJQDQaOnw8sc1Ptcx7IN9WDQqCOOqlA3//nvgr3+V38k338j2yET1MXQmVkBAQLWfL1iwAAsXLmxSW7KysuDr61vtZ46OjvD09ERWVpZOx1i7di169OiB0NDQaj9fvHgxhg4dCjc3N+zatQsvvPAC8vPz8XJj9dqJTGjLsQwsPHoSxWVyXdf1+p9Zeh0Pral9/a/A0tKWUVcJ6p9/lqoid91V50u+/jkD/7x+EiW6fgburDbLc72OyBUNfAbIaikpLhsiOjoajz32GDp27Ihz585hzpw5GD58OA4fPgwHZouI6lZlNfGWYxex4DvZUgrQvW9w6PfriPz/9mLR9z9g3MyZwHPPGbWJWq1UPylfLbx/v9xrt28vg9uLFsmqYe4nTLZEqTE5LS0Nq1evbnQV8dNPP4277roL/v7++PXXX/HGG28gNTUV3377rdHaQkRNc9ddUlls5EhZXfzNNxJXtxzLqNhiEtCzP8D7RLJBXElcm+1k+8gk3F0cEeSvSw1K26FL4iWvnroAABb4SURBVPj4cQm2Zk8cd+smU8MWL5a75x9+ADZuBLp0wYeJZxG364w8T63fwJkGWhSVajH72xO4ll+EyffdjZkzgY8/lj0Kv/hCFjQTNcTQIHvx4kW0rJJ0amhm9OzZs7F8+fIGj3vq1CndG1GPW7duYfPmzZg3b16tx6r+rG/fvigoKMB7773HJDFZTLXrv5402urX/9jwu+UBlpZWhqolqP/7XwnI99wjyfoqJaib8hko02pRVtdngKyeqeOyrjG5u4ElaseNG1fx9969e6NPnz7o3LkzfvzxR0SYcFUjkdVTqfDh3rOISzAwLmi0KNMCs6NfwrXIuxFrhCb9+afMeSpPDP/xB+DqKlslLFsmg9g9enDrA7JdSozJmZmZiI6OxtixYzFlypQGXzt16tSKv/fu3Rt+fn6IiIjAuXPn0Llz58beDhGZiZeXFKB88klJFj/77lnszm5Cf0DD+0SyPUwS18YkMZEOGkscHz8uf1ZNHHfrVpk0Nmri2MkJWLJENpt45hng3nuxZdEniLvmYYSDA3G7zmDl2y649FMg1qwBpk3jzTrpxtAg27Jly2o3vg2ZMWMGJpX/J6xHp06d0LZtW2RnZ1f7eWlpKXJycnTaR2nr1q0oLCzExIkTG33ugAEDsGTJEhQVFVmsHCfZry3HMgxODtYUt+sMfNyd8aRTTmVp6WHDpN4jV+1ZVrt2spKragnqoUOB/v2x5edM434GmrvgSc4Utwmmjsu6xmRj6dSpE7y9vZGWlsYkMVEDthzLMDhBXOHODWDc7rPwaemqd1woKwOOHq1MCh89KteYnj2BsWMlKTxkCNCsWdOaSWQtlBaTL126hPDwcISGhuLTTz/VvWF3DBgwAICsRGaSmEhZ3NxkK8WRr2QYnCCuifeJZEuYJK6NSWIiA1k8cRwaCqSk4OLMuVhwuRngqK2VzS26fAYFJ/bgdsYJlN64AnWzlnDx7waPIc/AybNdnYfVaoHSe0/i+7e8Edaf+06Q7swRZH18fODj49Po80JCQpCbm4vk5GQEBwcDAPbu3QuNRlNxQ9uQtWvXYtSoUTqdKyUlBa1bt2aCmMzuYk4hFmw/We/jmuJbyEv6FkWXUlF8+Qw0t/PhNWI6mveJrPc18/9zAqGO/0NAn24sLa00VUtQ79kD7NyJi0d/xYLs9nU+3ZA+AADM334SoZ29ufeUDTB1XNY1JhvLH3/8gevXr8OP5W2I6mWSvoGOceGPPyqTwgkJQG4u4OEBPPigzHMaNgyoUTmXyG4oKSZnZmYiPDwcwcHBWLduHdRqtX4ng9wDA2BMJlKoy3mFOO95Eiit+3FT9geIlI5J4tr07wkQUb3KE8eTJgEffggcPgzcvAn8+iuwdq1sKXzunGwl/MADQKtWUlZrwgRgxQrgwAEgP1+PE7ZogTn3PY1SJ+c6l/vmHdmKwtRDcL3rHrSOnIrm90Th9sXfcHndKyi+ml7nIVUqwMFJi7W/njDod0D2S6utDLS6fGkb3galSXr06IHo6GhMmTIFR48excGDBxEbG4tx48bB398fgNwcd+/eHUePHq322rS0NOzfvx/P1bH/2nfffYfPP/8cv/32G9LS0vDRRx9h2bJleOmll0z3ZojqMWfbiYp9heqiKczDjYP/Qsn1i3Dy1a1UdKkWmON7P/D440wQK5WbG/Dww8CUKZjzpxdKy+q+YzGkDwAApRot5mxjH8AWKCkuZ2RkICUlBRkZGSgrK0NKSgpSUlKQX6Xj2717d2zbtg0AkJ+fj1mzZuHIkSNIT0/Hnj178Mgjj6BLly6IiooyXUOJrJxJ+gb1xIVbtyQh/NprQFCQJICnTgUuXgReeUV2Sbp6FfjqKyAmhglism9KicmZmZkICwtDYGAg4uLicPXqVWRlZSErK6vac6reJ587dw5LlixBcnIy0tPTsX37dkycOBFDhgxBnz59TNNQImoSc/YHiKyNUmKyknAlMZGJVV1xPHmy/Ky0FPi//6vc47i+Fcfl+xz37Vtt68EKZ6/cxIG0awDqrgfdov9oeI+aBZWDU8XP3HsMxqW1scg7shXeD8+s83VlGi0OpF1DWvZNdPE1xebKZIs0Gv1Kk5t6JtamTZsQGxuLiIgIqNVqjBkzBqtWrap4vKSkBKmpqSgsLKz2ui+++ALt27fHsGHDah3TyckJa9aswauvvgqtVosuXbrg/fffb3QPJyJjq7z+18+huSfax26EQ/PWKLp8FlkbXm30uGVQ4UBmAa//VuCsY0scuO1a7+PsA5CS4vL8+fOxYcOGiu/79u0LAEhMTERYWBgAIDU1FTdu3AAAODg44Ndff8WGDRuQm5sLf39/DBs2DEuWLGHlDqJ6mKxvcCcunL1yEyXXW1SsFt63T+5f27UDoqOBhQtlUrSnp5HeEJENUUpMTkhIQFpaGtLS0tC+ffVqNNo7o+A175OdnZ2xe/durFy5EgUFBQgICMCYMWMwd+5c0zSSiJrE1P0B3ieStVNKTFYSJomJLMDREejTR770SRyXJ43LE8ebkjLgoFahrJ7ZYa7te9T6mZNnOzh7B6Lk2sUG2+igVuHLIxlYOCqoye+X7IPSgqynpyc2b95c7+MdOnSouBGuatmyZVi2bFmdr4mOjkZ0dLTR2khkqMau/wCgcnSCQ/PWeh+b13/rwD4ANUZJcXn9+vVYv359g8+pGpObNWuG+Ph40zWIyAaZsm+g0qoQ8XwGLv4nCK6usp/wW2/J3sI9e+p3rSGyR0qJyZMmTWp07+Ka98kBAQHYt2+faRpEREbHsQKihiklJisJk8RECqFr4njr1srE8V0vZkPbXL+aB1qtFmWFuXDyDmzweWUaLRLPZGMhGPhJNwyyROaTmJrd4E1fU/D6bx0M+QywD2BfGJeJ7Isp+wZalRYtumZj584gDBkCNGtmktMQ2SzGZCIyF44VEDWMMbk2JomJFKyhxPGhY6V452xhwweoQ8HJH1F28zo8Bo1v9LkZ1wtRUFQKdxdeKqhxDLJE5pFfVIqMHP2v//rg9V/ZDP0MsA9gXxiXieyHOfoGhepCDAorRTPGBSK9MSYTkTlwrICocYzJtfF/M5GVKU8cO3gX4J00/V5bcv0ichI+gku77nDvHdHo87UA0q8XIMi/lWGNJbvCIEtkHheuF8A084IraQHsPFiAjh68/ivR+Vz9PwPsA9gfxmUi+2GuvgHjApFhGJOJyBzYHyBqHGNybUwSE1mp4lL9rlBl+X8i++tFULu4w/vRN6FSO5jkPGS/GGSJzMNc1+WnJ2hQfNkspyI9Oftp4Pes7s9nH8A+MS4T2Q9zXa8ZF4gMw5hMRObA/gBR4xiTa2OSmMhKOTuqdX6u5nYBrny1AJrbBWgzYTkcW3iZ5DxERGR65roub/5SjY4eZjkV6el8rhozEnR7LvsARES2z1zXa8YFIiIi5WJ/gIgMwSQxkZXq4OUOFdBoGRFtaTGyty5G6Z+ZaDNuKZy9A3U+h+rOeYh0wZlYROah6/W/KVQAou93h7uLCU9CButW5I6ZCewDUMMYl4nsh7n6BowLRIZhTCYic2B/gKhxjMm1cdoHkZVyd3FEoKdbg8/Raspw9T/LUXTpNHwenQ2Xdj30OkeglxvcXTiXhHSj0ej/RUT60+X631S8/isb+wCkC8ZlIvvBvgGRsjEmE5E5sD9A1DjG5Nr4P5rIioV388XGpAso09Q9R+zPvWtxKy0Jzbrch7Jb+cj/LbHa4817hdd7bAe1CuFdfY3aXrJtWq1+gVNryqmNRDauset/ubzk76C5XYCy/BwAwK20oyi9eQ0A0DL4Yahda88A5vXfOrAPQI1hXCayL+wbECkXYzIRmQv7A0QNY0yujUliIis2fkAg1h9Or/fx4iu/A5BAfyvtaK3HGxogLtNoMWGg7mUpifSdWWUPM7GITKWx63+5vKRtKMvLrvi+8Mwh4MwhAEDzoPA6b/x4/bcO7ANQYxiXiewL+wZEysWYTETmwv4AUcMYk2tjkpjIit3dpgUGd/HGod+v1zlDrO34dww6roNahdBOXuji26KpTSQ7wiBLZD6NXf/LtX/hC72Oy+u/9WAfgBrDuExkX9g3IFIuxmQiMhf2B4gaxphcG/ckJrJyy0b3hqNaj93WdeCoVmHZ6N5GPSbZPu7pQGRevP4TPwPUEMZlIvvDuECkTIzJRGRO7A8Q1Y8xuTYmiYmsXICnGxaNCjLqMRePCkKAp5tRj0m2j0GWyLx4/Sd+BqghjMtE9odxgUiZGJOJyJzYHyCqH2NybUwSE9mAcf0DMXNYV6Mca9awbniyP/eXIP0xyBKZH6//xM8A1Ydxmcg+MS4QKQ9jMhGZG/sDRHVjTK6NexIT2YjY8Lvh3dwFC7afRKlG2+C+EzU5qFVwVKuweFQQgz4ZTN+gaQ9BlsgceP0nfgaoLozLRPaLcYFIWRiTicgS2B8gqo0xuTYmiYlsyLj+gbi/szfmbDuBA2nX4KBWNdgBKH88tJMXlo3uzbIh1CQMskSWw+s/8TNANTEuE9k3xgUi5WBMJiJLYX+AqDrG5NqYJCayMQGebtgYMwBnr9zEpqQMJJ7JRsb1QlQN/yoAgV5uCO/qiwkDA9HFt4Wlmks2hEGWyLJ4/Sd+BqgqxmUiYlwgUgbGZCKyJPYHiCoxJtfGJDGRjbq7TQssHBWEhQhCQVEp0q8XoLhUA2dHNTp4ucPdhf/9iYhsEa//xM8AERFVxbhARERE7A8QUV34P5/IDri7OCLIv5Wlm0E2TqvVb3aVVvetUIjIQLz+Ez8D9otxmYjqwrhAZH6MyUSkNOwPkL1iTK6NSWIiIjIKjQZQqXR/vj0EWSIiIkthXCYiIlIGxmQiIiJlYEyujUliIiIyCgZZIiIi5WBcJiIiUgbGZCIiImVgTK6NSWIiIjIKBlkiIiLlYFwmIiJSBsZkIiIiZWBMro1JYiIiMgoGWSIiIuVgXCYiIlIGxmQiIiJlYEyujUliIiIyCgZZIiIi5WBcJiIiUgbGZCIiImVgTK6NSWIiIjIKBlkiIiLlYFwmIiJSBsZkIiIiZWBMrk1t6QYQEZFt0Gj0/zKlt956C6GhoXBzc4OHh4dOr9FqtZg/fz78/PzQrFkzREZG4uzZs9Wek5OTg/Hjx6Nly5bw8PBATEwM8vPzTfAOiIiIDKeUuJyeno6YmBh07NgRzZo1Q+fOnbFgwQIUFxc3+Lrbt2/jxRdfhJeXF5o3b44xY8bgypUrpmkkERGRCSklJgPAqFGjEBgYCFdXV/j5+eGZZ57BpUuXGnwNYzIREdkKJcVkU41d64tJYiIiMgolBVkAKC4uxtixYzFt2jSdX/Puu+9i1apV+Pjjj5GUlAR3d3dERUXh9u3bFc8ZP348Tp48iYSEBOzYsQP79+/H1KlTTfEWiIiIDKaUuHz69GloNBp88sknOHnyJFasWIGPP/4Yc+bMafB1r776Kr777jt8/fXX2LdvHy5duoTHHnvMNI0kIiIyIaXEZAAIDw/HV199hdTUVHzzzTc4d+4cHn/88QZfw5hMRES2Qkkx2VRj1/pSabX2sGBa5OXloVWrVrhx4wZatmxp6eYQERmFpa9t5ecHbgDQ5/x5AEzf7vXr12P69OnIzc1t8HlarRb+/v6YMWMGZs6cCQC4ceMG2rRpg/Xr12PcuHE4deoUevbsiWPHjqFfv34AgJ07d2LEiBH4448/4O/vb7L3YWss/bklIjIFJVzblB6XAeC9997DRx99hN9//73Ox2/cuAEfHx9s3ry5YuD69OnT6NGjBw4fPoyBAweatH32RgmfWyIiY1PCtc0aYvL27dvx6KOPoqioCE5OTrUeZ0w2LyV8bomITMHS1zclx2Rjjl0bwq72JC7Ph+fl5Vm4JURExlN+TbP8nB99r63y/JrXZBcXF7i4uBipTbo7f/48srKyEBkZWfGzVq1aYcCAATh8+DDGjRuHw4cPw8PDoyJBDACRkZFQq9VISkrC6NGjzd5ua8WYTES2SDkxGVByXL5x4wY8PT3rfTw5ORklJSXVYnL37t0RGBjIAWkTYEwmIlvEmNy4nJwcbNq0CaGhoXUmiAHGZHNjTCYiW6WcuKzMmKwLXcauDWFXSeKbN28CAAICAizcEiIi47t58+adGVHm5ezsjLZt2yIrS/9ra/PmzWtdkxcsWICFCxcaqXW6y8rKAgC0adOm2s/btGlT8VhWVhZ8fX2rPe7o6AhPT8+K55BuGJOJyJZZKiYDyo/LaWlpWL16NeLi4up9TlZWFpydnWvty1Q1JpPxMCYTkS1jTK7tjTfewIcffojCwkIMHDgQO3bsqPe5jMnmxZhMRLaO49eG02Xs2hB2lST29/fHxYsX0aJFC6hUKks3h4jIKLRaLW7evGmxUseurq44f/48iouL9X6tVqutdT1uaBbW7NmzsXz58gaPeerUKXTv3l3vtpB5MSYTkS2ydEwGzBeXDYnJmZmZiI6OxtixYzFlyhS920emwZhMRLaIMbm6qjF51qxZiImJwYULF7Bo0SJMnDgRO3bsYAxQAMZkIrJVlo7LSo3JSmBXSWK1Wo327dtbuhlEREZnqZnR5VxdXeHq6mry88yYMQOTJk1q8DmdOnUy6Nht27YFAFy5cgV+fn4VP79y5QruvffeiudkZ2dXe11paSlycnIqXk+6YUwmIltl6ZgMmCcu6xuTL126hPDwcISGhuLTTz9t8HVt27ZFcXExcnNzq61cunLlCuOtCTAmE5GtYkyuVDUme3t7w9vbG127dkWPHj0QEBCAI0eOICQkpNbrGJPNizGZiGyZpeOyEmOyPnQZuzaEXSWJiYjIuvn4+MDHx8ckx+7YsSPatm2LPXv2VATWvLw8JCUlYdq0aQCAkJAQ5ObmIjk5GcHBwQCAvXv3QqPRYMCAASZpFxERkRLpE5MzMzMRHh6O4OBgrFu3Dmq1usHnBwcHw8nJCXv27MGYMWMAAKmpqcjIyKhzAJuIiMieNeU+WaPRAACKiorqfJwxmYiISHeWHrs2RMN350RERFYqIyMDKSkpyMjIQFlZGVJSUpCSkoL8/PyK53Tv3h3btm0DAKhUKkyfPh1Lly7F9u3bceLECUycOBH+/v549NFHAQA9evRAdHQ0pkyZgqNHj+LgwYOIjY3FuHHjLFrGjIiISKkyMzMRFhaGwMBAxMXF4erVq8jKyqq2Z1JmZia6d++Oo0ePApAZ5jExMXjttdeQmJiI5ORkTJ48GSEhIRg4cKCl3goREZFVS0pKwocffoiUlBRcuHABe/fuxVNPPYXOnTtXJHwZk4mIiMzDFGPXhuBKYiIisknz58/Hhg0bKr7v27cvACAxMRFhYWEAZAb0jRs3Kp7z+uuvo6CgAFOnTkVubi4GDRqEnTt3VitFsmnTJsTGxiIiIgJqtRpjxozBqlWrzPOmiIiIrExCQgLS0tKQlpZWq3yiVqsFAJSUlCA1NRWFhYUVj61YsaIizhYVFSEqKgr/+Mc/zNp2IiIiW+Lm5oZvv/0WCxYsQEFBAfz8/BAdHY25c+dW7K3ImExERGQephq71pdKW35nTkRERERERERERERERERENo/lpomIiIiIiIiIiIiIiIiI7AiTxEREREREREREREREREREdoRJYiIiIiIiIiIiIiIiIiIiO8IkMRERERERERERERERERGRHWGSmIiIiIiIiIiIiIiIiIjIjjBJTERERERERERERERERERkR5gkJiIiIiIiIiIiIiIiIiKyI0wSExERERERERERERERERHZESaJiYiIiIiIiIiIiIiIiIjsCJPERERERERERERERERERER2hEliIiIiIiIiIiIiIiIiIiI78v8DDG28hfdV50EAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB4kAAAKaCAYAAAAjwm9WAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hU1dbH8d+EkNBD771X6R0FFJFmR7mK14ZYLtiwxmu5elXUa8F2FSxYUa8IggVRkSodBKkiPYJ0SKgBknn/WO8QIiGkzMye8v08zzz7kMycswBl55y191oer9frFQAAAAAAAAAAAAAgKsS4DgAAAAAAAAAAAAAAEDwkiQEAAAAAAAAAAAAgipAkBgAAAAAAAAAAAIAoQpIYAAAAAAAAAAAAAKIISWIAAAAAAAAAAAAAiCIkiQEAAAAAAAAAAAAgipAkBgAAAAAAAAAAAIAoQpIYAAAAAAAAAAAAAKIISWIAAAAAAAAAAAAAiCIkiQEAAAAAAAAAAAAgipAkBsLMsmXL1L9/f9WoUUOFChVSlSpVdP755+vVV1/N9L6nn35aX375pZsgJR04cECPPfaYevXqpdKlS8vj8ei9995zFg8AAP4WLnPyggULNHToUDVp0kRFixZV9erVdeWVV2rNmjXOYgIAwJ/CZU5esWKFrrjiCtWuXVtFihRR2bJldc455+irr75yFhMAAP4WLvPyXz311FPyeDxq2rSp61CAoPF4vV6v6yAA5Mzs2bPVvXt3Va9eXdddd50qVqyopKQkzZ07V+vWrdPatWtPvLdYsWLq37+/s8Tsxo0bVatWLVWvXl21a9fWtGnTNHr0aF1//fVO4gEAwJ/CaU7u37+/fv75Z11xxRU666yztG3bNr322ms6cOCA5s6dyw0wACCshdOc/O233+qVV15Rx44dVblyZR06dEhffPGFZs6cqZEjR+rmm292EhcAAP4STvPyyf744w81aNBAHo9HNWvW1PLly12HBARFrOsAAOTcU089pYSEBC1YsEAlS5bM9L0dO3a4Ceo0KlWqpD///FMVK1bUwoUL1bZtW9chAQDgN+E0Jw8bNkxjxoxRXFzcia8NGDBAzZo10zPPPKOPPvrIYXQAAORPOM3Jffr0UZ8+fTJ9bejQoWrdurVefPFFksQAgLAXTvPyye6991516NBBaWlp2rVrl+twgKCh3DQQRtatW6cmTZqcMsFKUvny5U8cezweHTx4UO+//748Ho88Hk+mHbxbtmzRjTfeqAoVKig+Pl5NmjTRu+++m+l806ZNk8fj0WeffaaHHnpIFStWVNGiRXXRRRcpKSnpjLHGx8erYsWKef69AgAQysJpTu7UqVOmBLEk1atXT02aNNGqVaty9xsHACDEhNOcnJUCBQqoWrVq2rdvX54+DwBAKAnHeXnGjBkaO3asRowYkdvfLhD22EkMhJEaNWpozpw5Wr58ebalIT/88EPddNNNateu3YmVyHXq1JEkbd++XR06dJDH49HQoUNVrlw5TZo0SYMGDVJKSoruuuuuTOfy9WJ44IEHtGPHDo0YMUI9evTQkiVLVLhw4YD9XgEACGXhPid7vV5t375dTZo0yd1vHACAEBOOc/LBgwd1+PBhJScna+LEiZo0aZIGDBiQ9z8EAABCRLjNy2lpabr99tt10003qVmzZvn7zQPhyAsgbHz//ffeAgUKeAsUKODt2LGj9/777/dOnjzZe/To0VPeW7RoUe911113ytcHDRrkrVSpknfXrl2Zvv63v/3Nm5CQ4D106JDX6/V6p06d6pXkrVKlijclJeXE+/73v/95JXlffvnlHMe9YMECryTv6NGjc/wZAABCWbjOyT4ffvihV5L3nXfeyfVnAQAIJeE4J99yyy1eSV5J3piYGG///v29e/bsycXvGgCA0BRu8/Jrr73mTUhI8O7YscPr9Xq9Xbt29TZp0iQ3v2UgrFFuGggj559/vubMmaOLLrpIS5cu1XPPPacLLrhAVapU0cSJE8/4ea/Xqy+++EIXXnihvF6vdu3adeJ1wQUXKDk5WYsXL870mWuvvVbFixc/8ev+/furUqVK+vbbb/3++wMAIFyE85y8evVqDRkyRB07dtR1112Xq88CABBqwnFOvuuuu/TDDz/o/fffV+/evZWWlqajR4/m7jcOAEAICqd5effu3Xr00Uf1yCOPqFy5cnn7DQNhjiQxEGbatm2rcePGae/evZo/f74SExO1f/9+9e/fXytXrsz2szt37tS+ffs0atQolStXLtPrhhtukCTt2LEj02fq1auX6dcej0d169bVxo0b/fr7AgAg3ITjnLxt2zb17dtXCQkJGjt2rAoUKJDjzwIAEKrCbU5u2LChevTooWuvvVZff/21Dhw4cOJhOAAA4S5c5uWHH35YpUuX1u2335773yQQIehJDISpuLg4tW3bVm3btlX9+vV1ww036PPPP9djjz122s+kp6dLkq655prT7hw666yzAhIvAACRKlzm5OTkZPXu3Vv79u3TzJkzVblyZb+eHwAA18JlTv6r/v3765ZbbtGaNWvUoEGDgF4LAIBgCeV5+ffff9eoUaM0YsQIbd269cTXjxw5omPHjmnjxo0qUaKESpcune9rAaGMJDEQAdq0aSNJ+vPPP098zePxnPK+cuXKqXjx4kpLS1OPHj1ydO7ff/8906+9Xq/Wrl1LMhkAgCyE6px85MgRXXjhhVqzZo1+/PFHNW7cOEfXBAAgXIXqnJyVw4cPS7IFXQAARKJQm5e3bNmi9PR03XHHHbrjjjtO+X6tWrV05513asSIETmKAQhXlJsGwsjUqVOzLD/l669w8orjokWLat++fZneV6BAAV1++eX64osvtHz58lPOs3PnzlO+9sEHH2j//v0nfj127Fj9+eef6t27d15/GwAAhL1wmpPT0tI0YMAAzZkzR59//rk6duyY7fsBAAgn4TQn/7U8piQdO3ZMH3zwgQoXLswiLgBA2AuXeblp06YaP378Ka8mTZqoevXqGj9+vAYNGnTG3y8Q7jxeGp4AYaNp06Y6dOiQLr30UjVs2FBHjx7V7Nmz9dlnn6latWr65ZdfVLJkSUlS3759NX36dD3xxBOqXLmyatWqpfbt22v79u1q3769du7cqcGDB6tx48bas2ePFi9erB9//FF79uyRJE2bNk3du3dXs2bN5PF4dMMNN2j79u0aMWKEqlatqqVLl6pIkSLZxvvaa69p37592rp1q9544w1ddtllatmypSTp9ttvV0JCQkD/vAAACJRwmpPvuusuvfzyy7rwwgt15ZVXnvL9a665JiB/RgAABEM4zcmXXnqpUlJSdM4556hKlSratm2bPv74Y61evVovvPCChg0bFow/MgAAAiac5uWsdOvWTbt27coyQQ1EJC+AsDFp0iTvjTfe6G3YsKG3WLFi3ri4OG/dunW9t99+u3f79u2Z3rt69WrvOeec4y1cuLBXkve666478b3t27d7hwwZ4q1WrZq3YMGC3ooVK3rPO+8876hRo068Z+rUqV5J3k8++cSbmJjoLV++vLdw4cLevn37ejdt2pSjeGvUqOGVlOVrw4YN/vgjAQDAiXCak7t27Xra+ZjbAQBAuAunOfmTTz7x9ujRw1uhQgVvbGyst1SpUt4ePXp4J0yY4Lc/DwAAXAqneTkrXbt29TZp0iRPnwXCETuJAWTJtxLr888/V//+/V2HAwBA1GJOBgAgNDAnAwAQOpiXgfyjJzEAAAAAAAAAAAAARBGSxAAAAAAAAAAAAAAQRUgSAwAAAAAAAAAAAEAUoScxAAAAAAAAAAAAAEQRdhIDAAAAAAAAAAAAQBQhSQwAAILO6/UqJSVFFDQBAOQH8wkAAAAAAHkT6zqAYEpPT9fWrVtVvHhxeTwe1+EAAMKU1+vV/v37VblyZcXEsN4qL1JSUlSyZEklJSWpRIkSrsMBAISplJQUVatWTfv27VNCQoLrcMIS98kAAH/gPjn/mJMBAP6S03k5qpLEW7duVbVq1VyHAQCIEElJSapatarrMMLS/v37JYl5GQDgF/v37ydJnEfcJwMA/In75LxjTgYA+NuZ5uWoShIXL15ckti1BADIF9+uJd+8gtxjTgYA+ANzcv4xJwMA/IE5Of+YkwEA/pLTeTmqksS+Mh0lSpRgogUA5Bvln/KOORkA4E/MyXnHnAwA8Cfm5AzPPPOMEhMTdeedd2rEiBFnfD9zMgDA3840L9MgAgAAAAAAAAAAP1mwYIFGjhyps846y3UoAACcFkliAAAAAAAAAAD84MCBAxo4cKDeeustlSpVynU4AACcFkliAAAAAAAAAAD8YMiQIerbt6969OiR7ftSU1OVkpKS6QUAQDBFVU9iAAAAAAAAAAAC4dNPP9XixYu1YMGCM753+PDhevzxx4MQFQAAWQurncRbtmzRNddcozJlyqhw4cJq1qyZFi5c6DosAAAAAAAAAEAUS0pK0p133qmPP/5YhQoVOuP7ExMTlZycfOKVlJQUhCgBAMgQNjuJ9+7dq86dO6t79+6aNGmSypUrp99//52+DgAAAAAAAAAApxYtWqQdO3aoVatWJ76WlpamGTNm6LXXXlNqaqoKFChw4nvx8fGKj493ESoAAJLCKEn87LPPqlq1aho9evSJr9WqVcthRAAAAAAAAAAASOedd56WLVuW6Ws33HCDGjZsqAceeCBTghgAgFAQNuWmJ06cqDZt2uiKK65Q+fLl1bJlS7311lvZfiY1NVUpKSmZXgAAIP9oAQEAAAAAQIbixYuradOmmV5FixZVmTJl1LRpU9fhAQBwirBJEq9fv15vvPGG6tWrp8mTJ+u2227THXfcoffff/+0nxk+fLgSEhJOvKpVqxbEiAEAiEy+FhAFCxbUpEmTtHLlSr3wwgu0gMijTz+VrrhCOnDAdSQAACA7Dz8sPfCA5PW6jgQAgOjy1lvSNddIqamuIwGAyOLxesPj9iYuLk5t2rTR7NmzT3ztjjvu0IIFCzRnzpwsP5OamqrUk2aOlJQUVatWTcnJySpRokTAYw4lCxdKN9xgk+kDD7iOBgDCW0pKihISEqJyPpGkBx98UD///LNmzpyZ488wJ2ctPV3yVRx75hnmaADIrWifk/2BP8Oc2bBBql3bjpOTJf6oACAz5pP8488wa4cOSUWL2vGYMdJVV7mNBwDCQU7nlLDZSVypUiU1btw409caNWqkzZs3n/Yz8fHxKlGiRKZXtBo3Tlq+XFq0yHUkAIBwl5cWEFT3yNrSpRnHW7e6iwMAAGRv6lQbO3UiQQwAQDBNnpxx/Mcf7uIAgEgUNknizp0767fffsv0tTVr1qhGjRqOIgov48fbeOmlbuMAAIS/vLSASExMVHJy8olXUlJSECMOXZMmZRz36OEuDgAAkL1p02zs3t1pGAAARJ2xYzOOWW8OAP4V6zqAnLr77rvVqVMnPf3007ryyis1f/58jRo1SqNGjXIdWshbtUpavdqOv/3WSlsOHOg2JgBA+EpPT1ebNm309NNPS5Jatmyp5cuX680339R1112X5Wfi4+MVHx8fzDDDwnff2fjf/0oXXug2FgAAkDWvN2Mncbdu0rZtUsWKTkMCACAqHDkiffWVHc+eLXXs6DYeAIg0YbOTuG3btho/frw++eQTNW3aVP/+9781YsQIDSTbeUa+XcSS9NFHGQ+kAQDIi7y0gMCp9u2zm1xJ6t3baSgAACAb69ZllLe89FLrTXz8uNuYAACIBj//LO3fL1WpIrVv7zoaAIg8YbOTWJL69eunfv36uQ4j7IwbZ+MFF1gPh7Vr3cYDAAhvtIDwj6JFrdz0vHlShQrSokV248vOJAAAQouv1HTnztKyZdKBA9KKFVLz5k7DAgAg4p13nrRmjbRxoxQTI+3da/fScXGuIwOAyBA2O4mRN5s22UPnmBhp2DD7GkliAEB+3H333Zo7d66efvpprV27VmPGjNGoUaM0ZMgQ16GFlYIFpfPPlx5+WOrfX2rTRvryS9dRAQCAv5o508Zzz5XatrXj+fPdxQMAQDSpV8/undu1k0qXtoXWAAD/IEkc4Y4dk669VrroooyeDbt2WYlLAADyghYQ/te0qY3LlrmNAwAAnOqtt6RZs6TrrydJDACAK2XK2Lhqlds4ACCShFW5aeRe3brS++9n/LpiRWnbNuup1Lq1u7gAAOGNFhD5s2qV9Pbbtoira9eMJPHy5W7jAgAAp4qLs1LTku1ikqQFC9zFAwBANLjzTikpSXrwQZt/GzWSvvtOWr3adWQAEDnYSRxl6ta1kZLTAAC4M2GC9OKL0vPP26+bNbNx2TLJ63UXFwAAyJ4vSbx8uXTwoNtYAACIVMePSx9/LI0fnzHfNmxoI0liAPAfksQRbOFC6ZdfMj9s9iWJN21yExMAAJAmTbKxd28bGzaUChSQ9u6V/vzTXVwAACCzBx6Q/vEPacUK+3WVKlLlylJamt1vAwAA/5s+Xdq9WypbVjr7bPuaL0lMuWkA8B+SxBHs0UelVq2kESMyvjZ8uLRnj3T//c7CAgAgqiUnSz//bMe+JHGhQlK9enZMyWkAAEKD12vtm954wx5U+9x4o3TPPVK5cu5iAwAgko0da+Oll0qx/98ws1EjGzdtkg4dchMXAEQaksQRKjlZ+vFHO+7VK+PrFStKpUq5iQkAANj8nJYmNWgg1aqV8XVfX+Jly9zEBQAIT1u2bNE111yjMmXKqHDhwmrWrJkWLlzoOqyIsHq1tH27LeZq3z7j6//+t7WMaNDAXWwAAESqtDRp3Dg77t8/4+tly0qlS9sirt9/dxMbAESaWNcBIDC++UY6dszKcPhWWQEAAPd8paZPXsQlSddcYw+gzz8/+DEBAMLT3r171blzZ3Xv3l2TJk1SuXLl9Pvvv6sUK4P9YupUGzt1kuLj3cYCAEC0+PlnaccO2+jUvXvG1z0eu29OS5OKFHEXHwBEEpLEEWr8eBsvuyzz19PSpLvvltaulT77TCpePPixAQAQrbxe6bvv7NhXatrn4ouDHw8AILw9++yzqlatmkaPHn3ia7VOLlOBfPEliU9+QO2TnCwtXCi1a8d9NQAA/uQrNX3xxVLBgpm/9/LLwY8HACIZ5aYj0OHD0rff2vGll2b+XoEC0ief2C6mdeuCHxsAANHszz+l9HSpcGGpa1fX0QAAwt3EiRPVpk0bXXHFFSpfvrxatmypt956K9vPpKamKiUlJdMLp0pPl6ZNs+OsksTt2kk9ekizZwc1LAAAIl7z5lKHDplLTQMAAoMkcQT64Qfp0CGpWjWpdetTv1+3ro1r1wY3LgAAol3lytKWLdKKFdbf8K9Wr7ZKHzt2BD82AED4Wb9+vd544w3Vq1dPkydP1m233aY77rhD77///mk/M3z4cCUkJJx4VatWLYgRh4+VK6Vdu6ycZdu2p37f97X584MbFwAAkW7QIGnOHKlv36y/v3+/tHx5cGMCgEhFkjgC+XYRX3aZ9Wr4q3r1bCRJDABA8Hk80ukqgV5zjfS3v1kPJgAAziQ9PV2tWrXS008/rZYtW+rmm2/W4MGD9eabb572M4mJiUpOTj7xSkpKCmLE4WP7dql2balzZyku7tTv+5LECxYENy4AAKLZhg1SiRI2D6eluY4GAMIfSeII9Oqr0o8/SrfdlvX32UkMAEDwHT9upSuz07SpjcuWBT4eAED4q1Spkho3bpzpa40aNdLmzZtP+5n4+HiVKFEi0wunOu88a9H05ZdZf79dOxvnz5e83qCFBQBAxPJ6rU3i3r2nf0/16lJ8vHTkiLRpU/BiA4BIRZI4AhUsaDe0DRpk/X1fkvj334MXEwAA0W7iRKlCBSkx8fTv8SWJKZ0FAMiJzp0767fffsv0tTVr1qhGjRqOIoo8RYpk/fUWLaTYWNtxzGZsAADyb+FC6eqrpTp1pGPHsn5PgQJS/fp2vHp18GIDgEhFkjgKsZMYAIDgmzTJehseOnT69zRrZiM7iQEAOXH33Xdr7ty5evrpp7V27VqNGTNGo0aN0pAhQ1yHFtYOH7YKINkpXDhj3qYvMQAA+Td2rI09e9omqNNp2NDGVasCHxMARDqSxBEkPV3q2FG66y5pz57Tv8+XJD58WEpNDUpoAABENa/XksSS1Lv36d/n20n8++9WPgsAgOy0bdtW48eP1yeffKKmTZvq3//+t0aMGKGBAwe6Di2sjRwplSkj/etf2b/PV3KavsQAAOSP1yt98YUd9++f/XsbNbKRncQAkH+xrgOA/8ybJ82dK61YIT377OnfV7q0tHu3jQAAIPCWL5e2bJEKFZK6dj39+ypXlkqVsh5Mq1dbKUsAALLTr18/9evXz3UYEWXqVCkl5fSlpn0GDrS5ulu3YEQFAEDkWrpUWrfOKnVkt7BaYicxAPgTO4kjyPjxNvbtK8XHZ/9eEsQAAASPbxdx9+5203s6Hg99iQEAcCktTZoxw467d8/+vWefLd16a8bDagAAkDe+UtO9e0tFi2b/XnYSA4D/sJM4Qni90rhxdnzZZW5jAQAAmeWk1LRPYqI0bJjUqVNgYwIAAKdaulTat08qXlxq2dJ1NAAARD6vNyNJfKZS05JUv740eLAli9PSpAIFAhsfAEQyksQRYvlyK8kRH5+zB9DffSe99prUps2Z+ywBAIC8S0mRZs2y45zM0Tl5DwAACIypU2085xwpNgdPTNaskaZNk5o0kTp3DmhoAABEpA0bbD6Ni7MKmWdSpIg0alTg4wKAaECSOEL4dhH37CkVK3bm9+/aJX3zjXToUGDjAgAg2h09Kt13n7RypVS3rutoAABAdnxJ4jOVmvYZNUp64QXpH/8gSQwAQF7Uri1t2SItWiSVKOE6GgCILiSJI4SvH3FOS037HlKvXRuYeAAAgClbVnr66Zy/3+uVvvpKWrZMuv12bpIBAAiW48elmTPtOKdJ4nbtbJw/PzAxAQAQDSpVkvr1y/n7Dx+23cder9SiRcDCAoCIF+M6AOTf8ePS2WdLNWpIF16Ys8/4ksRJSTapAgCA0ODx2G6khx+2dhIAACA4UlOle+6xUpfNm+fsM23b2rh0qX0eABC93njjDZ111lkqUaKESpQooY4dO2rSpEmuw4pIH35oyeF//tN1JAAQ3kgSR4DYWOnVV61/Q5kyOftMmTJSQoIdr18fuNgAAIhmSUnS119LBw/m7nPNmtm4bJn/YwIAAFkrWlR69FGbuwsUyNlnata0qiHHjlmiGAAQvapWrapnnnlGixYt0sKFC3Xuuefq4osv1ooVK1yHFrKefVbq0UP69tvcfa5hQxtXrfJ/TAAQTUgSRxCPJ3fvpeQ0AACB9emnVuVjwIDcfa5pUxvZSQwAQGjzeDJ2Ey9Y4DYWAIBbF154ofr06aN69eqpfv36euqpp1SsWDHNnTs3y/enpqYqJSUl0yvafPqpNGWKtG1b7j7nSxJv3EiVTADID5LEYW7XLmn6dCktLfefJUkMAEBg+SqL9eyZu8+xkxgAgOA6dkwaN87usXOLvsQAgL9KS0vTp59+qoMHD6pjx45Zvmf48OFKSEg48apWrVqQo3Rr3TppyRKr3nHxxbn7bLlyUunS1pN4zZqAhAcAUYEkcZgbO1bq1s16JuVWvXpS8eLSkSN+DwsAgKi3f780a5Yd9+mTu8+evJPY6/VvXAAA4FSLFkmXX247k3I79/p2EpMkBgAsW7ZMxYoVU3x8vG699VaNHz9ejRs3zvK9iYmJSk5OPvFKSkoKcrRuffGFjd2757yFoo/Hk7GbePVq/8YFANEk1nUAyJ9x42w899zcf/bRR6UnnshdmWoAAJAzU6bYrqS6dTOqd+RUo0ZSTIy0e7eV3apUKTAxAgAAM3Wqjeeck/t75C5dpO+/l9q08X9cAIDw0qBBAy1ZskTJyckaO3asrrvuOk2fPj3LRHF8fLzi4+MdRBkaxo61sX//vH2+YUNp9mySxACQH+wkDmN792bcyF56ae4/X7AgCWIAAALFV2q6d+/cf7Zw4YzEMn2JAQAIvGnTbOzWLfefTUiQzj9fKlXKnxEBAMJRXFyc6tatq9atW2v48OFq3ry5Xn75ZddhhZxNm6QFC+zZ9CWX5O0cjRrZuGqV38ICgKjDTuIw9vXX0vHjVpKyXj3X0QAAAB+vN39JYkl65x2pZEmpfn2/hQUAALJw9GhGi4ju3d3GAgCILOnp6UpNTXUdRsjxVcc85xypQoW8naNHD+nZZ6X27f0XFwBEG5LEYcw3mV52Wd7PMXCg9Msv0pdf8hAaAAB/+e03KSlJKlQobzuSJCtdCQAAAm/BAunQIalsWalJk7yd47ffpHfftWog//qXX8MDAISJxMRE9e7dW9WrV9f+/fs1ZswYTZs2TZMnT3YdWsipW1fq2TNv1TF9WrSwFwAg7yg3HaYOHpS++86O85MkXrnSSnKsWeOfuAAAgNSggfVF+vhje1gMAABCl6+NU7duUkwen5Js2yY995xVAglXy5ZZX2VyGQCQNzt27NC1116rBg0a6LzzztOCBQs0efJknX/++a5DCzkXXmjzza23uo4EAKIbO4nD1JQp0pEjUq1a0lln5f08detKS5ZIa9f6LTQAAKKex2OJ4gYN8n6Ow4elN96wxVwjR+b9oTUAAMierx9xfkpNt25tc/Uff0h//ilVquSX0ILq8sul33+XevWy1hkAgNx5J5xXCoWptWulpUul5s3tOTcAIHd43BimLrxQmj9feu01exCdV77JkyQxAAChpWBB6aGHpLffltavdx0NAACR6+23rVR0v355P0exYlKjRna8YIF/4gqm9HRLEPscP+4uFgBAZBs7Vtq61T/nSkyU+veXJk70z/kAINqQJA5THo/Utq3Up0/+zlOvno0kiQEA8I/Jk+0mddy4/J0nNlZq3NiOly/Pf1wAACBrNWtKN9wgVa+ev/O0a2djOCaJFy3K/Otff3UTBwAgsm3bJl15pVS1qrR9e/7P51ugtXp1/s8FANGIJHGUYycxAAD+NX689MUXGf0N86NpUxtJEgMAEPp8SeL5893GkRc1alilMp9Zs9zFAgCIXF9+aS0N2raVKlTI//kaNrSRJDEA5E3YJomfeeYZeTwe3XXXXa5DCbrERGnQIOu3kF++JPHGjdKxY/k/HwAA0czrlSZNsuPevfN/vmbNbFy2LP/nAgAAp3r4Yemll6QdO/J/rrZtbVywIPx6+pYvLw0ZIv30k/T119K117qOCAAQicaOtfHyy/1zPl+SeNUq/5wPAKJNrOsA8mLBggUaOXKkzjrrLNehBF1amjR6tJXjGDAg/+erVMluBitXlnbvlipWzP85AQCIVqtWSZs3S/HxUrdu+T8fO4kBAAicI0ek55+XUlOtlVP58vk7X7Nm9jNATIyV06xUyT9xBlP37q4jAABEql27pGnT7NhfSeIGDTLOvWuXVLasf84LANEi7HYSHzhwQAMHDtRbb72lUqVKuQ4n6ObMsQRxyZL+efjs8djN6y+/kCAGACC/fLuIu3WTihTJ//l8O4nXrLEH2AAAwH/mzLH5tVIlqX79/J8vLk5av17auTO8EsRTp0ojR0p//OE6EgBAJJswwTZAtWwp1anjn3MWLSpVr27Hv/3mn3MCQDQJuyTxkCFD1LdvX/Xo0eOM701NTVVKSkqmV7gbN87GCy+0G1B/8Hj8cx4AAKKdP0tNS1KVKrYwLC3NHjoDAAD/mTrVxu7d/XdfXLly+N1jv/mmdOutliiWpLlzpX/+U5o82W1cAIDI4is13b+/f89LyWkAyLuwShJ/+umnWrx4sYYPH56j9w8fPlwJCQknXtWqVQtwhIHl9WYkiS+7zG0sAAD4PPPMM/J4PLrrrrtch+LUgQPSjBl27K8kscdju5z275caNfLPOQEAgPGVvPRHla5wdfx4RjK4Tx8bx4+Xnn5a+uILd3EBACLLoUPSzJl27K9S0z733GMJaN88BgDIubBJEiclJenOO+/Uxx9/rEKFCuXoM4mJiUpOTj7xSkpKCnCUgbVkibRpk1S4sNSzp//O+/33Vs7S3xM0ACDyLViwQCNHjtRZZ53lOhTntm6VWrWS6tWzl780bGgltAAAgP8cOmQ7ZiX/9uFNTrZ76wYNpGPH/HfeQJkzx2IuU0Zq186+1qWLjbNmuYsLABBZihSxtgbjxmX0EfaXnj1t7q1c2b/nBYBoEOs6gJxatGiRduzYoVatWp34WlpammbMmKHXXntNqampKlCgQKbPxMfHKz4+PtihBoxvF3Hv3v7pc+hTsKC0fDm9DgEAuXPgwAENHDhQb731lp588sls35uamqrUkyaaSGgB8Vf169vD5tTU8CszCQBAtJk925K4Vav6ry+iJBUvLk2ZYonXFSukFi38d+5A+OYbG3v1knyPVDp1snHVKmnXLqlsWTexAQAiS8mS0qWXuo4CAHCysNlJfN5552nZsmVasmTJiVebNm00cOBALVmy5JQEcSSqWNFWWvm71HTdujZu2GClpgAAyIkhQ4aob9++6tGjxxnfG2ktILLj7/Vp27ZJ//iHdMUV/j0vAADRbP16KS7Ov/2IJSkmRmrTxo4XLPDfeQPl229t7Ns342tlykiNG9vxzz8HPyYAQGTxegN7/vR0aeJE6bnnpCNHAnstAIg0YZMkLl68uJo2bZrpVbRoUZUpU0ZNmzZ1HV5QDBkirV4tXXWVf89bpYo90D5+3MpZAwBwJp9++qkWL16s4cOH5+j9kdYC4q/27bNXIMTFSW+8YT2WInADNgAATtx8s83dzz3n/3P7yjbPn+//c/vT5s3SsmWW2P5rSytKTgMA/OXTT21ufO+9wJzf45Guu0564AFpzZrAXAMAIlXYJImRIcbPf2sxMRnltdau9e+5AQCRJykpSXfeeac+/vhjFSpUKEefiY+PV4kSJTK9Isk771gpxnvv9f+5S5fO6K20YoX/zw8AQLQqXNgqdvlb27Y2hnqSePFiKzHdoYPtHj4ZSWIAgL98/rlV11i3LjDn93ikRo3sePXqwFwDACJVWCeJp02bphEjRrgOIyimTw9suQxfyWmSxACAM1m0aJF27NihVq1aKTY2VrGxsZo+fbpeeeUVxcbGKi0tzXWIQTdpkpSWZn0NA6FZMxuXLw/M+QEAkeGZZ56Rx+PRXXfd5TqUkBbospe+ncQrVkgHDwb2WvlxySXSzp3S22+f+j1fknjjRtpSAQDy7sABu1+WpP79A3edhg1tXLUqcNcAgEgU1kniaJGUJHXrJlWoIO3fH5hrkCQGAOTUeeedp2XLlmnJkiUnXm3atNHAgQO1ZMkSFShQwHWIQXXggDRzph337h2Ya/g6ayxbFpjzAwDC34IFCzRy5EidddZZrkMJeQ8/LLVsKX3ySWDOX6WKVKmSLSD75ZfAXMNfSpXK2H11spo1pZUrpS1bpNjYoIcFAIgQkybZxqc6daRA/ojiSxKzkxgAcocf9cPAl1/aeNZZUvHigblGkya2S6lcucCcHwAQOYoXL66mvqzl/ytatKjKlClzytejwU8/SUePSrVqSfXrB+Yavj9WdhIDALJy4MABDRw4UG+99ZaefPJJ1+GEvClTpCVLbP4OlLPPtl24gbxGfni9Vp7zdE4u3QkAQF6NHWtj//7Zzzv5RblpAMgbdhKHgfHjbbz00sBd48YbpV9/lR56KHDXAAAgEvlKZ/XuHbibXl+56WXLAl8iEwAQfoYMGaK+ffuqR48eZ3xvamqqUlJSMr2iyf790sKFdty9e+Cu8+mn0rx50rnnBu4a+TFsmNSxo/Ttt64jAQBEqsOHpW++seNAlpqWMnYS//ablJ4e2GsBQCRhJ3GI27XL+hFLgU0SAwCQH9OmTXMdghNeb+YkcaA0amQJ6Ph4KSVFSkgI3LUAAOHl008/1eLFi7VgwYIcvX/48OF6/PHHAxxV6Jo508pA164tVa8euOsEcrdUfnm90sSJ0vr10rFjp3/f3r3SkCG2oHzpUinKOooAAPJp8mTp4EGpRg2pdevAXqtWLSkuzhLTmzdb2wQAwJmxkzjETZxoq59atrTJLtC8XlZbAQCQU6tXS5s22c1oIHcjFSliD2r/+IMEMQAgQ1JSku688059/PHHKlSoUI4+k5iYqOTk5BOvpKSkAEcZWnzr2gI5b5/s0KHQKzm9Zo0liAsWlM477/TvK1FC+vpracUKWl4AAHKvQgXbQfz3vwd+8VRsrPTFF9LixVLlyoG9FgBEEpLEIW7cOBsvuyzw17rsMut5PHVq4K8FAEAkqFBBevNNKTFRKlo0sNciOQwA+KtFixZpx44datWqlWJjYxUbG6vp06frlVdeUWxsrNLS0k75THx8vEqUKJHpFU1897vdugX+WpdeaonWn34K/LVyw1diumtXqVix07+vQAGpUyc7njUr8HEBACJLx47S559L//53cK7Xr59ttIqLC871ACASkCQOYQcOSD/8YMfBKDV97JiVAPn998BfCwCASFC6tHTLLdK//uU6EgBANDrvvPO0bNkyLVmy5MSrTZs2GjhwoJYsWaIC1AfOJDnZdhhJwdlJXLSolbbOYSXwoPH1h+zb98zv7dLFxpkzAxcPAAAAADfoSRzCihWzvj8//ig1bhz469Wta+PatYG/FgAAyJ2lS6X77rO+xF995ToaAEAoKF68uJo2bZrpa0WLFlWZMmVO+TqklBTpqqusfUOVKoG/Xtu20scfS/PnB/5aObV/vzRjhh336XPm95+cJPZ6Q7vXMgAgdEycKDVoYK9g2bpV+t//pOPHpXvvDd51ASCckSQOcQ0b2isYSBIDAJBz8+fbzqC+faWaNQN/vbg4qzBStKiUni7FUA8GAIBcqVZN+uij4F2vXTsbFywInQTrlClWRaxuXal+/TO/v1076/O4dau0aVNwfuYBAIS3o0el666T9u2T5s6V2rcPznW3bZPuvlsqV44kMQDkFElinECSGACAnHv/fem//5VWrLAx0OrVs0TxwYPSxo1S7dqBvyYAIPxMmzbNdQj4fy1aWIJ1+3YpKUmqXt11RPbg/PLLc74YvUgRqXVrad4860tMkhgAcCZTp1qCuEIFqU2b4F3Xt/hp505p926pTJngXRsAwhV7UELU999LV1whff118K5Zr56N69bZDiUAAJA1r1eaNMmOe/cOzjVjY6VGjex4+fLgXBMAgEhx4ID066/BvdctXFhq1syOQ6UvcefO0tix0pNP5vwzXbtKrVpJBQsGLi4AQOQYO9bGyy6TChQI3nWLFbOqIZL022/Buy4AhDOSxCHqs89sQp08OXjXrF7dHkAfOWKlpAAAQNbWrJE2bLCdveeeG7zr+h40kyQGACB3fvxRat48o8dusPhKTodSX+LceuYZadEiacAA15EAAELd8ePS+PF23L9/8K/vW1i9alXwrw0A4YgkcQg6flyaMMGOL7sseNeNjZV69pQuukhKTQ3edQEACDe+XcTnnGM9goOlaVMbly0L3jUBAIgEvirczZsH97o9e0pXXx28fozZmT/fFrp5vbn7XCj0UgaAcDB8+HC1bdtWxYsXV/ny5XXJJZfotyjb0jp9upV6LlvW7peDzddOYfXq4F8bAMIRSeIQNHNmRt+Es88O7rW/+cYS1HXqBPe6AACEk2CXmvZhJzEAAHkzdaqN3bsH97qXXSZ9/HFwF4Cfzl13SQ0aSB99lLfPHz4s7dnj15AAIKJMnz5dQ4YM0dy5c/XDDz/o2LFj6tmzpw4ePOg6tKDxlZq+5BLbkBRsviQxO4kBIGdIEocgX0mOiy5yM5kCAIDTO3TIVkdLwU8SN20qlS4tVayY+11AAABEq127rB+xJHXr5jQUZ3btkubOteO8/Bk8/bSUkCA995xfwwKAiPLdd9/p+uuvV5MmTdS8eXO999572rx5sxYtWuQ6tKDweq29g+Sm1LREuWkAyC1SkCEmPV0aN86OXa009nqlAwek4sXdXB8AgFC2dKmUlibVqJGxSjlYqlWzh7yUfQQAIOd8i7uaNJHKlw/+9dPTpd9+kwoWlOrWDf71Jen77+1e/6yz7OeJ3KpSRTp2TJo1y/+xAUCkSk5OliSVLl06y++npqYq9aSefykpKUGJK1A8HmuN9P33wa/c4dOmjTRvXvDv1QEgXLGTOMQsXCht2SIVKyb16BH868+caauDu3QJ/rUBAAgHHTtaW4gJE4KfrPV4SBADAJBbvn7ErnYRP/SQ1Lix9NJLbq4vWWspSerTJ2+f9z0jWLBAOnLEPzEBQCRLT0/XXXfdpc6dO6tp06ZZvmf48OFKSEg48aqWl1U8IaZQIauOGRfn5vrFiknt2kklSri5PgCEG5LEIebQIaltW6lfP5tUg61CBWn/fmntWspYAgBwOiVKSM2bu40hLc3t9QEACBeu+hH7tGxp4/z5bq6fliZ9950d5zVJXLu2tbs4etQSxQCA7A0ZMkTLly/Xp59+etr3JCYmKjk5+cQrKSkpiBH6l9fLs2QACEckiUNMt2524/jBB26uX7OmFBNjyept29zEAABAqAqFm96vv7YHtZdf7joSAADCw4gRtpvX1U7idu1sXLpUOqmqaNDMmyft2SOVLGkVUfLC48nYTUzJaQDI3tChQ/X1119r6tSpqlq16mnfFx8frxIlSmR6hau5c60f8DPPuI5E+ukn6fbbpY8/dh0JAIQ+ksQhqmBBN9eNi7NEsWS7iQEAQIbXXrOKHx9+6C6G4sWlDRukX391FwMAAOGkRw/pqaekMmXcXL9mTalsWevpu3Rp8K//7bc2XnCBFBub9/OQJAaA7Hm9Xg0dOlTjx4/XTz/9pFq1arkOKWjGjpV++01avtx1JNbO8bXXMlotAABOjyRxCDl4MDR6+9Sta+Pvv7uNAwCAUPPNN3bDuWOHuxh87aw2bJAOHHAXBwAAyBmPJ2M3sYuS04mJ0ldfSXfdlb/z+JLEP/8spafnOywAiDhDhgzRRx99pDFjxqh48eLatm2btm3bpsOHD7sOLaC8XksSS6FR8aphQxtXr3YbBwCEA5LEIeS996SiRaVbbnEbhy9JzE5iAAAyHDokTZtmx717u4ujTBmpUiU7XrHCXRwAAISD4cOtVYPrBdlt29roop9v0aJSv35Shw75O0/z5tLf/ib961/WmxgAkNkbb7yh5ORkdevWTZUqVTrx+uyzz1yHFlALF0qbN9t806uX62gyJ4lZ1AQA2ctHoSH428qVNnGVLu02DpLEAACcato06yNYvbr1WnKpaVPpzz+tlFf79m5jAQAgVP35p/Ui9nik3bulQoXcxeJyJ7G/xMZKn3ziOgoACF1er9d1CE588YWNfftKhQu7jUWSate2Vo6HD0tJSVKNGq4jAoDQxU7iELJypY2uHzy3bOmfVcYAAESSSZNs7N3bHja71KyZjcuWuY0DAIBQNn26jS1aSKVKOQ1F7dtLjzwi/ec/wb3uAw9I//yntHFjcK8LAIgOJ5ea7t/fbSw+sbFSvXp2TMlpAMgeO4lDiC9J3Lix2zi6dbMXAADIcHKS2DVfX2KSxAAAnN7UqTaGwv1tmTLSE08E95pHj0r//a904IB06aVSzZr5P6fXK61fbzuir7oq/+cDAIS3pUuldetsB3Eo3Cv7NGxoz9pXrZIuuMB1NAAQukgSh4hdu6QdO+zY1zcBAACEht9/txvfggWlc891HY1V/WjXTmrVynUkAACELl+SuHt3t3G4MnOmJYgrVPDfzwyHDkkNGkhpaVLnztaGAwAQvQoVkm680aptFSvmOpoMvkqdmza5jQMAQh1J4hCxapWNNWqExoTq9Up79khxcVLx4q6jAQDArePHpQEDbAyFebFFC2nePNdRAAAQurZssUVeMTHSOee4jsYkJ1vidv/+4OzC/fZbG3v3tj8Hfyha1BLOCxZIs2ZJV1/tn/MCAMJTw4bSO++4juJUd90l3X23VfIAAJwePYlDRKiUmva59FKpbFlp3DjXkQAA4F6jRtKnn2b0WgIAAKFt2jQbW7WSEhKchnLCkiXShRdan+Bg+OYbG/v29e95u3SxceZM/54XAAB/KVuWBDEA5ARJ4hBRp4507bVSr16uIzGVKtm4dq3bOAAAwOmlplrlDwAAkNmCBTaGQj9in9atbUdvUpL055+Bvda6ddJvv0mxsdL55/v33L4k8axZ/j0vACC8rF4tLVokHTvmOhIAQF6RJA4RPXpI778v3XGH60hM3bo2/v672zgAAHBt/XppxQprxRBKXn7ZSj4GazcSAADh5KWX7OH10KGuI8lQrFhG9TBfEjtQfKWmu3Tx/07qzp1tXL5c2rvXv+cGAISPV16R2rSRHnrIdSRZe+opqU8fafFi15EAQOgiSYws+ZLE7CQGAES7ESOkpk1DLxlbqZKUlmYPaAEAQGYej9SggVSjhutIMmvb1sZAJ4mPHrVSm/4uNS1JFSpI9erZ8ezZ/j8/ACA8+OaADh3cxnE606ZJkyZZuwcAQNZIEoeAI0ekVatCqzTHyUniUNs5BQBAME2aZGOnTm7j+KumTW1cvlxKT3cbCwAAyJl27WycPz+w17nnHmnbNmnIkMCcn5LTABDd9u+Xli2z444d3cZyOo0a2bh6tds4ACCUkSQOAb/8YiWn6td3HUmG2rVtTE6Wdu92GwsAAK6sXWuvggWl885zHU1m9epJcXHSgQPS5s2uowEAIHTce6905ZXS3LmuIzmVL0m8YEHgF2QXKCAVLhyYc996qzR+vCWjAQDRZ/58W6xco4ZUubLraLLWsKGNq1a5jQMAQhlJ4hCwcqWNvnJNoaBwYalaNTum5DQAIFr99JONnTpJxYu7jeWvChbMuOn1reAGAADS2LHS55/boudQ06yZFB9vvXzXrQvMNf78M/AJ6HbtpEsusZLWAIDo4ys1HWoVt07GTmIAODOSxCHAlyRu3NhtHH919dXS7bdLJUu6jgQAADdmzLCxWzenYZzWySWnAQCAtHGjtGmTFBsrde7sOppTFSxoSewVK6Ratfx/fq/XekNWq8YiMgBA4MyZY2OolpqWMhZVr19v7R4BAKeKdR0AQjdJ/MwzriMAAMAdr1eaPt2OzznHbSyn06yZjTwEBgDATJ1qY9u2UrFibmM5nX79AnfuFSusDUWhQlKdOoG7jiQtXSp9+aXt1LryysBeCwAQOtLTM5LEobyTuGJFKSHBKousXZuxyBoAkCFsdhIPHz5cbdu2VfHixVW+fHldcskl+u2331yH5RehmiQGACCabdwo/fGH7fjp0MF1NFnr3Nkqf5x/vutIAAAIDb4kcffubuNw5ZtvbOzeXSpSJLDX+ukn6V//kj78MLDXAQCEFq9XGjdOeuop6ayzXEdzeh6P7SZOSJC2b3cdDQCEprDZSTx9+nQNGTJEbdu21fHjx/XQQw+pZ8+eWrlypYoWLeo6vDzbv99W+UoZfRJCyd691s+IBDYAINpUqGAPWtevD/xD1rw6+2x7AQAAe2gdDkni1FTpzTelRYukd96xBWn+8u23Nvbt679znk6XLjb+/LPtKosJm20IAID8KFDA5tlQnmt9fvxRKlrUEsYAgFOFTZL4u+++y/Tr9957T+XLl9eiRYt0TqjWgMyB1attrFBBKlPGbSx/tWyZrQYrXVravdt1NAAABFeRIlKfPq6jAAAAObVuXUYVkFAuf1mwoPTYY1b+8u67pZYt/XPevXstYSsF52eYFi3s56W9e61CGmU8AQChJlRbTwBAqAjbdZ7JycmSpNKlS5/2PampqUpJScn0CjXly0tPPCENGeI6klPVrm3jnj32AgAAoSctTVqzxh6KAwCiTyS3ZsqtvXuldu2sHUOoVgGRbMdt27Z2vGCB/877ww/2c0GjRlKtWv477+mc3JJj1qzAXw8AEBqeekr6/HPp4EHXkQAA8issk8Tp6em666671LlzZzXNZqnq8OHDlZCQcOJVrVq1IEaZMzVqSI88Yq9QU7SoVKmSHa9b5zYWAACC6c8/pcRE6fvvXUdyZkOGSA0aWNlKAED08bVmmjt3rn744QcdO3ZMPXv21MEofHLbtq00b56Vlgx1viTx/Pn+O6evH3EwSk37+NpekCQGgOiwZ4/08MPSlVdKhw+7jubM9uyRLr7Yql+kp7uOBgBCT1gmiYcMGaLly5fr008/zfZ9iYmJSk5OPvFKSkoKUoSRo149G9eudRsHACB0RMOOpWnTpGeekR56yHUkZ9a4sY3Ll7uNAwDgxnfffafrr79eTZo0UfPmzfXee+9p8+bNWrRokevQnClQwHUEZ9aunY3+3Ek8eLA0bJh0xRX+O+eZ+PoSkyQGgOgwd66N9etLZcu6jSUniheXJk2Sli6l+hYAZCXsksRDhw7V119/ralTp6pq1arZvjc+Pl4lSpTI9Ao1P/4orV8fuiuZ6ta1kSQxAMAnGnYszZhh4znnuI0jJ5o1s3HZMrdxAABCw5laM4VDW6a82L/fXuHCt5N4+XL/levs0kV64YWMBHQwtG9vSfm9e6Xdu4N3XQCAG7Nn29ipk9s4cqpgwYzn26tXu40FAEJR2CSJvV6vhg4dqvHjx+unn35SrWA02Amww4elnj2lOnWkXbtcR5M1ksQAgL+Khh1L4ZQk9nXeWL+enlAAEO1y0popHNoy5cWYMVKpUtaGIRxUqSJVrmwLxn/5xXU0eVe8uLRihZXzLFPGdTQAgECbM8fGcEkSS1KjRjauWuU2DgAIRWGTJB4yZIg++ugjjRkzRsWLF9e2bdu0bds2HQ6H5gen8dtvktdrN1LlyrmOJmu+JPHvv7uNAwAQus60Y0kKr11LO3dKK1fasa/PXigrV06qUMGOV6xwGwsAwK2ctGaK1LZMU6dKaWlS+fKuI8m5du2kmBj/LMp+4QXphx+ko0fzf67catAgPEp8AwDy5/hxad48O+7Y0W0sudGwoY3sJAaAU4VNkviNN95QcnKyunXrpkqVKp14ffbZZ65DyzPfA+jGjSWPx20sp9Oiha3EvvFG15EAAEJRTnYsSeG1a2nmTBubNg2fHTG+P3r6EgNA9Mppa6ZwaMuUW16vNG2aHXfv7jSUXHntNSklRbr++vydZ/t26d57rVIZJZ8BAIHia5FQooQ9zw4XviQxO4kB4FRhkyT2er1Zvq7P792UQycniUNVvXp243rTTa4jAQCEopzsWJLCa9dSOJWa9vH1JSZJDADRJxJbM+XW6tWWKC1UyHrkhosqVaSiRfN/nu++s7FVK6lSpfyfL7eOHZOuu06qX1/6/wIzAIAI5Osw1aGDVcIIF75y06G0k9jrlSZMkLZscR0JgGgX6zqAaBYOSWIAAE7Ht2NpxowZ2e5YkmzXUnx8fJAiy5+lS20MpyRxv362mvu884J/7d27pcOHpTP8JwAACJAhQ4ZozJgxmjBhwonWTJKUkJCgwoULO44uOKZOtbFTJylMftzwq2++sbFvXzfXL1hQmj3bymbPmSP16uUmDgBAYN14o3T++VYFI5w0aCAVK2b3rEeO2KIy10aPlgYNkrp0yahmBgAuhNGan8gTLknilBRbKRbCm74AAEEU6TuWpkyxHbnh9IDzvPOkxx93k9h+4AEr3/Xhh8G/NgAgMlsz5ZYvSRxOpaZ9hg+3HVk//pi3zx87Jn3/vR336eO/uHKrSxcbZ81yFwMAILA8Hql69Yx2R+GieHF7vr1wYWgkiCW7f5ds3tyxw20sAKIbSWJHUlNtla0U+kni22+X2rTh4S8AwAwZMkQfffSRxowZc2LH0rZt23T48GHXoflFTIzUpImUkOA6ktA3b570zjvWl6poUemVV1hUBgDBFomtmXIjPT08+xH7rFxp8+ns2Xn7/OzZVuK5bFmpbVv/xpYbviQxu6EAAKHI43EdQWYnP2f3VQQBABdIEjvi9UoffCA99pibnkG5Ua+ejb6kNgAgurFjKTRt2SJ9+620aVNwrpeWJg0ZYsfXXiu9/rp0553SmDHBuT4AAJJ0/Lj0xBPSVVe5TZLmlS/mBQvy9vlvv7WxVy+pQAH/xJQXviTx/Pm2KB4AotGMGTN04YUXqnLlyvJ4PPryyy9dh+Q3kydLl1wivf++60jyx+t1HYE55xzpX/+y4wkTnIYCIMqRJHakUCHp6qttMgi1lUx/VbeujSSJAQBSZO9Yuuwym5/XrHEdSe794x/Wi3DixOBc7+23rR1FiRLSc89Jf/ubff2TT4JzfQAAJCkuTrrtNlukFBfnOprca9fOxvnz8/bg+pdfbHTVj9infn3bzXzkiLR4sdtYAMCVgwcPqnnz5nr99dddh+J3P/5oycw5c1xHkjfffWcVw664wnUkGS6+2Mbvv5cipDAbgDBEkhhn5EsS//672zgAAAikgwelr76yJGd8vOtocq9ZMxuXLw/8tXbvlh56yI7//W+pQgXp8sulggWlpUutdCYAADizFi2k2FjrR7h5c+4/P3my9Ouv7pPEHg99iQGgd+/eevLJJ3XppZe6DsXvfMnhjh3dxpFXcXF2n/rrr27jGDdOuuMOi6V5c+vxfPQoC6wAuEOS2JFvvrFVQvv2uY7kzOrUsXHbNunAAbexAAAQKHPmWMnK6tWlGjVcR5N7TZvauGxZ4K/10EPSnj3SWWfZDmZJKl3aSl1K7CYGAARHerpVtvjtt9ApH5lbhQrZfCrlreS0x2MLxYoX929ceXH22fbzSCjEAgDhIDU1VSkpKZleoejoUWnhQjvu1MltLHnVsKGN69a5bYvw8svSq69KX3xhc/jYsbZQrHNndzEBiG4kiR154AHpggukuXNdR3JmpUpJZcrY8bp1bmMBACBQZsyw8Zxz3MaRVyfvJA7kg3Kv18pJxsVJr71mu598rr7axjFjwvdhPQAgfCxbJg0eLLVubQu9wpWvL/H8+bn7XKjNtXffbX8nt97qOhIACA/Dhw9XQkLCiVe1atVch5SlX36xxGrZshkVJ8NNpUrWKik93V1LxdWr7blDTIx04432tbZtbcE1ALhCktiBY8cyeh02buw2lpyiLzEAINKFe5K4fn0r97x/f97KVeaUxyM99ZS0aZPtGDrZhRdKRYpI69fn/kE3AAC5NXWqjWefbXNguGrXTqpaVSpcOOefOXzYKp9cc43N/aHA43EdAQCEl8TERCUnJ594JSUluQ4pS7Nn29ixY/j+W+/xZOwmXr3aTQxvvWVjv35SlSqnfj/UFn8BiA4kiR1Yt84SxcWKSSG6QOwUt94qvfBCxi4lAAAiyZEjGdU9unZ1G0teFSyYcdMbjL7EFSue+rWiRaVLLrFYXPd6AgBEPl+SuHt3t3Hk1/XXS0lJ0uOP5/wz06fbZ6ZPt2cLoSQ1Vdq503UUABD64uPjVaJEiUyvUOTrRxyupaZ9fPfLq1YF/9qpqdL779vx4MGZv/fVV1Zu+pFHgh8XAJAkdmDlShsbNgyf1VfXXy8NG2a7lAAAiDQLFthNW4UKUr16rqPJu0D2Jd6zx1Y8L1qU/fuGD5e2bz/1xhcAAH9KS7MEqSR16+Y0lHyLycOTmW++sbFPn9B6rvD221LJktI997iOBADgL16vFB9vO4nDWaNGNrrYSTx+vLR7t1UO6dUr8/f277fd2uPHBz8uAIg981vgb74kcbiUmgYAINIdOSK1amWLoULpQWtuDR4s9e5tq5D97Z//tAfSf/xhPalO9+dUvbr/rw0AwF/9/LOUnCwVL25zeCTweu1nkjOVnfZ6pW+/teO+fQMfV25Ur26/h1mzXEcCAMF34MABrT2pV9+GDRu0ZMkSlS5dWtXD+Ebp88+lo0fztqgplDRrJp11lrVrCLZRo2wcNEiK/UtGpk8f+9rKldbqMVz7PgMIT2H+T3t4Csck8fHj0pIl0sSJriMBAMD/zj/fdsh+/LHrSPKne3fp73+Xatf273kXLZJGjrTjV17JeSJ9717/xgEAgCTt2yfdeKMdX3zxqQ9bw9Hbb0vly+dsB+5vv0nr10txcdK55wY+ttzo0MGSCBs2SFu2uI4GAIJr4cKFatmypVq2bClJGjZsmFq2bKlHH33UcWT5FxcX/vNt377S0qXSU08F97rp6VK7dtayyffzy8lKlsxoe8WzdwDBRpLYgXBMEqekSC1b2g34oUOuowEAIDDCfWV0IKSnS0OG2K6lgQOlc84582e2bbOHxLVq2W4iAAD8accOG2vWlF5+2WkoflOihLRrl7XAOBPfLuKuXUOvH3GJElLz5nb8889uYwGAYOvWrZu8Xu8pr/fee891aHl27JjrCMJfTIz0zDNWlet0G8ovusjGCROCFxcASCSJnXjnHendd6X27V1HknOlS0ulStnxunVuYwEAwJ9SUiJrAdSsWbbb948//HO+0aOlefOsnOd//pOzz5Qvb7uHkpOlSZP8EwcAAD7160sLF1qytHRp19H4R9u2Ni5dKqWmZv9eXz/iUCs17dOli42UnAaA8Neli5VpzskipnCRnn7muTYQChQ4/fd8SeJZs6x3MQAES56SxE888YQOZfE09fDhw3riiSfyHVSka91auuEGe4AaTnz9EE5qrQEAcIw5Of9GjbLyTg884DoS/7jvPunOO6XZs/N/rj17pAcftON//UuqVClnn4uJkf72Nzv+5JP8xwEA4YA5OfBOrk5RsqTUqJGzUPyuZk2pbFnbsbV0afbv7dpVatHCehiGIpLEAFxjTvaPQ4ekxYul5culChVcR+Mfw4ZZFQ5fO6VAmz1bmjzZEtPZqVnT+iWnp2csBgOAYMhTkvjxxx/XgQMHTvn6oUOH9Pjjj+c7KIQmksQAEHqYk/Nv+nR7IBspN71Nm9q4bFn+zzVypJW+bNJEuv323H326qtt/Oor260NAJGOOTmwtm2TGjaUXn/dWiBEGo/H+hVK0vz52b/30UelX36R6tULfFx50bmzjUuX8jMAADeYk/1j4ULp+HGpShWpWjXX0fhHoULS4cPS6tXBud6//iX16iU9++yZ33vVVdIll0TOnzWA8JCndvNer1cej+eUry9dulSlI6XWU4D88IMlWbt2Da+exFLGDShJYgAIHczJ+ZOWJs2cacc56bUbDnxJ4uXL83+u+++3dhONG0sFC+busy1aSA0aSL/9Jn35pXTttfmPBwBCGXNy4Bw/bhUqNm2S3nhDGjTIHvJGmrZtrYR2uJf0rFLF/o4aNDjzzikACATmZP/wVafq2NEWM0WChg1tXLUq8Ndav95yAVJGpa3s+Kp4AUAw5SpJXKpUKXk8Hnk8HtWvXz/TZJuWlqYDBw7o1ltv9XuQkeTDD+315JPhlyRmJzEAhA7mZP9Yvtz65hYrZknNSNCsmY3+2ElcoICU1/+MPB7bTfzYY9KYMSSJAUQu5uTAe/hhq/xRvLj0xReRmSCWzryT2Ou1JHLXrvazSyh7+23XEQCIRszJ/uVLEnfq5DYOf/K1qgjGTmLfXNizp1SrVuCvBwB5kask8YgRI+T1enXjjTfq8ccfV0JCwonvxcXFqWbNmurYsaPfg4wkK1faGG4JYokkMQCEEuZk/5gxw8bOnaXYPNVXCT2+ncTr10sHD0pFi+b+HIsX2wrrIkXyF8tVV1mS+McfpR07pPLl83c+AAhFzMmBNXFiRonGd96x3amRqm1bSwC3b28J4b/u2vrlF6lfP6lMGWn7dlvMBQDIwJzsP16vNGeOHUfSH5nv54ht26R9+6SSJQNznWPHpNGj7fjmm3P32XXrpA0bpB49/B8XAPxVrh6HXnfddZKkWrVqqXPnzoqNlKepQZKenlHKIhyTxI0aSc89F7p9jwAgmjAn+4cvSdy1q9s4/Kl8eXvt2GGL09q2zd3n9+61nklFikjffy/Vr5/3WOrVk+65x2IoUSLv5wGAUMacHDjr12dUorjzTumKK9zGE2jlyknTpp3++99+a2OXLuGRIN68WZo1y/7ectu2AgDygjnZf9aulXbtkuLjpZYtXUfjPyVKWFuELVtsN3GHDoG5ztdfWyK6fHnpwgtz/rlp06Tu3aXKlaWkJCkmJjDxAYBPnv6ZKV68uFadVLh/woQJuuSSS/TQQw/p6NGjfgsu0mzeLB06ZDdHdeq4jib3SpaU7rtPuuQS15EAAHyYk/PO681IEkdKP2Kf/PQlfvRRaedOSxL7oyTW889LAwZEbmlQAPBhTvavI0ek/v2tLUTHjrZgOdp9842Nffu6jSMnvF6pVStp4ECrUAIAwcScnH9ery3UuuwySxRHEl9f4kCWnB41ysYbbpDi4nL+uY4draXE1q3MnwCCI09J4ltuuUVr1qyRJK1fv14DBgxQkSJF9Pnnn+v+++/3a4CRxFdqukGDyClpCQBwizk5744dkx56yHa3tGnjOhr/+ve/rX9UbndcLVki/fe/dvzaa+z6AYDcYE72r7g4W2RUsaL0v//l7gFruNu3T/r118xf27VLmjfPjnv3DnpIuebxWDsPyXYTA0AwMSfnX/360vvvS2PGuI7E/8491zZBVawYmPOnplqSV5Juuil3n42Pt8pekjRhgn/jAoCs5ClJvGbNGrVo0UKS9Pnnn6tr164aM2aM3nvvPX3xxRf+jC+ihHM/Yp+NG6Vx46QFC1xHAgCQmJPzIy7OSlf+73+RtzK6U6eMFcg5lZ4uDRli44ABduPsL5s2SU89Jb33nv/O6W9Hj1qcAJBXzMn+FRMjPfCAtGaNVLWq62iCZ948qVSpU3cLT55su7qaNw+fP48uXWwkSQwg2JiTkZ2HHpLGj89IxvpbfLwtwF62TKpbN/efv+giGydO9GtYAJClPCWJvV6v0tPTJUk//vij+vTpI0mqVq2adu3a5b/oIkwkJInfeku6/HJp9OjgXXPNGuvBAAA4FXMy/OXDD233cdGiViLan374QXr4YenFF/17Xn/xeu3nm1q1pPnzXUcDIFwxJ/vHunXSwYMZvy5e3F0sLjRpYgnyP/6Q/vwz4+u+UtP//59VWDg5Sez1uo0FQHRhTs6fQ4esokVamutIwpfHk9EGKrf69JEKFLC/gw0b/BsXAPxVnpLEbdq00ZNPPqkPP/xQ06dPV9//X+K6YcMGVahQwa8BRpLnn7feh9dc4zqSvPOtflq7NjjXW7pUatZM6tDBdvgAADJjTs4br1f6+GN7EB2JDy29Xuntt22n9J49Z37/vn2Sr+rao4/6f4fS5Zdb6eply/LWJznQfvhB+vpr+3P7/HPX0QAIV8zJ+ZecbLt62reX1q93HY0bxYplLCz3VfBKS7OdxFJ4JYlbtZIKFbJS2f9f9RUAgoI5OX9+/tkqV7Rs6TqSwPF6pS1bpOPH/XvezZszL3bLizJlMhZaffVV/mMCgOzkKUk8YsQILV68WEOHDtU///lP1f3/zOHYsWPVqVMnvwYYSUqXls4+W6pTx3UkeVevno3BSBKnp0u33GLJ4a1bpZ9+Cvw1ASDcMCfnzcaNtmirUSPp8GHX0fifx2PlnV95xRKzZ3LkiPUNbNhQuusu/8dTqlRG/8RPPvH/+fPr5CovOfnzAoCsMCfnj9cr3XCD3Wvu3y8lJLiOyJ22bW30VbcoUECaO9fm9Q4d3MWVW/HxUrt2dkzJaQDBxJycP7Nn29ismds4Aql6dVsc7e9FTEOGSJUqSfmtau4rOf3tt/mPCQCyE5uXD5111llalsUTtP/85z8qUKBAvoNC6PLtJN60yZK3cXGBu9Zbb1k/Jsl2NflulAEAGZiT82b6dBvbtpWKFHEbS6A0a2bJ8GXLpK5ds39vxYrSuHG2ozhQc/vVV1tPpU8+kZ580hLZoaJqVWnhQqlNG/vZIz3dSn0CQG4wJ+fPiy9af8CCBaWxY20XTbRq185aPPl2Eku2YNu3aDucdOliFdVmzZIGDXIdDYBowZycP3Pm2BjJ+fRKlay1w+rV/msN+ccfltRNT897qWmfAQOk2rWl88/3T2wAcDp5ShL7LFq0SKtWrZIkNW7cWK1atfJLUJFo8WIra9mli3Tppa6jybsKFaxX4cGD1hOhQYPAXGf7dunBB+14xAgrlwkAOD3m5NyZMcPGc85xG0cgNW1qpalyU965ZMmAhaMLL7SfITZssERsKOyE8nozktVnnWUlMffts9XkDRs6DQ1AGGNOzr1Zs6QHHrDjESNYIOz7/S9YkHmuCkdXXy21aJFRNhMAgok5OffS06MjSdyokc2z//+fh1+8+679+XXtmv9n5lWq2AsAAi1PSeIdO3ZowIABmj59ukr+/9PEffv2qXv37vr0009Vrlw5f8YYEWbMsJXRGzeGd5LY47HdxEuXWhmwQCWJ773XHtK2bGllOgAAWWNOzptoSBL7SoNllyT+6CPrx/vcc7YQLJCKFLGfgT76SBozJjSSxK+/bu0snn7aksJt2liiYt48ksQAco85OW+2b5euvNL67l59tXTbba4jcq9ZMyvVvHevVT955RVbbHXDDa4jy70mTewFAMHEnJx3K1dKKSm2wDeSy0377vdWr/bP+dLSpLfftuObb/bPOQEgGPJUSO/222/XgQMHtGLFCu3Zs0d79uzR8uXLlZKSojvuuMPfMUYE36okf5WvcMlXcjpQfYnT0613YWysNHKkjTt2SK+9Jr30UmCuCQDhijk597Zskdats3LCkbwy2lfeavly24X0V8nJtijrgw+k998PTkxXXWUPG0Khwtv+/dITT1hp02nT7Gv/+Ic9iD/7bKehAQhTzMl5c8cd0p9/2o6ekSPDe9esv8TFSY88Ir35pvUiHj9eGjXKdVQAED6Yk/POt4u4XTt7Jhup/J0k/v57KSlJKl1auuwy/5zz0CH7eaBzZ2v7CACBkKd/6r/77jv9+OOPatSo0YmvNW7cWK+//rp69uzpt+AiycqVNkZCknjoUHvI265dYM4fE2MPaO+/33oEStKvv0q33y6VK2djJP+QAgC5wZyce75dxC1aSAkJTkMJqAYNbL5MTrbeSNWqZf7+v/5lu7fq15fuuis4MfXsaQu/QqEP9AsvSDt3Wn9HX4/Eq65yGxOA8MacnDcvvWQLd154QSpWzHU0oeOf/7TRV4msTx93seTXb79Zn+ny5aXBg11HAyAaMCfn3ezZNkbygmrJFqdJliT2R2sH32Kua6+1Nkb+UKiQ9NZbdt8+fTr9iQEERp52Eqenp6tgwYKnfL1gwYJKT0/Pd1CRxuuVVqyw40hIEnfrJl1++akPm/3NlyD2XbNMGXuY63u4DwBgTs6L6dNt7NrVbRyBFheX0Rbir32Wli2TXn3Vjl991d4bDLGxoZEg3r7dkhGSlZrO4n8hAMg1l3Py66+/rpo1a6pQoUJq37695s+fH9Dr+VPlytK332Y8rEWG1FRrCyFJffu6jSU/fvlFevhh2ykOAMHAfXLeDR5sC4ovvNB1JIFVp47dnx44YNXG8mPvXumbb+zYn4uhYmIy/h4mTPDfeQHgZHlKEp977rm68847tXXr1hNf27Jli+6++26dd955fgsuUuzYYZNFTIzt1kHWfv9d6t3bVhn/VWxsxgrqsWODGxcAhDLm5Nx76inpyy+l6693HUngffaZ/Rxy8mJ5r1caMsR6Jl12WebvBYvXKy1dKh05EvxrS9KTT9rDgLZtbeHbydaskd59139lxwBED1dz8meffaZhw4bpscce0+LFi9W8eXNdcMEF2rFjR8CumV8bNkjjxrmOIrSlp0svvywdPGgLplu0cB1R3nXpYuMvv9iucQAINO6T865TJ+mxx6T27V1HElgFC0o33mgtmGLylCHJUKqUPc9+4w3/bxC7+GIbJ07Muo0UAORXnv4JfO2115SSkqKaNWuqTp06qlOnjmrVqqWUlBS96tuWghN8paZr15YKF3Ybiz+kpdnqpRdekI4d8885vV7rA/jddzY5Z6V/fxvHjbMYAADMyXlRpozdaJ11lutIAq9JE2vVcLIxY6SZM+1nkpdechNXnz72sPvbb4N/7XXrrMejJD377KllxR56yMpPs1IbQG65mpNffPFFDR48WDfccIMaN26sN998U0WKFNG7776b5ftTU1OVkpKS6RVMR47Yvd3ll0uvvx7US4edBx6wsVq1/D/AdqlqValGDUt8z5vnOhoA0YD7ZOTEyJHSf/5jVU3yq1Yt6dZb83+evzrvPKvGlZQkLVni//MDQJ46u1arVk2LFy/Wjz/+qNX/v82iUaNG6tGjh1+DixS+nbGRUGpaspvTq66SDh+2h+x16+b/nJ98Iv34oxQff/oH1ueeayuztm+Xfv5ZOuec/F8XAMIdczJyw+vNKLP88MNS9epu4mjWzBaGjRlju5mD6cUXpePHpV69pO7dT/1+hw7SF1/wEBtA7rmYk48ePapFixYpMTHxxNdiYmLUo0cPzZkzJ8vPDB8+XI8//njAYjqTO++UFi+2RVuRXsoyP2Ji7H57wgTJ4V+X33TpIm3aJM2aJfFjKoBA4z45byZPtue9Z59t8zTOLD09sAu5Che26l9ffmm7iVu2DNy1AESnXP0T9tNPP6lx48ZKSUmRx+PR+eefr9tvv12333672rZtqyZNmmjmzJmBilVSePZauuUWaetWeygZCTyejMTw77/n/3x790p3323HDz98+qRzwYLSJZfY8eef5/+6ABDOQmFODkf//a+Vzvprj95IdeiQ7UK66CJLjHo80tSp9rD5nnvcxXX11TZ+/bUU5A1sev5520H8zDNZf79DBxvnzKGcF4CccTkn79q1S2lpaapQoUKmr1eoUEHbtm3L8jOJiYlKTk4+8UpKSgpIbFn54ANp1Cibjz7+2N1ipXAxerQ0f77N4+HOV3J61iy3cQCIbNwn588zz1i7v/HjXUcSHF6vtHOn9OuveT/H1VfbPJ2fc5yJ7+cAql0BCIRcJYlHjBihwYMHq0SJEqd8LyEhQbfccoteDGAmNBx7LUl2A1ypklSnjutI/MeXyF27Nv/n+uc/rV9igwbSffdl/97+/S1ZfOhQ/q8LAOHM9Zwcrt5+W3riicDewIWSQoWslOdXX2XM2QkJ0qOPWvUOV5o3lxo1klJTg/8AonBh6f77LYastGolxcZK27ZZSS8AOJNwm5Pj4+NVokSJTK9gWLYsowzjo49KF1wQlMuGtVKlpLZtXUfhH74k8dy5/mtbBQB/FW5zcig5ftwWJklSx45uYwmWhQul8uWtylRebN9uVai++urUNkb+1K+ftZFq2pQ5FID/5SpJvHTpUvXK5l/Nnj17atGiRfkO6nRy22sJgeOvJPG8eRl9Ad9448wPrM8/3xLK77yTv+sCQLhzPSeHo337Mnr4REvLgpgY60ss2Q7aUNkZ6/FY6wrJWk4Ew59/SmlpZ35fkSIZ/arnzg1sTAAig8s5uWzZsipQoIC2b9+e6evbt29XxYoVA3LNvEhJsR7Ehw9bycRHHnEdEYKtcWNLenu90vr1rqMBEKm4T867X3+1TTkJCbagNxrUr2/jn39Kycm5//x771lyvUMHa6kUKOXK2SLmDz6wzVMA4E+5ShJv375dBbP5lyg2NlY7d+7Md1BZ8fVaOrl3xJl6LaWmpiolJSXTK9h277YSyf/8Z+g8mPUHfyWJR4ywP5drr826L+BfFSwolSyZv2sCQCRwOSeHq59/tjmnXj2r8BEtmja18Z13pD59QufnEV+S+McfbQV2IKWnW9/LFi1ytovcV3KavsQAcsLlnBwXF6fWrVtrypQpJ76Wnp6uKVOmqGMIbQOaMMFaFVWrZmWmCxRwHRGCLSbG5tV9+6yKGAAEAvfJeTd7to0dOwa2x24oSUjIeDbw/62rcyw9XXrrLTu++Wb/xpWVaPk7ARB8ufrnpUqVKlq+fPlpv//rr7+qUoCeuual19Lw4cOVkJBw4lWtWrWAxJadFSvshnjMmMCWnQg2fyWJP/jAdjb95z+5/+ymTTYhA0A0cjknh6sZM2yMll3EPievAu/cOXR+HqlbV2rXznb3jhsX2Gt9/rm0aJH97JCT/y1O7ksMAGfiek4eNmyY3nrrLb3//vtatWqVbrvtNh08eFA33HBDwK6ZW3//u/1b/PnnUtmyrqOBK/XqsQMKQGC5npPDmS9J3KmT2ziCzXe/nNsk8bRp0rp1UokS0pVX+j2sLHm9Vh3twIHgXA9AdMhVkrhPnz565JFHdOTIkVO+d/jwYT322GPq16+f34LLr8TERCUnJ594JTloLLdypY2NGwf90gFVr56NGzZYWY28KlhQuuce6/+QU16vlZ2uWTOjVwYARJtwm5NDwfTpNnbt6jaOYPMlxcuUke69120sf/XEE9K330o33RS4axw9ahVdJOm++6xU15n07Cl98400cWLg4gIQOVzPyQMGDNDzzz+vRx99VC1atNCSJUv03XffnbLA2rX+/aX27V1HAQCIZK7nZJ/XX39dNWvWVKFChdS+fXvND4MHmL4FsiFUiCQoGja0MbdJ4lGjbBw4UCpa1L8xnc7550stW9o9NAD4S66SxA8//LD27Nmj+vXr67nnntOECRM0YcIEPfvss2rQoIH27Nmjf/qewvlZXnotxcfHq0SJEplewRapSeIqVaRPP7VefXnZkfT55/bQNi88noyk8uef5+0cABDuXM7JPuF043vggO0klaJvJ3G7drbKecUKqVAh19FkdsEFUu/egd1V9PbbtsK7QgXp7rtz9pkKFaw0N7vdAOREKMzJQ4cO1aZNm5Samqp58+apfQhkY3fssJ01W7e6jgSh5PbbbdfW77+7jgRAJAqFOfmzzz7TsGHD9Nhjj2nx4sVq3ry5LrjgAu3YsSOg182PP/+UNm60ksbt2rmOJrh8SeJVq3L+mZ07M6phDR7s/5hOp1UrGydMCN41AUS+2Ny8uUKFCpo9e7Zuu+02JSYmyvv/Te08Ho8uuOACvf766wFbrXxyr6VLLrlEUkavpaFDhwbkmv4QqUnimBhpwIC8ffarr+xhwVlnSQsWSHFxuT/HFVdYCe+xY61cdaiUzgSAYHE5J0sZN75vvvmm2rdvrxEjRuiCCy7Qb7/9pvK5KQ8RJL//bqt7ExKkGjVcRxN80bZ72ufAAenxx+340UelYsXcxgMgMrmek0NRWpp09dXSlCn2IHXqVNcRIVQsWWK7tWbNyqhQBgD+Egpz8osvvqjBgwefaPvw5ptv6ptvvtG7776rBx98MNN7U1NTlZqaeuLXKSkpAY3tdCpWtHvm5cutfHI0yUu56SJFpJdfts1TLVsGJq6sXHyxtWz89lvp2DFaOADwD4/XN1vm0t69e7V27Vp5vV7Vq1dPpUqV8ndsp/jss8903XXXaeTIkWrXrp1GjBih//3vf1q9enWOJviUlBQlJCQoOTk5aLuKK1e21Vhz5mT0t4tmBw9awnzzZiv5+NxzeTvP4cNWLvLgQSs53batf+MEgOy4mE+y42JObt++vdq2bavXXntNki3cqlatmm6//fZTbnyz4uLPMC3NdjNVqxaUyyGHdu60BV/Ll1uJZ3964gnpsces//HKlbm7if7tN+nDD6XixaUHHvBvXAD8hzk5/wLxZ/jII9KTT9oCrfnzI2/RNPIuMVF65hnpxhuld95xHQ0Af2JOlo4ePaoiRYpo7NixJzY5SdJ1112nffv2acJftoD+61//0uO+Va0nCZU/w2iwfbs0fLjUtGlg2yD5Q1qaVKmS3UNPmSKde67riACEspzOy7naSXyyUqVKqW2QM3MDBgzQzp079eijj2rbtm1q0aJFSPZa8tm3zxLEUsaqpEiyYoX0/fdS9erS5Zfn7DNPPGEJ4urV7aFtXhUuLPXrJ332me0mJkkMIJoFe04+evSoFi1apMTExBNfi4mJUY8ePTTH18joL0JhhXSBAiSIQ1FsrDRihLWhWL7cbs79wevN6Kv11FO5X2W9caN9rm5dksQAcs7FfXKomTTJEsSS9esjQYyTdeli46xZbuMAEPlczMm7du1SWlraKc+qK1SooNVZbFVNTEzUsGHDTvw6JSVF1bhpDaoKFex+NBwUKGDPw0ePliZOJEkMwD9y1ZM4FIRir6XT2bTJyk9UqWLlLSPNjBnSsGHS++/n7P3LlkkvvmjHr71mq8rzo39/Gz//3B4EAwCCI7sb323btmX5meHDhyshIeHEK5g3vswRoa1UKetLLEmffOK/83o8Vobrhx8yfmbIDV8vrrVrpV27/BcXAESyTZuka66x43/8w0pOAyfr1MnGNWusbzUARLP4+HiVKFEi0yvYjhyxloIvvmgLd5G9xx+XRo6U9u93c/2LLrJx4kSedQDwj7BLEoeT5s1twli0yHUkgVG3ro1r1575venp0q23SsePS5deKl14Yf6v36ePJeE3bJB++SX/5wMABE5iYqKSk5NPvJKSkoJ27VmzpFq1pHvvDdolkUu+JMKYMf690fV4pB49pJg8/MRbqpTUsKEdz5vnv5gAIFKlptqinD17rNKTb4EwcLJSpTKqhvz8s9tYAMDfypYtqwIFCmj79u2Zvr59+3ZVrFjRUVTZW7xY+t//rBVAtPa4TUmx/sK//pr9+3bvttLUt95q7YlcOP98qVAhex6+fLmbGABEFpLEARYTY2UrIpEvSbxunfVEyM6770qzZ9vu4Zdf9s/1ixSx8tWffCLVr++fcwIAziwvN74uV0jPmGGlgzdvDtolkUv9+knFitnf09y5+T/fZ59Z24/86tDBRn/EBACRbudO6dAhqXRpq/YUH+86IoQqSk4DiFRxcXFq3bq1pkyZcuJr6enpmjJlijp27OgwstPztejp1MkW2Uaj116TOnaUnn8++/d9+KEtimvRQmrdOiihnaJoUSuP/eOPGYuaASA/SBIjz6pXtxVmR49KW7Zk/95zzpHOO8+Suv6sMHrPPdLf/mYPlgEAwRFuN77Tp9vYtavbOHB6RYpIl1xix/ktOf3LL/azQb160t69+TuXL0nMTmIAOLOqVaX586Xvv5dq1HAdDULZ2WdLDRpI5cq5jgQA/G/YsGF666239P7772vVqlW67bbbdPDgQd1www2uQ8vS7Nk2huCtfND4kq2rVp3+PV6vNGqUHd98s9uE+i232HP2aN35DcC/Yl0HEMl69rRSSi+8YDfMkaZAAal2bSuvsXatJY1Pp3596wmYnh68+AAAgTNs2DBdd911atOmjdq1a6cRI0aE5I3vsWMZN73nnOM2FmTv6quljz6yXcAvvijF5vGn1MREG88/334Oy4/27W2cN89+hslL2WoAiCZFi7rbWYPwcdVV9KsGELkGDBignTt36tFHH9W2bdvUokULfffdd6oQgqUmvd6M+2Vfz/ho5EsSr15tfyZZJYBnz7YkcpEizGEAIgtJ4gDZv9+SopL0xhtuYwmkunUtSfz779K55576/cOHpcKF7djjscSyv23aZA+Vy5a1lVQAgMALlxvfX36RDh600pdNmriOBtnp0UNq1Ejq1k06cEAqWTL35/jpJ2nyZFtR/eST+Y+paVN7CBATI/3xR/YL4gAAQM5EazlTANFj6NChGjp0qOswzmjTJmnbNlug26aN62jcqVvXnlkfOCBt3SpVqXLqe3y7iAcMkBISghtfVhYtsufhHTtKV17pOhoA4Yz9EAGyerWNFSvag+lI5etLvHbtqd9LTbUfMP7xDyk5OXAx/Pyz9PDD0ksv2WovAEBwDB06VJs2bVJqaqrmzZun9r5tlyHEV2r67LPZBRrqChaUVqyQ/vvfvCWIvV7pgQfs+JZbrNpJfsXG2s90u3eTIAYAwN+OH5e2b3cdBQBEL98u4latMjb5RKO4OKlOHTvOquT03r3S//5nxzffHLy4svP999ab+P33XUcCINzxuDRAVq60sXFjt3EE2pAh0oIFlqT9q//8x/4cxo0LbPK2Xz8pPt52NK9YEbjrAADCz4wZNlJqOjzkZ2fR2LHSwoVSsWLSI4/4L6Zq1VhgAACAv335pS0K+/vfXUcCANFryxZbrBvN/Yh9GjWy0bfx62R791oP4ObNM1oSuXbRRTZOmWI7oAEgr3jkFSDRkiSuV892C/+1zMbatRllHl96KW87gnKqRAnpggvseOzYwF0HABB+mjWzV9euriNBTqWnSzNnSosX5/wzx45J//ynHd97r1S+fGBiAwAA/lG7trUEmTPHdhQDAILvvvus+qM/F9mGK19f4qx2EteuLX39tTRvXui0TGjc2HY/p6barmIAyCuSxAESLUnirHi9tsM4NdX6C/7tb4G/Zv/+NpIkBgCc7OmnpV9/lVq3dh0Jcuqpp2zn99NP5/wzhw5JXbpIlSpJw4b5N57UVOmqq+wGfP9+/54bAIBo1aSJLTY/cMB+VgMAuFG4sFSmjOso3LvkEumVV6Qbbjj9e+LjgxbOGXk8GbuJJ050GwuA8EaSOECiKUn83/9Kd9wh7dhhv/7f/2wFU3y8fS8YK6wuuiijl2FWK74AAEB48N3ofv21rWrPiYQE6d13rfVE8eL+jSc+3np1rV9v5awBAED+FSggdepkxzNnuo0FAIAOHaTbb7eKmSebMEHatMlNTGdy8cU2fv01VTkA5B1J4gA4ftweUMbFRUeS+MUXpVdfteRscrJ011329cREK0cdDAkJUs+edsxuYgCAZL2EUlNdR4HcOuss6weVmiqNH5+7z/o7QezToYONc+cG5vwAAESjLl1snDXLbRwAEI2ee84qbo0e7TqS0JWSIl19tVSrlrR8uetoTtW5s1S6tLR7t7VvAIC8IEkcALGx0pIl1l+nXDnX0QSeLxH8++82YaamSvXrSw8+GNw4+veXihUjIQAAsNYH55wjlSwpLVvmOhrkhsdjN+KS9Mkn2b931y7pmmtsB3EgkSQGAMD/zj7bxu++kzZudBoKAESdGTOkxYtzXr0pGixbJn30kbR5s/16zBhrbdSwobVJCDWxsVLfvlKVKtLOna6jARCuSBIHUGys6wiCo25dG9eutRVMv/1mJaeD3afhb3+zCfHJJ4N7XQBA6Fm9OuMmqX59t7Eg9/72Nxt//FHavv3073vqKenjj6W//90WBgSKL0k8b15grwMAQDTp3NleBw5I//6362gAIHp4vRk7T32l/yHdeafdW06bZr8eNcrGwYOD004xL157TUpKki67zHUkAMIVSWLk28lJYsl2TzdvHvw4ChWyVyg4flz67DPpppvY2QwALsyYYWOHDsFftIT8q1tXatdOSk+3hWdZ2bhR+u9/7fippwJ7096ypVSwoCWsQ7UfFQAA4SYmRnr/fenee+0hNwAgONaskfbsseeoLVq4jiZ0NGpk4+rV0qJF0i+/WDvJa691G1d2SpQI3QQ2gPBAkjgABg60ng6TJ7uOJDh8SeIvvnAbh4/Xaz/suFSggPVmfucd+isBgAu+JHHXrm7jQN75Sk7/9FPW33/0UenoUem886Tzzw9sLCc/PKHkNAAA/lOnjvSf/0iFC7uOBHm1erW0fr3rKADkhm8XcZs2lgSFadjQxlWrMnYR9+8vlSnjLqacSkuTtm51HQWAcESSOAAWLrSeDgUKuI4kOHxJYkn69lt3cUjSsWPSWWdJDRpI69YF//perzRzpq3g6tXLvvbdd8GPAwCimdcrTZ9ux+ec4zYW5N3AgbbQKqtFaEuXWq8oSXrmmeDE06WL7SiOlp/vAAAItrQ0W2h99KjrSJBTSUn281HLllRbAcLJ7Nk2Umo6M1+SeOFC60csWanpUDd1qlSxoiW0o8GkSfbs3/fcB0D+kCT2s9TUjLLLjRu7jSVY6tWz3oHXX5+RGHWlYEGbFCVp7NjgX//ddy0hceONJIkBwJUNG6QtW2xO8PWSRfgpW9b6FMZk8dNqYqItBhgwwFa/B8MLL9giwCuuCM71AACINv37W8umJ590HQly6v33pSNHpJQU+7vzel1HBCAnSBJnzVdu+o8/bCNSvXrhUZ2sfn1p1y6rerV9u+toAq9wYdsc9o9/uI4EiAwkif1szRrrn5eQIFWq5Dqa4IiJkT75RBo9OusHucHme3gb7CTxli3SsGF23KSJ1KOH/XksX24/XAAAgsNXarptW6lIEbexwD+OH884njHDVg7Hxgb3ITJ9ngAACCxfq4mnn5bmzXMbC3Lm/vulf//bjn/8MaM8K4DQlZ4uNW8u1aghdezoOprQUqWKVLSoHc+caVWtwuE+sEoVWzzt9Upff+06msCrU8f+O165Uvr9d9fRAOEvBFJ6kWXVKhsbNw6PSSQSXXKJJWcXLpQ2bgzONb1e6dZbbfVsu3bWj7hMGTuWoqc/NQCEgi5dpOeek265xXUk8Ie777YqIcuW2a/btLES0/fem7nlRbAcOSIdOBD86wIAEOmuuMISxWlp0rXXSocOuY4IZxIXJz38sPTSS/bre++l7DQQ6mJipI8/tmem5cu7jia0eDwZJaf/+ENq1sxtPLlx0UU2TpzoNo5ASk62Z/DVqmVU8Hz3XbcxAZGAJLGfrVxpY7SUmg5F5ctnlALJqo9hIHzyia3UKljQJidfv8LevW2k5DQABE/dutJ999nDRYS/jRul3bszekIVKSI98IA0fHjwY7nnHqlECeuXCAAA/O+116TKla1K2wMPuI4G2UlPzzi+4w5bqHngAGWnAYS3f/9b+uYbaycYTi6+2MYffojMRVZer3T55VK3bvYzwk032dffe89KgwPIO5LEfkaSODT4Sk5//nngr7V9u3T77Xb86KNWatrHt6pp2zZukgAAyAtf6cmPP85cdtqF0qXtBnTuXLdxAAAQqUqVslZWkiWMf/jBbTzI2tKlUu3a0gsv2K9jYmzBfJEiUoMG0tGjbuMDcHpJSZkXeSCz3r2lPn2sQmQ4adbMSogfPmzl/yPNuHHSlCnWjiI2VurXzzaKbdsmffut6+iA8EaS2M+qVLFm8U2buo4kul16qZUImTdP2rw5sNe6/XZpzx6pRYtTVzq3bm0/fM2cSflxAAiG+fOljz6yPvGIDP36ScWK2XxasKDbG94OHWwkSQwAQOD07Cn94x92fOut7heJ4VT//a+VlT65d3S9etK6dZbcj493FxuA00tLs80tZctK69e7jgb+5PFk7CaeMMFtLP526JA0bJgd33+/LVKKi5Ouu86+9vbb7mIDIgFJYj976SXpt9/spgbuVKwoPf20rSSqWDGw17r+eqlmTVs1W7Bg5u8VKCBVrRrY6wMAMoweLf397xm7GhD+Che2RLGPr2qLC23b2s33xo1WSQQAAATGc89ZWckvv7QdQwgd+/bZokwpI5nvc/Lzl/R0disCoWbFCmn/fquOVL2662jgb1ddJSUmnvpvc7h79lnbBFa9uvTggxlfHzTIxj//pIIFkB8kiRGxHnzQSoTExQX2On36WC+Eli2zfx+TFQAE3vTpNoZb/yBkz9dvqFYt6ZZb3MVRokRGS5GTd84AAAD/KlpUGjvWymcitHzwge3qatJE6to16/esXy+de640alRwYwOQvTlzbGzfngU4kahDB9s01bq160j8Z8MGSxJLthmgSJGM7zVoYIvIFywI/PN/IJKRJPajo0fpOxtN9u3LOP7rDuKTHTtmieRSpaQdOwIeFgBErR07pFWr7LhLF7exwL/OO0/6/ntp2jT35QspOQ0AQPAtXGh9B+GW12ulpiXbqXa6tlrffGOLN++7zyqwAAgNs2fb2KmT2ziAnBo2TEpNtWcCl19+6vcbNaLFI5BfJIn96NlnpZIlpSeecB0JfFassD7BH3/s3/NOmmQlpkePPvN7Cxa0m9lDh+wBNwAgMGbNsrFpU+uxhMhy/vmhURKNJDGAULFx40YNGjRItWrVUuHChVWnTh099thjOkoJI0SYd96x+XfwYBbmu/bTT9ZirVgx6ZprTv++IUOks8+WDhywcqCUnQZCgy9J3LGj2zgQOEePSl99JT30kOtI8i85WVq71na9v/JK9sng/fulP/4IXmxAJCFJ7EcrV0opKVKhQq4jgc8PP1gvo5Ej/XfOlBTp5pttovr115x9plcvG7/7zn9xAAAymzHDRkpNI5C6dJH697cXALi0evVqpaena+TIkVqxYoVeeuklvfnmm3ooEp4KAidp314qUED6+mvp3XddRxPdXn/dxmuvtTYcpxMTY39XhQtbYtmfz2QA5M3OnZZwkzIWviLyHD4sXXaZNHy4tUcMZwkJ0i+/2Dzia/uUlQ8/lCpVku6/P3ixAZGEJLEfrVxpY3b/aCG4fGUoZs2yJvb+8MADtjKpdm3pySdz9hlfknjyZFbQAkCgkCRGMDRsKH3+uZVYBACXevXqpdGjR6tnz56qXbu2LrroIt17770aN25ctp9LTU1VSkpKphcQypo2lZ56yo7vusv6E8KN+++X/v73nP0cVLeu9Mwzdnzfffy9Aa75+hE3bmwt8RCZEhKkbt3seOJEp6H4RWysVabITuPG0sGD0hdfSLt3BycuIJKQJPaT48et5I5EkjiUVKtmq+O8Xmn8+Pyfb+pU6c037fjtt6WiRXP2uY4dpeLFpV27pMWL8x8HACCz/fulpUvtmCQxACBaJScnq3Tp0tm+Z/jw4UpISDjxqlatWpCiA/Lu7rszyhdfd52UluY6oujUoYP0wQdSkyY5e//Qofb3dvAgZacB1+rVsxLEN97oOhIE2sUX2xiuSeI//7RFRqmpOXt/q1ZSixZWatvfLSeBaECS2E82bLB/uAoXlmrUcB0NTuYrBzl2bP7Oc/CgdNNNdnzrrVL37jn/bMGCUo8edkzJaQDwv+LFpS1b7CaoUiXX0SDSeb1Wqs23Gh8AQsHatWv16quv6pZbbsn2fYmJiUpOTj7xSkpKClKEQN4VKCC9/771wp05U3rpJdcRISdOLju9c6e9ALjRqJFVZbjnHteRINAuvNDGn3+2DUvh5v77pcRE6frrc/Z+jyfjmf3bb9v9OoCcI0nsJ75S0w0b2s0LQoev5PT06dKOHXk/z8MPS+vX2+7kZ5/N/efpSwwAgVWxYsbNEBBI335rK/F9N6IA4E8PPvigPB5Ptq/Vq1dn+syWLVvUq1cvXXHFFRo8eHC254+Pj1eJEiUyvYBwUKuWNGKEHf/znxm9NRF448ZJt90mrViR+8/WrStNmSItXChVqOD/2AAAmdWoYTtr09Olb75xHU3u/Pyz9NFHlvjNzYKGq6+WChWSli2z+QZAzpEk9hP6EYeumjWltm1tYsxryWmv15L/MTHSqFFSXp6j9Oplu4l9O5sBAEB4atvWxpUrpX37nIYCIALdc889WrVqVbav2rVrn3j/1q1b1b17d3Xq1EmjRo1yGDkQeDfeKF15pfTCC9JJ/xsgwF56yVpv5bVCW8eOUny8f2MCQtFTTz2lTp06qUiRIipZsqTrcE7YvNmShfRrjR7hWHI6Lc3aFEjWoqBNm5x/tlSpjI1ib7/t/9iASEaS2E9q1pT69JG6dHEdCbLSv79Urpz1JsgLj0d6/nnrO+3bEZxb1atLP/wg3XVX3j4PAMjawYNS795WOuv4cdfRIBqUL5/xYHrBArexAIg85cqVU8OGDbN9xcXFSbIdxN26dVPr1q01evRoxcRwi4/I5vFIn35qD5H5zz04fv1VmjVLio2Vbr45f+c6dsx+Zn/rLf/EBoSao0eP6oorrtBtt93mOpRMvvxS6tdP+vvfXUeCYLnoIhs3bQqf8sujRklLlkglS0pPP537z/sqfX32Wc77GQOQYl0HECmuuspeCE1Dh1qJivyWAq9b1z/xAAD8Z84cK+W/cqWVHgSCoX17a0Mxb550/vmuowEQjXwJ4ho1auj555/XzpOafVasWNFhZEBgeTwZxwcOSFu2SA0auIsn0r3+uo2XXSZVqpS/c332mbXyKlrUKq3VqpX/+IBQ8vjjj0uS3nvvPbeB/MXs2TZ26uQ2DgRPy5a22al+fdeR5Mzu3TY/SNITT9hmr9zq2lV68UXbLEb1CiDnWHeJqFCkSN4SxL/8InXvLq1Z479Y/vxTGjMmfFZxAUComzHDxq5d3caB6NKhg41z57qNA0D0+uGHH7R27VpNmTJFVatWVaVKlU68gGiwYoXUvLntjjt40HU0kSk52XpDStI//pH/8119tXTOOfb3NWiQtQUDollqaqpSUlIyvQKBJHH08XjCJ0EsSY8+Ku3ZIzVrJuV1I77HI919t1Stmn9jAyIdSWI/OHxY2rXLdRTIifR0u5HMiWPHpBtukKZNsxVM/nD0qO1GHjhQWr7cP+cEgGg3fbqN55zjNg5El5OTxCz8AuDC9ddfL6/Xm+ULiAZVqlg5ybVrpfvvdx1NZHr/fenQIalJE//8rB0TI737ri3knzrV+hwD0Wz48OFKSEg48aoWgOzWH39ISUn2/1+7dn4/PcJAamroL8q56y5r5fnKK9bewB/4kRjImbBIEm/cuFGDBg1SrVq1VLhwYdWpU0ePPfaYjua1wayfTZ1qJRDYwRTa9uyxvsAtWtjxmTz7rLR0qVSmjJWq8Ie4OKlbNzv+7jv/nBMAotmRI1buVyJJjOBq0cJKWO3eLa1b5zoaAACiT8mS0ujRdvzf/0qTJzsNJ+J4vfbnKklDhmQu850fdepIzzxjx/ffL23Y4J/zAoHy4IMPyuPxZPtavXp1ns6dmJio5OTkE6+kpCQ/R2/tmSSrvFCsmN9PjxB3441S2bLSwoWuI8levXrSN99kPDfPj9mzpd69pQceyP+5gGgQFkni1atXKz09XSNHjtSKFSv00ksv6c0339RDDz3kOjRJ1gNRyn9vFgRW6dKW8D1+XJowIfv3rliRsXv4lVek8uX9F0evXjaSJAaA/FuwwFbFVqhgNxVAsMTFSc8/L40fL9H6EwAAN84/Xxo61I5vvFHau9dtPJEkNdX6OtatK11zjX/PPWSIbbQ4eND+3kJ9hxui2z333KNVq1Zl+6pdu3aezh0fH68SJUpkevmbL0ncsaPfT40wcOCAvc70LNyV/fv9f87du+25++jRVtUTQPbCIkncq1cvjR49Wj179lTt2rV10UUX6d5779W4ceOy/Vyw+jr4ksSNGwfk9PCj/v1tHDv29O9JS7OblGPHpAsvlK66yr8x+JLEM2faJA0AyLuT+xH7a3cDkFNDh0qXXMKKfAAAXHr2Weu7uHVrRsIY+VeokPTkk9KaNVLx4v4998llp+fOlX791b/nB/ypXLlyatiwYbavuLg412GeFv2Io9vFF9s4dqy1Dwgl+/dLjRpJN90k+TNt07u3bebbtUuaONF/5wUiVVgkibOSnJys0qVLZ/ueYPR1kEgShxNfkviHH6R9+7J+z4gR0vz5UokS0htv+D/pULeuVLu2JaGnTvXvuQEg2hw8KBUtSqlpAACAaFWkiPThh1KBAtKYMdkvCkfuBWohZu3a9ve2ZIm18QAiwebNm7VkyRJt3rxZaWlpWrJkiZYsWaIDDneJvPee9Pbb0rnnOgsBDvXpY4ua16yRunSRNm92HVGGf/9b2rLFFv/Hx/vvvLGx0g032PHbb/vvvECkCssk8dq1a/Xqq6/qlltuyfZ9wejr4PWSJA4njRpJTZpYgjarlUTp6dIXX9jxiy9KVar4PwaPh5LTAOAvTz9tZQVvvNF1JIhG6enS999bi4rDh11HAwBA9GrXTnroIalfP3sIjvz5+GPrDZmWFtjrXHaZ1KBBYK8BBNOjjz6qli1b6rHHHtOBAwfUsmVLtWzZUgsdNoRt2FAaNIg2idGqVCn797xcOemXX6Q2bTIqsrn022+2UUuy0Z9JYinjGdH330ubNvn33ECkcZokfvDBB+XxeLJ9rV69OtNntmzZol69eumKK67Q4MGDsz1/MPo6bNlipRFiY22HKEJfdiWnY2Kk6dOlDz4IbMLBlySePDlw1wCAaFGwoFS4sOsoEI08Hunaa6XHHrMbbgAA4M5jj9li8IoVXUcS3o4ele65xxLuX30VvOvOmSN98knwrgcEwnvvvSev13vKq1u3bq5DQxQ75xxpwQKr2rBzp3TrrYFfBJQdr1e64w7bxNWvn+129rc6dWz3vNdru+kBnJ7TJPE999yjVatWZfuqXbv2ifdv3bpV3bt3V6dOnTRq1CiHkWfw7SKuV08K4fYTOMkVV9g4eXLW/Q4KFpT+/vfA9rbs3l366KOMviAAACD8eDxShw52PHeu21gAAIh2BQpkvo9n51DejBsnbd8uVa4s9e0bnGvOnm07wG+6SVq/PjjXBKLBSy9Jr71mPdsR3WrUkH7+2TZFjR1rc6YrEybYDt+4OPtvNFBuusnGd991mxQHQp3TJHG5cuXUsGHDbF9x/5953bJli7p166bWrVtr9OjRiokJjUrZFStKt98u/e1vriNBTjVubD0PfvrJejJIdvP473/bitlgKFZMGjhQKl8+ONcDAH/ZuHGjBg0apFq1aqlw4cKqU6eOHnvsMR0N1j+gQIhp395GksQAAISGQ4ds4XeTJtK6da6jCT+vv27jzTfbIvpg6NDBdrodOmQJjPT04FwXiGRer/Tss/bcesMG19EgFBQpIr3zTuaWmePHSzt2BC+Gw4elu++243vvDWxl1ksvlXr2lB55hCQxkJ1Y1wHkhC9BXKNGDT3//PPauXPnie9VdFxH6KyzpFdecRoCcsnjkR5+OOPXXq80eLD0ww+WLKahPQCc3urVq5Wenq6RI0eqbt26Wr58uQYPHqyDBw/q+eefdx0eEHTsJAYAILQUKiQlJUkHD0rXXWctpVzumAonv/4qzZplLdXO0OHNr2JiLHFx1ln29/Xf/0pDhwbv+kAk2rjRqgIULCi1bu06GoSi6dOlK6+0ftVffim1ahX4a65caa07q1aVHnoosNcqVIhWj0BOhMZ23DP44YcftHbtWk2ZMkVVq1ZVpUqVTryA/HrvPUsQFyok3X9/8K6bmmor+i64wFZRAUA46NWrl0aPHq2ePXuqdu3auuiii3Tvvfdq3LhxrkMDnGjTxh5sJiVRxg0AgFAQE2P3+cWKWWnNF15wHVH48O0ivvRSKzcdTLVr2zMSSXrgAXaBA/nla3HXqpU98wT+qmJF+7c3KclK/n/6aeCv2bq1tGaNtTYoWjTw1wNwZmGRJL7++uvl9XqzfLnk9Urz5knJyU7DQB7NnStdfLGVMpKs3HT9+sG7flyc7UL//ntp5szgXRcA/C05OVmlS5fO9j2pqalKSUnJ9AIiQfHiUtOmdjxvnttYAACAqVlTevllO37kEdshi+wlJ0sffWTHQ4a4ieG226Ru3Sg7DfiDL0ncqZPbOBC6GjSwe9g+fWwD01VXSYmJgS/NXLq01LZtYK9xsr17rTf3mDHBuyYQTsIiSRyqtm+3EoOlS0tHjriOBrk1YYI0caIdt2uX0Q8hWDweqVcvO/7uu+BeGwD8Ze3atXr11Vd1yy23ZPu+4cOHKyEh4cSrWrVqQYoQCDxfX+L5893GAQAAMtxwg3TRRdLRo9ajODXVdUSh7Y8/bOF8kybWH9iFmBjp3Xdtd9mMGVb+FEDezJljI0liZKdkSXs+/sAD9utnnrG509+b4mbMkL74wjbdBdvnn1tv7iefdHN9INSRJM6HlSttrF2bsh3h6MorM47ffddNj6LevW0kSQzAtQcffFAejyfb1+rVqzN9ZsuWLerVq5euuOIKDT5D07LExEQlJyefeCUlJQXytwME1T33SEuX2k0nAAAIDR6PNGqUVLas7SR+/HHXEYW2Jk2kxYuladPsz86VWrWs6trbb1vZawC5d+CA3Z9IUseObmNB6CtQwJLDY8ZYjuPbb/1bevrYMenWW6X+/TPaGgTT3/4mFSkirVqVsXgCQIZY1wGEM1+SuHFjt3Egb1q2tAmvXDm7GXKhRw+biFetkjZtkmrUcBMHANxzzz26/vrrs31P7dq1Txxv3bpV3bt3V6dOnTRq1Kgznj8+Pl7x8fH5DRMISQ0auI4AAABkpUIFSxQPGSKdfbbraEKfx2NJddd8bcEA5M2KFTZWry5VqeI2FoSPq66yihJjxkg33+y/8776qj37LltWGjjQf+fNqRIlpAEDpNGjbQESu+uBzEgS5wNJ4vA3YIDb65csaSXLf/5ZmjzZvxMwAORGuXLlVK5cuRy9d8uWLerevbtat26t0aNHKyaGwiQAAAAITZdeKvXsaSWMkbVvv5W6dLEH6aEmOVlauFA67zzXkQDho317+39n0ybXkSDctG5tL5/9+6VPPpEGD85blYlt26R//cuOn3lGKlXKL2Hm2qBBliT+7DNpxIjQnO8AV3iqmw8kieEP9CUGEE62bNmibt26qXr16nr++ee1c+dObdu2Tdu2bXMdGuDU119L110n/e9/riMBAAB/dXKCeN8+Z2GEpD/+kC68UKpaVdq503U0mW3eLDVtav0x161zHQ0QXooVc1c5EZHB67V73Ftuka6+Wjp0KPfnePBBSzS3bSvdcIP/Y8ypTp2khg3t9+DPUtpAJCBJnA8kieEPvXpZX4TChV1HAgBn9sMPP2jt2rWaMmWKqlatqkqVKp14AdFs/nzpgw9sJw4AAAhNH30k1axp1bxgRo6U0tNt51gOCwsFTdWqUr169lD/xhstTgBAcHg8VokjNtYSq1262OKdnJozR3r/fTt+9VXJZRE6j0e66SY7fvttd3EAoYgkcR7t3JmxwrJhQ7exILy1aiXt3i19/LHrSADgzK6//np5vd4sX0A0a9/exnnz3MYBAABOb9o0K8F63322QyraHT0qvfWWHQ8Z4jaWrMTESO+8YzvBZ8yQXnvNdUQAEF1uvVWaMsUWEf3yi9Smjf17fCZer3T77XZ8ww0Z98su/f3vtlGrShXp8GHX0QChgyRxHhUsKL38svTAA/S1Qf7ExEiFCrmOAgAA5Ifvpnf1amnvXrexAACArD3xhD0gnjNH+uIL19G4N26ctH27VLmydPHFrqPJWq1a0nPP2fGDD0pr17qNBwCizTnnSAsWSC1a2Ka5886T3nwz+894PNLw4VKHDjaGgvLlpT//lMaPp6IncDKSxHlUsqR0xx3WcB3wlz//dB0BAADIi7Jlpbp17Xj+fLexAACArFWuLN17rx0/+KDtpI1mr79u480322aIUHXrrVL37rbzi7LTABB8NWpYq4YBA6Tjx23R1b592X/m/PNtUVaFCkEJMUdKlHAdARB6SBIDIeDIEalJE7thJVEMAEB46tDBxrlz3cYBAABO77777IH1unVn3gkVyX79VZo1y3pNDh7sOprsnVx2eubM6P57AwBXihSRPvnENs2NH2+b6LJy8GBQw8qTdeukJUtcRwGEBpLEefTjj1aHPzXVdSSIBIUKZZS5+P57t7EAAIC8oS8xAAChr1gx6fHH7fjxx8+8EypS/fyzJV8vvdQWrIc6X9npAQOkK690HQ0ARCePx9pvntxjeOJEy5NItgCpalXp+eetL3EoGj3aqoDdc4/rSIDQQJI4j669VmrVihUn8J9evWz87ju3cQAAgLzp0MFumg8ccB0JAADIzqBBUqNG0t690uTJrqNx47bbpA0bpKefdh1Jzt12m/Tpp9bmAwDg3tKl0t/+JnXubP8+3367Lb6aP9/ujUPRuedabD/9ZDuKgWhHkjgP9u7NKAncqJHbWBA5fEni77+X0tLcxgIAAHKvRQu7IZ4xw3UkAAAgO7Gx0ttvS4sX287UaFW9uu2mChd/TTjs2OEmDgCAqVFD6tbNesZfdZXdCxcubDuJQ1WNGlLPnnb87rtuYwFCAUniPFi1ysaqVWl2Dv/p0EFKSJD27JEWLnQdDQAAyK3YWH42BAAgXHTqZAu8oo3XK23a5DqK/Nm9W7rsMqllSyklxXU0ABC9SpaUvvrKSlD7JCbaIqRQdtNNNo4eLR0/7jYWwDWSxHmwcqWNjRu7jQORJTZW6tHDjik5DQBAeAvV/ksAAOBUa9dKv/3mOorgmDLF+vtedZXrSPKuaFHre7l1q/Too66jAYDoVqCA9Mwzlix++mnp/vtdR3RmF11krQv+/JPn8ABJ4jwgSYxA6d3bRiYnAADC06+/Sl26SGef7ToSAACQEx99ZK3E/vGP6Fjk9frr9vssXdp1JHlXqJD03//a8auvSr/84jYeAIDUr5/tIo6Pdx3JmcXFSddea8dvv+02FsA1ksR5QJIYgdKrlzRokHTffa4jAQAAeVG6tPTzz9LcudKhQ66jAQAAZ9KlixQTI/30kzRpkutoAispSZo40Y7/8Q+3seRXz57WTzo9XbrlFiktzXVEAIBwMmiQjbNmSQcPuo0FcIkkcR6QJEagVKliq5cuu8x1JAAAIC+qVpUqV7YHlYsWuY4GQLRITU1VixYt5PF4tGTJEtfhAGGlZk3pjjvs+P77I7s34ciRllTt1k1q0sR1NPn34otSiRLSggXSqFGuowEAhJPGja1E9ubN1sYAiFYkifPgzTel//xHatrUdSQAAAAINR062Dh3rts4AESP+++/X5UrV3YdBhC2HnpIKlVKWrFCeu8919EERmqq9NZbdhzuu4h9KleWnnrKjhMTpW3b3MYDAAgv/fpJRYq4jgJwiyRxHvTpI917r5SQ4DoSRKL0dGn+fOnZZ+0YAACEF5LEubd7t/TFF66jAMLTpEmT9P333+v55593HQoQtkqVkh55xI4ffTQyy06OGyft2GGJ1UsucR2N/9x2m9S6tVSypJXTBgAgt7xe6cAB11EAbpAkBkLMsWNS9+7Sgw9Kv/7qOhoAAJBbviTxvHlu4wgHmzZJd94pVa8uXXmltGGDfT0tTRo4UJo2zWl4QMjbvn27Bg8erA8//FBFcrgNIjU1VSkpKZleAGx3ba1a0p9/Si+84Doa/3v/fRtvvlkqWNBtLP5UoIA0dqztAm/b1nU0AIBw88MPVnr6tttcRwK4QZIYCDHx8dK559rxd9+5jQUAAORe69b2wHLLFumPP1xHE5qWLpWuuUaqU0d65RXp0CGpeXNp1y77/ptvSmPG2MK5YcOkI0fcxguEIq/Xq+uvv1633nqr2rRpk+PPDR8+XAkJCSde1apVC2CUQPiIj5eeeUYqVkwqXtx1NP73xRfWk3jwYNeR+F/NmvSTBADkTUKCtHq1LTjau9d1NEDwkSQGQlCvXjaSJAYAIPwUKSL16CFddBElq/5q40apd2+pRQvp449tx3CPHtL330uLFmXsALr22oyH2C+9ZIn3xYtdRQ0E14MPPiiPx5Pta/Xq1Xr11Ve1f/9+JSYm5ur8iYmJSk5OPvFKoj4rcMIVV1hVi7vvdh2J/xUtaruII7l9eXq6JcJffNF1JIhGGzdu1KBBg1SrVi0VLlxYderU0WOPPaajR4+6Dg1ANtq2lZo1s4XJY8a4jgYIvljXAQA4lS9J/PPPUkqKVKKE23gAAEDusNAra6VLS3PmSDEx9iD+vvssAfxXxYtLo0ZJF18sDRokrVwptW8vPfaYteSI5S4GEeyee+7R9ddfn+17ateurZ9++klz5sxRfHx8pu+1adNGAwcO1Pu+2rJ/ER8ff8pnABiPRypb1nUU/nX8uFU48XhcRxJ4338v3Xqr7Qq/8EKpXj3XESGarF69Wunp6Ro5cqTq1q2r5cuXa/DgwTp48KCef/551+EBOA2PR7rpJmuD9NZb1n4iGuZMwMfj9Xq9roMIlpSUFCUkJCg5OVklyLohxNWrJ61dK40fL11yietoAJyM+ST/+DMEIt+RI9IHH0hTpkiffppxoz1hgtS0qZWazoldu+yB7xdf2K8HDZLefjswMSP8RPN8snnz5kz9hLdu3aoLLrhAY8eO1f+xd9/xTVXvH8A/6UppaQttoaXQQoGyC2WWKVOmDCcoCgjiAhEBWYogKohMBQQHgqI4vwwVWbKRvfceZZUNpQW6cn9/PL+0TWfaJrnJzef9euXVJrm5OUnTPPee55znREdHo0yZMmbtx5nfQ6LcrFkDrFoFOHpu54svpNN77FjgmWfUbo11KYoMul+9Gnj8cfn7saPfdhhPspo8eTLmzJmDs2fPZnt/YmIiEhMT067HxcUhNDSU7yGRjd2+LZU2EhOB3buzH8hM5GjMjcssN01kp1hymoiIyLEpChATIzN4nMmdO8CECbI+4GuvAb/9Bqxbl35/167mJ4gBmdH1+++ScC5ZUkZ426OMQ28VBdi1S722kHMICwtDjRo10i6VKlUCAFSoUMHsBDERZe/iRVkeYepUYMMGtVtTcIoCfPklcPgwcOOG2q2xPp0OmD1bZhKvWQP8+qvaLSJnd+/ePfj7++d4/8SJE+Hn55d2CQ0NtWHriMjI3x946in5fd48ddtCZGtMEhPZKWOSeOtWddtBREREBVOzJlC2LHDggNotsY1Ll4ChQ4GwMOC994Br14DQUGDGDCkVXRg6HfDSS7KmcWRk+u0//wxcuVK4fRfWrl3A888DgwbJ9eRkoGdPoGFDmclERESOJzRUqlgAwLBhstatI1q7FjhxQpZxePFFtVtjGxUrynEIIGtL37unbnvIeZ0+fRozZ87Ea6+9luM2o0aNwr1799IuFy9etGELiSijfv3k508/AQ8eqNsWIltikpjITrVsCWzaBOzZY7vnTEkB5swBFi0CEhJs97xERERaZJzIt327uu2whX37gPLlgWnTgPh4SeQuXAicOSMzf4sWtczzFCmS/vuuXZI4rlHD9jOFUlOBpUuBxx4DGjSQctrz5klHtJsb4OkpCYXu3YGTJ23bNnJe5cqVg6IoiIqKUrspRJowdqwkV/fskUFJjujLL+Vnr17yWpzF8OFApUpAbCzw/vtqt4Yc3ciRI6HT6XK9HD9+3OQxly9fRvv27fHss8+if//+Oe5br9fD19fX5EJE6mjZEhgwQJY58vRUuzVEtsMkMZGd8vICmjUD3N1t83z37gFPPAG8+abMfgkOBl5+Gbh82TbPT0REpDUNG8pPLSaJFcV0Bm+tWlJCukUL4J9/ZPb0iy9a9zjGxweIipLy1j16AC+8IL9bU0KClLGsUgV48klg82Z5jb16Adu2AX5+Mut5zhygcWPg7l2gSxf5SUREjqVECWDkSPl99Gjg0SN125NfFy8Cy5bJ72++qW5bbE2vl1gMAF99JdVOiApq6NChOHbsWK6X8uXLp21/5coVtGzZEo0bN8bXX3+tYsuJKD9cXIBZs4A2beR3ImfBjzsR4fx56chctUqS0+XLyyygn382nfnD2cVERETm02KS2GCQDucmTSRB+/Ch3O7iIknS9etlDUedzvptqVJFnnPMGMDVVY5bIiNlDUJrmToVGDgQOH0aKF4cGDVKjqO+/14S5UZ6PbB4scwmP3FCylGnplqvXUREZB2DBwOlSwMxMcDMmWq3Jn+++kridsuWQLVqarfG9lq1AsaPl2MFLtNOhVGiRAlUqVIl14uHhwcAmUHcokUL1K1bF/Pnz4cLM01ERGTnGKmI7NjDh1Lmonp1662F8OiRlEo8ehQICZEZMadPy88vvpAZMUYtWkiH95dfArduWac9REREWtGggfw8fdrx46aiAH//LUnYbt2kw/XePWDHjvRtihWzfbvc3aUD+L//pKzk5ctA27bAu+9aZv8HDkgpbaNXX5XjslmzZIbWhAly/JSdoCDgzz+lRPbKlcCIEZZpExER2Y6XF/Dxx/L7J59Yv2KFpSQlAd98I7872yzijMaMAerWVbsV5CyMCeKwsDBMmTIFN27cQGxsLGJjY9VuGhHlw9mzwLBhwMSJareEyDaYJCayY56ewF9/SQJ30ybrPceECUDt2tLRW6eOzP5p2lQ6Qo0uXpRO0h07JHFdqhTw1FOyHl9SknXapoaUFBklvmWLzEj691+1W0RERI6qeHGgcmX5PWMy1dEcOAA8/jjQubMck/j5yQzaCxdkAJk9iI6W45SBA+V62bIF35fBAKxYIa85Kso04RwcDBw6JMdC3t5576t2bZllDMjgu9OnC94uIiJSx0svyRID33yjzoCognBzA374QZZD6NpV7dbYh+PHgatX1W4FadmaNWtw+vRprF27FmXKlEGpUqXSLkTkOA4dkgpSM2YAyclqt4bI+pgkJrJjOh3Qvr38vmKF5farKEDGgYwvviid17mVYAoNldk506dLh2dyMrBkiZwslyqVPkrZnikKcP26JLyNEhOB7t2l3HaZMlIesmxZWQ/6hReylhS7ds22bSYiIsfm6CWnz52TAWRr1wIeHjIb9sIFGWAWHKx260x5eUnc3r7ddNbU2bPmndw/fCjHMzVqAB07ykAxV1dZkzLjgLj8ltJ+9llg8mR5DytWzN9jiYhIfa6usoTAs8/aZjkFS3BxAdq1k4FK7u5qt0Z98+YBNWsC77yjdktIy/r06QNFUbK9EJHj6NhRznWvX5dqWkRaxyQxkZ0zJolXrrTM/h49kpHQ0dGmiWJzThyDgmRNpr17gYMHZWZNqVLA7dtAQED6dtevSweyWlJTZf2l998HeveWNZgqVpRyj0FBMvvHyMMDWL5cymZeviyzh9zdgfBwoHlzOZE02rIFCAsDRo6UNZuJiIjy8uST0iHZurXaLTGfwZD+e3i4DKZ69lmZgfPpp6ZLUdij6GjpHAeA+/eBNm2ARo2AY8dyfsy338ogsVdfle18fIChQ4EzZ6SyyP8vM1dgw4bJADQiInJ8jx6p3QLKrzp1pJ/g11+B1avVbg0REdkzd3egTx/5/dtvVW0KkU0wSUxk51q3lpHLJ0/KTJjCuHFDOkp/+kkSotu2FXxfkZHAZ5/JrNxVq4BOndLvmzMHKFcOaNUKWLBAOmjzS1Fklm/G6/Pny3O++64E606dZL3H8uWl89rIxUU6dj/5REpsbdggnbyJiTLyO+NJvU4n6wr+8Qewc6eUn3r0SN7rDRuAjz5K33bJEplJNGkSULUq8Ntv0i4iIqKcdO0KTJsmA4/snaIAv/wCVKtmOtjr++8l5oWHq9e2gjp6FLh7F9izRzqIP/88PQmeMYa7u8txUliY/L0uXQKmTClc2eqcHD4MPPMM8OCB5fdNRETWNXeuxAZ7rhAyapQMbL50Se2W2I/atYFBg+T3N9+U6iFEREQ56dtXfq5caVqRkkiLdIoT1byIi4uDn58f7t27B19fX7WbQ2S2xx4DNm8GvvwSeOONgu3j+HFJqp49KzOA/vhDEsbW8PLLkhw2KlJE1i/u2VPW9jMux6IoUq7yxo2sl5s3ZZ3DjDOo/fyAuLjsn7NePWDXrvTrb7whyeLQULmEhcnP0qULV27rr7+At9+W8puAJMJnzpQOdXIejCeFx/eQyL5s3y4zno2d3m++CcyerW6bLOXKFTnJX7VKrrdsCXh6Shkx4xrGSUnAn38C3brJOo7WkpIi61SfPSsztH/+2XFKl9orxpPC43tIZL6+fWXwcpMmco5ub9/hd+7IMkoPHgAbN0pfAon794EqVeS44IMPgA8/VLtF2sN4Unh8D4nsR8uWMoHo+eeBL74AAgPVbhFR/pgbUxwuSZyYmIjo6GgcOHAA+/btQ1RUlNmPZaAlRzVhAvDee0CXLsCyZfl//Nq1wNNPA/fuyazbv/+WmbDWdOEC8OOPMpP35Mn029u1M038Fism7cpO3brA7t3p1/v2lc7VEiWyXkqVktnLtvDwoawtOHGizDp2c5MTzNGjbfP8pD7Gk8Lje0jOJD5e4pm/v+kyBvbgwgWZcfTzz3Ld21tmHw0ZImv8aoWiyOyvYcPSZ/BWrCjHKLbu4N+0SSrFpKQAH38sx3hUcIwnhcf3kMh8ly8DERFyTrh4sSwrYS/275eO7OPHgerVgUOH7C+JrbY//pAqZB4esoRW5cpqt0hbGE8Kj+8hkf1YtEgmPAGyZGNQkPy+aZOcyzVsqK1zZtIec2OKFcfJW8fw4cMREhKCAwcOqN0UIptp3x6YN09GvebX8uUyKyYlRUY7L1kiSVVrK1tWOj1Hj5Yyzj/8APz+e9ayTq+/Lj+zS/xmbud331m/3eYoUkRGHr/0ksy6WrZMZikTERFlZ/x4GVz06qvAV1+p3Zp0H38sSzM8eiSdyH36yG0hIWq3zPJ0Oqky0qaNJMVLl5ayk2p0nj/2mFSHefVV4P33pSO/Wzfbt4OIiPKvdGkZSPXJJ8CIEcATTxSuUpUlKIospzBihFTGKFVKzp2ZIM7q6aeBDh2AFSukasq///J9IiKi7PXoIRObDh1KTxADsjThv//KpKF69eT8rlkz6XcvXly99hIVlEMliVesWIHVq1fjf//7H1asWJHn9omJiUjMsKhpXE51aonsXO3asqZuQTRuLDNl6taVRLNeb9m25UWnA6Kj5ZJd2cpPP7VteywpPBxYuhTYskUOBIxWr5aDh1q1VGsaERHZkYYN5ae9rV+YmCgJ4hYtZB3e2rXVbpH1RUTILCK19e8vnQ0zZwIvvghs2wZERqrdKiIiMsfw4cDXXwOnTsnPAQPUa8vNm0CvXpL0BKT62Lx5LImZE50OmDULaNBAqpwZDICrq9qtIiIie+Tikv2yj+XLy9IOly7JOf727cBnn0mMadJEZhpzABI5Ehe1G2Cua9euoX///li4cCG8zJzHP3HiRPj5+aVdQjnVjxxUfgNLhrERKF5ckpgLF9o+QewsmjZN/xvFxQG9ewN16sgMpbt3VW0aERHZAWOS+PBhKT2tlrVrTZdxGDFC1uFdt845EsT2Zto0KTudkCCd+jduqN0iIiIyh68vMG6c/P7hh3IOqBY3N+DIEcDTUwZlL13KBHFeypcHYmIk2c8EMRER5ddXX0kcOXcO+P57oF8/oFIlqezh7W3aj9+unSyfuGABcPasbENkbxwiSawoCvr06YPXX38d9erVM/txo0aNwr1799IuFy9etGIriawvORnYtSv3bS5dks7omTPTbwsI4AgmW3n0SJLGBoP8DSpVAubPl+tEROScQkJkWQKDwTRJaysnTkgSsk0bme1kjElFiwKdO/MYQS1ubsBvvwEVKkiHNTuqiYgcR//+cq538yawapVtnzspKb2TuVgxWdZp1y4pn8yYbp6Mc094rk5ERPml0wHlykk1j2+/lXPuq1eBGTPSt7l6VapNzp8PvPyynPeVKQM8/zwwZw5w8qRarScypWqSeOTIkdDpdLlejh8/jpkzZ+L+/fsYNWpUvvav1+vh6+trciFyVA8eSAnjBg2AK1ey32bvXinrvH8/MGECcP++TZtIAEqWlJP0NWtkDekbN2TEWJMm8vchIiLnpEbJ6du3gbffBmrUAP76S5KQ0dGmFUdIXf7+wIYNwMqV8jsRETkGd3cp67xnD/Dss7Z73uPHJZbPm5d+W4MGEusp/zZuBGrWBHbsULslRETk6IKDpS/YqFgxYPlyqeDVuLEcO1y5Avzyiwzsmjo1fdvkZODYMZs3mQgAoFMU9Sa537hxA7du3cp1m/Lly+O5557DX3/9BV2GIZGpqalwdXVFz5498f3335v1fHFxcfDz88O9e/eYMCaHFB0N7NwJfPedjEDKaOlSoGdPSSZXqwb8/besmUvqSUoCvvhCSpDFx8taFidPysgxcmyMJ4XH95CczbRpwNCh8nvGo+/ffpMqFP7+WS9ubgV7rqQk4MsvgfHjgTt35LYnngAmTzY9aSX7dPSoHMuReRhPCo/vIZH9UxRJDL/9tpzzh4XJmsgeHmq3zLH17g388AMQFSWzsQt67EWC8aTw+B4SadeDB9Kvv2kTsHkz8NprwDPPyH3bt0siuXt3WdKicmVVm0oaYW5MUfXwp0SJEihRokSe233xxRf4+OOP065fuXIF7dq1w6+//oro6GhrNpHIrrRvL8Fk5cr0JLGiyMij4cPl97ZtpcPZz0/dtpKcsA8bJmVEhg+XJDETxEREzqlVK/lZtarp7ePHy1qC2YmIMC1BNW4ccO1a9gnlwMD0fS9dCrzzjvxes6YcJ7RpY8lXQ9aQmgoMHiylx1atkvWKtcpgkDU8ixVTuyVERJZx+rScj0dEWH7fd+4Ar74K/PGHXG/TRtZAZIK48CZPlmor+/cDs2ZJHCYiIrIGLy+gRQu5ZHb+vBxH/PKL9Ou/9BLwwQeyLBGRtTnEGLmwsDCT60WLFgUAVKhQAWXKlFGjSUSqaN9eOpPXrAFSUqRs5BtvAF99Jfe/8YbMXOXoV/tSujTw00/yNzO6cEHWrfjsM5khTuSIEhMTER0djQMHDmDfvn2IiopSu0lEdisqSkoZ3rxpenvz5hInbt9Ov9y9K/e5u5tu+8cfOSeUS5VKX47imWeATp2Arl1lyQOudesYXFyAe/ckWfzsszKjSYuDy86eBV55RV7n+vXyuomIHNnChUC/fkDLlpZfn3jzZqkYdvGinOdPmCCVSfjdaRklSwKTJkkSfswYib+lS6vdKiIicjY9esig7w8+AP78UwaD/fSTHF+89x4QGqp2C0nLmEoiciANGgDFi8tI4l27gEaNgEqVAJ0OmD4dGDRIfif7lDF5//77Ul6kYUOgY0c5Ge3ShesRkmMZPnw4QkJCcODAAbWbQuQQGjTIetvs2VlvS02VRPGDB6a3DxkCxMSYJpSNl5Il07dzcZFlJ8ix6HTA118DJ05I5ZjOnaXsmFYqDRoMMktr1Cj5bHt5AYcPy2x3IiJH1qSJ/Fy9WpLE7dpZZr+XLklVieRkoGJF4OefgXr1LLNvStevHzB/PrBtm8wk/v13tVtERETOqFYtYNkyORf84AM5pvjqK2DFChloy8HfZC0OOfawXLlyUBSFM5bI6bi6SjlpQAIEIOUk9++XtYmYIHYcU6bI+kcA8M8/Uj48KEg6FL7+WjoCiOzZihUrsHr1akyZMkXtphBpjqsrEBCQdbRw375ScvqLL4Aff5T4sX27lKTeskWVppKFeXpKufCQEODYMeCFF2TQgBakpgLffScJ4hYtgIMHmSAmIm0oXx4YOFB+f/ddy31vlykDjBwJ9OkD7N3LBLG1uLjIUg+urlK1xdjXQkREpIYGDWSpyU2bgMcek8HixgSxwSCDxIksySGTxETOrH17+WksL6XTsYPNEQUFAQsWAEePAh9+KH/DlBQZff7JJ6azjuPjVWumam7cABIT1W4F5eTatWvo378/Fi5cCC8vL7Mek5iYiLi4OJMLERFlVaqUJIo9PYHly6W8mKNKTU0f+ObuLjO1vvwSWLtWm6W0ich5vf++rLN+6BDwww8F38+vv0pFCaMPP5TvTh+fQjeRclGrVvp6xP/7n6pNISIiAgA0awZs2AC89Vb6bf/7H1CuHDB2rCxVZI/WrJElFqtXl0lR//wDJCWp3SrKDZPERA6mc2eZXfLokdotIUswrjdx4IDMBJs4UdaYMs4KT04GwsPlwGDGDCkzqkWZR9sPHSqz6Lp2ldIqWn3djkhRFPTp0wevv/466uVjOsPEiRPh5+eXdgnlgipERDmqXx+YN09+/+wzGVTmaI4eBRo3lvUzjWrXBt54g2tpEpH2+PunD+p5//2sS0bkJT5eOlJ79ACefz59wCyrhdnOuHHAb78B33yjdkuIiIiETmd67vS//wH37wPjx0t/8YQJ6k8uio01rYi5ciWwcKGcDy5YAHTqJJOl+vSRhDGrZ9ofnp4TOZiAAEmYTZyodkvI0iIipJzYoEHpt+3ZA9y8KWVE33kHKFsWiI6WDuMzZ9Rrq6UkJ0sSuHx54NSp9NsPHAASEoA//wRef11ed/XqwLBhwLp16rVXy0aOHAmdTpfr5fjx45g5cybu37+PUaNG5Wv/o0aNwr1799IuFy9etNIrISLShhdekJP/ZcuAatXUbo35kpOls6J2bVlPa9Ys9TsuiIhsYeBAOW+5cgWYPt38x+3eDdSpIx2pLi7AE09w3UE1FC0KPPssE/NERGS/Fi2SpRGqVQPu3JEBauXLA9OmAQ8f2qYNiiJLI336KdCokUxm27Ah/f4ePaRE9u+/A2++KQniu3eB778HnnnGdFaxotimzZQ7naI4z58iLi4Ofn5+uHfvHnx9fdVuDhGRWS5dAhYvloOALVtMA+jnn5smlR2FwSAHC++/D5w+LbcNGCAdycb7DxyQEWYrVgDbtsltgJTmPnAgfV83bgAlSti2/VqMJzdu3MCtW7dy3aZ8+fJ47rnn8Ndff0GXofckNTUVrq6u6NmzJ77//nuznk+L7yERkbM7eFBmwu3dK9c7dpTBYGXKWO85GU8Kj+8hkeUsWgS89poM8nnnndy3NRiAqVOlgzc5GQgNBX78UdYfJHXduQN89510cjNpbD7Gk8Lje0hE5khNBX75RapgGPtVn3gC+Osv6z3f9u2yLNKyZaYTfQBJGI8YkfNjt2yRfm2DAZg9O/2+xx6T8tnPPgu0bQvo9dZpv7MyN6YwSUxE5EBiY4ElS6S8yIYNMuo8Kkru27BBLs88I7Nu7fFkVlGAVauA0aOBffvkthIlgDFjgFdfzflg4M4dWdNixQop0T18uNz+4IGUditfHujQQTqjmza1/kGFM8eTmJgYk/WEr1y5gnbt2uGPP/5AdHQ0ypiZCXDm95CIqCAuXJC1KWfPBooUUbs1ppKSZPbwJ58AKSmyLufnnwMvvWT94xHGk8Lje0hkOQYDcOtW3oNY79wBnnsO+Pdfuf7001LmuHhx67eRcpecDFSuDJw7J7OeevVSu0WOg/Gk8PgeElF+pKQAP/wg54lffw20aye3P3oEuLnJxRIOHgRq1Uq/7uEBtG4tywQal8bMrxMngCpV0q/7+gJduqQnjD09C99uZ8ckcTYYaIlIS27elPLjxs7XXr1kzQdATmqffhp46ikpXWYvCeNu3WTEGQD4+ADvvgsMHiy/F8R//8moM+MsYwDw9pYDlQ4d5ECldOnCtjorxpN058+fR3h4OPbt24co44gFM/A9JCIyX2oqUKMGcPw40LOnxHt7ie0AcPastO/hQ4n1X34JlCplm+dmPCk8vodEtpecDDRrBhw6JINq+vWzr+91ZzdpkiwFFRgondj+/mq3yDEwnhQe30MiKoikJMDdPf1Y4qOP0pPH3bubv4zFjRsyG3nZMikT/fXXcruiAHXrSpnrrl2B9u0L3pdrZDAAW7dKpck//pDlOox8fCQWv/FG4Z7D2ZkbU7gmMRGRgwoMNO1I6NxZLh4eciI7YQJQrx4QFialnJOT1WurUf36Mst36FDpUB4zpnAHFU2aSLL811+BPn2A4OD0tYzfeAP47bf0bR89Ml33goiIyFG4ukri1dUV+OknYPJktVtkOkCrfHlgxgzg559liQxbJYiJiOzZ2rWSaDTKeD7i7i7fmXv2AK+8wgSxvRkyRKpz3bxp+jckIiKyRx4e6ccSqakyqPj0aRlgXKuWnKPlNFX01ClgyhQZvBYUJAPX/vxTkrfGvmSdTo5ZfvxRZvoWNkEMAC4uUg3y88+BixelJPXbb8tkn/v3TWcnnz0rpa5tte6ys+FMYiIijYmLA5Yvl5LUK1dK0rRGDRmlbrR5sxwkWPOr8Px5WRvj+efTy50kJAC3b8t6W9ZgXMt4xQpZz/jbb9NLl8yfD8ybJwcdhcV4Unh8D4mI8u/LL2Xgl04nJ9OdOgHh4bZPLuzYIUmNOXPkxF5NjCeFx/eQyPJiYmQATWoqsGmTzETt0UNm3tjDQB/K2+bN6etD//cf0Lixuu1xBIwnhcf3kIgsIT4e+OILOea4e1duq11bZhh37Jh+/vjsszKLN6PatWW2cNeu0nds63NNg0HWP65TJ73k9Pvvy9JGRYvKBKlnn5VjKntbhsnecCYxEZGT8vWVxOwff8jI57//Bj7+OP3+Bw8kaRsYKAF17lzTkh6Fdf26lJCuXFnWcBo1Kn20mre39RLEgIxCq11b1jzessV0bYstW4Dmza333ERERNb25pvA669LXB00CKhQQZIOGd25Y73nf/hQlopo3Bg4fFjiLRERZRUWJoNpAFkWqF49+d788cf0zlqyb82aAS+/LL+/8gqrUhERkeMoWlTO1c6dAz74QK7v2wc88YSUoDaqVk3WLW7TBpg5E7hwAdi7Fxg7FoiKUqfSiYuLnG9mXJO4eHHpT46Pl0osTz0FlCwp/d9Llti+jVrDmcRERE7m2DHgySelJHVGDRrIKLHnngMqVsz/fuPigKlTgWnTJGgDsjbwhAmyb7UZDFLizcur8PtiPCk8vodERAWTnCyDv1asAPbvB957T07iAeDqVSnLVaECEB0t8bdBAznBL+wo6//+A/r2BU6elOsvvQRMnw4EBBRuv4XFeFJ4fA+JrCM2FoiISD836tBBqhsFBanbLjLfzZsy+Pn2bSmzWaeO3L5ypcTDChXkUq6caWe2vVEUWWfy7FngzBnTnxERUnHLEhhPCo/vIRFZw82bMqt4zhyJZxERcvutW7KkUbFiqjbPLAYDsHNn+hrGMTFye9myUs3S6JNPJO5VqiSXiAiZtOSMzI0pTBITETmp48eBZctkTYft29NvnzwZGDZMfk9KkoMFV9fc9/XjjzJ7+NYtuV6vHjBxooxE0yLGk8Lje0hEVHiJiXIxfo2uXp2+xENGbm5AzZrAiBEyGCw/EhJkFPrMmXKyHRICfPWVjEK3B4wnwPLlyzF+/HgcPHgQnp6eaN68OZYuXWr24/keElnPvHkyY2fIEKkA4cJ6fg5nyRIZJHX9uqwlDchAqR9/TN9Gp5M1FMuXl6TxtGnpHe6JiaZrRVpLcrJ0mJ89K2XO27dPv6906Zyrh1WvLrPcLYHxpPD4HhKRNcXHy6xiR6co6Qnju3dluUGjUqVkoF5GpUtLwrhxY9NqmwaD+sdmBoMMRrtxQ5L5N27IcheBgYXft7kxxa3wT0VERI6oShW5jBghM4/++kuSxl27pm/z889SVrJzZ7n98cezn4nk6SkJ4sqVZcTWU0+pU5KEiIjImej1cjFq21ZOMHfvlpPmnTtl/eBr16RsWMZSmTt2yJIQxtnG0dFy8pzZX3/JelaAdJJPneoYI82dxf/+9z/0798fEyZMQKtWrZCSkoLDlurtJ6JC69dPLuS4nnxSzofdMvSgNm4syzidOSOX+Hjg0iW5bNkiSzoZvfqqDMw2JpArVDD9vWzZgnVQz5wpyV3jrOCYGEkOA0BkpGmSODBQksRlypg+f/ny0mlORETOQQsJYkD6nKOj5ZKRwSCD8k6elMuJE9JfffmyXDKrUEEGchlnHWe8hIQUrG87NVWey5jwzfyzQYP0Y8ObN6XCjMFguo+1a4FWrfL/3AXFmcRERJSjnj2BRYvSrxcpIjOUmjSRjuTnn5fbFQX43/+Abt1MT561ivGk8PgeEhHZhqIAFy9KwrhpUyA4WG6fOjW9cohRSEh60rhnT1lTU1GA114Dnn46+1nKanPmeJKSkoJy5crhww8/RL9CZKGc+T0kIiosRZFOXmP55uvXpcqWUbNmkjjOjk4HPHyYPuDrhx/k8eHhspxTxrLQXl7AunXpj42MzDoD2NNTEr+RkcAvv6TffvmyLA9h7ZLYjCdAly5dsH//fly/fh3FixdHmzZtMGnSJISEhJj1eL6HRESWdesWcOqUJI39/NInR8XHAz4+OT/u8celUpfR//4nlTazS/y2aiWTrAC5XrJkzvvt0UMmZQGSUHZ3l2OJYsVkUFeJEsCkSXL8UFicSUxERIW2YIGMblq6VGYZx8TI70uXStB64gkJqDod8Mwz6raViIiIstLpJNkbFmZ6+1NPyUmyccbxoUMyy8gY51u2lMfodMDXX6vRcsrL3r17cfnyZbi4uKB27dqIjY1FVFQUJk+ejBo1auT4uMTERCQmJqZdj4uLs0VziYg0SaeTc+MSJYCGDbPev3o1cO5c9usBp6aaVgT59ltg8+bsn8fbWzqRjbOaXn5ZSmxmnJUcHJz9rOTsKoWQdbRs2RKjR49GqVKlcPnyZQwbNgzPPPMMtm7dqnbTiIicUkCAXDLHaG9vGUydcdax8fdz56TSh9HDh8Czz0oczo6fX/rv/v4S2/395djAmPg1/qxdO31bV1ep7unvn76khRqYJCYiohy5u8toqFatgM8/B/bvl2Txf/8BjRqxpDQREZGjCg8HXnlFLoCsPbxvn5Sh3rULiIpStXlkhrNnzwIAxo0bh2nTpqFcuXKYOnUqWrRogZMnT8Lf3z/bx02cOBEffvihLZtKROS0ihQBqlWTS2aZO5u7dpWS0OfOyWDszOWpMxoyxHptpoJ755130n4vW7YsRo4ciW7duiE5ORnuamYAiIjIhE4nMbdMmaylnZOSZFkJo7t3ZZ3gR4/SB4ZlTP5WrZq+raurJJXN7TMPCir0Syk0JomJiMgsOp2Mdso44omIiIi0wdtbylE3bap2S2jkyJGYNGlSrtscO3YMhv9fvOq9997D008/DQCYP38+ypQpg99//x2vvfZato8dNWoUhmTILsTFxSE0NNRCrSciInNl7kAeOlSddpB13L59Gz/99BMaN26cY4KY1T2IiOyPh4dcjEqVAjZsMP/xjjapikliIiIiIiIiIjsxdOhQ9OnTJ9dtypcvj6tXrwIAqmWYnqbX61G+fHnExMTk+Fi9Xg99xvqmREREZDEjRozArFmz8ODBAzRs2BB///13jtuyugcREaktm5UqiIiIiIiIiEgNJUqUQJUqVXK9eHh4oG7dutDr9Thx4kTaY5OTk3H+/HmUzbiIFhERERXYyJEjodPpcr0cP348bft3330X+/btw+rVq+Hq6opevXpByWEhy1GjRuHevXtpl4sXL9rqZREREQHgTGIiIiIiIiIih+Pr64vXX38dY8eORWhoKMqWLYvJkycDAJ599lmVW0dERKQN5lb4MAoMDERgYCAqVaqEqlWrIjQ0FNu3b0ejRo2yPI7VPYiISG1MEhMRERERERE5oMmTJ8PNzQ0vvfQSHj58iOjoaKxbtw7FixdXu2lERESaUKJECZQoUaJAjzUYDABgsu4wERGRPWGSmIiIiIiIiMgBubu7Y8qUKZgyZYraTSEiInJqO3bswK5du9C0aVMUL14cZ86cwZgxY1ChQoVsZxETERHZA65JTERERERERERERERUQF5eXli8eDFat26NypUro1+/fqhZsyY2btzIktJERGS3OJOYiIiIiIiIiIiIiKiAIiMjsW7dOrWbQURElC+cSUxERERERERERERERERE5ESYJCYiIiIiIiIiIiIiIiIiciJMEhMRERERERERERERERERORGnWpNYURQAQFxcnMotISIiR2aMI8a4QvnHmExERJbAmFx4jMlERGQJjMmFx5hMRESWYm5cdqok8f379wEAoaGhKreEiIi04P79+/Dz81O7GQ6JMZmIiCyJMbngGJOJiMiSGJMLjjGZiIgsLa+4rFOcaHiXwWDAlStX4OPjA51Op3ZzshUXF4fQ0FBcvHgRvr6+ajfHbGy3bbHdtsV225YjtFtRFNy/fx8hISFwceHKDQXhCDHZyBE+k3nha7APfA32ga/BPljqNTAmF54jxeTMtPC/kButvz5A+69R668P4GvUAsZk++GIMVlr/x9aez2A9l6T1l4PwNfkCBzx9Zgbl51qJrGLiwvKlCmjdjPM4uvr6zAftozYbttiu22L7bYte283R0YXjiPFZCN7/0yag6/BPvA12Ae+BvtgidfAmFw4jhiTM9PC/0JutP76AO2/Rq2/PoCvUQsYk9XnyDFZa/8fWns9gPZek9ZeD8DX5Agc7fWYE5c5rIuIiIiIiIiIiIiIiIiIyIkwSUxERERERERERERERERE5ESYJLYzer0eY8eOhV6vV7sp+cJ22xbbbVtst205artJu7TwmeRrsA98DfaBr8E+aOE1kPq0/jnS+usDtP8atf76AL5GLdD66yPr0trnR2uvB9Dea9La6wH4mhyB1l5PRjpFURS1G0FERERERERERERERERERLbBmcRERERERERERERERERERE6ESWIiIiIiIiIiIiIiIiIiIifCJDERERERERERERERERERkRNhkpiIiIiIiIiIiIiIiIiIyIkwSWwnJk6ciPr168PHxwclS5ZEt27dcOLECbWblS+ffvopdDodBg8erHZT8nT58mW8+OKLCAgIQJEiRRAZGYndu3er3axcpaamYsyYMQgPD0eRIkVQoUIFfPTRR1AURe2mZbFp0yZ07twZISEh0Ol0WLp0qcn9iqLggw8+QKlSpVCkSBG0adMGp06dUqex/y+3NicnJ2PEiBGIjIyEt7c3QkJC0KtXL1y5ckW9Bv+/vN7rjF5//XXodDrMmDHDZu3LiTntPnbsGLp06QI/Pz94e3ujfv36iImJsX1jySlpIS5n5khxOiNHjNkZOVL8zsgRY3lmjhrbM3LUOJ8RYz5ZmhZjdF4cNYbnxtHje14cNf7nRgvHBrnRwnFDXrRwXEH2Q+vxWCuxV0vxVguxVWuxVIux0xljJZPEdmLjxo0YMGAAtm/fjjVr1iA5ORlt27ZFQkKC2k0zy65du/DVV1+hZs2aajclT3fu3EGTJk3g7u6OFStW4OjRo5g6dSqKFy+udtNyNWnSJMyZMwezZs3CsWPHMGnSJHz22WeYOXOm2k3LIiEhAbVq1cLs2bOzvf+zzz7DF198gblz52LHjh3w9vZGu3bt8OjRIxu3NF1ubX7w4AH27t2LMWPGYO/evVi8eDFOnDiBLl26qNBSU3m910ZLlizB9u3bERISYqOW5S6vdp85cwZNmzZFlSpVsGHDBhw8eBBjxoyBp6enjVtKzsrR43JmjhSnM3LUmJ2RI8XvjBwxlmfmqLE9I0eN8xkx5pOlaS1G58VRY3hutBDf8+Ko8T83Wjg2yI0WjhvyooXjCrIfWo7HWom9Wou3WoitWoulWoydThkrFbJL169fVwAoGzduVLspebp//74SERGhrFmzRmnevLny9ttvq92kXI0YMUJp2rSp2s3It06dOil9+/Y1ue2pp55SevbsqVKLzANAWbJkSdp1g8GgBAcHK5MnT0677e7du4per1d+/vlnFVqYVeY2Z2fnzp0KAOXChQu2aZQZcmr3pUuXlNKlSyuHDx9WypYtq0yfPt3mbctNdu3u3r278uKLL6rTIKJsOFJczszR4nRGjhqzM3LU+J2RI8byzBw1tmfkqHE+I8Z8sgZHjtF5ceQYnhstxPe8aCH+50YLxwa50cJxQ160cFxB9kUr8VhLsVdr8VZrsVVrsVSLsdNZYiVnEtupe/fuAQD8/f1VbkneBgwYgE6dOqFNmzZqN8Usf/75J+rVq4dnn30WJUuWRO3atfHNN9+o3aw8NW7cGGvXrsXJkycBAAcOHMCWLVvQoUMHlVuWP+fOnUNsbKzJ58XPzw/R0dHYtm2bii3Ln3v37kGn06FYsWJqNyVXBoMBL730Et59911Ur15d7eaYxWAwYPny5ahUqRLatWuHkiVLIjo6OtfyHkTW5khxOTNHi9MZOWrMzkgr8TsjrcTyzBwltmfkiHE+I8Z8sgRHjtF5ceQYnhstxPe8aDH+50arxwa5ccTjhrw4+nEFqUsr8VhLsVdr8VbrsdUZYqkWYqcWY6Wb2g2grAwGAwYPHowmTZqgRo0aajcnV7/88gv27t2LXbt2qd0Us509exZz5szBkCFDMHr0aOzatQuDBg2Ch4cHevfurXbzcjRy5EjExcWhSpUqcHV1RWpqKj755BP07NlT7ablS2xsLAAgKCjI5PagoKC0++zdo0ePMGLECDz//PPw9fVVuzm5mjRpEtzc3DBo0CC1m2K269evIz4+Hp9++ik+/vhjTJo0CStXrsRTTz2F9evXo3nz5mo3kZyMI8XlzBwxTmfkqDE7I63E74y0EMszc6TYnpEjxvmMGPOpsBw5RufF0WN4brQQ3/OixfifGy0eG+TGUY8b8uLoxxWkHq3EY63FXq3FW63HVq3HUq3ETi3GSiaJ7dCAAQNw+PBhbNmyRe2m5OrixYt4++23sWbNGodaM8xgMKBevXqYMGECAKB27do4fPgw5s6da9cB8rfffsNPP/2ERYsWoXr16ti/fz8GDx6MkJAQu2631iQnJ+O5556DoiiYM2eO2s3J1Z49e/D5559j79690Ol0ajfHbAaDAQDQtWtXvPPOOwCAqKgobN26FXPnzmWHMdmco8TlzBw1TmfkqDE7I8Zv++dIsT0jR43zGTHmU2E5aozOixZieG60EN/zwvivXY563JAXLRxXkHq0EI+1GHu1Fm8ZWx2XVmKnVmMly03bmYEDB+Lvv//G+vXrUaZMGbWbk6s9e/bg+vXrqFOnDtzc3ODm5oaNGzfiiy++gJubG1JTU9VuYrZKlSqFatWqmdxWtWpVxMTEqNQi87z77rsYOXIkevTogcjISLz00kt45513MHHiRLWbli/BwcEAgGvXrpncfu3atbT77JUxoF24cAFr1qyx+1FPmzdvxvXr1xEWFpb2P3rhwgUMHToU5cqVU7t5OQoMDISbm5tD/p+S9jhSXM7MUeN0Ro4aszPSSvzOyJFjeWaOFtszctQ4nxFjPhWGI8fovGghhudGC/E9L1qM/7nR0rFBbhz5uCEvWjiuIHVoJR5rMfZqLd5qPbZqNZZqKXZqNVZyJrGdUBQFb731FpYsWYINGzYgPDxc7SblqXXr1jh06JDJbS+//DKqVKmCESNGwNXVVaWW5a5JkyY4ceKEyW0nT55E2bJlVWqReR48eAAXF9NxHa6urmkzMBxFeHg4goODsXbtWkRFRQEA4uLisGPHDrzxxhvqNi4XxoB26tQprF+/HgEBAWo3KU8vvfRSljVU2rVrh5deegkvv/yySq3Km4eHB+rXr++Q/6ekHY4YlzNz1DidkaPG7Iy0Er8zctRYnpkjxvaMHDXOZ8SYTwWhhRidFy3E8NxoIb7nRYvxPzdaOTbIjaMfN+RFC8cVZFtai8dajL1ai7daj61ajKVai51ajZVMEtuJAQMGYNGiRVi2bBl8fHzS6sz7+fmhSJEiKrcuez4+PlnWmfD29kZAQIBdrz/xzjvvoHHjxpgwYQKee+457Ny5E19//TW+/vprtZuWq86dO+OTTz5BWFgYqlevjn379mHatGno27ev2k3LIj4+HqdPn067fu7cOezfvx/+/v4ICwvD4MGD8fHHHyMiIgLh4eEYM2YMQkJC0K1bN7tsc6lSpfDMM89g7969+Pvvv5Gampr2P+rv7w8PDw+1mp3ne505+Lq7uyM4OBiVK1e2dVNN5NXud999F927d8djjz2Gli1bYuXKlfjrr7+wYcMG9RpNTsUR43JmjhqnM3LUmJ2RI8XvjBwxlmfmqLE9I0eN8xkx5pOlaSFG50ULMTw3WojveXHU+J8bLRwb5EYLxw150cJxBdkPrcVjLcZercVbLcRWrcVSLcZOp4yVCtkFANle5s+fr3bT8qV58+bK22+/rXYz8vTXX38pNWrUUPR6vVKlShXl66+/VrtJeYqLi1PefvttJSwsTPH09FTKly+vvPfee0piYqLaTcti/fr12X6ee/furSiKohgMBmXMmDFKUFCQotfrldatWysnTpyw2zafO3cux//R9evX2227s1O2bFll+vTpNm1jdsxp97x585SKFSsqnp6eSq1atZSlS5eq12ByOlqJy5k5SpzOyBFjdkaOFL8zcsRYnpmjxvaMHDXOZ8SYT5am1RidF0eM4blx9PieF0eN/7nRwrFBbrRw3JAXLRxXkP1whnishdirpXirhdiqtViqxdjpjLFSpyiKAiIiIiIiIiIiIiIiIiIicgoueW9CRERERERERERERERERERawSQxEREREREREREREREREZETYZKYiIiIiIiIiIiIiIiIiMiJMElMREREREREREREREREROREmCQmIiIiIiIiIiIiIiIiInIiTBITERERERERERERERERETkRJomJiIiIiIiIiIiIiIiIiJwIk8RERERERERERERERERERE6ESWLSvPPnz0On02H//v1qNyXN8ePH0bBhQ3h6eiIqKirbbRRFwauvvgp/f3/V22+P72FBbdiwATqdDnfv3rX6c40bNy7Hvy8RkTOyx3jCmKwexmQiInXZY0xhXFYP4zIRkXrsMZ4wJquHMZlsiUlisro+ffpAp9Ph008/Nbl96dKl0Ol0KrVKXWPHjoW3tzdOnDiBtWvXZrvNypUrsWDBAvz999+4evUqatSoYZO29enTB926dTO5LTQ01KZtcEQ6nQ5Lly41uW3YsGE5/n2JiNTAmJwVY7L2MCYTkaNgXM6KcVl7GJeJyBEwJmfFmKw9jMmUHSaJySY8PT0xadIk3LlzR+2mWExSUlKBH3vmzBk0bdoUZcuWRUBAQI7blCpVCo0bN0ZwcDDc3NwK/HyF5erqqnobHFHRokVz/PsSEamFMdkUY7JzYEwmInvFuGyKcdk5MC4TkT1iTDbFmOwcGJOJSWKyiTZt2iA4OBgTJ07McZvsShvMmDED5cqVS7tuHCU0YcIEBAUFoVixYhg/fjxSUlLw7rvvwt/fH2XKlMH8+fOz7P/48eNo3LgxPD09UaNGDWzcuNHk/sOHD6NDhw4oWrQogoKC8NJLL+HmzZtp97do0QIDBw7E4MGDERgYiHbt2mX7OgwGA8aPH48yZcpAr9cjKioKK1euTLtfp9Nhz549GD9+PHQ6HcaNG5dlH3369MFbb72FmJgY6HS6tPegXLlymDFjhsm2UVFRJvvQ6XT49ttv8eSTT8LLywsRERH4888/TR5z5MgRPPHEE/D19YWPjw+aNWuGM2fOYNy4cfj++++xbNky6HQ66HQ6bNiwIdtyHRs3bkSDBg2g1+tRqlQpjBw5EikpKSbv16BBgzB8+HD4+/sjODg429ea2bfffouqVavC09MTVapUwZdffpl2X+PGjTFixAiT7W/cuAF3d3ds2rQJALBw4ULUq1cPPj4+CA4OxgsvvIDr16/n+HzmfO527dqFxx9/HIGBgfDz80Pz5s2xd+/etPuN2z755JMmf6/M+87rs2F8nxcvXoyWLVvCy8sLtWrVwrZt29K2uXDhAjp37ozixYvD29sb1atXxz///JPre0pElBFjMmMyYzJjMhHZD8ZlxmXGZcZlIrIPjMmMyYzJjMnOiElisglXV1dMmDABM2fOxKVLlwq1r3Xr1uHKlSvYtGkTpk2bhrFjx+KJJ55A8eLFsWPHDrz++ut47bXXsjzPu+++i6FDh2Lfvn1o1KgROnfujFu3bgEA7t69i1atWqF27drYvXs3Vq5ciWvXruG5554z2cf3338PDw8P/Pfff5g7d2627fv8888xdepUTJkyBQcPHkS7du3QpUsXnDp1CgBw9epVVK9eHUOHDsXVq1cxbNiwbPdh/DK+evUqdu3ala/36MMPP8Rzzz2HgwcPomPHjujZsydu374NALh8+TIee+wx6PV6rFu3Dnv27EHfvn2RkpKCYcOG4bnnnkP79u1x9epVXL16FY0bN86y/8uXL6Njx46oX78+Dhw4gDlz5mDevHn4+OOPs7xf3t7e2LFjBz777DOMHz8ea9asybHdP/30Ez744AN88sknOHbsGCZMmIAxY8bg+++/BwD07NkTv/zyCxRFSXvMr7/+ipCQEDRr1gwAkJycjI8++ggHDhzA0qVLcf78efTp0ydf719m9+/fR+/evbFlyxZs374dERER6NixI+7fvw8AaX+f+fPn5/r3yuuzYfTee+9h2LBh2L9/PypVqoTnn38+7QBmwIABSExMxKZNm3Do0CFMmjQJRYsWLdTrIyLnwpjMmMyYzJhMRPaDcZlxmXGZcZmI7ANjMmMyYzJjslNSiKysd+/eSteuXRVFUZSGDRsqffv2VRRFUZYsWaJk/AiOHTtWqVWrlsljp0+frpQtW9ZkX2XLllVSU1PTbqtcubLSrFmztOspKSmKt7e38vPPPyuKoijnzp1TACiffvpp2jbJyclKmTJllEmTJimKoigfffSR0rZtW5PnvnjxogJAOXHihKIoitK8eXOldu3aeb7ekJAQ5ZNPPjG5rX79+sqbb76Zdr1WrVrK2LFjc91P5teuKIpStmxZZfr06Sa3Zd4XAOX9999Pux4fH68AUFasWKEoiqKMGjVKCQ8PV5KSkrJ93ox/LyPje7hv3z5FURRl9OjRSuXKlRWDwZC2zezZs5WiRYum/W2aN2+uNG3a1GQ/9evXV0aMGJHja65QoYKyaNEik9s++ugjpVGjRoqiKMr169cVNzc3ZdOmTWn3N2rUKNd97tq1SwGg3L9/X1EURVm/fr0CQLlz546iKOZ97jJLTU1VfHx8lL/++ivtNgDKkiVLTLbLvO+8PhvG9/nbb79Nu//IkSMKAOXYsWOKoihKZGSkMm7cuBzbRkSUG8ZkxmQjxmTGZCJSH+My47IR4zLjMhGpizGZMdmIMZkx2dlwJjHZ1KRJk/D999/j2LFjBd5H9erV4eKS/tENCgpCZGRk2nVXV1cEBARkKdHQqFGjtN/d3NxQr169tHYcOHAA69evR9GiRdMuVapUASBrKxjVrVs317bFxcXhypUraNKkicntTZo0KdRrzq+aNWum/e7t7Q1fX9+092P//v1o1qwZ3N3dC7z/Y8eOoVGjRtDpdGm3NWnSBPHx8SYj4DK2AwBKlSqVY+mMhIQEnDlzBv369TP5O3z88cdpf4MSJUqgbdu2+OmnnwAA586dw7Zt29CzZ8+0/ezZswedO3dGWFgYfHx80Lx5cwBATExMgV/vtWvX0L9/f0RERMDPzw++vr6Ij4/P1z7z89nI+L6VKlUKANLet0GDBuHjjz9GkyZNMHbsWBw8eLCgL4uInBxjsm0wJjMmExGZg3HZNhiXGZeJiPLCmGwbjMmMyWQfmCQmm3rsscfQrl07jBo1Kst9Li4uJmUYACm9kFnm4KDT6bK9zWAwmN2u+Ph4dO7cGfv37ze5nDp1Co899ljadt7e3mbv0xoK8x4Z348iRYpYr4H5aEdm8fHxAIBvvvnG5G9w+PBhbN++PW27nj174o8//kBycjIWLVqEyMjItIOshIQEtGvXDr6+vvjpp5+wa9cuLFmyBACQlJSU7fOa85727t0b+/fvx+eff46tW7di//79CAgIyHGfhZXxfTMeyBjft1deeQVnz57FSy+9hEOHDqFevXqYOXOmVdpBRNrGmFw4jMmMyYzJRGRJjMuFw7jMuMy4TESWwphcOIzJjMmMyY6FSWKyuU8//RR//fWXyWLmgIyyiY2NNfnCy7jQfGFl/KJOSUnBnj17ULVqVQBAnTp1cOTIEZQrVw4VK1Y0ueQnsPr6+iIkJAT//fefye3//fcfqlWrVujXUKJECVy9ejXtelxcHM6dO5evfdSsWRObN2/ONjgDgIeHB1JTU3PdR9WqVbFt2zaTv9V///0HHx8flClTJl/tMQoKCkJISAjOnj2b5W8QHh6etl3Xrl3x6NEjrFy5EosWLTIZhXX8+HHcunULn376KZo1a4YqVarkOPLLyJzP3X///YdBgwahY8eOqF69OvR6PW7evGmyjbu7e67vmyU/G6GhoXj99dexePFiDB06FN98802+Hk9EZMSYXHCMyYzJAGMyEVkW43LBMS4zLgOMy0RkOYzJBceYzJgMMCY7EiaJyeYiIyPRs2dPfPHFFya3t2jRAjdu3MBnn32GM2fOYPbs2VixYoXFnnf27NlYsmQJjh8/jgEDBuDOnTvo27cvAFlM/fbt23j++eexa9cunDlzBqtWrcLLL7+cZ8DJ7N1338WkSZPw66+/4sSJExg5ciT279+Pt99+u9CvoVWrVli4cCE2b96MQ4cOoXfv3nB1dc3XPgYOHIi4uDj06NEDu3fvxqlTp7Bw4UKcOHECAFCuXDkcPHgQJ06cwM2bN7MNxm+++SYuXryIt956C8ePH8eyZcswduxYDBkyxKSUSn59+OGHmDhxIr744gucPHkShw4dwvz58zFt2rS0bby9vdGtWzeMGTMGx44dw/PPP592X1hYGDw8PDBz5kycPXsWf/75Jz766KNcn9Ocz11ERAQWLlyIY8eOYceOHejZs2eWEW3lypXD2rVrERsbizt37mT7XJb4bAwePBirVq3CuXPnsHfvXqxfvz7tYJGIKL8YkwuOMZkxmTGZiCyNcbngGJcZlxmXiciSGJMLjjGZMZkx2bEwSUyqGD9+fJayDVWrVsWXX36J2bNno1atWti5cyeGDRtmsef89NNP8emnn6JWrVrYsmUL/vzzTwQGBgJA2giZ1NRUtG3bFpGRkRg8eDCKFSuW76AxaNAgDBkyBEOHDkVkZCRWrlyJP//8ExEREYV+DaNGjULz5s3xxBNPoFOnTujWrRsqVKiQr30EBARg3bp1iI+PR/PmzVG3bl188803aSUi+vfvj8qVK6NevXooUaJElpFDAFC6dGn8888/2LlzJ2rVqoXXX38d/fr1w/vvv1+o1/fKK6/g22+/xfz58xEZGYnmzZtjwYIFJiOxACnZceDAATRr1gxhYWFpt5coUQILFizA77//jmrVquHTTz/FlClTcn1Ocz538+bNw507d1CnTh289NJLGDRoEEqWLGmyzdSpU7FmzRqEhoaidu3a2T6XJT4bqampGDBgAKpWrYr27dujUqVK+PLLL81+PBFRZozJBcOYLBiTGZOJyLIYlwuGcVkwLjMuE5HlMCYXDGOyYExmTHYUOiVzMXMiIiIiIiIiIiIiIiIiItIsziQmIiIiIiIiIiIiIiIiInIiTBITERERERERERERERERETkRJomJiIiIiIiIiIiIiIiIiJwIk8RERERERERERERERERERE6ESWIiIiIiIiIiIiIiIiIiIifCJDERERERERERERERERERkRNhkpiIiIiIiIiIiIiIiIiIyIkwSUxERERERERERERERERE5ESYJCYiIiIiIiIiIiIiIiIiciJMEhMREREREREREREREREROREmiYmIyGFs2rQJnTt3RkhICHQ6HZYuXZrnYzZs2IA6depAr9ejYsWKWLBgQZZtZs+ejXLlysHT0xPR0dHYuXOn5RtPRESkERMnTkT9+vXh4+ODkiVLolu3bjhx4kSej/v9999RpUoVeHp6IjIyEv/8848NWktERKRtc+bMQc2aNeHr6wtfX180atQIK1asULtZRERETqeg58pqYpKYiIgcRkJCAmrVqoXZs2ebtf25c+fQqVMntGzZEvv378fgwYPxyiuvYNWqVWnb/PrrrxgyZAjGjh2LvXv3olatWmjXrh2uX79urZdBRETk0DZu3IgBAwZg+/btWLNmDZKTk9G2bVskJCTk+JitW7fi+eefR79+/bBv3z5069YN3bp1w+HDh23YciIiIu0pU6YMPv30U+zZswe7d+9Gq1at0LVrVxw5ckTtphERETmVgpwrq02nKIqidiOIiIjyS6fTYcmSJejWrVuO24wYMQLLly836YDu0aMH7t69i5UrVwIAoqOjUb9+fcyaNQsAYDAYEBoairfeegsjR4606msgIiLSghs3bqBkyZLYuHEjHnvssWy36d69OxISEvD333+n3dawYUNERUVh7ty5tmoqERGRU/D398fkyZPRr18/tZtCRETktMw5V1abm9oNsCWDwYArV67Ax8cHOp1O7eYQEVmEoii4f/8+QkJC4OKiToGIR48eISkpKd+PUxQly/exXq+HXq+3SLu2bduGNm3amNzWrl07DB48GACQlJSEPXv2YNSoUWn3u7i4oE2bNti2bZtF2kDZY0wmIi2yh5gM2D4u37t3D4B0SOdk27ZtGDJkiMlt7dq1M2vpCLIuxmQi0iJnjcmpqan4/fffkZCQgEaNGuX7eUldjMlEpFX2EJfV6L8251xZbU6VJL5y5QpCQ0PVbgYRkVVcvHgRZcqUsfnzPnr0COFFiiC2AI8tWrQo4uPjTW4bO3Ysxo0bZ5G2xcbGIigoyOS2oKAgxMXF4eHDh7hz5w5SU1Oz3eb48eMWaQNljzGZiLRMrZgM2D4uGwwGDB48GE2aNEGNGjVy3C6nmBwbW5CWkiUxJhORljlLTD506BAaNWqER48eoWjRoliyZAmqVatWgGcmNTEmE5HWOVP/tbnnympzqiSxj48PAPkg+vr6qtwaIiLLiIuLQ2hoaNp3nK0lJSUhFsBFnQ75+WaNAxAaH5/lO9lSs4jJvjEmE5EWqR2TAdvH5QEDBuDw4cPYsmVLgdpL6mNMJiItcraYXLlyZezfvx/37t3DH3/8gd69e2Pjxo1MFDsYxmQi0iq147Ia/deOcq7sVEli45RwX19fBloi0hy1SxH5urjANz9tUBQgNdWq38nBwcG4du2ayW3Xrl2Dr68vihQpAldXV7i6uma7TXBwsFXaRIIxmYi0TO2YDNgmLg8cOBB///03Nm3alOdo8JxiMuOt+hiTiUjLnCUme3h4oGLFigCAunXrYteuXfj888/x1VdfFaTJpBLGZCLSOrXjsq36r/Nzrqw29RblICIibXFxyf/Fyho1aoS1a9ea3LZmzZq0tZk8PDxQt25dk20MBgPWrl3L9ZuIiMixWTEuK4qCgQMHYsmSJVi3bh3Cw8PzfExeMZmIiEizVDhXNhgMSExMtEDjiYiINMTKMbkg58pqc6qZxEREZEUuLkB+R2LlU3x8PE6fPp12/dy5c9i/fz/8/f0RFhaGUaNG4fLly/jhhx8AAK+//jpmzZqF4cOHo2/fvli3bh1+++03LF++PG0fQ4YMQe/evVGvXj00aNAAM2bMQEJCAl5++eV8t4+IiMhuWDEuDxgwAIsWLcKyZcvg4+OTtq6wn58fihQpAgDo1asXSpcujYkTJwIA3n77bTRv3hxTp05Fp06d8Msvv2D37t34+uuvzW8jERGRI7LyufKoUaPQoUMHhIWF4f79+1i0aBE2bNiAVatW5bOhREREGmflmGzOubK9YZKYiIgswwZJ4t27d6Nly5Zp14cMGQIA6N27NxYsWICrV68iJiYm7f7w8HAsX74c77zzDj7//HOUKVMG3377Ldq1a5e2Tffu3XHjxg188MEHiI2NRVRUFFauXImgoKB8t4+IiMhuWDEuz5kzBwDQokULk9vnz5+PPn36AABiYmLgkmHUdePGjbFo0SK8//77GD16NCIiIrB06VLUqFHD/DYSERE5IiufK1+/fh29evXC1atX4efnh5o1a2LVqlV4/PHH89lQIiIijbNyTDbnXNneMElMRESWYYMkcYsWLaDk8rgFCxZk+5h9+/blut+BAwdi4MCB+W4PERGR3bJiXM4tFhtt2LAhy23PPvssnn32WfPbREREpAVWPleeN29ePhtERETkpKwck805V7Y3TBITEZFl2CBJTERERGZiXCYiIrIPjMlERET2gTE5CyaJiYjIMhhkiYiI7AfjMhERkX1gTCYiIrIPjMlZMElMRESWwSBLRERkPxiXiYiI7ANjMhERkX1gTM6CSWIiIrIMnU4CrbkMBuu1hYiIyNkxLhMREdkHxmQiIiL7wJicBZPERE4gITEF528lICnFAA83F5QL8Ia3nv/+RERax+9/4meAiIgyYlwgIiIiHg8QkRH/84k06tS1+/hpRwzWn7iOmNsPkLEwgg5AmL8XWlYuiZ7RYYgI8lGrmaQlLi75G4lFRFbB73/iZ4AAMC4TURrGBSKVMSYTkR3g8QARGJOzwSQxkcZcvP0Ao5ccwubTN+HqokOqIWvdfAXAhdsPsHDHBSzYdh7NKgZiwpORCPX3sn2DSTsYZIlUxe9/4meATDAuEzk9xgUiO8GYTEQq4vEAUQaMyVnw3SDSkF92xaDN9I3YevYWAGQb9DMy3r/17C20mb4Rv+yKsXobScOMQTY/FyKyCH7/Ez8DlAXjMpFTY1wgsiOMyUSkEh4PEGXCmJwFZxITacSs9acwZfXJAj021aAg1aBg5OJDuBmfiIEtIyzcOnIKThI4iewNv/+JnwHKFuMykdNiXCCyM4zJRKQCHg8QZYMxOQu+G0Qa8MuumAIH/cymrD6JXzlKjAqCI7GIbI7f/8TPAOWIcZnIKTEuENkhxmQisjEeDxDlgDE5C84kJnJwF28/wNg/j2R736MLB3Ht59HZ3hf80hToS1fJ9r4P/jyCxhUCue4E5Y+TBE4ie8Hvf8rtM5DZva2/4u6mhXAPDEPIK1/muB0/AxrCuEzkdPITFwDzYgPjApEFMCYTkQ3ldjyQdOMC7m1ZhKTY00hNuAudux7uAaHwjX4KXhHROe6TxwOkGYzJWTBJTOTgRi85hJQ81pPwqdsZHqUqmdzmVrxUjtunGBSMXnIIC/vlfHBAlAWDLJFN8fufzPkMAEBK3E3c2/YbdO6eeW/Lz4B2MC4TOR1z4wJgfmxgXCCyAMZkIrKh3I4HUuOuw5D0EN6RreFa1B9KciIenNiKG//7CP7tB8Inqn22j+PxAGkGY3IWTBITObBT1+5j8+mbeW6nD60O7ypNzd5vqkHB5tM3cfr6fVQs6VOYJpIzYZAlshl+/5O5nwEAuLN+HvQhlaEYDDA8jMt1W34GNIRxmcip5CcuAObHBsYFIgtgTCYiG8nreKBIhfooUqG+yW0+dZ/A1QWDEbdzaY5JYh4PkGYwJmfBd4PIgf20IwauLjqztjUkPoBiSDV7364uOvy4netNUD7odPlbz0Fn3meXiLLi9z+Z+xl4FHMYD47/h+KtXzV73/wMaATjMpFTyc+xQX5jA+MCUSExJhORjeTneMBI5+IKN59AGBLjc92OxwOkCYzJWXAmMZEDW3/iOlLNKCd265/PoSQ9BHQu0IdWR/GWfaEvFZHrY1INCtafvI5xqG6p5pLW5XcklmJeKTwiyorf/2TOZ0AxpOL2mrkoWqstPEqWM3vf/AxoBOMykVMx99igILGBcYGokBiTichGzD0eMCQ9gpKSCEPiAzw8tQMPz+6BV9VmuT6GxwOkCYzJWTBJTOSg4hNTEHP7Qe4bubrDq3JjFClfDy5efki+GYO4nUtw7acRCH5xMjyCK+T68JhbD5CQmAJvPb8qyAwMskQ2we9/MuszACB+3wqkxN1A0POf5Ps5+BnQAMZlIqdhblwACh4bGBeICoExmYhsID/HA3fWfYv4/Svlis4FXpUawb/tG3k+jscD5PAYk7PgfzORg7pwKwF5fUV5lqkKzzJV02+IiIZXlSa4Ou8t3Nn4PYK6j8/18QqA87cSUD3Er9DtJSIiy7DV9//uEwmoVILf//bo5I28PwOpD+Nwd/NPKNa4O1y98v935DEAEZHjMOfYAChcbGBcICIism/mHg8AgG/9rvCq0hSp92/hwfEtUBQDkJqc5+N4PECkPUwSEzmopBRDgR7nXjwERSKi8eDkViiGVOhcXK3yPOSEOBKLyCZs9f3/+/8MKJGPf2mynRuGvD8DdzcthEuRovCp17nAz8NjAAfHuEzkNMz9vi5sbGBcICogxmQisoH8xGn3gFC4B4QCAIpGtsa1X8bg+h/jEdxrGnR5rMHK4wFyaIzJWTBJTORgkpOBo0eBFVsL3nPv5hsIpKZASU6ETu+V67YebswQkJkYZIlsojDfy/n5/n/2aRdUKlHgpyIrOnnDBX//nPP9ybcvI37/KhRv3R+p92+n3a6kJkMxpCLl7jXo9F5wLeKT6/PwGMDBMS4TOQ1zvq8tERsYF4gKiDGZiGygMHHaq0oT3F45Cym3L8M9oIzVnodIdYzJWTBJTGTHjAnhPXvSLwcOAI8eAS4e3gh9B0Dug7uylXI3Fjo3D+g8PHPdTgegXIB3gdpOTohBlsgmygV4QweYXUYqo/x8/9er7A1vfUFaSNbm65/7ZyD1/i1AMeDOv1/hzr9fZbn/8tx+8KnXBf5tXs3xOXgMoAGMy0ROw5xjg8LGBh2AcinxQGpRwDX3aiRElAljMhHZQGH6CpTkRACAITEh1+14nkgOjzE5CyaJiexEbglhnQ6oUgWoWxd4/nn5GRXlhk5zvHDh9oMc95n64F6WtaaSrp3Fg1M7UaR8Xeh0uX8hhgV4wVvPrwkyE4MskU14690Q5s/vf2eW12fAvURZlHjqvSy33920EIakh/Bv8yrcipXK9Tn4GdAAxmUip2HOsUFhY0OYpwLvHVvle6VECSAoCAgOBnx95YSViHLGmExENmBWX0HCXbh6FzO5TUlNQcLhddC56eEeGJbrc/A8kRweY3IW/I8mUkFKiiSEd+82NyEMFC2adT8tK5fEwh0XkGrI/svqxtJJcHH3gL50Vbh4+SH55kXEH1gJnbsexVv0ybWNri46tKxUsvAvlpwHgyyRzfD7n3L7DLh6+cGrUqMst8ftWgYA2d5n8nh+BrSBcZnIqeR1bFCY2ODqokPL2mWBFmFAbCxw7Rpw+DBw8CBQpEh6wjgoCPDwsMwLItISxmQispG8jgdurZwFJekB9KE14OoTgNT4O0g4ugEpty6heKt+cPEokuO+eZ5ImsCYnAWTxERWZm5CuEcPoF69nBPC2ekZHYYF287neL9XpYZIOLIBcTuXwpD04P87BhrDr+nzcC8ekuu+Uw0KXmyY++gxIhMMskQ2w+9/ahOe+2egMPgZ0AjGZSKnktexQWFIXCgL+PrIzOFKlYDUVODGDUkYx8YC5///uf390xPG/v75+x4i0irGZCKykbyOB7yrNkP8wTW4v+8fGB7eh4tHEXgEV0TxFi/DKyI6133zPJE0gTE5CyaJiSzImBDesyc9KZxTQrhuXaB2bfMTwtmJ8AKaJV3DVtcApLpm/Xf2rdcFvvW65H/HBh3qlA5AxZI+BW8cOR+dLn9B1mCwXluINC4iyAfNKgZi69lb2Y4QLuj3vwt0CNYF4MBmHwS1BXwYBuzOgwfA2rXA3r0+KOcZiIuJt5Bq5klLcM9P89zG1UWHxuV5DKAJjMtETiWvY4Oc5BUbcowLrq6SDA4OBmrVkgBlTBifOiUnxu7ukiw2zjT28irISyNyfIzJRGQjeR0PeFdrDu9qzfO9X54nkmYwJmfBIZ1EBZSSItW15s8HBg4EGjaUzvRatYB+/YD164GICGDiRGDTJuDePTlPXrgQGDwYaNascAlibN0KREVhws8fwc3N1VIvSyg6rJ4QidmznWKwDFmKcSRWfi4FMHv2bJQrVw6enp6Ijo7Gzp07c9y2RYsW0Ol0WS6dOnVK26ZPnz5Z7m/fvn2B2kZkSxOejISbi2XXAHR302Fsx0icPQvMmiWhJjXVok9BBWQwyOCzWbOAI0eA9u2B7wdEws3Vsp8BNxcdJjwZadF9kkqsHJc3bdqEzp07IyQkBDqdDkuXLs11+w0bNmQbk2NjYwvxIokoI2scG5gdF7y8gPBwoFEjoGtXoFUrOSF++FAC2PLlwMqVwP79kkjmAQY5ExudKxMRAdY4HlB4nkjawZicBWcSE5kh4wxh4yzhjDOEK1eWUtHGGcJRUVacfZWcDHz4oWSfGzRA6MKF+PCOB0YuPmSxpxjfpTq2x3th4EDg77+B774DSpWy2O5Jq/IbOAsQZH/99VcMGTIEc+fORXR0NGbMmIF27drhxIkTKFky67ooixcvRlJSUtr1W7duoVatWnj22WdNtmvfvj3mz5+fdl2v1+e7bUS2FurvhQ+7VLf493+7+l5oXg9Ytw7491/py+3QQfp9SR2XLwP//ANcuSKD0dq0MQ40s85nINSfM700wcpxOSEhAbVq1ULfvn3x1FNPmf24EydOwNfXN+16dvGbiArGWscG+Y4LOh0QECCX6tWBpCTg+nVJDl+6JDONXVyAEiXSS1P7+srjiLTIBufKRERGlj8e0GF8sVsI9XG30P6IVMSYnAWTxESZZE4I79kjHeQZE8IZS0ZbNSGc2fHjwIsvSoPGjQNGjQLc3NADwM34RExZfbLQT/Fu28ro1TQMvZoCTzwB9O0LREYCX38N5KP/j5yRDYLstGnT0L9/f7z88ssAgLlz52L58uX47rvvMHLkyCzb+/v7m1z/5Zdf4OXllSVJrNfrERwcnO/2EKmtR/0wi37/d68v6wt5egIdOwJ16khy8ocfgBo1gMcflz5cso300tLSf/7yy0BYpiWgrPUZIA2wclzu0KEDOnTokM9GSVK4WLFi+X4cEZnnubph2HkwEYtPFz4uvBhpobjg4QGUKSMXRQHu35eEcWwscOiQjMAuUiS9LHVQkDyGSCvYIU1ENmbR88RIX3TfugL44hrw5psSs4kcFWNyFkwSU64SElNw/lYCklIM8HBzQbkAb3jrtfOxyS4hfOCAVMTKmBDu3l2FhHBGigJ8+SXw7rtAaCiwbRtQv77JJgNbRiCwqB5jF+9HigFIdclHCWqDDnoPHcZ3qW7SCdCxo5yzv/oq8PTTQJ8+wOefM0FAlhUXF2dyXa/XZzuTNykpCXv27MGoUaPSbnNxcUGbNm2wbds2s55r3rx56NGjB7y9vU1u37BhA0qWLInixYujVatW+PjjjxEQEFCAV0Nke2nf/0sPIcWgIBXmz8JxddHBzSXr979RcLAkJg8cANasAWbPBpo3B6KjZSlCsg6DQRLD69bJ7x06SMWSnM5NBraMgL+XHh8sPQIDFBhg/loRLtDB3S3nzwA5H3PjckFFRUUhMTERNWrUwLhx49CkSROL7ZvI2SmKnNM2KRaBao/rMXn9ETk2yMcaxcZjgwENq6PUgzCcPQuUL2/BRup0ckLp6wtUqiRlp2/cSF/P+Px52c7fP33N4+LFnaKDjoiIyJLS+gr+LPjxQNp5YoNS0iEwZQrw1lsAB30SaYZ2sn1kMaeu3cdPO2Kw/sR1xNx+YNLNqAMQ5u+FlpVLomd0GCKCHGexenMTws89Jx2xqiWEM7t6VabzrlwJvPEGMHkykCnBZdQjWIcm372F0X0nYDOKwdVFl+sBgPH+hxcC8E6bSHSvn7WMWIkSwOLFwIIFwKBBwIYNsq5y06YWen2kHQUciRUaGmpy89ixYzFu3Lgsm9+8eROpqakICgoyuT0oKAjHjx/P8+l27tyJw4cPY968eSa3t2/fHk899RTCw8Nx5swZjB49Gh06dMC2bdvgyiwYOYgeEb5o4nEYo71qYvNtg9nf/43LB2DCk5G5lpHU6SQmVqkCrF/PEtTWlrG0dFQU0Lq1sbR07iogDE/qAxETdAg7Ym6a/RkI1gVg1ouRqFOZJaY1x8pxOb9KlSqFuXPnol69ekhMTMS3336LFi1aYMeOHahTp06h909EwIkTkmNt0AAoWzYM7aICMXrJIWw+bX5cMB4blCnuhX37ZNCSt7dM7rUKV9f0ZHCtWlJGw5gwPnVKTuLd3aUBxpnGXoxZ5GA4a4mIVNKjfhiaVCj48UBaX0HFijJ56YsvgM8+k05iVuQjR8SYnAWTxJTm4u0HeQYMBcCF2w+wcMcFLNh2Hs0qBubZuayGlBTg2DFZOzivhHDdukDt2naSEM5syRKgf3/AzQ1Yvlym9uZmzBiEKg+xcFRnnHqok2T/yeuIuZVNsj/ACy0rlcSLDcMw8k0fTB0PvNoz+4ohOp3MJGveHOjVS36OGCEVr1kFjNIUMMhevHjRZG1Ca60HPG/ePERGRqJBgwYmt/fo0SPt98jISNSsWRMVKlTAhg0b0Lp1a6u0hcji/v0XoV4uWDioFU7dTTL7+79iSfODn6enJIZr12YJamvIWFo6OFjGh2XK1eXo4UNg40agWR0vdOkSnT7gL4/PwPP1w7Dmfz44shOoXYlLQWqOncXlypUro3LlymnXGzdujDNnzmD69OlYuHChRZ6DyJlduiRVoKpWBcqWldtC/b2wsJ/5cSHzsUFUFBAfL4WsWrWyUbz38pJRaOHhMjX69u300tR79sg2vr7pCeMSJVjehOwfO6SJSEWFPR5IExIiHcLGRPHAgRYuN0JkA4zJWTBJTACAX3bFpJWeAJBn+Qnj/VvP3kKb6RvxYZfq6KFSiUJjQnjPnvSksEMmhDO6fx94+21g/nygWzdZELhEidwfc+CA9NjPmgX4+iLCFxjXpTrGoToSElOw8r8EvPCiAYt+dEH7JqZlwydOBKpVkxg/YkTOT1G+vHRCT5oEjB0LrFoF/PijdEQQFTTI+vr6mnRG5yQwMBCurq64du2aye3Xrl3Lcz3hhIQE/PLLLxg/fnyez1O+fHkEBgbi9OnTTBKTY7h8WXqFO3cG9HpEBOlNvv/P/7cHSS/2gsePP6Bck7qFXjbCWIL64EGWoLaE/JaWzs7mzXI81LKlXI8I8jH9DBw/j6Q/FsPjmadQrko5k8+A0gb49Vfg9GkgIsLCL47UZeW4bAkNGjTAli1bbPJcRFp2+zawc6cMLqpePev9WeLCuVgkbd8Bj4bRKBcenOOxgYsL0KiRxKgtW6S6hZXGc2ZPpwMCAuRSvTqQlCSzjK9dk6z4qVPSyBIl0mcj+/hw1BPZH3ZIE5EdyHw8cPxyAk6eNqBSRRdUKW3mEpPFiwPDhsmyiNOmAa+9BkRGWr/xRJbCmJwFk8SEWetPFXgR+9T/X89g5OJDuBmfiIEtrdu7mFdCuFIl6Vh1qIRwZlu2yHTdGzeAefOkJ96ck9zhw6V3t3//LHd5690QXswPSVeB8GKAd6YT+4gI4PXXgQkTgH79gMDAnJ/G1RUYPRpo1w548UWgTp30wWM8F3dyVg6yHh4eqFu3LtauXYtu3boBAAwGA9auXYuBAwfm+tjff/8diYmJePHFF/N8nkuXLuHWrVsoVapUvtpHpApFkRE7JUvKF3Im3no3VC/mDlw9CRRzBwqZIDbS6aQiZOXK6SWo9+2TghcsQW2+y5elUMjVqzJbq02bHFeUyNGdO5IYaNYs+2Meb70bqpfwAlwSgBJeWT4DlSvLjLM1a4AKFZzi/Md5OMDJ7/79+xlviQrpwQPgv/8APz+gfv28z8m89W6oHuQNeBuAIO88jw3c3WWpobVrga1bgcceU3FQmIeHZMJDQ+UY6P799FnGhw5J50CRIpIsNpanZukrsgcOEJOJyLl4691QNdgPuANUDQa88jMIzNtbJjfNmyfJ4hdfBJo0sVpbiSyKMTkLJomd3C+7YgqcIM5syuqTKFFUL4vZW0DGhLAxKZw5IexwM4Rzk5Qk9ZsnTQIaNpQed3NLdqxeLZfFi+UsvgA++EAmIn/0EfD553lvX7eu/F2GD5dlKP7+WyY+h4QU6OlJC2wQZIcMGYLevXujXr16aNCgAWbMmIGEhAS8/PLLAIBevXqhdOnSmDhxosnj5s2bh27duiEgIMDk9vj4eHz44Yd4+umnERwcjDNnzmD48OGoWLEi2rVrl+/2Ednc8ePAhQtyUqbCgWt2JairVwfatmUJ6tw8eJCeWM9vaenM1q6V/vBGjQr2eJ1O/l7ffCPtqVu3YPshO2TluBwfH4/Tp0+nXT937hz2798Pf39/hIWFYdSoUbh8+TJ++OEHAMCMGTMQHh6O6tWr49GjR/j222+xbt06rF69Ol/PS0TpkpNljLGLi/TNWit56+0t+9+wQc7LGzSwgwHCOp0cbPj6SudAaqoMtI6NlZnG587Jdv7+6bOM/f3toOHklNghTURa4+Ehs4h//lk6Au7dk84Bxlmyd4zJWTBJ7MQu3n6AsX8eyXWbxNjTuLdlERIvHYWSkgy3YkEoGtUevvW6ZLv9B38eQeMKgfleozhzQnjPHmD/fg0nhDM7dkw6+A8eBMaPl5rPbmb+e6amSqa2SRMpTV1AJUoAI0dKsvitt4CKFfN+jJeXVLd+4gmZ8BwZCXz1FfDMMwVuBjkynS5/gbMAB47du3fHjRs38MEHHyA2NhZRUVFYuXIlgoKCAAAxMTFwydSGEydOYMuWLdl2Qru6uuLgwYP4/vvvcffuXYSEhKBt27b46KOPrLY2MpHFpKamT/8050vbijKXoJ41S0pQN2zIEtQZGUtLr10rE6AKUlo6o0uXgCNHgC5dCjdRKiREYvj69bLONL/+NMLKcXn37t1oaaxxDhnIBQC9e/fGggULcPXqVcTExKTdn5SUhKFDh+Ly5cvw8vJCzZo18e+//5rsg4jMpyjAjh1AQoKsF+zpad3nCwiQ5PD27XIuXq2adZ8v31xd05PBgIzIunZNksanTgFHj8qAauNaxkFBckJLZAs2OFcmIrI5FxfghReAYsWAZcskUdy9u1Mk1ciBMSZnwSSxExu95FDaGsTZeXhuL67/MR4eQRXg17gHdB6eSLkbi9T7N3N8TIpBweglh7CwX3TO25iZEH7mGek41VxCOCNFkZ704cOl1uO2bfKi8+PHH2WK9dathf7SevttWVty9Gjgt9/Mf1z79lLd67XXgGeflWrZX3whJc/IidhoJNbAgQNzLC+9YcOGLLdVrlwZipL9d12RIkWwatWqArWDSHW7d8sihM89ZxcHrZlLUK9dK/G9QwfzC2No2aVLMtu6MKWlM1IUKSISFCTve2G1bi3951u3pq9tTA7OynG5RYsWOcZXAFiwYIHJ9eHDh2P48OH5eg4iytmBA5L/bNrUduddoaFS4fnIEaBoUSDMMkXErMPLS9bACA+XUVp37qSXpt69W7bx9U1PGpcowZFtZD2ctUREWqXTAZ06ycHIjz8CcXFSKquAlS6JrI4xOQsmiZ3UqWv3sfl0zsleQ+ID3Px7GopUqI8ST46CTmfeP0OqQcHm0zdx+vp9VCzpk6+EsHGGsNOUp7xyRaZdrV4NDBggC/vmdyTzw4fA++/LG1jQOpMZeHkBH38szdqxA4jOOdefRWAg8McfUmHkrbeAjRuBhQtljURyEgyyRLbz6JHUfIyKSp8xYycylqBesUJigTOXoLZkaemMjh0DLl60XKVxPz+Z+b11qxyTOePfSnMYl4k06/RpmRxbp47tDwOqVpVE8a5dMtgp02ou9snFRRoaECAHJUlJ6bOML12SN9PFRRLFxtnIPj52MQiPNMLKMXnixIlYvHgxjh8/jiJFiqBx48aYNGkSKleunM+GEhEVUNOmEju/+UbWMXzzTVbsIPvE8+QsmCR2Uj/tiIGriw6pOcwkTji6AYaEuyj+WC/odC4wJD2Czt3DrGSxC3ToPykGiduqpyWEAZlZ5LQJ4cz++EOm3Xp4SA96+/YF28/nn8uJ7YQJFmvaSy8B06YBw4YBmzbl77xYpwN69wYee0xmEzdvLpOkx48vXBlMchAMskS2s2mTLETYqpXaLclRcDDQp4/zlqDOWFoaADp2lOMfS3z1paZK4rliRak2bilNm0oye/16oGtXy+2XVMK4TKRJsbEy8DoiwrIxwFw6nRS/evAA+O8/qURRmMoYqvDwkBFboaFSmiMuLj1pfOiQTNMuUiQ9YVyyJE9oqXCsHJM3btyIAQMGoH79+khJScHo0aPRtm1bHD16FN4O9w9KRA6rVi3gnXekTOWUKTKLqHhxtVtFZIrnyVkwSeyk1p+4nmOCGAAend8Pnd4LKfG3cH3xx0i5fRk6d09412gJ/9b9oXPL+QTJAAXnkq6jSXh1JoQzi4sDBg0Cvv8eeOopWcA3MLBg+7pxA5g4EXjjDekhsBBXV2DyZMlbL1tWsGWOw8NlgtvkybLG8apVUnGkenWLNZPsEYMskW3cuSPlHpo2tfvgmrEE9YYNzlOC2tKlpTPbtQu4exfo0cNy+wRkFniLFtL26Gi7m6RO+cW4TKQ59+7JCkXBwZZZaqCgXF2Bxo0lrm/ZImPWHLaqpE4n5TT8/KTUWWqqnGsbS1OfOyfbBQSkl6b29+csY8ofK8fklStXmlxfsGABSpYsiT179uCxxx7L176IiAqlQgXg3XdlYtNnn0k/eKlSareKKB3Pk7PQ/iukLOITUxBz+0Gu2yTfvgIYUnHjfx+hSHgdlHhyNIrWfBzx+1bg5vIZeT6HrugDfP1dCoYMkVlDdt6HbRubN8uZ/OLFwPz5Mpu4oAliQOpCA8CYMZZpXwbt2gGPPw6MGCET1QrC1RUYOVLyGImJMljg889lZhVplDHI5udCRPm3dq1k8xo3VrslZvP0lMFHr70mFacWLpQwGBendsssKyEB+PNPYN48mZjUt6/MyLVkgvjhQ5lIXru2TGyytDp1pB989Wp5DeTAGJeJNOXRI0nIenvLQB61c5R6vYxXe/hQEteaOc9zdZVEcFSUHLx06iQns0WKSFnqdetkNPW2bZJANpZOI8pNAWNyXFycySUxMdGsp7t37x4AwN/f32oviYgoR6VKSaeyp6fMIDpzRu0WEaXjeXIW2n+FlMWFWwnIq89PSX4EJTkR3jVawf/x1+BVuTH8H38NRaPa48GxTUi+fTn3xwM4fyvBYm12aElJwKhRki0vXVpKV/XpU7iz+tOngS+/lCxsiRIWa2pGn30m58Dfflu4/dSuLWtRv/YaMHiwnGdfzv3jQ0REObl0ScogtmolvbMOJihIQmC3bsD581KC+r//ZNKOIzMYZHbvrFmyVnDHjkD//pZZezizzZuBlBSgZUvL7xuQvvHHH5d+79OnrfMcRESUP6mpEi8NBknM2susXV9foFEj4Pp1qRSiycFFXl5S/qRRI6BLFzkGi4iQetu7dwN//y2lsw4ckJnHjn5QQ3YlNDQUfn5+aZeJEyfm+RiDwYDBgwejSZMmqFGjhg1aSUSUjeLFZUZxSAgwfbrESSKySyw37YSSUvIe4mssJ+1dtbnJ7d7VWiB+/0okXj4Od//ShX4ezTtyBHjxReDwYeCTT2SBXkssxDh6tIxuHjy48PvKQVSUrE88bpy8BB+fgu+rSBGZRdypkyQHIiOBuXOB556zUGPJPrBcB5F1KYpM7yxZUkbgOCitlaC2dmnpjO7cAXbuBJo1A4oWtc5zAFJts1w5WUu6QgV+XTssxmUiTVAUGYh0754sCeDlpXaLTAUFSRWKPXvknNGCKyHZHxcXKbcRECBrKSUlpa9lfPEicPKkbFOiRPp6xj4+6k/7JvUVMCZfvHgRvhlK8+nNGCQ6YMAAHD58GFu2bMl3M4mILMrLC3j7bSm1NXcu0LOnjHYjUhPPk7PQ/iukLDzc8v6zuxYNkJ/exUxv9/YDABgexee5j+NHXfAg96rW2mUwSFa0bl2ptbxjh8wmtkSCePt24Pffpdx0kSKF318uPv5YOiMmT7bM/tq2lQlwrVsD3btLEvr/qyCRFrBcB5F1HT8OXLggawJo4P/H0UtQ26K0dGZr18p71aiR9Z4DkL7sxx+XJRn37bPuc5EVMS4TacKRI5J/bNBAlsK1R+XLywCj/fuBK1fUbo0NeXhI2ZD69WVEdNu2gHHm5qFDMsN4+XKZcXzpkiSVyTkVMCb7+vqaXPJKEg8cOBB///031q9fjzJlytjilRER5c7dHXj1VRnpvHChxEVNlh4hh8Hz5Cw4k9gJlQvwhg7IteS0R3AFPDq/Dyn3b8E9IP3AMuX+bQCAq5dfrs+hKEDPLt7QpQLVqkmutF49+Vmrlv2Nfraoy5eBl1+W6TdvvQVMmmS5ZK6iAMOGATVryvReKwsNlcnKU6cCr78uFUIKKyAA+O034McfgYEDZV3FH36Qatzk4DgSi8h6UlLSp3VWrKh2ayzKWIL60CGZKD1rlsSEhg0tM7bK0gwGmS21bp1c79hRjm+s/ZV28aIkCrp0kT5pawsJkcON9eulv9sBq5sT4zKRw7twQZYxiIwE7D3fU7MmEB8vY5pbtQKKFVO7RTam0wF+fnKpXFmO3W7elFnGsbGyjgMgJ8TBwXIA5O/PWcbOwsoxWVEUvPXWW1iyZAk2bNiA8PDwfDaQRvgPhQABAABJREFUiMiKXFyA55+Xg4Nly2TGUI8ePP8gdfA8OQsmiZ2Qt94NYf5euHA752m+3lWaIW77H4g/uBpFytVKuz3+4GrAxRX6sMhcn6NcgBeWbHfDnj0yaHbPHmDRIiA5WTp8q1ZNTxprKnH822+STfX0BFaulNlelrRsmSxGtWqVzXrOR42SdYnHjgW++cYy+9TpZBbxY48BvXrJuorDhgEffcROaIem0+UvcLJDhMh8u3cDt29LGQYN0umkc7lSJfsuQZ2xtHTt2lIZw5ozh40URcYIBAXJMZOttGoFHD0qhx6tWtnueclCGJeJHNqNGxL+y5WTnKO90+mA6GgZXLRli8RIKxe+sm9ubuklpwFZw9iYMD55UkZ+eXjIMiLG7Zz6DdM4K8fkAQMGYNGiRVi2bBl8fHwQGxsLAPDz80MRfq6IyB7odDLC2s9PZg7FxQH9+slMYyJb4nlyFkwSO6mWlUti4Y4LSDVkP5/YI7gCvGs+joSDa3DDYIBnWA08ijmEB8e3wLfRs3DzCchx364uOrSsXBJ16sjaRP37y+1JSbI0rzFpvGcP8NNP6Ylj44xjh0wc37sn02J//BF45hlZZyEg5/eoQJKTgREjpP5j27aW3Xcu/PyAMWOAIUNkVnH16pbbd9myMhNr6lTg/fdlBtmPP6ZX6CIHw5FYRNbx8CGwcaNkJYOC1G6NVRlLUNeuLcnYhQvl+KBdOyDDcmw2l5AA/PuvJK5LlZJzWVvO6Dp2TGYSv/SSbb86/fxkRve2bTK4T82/ARUA4zKRw4qPB7ZulVPKunUdp2/KzU2WGly7VgYYtWghtxGkc6N8ebkYDDL4z7ie8e7dso2vb3rCODDQPkuqUMFYOSbPmTMHANCiRQuT2+fPn48+ffrka19ERFbVpAng4wN8/TUwYwbw5pu2GXlNZMTz5Cx4uO6kekaHYcG287luE9BuANx8SyD+4L94cHIb3PxKoHjr/vCt3zXXx6UaFLzYMCzL7R4eSEscGyUmSuLYmDR2yMTxpk3Sa3vnDvD99/K7Nc7iv/0WOHVKZivb2BtvADNnSo76778tu29XV2D4cMl7v/iidEJPnAi8/bZTfAdrC4MskXVs3iyBsWVLtVtiMxlLUK9ZIyWoH3tM1uK1ZX+pWqWlM0pNlQR1xYrqzKpu2hTYu1feg27dbP/8VAiMy0QOKSlJZuJ6eACNGzvev2aRItL/u349sHOnxG5HSXLbjIuLJIEDA2UUdmIicP26JIxjYmSmsasrUKKEHBQFB0uHOt9Ix2WDctNERA6jZk2ZjTRrFjBlCjBoEFC8uNqtImdh5Zi8adMmTJ48GXv27MHVq1exZMkSdLPzzhQmiZ1URJAPmlUMxNazt3KcTaxzdUOxpi+gWNMXzN6vq2JA4wqBqFjSx6zt9fr0BLCRwySOExOBDz4AJk+WHtSNG6UWmDXcvw+MGye1mW1ZZ/L/eXhI4va55+Rk3xp5iqgoGUA9apQcJyxfDixYYP9rb1EG7Iwmsrw7d2Rxv2bNnG4ap7EEdeXKUoJ63TqZyduxo22SpWqVls5s1y7g7l1ZskkNer3MBPvnHykjWqqUOu2gAmBcJnI4BoNUb0hMlDL/tliD3hqKF5dKFP/9JwO+atZUu0V2Tq8HQkPloihSgjM2VmYaHzoEHDggnR7GhHHJko774XBWjMlERKbKl5dZQ59/DkyaJInikBC1W0XOwMoxOSEhAbVq1ULfvn3x1FNP5bNx6mCS2IlNeDISbaZvzDFJnH8K3FKSMeG70UCjmQWuGVzYxHG9epJHteqyK4cPy7TXo0clezpsmHWnNn32mZwofvSR9Z4jD888I53Dw4ZJh7U1zlk8PYHp04FOnWQGWWQkMGeOeh3jlE888SWyvLVrpVOwSRO1W6IavV7KTUdFAStWpJegbttWyiFbmtqlpTPKWGm8ZEl12gBIFZidO2VWt7UKppAVMC4TORRFkcoNN24AzZvLxFFHFhIi5+UHDshrCQ9Xu0UOQqeTAxw/Pxkpl5IiHwpjaepz52Qbf39JGAcFye8MzvaNMZmIKKvgYClb+cUXMglrwAApoUVkTVaOyR06dECHDh3y2Sh1MUnsxEL9vfBhl+oYufiQhfaow/jGwQhdecPiNYPNSRzv3p194rhevfQZx4VOHBsMMsJp1CigQgVgxw7pubWmK1dk0d7Bg2VksUp0OonXjz0G/PIL8IL5E8zzrU0b4OBBKXP9/PPAX38Bs2cDxYpZ7znJAnjiS2RZly7J7JEuXThbBNIH2rt3egnq2bMtW4I6c2npTp0kOarmV9WmTdIutSuNu7pKbP7lF1n5olIlddtDZmJcJnIoJ09K/q9+fakyrAUREVIUa88eqcah5oAnh+XmJqPWjKU8EhLSE8YnTwJHjshxYlBQ+kxjq46YL7iExBScv5WApBQDPNxcUC7AG956J+mWZEwmIspesWIyI2nOHFmjuH9/VapokhMpYEyOi4szuVmv10Ov11uyZapxkqMxykmP+mG4GZ+IKatPAgqAQgw+fbdtZXRvWRHouBsYPdrqNYPzShzv3p39jGNj0jjfieNLl2R669q1kvyeONE2J18ffCCzyEaOtP5z5aFZM6BrV/nzPvWUzPy1Fn9/6Yzu0kUGkm3eLEs+q91RTrngiS+R5SgKsGqVdPZZezCSA8mpBHWHDjJ2q6AuXpRyyrGx8na3aaPSUhYZ3Lkjs3ebNweKFlW3LYAkhsuVkwR9xYr8CncIjMtEDuPyZRkkW6WK9VYwUoNOJ3E1IQHYulWWbnD0GdKq8/aWEp3ly8tIstu300tT794t2/j6SrI4OFjWPbZm1bM8nLp2Hz/tiMH6E9cRc/sBMtax0wEI8/dCy8ol0TM6DBFBGv5wMCYTEeXMy0vKTX/3nSSLe/aUTmgiayhgTA7NNHlv7NixGDdunAUbph4miQkDW0ZAl6jHZ2uPwMVNgQLzy0+7QoGbmyvGd6mO7vXD5EZPT2DaNJmC07u3TWsGZ0wcv/qq3JZd4vjHH9MTx9WrZ13jOEvu95dfZFqrlxewejXw+ONWfy0ApOHz50sNZmvU1CyASZPkPZs1SwZ6WZNOl35c0Lu3dCoMGQJ88on8rcnO8MSXyHKOHwdiYqS2L/9XsjCWoK5dW5K7P/5YsBLU9lRaOrN//5V+4EaN1G6J0Onk/f36aymHWq+e2i2iPDEuEzmEO3ekQFWZMgVescmuubjI+sTr1snA39ateS5nMS4ukgQODJQPT2IicP26JI1jYmSmsaurTE03lqb28bFJaeqLtx9g9JJD2Hz6JlxddNkuc6YAuHD7ARbuuIAF286jWcVATHgyEqH+Ko/UswbGZCKi3Lm7yyziX3+VE/x79yS3wOUUyNIKGJMvXrwIX1/ftJu1MosYYJKY/t+ORWFI2hqIFsMPYdu5nA/ijYz3N756HBM+fQWhwcWybtS6tdSEfPNNVWsG55Y4NiaNc0wcV32Auv9OQq3Vn6HIc10k2e3vb7vGjxghize9/rrtnjMPlSvL+/jJJ0DfvrZ5O8LCZAL3tGnAe+9Jnv6nn2T8ARGR5qSkyBddxYpcjycPJUvKIKLDh+UtM7cEtcEgxwDr18t1eygtndHFi8DRo1K9w91d7dakK1VKZnJv2CAxWEPnREREqnjwANiyRQY4NWig3X5QDw+gaVM5p9u6VWK1ipNbtUuvlyWqQkOlKk1cnCSMY2NlqrrBIAPfjWWpS5a0ypImv+yKwdg/jyDl//uUcutbynj/1rO30Gb6RnzYpTp6GCchEBGR83BxkUlmxYoBS5dKovj55+3nRJ2cmq+vr0mSWEuYJCbs2ycJ0jlzvPDaq9Hp5YBOXkfMrWzKAQV4oWWlkngxyICKTboCkTpg6NDsd168OPDzz0DnzpIstpOawTmVqj50KD1pvGfDffw4X49kfAhXl7GoflyHusN0BStVXRDr1sn0qN9+s7u1KMeOBRYulETx1Km2eU4XF5m53LatzC6uVw+YMAF45x0eK9gNjo4msozdu2VakQ0qcGiBTicJy0qVzCtBnbG0dJ06MqZN7dLSGSmKJLyDgyUha29atZIE9n//ye9kxxiXiexaSop8l7q4AE2aaD9pWrSovM6NG+V8u3597SbF7YJOJ6MP/PxkpHdKCnDjRvp6xufOyTb+/umlqYsXL/QfZdb6U7KcWQGkGhSkGhSMXHwIN+MTMbBlRKHaYlcYk4mIzKPTycm8n590PsfFSckvO+sbJwfGmJwFk8ROTlGAd9+Vc4Z+/eS2iCAfjOtSHeNQHQmJKTj/3x4kvdgLHj/+gHJN6sJbn+Fj8+qrwMcfAy+/nPuU0hdekKHDdlwzWK+XxGO9yETg9PvA6alIbNYah979AXuulMp9xnFdeWzNmhZKHBsM8oeJjgaeecYCO7SsoCBg+HD50w8cKJOdbaVmTWDXLplRPGyYLHv9/fcyWJpUptPlL3CyV4goq4cPJdNZu7Z82ZLZsitBXbWq3ObnZ1paOiQEeOUVoHRptVud1dGjwKVL9ltp3M9PyoZu2ybHPhodSKsNjMtEdktRgO3bgfh4GXDj6al2i2wjMFCSwzt2SNXjqlXVbpETcXOTkiClSsn1hIT0hPGJE8CRI9IBHxSUPtM4n50bv+yKKXCCOLMpq0+iRFF9+rJmjo4xmYgofxo3loOFr74CZswABgyQ9ZiICsvKMTk+Ph6nT59Ou37u3Dns378f/v7+CAuzz+MaJomd3KpVUvJp2TI5Z8jMW++G6sXcgasngWLugD7TRsYppRMmAFOm5P5kxprB06cDo0fbZ83gQ4eAF18Ejh0DJk2CfsgQ1HN1RcZl97LMOM4hcVyvnvwsUOL4559lwb/Nm+325GDIEKm+/d57wKJFtn1uT0+ZwZxx2esvv5SxCKQijsQiKrxNm4DUVE7RLITsSlCHhwMXLsjXjr2Vls4oJUUOlSIigPLl1W5Nzpo2lUo069YB3bqp3RrKEeMykd06eBC4elW+T/381G6NbYWFAffvS5wuWpSDfVXj7S0HG+XLyyD127fTS1NfvCjb+PmlJ4wDA3Od7n7x9gOM/fNItvcl3biAe1sWISn2NFIT7kLnrod7QCh8o5+CV0R0jvv84M8jaFwhUBtrFDMmExHlX2SkVC+dOROYPBkYNMi2y0CSNlk5Ju/evRstM1TRHTJkCACgd+/eWLBgQb72ZSs86nBiqakyWfWxx6QadIEYp5TOnCnlivLi4iJf7rt2yfV69STbZzAUsAEWYjDIgrf16skbs2uXvDnZnAQZZxy/9hrw9deSJL5/Xx4ye7ZM/t2/Hxg8WGba+PhIaep+/SSRuWOHTBTL0aNHknnt1k16DeyUtzcwfrzks3fvVqcNrVpJB0vHjlKC+vnnpUIrqcQYZPNzIaJ0d+5IkGjSRIIHFZixBHW3brKm78n/n9TSqZPEcHv9+tm1C7h7F3j8cbVbkju9HmjRAjhwQJIcZKcYl4ns0pkzEpdq106f1OlsqlWT5PDOncCtW2q3huDiIkngGjWANm2ALl2kY6N4cSAmRgYxLlsmg9hPnZIOEMV0neHRSw6lrUGcWWrcdRiSHsI7sjWKt+kPv8bdAQA3/vcR7u9fmWOzUgwKRi85ZLnXqSbGZCKiggkPl9xDUhLw2WfAlStqt4gcnZVjcosWLaAoSpaLvSaIAc4kdmo//CCjd3fsKORkVeOU0vffl5nB5qhZU84I339fkrFq1gy+eFGmHK1fLwvcTpiQ73pfaaWqM0w5zjjjePdu+fnDDzJLyNVVzr+MpaqNaxx7egKYNUvqTK5aZdnXaQV9+kjFj2HD5O1TY9Jz8eIyk7lzZ+CNN+SjtWCBVDUnG+PoaKLC+fdfWRy3cWO1W+LwMpeWbt9e4vAff0g1RWMJanvy8KH0wdapA5QooXZr8lanjhxDrl4N9Oplt4VPnBvjMpHduXZNKjFUrCgXZ6XTSdnpBw9kXebWrVlB0q7o9TLlOyxMksFxcemzjA8elAMsLy+ZYRwUhFM6b2w+fTPH3RWpUB9FKtQ3uc2n7hO4umAw4nYuhU9U+2wfl2pQsPn0TZy+fh8VSzr4AErGZCKiggsOTp+kNnmylJ525gMpKhzG5Cy0/wopWw8eSH62e3egQYNC7sw4pXTRovxNKfX0lBLVa9cCp0/LlB9b1y1etEie9+RJ6U2eNs1iC0JlnHH8zTdSPTo+XmYJzZolJ8X79gFvv50+4zgqMgX93gvCl41/xI67lfHokUWaYjVubsCkScDGjZLnV9Pzz0tSPiJCBj8PGQK7f/80h6OjiQru0iUZudWqlawHRwViMMgYtJkzZXm9J56QSh6RkTIe7KmnZGzY7NkyGSYlRe0Wp9u0SdrfooXaLTGPi4vMeD5/XiYVkR1iXCayK3FxwNatUoyrVi21W6M+V1cpnuLmBmzZIss3kR3S6WRkXeXKQPPmQNeuUvEsJAS4cQPYtg0//boJrvkcLKZzcYWbTyAMifG5bufqosOP22MK8QLsBGMyEVHhFCsms5RCQ2XG0v79KjeIHBZjchbaf4WUrenT5Xh+wgQL7bBPH1mM9913s5QdylPLljIatVMn29UMvnNHnqdnT6BDB8ku2mDqqTFx/PrrWRPHM2cC9bEb+1Ii8fa27umJ46j0UtU7d9pf4rNjR/kTjhihfmd7aKjk+qdOlQRA/fpSCpNshEGWqGAURapHBAXJlz4VSEyMLAOxYoUckgwcKJU6jF81xhLUAwdKLF6/XgqhnD6tbrsBWQZw507pLC9aVO3WmC8iQqp/rVmj/sohlA3GZSK78eiRJEK9vGSAMP/dhF4v+cYHD4Dt2xlLHIKbm9RJr11bSrV07Ij1j4og1YxuIEPSI6Q+uIfkO1cRt3MpHp7dA8+yuY+YSDUoWH/yuoUaryLGZCKiwitSBHjrLSkjOXeujLQmyi/G5Cy0/wopi+vXZfbngAFA+fIW2qlxSumGDcA//+T/8cWKSanqn38GVq6UL/t16yzUuEzWrZP9r1iR/pzFi1vnucyQljhudw7fnGyOvR/+jfv3dWkzoTLOOI6Otr/EsU4nlT6OHgXmz1evHUYuLjKLePduaVuDBtK+1FS1W+YEbBRkZ8+ejXLlysHT0xPR0dHYuXNnjtsuWLAAOp3O5OKZqVqAoij44IMPUKpUKRQpUgRt2rTBKU6LI1s6dkwynO3aOcXBp6XFxwNLl0oMcnUFXnlFliDw8sp+e70eaNtWBmz5+sqhwG+/Affu2bTZJtaulcIsjRqp14aC0OlkNvHNmzLwjeyMlePypk2b0LlzZ4SEhECn02Hp0qV5PmbDhg2oU6cO9Ho9KlasaNfrMhFZSmqqzCBOSZGEqLu72i2yL76+stLGtWsc4OuI4t30iLlv3jTwO+u+xaUveuLKV/1xZ/138KrUCP5t38jzcTG3HiAh0Y7KvxQEO6SJiCzD3V1O+lu0kJP5v/7K/4Q1cm6MyVlo/xVSFuPHy2f7/fctvGPjlNLhwws+pbRHD5lVXKmSzOy1ZM3gR49kf61by9SXgweBF16wzL4t4b33gIAA4J134OkpyeGMM47v34dZieM5c2yfOK5bV97KDz6Qznp7EBkpM7QHDZJZzq1bAxcuqN0qjbNBkP31118xZMgQjB07Fnv37kWtWrXQrl07XL+e8+hyX19fXL16Ne1yIdMH4bPPPsMXX3yBuXPnYseOHfD29ka7du3wyN6m7ZM2paTINMyKFYEKFdRujUMxGGRN3FmzZNUIY2np0qXNe3zJkrKW7tNPSwnqWbPUKUF98aIMtGrVyjETB6VKSdnU9euBxES1W0MmrByXExISUKtWLcyePdus7c+dO4dOnTqhZcuW2L9/PwYPHoxXXnkFq1atKsirI3IIiiLnJHfuSIKY6+5mLyhIJqaePs0lDBzNhVsJMLdr3rd+V5Ts8TECOr2DIuXrQlEMQGreCWYFwPlbCYVqp+rYIU1EZDkuLrKG5pNPAn//Lclizg4iczEmZ+GmdgPItk6eBL76SspMBwRYeOfGKaX16gELFsionoIIDZUO888/B0aNkt9//LFwCzcdPCilpU+elHWQ33nHvv7Bd++WGc3ffptjz4ExcVy/fvptjx5Jpew9e9IvP/wgHdxublJus149SeJau0Pik09kmaJp0yRZbA/0evlIduokiYCaNaUMdc+e8nElC8tv4CzA/+C0adPQv39/vPzyywCAuXPnYvny5fjuu+8wcuTIbB+j0+kQHByc7X2KomDGjBl4//330bVrVwDADz/8gKCgICxduhQ9evTIdxuJ8sXYc8zPWr7ExEjhkmvXgDp1ZCBQTjOHc6PTATVqyNixjRulIMr+/bISRcWKlm51VooCrF4NBAc79vqUrVoBR45IKVUbrN5B5rJyXO7QoQM6dOhg9vZz585FeHg4pk6dCgCoWrUqtmzZgunTp6Ndu3b5em4iR3H0qAwGatgQ8PdXuzX2rUIFGXC8f78svVCqlNotInMkpZhfI9w9IBTuAaEAgKKRrXHtlzG4/sd4BPeaBl0eJ+j5eR67ZINzZSIip6LTybIHfn7SGR4XJ7kIDw+1W0b2jjE5C+2/QjIxahQQEiLl+60i45TShEKM9HRxkUTu7t3ye0FrBqemyuPq15fgsWsXMHSoff1zKwowbJhkdPv0yddDzZlxvGePzKbt3Vse88ILEjMtPeO4XDn5XH32GRAba5l9WkqLFjJOoHNn4KWXJBdz+7barSKjuLg4k0tiDlPRkpKSsGfPHrRp0ybtNhcXF7Rp0wbbtm3Lcf/x8fEoW7YsQkND0bVrVxw5ciTtvnPnziE2NtZkn35+foiOjs51n0QW8fChZCbr1JEpNJSn/JaWNpdaJaiPHgUuXZLnduTBS76+Uip7+3Z1y3aTZZgbl/Nr27ZtJvEWANq1a8d4S5p14YJ8z9eoIeOgKW81a0p/xfbtwN27areGzOHhVvC+Fa8qTZB09RRSbl+26vMQEZGGNWoka2oeOwbMmFG4fASRk+JRlhP57z9g8WKZ8ZlpSU7L+uQT4NYt4P9nCRRKjRqSyXz77fzXDL5wQbYfMUKylzt3ylmnvVm+XJIEn30mPd6FlDlxvG+fJI5/+EHur1IlPXFsLFVdu7ZlEsfvvScDtj78sNAvw+KKFZMJ6b/8IrO2atYE/v1X7VZpjE6Xv1Id/58RCQ0NhZ+fX9pl4sSJ2e7+5s2bSE1NRVCmZFpQUBBicxiZULlyZXz33XdYtmwZfvzxRxgMBjRu3BiXLl0CgLTH5WefRBazaZMMZmrZUu2W2L3sSku/8or5paXNVaJEegnqS5esW4I6JUXiUEQEEB5u+f3bWpMmkmxft07tllAaK8fl/IqNjc023sbFxeHhw4cWeQ4ie3Hzpox3LltWzr/IPDqdnKMWLSrVKbj6i/0r4VnwkmVKsgxCMiTm3qGvA1AuwMFrtRcwJhMRkRlq1JAlJq9dk8linBlEuWFMzoLlpp2EogDvvivJQKsvw5txSulrrxV+dpReL/syt2awosgUoAEDpOTE2rX22wGfkiJrOLdqJbUtrcTTUyYqAzLJu06d9FLVu3enl6r+/vv0UtU1asjE8Lp1pWR1ZGTegwuKF5e1rocPl7y+PXaIdO8uHdl9+gCPPy7tnDgRKFJE7ZZpQAHLdVy8eBG+vr5pN+v1eos1qVGjRmjUqFHa9caNG6Nq1ar46quv8NFHH1nseYjy7fZtyXo+9piM1qEcZSwtXbeuhMzCzhzOja1KUO/aJbNurX5cZiN6vVTuWL5cyqqyTKgdsMO4TOQM4uNlgLa/v5xHOUG/kkW5ucn52tq18j62aGGRsdRkIcnJwPXrclwWGwskJLghQO+FW4kPcnxMasJduHoXM7lNSU1BwuF10Lnp4R4YlutzhgV4wVvv4N2XLG1JRGRd4eHSIf3558CkSTI7ytKjykkbGJOzcPCjLDLX4sXAtm0yY8Umn+v33gO++w4YN06mp1pC8+ZSM3jgQKkZ/Ndfsu+Mizvdvg288YbUiHzhBUkmFytmmee3hu++k3IYCxfavPcgtzWO80ocG9c5zi5xPGCAlLoeMQJYtsymL8lsZcrIbOIvvgBGjpRlr3/6CYiKUrtlDq6AQdbX19ekMzongYGBcHV1xbVr10xuv3btWo5rDmfm7u6O2rVr4/Tp0wCQ9rhr166hVIaMxrVr1xDFDwRZ09q1kuls3Fjtltit+Hg5bjlwQEpP9u8vP23FWIK6dm1JUv/0kwx+ateu8IcWDx7IRPI6dWT2slbUqSNjH1avlnF9TIyozMpxOb+Cg4OzjeG+vr4owtF6pBFJSTID1sNDQrwT9ClZhZcX0LQpsH69VLpq2JAxRS2KIqW/Y2PlcuuW3Fa0KBAcLJdOHiXx084LSDUo2e7j1spZUJIeQB9aA64+AUiNv4OEoxuQcusSirfqBxePnGOAq4sOLSuVtNKrsyF2SBMRWV9QkHRIz5wJTJkCvPmmjP4myogxOQvtv0JCcrIkwjp0kOrLNmGcUvrNN8Dx45bbr5+fJFR//VUyexlrBv/7r1xfvRr4+WfpzbXnBHF8PDB2rMyIrltX7dYASE8cv/EG8O236aWqd+yQhGrdupI4fustWSY6Y6nquXNlVpSiABMmAH/+KR3g9srFBRg8WBLi7u7yeiZNyv+y15RBfkp15DcgA/Dw8EDdunWxdu3atNsMBgPWrl1rMls4N6mpqTh06FBaQjg8PBzBwcEm+4yLi8OOHTvM3idRvl28CBw+LEHZw0Pt1tidzKWlO3eWOGPLBHFGGUtQX74s4882bSpcCepNm+R1tmhhsWbaBRcXqdJx/rz87UhlVo7L+dWoUSOTeAsAa9asYbwlzTAYZGD2o0eS4OQk/MIpXlxKT1+6JIdNZDuPHsnqXTt2yNj8f/+Vbh0PDxlY3aGDXOrUkeOzlxqG5ZggBgDvqs0AnQvu7/sHt1d9ifu7lsLNJxAlnh4D3wZP5tqWVIOCFxvmPtPYIdhZTCYi0iw/P2DoUCA0VNYo3rdP7RaRvWFMzoIziZ3AV18BZ8/KbGKbMk4pHTkSWLrUsvt+7jnTmsFRUVILslUrYMECCQT2bupUmfn88cdqtyRXnp6SQG3QIP22R49kUrdxtnF2M44DA4HevSWfX6uW/XaS1KghJ78ffACMGiVlMn/4QaqmUz7ZYCTWkCFD0Lt3b9SrVw8NGjTAjBkzkJCQgJdffhkA0KtXL5QuXTpt/cTx48ejYcOGqFixIu7evYvJkyfjwoULeOWVVwAAOp0OgwcPxscff4yIiAiEh4djzJgxCAkJQbdu3fLdPqI8KQqwapVMu6hVS+3W2B1bl5Y2V8YS1Js2SRnqAwcKVoL69m0ZVNWihczC0RrjGstr1sh7wxKhKrJyXI6Pj0+rzAEA586dw/79++Hv74+wsDCMGjUKly9fxg8//AAAeP311zFr1iwMHz4cffv2xbp16/Dbb79h+fLl+XpeInukKNIHeeMGV5KwpNKlZRz4wYPynvIczToMBllH21hC+u5dub1YMYnpwcFAQEDOYSIiyAfNKgZi69lb2SaLvas1h3e15vlul6uLDo3LB6BiSQ38Q3HWEhGR7RQpIjOcFiyQxMjzz0uFUiKAMTkbTBJr3L17wIcfSi41MtLGT67Xy5TSF14ANm8GmjWz7P5Ll5apnx07SoI4KEgWp3eEBHFsrLR10CCHPNM1J3F8/z5w5oyM/nZzk8+fcY3junXlZN9eEsd6ffpHybjs9axZUtW8IGXNEhJTcP5WApJSDPBwc0G5AG/HX0PJHDYIst27d8eNGzfwwQcfIDY2FlFRUVi5ciWC/n/t85iYGLhk2O+dO3fQv39/xMbGonjx4qhbty62bt2KatWqpW0zfPhwJCQk4NVXX8Xdu3fRtGlTrFy5Ep55LcJNVBDHjslM4l69nOJA01wZS0uXLm370tLm0uvTx6atWFGwEtRr10pyuGFDa7ZUPTqdlOn+6itg717TZS3Ixqwcl3fv3o2WLVumXR8yZAgAoHfv3liwYAGuXr2KmJiYtPvDw8OxfPlyvPPOO/j8889RpkwZfPvtt2jXrl2+npfIHp06JQOz69UDSmqgMq49qVRJzi137wa8vbW1TIOa4uPTS0jfuCEDvvV66VapVEl+5ud0aMKTkWgzfWOuM4rzy81FhwlP2rojy0rYIU1EZFvu7kC/foCvL7BokSRJOnfm+hXEmJwNJ8haOLfPPgMSEoDx41VqQPfuwLRpwLBhwPbtlvsiTk2Vmbjvvw9UrSq1jj/8UHpcP/pIns+ep66MGye1mkaPVrslFpNd4rhjR+nwHzlSfu7aJYO4UlIkVhvXOLaXxLFx2eu33pJZ0H/9JR+tgIC8H3vq2n38tCMG609cR8ztB8h4aqwDEObvhZaVS6JndBgigjQwEjo7NgqyAwcOxMCBA7O9b8OGDSbXp0+fjunTp+e6P51Oh/Hjx2O8al+U5DRSUmR6ZUQEUKGC2q2xCwaDxIb16+UroXNnWcbA3s/bSpSQgURHjsgqF7Nny1i4xo1lYFROYmKAo0eBbt0kDmqVcaL8hg3qx3anZuW43KJFCyhKzsmABQsWZPuYfSz5Rhpz5Yqc61SuLLMuybJ0OilrnJAAbN0qVUY4Uzv/kpMlGWxMDCckyHsbGChdKkFBMuCtoMdgof5e+LBLdYxcfMhibR7fpTpC/e2gpIwlsEOaiMj2XFykGmmxYlJi9d49mcxmzzkDsj7G5CyYJNawS5ckPzt0qMzKUYWLi8yYbdkS+P13+WIurPPnJYO3ebMkgz/6SHofO3SQNX7tvWbwsWOy4O9nn8lCSxo2ZYrMIE5NlZcMmM443r0798RxvXryeFt2Lvv5yUenc2fgtdfk+RcskFlR2bl4+wFGLzmEzadvwtVFl+3IaQXAhdsPsHDHBSzYdh7NKgZiwpOR2jnhNWKQJcrdrl3AnTtS6ohw4YLMxjWWlm7dWqpCOYqcSlC3by+3ZaYoklAODpbEqda1aiVJ9C1b5G9LKmBcJrK6O3dkLHTp0ipU7nIiLi5Ao0bAunXpccXDQ+1W2TdFkbLRsbFyrHXzptzm7S3HIsHBMujNkoPWetQPw/yfE3FCf7LQ+3q3bWV0r6+BtYiNGJOJiNSh00npLz8/WSsxLk5Kl/FAwnkxJmeh/VfoxMaMkRG2w4er3JAWLYAnnpDkbVJSwfejKJK9q1lTEsXr10ui1ZhB1OuBTz+VaSsxMbLdDz/I4+zJyJFSEnvAALVbYnXVqkllj48+Sl/XyDjj+I03gHnzpFL4/fuyLvCMGTKDbNcumc1bv758huvUkfj91VeSWE5MtH7bn30WOHRIEgDt2kll8IcPTbf5ZVcM2kzfiK1nbwFAnqW1jPdvPXsLbaZvxC+7YnLd3uEYg2x+LkTO4uFDySLWqeP0dSjj44ElS2QAjpubfL8/8YRjJYgzMpagfv11Oe9ctAj49df0uGd09Chw+bIMOrL3mdKW4OsrHfrbt8uAbVIB4zKRVT18CPz3n3zfNWjgHN/tavLwAJo2lS6FrVulGgmZevRIBuHt2CFVsf79Fzh+XBLBUVEyrr5jRzkcDQmxfFWTmTOB1dMj0DEwEno3F7i65O+fwtVFB72bCyY9FYkBLStatnFqY0wmIlJXw4bSF3/iBDB9unRMkHNiTM6CM4k16uBBGRwzc6actKpu0iQZWj1nDvD22/l//K1b0vv6xx/Aiy/KgrF+ftlv+9hjMpVn0KD81wy2tk2bgD//lB5kJ6m9+OGHsmbjxInyMchObmsc794ts4537QLmz5dZyRlnHNerJz+tMeO4dGlg5Ur5uI0YISfZP/4oJ9Wz1p/ClNUFGyGdalCQalAwcvEh3IxPxMCW2Uw5c0Q6Xf4CJ3vSyJls3ChfYBnW73Q2BgOwc6eM5XKk0tLmMpagPnoUWLXKtAQ1IDGkUiXnKkXapImsS7xuHfDkk2q3xgkxLhNZTUqKzGgF5Lsut6UGyHKKFpW4ummTnCPWq+fcX10Gg8wQvnZNZgwbB6gVKybHG0FBUk7aFn2b//wDDB4MDBkCTB0ahou3A/OsuGVkvL9x+QBtVtwCGJOJiOxBjRoSqGbOlPKXgwYB/v5qt4psjTE5C57KaNTw4VLq8NVX1W7J/zNOKR0/XhK3xYqZ/9jVq4E+fSRr+Ouv5pWsNpaQMLdmsC0oipTHrldP1mp2EqVKycueNAl4802gbFnzHpdd4vjhw/RS1Tkljo1JY0sljl1c5JihTRugZ08ZeNbjvRhselT4EloAMGX1SZQoqtdGKS2W6yDK3u3bkh1t3txpF9G7cEE6D69fl+/pVq0cd+ZwbnQ6oHp1OQbbuFEu+/fL6hfG5Y+ciV4v4yL+/huIjpZZS2RDjMtEVqEoMlMzPl6+47QYz+xZiRJyLLFzpxxWVamidotsKz4+vYT09esyYEGvl4RwpUry09PTtm06eFC6OJ54Qoq9AbJG8cJ+0Th17T5+2hGD9SevI+bWA2RMFesAhAV4oWWlknixYRgqltTwcTJjMhGRfShXThInX3whndWDBqm4TiepgjE5CyaJNWjNGpnBsnix5csHFYpxSumnn8olLw8fyvTNmTMlQ7dgQf6/tJ95RoYav/yy1Ax+6y0JAGqcyf/2m2Q11693ii+XjIYNk1LRY8ZIBfCCKlJEOpmjo9Nvy5w43rkT+O679MRxZGR60rgwieNq1aQzaOjYB1h2/whc3CBntbm4t/VX3N20EO6BYQh55csct/vgzyNoXCFQmyOmiUimkHp5Se1dJxMfL8clBw9KCO/f3zkShR4eUoI6KkoSpPv2yfg4uzous5HatSV+rlkD9OrlFINwiUjjDh4ErlyR0sf5GftMllO2rCxZdOiQzC4uU0btFllPcjJw44YkhmNjgYQEiaWBgZIgDw6Wz6Fa8TU2VpLDFStKd4+rq+n9EUE+GNelOsahOhISU3DoXAL+225Ak4YuiAz3hree3ZL/x955hzdVf2H8TSe0tEALbdl7U4YFyp5libIUQUEQkSmK7CF7LxEZMlRAEQQEUUFl71WgbJQtS6CMAl3Qlfz+eH+hu03aJPcmOZ/nyYOmyb0n657v94z3CIIgCBbG15eJ4oULgTlz2NVUtqzSVgmCYshqzMbQanmNq1cPaN9eaWtSkLKltGgGnZOnTlFW+sYNDqr95JOsJ1YLFgT++ou6jyNGJNcMthQxMZzJ/MYbnNFsZ3h4ABMn8mMfPJgBY1NhSOI4ONg0iWMXF+BZ6fNwuq5DJuOHER/+GM+PboDGOfMy7nitDmM2n8fqXoGZPlbVSCWWIKTmzh3g4kU6ZRcXpa2xGEmlpR0dbU9a2lDy52fw9t49dvosXsykgj1Jkzo4MGG+di1w5QpQrpzSFtkR4pcFweTcuMFrWbVq3N4KylGpEovRjh9nLZ6tqEXqdJSN1ktIP37M+9zduabw8+P6Qg2FZ9HRQLt23Gdv2cKEfUa4uzqhnG9u3HEHyvkC7vYxgYuITxYEQVAXuXMDQ4dyROVXX1EB1ZK5AkE5xCenwk7CU/bDjz9S1vDIEZUGYpO2lH7/feq/JyRQn2jCBO76QkL4b3ZxcGCiuVkzJp8DAyl9PWJE6lJXc7BkCbU2t241/7lUykcf0ecOH85uInN+P7ObOK5Rg9LVKRPHV0MjcPDaY4NseLr3O7gWLAedVgvti/AMH5ug1eHgtce49jDCuiW2xMkKQnJ0Okp7+PkBVasqbY3FsBdpaUN48gQ4eZL1YYGBnKF44ABw9izQujVlqe2B0qWBkiXp/0uXtszSS4D4ZUEwMaGhrGUuVYrXMkFZNBqgZk0WpB0+zK2+m5UKM718mZgUDg1ljbmjI+Djw4IEP7/ME7CWRqvlJLELF7i2seVubpMgPlkQBEF95MzJfMGqVcDy5UCXLnbZ3GV3iE9OhSSJbYgXL4CxY4G33lKxomXKltJq1RL/9u+/1CE8fJjJ28mTTd91VbEicOwYbfj8c0axf/gBKFHCtOdJyrNnwJQpzJJWrGi+86gcJyc2kbdrx5xJq1aWPX9mieOTJ9NPHOvnHP96+zYcHTRIyKSN+OXtC4i+dBgFei5A2M6lBtnn6KDBj8duY2JbExRFKIU4WUFIzt9/s5O4Rw+7+L5HRFCsw96kpTNi924GdWvXpl8JCuLS56+/2Flbrhz9oa3LlWo07CZetowJlpo1lbbIThC/LAgmIzwcOHo0MWmnyoJsO8TRkeocu3cDhw5xRrQaOmwzQ6tlIZleQvrZM96fJw9DE76+lJNW82V53Dhg0yaOOQsIUNoaK0B8siAIgjpxcgI+/BDw9AR++olOuV07WezZMuKTUyFJYhtiwQLg/n1gxgylLcmEpC2lO3bwvu+/56B4Ly+WAjdsaL7zu7gA06cDr78OvP8+u7sWLGAQ3xwOYMYMlgJPnGj6Y1sZb74JNGjAj755c+U7iTJKHJ88mbrjuFDfh3DKm3GCWKdNQNjOpchVtQVcfIobbEuCVoe9Vx5iIiRJLAg2QXw82ybLlGELpQ2jl5beu5f7q7ZtJYAOALdvA//8Q6XxpAHrfPkoavL331wG2YsEtZ8fvxf79rEIK0fm0xiE7CJ+WRBMQkwME5A5c7IYW34q6iJHDvrRPXu4d6tXT51rkMjIxE7hhw+5VHR1ZUK4bFn+ay2+cdUqhlTmzFHhmDO1Ij5ZEARBvTg4AO+8w2qtTZtYHdi1q/KBa8E8iE9OhQ2HouyLx4+5SO/f3wqkC5O2lP78M7B+PctPu3dnsjZ3bsvYUb8+9R4HDQJ69uQQnWXLGL01FbduMSE+apQMrQI363PnMin7ww9829VGeonjYyfj0fPP6EyfH3n6L8SHP4Lvu9OMPvftJ9GIiomHu6uVXprFyQpCIsePswL1vfeUtsSsiLR02uh0TAAXKABUqZL67xoNp2mUKZNcgrpVKwaKbZUmTShLeegQu6oFMyN+WRCyTUICRznFxwONGllHl6o9kjs3E/iHDtGfJhUsU4r4eK6P9InhyEj6/3z5gPLlWTyVJ486E9oZsX8/0KcPa/+HDlXaGitCfLIgCIL6adGCHcXff89EcZ8+plc5FZRHfHIqrDQTIaRk6lT+O26csnYYzJtvcuhr166UoP75Z+Dtty1vh6cnsHIl7enTh60tK1eaTgt57Fju/IYNM83xbIBatYDOnfnWdO5sHXOjcuYEfEpFZfq4hBfheHZwDfLU7QxHN+OLHXQAbj6JQqWCFiqUMDXiZAWBREcz6xcQQF1KGyQigo3S589zBl2fPlILlZSLF4H//mP9W0bBXxeX5BLUP/1ECeqWLYG8eS1mrsXw9ATq1uVkkZo1LVcXaLeIXxaEbKHTUV0oLIzj6dzdlbZIyAi9YsXp0xz1YOm50Tod6wP1s4UfP+Z97u60rUoVLgutudDg6lWgY0eqg339tfUluBVFfLIgCIJ1ULs2N65LlwLz5gEDB3JhIdgO4pNTYfuv0A64fp0L9FGjgPz5lbbGAKKjORT+wgWW144bp0yCOCkdOzLSXa0a0Lo1HUB05l2jGXL6NPDjj8CkSeJMUjB9OvDoETB/vtKWGE5svDbTxzw7sBoOOXPBo8abZj2PatE7WWNugmCLHDjA1qMmTZS2xOQkJHAm46JFXH+0bcvxPZIgTiQ+nrMRy5blXEFD0EtQd+rE0SFff81Onfh489qqBHXrUk5z926lLbEDxC8LQrb45x+ODqhVC/D2VtoawRBKl6ZKx5kzTNSam5cvqapy/DiFyXbt4jgJJ6fE0MLrrwOvvQYUKmTdCeKwMKBNG8acNm607teiCOKTBUEQrIeKFYEhQ1jxNXs28OSJ0hYJpkR8cips/xXaAWPGsCJ10CClLTGAkBB2Vn33HaWlO3UCvvgi+wlZU1CgADUzFy2ifQEBtDcr6HQcvFu+PNCrl2nttAFKlgQ+/hiYOZMSXGonJga4diXjy2Vc2H+IPLMdHgFtkRARhvhnoYh/FgpdQhx02gTEPwtFwouITM/l4mTFl2WNxjgHK6Xngi0SFsZIYf36NlcgdOsWsHw5O4irVmU9VfXq8lNOyfHjwPPnQPPmxj1Po+Fe9OOPOfLgwAEmi69cMY+dSuHqyvqJ8+eBe/eUtsbGEb8sCFnm9m2qQlSqBBQporQ1gjFUrcrO3aNH6Y9NiVbLYufz57ke2rIl0e8XL05J8vbtuQwsXdp2loKxsayrDwsD/vjDNtVOzI6ZffKBAwfw5ptvomDBgtBoNPj111/N8zoEQRDsheLFgREjWCk/axZw967SFgmmQvbJqbDibIQAAMHBwIYNlJtWtWxvQgIwbRolG3LmZPL1k08Ss4RqaSnVaBidPX2aulC1a9NuY1t5tm9ni8ysWSwjFlIxdiyvs5MnK21JcmJiKCu3dCnQuzervj08gM6vu0OnS/95CRFPAJ0WT3ctw39Le726xd67jPiw//Df0l54fvinDM+tAVDc24p17KQSSxDYQuLuzsF4NkJEBPDLL8CqVZRH7t2bXTEyezg1SZXG8+XL2jH0EtT9+zMI+9NPvD19alpblaR6dXYi7diBDH2rkE3ELwtClnjyBDhxAihaFKhQQWlrBGPRaFhs5e7OGcUvX2bveJGRVE85fBj47Tdg3z7gxg0qUdaqxclVzZsnyknb2qVUpwP69WPS/ddfgVKllLbISjGzT46KikLVqlWxePFiM70AQRAEO8THBxg5knOS5swBLl9W2iLBFMg+ORWSvbJidDqOuq1SBXj/faWtyYAbN2jgsWO8sE6cmDj0PWlLae/e6tHLLl8eOHKEGczx49lhvHo17c2MhAR2ETdsyB2jkCbe3uyC//xz4NNPKctpaWJiWAUeEsLEcEgIVdDj4pjbr1SJgf7evYGAACcM2+eG20/T7np3zl8M+Tt+nur+ZwdWQxv7Al5BfeCUJ2M91qLebnB3teLLsrGO0w6crGBn6NuOOnRI9HNWTEICu2P27eM1sW1bSifaQRFlltm/n+uzxo2zfyy9BPU//7D27OuvgXr1eLN2iUcHBwbU167lPrt8eaUtslHELwuC0URFMRno5QXUqCE+z1pxdmY37+7d/DwbNwYcHQ17bnw869gfPOB84chIfg+8vemv/PyAPHns57sxezawciXDIfXrK22NFWNmn9y6dWu0bt3aSKMEQRCETPH0BIYOZTfRggWctxUQoLRVQnaQfXIqrDgbIfz+Oytjt20zfMNjUXQ6th19+ikjnfv3p72rGDuWu47Jk4GFCy1uZrq4uLBFu3VrJrmrVgW++gro2TPjHeH33zPTGBxsPzvHLPLpp8DixcDo0cCmTeY9V9KEsD4prE8IOzoClSvTx3/0EQNCVapwZmJSmj7wwergW0jQpm57cnTLDbeyqTsHw0/8BgBp/i3Z8x00aFLWJ+svUA2IkxXsGZ2OmTw/P15ArJybN1kf9fgxr4lNmkjncGY8eULf0qQJu5dMgV6CunRpdigfPAicOwe0aqVMcZUpKV2atXe7dnF+pCrXstaO+GVBMIq4OO6vnZw4P12uS9aNmxsLq/btY2d4YGDa23OdjnLRDx7w9vgx73N3T1zW+fhYf4FWVti0CRg1Chg3joVrQjbIok8ODw9PdrerqytcXV1NaZkgCIKQGTlycN7W998D33wDhIdz4y9YJ7JPToUkia2UuDg25TZvDrRsqbQ1afDoEdC3L7B5M/DBB0yuenqm/dikLaWffKK+qGe9esDZs8Bnn3G+8JYtHMqYVtdzdDR3UJ07U3tKyJAcOZiH796dFd716pnmuCkTwiEh/P+0EsIBAdz4G5L86BpYFKuO3jSNkSlI0OrQrXZRsxxbEAQL8PffnFHTo4dVLyAjIjhj7/x5oHBhKikUyFgEQfg/u3dz9mBgoOmPrZegrlYN+Osvyk+XLctksbXOBdRouI5dtox+WpZNgiAoiVZLOd0XL4CmTTk/XbB+vLzoX44epY+uXJn3x8Qkdgo/eMD/d3RkMrhaNcDXl4+355rvEydYK9+5MzBpktLW2C9FUgxFnzBhAiZOnKiMMYIgCPaMkxMbx3LnBtatY4VZu3b2vVgQbAZJElsp330HXLnCa5Lq+PNPSi/Ex7P0tGPHzJ/zySfAokVMFm/caH4bjcXDg2/6G28AffoA/v7AihUcypiUL79kgnz6dGXstEK6dgXmzaNC9+HDxvtWQxPCvXoZlxBOizJeOdAAz3AkIRcSHA27fPp1nZnpYxwdNKhb0hulfTyyZphakEoswV6Jj2dmtWxZw8YSqJCU0tLt2lFAQ/Y7hnHrFmWhO3Qwb6dRSgnqxYsp0mKtEtR+fgzG79+ftoKHkE3ELwuCQeh0wJkzlBhu0CD92mbBOilcmHvCCxeAZ884o/jpU/4td26geHH6I29v6R7Xc/s2x4xUrUrRN1kPmoAs+uQ7d+7AM8lFSbqIBUEQFMTBAXj7bS4gNm5korhbN1lAWBuyT06FJImtkIgIYMIEVnVWq6a0NUmIjuaQ5CVL2NqyYoXh7Uc5cwLTprGl9MgR6nupkQ4dgDp1mARv0wbo3x+YO5daVg8fArNmccaylSYJlMDBAZgzh91Ev/wCvPVW+o+1ZEI4FZcuAd26YfrN+wjqvRQJJjosADg5aDC9g78Jj6gQ4mQFe+X4cW4OunZV2pIsIdLS2UOnA3bs4JLH3wKX8qQS1AcP8nb2LKdjqE2MxRCaNOEo70OH2C0tmBDxy4JgENeuAdevc//g66u0NYKpiIxM7BQODeV99++zW7hmTSaGpTgpNRERwJtvspv+119lTWgysuiTPT09kyWJBUEQBBXQvDmrCr//ntLTffqIDI01IfvkVEiS2AqZM4ex6KlTlbYkCSdOsHLm9m12BA8YYHy5adKW0kOH1Fuu6ucH/PEHB9YPHUp9yR9/pGNwcOCMZcEogoJYVzBqFCuWnZ2ZEL5wgfMd00oIV6rEZIZZEsJJ0emAr7/m97JoURTZ9hsm6Xww6pfzJjvF5LaVUMTLzWTHUwxxsoI9Eh3NNsjXXkt7DIGKiYhgcvPCBaBIEe5r/PyUtsr6uHgRuHePSuOWXLq4uADNmrHLZ9s265Wg9vRk/d3hw/TrefIobZENIX5ZEDLl3j12EZcrJ3W+1k58POu29YnhyEj6ZW9voEIFJofPn2c3cUCAJIjTIiEBePddFhAeOSJFEyZFfLIgCIJtERhI5dGlS6ksOnAgZ1UI6kd8ciokSWxl3LsHfPEFx+OmGE2iDPHxwIwZwOTJjFKePg2UL5+1YyVtKd282TCZaqXQaNhF3LQpk+N163KQ1bRp3IUKRhETw9HV774LNG5MCbCUCWGzdQhnxP377Brfto2FD3PmAG5u6ALgcWQM5u64ku1TDG9RDp1r2sgsYnGygj2yfz+v/02aKG2JwSQkAMHBNF2kpbNHfDywaxeTC8WLK2NDvnyss7t0ie7KGiWo69UDTp0C9uxR9/LP6hC/LAgZ8uwZcOwYULCgZZQgBNOi07F4/sED3h4/5n3u7kxuVqnCxHBSX1i3Lmu8Dx3iVt7FRTn71cjQoVxL/PEH9+CCCTGzT46MjMS1a9de/f+///6LM2fOwMvLC0WL2ki8QRAEQW1UrEjnuXAhMHs28Omn3KAL6kb2yamQJLGVMWECk2OjRyttCajJ9f77jDSPHg2MH5/9XVbSltI331R/dLNcOZbYVqnC6OzmzUCnTkCpUkpbplr0HcIhIYldwvqEsEbDr1OXLszN1qhhwYRwSn75hW11zs7UYW3dOtmfBzYpg3y5XDFm00Uk6HTQOOgMPrSjgwZODhpMblvJdhLEgDhZwf548oRKGo0bW03FaEpp6aZNpZMmOwQHU12qWzdl7dBo2CVVqlRyCepWrbhUUTsuLqyz2LKFBdmFCiltkY0gflkQ0uXFCyYKPTx43ZFCKesgJia5hPTLlywq9vHhKC5fXy7J0vs8XVxYSLVnD3D0KGdQy6WPfP018NVX/LdlS6WtsUHM7JNPnjyJJkmKVocMGQIA6NGjB1atWmXUsQRBEAQjKFYMGDmSTnTWLCaKVdHZJ6SL7JNTIUliK+LiRY75/fJLzkdXDJ0O+O47tjP7+jISacoZwrNmcYe3fDnn+6qd48eZIB4/Hlizhu1Y8+ez7dXOow2xsclnCJ88mXaHsD4h7OXFt69YMQU/+vBwYNAgYNUqzqBevjzdKrDXchfFvW/zoUb/87gb/xiODhokaNNPFuv/XrekN6Z38LcNiemkiJMV7I1du9iuUru20pYYxO7dwKFokZY2FdHRXALVqKGeYmG9BHW1asBffwHr1v1fgrq6I9SuQF2tGpPuO3daXrrbZhG/LAhpEh9PiXuACUMniYqoFq2WNXn6pPDTp7w/d27uGf38KOTl6Gj4MT08GL7Yv58qFgEB4nO2bWNMe9AgCqYJZsDMPrlx48bQ6QwvXBcEQRBMSP78wIgR7CieO5dqlNZQrW2vyD45FbIdsiJGjgRKlAD69VPQiEePgN69gd9+Y2Zv/nzuskxJlSrUHp40iZ3Knp6mPb4p0ek4q7Z6dbZ5Dx8ODB7M92jLFuCbb1jWbAekTAiHhADnzqWdEA4IYDI4rQ7hwYM5mrp/f6BwYQu/iEOH+J17/JgVGR98kGHEYPRowNfdDbs+D8Sd5xFYE3wbe688xO0n0Ui6PdMAKOrthiZlfdCtdlGU9jHxb0YtaDTGOU57j8YI1s3t28Dff7OYRMVahQkJwIWzQFUAd+8C7XqKtLSp2L+f/zZqpKwdaeHtnShBvX07sHijD+prGqNePKBWjRYHB04cWbMGuHw569NLhCSIXxaEVOh0rPEND6eCgSKKRUKGREUlSkg/fMikvosL69NLl+a/2f3c8udnkdeJEwxn2HMc98IF4J13qD7yxRdKW2PDiE8WBEGwbTw9KT29bBmwYAHQsycXG4L6EJ+cCttPg9sIe/dyLsyMGQrGog8eBCpXZtn15s3sJjZ1gljP5MlAZCS7itXML79Qp2rOHF5ccuViYvjXXylD7e/PD87GiI1lEnj5cqBvX/o8Dw/+O2AAZ3tVqcKu96NHgYgIyl6uWMEO4dq109/YjxzJY40fb+EXNGYMI/2FCtHYnj0zdAJHjvDjnzqVUq1lfD0wsW0l7B/WBBcmtsQfzfNh8/dD8EfzfLgwsSX2D2uCiW0r2W6CGEisxDLmlgUWL16M4sWLI0eOHAgMDMTx48fTfew333yDBg0aIG/evMibNy+CgoJSPf6DDz6ARqNJdmvVqlWWbBPsBJ2OmbcCBXixUyn//sv9SXAw/79LF3Zr2sH61uw8eUJ1jPr12UyuRvQS1AMGAHX8I3EIDfD1Rh9cvqy0ZelTujQls3fuZIGDkE0s4JeN8cmrVq1K5W9ziN69YGHOnwf++4/7kbxql1iwE+Ljgfv3gdOnqYLx55/879hYFgw1awa0bcvPrHhx0yX2ixfn8c+d43fCHgkNBd54g80IP/1kXEe2YCQW2isLgiAICpIjBwPfr70GfPst51sI6kN8ciqkk9gK0GrZoBoYCLz9tgIGvHjBfz/7jHNZV6wwv0Zl4cIKt5QaQGwsZye3bs2da1LateMutlcv7rr69mVZrlojyRmQVofw+fO839ERqFiRyeGePTPuEDYUT082ZX/yCb9yZs+//PMPh0meOwdMmcIsdSa7Y50OGDaMyZauXVP/3d3VCZXyOAP3rwB5nAFXO7nUWkCuY/369RgyZAiWLl2KwMBAzJ8/Hy1btsTly5fhk0bX/r59+/Duu++ibt26yJEjB2bNmoUWLVrg4sWLKJRk6GWrVq2wcuXKV//v6upqtG2CHXHxIttye/RQ5WIxPJxJtgsXKC3dtiOAZYB8rU3Hrl2JcyzVjosL0KxmBKqdWom/cvfBunVOKFOGHUNeXkpbl5rmzYGlS7neqFVLaWusHDP7ZWN9MgB4enricpJKBY1UrQgW5N9/qVRQtSpQsKDS1tgvOh3w/HmihPTjx4x5uLkxzFClCsW4nC0gfVG5MmvTg4PZWW5PhQMvXjBsERMDbN1qvvp/4f+ItKUgCIJ94OTEIHmePMD69Vz0tG8v1fpqQnxyKuwkc2HdrFvHQNnBgwpcT44fB959l/89ahQwfbrljBg5kl2548czMa02li8HbtxgO2la+PpScnr5cmDIEFYP/fijqiOesbFMKpw8aZmEcHr06QN89RXHOWzbZvrjA2B0YtEinqR4cbY/BwQY9NTNm9khvXOnXfgJw7GAk503bx569+6Nnj17AgCWLl2KP/74AytWrMCoUaNSPX7NmjXJ/v/bb7/Fpk2bsHv3bnTv3v3V/a6urvCTAa2CIcTHM0NYtixQsqTS1iQjIYFBzv37GVht356BVs1ppS2zLW7dooxzhw6WCWCbCm88QddWYbgUXhDbtwNffw3Uq8duaDW9Dl9fFmHt28fvrzSaZgMz+2VjfTLApLD4W0EJHj7k3qZkSaBMGaWtsT9iYpgQ1ieGX77k/tLHh9d6Pz+Kclk63qHRcHu+bx8nDzVrxmS1raPVck9/7hxw4ACLCgUzIwFpQRAE+8HBAXjrLSB3buDnn5kofv99kexQC+KTUyFJYpXz8iVVcNu3ZxDPYsTHA9OmsbOybFne16mTZXdtSVtKBw+mdLNaeP6cM5M/+CBjuzQadhE3aUJnULcuMG4c8PnnrCxSEH1COCQkMSmcMiEcEGD+hHBaODsDM2fSn+7cya4ik3LvHl/Yjh3AwIGUNTcwGhAXx3qJVq2AoCAT22WnhIeHJ/t/V1fXNDt5Y2NjERISgtGjR7+6z8HBAUFBQTh69KhB54qOjkZcXBy8UrTP7du3Dz4+PsibNy+aNm2KqVOnwtvbOwuvRrB5goPpA9KSEVCQf/+lROPjx0DNmnQ7klwzPTodXUfBgupalhiKXoK6dGkWHx4+zABxq1Zc7qmluLlpUzbsHzxohjWAkCmG+OWs+uTIyEgUK1YMWq0Wr732GqZPn45KlSqZ9gUIQgoiIjgqxscHqF5dPdc6W0ar5WgGfWL46VPenzs3UKwYk8Le3uqIlTo6smhq9276xSZNFN+qm52JE9nctGmTjEsUBEEQBLMRFMT8xqpVXJD26SMSb4IqsfGlr/WzeDEVLbdvt+BJr15lQvPECSYz33hDOT3FpC2lf/2ljA1pMWsWEBXF2cmGULYsS5P1ifc//2RXsYXK2GNjqaoM0IRbt9JOCH/wATeJVaooX0HdoQNz6iNGMIFtsqKdjRuZuHd1ZZtyy5ZGPX3ZMuDaNW6ohRRksRKrSIrS9QkTJmDixImpHv748WMkJCTA19c32f2+vr64dOmSQaccOXIkChYsiKAkGf5WrVqhY8eOKFGiBK5fv44xY8agdevWOHr0KBzVELkS1EN0NNstAgKA/PmVtgZAamnpPn3MPxHCnrlwgXVGPXpYd5LB2ZmJ2KpVubxatw6qkqD28OAa4NAhFj3kyaO0RVaKGf1yVnxyuXLlsGLFClSpUgXPnz/H3LlzUbduXVy8eBGF1ThaRrAJYmJYcJIjB6cB2UEjgGJERTEh/OABO7fj4znywNeXxUm+vpYrOjaWHDlYlL9nDwWm6tWzbj+fEatXMyQxcybQsaPS1tgR0rUkCIJgn9SqxQ3ukiUcqzlwoMx4UBrxyamQJLGKCQsDpk5lwLdcOQucUKejvPPgwUCBAozM1akDnDplgZOnQ9KW0l271NG6efcu8OWXwNChQJKZppni7MyS3datOQO3WjUep3dvk+5Ak3YI67uE9QlhgB1D9eszIazvEFY6IZwWGg0wZw436GvWsG4hWzx/Dnz6KfDDD/w+LVvG8nUjCA83rIHcbsmik71z5w48PT1f3W2uecAzZ87EunXrsG/fPuRI0mLZpUuXV//t7++PKlWqoFSpUti3bx+apZw3Ltg3+/fTVzZurLQl6UtL22hAUw3Ex7PLqFw5TimwBby92RR/6RJUJ0Fdty7XMbt3020LWUBlfrlOnTqoU6fOq/+vW7cuKlSogGXLlmHKlCkmOYcgJCUhgR3EcXGUEXZxUdoi2yI+Hnj0KDExHBnJdYi3N32lnx9n/FrL2iR3bhYSHDrEPXPVqkpbZHoOHgQ++gj48EMWYwsWRALSgiAI9kuFCsCwYcDChcDs2cCgQUC+fEpbZb+IT06FJIlVzPTp3HhNmGCBkz18yN3Cli3898svORRIDehbSocPN3FLaRYZN44VP1ndVQUGAqdPM8ncty/f82+/ZWm1kaRMCIeEcEObVodwrlxUWF6/HnjttayZbmnq1mVg+PPPgbffzkbl+cGDzDKHhVHio3v3LEUrjG0gtzuy6GQ9PT2TBaPTI1++fHB0dERoaGiy+0NDQzOdbzh37lzMnDkTu3btQpUqVTJ8bMmSJZEvXz5cu3ZNksRCIk+eAMePU4NQYf/4778UpHjyRKSlLUlwMBWisl20pDLSk6Bu2ZJBfqWC+y4u/G5v2cKgvTF1ecL/MaNfzo5P1uPs7Izq1avj2rVrhtsoCAai03FvFBYGNGqkuOu2CXQ61t3qJaQfP6astJsbE8JVqlDSW+kio+xQoAAlyU+f5nemVCmlLTId164lhlaWLLGe5L3NIAFpQRAE+6ZoUeYSFixggPmTT3ifYHnEJ6fC9l+hlfLvvywuGTEiS7lD49iyBahcmbpKv/3GbmI17aL1LaVnzrClVEnOnQO+/56ZewOSWumSKxc7WX//nVFnf39+DhkQG8um7m++Afr1Y2LAw4NJ4H79WCVfuTLwxRf87/BwmrtyJZUsMsmLqZYZM4D79+lDjSY2lgOEGzWiDuu5c1nWCL17l6oggwcDooiYDnona8zNCFxcXBAQEIDdu3e/uk+r1WL37t3JOpNSMnv2bEyZMgXbtm1DDQOGbt29exdPnjxBgQIFjLJPsHF27eK1O4PvmrkJD6di/g8/MCDbpw/FKSRBbH6io5lADQgwWoTCatBLUPfvz6Lm9euBn35igkUpqlVjwmHHDiYnBCMxo1/Oqk9OSkJCAs6fPy/+VjALly5xxE7NmtKokR1iYoDbt1knt3UrR1xcvMjLRZUqHFPw+uv0j4UKWXeCWE/p0rydPs2EuC3w9CmniHl7c2ySdNUrgJn3yoIgCIIVkD8/m+C8vBjAN3B0nmBiLOSTFy9ejOLFiyNHjhwIDAzE8ePHTfxCTId0EquUzz/nAn7IEDOeJDKSJ/jmG6BNG+C77yyQkc4iSVtKO3VSLiI+YgR3jH36mOZ4b77JVuCPPgLatqX09Lx5iHXJlW6HsIMDO4Rr1GC+U82S0aagTBkmwadPB3r1MiLIc/EiZb0vXuSThw9ne3UWGT+eSfmRI7N8CNvHApVYQ4YMQY8ePVCjRg3UqlUL8+fPR1RUFHr27AkA6N69OwoVKoQZM2YAAGbNmoXx48dj7dq1KF68OB48eAAAyJUrF3LlyoXIyEhMmjQJb731Fvz8/HD9+nWMGDECpUuXRksj51ULNsytW8Dff3NwmwLRz4QE1nHt38+gnkhLW559+/hvo0aKmmERvL2B994DLl8Gtm1TVoLawQFo3pw1gpcuseNZMAIz+2VjffLkyZNRu3ZtlC5dGs+ePcOcOXNw69YtfPTRR0adVxAy484dbrEqVpQGDWPRalkcpJeQfvqU9+fODRQrxnBBvnzZ2lZZBVWrMlxy5AilyrNTH640cXFU5Xr0iOtJLy+lLbJTpGtJEARBALioGDyYzWMLFlD2s2ZNpa2yLyzgk9evX48hQ4Zg6dKlCAwMxPz589GyZUtcvnwZPj4+Rh/P3EiSWIWcPMnOjW++AdzdzXSSY8eol3jvHrB0KZOeao82z5jBnf6CBcoM0Nm5kwP7Nm0yaZQ0No8PLk78DRF5vkWtlYPx8Ie96JqwGofia79KCAcE2EdCOD3Gj2cD99SpwPz5mTxYq2Ub/siRQMmS7NSuXj1b5z93jirVCxdad4DA7Gg0xjnOLFxzOnfujEePHmH8+PF48OABqlWrhm3btsH3/wUut2/fhkMSG5YsWYLY2Fi8/fbbyY4zYcIETJw4EY6Ojjh37hy+//57PHv2DAULFkSLFi0wZcoUs81GFqwMnY7X/gIFFBlGfuMG8NdflJauVYvjkKVz2LI8fsxiraZNzbguUxkaDVC+PGU29RLUZ8+yY8zSEtSlS9OOXbuAsmVtPzFhUszsl431yU+fPkXv3r3x4MED5M2bFwEBAThy5AgqVqxo1HkFISP00yGKFuU+SsicqCgmhENDeYuPZ1Gary+vwb6+2Rj7Y6U4OHDUwZ49nFHcrBlgjVsDnY4KIQcP0o+WKaO0RXaMBfbKgiAIgpWQIwdlP3/4gSMow8O52BAsgwV88rx589C7d+9XBdRLly7FH3/8gRUrVmDUqFFGH8/cSJJYZeh0bHisVImFJCYnLo6ZtmnTmHH84w9G3KyBlC2lltR71Gr5wdSrx0E+WSQ2lo2tISEsBkjsENbAwaE3WpZqgoVPu2F/WH389+Hn8J43Fm65bUCzK5vkz0/V6IkTObIh3dlQ//3HH87OncCnnwIzZ5okojFypGkbyG0WC1VHDxw4EAMHDkzzb/v07X7/5+bNmxkeK2fOnNi+fXuW7BDshIsXeW354AOLVvSHh1Ni9+JFBrrfflu9Yh+2zu7dVJIIDFTaEsujl6CuWpVdxevX0x+2bm3ZTqTmzVloffKkfX4OWcYCftkYn/zll1/iyy+/NPocgmAoUVEsasmbl6pLkmNJm/h44OljID/4ft17wffK25uFQH5+fA/t/f1zdqaKxu7dfJ8aNbK+QqW5cykYt2oV0LCh0tbYOdJJLAiCICTF0ZFxpty5gQ0bgOfPmXOw9wWYJciiTw4PD092t6ura5oNRrGxsQgJCcHo0aOTHMIBQUFBOHr0aNZsNjOSJFYZf/5JScM//jDDBuTKFcrvnjoFjB1L6WZrGxqUtKXUkkGmH39kC82RIwZfrJMmhPVJ4ZSS0QEBQPfuDGKwQ7g0EH8ImD4dRSZPBs7/xXNbSyLfjHz2GSUvx4xhkDoVGzawiCBnTmZWmjc3yXl37WJg3MQN5LaJbHwFWyMujkUn5coBJUpY5JQiLa0ubt6kzHHHjoCTHa+a05KgrlsXaNDAMr7R15fziffv53pJuukNRPyyYEfExbHj08mJdb3WlswzJzod446hoewYfvwY8NQCzQHk9QKKFeV1VvY6qXF3Z6J4717gxAkWKlnLmmzzZhY7jxlDVTJBYcQnC4IgCCnRaBhsSJoo7t5dFrLmJos+uUiRIsnu1qtUpuTx48dISEh4pbClx9fXF5dUOofajsNd6iM+nirKTZqwQ8Nk6HRsvxg6FChYkGWw1tqGkbSldODADFpKTciLF0yqv/UWUKdOmg8xJiEcEMBAZ7qS0U5OTIa3asWkfrVqwLx5QN++1rMjNQNubsCUKcCHH3KU9quv8PPn/C78+CPnVS9darL2Jn0Ded262Wogtx9k4yvYGsePs6W3WzeLnE6kpdWFTscagYIFgcqVlbZGeZJKUB86xOXkuXOWk6Bu0oQzRg8eNFkdmO0jflmwE7RaFli9eEH1A2uUBTY1MTGJSeHQUODlS8Yb8+dn8VnBnACOAhUrAMirtLXqxsuL67Jjx6gsUqmS0hZlTkgI0LUrlWimTFHaGgGA+GRBEAQhfZo143zDlSsZg+rbV4JB5iSLPvnOnTvwTDKH0pbGFEqSWEWsXAn8/Tfl6E0WaAsNpTTzH39QK/eLL4BcuUx0cIXQt5R+/jmwbp35z7dgAXD/Pmcig1XqFy4kJoRDQthknF5CuGrVLM4wrFULOH0aGDaMg4S2buWcAj8/074+K6J7dzaQDx/ObiLNgf2889kz/nC6dTNplHrNGuDMGQbC7Tg/bziy8RVsieho4MABXsjz5zfrqURaWp1cuADcu0cFKPEBiTg7M2FbtSqLGiwlQe3hwaKtQ4eAmjWBPHnMdy6bQfyyYCecPcttb4MGjK/ZI1otEBbGpPCDB8DTp7w/d26uLfz8gHz5kjSmPFXMVKukSBEgMpJrAw8Pvqdq5e5d4M03AX9/irDJpV0liE8WBEEQMqJmTS4ylixh8HvgQP6/YHqy6JM9PT2TJYnTI1++fHB0dERoaGiy+0NDQ+Gn0ryOJIlVQlQUm0ffe4/xaJPw22/ARx/xi/z779wp2AIpW0pr1TLbqeLuP4bD1Om41LA/Fs0r82qGcExM8oTw++9nMyGcHu7udA5vvMHX6+/PRHG7diY8ifXg6AjMmcOupd87rkK73z5kNOiHH4BixUx6rhcvWIfw1lsMSgsGIBtfwZbYt4+tpI0bm+0UKaWlO3TgZV4SksoTF8cZhOXLm9y92AxeXpaXoK5bl8V5u3fTPwuZIH5ZsAOuXgWuXQNee83+CqyiopJ3C8fHcz3h68viHV9fTuIRTEP58kBEBGWn3dyYdFcbkZEM+zg7Mxwkn7+KEJ8sCIIgZEb58mwWW7AAmD0b+PRTszct2CVm9skuLi4ICAjA7t270b59ewCAVqvF7t27MXDgQKOOZSkkSawSvviClb/TppngYJGR7Lb97jvuEL79FvDxMcGBVYS+pXTYsP+3lGY/oh4Xxy6ukycTO4TfPzUV3ROApnvHIX8oZwebLSGcEW3asGy5d28OqOzVi6/fDiuKWhS8gKBckRj5ax28PmMOnId/ZpZZDQsXJmsgFwTBnnjyhBHApk3Npr4h0tLqJjiYgeD331faEnVjaQlqFxf+LH//nWMnChc27fEFQbAu7t+n6k/ZspaZQqQ08fHAo0eJSeGICF5nvbx4zfXzA/LmlWIzc6HRMA4QFUV/16yZukTaEhJYvHX9Ou1TaaOKIAiCIAgZUaQIMHIk8NVXTBR/8om6JUyENBkyZAh69OiBGjVqoFatWpg/fz6ioqLQs2dPpU1LE0kSq4AHDxKLQ4oXz+bBjh6l5G5oKLB8OTuJbXGX6OjIN611a2DLFqBtW6OenlZCOGmHcIUKQOuy1zHg1Ne423cSbnyR33IJ4fTInx/YvBlYsQIYNAjYu5dzeNOZk2xzaLXAV19BM3o05hRqg9eiNuK7PEPRz/T5YTx5AkyfDvTrB5QpY/rj2yxSHS3YCjt3sgindm2THzo8HNi+neMlRFpanURFMeFZowbg7a20NdZBUgnqbdsSJahbtTL9e1i1Kjvwd+4UKfBMEb8s2DDPnvFaULAgZ+zaIjod1w16CenHj7klcnNjArByZdaCu7goban94OhIVYs9e7hWaNpUPe//iBGcMrZ1K5VpBJUhPlkQBEEwlHz56NgXLWJnYb9+TFYIpsECPrlz58549OgRxo8fjwcPHqBatWrYtm0bfFUaAJQksQqYNIkbizFjsnGQuDhg8mRmtmrWZAS6dGmT2ahKWrYEgoJYXfP664BT2l9nfUI4JCQxKZwyIRwQwNx6jRpJOoQ7jwH8fFBs3iDAzbIvLV00GnYRN27M9qb69fnFGT/efNqOauDuXUaCd+8GPvsM1WbMwPt9NZgwAeja1fQN1VOmMAAzfrxpj2vzyMZXsAVu3QL++Qfo2NGk19WEBNZxHTgAuLqKtLSa2b+f/zZqpKwd1oiXF/Duu8CVK0wWL1lieglqBwegRQvWyV26JHvlDBG/LNgoL18yQZcrF1UFbMmXxsSw3lsvI/3yJROT+fMzGe7ry72PLb1ma8PVldvw3bu5tmvQQPnL57JlwLx5VMNq3VpZW4R0EJ8sCIIgGIOHB8dsLl9OB//BB2YduWlXWMgnDxw4ULXy0imRJLHCXLoEfPMNm2Lz5s3iQS5fZobz9GlgwgQmDdNJmNoUGg3fuIAASmr365csIaxPChuUEE5JcDCwYQOwciVLtdVGqVLMNMycySqDbdsYLS1XTmnLTM+6dUD//vygdu5kYQCYyF2/Hpg7l2+Bqbh+nXMVJ06UsQ9GIxtfwdrRallkVbCgSVswbtwA/vyTYyUCA1nn4+pqssMLJuTxY64dmjVTp/u3BjQaLkdKlkwuQd2yJaWpTZHYKFWKtZC7dlFm1gxTJ2wD8cuCDRIfz+uKTgfUq2f9216tlusDfbfw06e839OTiiN+fmwmkeucuvDwYBHUgQMMw7z2mnKJ+507gY8/BgYO5E1QKeKTBUEQBGNxdQUGDABWr+ZY0fDwV3FxIRuIT06FlW+prJ9Royg1//HHWXiyTscWjWHDOJTtyBG7qiiJiwMuaqrDvXY3+A6ZgHbfdsXRCx5pJoQDAoBq1QycIazT8T2tUkXdwwidnICxY6nl2K0bUL06MGcOnYctlJY/e8Yfxtq1QOfOzNx6eb36c9GiHL09dy7Qty9zOqZgzBjKtn32mWmOZ1doNMY5Tlv4ngq2xcWLwH//sULTBIvA58+BHTsoLV2sGNCpk0hLq51duxiYDwxU2hLrJ6UE9YYNTO62bm0aCermzYGlS5nUl88rHcQvCzaGTgecOEH/2qSJ9RbzREUldgo/fMh9rYsL1wilSjExnDOn0lYKmeHjwzjDyZNMGpcta3kb/v6bo0tatAC+/NLy5xeMQHyyIAiCkBUcHYEePYDcuYGff+ZCuEMHu0hcmg3xyamQJLGCHDwI/PYbc2BGdxQ9eAB8+CHw11/UpZ8718AMqHWSskM4JAQ4e5YdwsU0U3EZGzAobi46zJ5kXEI4LX7/na0v27ZZR8l2jRrAqVPA8OEsHd66lXOLCxRQ2rKss3cvHWB4ODuk33svzQvyqFFsIp8wgR352UXfQL5ihfUGnRRFKrEEayYujhnCcuWAEiWydSiRlrZObt6kOEvHjtbfmaYm0pKgrlOH8pzZmePo48P13v79rOuThEoaiF8WbIwLFziFpm7dbKhwKUB8PPDoUWJiOCKCawIvLyYW/fz4emSdYH2UKMHP8+xZyp+bqnDZEB4+BN54g8XT69bJ2kX1iE8WBEEQsopGw8BS7twMXD9/DnTvLs4/q4hPToV8kxRC36xaowabJI1i82agd29eCLZuBdq0MYuNSpFRQtjBgVKFNWpwFi0TwkXhOnkQ2i+aC3Tql73kaFwcZxw3b05dRGvBzQ1YvJi7xA8/ZDbim2/oQKyJmBjg8885UKlRI+D777nrTYc8eYBx4zii4bPPgEqVsn5qnY55dn9/+lkhC4iTFayZ4GAWpmRTQeL6ddZvibS0daHTseu7UCGgcmWlrbE90pKgPn8++xLUTZowaXTwILuohBSIXxZsiJs3OaqpShVeq9WMTsclhV5C+vFjykq7ubFbuHJlFrpkp1BGUA/+/kBkJHDsGP2SJQoYXr4E2rcHoqNZX+3paf5zCtlEfLIgCIKQXZo2pdNfuZJVan37AjlyKG2V9SE+ORWSJFaIn38Gjh/ngt7g71lEBDBoEC8E7doxCWjlQ1Pj4iiRdPKkoQnhdDqER4+mNv+ECRzonlW++46tLuvWZf0YStK6NaOuffqwFapnT+Crr6h/pXbOn+cHffkyZbMHDzbox9G/P7BgAXP7W7dm/fS//84gs7U0kKsScbKCtRIVxQtAjRoc/JcFUkpLv/MOA8CCdXD+PHD/PpXGpZPLfJhagtrDgzNJDx4Eata0rs5CiyB+WbARHj3ifrFECWUkfQ0hJoadnfrE8MuX3FPkz8/Etq8vr1niY2wPjYZTv/btYxFUs2bmVbfQ6VgXfvo01TSKFTPfuQQTIj5ZEARBMAU1anBR+fXXbLIaOFCqxYxFfHIqJEmsADExzGm+8QY7jAzi8GF2Nz18SH3dDz+0uh2mPiEcEpKYFE6ZEA4IMCAhnBZJW0oHDcpaS2lEBJPM77/Pk1sr+fIBmzYBq1YBn37K3erq1UDOekpbljZaLQcojRnDqM+JE4ykGIiLCzBjBjvy9+5l8NlY4uOZZA4Kkk6kbCFOVrBW9u9nxM1gp5xISmnpjh3ZIWRlLtquiYsDdu/mOkQCrZbBy4uTJC5fzr4EdZ06XFPu3s25jEISxC8LNkBEBHDkCJOtr72mHv+q1VI15MEDykiHhfF+T08KIfn5cVsmxaf2gZMTi5Z276ZiRpMm5lOAnDQJ+OknFlrVqmWecwhmQHyyIAiCYCrKlaNE7YIFwOzZzIVYeSOhRRGfnApJEivA0qWUy9qyxYAHx8ZyFzBzJnUrd+5ky4XKMTQh/N57LIDJ1gxhPfqW0lGjDHxzUzBnDlvBpk7NpiEqQKNhF3GjRtRObtgQBT8YBWdMAKAiXbM7dzh7eO9eJvinTcuSTEanTsAXX1Au+vhx46/d337LBvKfflJP4MkqEScrWCOPH7M4pWlTox2RSEvbBsHBlIkMClLaEvtDL0F9+DCD6ufOAa1aGSdB7eLCYPzvvwO1awOFC5vXZqtC/LJg5cTG8trg6sqCEKW/otHRiZ3CDx9yz+vszC7hkiWZGJb56PZLzpxA/frc2gYHc3a2qfeWa9YwPDRtGvfAghUhPlkQBEEwJUWKsONpwQJg1iw2imUwslFIgvjkVEiS2MI8ewZMngz06gVUrJjJg//5B+jWjRGzSZOY/FThQPKkCWF9UlifENZogAoVEhPC+g7hXLnMYEjSltJ9+4zrCLt3j1nGzz7jRdZWKFmSHXKzZsF3/AQcxTbk+PdH4LUKSlsGrF0LDBhAiYzdu5mgySIaDTB3LtCwIZXC33vP8OfqG8i7dQOqV8+yCQIgTlawTnbt4nWodm2Dn/L8ObB9O920SEtbN0mVxrMidyxkH2dnLtmqVOHvKisS1FWrMiC/Ywdr5JIG5aNi4nHzSRRi47VwcXJAcW93uLuqbz1tFsQvC1aMVssO4thYyvcqMb83Pp5S16GhTAxHRPB+b28KIPn6UhlBikwFPXnysHDw8GGOsjBCICtTDh+moFyPHlSmE6wM8cmCIAiCqcmXDxgxAli4kIHxfv0MSDglYrd7ZfHJqbCDT93yZPQDmzGD84kmTcrgADodsHgx2yKLFaOOZY0aljE+E1ImhPUdwi9fWjghnB5JW0qDgw3/EU+YwNJfW9xtOToCY8bgUrGWcOvWDeW6vgbcm82ZBUpENJ4+ZXJ43Trg3Xf5XTfBEMEGDTiqe8wY4K23DO/mmzvXdhrIFUecrKBCMlz03rzJTO9bbzFTlQnx8XTJBw+KtLStsG8fP79GjZS2RPDy4rJAL0H99dfswjJEgtrBgeMiVq/mT9rZOwJrgm9j7+WHuB0WDV2Sx2oAFPVyQ5NyPugaWBRlfD3M+bKURfyyoDIMDUTpdNxnPnnC67Ol9pM6HRAenigh/egRk9U5c7JLuHJlFoUpkbAWrIeCBRkHOXOG392SJbN/zBs3gPbtWdO4fLmsPa0S8cmCyrDb5JAg2Bq5clGdc/lyJos/+IAVa+lwNVT2yuKTUyNXfxNhyA+sRiEfLF1dFMOGeaBAgXQOdO8ey0O3b2cibc4cwM3NAq8gNfqE8M3fgHZgxeqGa6kTwu++q1BCOC2StpSuX0/jMuPiRWDFCg57z53b/DYqxIsKAaiPENxsPxI+n34KbN0KrFzJXayl2L2bzioigp3Ehnw+RjBzJoM3ixYBQ4dm/vh79/h1+ewzUeQQBFvCsEVvfnS9fRxlChbkhSMTRFra9nj8mEmIoCDFllpCGqQlQd2yJdedGQXFS5YEvIpGo9/687gd+xiODhokaHWpHqcDcCssGquDb2HV0ZtoUDofpnfwRxEv+RIIgjnISiDq8mXWcdWqxQYJcxIbm9gpHBoKvHjBOJCPD+Dvz+Swh4ck5QTjKF2aW95TpzjNxNc368d69gxo04Zdyr/8IkUKgiBkHUkOCYKN4urKPNLq1cxxhIcDzZsne8idsGiM2XweB6/JXllIjSSJs4kxP7BbT24hf4+buFIoH+6EpfED27QJ6NOHq/4//6TOnoXIqEP4NTBJXLQoMPMjFSWE0yNpS2nHjplH8UeOBEqU4ExjG+cF3HB3xEL49HyDeoz+/sCyZcDbb5v3xC9f8vP48kvKSq9aZRZZ7/Llgd692RXcsye7kjJi4kR2BowaZXJT7BOpxBIUxqhF77FbWKXzRYNC7pj+7GW6i16RlrZddu1ibVitWkpbIqREL0FdtSq7in/+OXMJ6nUnbmPR9YuITeDvPq3ff1L0fz9y4wmCvtyPSW0roUtNG6sYE78sKEhWA1Gf1PHHrYtuqFCBftfUaLUs+NInhsPCeL+nJ7cnfn5MTDs6mv7cgv2g0TBmEhlJFZqmTfkdM5a4OIqlhYYCx47JaAyrRnyyoCCSHBIEO8DRkR1+efIAGzcymNWxI+DggHUnbmPC7xcRr5W9MgDxyWkgSeJsYOwPDBr+/fitFD+w8HAOF//+e6BDB8oDmLFkOj6eCeGTJ9OWjC5fPnmH8GsA0ACYMgX//x8rQN9SungxJRfSY+9e4I8/OADPnkpyW7bkkKS+fbnr7NGDg+6zsnPNjLNnOfD36lV2aw8aZNaL68SJwI8/AtOns0s4PS5eBL77jiblyWM2c+wLjca4z1ZaMgQTYvSi9/9/PnI/Os1Fr0hL2zY3b7JT7a23ACdZDauWvHm5Hr1yhZ386UlQL9p7FXN3XMnSORK0OiRodRj1y3k8jozBwCZlTGS9ChC/LChElgNR15/g6PX9+LBqJbxdyXSBqOhoJoQfPAAePmTizdmZ3Z0lS/JfUZQQTI2DA1CnDrBnD5UxmjUzToVGpwM++YSjMXbu5BxswYoRnywohCSHBMGO0Gg4nyJ3biqsPn+ORcXqY+7ua1k6nM3ulcUnp0LCYlnEZMGoC1cwcHJvah6uXMlknQm/ePqEcEhIYlI4rYRwly4ce5xmh/Apk5ljOVK2lKY181ar5eziwEDzd9KqEW9vtub88AN3n/v3878bNDDN8RMSmIEdO5afx8mTBkm6ZhdfX2DECH70H3/MJvG0GDkSKF7cLhrILYdUYgkKYeoE0bVrTEg9fcrZb40aibS0LaHTATt2AIUKAZUqKW2NYAhly9KfHz7MW1IJ6vUnb2f595+SuTuuIH8uV3S2lUCY+GVBAbLlk3U6ADosP3Menj5ZD0QlJHCesD4xHBHB+729gTJl2C3s5WUX8R5BYZydgfr1OXXpyBFOxTK0S/3LLyn6tWIF1TUEK0d8sqAAUkgpCHZKkyaApyfWrd6BudeyliBOiU3tlcUnp0KSxFlg3Yn0g1G6+Dg8O/gjoi7uhfZlJJzzF0eehu8jZ4nqaT5+7pUY5H+tNTrPGcYy5mxgkoSwLTFxIrX4p0/nbOeUrFvHN+ngQfuNEGg0LExo2BDo3p2ZkJEjgUmTstdZfesWj3vgADBsGNvQLZhhGTIEWLKE+ek1a1L/Xd9Avn69fTWQmx1xsoICmNQn77iCm5dc4fGwKIoXBzp3FmlpW+T8eeD+fdaQ2av7t0bSkqDOWzgai29eTPPxsY9u4fmhtYh9cA0JUc+gcXaFs3cReAZ2hFuZwHTPM/73i6hbKp9tSOuJXxYsjKl9sqGBKJ2O4lz6ucKPHrEeOGdOJoQrV6Y/l3W/oATu7kC9euwIPnmSYy4yW3/8/ju30SNHcr0i2ADikwULo5RPFgRBHdwpUQETcoUC8dpUC4+Y+1cQdX43Xt4+j/jnoXDI6QnXguWQp+H7cPYqlO4xbWavLD45Fbb/Ck3MnbBoTPg97WAUADz+40uEn/gV7hUbI29QH2gcHPDw54l4eSe95+gwvuKbuJPHzyg74uPZRbFyJTBwIDudPDwYOOvVi0mwMmWAGTOYpwsPZwJ59Wrgs89YzWrTCWIgsaV0wQLqSiZFPyO3fXu+GfZOiRLctU6fDnzxBb9Qf/9t/HF0Omo9V6kC3LhBba3Zsy3egufuDkyeDKxdy414UvQN5LVqUWlbMCF6J2vMTRCygel9MrD59kXUaxmN7t0lQWyLxMWxm6dCBaCoxDisEr0E9bvvAhtvn0dsfNqSeQnhD6GNfQF3/2bIG9Qbuet2BgA82jQFEWe2pXv8eK0OYzafN4vtFkf8smBBzOGTx/9+EXfCotP8W2wscOcOcOIEiz937AAuXODf/P2pNtCmDYujCxeWBLGgLN7e3H/evg3880/Gjz19mj6uQwduzwUbQXyyYEEs7ZMFQVAfYzafR7wOaVamhR/biOjLR5CjWFXkDeqDXFVb4uWdC7i/chBiH91M95g2s1cWn5wK6SQ2kjGbz7+a45CSmHuXEf3PAeRp8iFyB3YEAOSq3BT3vv0Yz/athN/7aQ1I1bz6ga3ulXZXQ9IOYf3tzJm0O4QDAtgh7OFhmtdr9QwdypbSzz9P3lK6eDFw9y6wfbtytqkNR0dg1ChGVLp25Zdp1ixWIRhyMQwLo3bzhg18/qJFig77/eADSnQNH85ctd4nrl/P39CBA9JBZnKkEkuwMKb3yQAcdPj+4nkE1U6/01CwXo4dAyIjgaAgpS0RsosmdwRuxz5O9+85S9VEzlI1k93nEfAG7q/6DOHHf4VHtVZpPi9Bq8PBa49x7WEESvtY+YJa/LJgQczhk5Puk7VajoHQS0iHhfExnp5AkSKsD86f33ApX0GwNEWKUPr84kXGa4oUSf2Y//4D3nwTqFiRBf5yWbYhxCcLFsTcPlkQBHVzNTQCB6+lv1f2qNkB+doOh8bR+dV97hUa4N53AxF+bCPyvTkszefZzF5ZfHIqJElsBJn9wKIvHwY0DsmCThonF+Sq2hzP9v+A+PBHcPLMn+p5SX9gxb08UiWEz54FXrxgQqtcOVZDd+4sCWGD0LeU9ulDDeKAAEYUpk7lfeXKKW2h+qhenV+8UaOAQYOArVvZsl4ofbkJ7NrFrGxUFGW8O3e2mLnp4eTEJuY33gD+/JOdBDExbCBv1850o5eFJIiTFSyIJXyyVS96hVRERQGHDgE1a3IWpWDdrAm+DUcHDRLSCYClhcbBEU4e+RDz4GqGj3N00ODHY7cxsa2VD60WvyxYCHP75I07IuAU7YG4OErP+/pyUpOvL+Bm5Wp3gn1RoQITxceP87vr7Z34t6goJog1GspNy3fbxhCfLFgI2ScLgpDZXjlH4Qqp7nP2KgSXfEUR9/hOhse2ib2y+ORU2P4rNCH6H1h6xIbegLNXITi4Jl/NuxQo++rv6aHRadB26G14eiZKRu/eDZQuTYmhAweA588pTaSXjG7QQBLEBtGzJ0txhw+nHPL06WzPnjBBacvUS86cwFdfUbft4kVqtm3YkPpxL17wy9i8OVvaz59XRYJYz+uvA02aUHU8Pp7NzXfuADNnKm2ZjWIhuY7FixejePHiyJEjBwIDA3H8+PEMH//zzz+jfPnyyJEjB/z9/fHnn38m+7tOp8P48eNRoEAB5MyZE0FBQbh6NeMEgqA85vTJ+kWvYFvs28fLTsOGSlsimIK9lx8alCDWxr5EQvRzxD29j/Djv+LFjRDkKFY1w+ckaHXYe+WhqUxVDgv4ZVP7ZME6MadPdoAGf127jTJlgKZNWexZpw6n5UgSTbA2NBoW/Xt5AYcPMzEMAAkJFOO6epU12gUKKGunYAZU6JMF20T2yYIgGLpXTopOp0NC9DM4uHlm+Dib2CuL3HQqbP8VmpDMfmAJkWFwzJU31f2Oubxe/T09dBodtL4PJSFsDvQtpXv3AitWAAsXMmvo66u0ZeqneXMmfoOCmPx9/31+OQFqnteoASxdCsyfz4Ry4cJKWpsKjQaYM4dy7YsXs4G8d2/mswUzYAEnu379egwZMgQTJkzAqVOnULVqVbRs2RIPH6a9QDly5Ajeffdd9OrVC6dPn0b79u3Rvn17XNAPrQMwe/ZsLFiwAEuXLkVwcDDc3d3RsmVLvHz5MstvhWB+zOmTbWLRKyTj0SOKZDRoIEkFWyAyJh63DZyJ9nTPt7i7oCvuLeuNp3tXwK1sHXi16J/p824/iUZUTHx2TVUWM/tlc/hkwToxp0/WQodr0Q9RqRK7LmVcjGDtODoCdesyTHHoEBAXRxGvLVsoylU14zomwVpRmU8WbBfZJwuCfWPMXjkpURf3ISHiCdzLZy69afV7ZUkSp8L2X6GJMOQHpouPBZJouevROLkk/j0DYpyj0bt/vCSEzcHrrwONG1Ny2suL/wqG4eXFQb4//EDdqypVgL59gVq1ABcXRt0HDVLtBTMgAHjvPY6ljo0FJk5U2iIbxgJOdt68eejduzd69uyJihUrYunSpXBzc8OKFSvSfPxXX32FVq1aYfjw4ahQoQKmTJmC1157DYsWLQLASrn58+dj7NixaNeuHapUqYIffvgB9+7dw6+//pqdd0MwI5bwyVa/6BWSsWsXkDs3XZdgHDodoNWyyyk+nsHs2FiOcHj5kqIi0dHshoqMpIxmeDhryp494wzRsDDgyRPg8WMm7B8+BEJDOVf0/n3g3j3OYbx7l4oft28Dt24BN28C//4L3LgBXL8OXLvGLquDp6JgaF20Z8128OkyFd5tBiNnyQDodFogIS7z1w3g5pOobLxzKsDMftnUPlmwTsQnC4LxuLoC9evTh/78MzBvHm9t2ihtmWA2VOaTBdtEfLIgCLeeGL5X1hP35A7Cdi6Ba6HycPdvlunjrX6vLEniVMhMYgMx5AemcXJJM+ikd7B6h5se+h9YpYK5s2ilkC4aDWWn9+0D2rfnrGLBcDQadhGXKMGd6/LlQGAgu4c9M5ahUAP9+gFr11J6WhrI1Ud4eHiy/3d1dYWrq2uqx8XGxiIkJASjR49+dZ+DgwOCgoJw9OjRNI999OhRDElRFNKyZctXCeB///0XDx48QFBQ0Ku/586dG4GBgTh69Ci6dOmS1ZclmBFL+eSN26NQ1CM3dDpY9S3/HaAbWOsTult5eyx9c3cHypVjkrF9e+XtUeJWJT9wsCtQrz5wJtTw56kVlwJaFOhh2GOdvYvA2bsIACCXfzOErhuHhxsnw6/7PGgyaUmMjddm11SrxBC/bA6fLFgnsk8WhKzh6QnkyMFE8RdfAJ98orRFghoxl08WbBPxyYIgGLuHTYh8ioc/T4KDqzvytR8NjYOjWc4jqBtJEhuIIV98x1xeSIh4kup+vVSHXroju+cRsoBOB6xcyTainTvZ7iKJYsPR6ah9PnAgkDcv8O67lO5u2BBYswaopO5h9UuX8uM+fpydS5IoNg86aKCD4RqA+scWKVIk2f0TJkzAxDRavh8/foyEhAT4pvgAfX19cenSpTTP8eDBgzQf/+DBg1d/19+X3mME9WEpn9ynnxax9423zxJoNIbfqmmZJP72W+Cck3HPtYVb4cLscH32jBKPStujxM1XCyAKGNAfeOSsvD3Zvd2OcMD4I1n77biVr4ewbYsQH/YfnL0zHpPh4mTdFcPm9Mvm8MmCdSL7ZEHIGv/8A3TpAvTowa7i69eBMmWUtkowF2rzyYJtIj5ZEARj9rDal1EI3TAB2pdR8O02C04e3mY5j9rIqk+2ZSRJbCCGfPFdfEoi/NY5aGOi4eCaOPAu9t4V/t23ZKbH+HmdAyJqA9Wri+S0SfnzT3YRf/cd0L8/tZzGjVPaKuvgyRO24m7cyG7ihQuZbO/XD+jWjXrOM2cCn36qSvmFkyfZRTx/PjBpEuWmlyxR2irbRKvlzZjHA8CdO3fgmaQjPa0uYkFIiqV88q+/OKBMPuUTYilvRnMKQABw4ACA17LwfCvm7Fng118pJlK0qNLWKMg9AMuArl0BFFTamOwTFeOOCUdgtIwWAOjiYgAA2piM5bE0AIp7W3dBofhlwRJYyidbcyBKEFLy+DHwxhssZJs8meMVzpxhYXNBG/DTQmrEJwuWQHyyIAjFvd2hQeZ7ZV18LB5unIz4p//Bt8tUuOQzPGBi7XvlrPpkW0au6gai/4FlhFv5eoBOi4gz217dp4uPQ+T5nXApWA5OnvkzPoAO+GqaOxo1Yg6ufHnm4L78koHdiIjsvw67JD4eGDECaNKEUeJPPgFmz2ZLqZAxO3YA/v7A7t3Ahg3UKs39f0mZatWYge3fHxg8GGjRgsMEVYROBwwfDlSsCHz8MecSf/MNIMW05kHvZI25AYCnp2eyW3ob33z58sHR0RGhKX67oaGh8PPzS/M5fn5+GT5e/68xxxSUxxI+WQOgYXV3lC4NlCoFlCxJxf3ixYFixZhwLFKEwb1ChRjQK1AA8POjWoGPD5A/P5AvH+DtzfHuefMCefLwMurpyWKwXLkYEHRzA3LmpOygqytHvjs7A05O7H51cMhigtiOiYsD9uwBKlSw8wSxDeLu6oSiXm4ZPiYh6lmq+3QJ8Yi6sAcaJ1c4Z7IJLurtBndX666nNadfNodPFqwTi/hknQ7Fl30FHD3KvZ0gWDExMUCHDlQ52bqV68IqVbiWPHaMyieC7aE2nyzYJpbaJ1tzckgQbB1D9so6bQIe/ToLMfcuIX/7UXAtVMGoc1j7XjmrPtmWkSSxgRjyA3MtWA5u5evj2f7v8XTvCkSc2YbQn8Yg/vlD5G3cM9NzFMvnhudPnHDuHJV8mzcHbtxgYkufOK5QQRLHRrNyJfD338CcOYywjxnDqPukSUpbpl5evGBncMuWQOXKwPnzQKdOqR+XIwe/jDt3MvPq7w+sW2d5e9NB30A+ezY/8oEDmdQZNUppy2wTcztZFxcXBAQEYPfu3UnOqcXu3btRp06dNJ9Tp06dZI8HgJ07d756fIkSJeDn55fsMeHh4QgODk73mILyWMInW/uiV2CgNTISSDJyXLAhmpTzgaND+mGwJ9sWIfSnMXh2aC0izm7Hs8PrcG/FQMSGXkeeht3g4JIz3ec6OmjQpKyPOcy2KOb0y+bwyYJ1YhGfHBcB94Xzgbp1WYHVqRNnKNy5Y6JXIQiWQacDPvoIOHEC+O03Fh8CDFMEBrKA8NAhbscF20JtPlmwTWSfLAgCkPle+eme7/DiWjBylgxAwotIRF7Ym+yWEbawV5YkcWrkqm4ETcr5YHXwLSRo02/Yz/fGEDw78COiLuxFwstIuPgUh8/b45GjaOUMj63/gTk5Mc/m7w988AH/Fh/PeTUhIYm3TZuAly+5mShXjoq/+ptIVSchKgoYPx547z2+OQDbucaOBUaOZCK0fHllbVQbp06xEuHff4EFC9iCm5mMdFAQcO4cMGAA5xVv2QIsXsyWOYXQN5A3bgy8/jrvc3UFpk/n1+HgQaBBA8XMs0ksIdcxZMgQ9OjRAzVq1ECtWrUwf/58REVFoWdPbma6d++OQoUKYcaMGQCAQYMGoVGjRvjiiy/Qpk0brFu3DidPnsTy5csBABqNBp999hmmTp2KMmXKoESJEhg3bhwKFiyI9u3bG2+gYDEs4ZMF6yUykkHWmjXp9gXbo2tgUaw6ejPdv7tXaIDIczsRcfpPaF9EwMElJ1z8SiNv455wKxOY4bETtDp0q2397efm9sum9smC9WJ2n9yoCjD7ETNr27YB27cDffvyS1uxIgtbW7YEGjakLIcgqJSpU4Eff2Rdde3ayf/m5MTZxLt3A4cPcx/rJBE7m0FpnyzYD7JPFgQhs71ybOgNAMCLa8fx4trxVH/PVblJus+1hb2yyE2nRpacRpDZDwwANE4uyNv0Q+Rt+qFRx87oB2ZI4vjkSUkcp8kXXwBhYcC0acnv//hjztYdPRrYvFkZ29RGQgJbbseP55ctJIRBF0Px8gJ++gl4802+vwcPAt9/T5lvBVi1ig3kP/yQXKK1c2d+LYYNY5eZyLeaDks42c6dO+PRo0cYP348Hjx4gGrVqmHbtm3w9fUFANy+fRsOSYoa6tati7Vr12Ls2LEYM2YMypQpg19//RWVKydufkaMGIGoqCj06dMHz549Q/369bFt2zbkyJHDeAMFi2F2nxxo3Ytee2ffPtY3NWqktCWCudA990BRl3y4E/sEujQmLrlXbAT3isZ/ARwdNKhb0hulfax/4Wxuv2wOnyxYJxbZJzs6MqtWuzYwcSL3eLt3M2H8889UN8qRg4lifdK4YkVZ7AuqYd06brUnT+aeNC1y5gTq1QP27gWOHwfq1JGvsK2gtE8W7AelYteCIKiHMr4eaFA6H47ceJJmwYhf15lZOq6t7JUlSZwaSRIbQWY/sKziqE1A3SKeRv3AMkscnzyZccdxjRpMHOfKZbKXoT5CQ5n0/PTTRB0nPTlysKW0a1dpKQXYNdy9O0uWR41i4MXFxfjjaDR8Txs0AHr0AJo1A4YOZcl0OnNmzUFaDeR6HByoPN60KeNJ77xjMbNsHks52YEDB2LgwIFp/m3fvn2p7uvUqRM6pSWX/n80Gg0mT56MyZMnZ80gQRHM5pN1WtS9eQalO8+hIkKlSiY7tmAZHj2iKEbz5tJQZos8fcpGwitXgLeL+WPxv/sRE2+6a4CTgwbTO/ib7HhKYgm/bGqfLFgnZvPJGQWivLwoO92pEzV8//knscv488+5BylcODFhHBQE5M1rMtsEwRiOHmXcpls3ipplRN68rIU4fJhTn6pUsYiJgplR2icL9oMiPlkQBNUxvYM/mn6xH/E6nckKzmxlryxJ4tTITGIjmd7BH04ZaLpnBSdtAqZP/5Czc3VZd+D6xPEHHwCLFnEjEhFBFeDvvmO+7vp1juRt2BDw9EyccTx/PnOlkZEme1nKo090jhmT9t+7dGEGcfjwbL3vVo1Ox5bbqlWBu3c56Hr69KwliJNStCgr+2fPpmR1rVrc4VqIefOAJ09SN5DradIEaNOGjeQxMRYzy+aRmQ6CpTGLT3Z2wvR3awH37/PaOHQoEB5u0nMI5mXXLiB3bkpNC7ZDXBw7xBcvBh48YJHXJz3dMKmtaQs5JrethCKZzHKzFsQvC5bELD7Z0ECURsOu4SFDmCQOC2PCuFMnborfeQfIl49tmRMn8r6EBJPaKgjp8e+/QLt2XJd8+61hncEFC3IZevkyny9YP+KTBUticp+s08EJWptIDgmCvXBstxsebatkUkUSW9kri09OjSSJjaSIl5mCUS0bAR9+CLz1FltgTIQ+cdyzZ8aJ49Gj008cR0ebzBzLcekS8M03LNNNr2Jc31IaHAxs3GhZ+9TA48fA22/zy/HWW8DZsxyCZCocHKjpfOIEr6Y1ajB7a+Yrq76B/JNPUjeQJ2X2bODmTWDpUrOaY1eIkxUsjdl8cruWdJRTp/IiUb48sHat/RYUWRH//ssO06AgmeNnS1y+DHz9NdeldepwqkWFCgy0d6lZFMNalDXJeYa3KIfONW1HQk/8smBJzOaTsxKIypmT3cPz5gEXLwK3bwPLlrGz+KuvgLp1gfz5mTz+7jsWywqCGXj+HHjjDY7+2rzZOHGtMmWAkiWpEPfwoflsFCyD+GTBkpjcJ2s0mPznIhT5dZ3pjikIgtlYuJCjLd6oUBSDm8peOSXik1MjSeIsYPJgVIOy7CLetImdnP7+wJ9/muT4aZFe4vjs2bQTx3ol5rFjrajjeNQooEgRRhEzImlLaWysZWxTA9u28Uuwbx8T5CtXskLAHFSpwkTxwIHsyAsKAu7cMc+5wOYAJ6f0G8j1VKwI9OrFmVDPnpnNHLtCpzPOwUq+TTAFZksQubrSl/zzD4fDde1Kn3HhgknOJZgenQ7YsYM5gIoVlbZGMAVPnwI//cQ5jt7ewIABXKemFDwZ2KQMZnb0h6ujBo5pzCfOCEcHDVydHDCroz8+blLahNYrj/hlwdKY0id3r2rCQFSRIsBHH3HWzKNHwJEjHEl05w7Qpw//XqkSO5F37ABevDDNeQW7Jj6edQj37gF//MFmdmPQaDgizMeHX9mICPPYKVgG8cmCpTHpPjmoDDrXKckg2rRp8gUVBJWi0zEe/umnDMH/8AMwqPn/98pODnA0UmHAVvfK4pNTI0niLPIqGJWFH5gG6fzAOnakJG/16kxcDhhgsTZeJyfm8tJKHE+YwMfcuZu847hiReD991WYOD54EPjtN8omG1KqO2sWW4+WLDG/bWpg1kygdWvqV50/zy5ic5MjB/DFF5SgvnqVCeq1a01+mqQN5F5emT9+0iTO7J450+Sm2CVSiSUohVl8sp6iRRlU3rGDEtTVqjGILBLUquPcOcoQt2hhmJSjoF6SSkuHhjLI3rUrE8Xp0aVmUewq+Qx1XZjcyexaoP973ZLe2DW4kc1URSdF/LKgBNnxyfpA1Gd1/eHvWBq3bpnBQCen5LLTjx4B69dzCOyGDexA9vICWrUCvvwS+Ptv+4gMCSZFp2OAds8e1mSXL5+14zg48KuZIwdw6JCMSrJmxCcLSmAKnzyroz8+blaWC/MpUxhwGzhQxjYIgsqIi6NI7YwZDMHPmcN1BPD/vfLgRqhbkhtqe98ri09OjSSJs0FWf2Axt7yxtms6P7ACBdhFvGgRuzurV2cXpgLoE8dt2/L/v1+VvOO4aVPg2jWVJY51Okoc16hBXQVDqFSJV9EpU2y7pfSfv/nvr79Rd+KvvzjsyJI0bcoo/uuvM9r77rtsEzIR+gbygQMNe3yBAvy6zJ9PFTpBEKyXrPrkAhpvLHrdgEVv8+aJEtTLlgHlygFr1kjgWCXExbEOqWJF+gHBetFLSx86xDzOgAGJ0tIZcv06ity6jNWdK2HnZw3xfmAxFPN2Q8qnaQAU83bD+4HFsGtwQ6zuFWgTc5UEQU1kNxA16I2iKF4cOHmSE3LMipdXouz0nTtUDNF3SY0ezb1isWKJncgm3LsItsuCBaxBX7KEChjZwcWFU6FiY9lRLHkZQRCMwWTJIY2GCeJvvuFIpnfeYdeFIAiKExUFtGvHENWaNexrSEkRLzes7hUoe2UhTWRaWzbR/8CuhkZgTfBt7L3yELefRCcTutMAKOrthiZlfdC2YlG0qO2BZbmA5cvTOahGQ5nkZs04HLhuXWD8eG5SFR6wp08c67uOAcoo/f03Z+WEhHAzv3Ej1woaDatmAwISb9WrA7lymcnAn38Gjh8H9u5NLJcxhEmT2Nk6c6bttZXGx7NbesJvAI7zdb5VQjl78ualDW++CfTvzy/T998zgZwN9A3ka9YYN+tp2DCub8eOpQyHkHWMra6yh0oswbIY65O71S6KkL0euBgMNK4BODtncgK9BHXXrlx1d+tGZ754MVC5shlfmZAZR49yY5TdQKygHGFhnIZx9SpQqhR/Xhl1DidDqwW2b2fnf4UKKKPRYGLbSpiISoiKicfNJ1GIjdfCxckBxb3d4e5qH1sg8cuCkmTFJ5f28Xj1t4AAXtcPH+a13Wz7x6RoNEwK66Wno6M5Dmr7dt6++457zMBAdhy3bAnUrAk4OlrAOMFa2LoVGDwYGD6ctQWmIFcuTj/Zv58xl5o1RTXF2hCfLChJdn1yMj76CPD1ZWNOy5YMxOXJY4FXIQhCWjx+TEHav/9m32FQUMaPL+PrYfd7ZfHJqbH9T91CGPMDGzeOe85Bg7j/TJfy5VkqOnky5bD++gtYvZqRMxWRVuI4Lo5jHPVJ45CQ9BPHNWpQvTPbG/+YGCbS33gDaNzYuOcWLEix/tmz2bJS1EZkFG7cYGv3sWPABwuAFQBKKJggTsq777IkukcPRn4GD6ZEeI4cRh9K30AeEAB06WLccz08WCMwYABNqF7d6NML/0ecrKAWjPHJeYPYtRgczEuSQRQpwqKknTuBTz6hE/v0U/pqc813F9IlMpJJhFq1DBs1IKiLuDh2DR8+zLXgO+9wnWhU8PvsWepS9+6d6onurk6oVDC3aY22EsQvC2ogq4EoBwfWSu/ezWtE06ap55GbHTc3yk63asX/v32b4ye2b6cU9cSJLIANCuJjWrQAChe2sJGCmjh7lvvRdu1MX3ueLx+Tw8HB3MNWqGDa4wvmRXyyoAZMlhx680066DfeABo0YKVnoULmNV4QhFT8+y+XoM+esZDstdeMe7697pXFJ6dG5KbNgP4HVr1oXlQqmDuVk+3fHyhenM1ImeLiQmnLgwcZ/KpaFfj2W9XLWzo7JyaNFy9mjjI8nJumb78FmjRhp8jo0VxPJJWq/uorBgKMlqpeuhS4eZNds1lh+HAgd25m8a0dnQ5YsYLfl/v3WQH/8cdKW5WaIkWAXbs4LGHxYu56z50z+jD6BvKk8xaM4aOPgLJlgREjVP/TUjUy00FQI5n5ZG9vFisdOsSOJaPQS1BPmyYS1Aqybx+v/Q0bKm2JYAw6XaK09OHDTAZ9/LGB0tJJiY1lkKpyZUnOpED8sqA2MvPJKdHL7MbEUDFC8e9o0aKJstOPH/Pi9cknTB737s29TeXKLD7esUNkOO2M+/eZLylXDvjxx6ztSzOjaFHGTS5coDq6YD2ITxbUhrE+ORV16nATHR7O//7nH/MYKghCmpw5wz20VsseQ2MTxPaM+OTUSJJYAVxcOER861YGNg2ibl3++jt35ga0Qwfg0SMzWml69InjDz/MOHE8alTyxHH37gYkjp89Y8d1r158UlbQt5SuXs332lp59Ajo2JHvxTvv8A2uV09pq9LHwYGt9SdPMipcsyYwd67BV+DYWBYbtGnD71BWcHJibcGuXYznCFlDnKxgrTRqxH/378/Ck11cgJEjgUuX6Ly6daOaxfnzpjRRSIdHj4BTp5ggzplTaWsEQwkLA376CVi3joUa/fuzSzBTyfe0OHKEkrCZ6WrZIeKXBVvAw4NbYf31XjV1WE5ONGzSJG5sHz0C1q+nFPX69ZTgzJuX7R3z5zN4rhrjBVMTHQ20bcuPeMsWwN3dfOeqWJH1CMePA0+emO88gmkRnyzYJBUqcC2eJw/jjkeOKG2RINgFe/YwBlK4MGsWVSY6q3rEJ6dGksQK0akTZRGHDzfii+bhwTlImzfzClC5MvDHH2a109yklzg+cyYxcXzlSvLEcaVKaSSOZ8xgpfakSdkzqFevxJZSa+TPPwF/f3ae//ILvy8e6cwRURv+/sCJE5RsHTGCEtS3bmX6tCVLstdArqdtW37Hhg8HEhKydyx7RZysYK24ufH3f/IkG4OyRJEiwIYNlKAODaV2/eDBwPPnJrVVSM7OnYxJ1KyptCWCIcTFAXv3snv44UPWsnXtasTs4ZRERHBNHBjIZIyQDPHLgq2QPz9VP/79l3tDVeLlxYvad9+xxfP8eSqCabXczFasCBQrxoLvjRuBp0+VtlgwEVotFdH++YcJ4oIFzXs+fV113rx0gUYr4QiKID5ZsFkKFaJ6ob8/iza3bFHaIkGwaTZsAFq3Zq3i3r2Aj4/SFlkf4pNTI0lihdBo2Cx58iQLjY2ifXtuOgMCqGfUr59N7QycnamSnF7iuHFjBgdGjmRQv5LHbcTM+QqbSw/DVxsKZE2qOunJZ81i1Hn7dhO+KjMTHc2hum3aUF/i/Hl2m1sbrq7UjN6zB7h+nRUEP/6YbtW9voH8ww8zme9tABoNT33+PPDDD9k7lr0iTlawZgIDWYi0a1c2DxQURAnq6dOBb77hcNUMrmNC1rlxgwokzZqxoUtQLzodm+2zLS2dkj17AEdH0RpPB/HLgi1RvDhd6rlzwH//KW1NJmg0yWWnw8KAv/4C3nqLVc6dOnHArL4TOThYqlStmDFjWMf/00+sEbQEjo5s2nNy4lcqLs4y5xWyjvhkwabJk4cx1NdfZ8z622+VtkgQbJIFC4AuXViX+PvvQK5cSltknYhPTo0kiRWkQQOgXTtuKmJijHyynx+7iL/+mhmt6tWpN2SjpJU4johg4nh3nbGIyZEHC5yHvUoc586duuPY4Dx627YcfjVihHVs1k+c4Oe/ahXfnD/+AAoUUNqq7NG4MSNAb77JsuwuXRhcScHMmWwgnzzZNKcNDKSjHTeOeXfBOMTJCtaMkxPzu5cvU50gW7i40IdcusTk1fvvU9NaJKhNhlbLuHvhwlmfMiFYBr209Pr1zIlkS1o6KaGhwOnTXDOI1niaiF8WbA396PHgYCtrxHVzo+z0l1+y3fTWLWDpUracfvklULs220A6dwZWrLCCLLigZ8UK1pjPncutqyVxdWXYIjqa8RG5hqsb8cmCzZMjBxf8/ftTNWPqVCmUFgQTodNx1OKgQVTA/P57hp2ErCE+OTWSJFaYmTOpRrV4cRaerNHQ+Z4+zayovhI5Pt7kdqoRZ2egqvY0Sh/7EZ7zJmLvSY9XieNvvmHM8PLlxI7jlFLV6Uoz6du8z53jfGK1Eh8PTJnCz93Tk9+DAQOy2ZKjIvLkYffdunXMBFSpkqzF7/ZtjvcaNsy0OfHp0ymBOX++6Y5pL+h0xjlY2S8IaqNSJapl7dhhou9n4cLcKO/cyVmFIkFtMs6dY46wRQvbcXu2Rkpp6c6dgffey4a0dEp27KDWZo0aJjqg7SF+WbA1NBqObMqdm0XAVlvUWbRoouz048fcmA4cyCq1jz7i+qFyZW50du5kVaygOvbuBfr25W3wYGVs8PRkOCA0FDh7VhkbBMMQnyzYBY6OwMKFwLRp7L4YMMA6mm8EQcXExQEffMAc0pdfsjjNQTJ62UJ8cmrkK6Uw5csnFlhluRq6XDngyBG2JE+ezHLSq1dNaqcq0enYqVWuHDfTSN1xHByMZInjRo0SE8f16ydPHC9YkCRxrG8pHTtWndGH69fZnTZxIkuJjhzh+2CLdO7M7rvy5YHmzYHPPgNevMC4cQwQDRtm2tOVKsV17MyZzOkIhiOVWIK1o9Ew6Xj/vombfoOCGLnTS1CXKycS1NkgLo4qwxUrchS0oC700tKLFyeXli5f3oQJ/WvXeGveXLTGM0D8smCL6GV2HRx4jbH6+mgnp+Sy048esUi2Vi3KMLRowXnHrVuzivWff2T9oAIuX6Z6eJMmzIcoWbDm68s6RL1rFNSJ+GTBbtBoGJ/+7jvufTt1kmInQcgikZEUPP3pJ94++0xpi2wD8cmpkSSxCpgwAYiNZew4yzg7M0F86BCrkatVA5Yvt+0N5Pbt7CydNSvDAGHSxPHXXydPHC9fnpg4HjEieeJ4WOx0JDx4iJtDvlLPyGedjrM9qlZlW86hQ/zcs63ZqHIKF2bH0JdfAkuX4kXlGjj3wxlMmgR4eJj+dOPGMfBkKhlre0GcrGALFC3KOam7d5t4vltSCepGjRIlqM+dM+FJ7IOjR1nQFRSktCVCSsLCgLVr2UCfP78JpaWTotVyTaD/sQrpIn5ZsFVy5OC+LTKSMrs2teX19k6Unb57l1VrU6awE2vUKFZIFS/OSvNNm4Bnz5S22O548gRo04YTwDZsUMdWvFQpoGxZiovdv6+0NUJaiE8W7I4PPwR++w3Yto0FT1Y1J0IQlOfRI+6lDx8G/vqLkxgF0yA+OTWSJFYBfn6MGy9YYII5iHXqMPv53nvUPWrXjslEWyMhgW9agwZZGv6jTxz36pU8cXz6dGLi+OC9UvgaA+C1bAZKejxCpUpAjx4pOo4tycOHQPv2DAi8+y4/5zp1LGyEgjg4AJ99Bt2Jk7j30BnBqIXeT2ebRbrG25uFj0uXAleumPzwNos4WcFWaNaMgefgYDMcXC9BvWsXV/2vvcZyUJGgNojISNZH1apFpWFBHei7u7/+ml9rk0tLJ+XMGepqtmwpWuOZIH5ZsGVy5+Yo3/v3bbjeSqOh7PTQoSyOCQsD/vwT6NCBzvDttznsvV49VrcGB4usp5mJieHb//w5sHUrJySphSpVOOb62DFZVqoR8cmCXdKmDTcJFy8yfnv3rtIWCYJVcOMGl3e3bwP79zNGJZgO8cmpkSSxShg6lCpSn39ugoPlykVJj99+4w6hcmVgyxYTHFhF/PADq6rnzjVZgNDZmQ3YSRPH/e6MhXsuDfY0mYJGjdgAlrTjuHJlCyWO//gD8PenrPSvv/LzzZXLTCdTNzvuVUbFyGDc6jAYjp+PYllVtqsrUvPJJ5x1PGaMyQ8tCILK8fbmmNODB814XW/WjBLUM2ZQIaJcOWD1ahtrhzI9e/dSarRhQ6UtEYDk0tJHjnAja3Jp6aTExDDQVLkyCy4EQbBrChSgzO6VK5zGY/O4uSWXnb55E1iyhFXn8+Yxa+7jw0qdlSuB//5T2mKbQqcD+vQBjh9nqKVkSaUtSo5Gw6lZuXKxhkDUXQVBUAW1azNgGhnJ8Qp//620RYKgak6f5k8F4B67enVl7RHsA0kSqwR3dxb/rl0LhISY6KBt2zKRWqsW/7tPHzplayc6mnrAnTvztZkR5wL54Dh2DCodWIKvB19N1XHcsKGZE8dRUUC/fsAbbwA1awIXLrA73E5JSACGDwcCG7ii9KZZzBbcvMmy6R9+MGlyJWdOYNo0qrgdOWKyw9o0Uokl2BKNGjHYtm+fGU/i4sKL2qVLQOPGQPfudCw22xKVPR4+pP9t1IjXaEFZUkpLDxjA2Yxmld08coTrQNEaNwjxy4I9ULo0b6dPU2TArihWLFF2+vFjZgY//pj7o169WEzj7w8MGwbs3ClZw2wyYwa3nCtWJAZv1YaTEwu2tFrGIqSxXD2ITxbsmvLluY7Pm5fB08OHlbZIEFTJ7t2MdxQtyp+J2grSbAU1+eRp06ahbt26cHNzQx4FJWokSawievbkiKHhw02Y6/L1ZRfx0qXAmjUsPzl2zEQHV4j58xkpztYQZyP49FOWqY8eDSDtjuOUieN//jFB4vj4cX5eq1fz89uyhZ+nHaNvIJ8z5/8dSvp5nu3b8w1+5x0OiTIRXbvysx42TJr7DEFNTlYQsoubG6/nISGMu5qVwoWBdesoQf3kCSWoBw0SrcAU7NpFWceaNZW2xL5JT1ray8vMJ46I4CKqdm3RGjcQ8cuCvVC1KrdJR48C4eFKW6MQ+uygXnb60SOuLWrUAH76ifMgvbyA118HvvrKLEpMtsyGDVR9mziRPk/NuLkxDvH8OUMKso9VB+KTBbunYEHgwAE67aAgSjIIgvCKdesoGFOvHvfb+fMrbZHtoiafHBsbi06dOqF///7mO4kBSJJYRTg5AbNnsznyr79MeGCNhvOJT5/mxrB+fWDCBEb5rI2HD4GZM1khbalympw5galTWaF99GiaD0mZOD5+PHniuEGDjBPH+sYYAEB8PDBpEsuT8+blQfr2tfu5e/oG8nfeoYzWK3LnZvZ4wwaWXPn7c2aXCXBwYEL66FFg82aTHNKmUZOTFQRTUKsWLzE7d1rohM2acd7qjBnAd99RgtrEKgnWyo0bwNWrjCc4OiptjX1icWnplOzZwwVXgwYWOJltIH5ZsBccHFg/kjMnm2ljYpS2SAV4eyfKTt+9y8LayZMZAxgxAnjrLT5Ov8999kxRc9VMcDD37e+9B4wfr7Q1hpE3L/fMd+9SjExQHvHJggBurv/6i2qJHTtylJ4gCJg/H3j3Xd5+/91uJ0xaDDX55EmTJmHw4MHw9/c330kMQJLEKuP116k4OWIEc4UmpWxZ7prHjqWObr16HOBkTUyZwijA2LGWPW+3bqx2M6KlNGnieMmSjBPH9eoBHh7A62Wu4lqB+tBOnoI7PcYieschfm5C5g3knTqxzbhyZaBlS3aAv3iR7fMGBQGtWgGjRllnXYUlUZOTFQRT4OTEvO2VK8C//1ropCklqHv0YEvz2bMWMkB9aLWs/SlSBKhQQWlr7JMnTxKlpX18LCQtnZQHD0RrPAuIXxbsCWdnFuPGx4vMbio0muSy00+fslIZAE6dAt5+G8iXj2/glCncuMobCAC4dYvTnl57jfV71lS3XagQpzJduiSN42pAfLIg/J8cOdgyOWAAxyJOnixF0YLdotUCI0cCgwcz7rxqlQX32HZMVn1yeHh4sluMDVWmSpJYZWg07Fy8eJEXBpPj7EyNpMOHuTmsXp1SxtbgkK9coa1jxrAy2pLoW0qPHMlWS2m6ieNTOuzruhybb1aDS8QTNHQ4jKIrJsLDyxmVKwMffAAsXJii49iOePSIDeQDBgClSmXwwEKFgG3bKKH2zTdAQAADH9lk1izg2jUm94X0kY2vYItUqsRLy86dFnaVegnq3buTS1DbYafPuXOcM9mihXUFZ20BvbT0kiWUXe/ShdXNZpeWTsnOnTxpjRoWPrF1I35ZsDfc3Vl8+/QpcOKEdWxxFcHNjW8UAPzyCzOIX39Nze65c9mC6uPDi/7KlcC9e4qaqxTh4Wx2c3MDfv2VeQ1ro2xZoEQJ4ORJ7qkF5RCfLAhJcHRksdL06VS67N9fipMEuyMujvH+OXMYxp4xQ+IdliKrPrlIkSLInTv3q9uMGTOUfSEmRJLEKqRGDQbgxo83cHZtVggMZEdGt250xm++yQismhkzhjMsPv1UmfM3b84OVRO3lDqHhaLa+LZosLovXD/shqKPT2NPVCBOnQKWLWPH8d9/s/Bb33Fsb4njyZOZpx83zoAHOzjwOxISAri6UntuxoxsLTirVOH7PWmSHc85MwCdzjgHK4E7wRrQaJicvH+fyUqL07QpJahnzbJLCerYWCYpK1Vi3lywDDod1U6SSksPGMCvn8U3rteu8da8Odv7BYMRvyzYI97eHBdx5w73UIIBFCvGbq5Nm1iYdugQL/o3brC6uVAhdiIPHw7s2gW8fKm0xWYnPp458tu3ga1brXcuoEbDOsP8+enPIyKUtsh+EZ8sCCnQaIDRo1mM9O23VLUwgRqgIFgDkZFMxaxfD/z0k3KpDnslqz75zp07eP78+avb6NGj0zz+qFGjoNFoMrxdunTJgq84cyRJrFKmT+f+bN48M54kVy5mIX//naXWlSsDv/1mxhNmgyNHuGmdOlXZEt7Zs03bUrplCzfcwcH8HJYtA3LlgosLm7w/+ih5x3FGiWN/f9tMHOsbyEePNrKBvGJFvq9DhwKff07Z1mzoxU6eTCc+a1aWD2HzSHW0YKsULUqZ4z17FJKdd3HhBf/yZSaNe/SgI7ADCeqjR+nPmjVT2hL74ckTYM0aYMMGhaSlk6LVAtu3M4FRvrwCBlg34pcFe6VIEW5t//6bST7BCJycuMHUy04/fMjoZY0adA7Nm1PZ4fXX2fZy6ZJNZrMGD+aoi40bua20ZhwcgDp1WD996BAL8ATLIz5ZENLhgw8YD92xgz4mLExpiwTBrDx8yP31kSMc0d25s9IW2R9Z9cmenp7Jbq6urmkef+jQofjnn38yvJUsWdKCrzhzJEmsUooXBz75hDlJszf4vvkmZ7nWqQO0b8/MZGSkmU9qBDodg+PVqgFduyprS5UqDM5nt6U0MpLV2m3bstP1wgV+DhmQWeK4fv2ME8fWmksYMwYoUCCLVVUuLuwi3r+f7QRVq1LHPQuBjMKFGSyYNw+4ezcLttgBatv4hoWFoWvXrvD09ESePHnQq1cvRGZwbQsLC8Mnn3yCcuXKIWfOnChatCg+/fRTPH/+PNnj0qoAW7dunXlfjKA4QUG8dB87pqARhQoxULtnDzfPr73Gi6ONSlBHRnI6Rq1aQN68Sltj+8TGUt18yRImihWTlk7K6dPcRYvWeJZQk1821icDQOPGjVP52379+pnPSMGmKF+e9SUnTlAuX8gi+fIlyk7/9x9lVSZPptMYMYJVdCVKAH37Uro6xbrZGlm4EFi0iGoazZsrbY1pcHFhvCA2lkFpSUBaHjX5ZEFQHa+/zj3upUsshr5zR2mLBMEs3LjBmP3du8CBA+wBECyPuX1y/vz5Ub58+QxvLi4u5nlxWUSSxCpmzBgW8k6aZIGT+fiwi3j5cs5ArFqV7TtqYPNm2jJnDstglWbKFGZnZ8/O2vOPHWO2d80avt+//cb3PwsYkji+eJGJ4w8/5HPeeScxcazv0FIr+gbyadOAnDmzcaAGDRjQ6NgR6NmTMjZZiBaNHMkG/PHjs2GLDaO2jW/Xrl1x8eJF7Ny5E1u3bsWBAwfQp0+fdB9/79493Lt3D3PnzsWFCxewatUqbNu2Db169Ur12JUrV+L+/fuvbu3btzfjKxHUgJcXULMmOzDMNgrCUJo0YeXP7NkM2pYrB3z/vc1Fk/bu5TqoQQOlLbFt9NLSX3/NdYGi0tJJiYlhsMjfX7TGs4ia/LKxPllP7969k/nb2Vldfwt2h0YDBATQfx8+rK4aaKtFo+E1edgwyk6HhQF//AG0a8ei3LfeovRT/fqJnchWNmPyzz+Bzz4Dhgxh3tuWyJULqFuXhWAhITbZAK5q1OSTBUGVBAbSYUdH82J18aLSFgmCSTl1iv15Gg3j3dWqKW2R/aImn3z79m2cOXMGt2/fRkJCAs6cOYMzZ85kWlBtalSQcRPSw8sLGDuWeUSLyJRrNEDv3px9mD8/N3fjxnEgj1LExXEGcKtWbONSA0lbSv/7z/DnxcUBEybwffX25vvcu7fJI7ApE8cnTjBxvGYN/161amLiuG7d1B3Hakkc63Qce2WyBnJPT3YRb9wI7NvHF71tm9GHmDCBhzl/3gQ22RhqcrL//PMPtm3bhm+//RaBgYGoX78+Fi5ciHXr1uHevXtpPqdy5crYtGkT3nzzTZQqVQpNmzbFtGnTsGXLFsSnuA7myZMHfn5+r245lJTBFyxGw4asVdq3T2lLQO3foUO5QGjWjBfxhg2tVzYiBQ8fsom0YcNsFgkJGaIqaemUHDnCuZeiNZ5l1OKXs+KT9bi5uSXzt56enuYxUrBJHB2533FxEZlds+Dunlx2+t9/WXHk4wPMncuAv68vZSlWrQIy+b0rzblzlHx8442s14Ornfz5qRx+8yanmAiWQy0+WRBUTbly3APoC44OHVLaIkEwCbt2AY0aUTn28GGKsAjKoSafPH78eFSvXh0TJkxAZGQkqlevjurVq+PkyZPmO2kaSJJY5Xz8MXOS6czBNg+lS9MRT5hAqd4PPrDgyVOwfDlnAKttlzZyJDfFhraUXrnC1pxp0/icQ4eAMmXMa2MSXFwSR/l9/nli4ljfcVyvXvqJ40WLlEkcb97MtaHJG8jfeosZ3qpVgdatgYEDjXpxffvyJzJihAltsnPCw8OT3WJiYrJ9zKNHjyJPnjyoUaPGq/uCgoLg4OCA4OBgg4/z/PlzeHp6wsnJKdn9H3/8MfLly4datWphxYoV0Ekpvl3g5sau1pAQ4NEjpa35P4UKAWvXsuPy6VObkaDeuRPIk4fd24LpSUta+r33FJaWTkp4OHfPgYGiNa4ApvbL2fHJa9asQb58+VC5cmWMHj0a0WqoZBSsCldXxplfvuSeRhIvZqR4cY5U+uUXqjYdPAj07w9cv05Zq0KFOL5p+HBGS02w5jcVDx4wOVy6NIunHB2Vtsh8FCtGlfDz52WMkiAIKqRAAapTVK9Ozf9ff1XaIkHIFmvXsqauQQOGbfLnV9oiQU2sWrUKOp0u1a1x48YWtUOSxConRw5g+nT6xIMHLXhiJycmM48cSdTm2rDBsppE4eHU2v7gA2Ys1UTu3Eyir1yZcUupTgcsXcrFzbNnfD/Hj+f7qzBJO46XLk2eOF66NDFxPHQoE8eenvwYevY0f+JY30DesqWZGsgLFgT++out0999Ry26kBCDnursDMycySbkXbvMYJsVk9VKrCJFiiB37tyvbjNmzMi2LQ8ePIBPChl3JycneHl54cGDBwYd4/Hjx5gyZUoqOczJkydjw4YN2LlzJ9566y0MGDAACxcuzLbNgnVQqxZdgOp+/02aUKHCBiSor19nfVhQkG0HaZVALy29eDH9eP36idLSqmLPHjpc0RrPFmrxy1n1ye+99x5+/PFH7N27F6NHj8bq1avRrVu3bNki2CceHtzPPHpElQqp7bMAzs7JZacfPmSU9LXXgB9/ZODfywto0wZYsIBtrQp9MNHRVMxOSAC2bKEss61TqRJQpAg/mrAwpa2xD9TUtSQIqid3bsbs2rZlo8eyZUpbJAhZYt48qmN27cppk+7uSlskAOKT00L5TJWQKV268KIyfDgDehadD1erFvDTT9zgzZpFDaYVKwA/P/Ofe9YsJqgnTzb/ubJCnz6U1ho5ksOLUvLgATOwf/wB9OtHyS2VewN94rh6dSphA+w2unCBOVT9be1a3u/oCFSsyByr/la1KrvtsoO+gXzjxuy/pnTRaNhF3KwZ0K0bULs2MHEis9OZZCU6dGCgafhwvh9qGJWtBox1nPrH3rlzJ5l8pKura7rPGTVqFGbNmpXhcf/55x/DjUiH8PBwtGnTBhUrVsTEiROT/W3cuHGv/rt69eqIiorCnDlz8Omnn2b7vIL6cXJi8nLjRqoqqkomSC9B/e67lIb44ANeUAcOVNoyg9Fq2UVcpAi7XATT8tdfwIn/gLJlWYilms7hpDx4wIKH1q1FazybmNsvm9snJy3S8vf3R4ECBdCsWTNcv34dpUqVyvJxBfvEx4d7lZMnmTQuW1Zpi+yMfPm4Pnn3XSaDz58Htm/nbfhwYNAgtri2bMlbs2ZMEpgZrRbo0YP73QMHqOJmD2g0VGvZt4/CHc2aZX8PL2RMVn2yINgtrq6MR/v5MaZ6/z6bdSwaFBeErKHVMl0wdy7VYadNk6+umhCfnBpJElsBDg6U3G3alEHpTp0sbIA+QDd/PuWnK1cGvvmGmTJzcfcuM+NDhqh3p+biwpbSt9+mZmPSmXm//cYEsYMDsHUrK6StFBcXFny/9pplEsdJG8irVDHby0qkQgVWX0yaxC7vP/8EVq8GSpZM9ykaDX+T9epRjuz99y1gpxWQVSfr6elp8IzBoUOH4oNMJPBLliwJPz8/PHz4MNn98fHxCAsLg18mRS4RERFo1aoVPDw8sHnzZjhnMpwzMDAQU6ZMQUxMTIYJbsF2qFiRiok7drBeSHWL/YIFeVHu04dzK/SD3SMilLXLAM6eBUJDgV69VPi+WimxscCZ40AtAM+es/hQdZ3DSdmxg9nrJNLEQtYwt1+2hE9OSmBgIADg2rVrkiQWskSJEnSFZ8+yW7RgQaUtslM0Gm709NLTUVGUFt22jUnj5cu5qaxTJzFpHBBglsrcceOATZuokB0QYPLDqxpHR+5nd+/mNKwmTVhvKJgHCUgLQhZwcGAsumBBNnTcuwd8/bUq1BkFIT1iYzllY+1aiqV88onSFgkpEZ+cGrmqWglNmjDPOHo0pZBcXBQwokEDDqzr3Rvo2JG6w199xVJsUzN+PI87cqTpj21KOnbk5nX4cJalR0UBgwdTwrhdOybTbXDYgDkTx4o0kLu4sKzr9deZ8a1ald/tnj3TzVLUrcuP//PPWbiRI0fi36Ji4nHzWRxiC5SFy7M4FI+Jh7ur7V9uLeFk8+fPj/wG/Kbq1KmDZ8+eISQkBAH/j/js2bMHWq32VZA5LcLDw9GyZUu4urri999/R46kH2w6nDlzBnnz5pUEsR2h0TBeuWIFBTaqVlXaonRo3JgdmSNHAl9+CbRvz3+7d1elBEJsLFWGK1VSb32YNaGXlt6+HfCIZJK4UyfAuajSlmXA1avUG+/SRbTGTYC5/bK5fXJKzpw5AwAoUKCAcYYKQhL8/bnXOHaMe2wZe64C3N25D3v9df7/zZuJXcZz5jCT6+1NiWp90tgE14FVqzjaa84cLpHskRw5KBq3Zw8QHMyksRTpmQcJSAtCFtFouJ/182MlcWgosG6dKA4JqiQigr1k+/YB69cr0OgnGIT45NSoL0IopMusWZS2XLpUQSPy5wc2bwa+/ZYziqtWpT6RKTl3jju2CRM4CFfNaDTUjjh9mp2o1apxsfLtt3yfbDBBnB76xHHv3slnHIeEAEuWMKl6/nzyGcdVqiTOOD52jLHhefOYZ1ckQVCvHhMqnTpx8dmxI4eXpcPMmVS8WbAAuBoagYm/X0SjOXtReeJ2tNn5GB16zEObnY9ReeJ2NJqzFxN/v4iroerv5MsqOp1x8xzMOXasQoUKaNWqFXr37o3jx4/j8OHDGDhwILp06YKC/28b+e+//1C+fHkcP34cABPELVq0QFRUFL777juEh4fjwYMHePDgARISEgAAW7ZswbfffosLFy7g2rVrWLJkCaZPn45PpDTQ7ihShMUve/ZwjrpqcXampD5AWf2ePRkNPH1aWbvS4OhR4MWL5MIcQtZ48oRKFz//zHjKO+/wfmc11yslJLCLuFgxoHx5pa2xCdTil7Pik69fv44pU6YgJCQEN2/exO+//47u3bujYcOGqGIRqRnBVtFoOFHJ05Pb2BcvlLZISEXx4kDfvmzvffyYOtD9+nEe0YcfsqOsalVgxAi2wcbEGH2K/fspuPLRR9yf2jO5c7Pu/cEDdtkL5kEtPlkQrJYePTg4ftcuzn+SgeqCyggNZQHisWMUR5EEsXoRn5waSRJbEZUqcU80eTLw7JmChmg0TKCdPcvIY8OGbKeMjTXN8UeOBEqX5q7NGqhZk8HMyZOZFD57VnQy/0/KxPHJk8kTx3XqMHE8ZAj/u1w5Jltu3gQWL6ZjtXjgxtOT7YGbNgEHD7LdIK2Z0wDKlAG694/GV+eC0Xz+AawOvoVbYdFI6Tt0AG6FRWN18C00n38A738XjDth0WZ/KZbGGAdrbNVWVlizZg3Kly+PZs2a4fXXX0f9+vWxfPnyV3+Pi4vD5cuXER3Nz+LUqVMIDg7G+fPnUbp0aRQoUODV7c6dOwAAZ2dnLF68GHXq1EG1atWwbNkyzJs3DxMmTDDvixFUSbNmid1IVsG0acDevdT1r1GDs4qfPlXaKgD0DYcPM3AvXV1ZJzaW8fKvv2aiWD/+0dMMoi8m58wZ4OFDdojJGsokqMkvG+uTXVxcsGvXLrRo0QLly5fH0KFD8dZbb2HLli3mM1KwG5ycWBsKUGY3Pl5Ze4QMcHamotnUqaxCfviQclXVq3NEUFAQRxS0acPK3StXMo3kXb3KWuAGDegvxeUwrFOtGt+ba9eUtsY2UZNPFgSrpXVr7mevXGHh8+3bSlskCAAohlWvHhXRDxxgslhQL+KTU6PmfgIhDSZN4p5o5kzeFKVUKV75Zs6kYdu2AT/+yBmvWWXXLh5n0ybrGIhz+TI7tK5epXRnhw58X4R0SU+qevNmBrIDA/m2/vwzE8ZJpapr1EiUqja7soxeSvzDDxl06N+fXeNJNLLXnbiNQ54X4ZSTgYgEbcYBCf3fj9x4gqAv92NS20roUlPNup/GoTa5Di8vL6xduzbdvxcvXhy6JEGkxo0bJ/v/tGjVqhVatWplMhsF68bLi3VChw4xVpkrl9IWGUDjxuwiXrgQmDiRqiCzZrEyW0EJ6r17GbRv0EAxE6yapNLS0dF8H+vVs46lFAB2ge3Zw8KsQoWUtsZmUJNfNtYnFylSBPv37zefQYLdkzMn48t791Jmt25dSRZaBfnyJVZA6XRUIdNLUw8fDgwaxE5kvSx106Zslf0/YWHc2uXPD2zcaEV+0gKULs3ixzNnuKY1YmS8YABq8smCYNXUqsXq4pYt6by3bQMqV1baKsGOCQnhxIy8eYEjR7gMEdSN+OTUSCexlVGwIOWQ5s9XScGUkxMwdiw1IqOimPlbtChrffhaLTd2desy2apmdDqWHVevzvanY8eYRJwxg607glG4uFBhvHRpzm04eZIb1JAQvs36juPBg/nfHh6Uqv7wQzN3HBcowC7ixYtpYPXqrGAHsGjvVYz65TxiErTQOBj3fU/Q6hATr8WoX85j0d6rZjBcGaQSS7BHGjVibnXfPqUtMQJnZ0o4XLrE+X4ffqioBHVoKAOSjRrJaKms8Pgxa/T00tIDBrAWwKoC34cPAy9fsiNMMBnilwUhY/LkYYHqvXvcawhWhkaTXHY6LAzYuhV4801m/zt25Czj/3cixx4NwVtv6RAWBvzxhyiXpEXVqlxLHD0KPH+utDW2hZp88rRp01C3bl24ubkhT5485juRIJiLsmV5ocqfn9f4AweUtkiwU3bu5N67RAk2D0iC2DpQk09WC5IktkKGD2cx7LhxSluShBo1gFOnGGj+5BNKgNy7Z9wx1qxhlHjOHHWXcT94wPLjjz/mbMdTp/j6x4/nVWPqVKUttDr0DeQzZiQGtfUdx336AMuWJUpVnzyZmDg+dy554rhqVTMkjjUaRtxPn6YUdd26WDfha8zdccUEBwfm7riC9SfUUPGRfcTJCvZIzpycunDqVIYjzNVJwYL0vfv2KSpBvWsXA7U1alj0tFZPbCzfuyVL+JHpG6usLugdHs6S69q1mbERTIb4ZUHInIIFKbN7+TJw44bS1gjZwt09UXZa/4EuWgTkywfdrNnoV/csjuyLxeZqk1Dq0PfA/ftKW6w6NBoWTri7M9j98qXSFtkOavLJsbGx6NSpE/r372++kwiCufHz44D5114DWrTgHHtBsCBr1rCDuGFD1qrly6e0RYKhqMknqwWRm7ZCPDyo7jxgABNk1aopbdH/cXNjdu6NN5ip8/cHli8H3nor8+e+eMG5xm+9xU5itbJ5MzWSnZ3ZYdq6deLffHw4T3nSJCbKS5ZUzk4rQt9AXqcOi70zwtWVctMBAYn3xcQAFy6w61h/+/HHRKnqSpUSn5Mtqepy5YAjR3Bn0ixMiPIDnHSpihliH93C80NrEfvgGhKinkHj7Apn7yLwDOwItzKB6R56/O8XUbdUPhTxckv3MdaAyHUI9krNmhQZ2LkTeO89pa3JAo0asRBm0SJgwgSLSlBfv87Zd++8w2u2kDkppaUbNqS0tJO1rur37EmcOSmYFPHLgmAYpUuzGPXUKSbHfH2VtkgwCSVKAP36Af36Yfb0BKz83BGr2/6MBve2Aj1D6FCrVEmUpq5fnxtOO8fZmW/F7t0U+mjcWNZopkBNPnnSpEkAgFWrVpnvJIJgCTw9GZv94APg7bcZk5biB8ECfPEFMGwYe8eWLbMyFS9BVT5ZLUgnsZXSqxfVNUaMUNqSNGjdmnpdjRrRSX/wAbtEMmLhQlbyzphhERONJiKCie+OHRmNPX8+eYJYz+DBlDsZM8byNlop+gbyuXOz1kCuTxyn13FcuzZw9qyJOo6dnTGmRHPEu7imaWxC+ENoY1/A3b8Z8gb1Ru66nQEAjzZNQcSZbekeNl6rw5jN1q9xJ5VYgr3i5AQ0a8bx9FbbheTszAvl5cusxP7wQ2YeT50y2ym1WmDHDqBoUaB8ebOdxqZIKi1doAALBhs1suIE8YMHXAQ0bgzkyKG0NTaH+GVBMAyNhoXXPj5Ur8xs6ypYF5s2AaM+d8S4cUC33zqxsi80lBvRatWA1as57sDLiwXvCxcCV65kbYSWjeDmxmXg8+d8u+z4rTAZWfXJ4eHhyW4xMTHKvhBBUBuurryeDxrEzdH48XLREsyGVssxoMOGsdftu+8kQWyNyD45NZIktlKcndnks3MnO0lUR7583I2tXMl/q1YFDh5M+7FPngDTp7PKt0wZy9ppCIcP0/6ffwZWrODrSU9Dws0NmDIFWL8eOH7csnZaIS9f0ql27GjaBvKUieOQEOMSx8HBaSeOr4ZG4OC1x0hIZ72Zs1RN+HaejDz134NHtVbwrNkOvu9Nh7NPCYQf/zVdexO0Ohy89hjXHkaY5g0QBMHiVKwIFC5Mv2zVe9ICBZiF3LePw+Fr1uR4BTNIUJ89Czx8yLHIap4yoQbSkpbu0sUKpaWTotNxEevlJVrjgiAojoMD9wU5c1JmV/IwtsGJE8D77wOdO1Pw6xX581P+5fvvOSbrzBmqqbx4wchvuXJUBuvXD/j1V7usHPDyAmrVAu7cAS5eVNoa+6VIkSLInTv3q9sMtTZWCIKSODgA8+YBs2czJtu7NxAfr7RVgo0RGwt06wZ8+SVF2KZOlTiGYDtIktiKaduWMkAjRgAJCUpbkwYaDbuIz54FChViq8vo0byqJmXqVJZkjB+viJnpEhvLDGbDhhxWdfYsdSQy8wA9elBqe/hwK88UmJ8FCyzXQJ5Z4jgwMDFxXLt28sTx118zcfz9kdtwdDBuBaBxcISTRz5oYyIzfJyjgwY/HrPu2cRSiSXYMxoNG3AfPOC1xOpp1IhdxF98wQ6bsmVZKGWiH25sLFWGK1dmcl1IG52OgVl9AVPDhiyQL1tWactMwLVrbL1v0UJ0LM2E+GVBMA69zG58PEelq3KPLRjM7duMmVStytr1dLfxGg0fNGIENZafPAG2bGFX8Z49QIcOgLc3nfC0adxA2skFs3Bhhjb++Qe4dUtpa6ybrPrkO3fu4Pnz569uo0ePTvP4o0aNgkajyfB26dIlC75iQbAwGg3jsD/8wAKgjh05m0cQTEBEBNCmDfvGNmxgHb1gvcg+OTXWKk4ngP5v7lwmtFavZj5WlZQsCezfz9bnCRPYNfLjj2y7un6dkc+JE1nNqxb++YflQefOsQpt5EjDA5iOjqxea92am8u2bc1rq5WibyDv21e5YHfSGcd9+vA+/YzjkydTzzgu1PchnPJmnvjXxr6ELj4G2phovLgajBc3QuBWIeNZiwlaHfZeeYiJqGSKl6YIMtNBsHeKFKFr27OH89CtXnbI2Rn47DO234wYwVkX33xDv/3aa9k69JEjbNZp1sw0ptoijx8Df/3FPGq5chyXaNWdw0lJSOB6sHhxvjjBLIhfFgTjcXenzO6+fdwP1KolXSLWSEQE8Oab3O/9+is7xA0mVy4miN94g///77/0Wdu3M6YxdiyVxZo3p3Nu0YJKLDZKuXKJxdXu7umLqgkZk1Wf7OnpCU9Pz0wfP3ToUHyQSVCwZMmShhsgCNbK++8zvvz22xwlsGULC30EIYuEhgKvv84a5x07WE8vWDeyT06NJImtnMBA4J13uE955x2qHasSR0fO6W3ZksnXgABusA4d4vCnzz5T2kKi0zH4PXw4A5fHjtFWY2nZkpHvkSPpSax2WKD50DeQT5igtCXJSZo41hMTAxw/FY/3fzesCvHpnm8RqZ9BrHGAW9k68GrRP9Pn3X4SjaiYeLi7Wuf3RZysIPDSv3gxZxo2bKi0NSaiQAFWo/XuzZLZGjWA/v15Ic9C1jIigkniwEAgTx7Tm2vtxMYCBw7wO5Q7N6WlbaJzOCmnTwOPHrE7S7IvZkP8siBkDW9vJoePHaO6UMWKSlskGENCAn3nzZtcb/j6ZvOAJUpQdrpfP1YOHz2amDT+6Sc+pmpVxgBatmSVgatrdl+GatBouDeOiuIkrmbNmEcXjMPcPjl//vzIr6bGC0FQklatgL172fpZvz6wbRtQrJjSVglWyNWr/Dq9fMkpmlWqKG2RYApkn5wakZu2AaZP50y/r75S2hIDCAhga+ZHHwGDBnHO75Ah6shu37vH7t9PPqF9ISFZSxAD3EnNmQNcusQp9kIy9A3ko0apq4E8PVxdAa9iUQY/3rNmO/h0mQrvNoORs2QAdDotkBCX6fN0AG4+Mfw8akOnM06qQ9TYBVtEP7/t8GGO9LUpGjakBPW8edmSoN67l7VTDTIWWLA7bFpaOikxMfwSVKnCcSSC2RC/LAhZp0gRqoJcvMiZrIL1MHQo8wEbNvAzNCnOzsllpx8+BNasYZL4+++ZQfX2ZhfyokWMLtvAxdXBAahbF3BxYZ1/ygliQuaoySffvn0bZ86cwe3bt5GQkIAzZ87gzJkziLS5zYtg19SsyU15TAwvYOfPK22RYGWcPMm6LxcXFp1Jgth2UJNPVguSJLYBSpViEHHGDDZlqB43Nw6jrVyZUeIpU5gsVpJNmzhs59w57igXLsx+4rp6dXZNT5jAtinhFZ9/rq4GckOIjTc8CeLsXQQ5i1dDLv9m8Ok0AbrYl3i4cTJ0BngVY86jNmSmgyCQhg0ZTNu3T2lLzIBegvryZZbU9urFTfepUwY9PTSUTaSNGgE5cpjXVGvi8WPm3TduZOP2gAF8j2xSiOTwYZZii9a42RG/LAjZo0IFoGhR4PhxjsoR1M/XX7N4fuFCNvWanfz5gffeY4L43j0ucsaN4xzMIUNY6VWqFBVYfv0VCA+3gFHmwcWFDXkxMWymFp9hHGryyePHj0f16tUxYcIEREZGonr16qhevTpOnjxpvpMKghKUKZMoKdGgAUchCoIBbN8ONG5MF37okDSi2xpq8slqQZLENsK4cQxIT5mitCUGsmULB7+uXcsg4TvvAN27A8+fW9aO8HAOc377baBJE1aWmXI3OXUq8OwZ8MUXpjumlXP8OLB+Pb+ramggN4QXL4DL/2T9culWvh5i719FfNh/mT7Wxcl6L8viZAWB5MyZ2HRrFcVbWUEvQb1/PwOhNWowsxkWluHTdu5kt3WNGhayU+XExvI9WbKEy4X33gO6dLGh2cMpCQ9noKZ2bdEatwDilwUhe2g09FdeXqxvibJewR+7YPt24NNPKVjWP/NJP6bHwQGoVo0jp/bs4ZpoyxbKne7ezREL3t5cJE6fTuUyK7vweniwNvDRI65z7aGzxlSoySevWrUKOp0u1a1x48bmO6kgKIWfH6u3a9RgvHfTJqUtElTO6tUUBGnShO5bRlrbHmryyWrBerMRQjK8vYHRoxlkvHpVaWsyIT6eG6egICZnf/4ZWLWKlbVVq3IQnyU4eJDn++UXnv/nn01/5S9WjLvUOXOA+/dNe2wrRKcDhg1j03b37kpbkzYvXnD+2KJFQM+elBPx8ADee9M9y5tgXVwMAEAbk3FkSQOguLd71k6iAsTJCkIiNWsyB7Zzp9KWmBl9NvzLLym3WK4cxyyk8QO/do3jBoKCAEdHBWxVEXpp6UWLWDzVqBFz7GXKKG2Zmdm9m93oojVuEcQvC0L2cXRkUszJiZ0kcZlPkBEU4MIF1p23aqWi+uxcuRhlXrgQuHKFi6AFC1h1MHMmExZ+fkDXrsAPPwAPHihtsUHkz0/T//2XL0swDPHJgqAgnp7An38CHTsCnTpRdkIQUqDTMXzfvTvQowewebP1NDcJxiE+OTWSJLYhPv2UjT2jRyttSSZ8+y1lKufMYXm2RsOr77lzHP7UuDGTyDEx5jl/bCzfpEaNgMKFgbNneX6NxjznGz2ampoTJ5rn+FbEli3Mzc+erY4EgT4hvHhx8oRwnTpUBzt/nv+9ZAlw8pgTinllvDpIiHqW6j5dQjyiLuyBxskVzvmKZvj8ot5ucHe1Xm1RcbKCkIiTE5OhV68CN24obY2ZcXJiQdTly0Dr1sBHHzGiHhLy6iFaLRPmRYsC5csraKsKePQoUVq6UCHg44+Za7dJaemk3L/PNVeTJqI1biHELwuCaXB1pczuixcis6tGQkOZiy1eHPjpJ3XsM9OkZMlE2eknT6jG0rs31089ejCYU60aMGoUsHevqgf/Fi/O9dy5c8B/mYtlCRCfLAiK4+IC/PgjRyd9/DEwdqzIIQiv0GqBoUOBESP41fjmGzvYn9sx4pNTI193GyJnTqob9+jBzWudOkpblAYREZzR+/773AAlpXhxSoDMmQOMH0+9qDVrgEqVTHf+v//mnOALFyjxNHy4+XeRefJQD3zoUAbRK1Y07/lUStIGcovMh0rBixeMTYeE8HbyJL8OCQlsaqpShb+ZgQNZGV25MteQSWl61werg28hQZv2QvLJtkXQxUbDtUhlOHp4IyHyKaL+3of4J3eRt2kvOLjkTNc+RwcNmpT1MeVLtjjGOk57cLKCfVOhAmuRduwA+vShCqFN4+fHTpjevbnxrlkT6NsXmDYNZ2564eFD5o/NVZOldmJjGQ8+dgzInZvS0jbfOaxHp+MPwdsbCAhQ2hq7QfyyIJgOT0/uFQ4eBM6cAapXt19/piZevADat2d9+datLPi1CpydWSHWsCEwbRrw8CGr6bZvp8rZrFmAuzsLq1q25K10aVV96SpXBiIjgeBgmmmzozJMhPhkQVABDg7AvHms1B02jEWsy5ZJNtDOiYnhJMr169lENGCA0hYJ5kZ8cmrkKmhjdOtGxcdhwyiHpaI9BJk7l3OH0xue7OjIytmWLSm7FBBAKaZPP81edF2rpabjyJFAiRLcyVSvnvXjGUv//pSWGjmS7bR2iL6BfO1a838vUyaEQ0Io65lWQjgggBtcV9fMj9s1sChWHb2Z7t/dKzRA5LmdiDj9J7QvIuDgkhMufqWRt3FPuJUJzPDYCVodutXOuNNY7YiTFYTkaDRAixbAihXstEhZG2WzNGhACerFi4Hx4xH765/YO+AfVK6UE4UKqW1hYn50OhYlbd9O/9SoUaJ0qd2gb6l/910Vt3jZHuKXBcG0+PoCr73GvYWHhx0V+qgUrZZqUGfPsgirSBGlLcoGPj6Mf3Ttyhd27hwXDtu2UeIqLo5xjFatGCtp2lTxjLhGA9SqxTr/Q4eAZs1EljMjxCcLgooYOpQFzh98QDmKDRvkAmanhIdThfzQISp9deyotEWCJRCfnBp7Ck/ZBQ4ObMRt3pwqRh06KG1REu7fZ5L4s8+oN5kR1atz9z1qFDB4MMuCV61iS5ax/Pcfd487dzLZPHMm264tiasrMGMG0KULd1GNG1v2/AqjbyDv1s30uXlDEsK1a7OpzZiEcFoUy+sBX10+PNA+gcYxdTexe8VGcK/YyOjjOjpoULekN0r7WEvpe9qIkxWE1BQpQkGMPXv4r7Oz0hZZCL0EdefOODLjKF7EOqDZ4o5AibF21Un66BHw11+c21e+POO6efIobZWFSUhgF3Hx4pxZLVgM8cuCYHpKluTe5swZNnoWLKi0RfbLxIns+tm0ieIlNoODAysLq1VjkXlkJOWnt2/nbckSrrPq1k3sMq5eXRHJGkdHoF49YPdu4PBhdhTbVRGcEYhPFgSV0bUrh6x37Mgqly1bgHz5lLZKsCAPHnBa1r//crvasKHSFgmWQnxyamxd+NAu0cv5jhzJglPVMGECk7OjRhn2+Jw5ga++4pX6n38Af3/uAo3h55/5vIsXeZyvvrJ8gljPO+9w9zp8uH1cXZKQWQO5oSSdIfzhh0DVqokzhAcPZrK4dm3g668pJx0RwX+XLaPUa0BA1hPEFy8CgYHAuW/94eRo2k44JwcNpnfwN+kxBUFQD82aAVFRHAVhb0S4++GIbwcElnyEPE+u0w/27w+EhSltmlmJiWFt2tKl9H/vvQd07myHCWIAOH2a2fKWLVUocSMIgmA8VaowOXzsGPDsmdLW2CerV3NvOXOmHXT95MoFvPkmldGuXgWuX6dKWd68LESvUYMdcd268Y0JDbWoeTlycGZ3ZCR/ExmN+IyKicfl0Oe4HfUUl0OfIyom3nKGCoIgpKRFCzbyXL/OC9nNm0pbJFiIK1dYa/XoEUeJSIJYsHekxs9GmT2bhafLl7ODUnEuXgS++46zH4yNkDZvDpw/D/Trx07cLVu4QcroOM+fA598wk1Sp06M0np5ZecVZB+NhtnSRo2Y7H73XWXtsRD6BvJBg4BixQx/3osXVNk6eTLtDmF/fyZtTdEhnBFaLbBwIYsuSpYEjux0w+X4Shj1y3mTnWNy20oo4mX90jZSiSUIaZM3L+X4Dh2iTGWuXEpbZDn27GFHSYN3iwDvn2IVz7hxLOKaOZMVPzY0rFmnS6xLs1tp6aTExPBLoM+oCBZF/LIgmAeNhvuQvXsTZXaVqkO2Rw4eBD76iEuIESOUtkYBSpZkwV3//kBsLKsQ9V3Ga9bwMdWqJXYZ16sHuLiY1aTcuVmsfegQ9/BVqyb+7WpoBNYE38beyw9xOywa+hzywsuABkBRLzc0KeeDroFFUcbXupW1MkJ8siColBo1gCNHKOdfty5l/qtUUdoqwYycOAG8/jobyffty1zsVLA9xCenxnaickIyqlQBevQAJk2ivr7ijBpFmcH+/bP2fC8vJlZ/+IFJ4ipVeCVPiwMHuCv57Tc+fv165RPEeho2BNq2BcaMYeDUDpgwgdXFo0en/5gXLzgm+uuvk3cI166d2CEcGMgOYn2HcEgIiyCy2yGcEf/9x3XiZ58BffvynNWrA11qFsWwFmVNco7hLcqhc03bWJHodImO1pBbRlXmgmBrNGxISb69e5W2xHKEhlKOs3Fj+gE4OXHsw+XLQJs2QO/elII4eVJhS03Do0esTdu0CShUiEVMDRvacYIYYLQ4JoYZFMHiiF8WBPPh5MSmI4Ayu/HSEGkRrl3jSK26dam6bPcCFS4urEibPp2b1dBQ4McfWUG9ciVnF3t5sRN58WK+gWaiQAHula9cYVPenbBovP9dMJrPP4DVwbdwK0mCWI8OwK2waKwOvoXm8w/g/e+CcScs2mw2Kon4ZEFQMaVL05kXKAA0aJB+vFmwerZtY3yiTBluVSVBbJ+IT06NJIltmClTKPkze7bChuzbx5nCM2Zkr4JVowHef5+lqSVKcMMzfHhisjUmhu2ejRuzZfXcOT5ebTvHmTOBO3e4SbNx9A3k48YlNn5nlBD+7LOME8J9+5ovIZySDRsyViof2KQMZnb0h6uTAxwdjPuOOTpo4OrkgFkd/fFxk9Imtlw5jHGwxlZtCYK1kzMnY3inTwMPHyptjWXYuZNxyVQjiP38gO+/ZyvQy5dss+7XD3jyRBE7s0tMDP2EXlq6a1c7lpZOyvPn7G6qU0feDIUQvywI5iVnTjZphocDx4/bRwBJSZ4+Bd54A/D2ZkGWmZtjrRMfHy5EVq+mpNepU8DYsQwMDR7MqHipUsCAASyqj4gw6elLl+Zt6c7bCJq3H0ducG2XoM34x6H/+5EbTxD05X6sO3HbpHapAfHJgqByfH0Zvw4MpArDxo1KWySYmB9+YM1UUBCwa5d6+skEyyM+OTWSJLZhChfmPmDePHZEKoJWy0RurVqUfTYFxYpRunDWLGbuatUCNm+mI//ySyZh9+wxTtvYklSoQH2sqVO507Vhhg9nIZ6DA9CrV8YJ4RMnlEsIJ+X5c9YWdO7MhcP581Q8T4suNYti1+BGqFvSGwAyTRbr/163pDd2DW5kMx3EesTJCkLG1KzJXNnOnUpbYn6uXWMXSfPm7KBOk/r1edH/6ivgp5+AcuWAb76xmouDTgdcuJDowxo1omBKadup/ckee/Ywgq9vtRMsjvhlQTA/efNyb/Pff9w3COYhLg54+22qdmzdKoFdg3BwYGvvqFGUsnnyBPj9d0pl7dgBtG/PN7JxYxb0nzplEkdwKOwqfr51HjEJ2kyTwylJ0OoQE6/FqF/OY9Heq9m2RU2ITxYEK8DDg06mUyfgnXc46lCwenQ6NtD16AH07MlCMzfrn/gnZAPxyamxZwE8u2DECCbcxo9nR6fFWb+e7aAHDpi2o9fRkRnIZs0oWdmxIzuTjh3jwEe1M3EiZaCmTwfmzFHaGpOgnyGsnx+8fz8TBAAwbFjiDOEBA5j89fe3fAI4M/bvB7p3B549Y4VZt26Zf22LeLlhda/AxFlLVx7i9pPkUloaAEW93dCkrA+61S6K0j62OWvJWMdpD05WEJLi6Mjik59/5vWxVCmlLTIPWi1jj8WKMe+bIU5OwCefcBM+ciRnCHz7LTOvNWpYxN6s8OgR8OefwM2bQPnyLDaXZtkk3L/PSrDXX/+/1rigBOKXBcEyFCzIYtizZxlfLlFCaYtsC52ORVgHD7Lzp0wZpS2yUjw82EL15pv8/+vXE2cZT5/OkVg+Pqzwa9kSaNGCnXVGsO7EbXyx64pJzJ274wry53K1mcJq8cmCYCW4uDAg6OfHfer9+2zyUZtKpWAQWi0wZAjr0sePZzhePkpBfHJqJEls4+TOzZmwn37Kzk1/fwuePCaGG4127TjTwdTcvcss+IMHrJA9fZqJ41WrgCJFTH8+U+LnR1unT+fQwuLFlbbIKF6+ZBBEnxAOCWE3VUIC4OwMVKrEjtzixSnbXKWK+hLCSYmJoST23Ln8qv7wg/GN6GV8PTCxbSVMRCVExcTj5pMoxMZr4eLkgOLe7nB3tf3LrThZQcicChXoonbuZBDZwQY1Xc6cYRL1o4+M2ID5+tJ/9+5Nv1irFhPG06ZRV1IlxMSwoCg4mEnhrl2lczgVOh0Dzt7eaWiNC5ZE/LIgWI4yZRJVkdzdmWsTTMPcuSx4X7UKaNhQaWtsCL3s9IABQGwsR0Rs386BjWvW8DHVqzNh3LIlB0FnoPF9JywaE36/mObfYu5fQdT53Xh5+zzin4fCIacnXAuWQ56G78PZq1C6xxz/+0XULZUPRbysv+VLfLIgWBEODnQ+BQqw6+XePXZgOTsrbZlgBDExbATauBFYsoQTrgQBEJ+cFjYYmhRS0rcvA5gjR1r4xIsXc/buzJmmP/b69cx4X7rESPupU/z38mVmJH/6yfTnNDVDh1LeaexYpS3JkJcvE2cI9+oFVKuWKBk9aBBz8zVrJpeMHjECePyYIydr1lR3gvjCBXY4z59vOqVyd1cnVCqYG9WL5kWlgrntIkEMiFyHIBiCRsPGjNBQFtvYGrGxVDT09wcKpR/zS5969ahA8tVXwLp1QNmyqpCgTikt3bixSEuny9WrwL//8ouerta4YAnELwuC5dBomE/z8QGOHDH5qFe75ddfGccYM4YykYKZcHHh3Izp0xlbefCAc40rVQJWrACaNGHxV9u2XAxdu5bqEGM2n0d8OvLS4cc2IvryEeQoVhV5g/ogV9WWeHnnAu6vHITYRzfTNSteq8OYzbah4y4+WRCskKFDWTSzZg0l+qOilLZIMJDwcIpa/fYbk8SSIBaSIj45NZIktgOcnTli5q+/gN27LXTSp08px9G7N3UYTcWzZ9QA7tKF1aznzlG7E+C/587x/vfe403NM39z5QImTeJiIyREaWsAMCF8/HjmCeGFCxkkj4zkHvKbb1iMoFcGHTOG+0c1V3prtRxhXaMGEB/P1z1ihMSzs4PanGxYWBi6du0KT09P5MmTB7169UJkZGSGz2ncuDE0Gk2yW78Uq8nbt2+jTZs2cHNzg4+PD4YPH474+HhzvhTBxihcmDG3vXuZVLUlDh/m+IGmTbNxEL0E9eXLlETs04eO6MQJk9lpDA8fUmFi0yZ+dh9/TNUJJ/uo/zGOhARqjZcowQS/oChq8svTpk1D3bp14ebmhjwGarPrdDqMHz8eBQoUQM6cOREUFISrV21rRqVgWzg40F3lyAEcOsQOFiHrhIRQsePtt4EpU5S2xs7w9WXcZfVqSq2eOsVNfng4JerKlGEn8scfA7//jqs3HuDgtcfpziD2qNkBhQasgFfzvvCo2hJ56nWBX9dZ0GkTEH5sY7pmJGh1OHjtMa49tP6qCzX5ZEEQjOC994A//uAYxaZN2REjqJr79xmPPnWKYyo6dFDaIkFtiE9OjSSJ7YSOHYE6dahwbJEv9rRpjHxPnGi6Y+7bxy7hrVs5z/enn9iJmxQvL97/448cFlilCltD1cqHH1J7dPhwtilZEH1CeMmS5AnhwMDME8L9+jG5mlaHsL6BfNYsi74co7h7lw1OQ4awE+zkSb5+IXuozcl27doVFy9exM6dO7F161YcOHAAffr0yfR5vXv3xv3791/dZs+e/epvCQkJaNOmDWJjY3HkyBF8//33WLVqFcaPH2/OlyLYIM2aAdHRVPazFcLD2T1Vu7aJ5vPqJagPHeKaIjCQFUlPnpjg4JkTE8N857JlfG1du3J0sswezoBTp6g13qKFDHtSAWryy7GxsejUqRP69+9v8HNmz56NBQsWYOnSpQgODoa7uztatmyJly9fms9QQcgmLi5A/fp0W0eOsHZGMJ67d1knVrky1alscTyH1eDgwDb50aMZkwkLY2tWq1aUp27XDmv6T4KjLn0nkqNwBWgck8u0OnsVgku+ooh7fCfD0zs6aPDjsdumeCWKoiafLAiCkTRvzplDN29S+ermTaUtEtLhyhVOR3j8GDh4kGsyQUiJ+OTUyFLbTtBoOE7h9Glg7Vozn+zmTWYWR4xggDe7xMQwidq0KatVz51jpDa94KNGw7+fO0cdyGbNKBGixoCSkxMwezbbyf76y2ynefmSMpkAm5eTJoQ//fR/7d15XJTV/gfwzwybAiKyiSioiPuWmSlkXVFTtLLMLEsruy4t0qqWa+6WN39Zmdf0amqm1zbtWplKSmUuqBRlpiimYiCgEqIgIMzz++PrsMg2M8zyzMzn/XrxMmd5njM0Pt/nnO8531MxIXzwoJRHMyQhfDNLLSA3p02bKlYqX7JEZvtT3akpyB47dgzbt2/HqlWr0LNnT/Tu3RtLly7Fpk2bkJ6eXuN7PT09ERwcXPrj4+NT+tzOnTvxxx9/4OOPP8Ytt9yCQYMGYd68eVi2bBmKHG1JKFlUo0ay7e7evY5TkjI+XqqXmL0jpi9B/d57st1EmzayJ5SFRt4VBThyhKWljVZQIF+Crl2BkBBbt4agrrg8Z84cvPzyy+jcubNBr1cUBe+88w5mzJiB+++/H126dMFHH32E9PR0fPnll5ZrKJEZeHtL6MrOltWwVp4LbPeuXpUEsZub5CLr17d1i6iCBg0qlp0+eRLxPQaiRGPc8KKiKCjJz4HW06fG15XoFMSfyKpLi1VBTTGZiExw660y+0unk1VYjrh3lJ1LSJD7L09PmYzfqZOtW0RqxZhcGZPETiQqSlYUT59u4Xzp9OmyX83EiXU/1pEjMor+3nuSTN21CwgLM+y9YWHy+rfeAt5/X47z2291b5O53XOP7P/z6qtS97iOyq8QHju2LCGs38MpObnmhHCPHqYnTfULyGfNqvPHMLucHJk78OijlSuVk23l5uZW+Ck0Q22+/fv3w9fXF7fpa6AD6N+/P7RaLRISEmp874YNGxAQEIBOnTph6tSpyM/Pr3Dczp07o3G5CTADBw5Ebm4ujh49Wud2k3PRlyz+/ntbt6TuMjKApCRJqFpk4o2rKxAbK0FsyBBZUWyBEtT60tKbN0tp6dhYlpY22N69MrGvXz9bt4TqyBJx2VinT59GRkYG+pe7WWvYsCF69uyJ/Y5UgoEcVkCA9KvOnpXJqWSYkhKp7HnqlBQQCw62dYuoNldDWyC1xK32F94k7+j3KLlyCV7t7qz1tamX8pFXyO19iMjGWrWSPk/TplLPOD7e1i2iG7Ztk7VlbdvKCuLQUFu3iMi+MEnsZN54A0hPlwShRSQmylLluXMBLy/Tj6PTAW+/LUtYdToZBJ40yfg6U1qtvO/QIZnC3aOHLKlW0xQQ/TLvo0ellpYRbk4Id+tWcYVwYmJZQvijj+Q9GzeaJyF8s/ILyNXWmY+Pl8rj33xTfaVyqjtFMW4Wln5VRWhoKBo2bFj688Ybb9S5LRkZGQgKCqrwmKurK/z8/JCRkVHt+x577DF8/PHHiI+Px9SpU7F+/XqMGjWqwnEb31QhQf/3mo5LVJX69aVv+csvkpy0V4oilRn8/YHu3S18ssaNgTVrpHNeXCwBb/z4Ou8NVb609JUrsg3fww8DDRuaqd2O7vJlmVkfGclfmoqoKS4bSx9Tq4q5jLdkL8LCgA4dpKLTuZor6tINr74qfbZPPpHqT6R+Zy/lwdjF8tcvnUN23HJ4NG0Hr861Ty5TAJy5lGdS+9TC1JhMRCoTFCSzvHv1krL7n35q6xY5vbVrZR753XfLuATHe6k2jMmVcV2Ek2nTRhbfLFgg2+H6+5vx4IoiZaE7dABGjzb9OOfOyft375ZNYxcsqHsms0sXSRRPny5t/OYbScgauirZ0m67TZa4zpwJjBhRZYK9oEBWvyYmlv38/ruMkbu6ShmN7t3l/2/37tKpLv9r+/lny36E6dMlEL/yimXPY4zCQmnX22/LYm01/S93RMaW4NC/9ty5cxVKOnvUUNt8ypQpWFTLhtfHjh0zvBE3Kb9ncefOndGkSRP069cPp06dQqtWrUw+LlF1evSQ8BQXJ9UO7FFKCvDnn8AjjwAuLlY6aVSU/OI++ACYMQP44gtg4UKZMWVEIxRFYunOnRIz+vSRPCdXDhtp1y7Zl4KbPqmKpeOyoTG5nVr3ICGygg4dZPLRwYNS/tCs/W8Hs2KF9NuWLgUGDbJ1a8hQRcXGTcAvufo3sj6bA62HFwIemAqN1rD7NmPPozamxmQiUiFvb+Crr4AxY2QMNzMTeP55W7fK6SgKsGgRMHWqzBtftoz9eDIMY3Jl/KfjhF5/XVaVzp8v+7GazbZtsmTz669Nvyr/97/Ac89JwN21S2pFmEu9esD//Z+Ud37ySUkcL1sm9ayq29/YmhYskI18lyxBwaQZBiWEx4+X/PLNCWFr0y8gX7lS/tepwZEjknBJTpZK5a+8YvxCdDKOqUHWx8enwmB0TSZOnIjRtUxCCQ8PR3BwMLJuWppZXFyM7OxsBBux1L1nz54AgJSUFLRq1QrBwcE4ePBghddkZmYCgFHHJdJzcZHS959+KqUV7W0ugk4nCe7mzaW0k1XpS1A//DDw2mtSImPVKontt99e69uzsuTW5exZoH172YqAi2BNkJ4us9juuce2NyNUiaXjsqEx2RT6mJqZmYkmTZqUPp6ZmYlbbrnFpGMS2YJGIxPC8vOlCEa/fnUruOWo4uKACRMkrMfG2ro1ZAx3V8M72bqCPGR+Ogu6gjw0HrUIrg0MnzVhzHnUiAPSRA7G3V1WojRpIqUc09Nl0rIaxpedQEkJ8PLLMrFs9mzJdfBXT4ZiTK6MSWInFBQkY6lz5shEJxPHbioqLpbaUNHRwODBxr//77+lV/jf/8qK2mXLgEaNzNCwKvTtK4OZEyZIPcmvvpJ6zZY6Xy0KCiShefhwS7RqE4s7Zi1Cm9njkF7SuFJCuHt3yW2raQy2/ALyp56ydWvkwr1kCTBtmqycP3RIfmdkedYIsoGBgQgMDKz1dZGRkcjJyUFiYiK636h/u3v3buh0utLEryGSkpIAoHSAOjIyEgsWLEBWVlZpOeu4uDj4+PigQ4cORn4aItGuneyZExcHtGxpXxNafvkFuHABGDfOhp2yoCApQT1unMT2Xr1kRfHChbIp5E0KC6VCWEKCVMAYNcr+kvOqoSiyDNvfH7j1Vlu3hm5i6bhsaEw2RcuWLREcHIxdu3aVJoVzc3ORkJCAZ5991iLnJLIUFxfgjjtkDvRPP0l31M34LVwd1h9/AA89BAwYYOZJ7GQVLeoDGqDWktNKcRGyPp+L4r/T0HjEfLgHGF7iSwOghb99z67ggDSRA9JqZVVKkyayMiU9XSYtM8hbVGEh8PjjUkxsxQoZLycyBmNyZXY0DEnm9PLLMqY6bZqZDrh2rfTu3nrL+FHi3bsli7dtmyxH3bjR8gnbRo3KzrV9uyzF3bXLsueEJIT11THL7yF8++0y8WwBpgOurtgRNQcJCVKa7Jdf5B7j2WfldWpKEANlC8gXLbJ9WY9z52RF3qRJMgOdCWLrMmY/B2MDsrHat2+PmJgYjBs3DgcPHsTevXsRGxuLESNGICQkBACQlpaGdu3ala4MPnXqFObNm4fExEScOXMGW7duxRNPPIG77roLXW58kQYMGIAOHTrg8ccfx6+//oodO3ZgxowZmDBhQo1lsolqotHIwGhmJvDrr7ZujeEKC+X637kzcOOflW1FRQGHD8t04k8/laXNK1bINGNIPvPIEeD996UCRt++sviYCeI6OHECOH1avsBWqzVOhlJTXE5NTUVSUhJSU1NRUlKCpKQkJCUl4erVq6WvadeuHbZs2QIA0Gg0eOmllzB//nxs3boVR44cwRNPPIGQkBA88MADlmsokYXoK/Ln5wMHDjjHYJMhsrKAe++VLYE2bbJ9f5IMUFwMnD8vAxXffguv73YizKPmL7SiK8GFLxehMP04Ah+YAo+m7Y06ZZi/J7w87PvLoaaYTERm9vLLsujpv/8F7r8fyLPvPdTV7PJl2Qr6q6+AzZuZICbTMCZXZt93WWQyT09g3jzZl/iVVwyqyli9vDyp6/DYY7LU1VAFBWUbxkZHS5mO0NA6NMQEjz4qvfUnn5Ts4ksvAW+8YZZMrH6FcGKijFnXVDK6bIWwH7B4OjpNmQI0fBGoZ+3ancbRLyDv00eqTNrSxo1SqbxBA/NXKifDqG0m1oYNGxAbG4t+/fpBq9Vi2LBheO+990qfv379OpKTk5Gfnw8AcHd3x3fffYd33nkHeXl5CA0NxbBhwzBjxozS97i4uODrr7/Gs88+i8jISHh5eeHJJ5/E3LlzLfthyOE1ayZxYfduoGNHqV6ldvv2SaxT1fXWxUVWEw8fDkyZIlng//wHWYvWYNu5zjh7VipfDBjA0tJ1VlIiq4hbtpTSHaQ6aorLr7/+OtatW1f6927dugEA4uPj0adPHwBAcnIyLl++XPqaV199FXl5eRg/fjxycnLQu3dvbN++HfXUNmOSyEA+PjKfac8emRR245+B0yooAB54QBLn8fHy+yEVUhQZlc/MBDIygIsXJWB4egLBwUCXLoh2y8b6Q+dQoqt6PfHfu1fjWkoC6kfcjpJrV3H19/gKz3t3iq729C5aDaLbBJn1I9mCmmIyEVnAiBFAYCAwdKiMcX/zjfydzCY9HRg0SBYIffedVGkhMgVjcmVMEjuxJ56Qck6TJ0vZRZPLRL79NnDpkuypa6jffpP6jsnJsk/wSy/Zrr5maKhEl3ffld3u4+KADRuArl0NPkRhISrsIXz4cMWEcMeOsnewQSWjY2NlmdOUKcCN1RRqpV9Avm6d7cqM/v23JIc3bbJ8pXKqmdqCrJ+fHzZu3Fjt8y1atICilA1khIaG4ocffqj1uM2bN8e2bdvM0kai8vr2lWvY/v3AP/5h69bULDdXksS9egG+vrZuTRWCgoAPP0ThU8/g+5UnkPBje/iVZGDUsPpo1Y3ZYbP4+We5/3voIW4ApVJqistr167F2rVra3xN+ZgMyGriuXPnciIWOZTGjSU5/PPPMrk1IsLWLbINRZEJ67/8AvzwA9C8ua1bRBUUFpYlhTMzJaPv4iIJjy5dJDns7V0a/0e6+mBtQmq1hyvK/BMAcC3lIK6lHKz0fE1J4hKdglG9DC9NrVZqislEZCH9+klQGzRIMpg7dsiEWqqz5GRg4ECZp7xnj4yzE5mKMbkyJomdmIuLbJ0waJCUaRgyxISDZGbKQZ5/HmjRovbX63SSVJ4+XcpAHj4sdSptTauV8iB33w2MHAn06AHMnw9MnFipfOLNCeHERFkxXD4hXKc9hOvVk4T7qFES+e6807yf1Uz0C8gffVQS4LawaxcwerSU5d64UdpCtsMgS1Q3jRpJZY+9e2V71wYNbN2i6sXHy2rn3r1t3ZKq6UtLxx28HYXte6Cv+wH0evMBuP77uuxVPG4cyyPXRUGBfAm6dJE9uEiVGJeJ1KlVK+DqVUmQenk552V0zhypyvnpp3WsakbmodMB2dmSFM7IkJnYgJRdad5cZjcEBFR779S6cQPcGRGAfX9eqnI1cfDIN01qlotWg6hwf0QEqfim2ECMyUROols3mU09cKCUD9m2jaVD6ighQapXBgfLjpHNmtm6RWTvGJMrY5LYyQ0cKFWWX3sNGDzYhD2A5swB3Nwk6Vub1FQp6/zDD5J8nT9fNmdSk06dgIMHgZkzgSlTUPjVTvw2eT0S05uUJoR//x24fl36R/qS0WPHSqLU6IRwdR59VJLpkyfLkjIVrtAxZQG5uRQUyH7aS5bYrlI5VcYgS1R3d90FJCVJ/s2kyVtWkJEhbRw0yEwxz8yysqQvXlZaWoOGDSOBJ45IxZBnnwVWrZJl2z172rq59umnn2TWXL9+tm4J1YBxmUi9unSRRPGBA1JJxJm2QNi4UYYRFiyQ3SHIRvLyylYKZ2bKrHd3d0kIR0TIn/XrG3y4hUM7o/+SH6otOW0KV60GC4eqYFGBGTAmEzmR8HCZ+X3vvVIibMsW9ptM9M03cq/QvTuwdSsrR5J5MCZXxiSxk9NoZCFw9+7A6tXA009XfD6vsBhncq6jqEkbuOdcR4vCYnh53PjaHD8OrFwJLFpU81VaUaQnOGGCbDS0e7dsYqsyZSuEPZD497+QGDETv//kges/ucNFq0Onzhp0767B2LFlK4SN6DMZR6sF3npLbiI+/1x1vWf9AvLYWOtXTvn1V1lkfeKE7SuVU0WKYlzgVMw3fkDkMOrVk37kjh2Sv2zc2NYtqkhRZBtaf3+JhWpSWCjbZyQkAH5+EitatSr3gqAgudkZO1buSXr1kv9+4w1ZHUOGuXxZJrBFRTlXVsMOMS4TqZdGI3E+Pl7m3fTrp86JV+a2dy/w1FMyd3zqVFu3xskUFwMXLpStFr56Vb6I/v5S5S04WMZ1TJygHurniTlDOmLK5iNma/LcIR0R6udptuPZEmMykZMJCpLx7+HDZXb1Rx/JvsVksDVrpADYkCGyK6TFxuDJ6TAmV8YkMaFbNxlInTVLKi2fz7uCDQmpiE/OQmp2PhQAePJtIO4iNHE7EObniei2QRi5YTFah4ZKprA6f/8tK3Y++UQO/v77qti8sLBQylAePozqVwjf2QBjx+ej+3cL0GXHv1C/zX3AWx/IyLM19O0ry7unTgXuv19m9arEnDmy6tyQBeTmUlIiq5dnzFBXpXIqw5lYROZx221S1CIuTuKzmqSkAKdPS/9WLdWaS0tLx0l879sXiIysoX2RkcChQ8CKFRLIvviCJaiNsWuXVIJRa61xKsW4TKRurq6yZeGuXZI87dPHscPQn38CDzwgc7RWrlRlsSzHoigysUu/t/DFi3Kh9/SUhHDnzjIb0c3NbKcc0SMMF68WYvHOE3U+1uQBbfFID/vfi1iPMZnICXl7y/LXsWOlYmRmJvDii7Zuleopiszjnj5dFrMtW+bY90dkfWqJyWfOnMG8efOwe/duZGRkICQkBKNGjcL06dPhbuU8EJPEBACYNw/4Yns+Biw8gnTlIly0mirLBCkAzmbnY/2BM1gb/hDu7HI/FuaVILSqqtG7dskU4bw8YNMm4JFHLP45qqJPCCcmliWFqysZXXmFsCcwaQ7wSQfgmWekI7V2rexdbA2LFgFduwIffAC88IJ1zlkL/QLyN9+0Xr787Fn5Kv34o3orlRMRmYuLi2wF8emnkpSNiLB1i4ROJ4nY5s2BNm1s3RqRmQl8+2350tIGLm51cQGee05mdk+ZIhPa/vMf4N//ZgnqmqSnS0mPe+9lICYiMgNPT5lzEx8vE8R69XLM5GlOjoQOX19g82ZVzX92LIWFZeWjMzJknyYXFyAwUAY6goMlaWHBL1lsdGsEeHtg1tajKNYpRpWfdtFq4KrVYO6Qjg6VICYiJ+bmJuPITZpIKcT0dMmAsiRilUpKJI++bBkwd64sFHLE+yIiADh+/Dh0Oh1WrFiBiIgI/P777xg3bhzy8vKwePFiq7aFSWICAOzPSkXwP48irUSBRotab+RLbjy9L98d/Zf8gDlDOmKE/ia+oEBWv77zjtTNWrvWarvKl08I65PC5RPCHTvKCi2jS0Y/8ohM8x49WkagX3hBsqSWrnXRqZPU45o7F3jiCVWswp4yRf531rSA3FwURUqKTJggg/4qrVRON6hlJhaRI2jXDggLk6RseLg6+pC//CJVCseNs31HraBASksfPCgTlh5/XH5PRgsMrFyCeswY6bgHBpq72fZNUaQOemAgcOuttm4NGYBxmcg+NGok85P27ZO+q6NVS7p+XeZkZWTIbgX+/rZukQPR6YDs7LIS0n//LY83bCg3ksHBsqWGlZdgjegRhjtaBWDaliPYk1L9IgQ9/fNR4f5YOLSzw5SYLo8xmciJaTQyhtykCfDyy8D589IHNWMlB0dQUCD9+s2bZf722LG2bhE5KrXE5JiYGMTExJT+PTw8HMnJyVi+fDmTxGR978eflHJAGuMHfUtuzAydsvkILl4tRKxfvpSVTkkBliyRZKqFRrYNSQhXv0LYBM2ayUaM770nmdLvvgM+/ljqdVvS3Lmyp/OiRTJobUN79gD/+58kbi29Z1Z2tize/uwzVVUqpxqoJcgSOQKNRuYkrVoFJCXZPidXWCirnLp0AUJCbNeOm0tL9+sned06j33qS1CvXAlMmyY90wULgPHjWdtK78QJ4MwZCcr8ndgFxmUi+9G0qcTY334DGjQAWrSwdYvMQ1GA55+XiV07d8q2QVRHeXllK4UzM2WvYXd3KR0dESF/qmDjxlA/T6wf0xMnM29sZ3YiC6mXbmxndoMGQJi/J6LbBGFUrzBEBDWwVXMtjjGZiPDiizJ55/HHgaws4PPPpboDISdHtqRISAC2bJF9iIksxdSYnJubW+FxDw8PeJi5wtrly5fhZ63SreUwSezkNh1KNct+MQCweOcJBO54H4+4ukrGtlMnsxwXqJwQTkyUv9+cEB4zRlYK1zkhXB2tVsqD9O8vG0X27ClJ3MmTLTdgGhIiNZYXL5bSmKGhljlPLRRFPuatt8pelJb03XdSXjo/36aVyslI7PgSmVfTphJK4+PlT1uWZty7t2y/X1vJzAS2bQNSUyXuDxgA+PiY8QQuLlJ2+qGHpCLKc89Jln7ZMslEO7OSEhndDw8HWre2dWvIQIzLRPalTRvgyhXpSnt5OUZBiyVLgBUrgA8/BKKjbd0aO1VcLKVc9EnhK1dkNqGfn2Tdg4NlObqty7xUo3XjBpg9pCNmoyPyCotx5lIeiop1cHfVooW/F7w8nGNYkjGZiADIAGdgoGREo6OBb74BgoJs3SqbSksDBg0C/vpLdq6MirJ1i8jRmRqTQ2/KycyaNQuzZ882W7tSUlKwdOlSq68iBpgkdmrnsvMxa+vRKp/TFV1DbsJmFKYno+j8CegKrsJ/8Evw7tK/+gMqCl4f8CyiXroLocG+JrfL0ITwP/8pf3btaoOJsp06yfSmWbNkxdG2bcBHH1luyverr8rqppkzpXy3DXz+uXzk3bstV/b02jUZl3/3XatXKiczYMeXyPz69ZNKCvv22a7cfm6ulIfs1cvA/X7NrHxpaX//OpSWNlRgoCSH9SWoIyPlpuPNNx1jxN4UiYnApUuSQFfpIDRVxrhMZF80GpmQm5cncb9vX1lVbK+2bgUmTQJee012UCIDKYrcfOlLSF+8KBdoT09JCHfqJAkFO9zY2cvDFR1DbHAzqQKMyURUqm9f4McfJTN6xx2ypY9FO7jqdfw4MHCghL69e4H27W3dInIGpsbkc+fOwafcSoXqVhFPmTIFixYtqvGYx44dQ7t27Ur/npaWhpiYGAwfPhzjxo0zvHFmwiSxE5u25QiKq9kXRpefi8t7/wsXn0C4BbVEYeqR2g+o0aBY64pp3yRj/ZieBrXBLhLC1fHwkAHjwYNlv+AuXYClS+W/zT2A2qABMHu2DFa//LL8IqyoqEiSt/fcY7kZ4ElJUsHy1CmLVyonC2HHl8j8fH3L9ins3t02g8W7d8s4ZO/e1j2vvrT0zp0Sh8xWWtpQvXpJZnrlSmD69LIS1E8/7VzllvVZ+q5dZR8tshuMy0T2R6uVuUm7dwM//SSxzw5zgfjlF+DRR4GhQ4GFC23dGjtQWCirhPVlpAsK5F4jMFDGGRo3lptATtSyW4zJRFTBLbdIJ3/gQFk6u22b7feYsrL9+4F775UCmtu3SyU1ImswNSb7+PhUSBJXZ+LEiRg9enSNrwkvNzEkPT0d0dHRiIqKwsqVKw1vmBkxSeykTmZewZ6Ui9U+7+Lth2ax6+Hi3QiF508iY93LBh23RKdgT8pFpGRdqbSfTGGh7Bl8+LAdJoRrctddwK+/ymZLo0cDX30lNbX8/c17nrFjgXfekZrPO3ea99i1WL4cOH1a9iM2t5ISqaQ9cybQoYPZK5WTFbHjS2QZd94pg63x8dbfm+f8eQlxgwfL3ChrsXhpaUPdXIJ6wgRg9WrnKkH900+SpbdlrXEyCeMykX3ST8zatUvGj++6y74mz6alAffdJ3279evtq+1Wo9MB2dllJaSzs+VxHx8gLExWDAcEONekNAfHmExElbRsKctn77kH+Mc/ZDPe/jVU8HQgX38NPPywbBn5v//JrglE1mLpmBwYGIhAA6vQpaWlITo6Gt27d8eaNWugtdGNM5PETmpDQipctBqUVLOSWOPqBhdv067QLloN1u1NxQNhHZGYWJYULp8Q7tBBAoHdJYSr07ChlJu+7z5ZYdS5M7BmjcwIMxc3N2DRIpmOvXOnjJhbQU4OMG+e/L/q2NG8xz5zRhZe//ST5L7nzrVuEoLMix1fIsuoV0/6jNu3y6rixo2tc15FAeLiZIzSWpOarV5a2lDOWoI6J0emeEdF2abWONUJ4zKR/fL2lkvvjz9KX/q22+xjEWlennSJNRopN+3paesWqUheXtlK4awsGRxxd5cbu/BwSQzb9aAI1YQxmYiqFBgos8GHD5eZ2evWSSkOB7Z6tQyd338/sGGDjHcQWZNaYnJaWhr69OmD5s2bY/Hixbhw4ULpc8HBwZY5aTWYJHZS8clZ1SaI66pEp2DNjizMX9GxNCFslyuETTF8uPTmn3oKiIkBYmMlsWuu3vH998t+FZMnS+0xK8wsfvNN2St4zhzzHVNRZFZ5bKzMFouPlwQI2TdFMS5wKpa5BBE5pNtuk8RpXBwwapR1znnypFSRGDHC8uFGUYDffpPPZ5PS0obSl6D+z3+AadMcvwT1rl3Sa7d2rXEyC8ZlIvsWGFgW/xs0AMptW6ZKJSWyfdDJkzIJ2Ol3KCguBi5cKEsMX7kij/v7A23aSFK4USP7yP5TnaklJp85cwbz5s3D7t27kZGRgZCQEIwaNQrTp0+Huz3WtidyBF5espx23DjgscckZrxsWEVPe6Io0nWeOVOKdS1d6phdaFI/tcTkuLg4pKSkICUlBc2aNbvpnNbtnDNJ7ISuFhYjNTvfoudwbZSP+D3FuP1WV+ebPdy0qSz3ev994LXXgO++k6lR5liGpdFIbebISODjj4Enn6z7MWuQmioVrl99VfaIMIdLl2Qs/YsvZIXY0qVcnOQo1DITi8gRubgAd98NfPIJkJICRERY9nw6nSRsW7SQcUxLUk1paUO5uADPPFOxBPWqVVKCOjLS1q0zn/R0ydzfdx/LfNgpxmUi+9e8ueQWjxyR1cU3jR+pypQpsvPS1q0yMdzpKAqQmyuD+xkZwMWLcmH19JTVwp06AUFB9rnJNNWZWmLy8ePHodPpsGLFCkREROD333/HuHHjkJeXh8WLF1vmpERUOzc3qUgZEgK88or0xRYtcpg9G0pKZJfG5cuB+fNlvjXnSJGtqCUmjx49uta9i62FSWIndPZSHqwxFyEwPA+enk6a/dNqgRdekL0kRo6U+qBz5kjSuK7TpHr1khXLM2bIBg4WXJY9c6YkcCdPNs/xduyQRdYFBcCnn8rHIMehliBL5KjatpVt6uLipCqhJfuLP/8sY5sPPmi5zltBgVSSOHRIZaWlDRUQICuKx4yRRLG+ksibb8ogsD1TFAnagYFAt262bg2ZiHGZyDF07AhcvSorij09AT8/W7eoslWrZC7zO+/I1opOo7BQSkfrE8MFBdLfDwwEunSR5HCDBhwJJ9XE5JiYGMTExJT+PTw8HMnJyVi+fDmTxES2ptEACxdKKY4XXwTOnwc+/NDuJxcVFMjQ+P/+J/cLY8bYukXk7NQSk9XEMaajkFGKiq3zzbbWeVStQwcgIUGyrDNmSE3l06frftyFC2Xp1Tvv1P1Y1UhKkpLQs2dLv7Yurl2TnHlMjEygPnKECWJHpA+yxvwQkeE0Glllm5Ul12hLKSyUfYG7dLFMqUhFAX79VQpu/PKLlJZ+5hk7SxCXpy9BvXw58OWXks1ftkymS9ur5GTgzBn5wrEGmN1iXCZyDBoN0KOHTN7duxfIt2xRMKPt2iVlI597Tvp8Dk2nk1l0v/8uH3zrVuDAASA7W2by3XWXbBF1551A69ZSGoUJYoLpMTk3N7fCT2FhodnbdvnyZfipcfYJkbN6/nlg0ybgs8+kqpN+uwI7lJMDDBwIfPutdJWZICY1YD+5MiaJnZC7q3X+t1vrPKrn7i5J3R9/BNLSZNR9zZq6FbSPiJCe+BtvyD5HFvDqq1JidOzYuh3n559lL+r//Ad4912pxN20qXnaSETkbJo2BTp3lhW4RUWWOcfevZIo7tvX/MfOyADWrpUOYosWsjf9HXc4QB5SX4L6xAkpQx0bKyP6+/fbumXGKykpW67eurWtW0NERJAwc8cdUkXkp5+A69dt3SJx/DgwbJhM+Hr3XQfNh+bnA3/+CezbJ0nh+HjZ+8PTUzaNvvdeGQHv2lVWDtv9TQ2pSWhoKBo2bFj688Ybb5j1+CkpKVi6dCmefvppsx6XiOro4YdlAPXAASA6WhYK2Zm//pI5U/p5Vffea+sWEVF1mMVzQi38vWDxvpsCzJ3shf/7P1mNlJtr6RPagd69ZenUQw8B//yn9KYvXjT9eDNnSi983jzztfGGHTtkfPjNN2VbDFOUlEgOu2dP2cowMVFmljvIdhpUBc7EIrKOvn2lQsO+feY/dm6u5DV79TLvfvEFBTJ7eOVKGWt9/HEJh6ree9gU+hLUBw5IwIuKkpiflWXrlhkuMRG4dElWETvkaL/zYFwmciz16kmXMi9PilXVZc6xOVy8KKWlmzYFPvkEcHWUzcyKi2VWW1KSDNB/843ExoICmUXdt6+sFo6MBFq2tOj2T+Q4TI3J586dw+XLl0t/pk6dWuXxp0yZAo1GU+PP8ePHK7wnLS0NMTExGD58OMaNG2fpXwERGSs6WhYcpafLTLFTp2zdIoMdOyZd4dxcmYQeGWnrFhGVYT+5Mke5jScjeHm4IszPE2ezLVenykvxxF9nXPH1l2XlsNq0kRWl+p9bb3XAweHa+PjIKuJ77wXGj5flYB9+CAwaZPyxAgKAqVMlWfz882Zb7VNSItWxe/eWvq8pTp8GnnhCbgRee022Y7bzLTTIANzTgcg6fH1lAs6+fRJP67olQHm7d8v1undv8xxPUYDffpOJR0VFstKoVy8nWGTTs6eM4K9aJbF6yxZg/nxZbazmD6/fKLprV8vUGierYlwmcjwNG8pA608/yfzjW26xTTsKC4GhQ2Wv5F27zDuxzOoURUaxMzJkpdaFC3JBrF8fCA6W/ZKCgtihpToxNSb7+PjAx4CBs4kTJ2L06NE1via83N4u6enpiI6ORlRUFFauXGl4w4jIurp2lY7/wIGSdd22TQYBVGzfPhn2btZM5lqFhNi6RUQVsZ9cGZPETiq6bRDWJ5xFia766ce5iV9BV5CHkqvZAIBrKQdRfEVWvvp0vw/ael5Vvs9Fq8HwyCDMXiSTcI8fl4m3+p8vv5QVUIATJ46HDZPe/T//CQweLBs4vfWWlKwyxosvyr6H06bJXhVmsH697Bl84IDxC4gUBVi3TlYM+/kBP/wgpUXIOTDIElnPnXfKfr67d5s+oedm58/LgPPgwVIBoq4yMqQPe+4c0LGjLEx1ihiv5+ICPP20xPxp02RC16pVErejomzduqrt2SM1TPv1s3VLyAwYl4kcU3CwJId/+QXw9padiKxJUWRLokOHZF5RixbWPb9ZFBVJQlifGL52TSqABAXJRO7gYJmFx4oaZCaWjsmBgYEIDAw06LVpaWmIjo5G9+7dsWbNGmhZ7o1I3Vq0kFU4994L9OkDbN4M3H23rVtVpa1bgUcekTnTX34pE9yJ1Ib95MqYJHZSI3uGYe3+MzW+JjdhC0pyy8oj5p/YB5yQ2pbeHaOrTRKX6BSM6hUGQEpOdeokP08+Kc8bkzi+7TagWzcHHVQOCZHam8uWydLdXbuAjz+WD22o+vVlZdLo0VIftI71O/LzgRkzgOHDJaAb4+JFGQvfvFn+X7/3noP+f6NqMcgSWU+9etI//PZbWZnbuHHdjtuso+IAACLXSURBVKcowM6dUqSirhOT9YtRDx0C/P2lskTLlnU7pl0LCJA622PHAhMmSKmw0aOBRYtkMFotcnJkhtgddzCAOwjGZSLHFREhq3iTkiRRHBxsvXPPny/d1k2b7Kh8pE4HZGeXJYazZSI8fHyA0FD5BQYEqLvaB9k1tcTktLQ09OnTB82bN8fixYtx4cKF0ueCrXkhISLjBATIuPHDD8us7rVrgZEjbd2qClatknHhBx+UBUj16tm6RURVU0tMVhMmiZ1U68YNcGdEAPb9eana1cTNnvvQ6OO6aDWICvdHRFD1tS8NSRwfPlx14vi22+RPh0kcazRAbKys2Bk1SnrZs2YBU6YYvqnTqFHAkiWSaN6zp06znd99V7ZNfOMN49737beyKLqoCPj8c1k0Rc6HQZbIurp3l4rGO3dKKKjLYpeTJ4EzZ4BHHzV973hFkZXI330n8aB/f5lwxPHWG26/XZKwq1bJyuLyJajVsJHjrl3Sk7/jDlu3hMyEcZnIsXXtKoni/ftlm1xrlHzetAl4/XVg7lxZKaRq+fmSEM7IkE7u9euAm5vMrAsPlz+NreRFZCK1xOS4uDikpKQgJSUFzZo1q/CcYuuNzomoZl5eMlj+9NMyAJCRAUycaOtWQVGkW/v66zIn+t13OQZA6qaWmKwmKhiRIltZOLQz+i/5ocaS08Zy1WqwcGhn499nYuJYnzS2+8Rx+/bSu58zR5LE27bJtKtWrWp/r4uLlKoeMEB+QUOHmtSECxckOfzss4adFpB+9+TJwL//LdtjfPgh95pwZopiXOBkH5SoblxcpMrUJ58Ap06ZXm5Sp5M9g1u0MH17+/KlpTt1knbZbUy2pJtLUL/wQlkJalsmZ9PSZPPo++4zT61xUgXGZSLHptHIZKz4eNmjuF8/y67a2b9fCmGMGiXVp1SnpEQ6tfrE8JUr8ri/v9zgBAfLnkgsIU02oJaYPHr06Fr3LiYiFXNzA1avlsHXSZOA9HQZE7ZR2fiSEln79MEHwIIFwNSpDLOkfmqJyWrCJLETC/XzxJwhHTFl8xGzHXPukI4I9TPPbNzaEseHD8ufW7Y4SOLY3V0i6uDBwOOPy0ZT77wjS3Rri7B33y1J4tdekz0q3NyMPv3cuXKamTMNe31iolQ2OXsWWLpUZovxRsC5cSYWkfW1bQs0by6ricPDTesb/vyzbBnw4IPGX8dZWtpEN5eg7t1bbnYWLap77XBj6WuNBwXJjRM5DMZlIsfn5iYhZNcu2a6wTx/LrN45fRq4/36gRw+Z26SKfp+iALm5ZSWkL1yQC1n9+pIQ7tRJYpu7u61bSsSYTETmo9HI0t0mTYDnn5cYuGaN1ePdtWvAY48BX30li4aeesqqpycyGWNyZbaZZkKqMaJHGCYNaGOWY00e0BaP9Agzy7Gqo08cP/mkJCb37ZN+4ZEjEg8HDJAO7IwZ0kH29QXatZNk5ttvAz/8IK9XtTvukHqdDz8sg8cPPigd3tr8619ASgrwn/8YfcqTJ2XW17RpMm5dk+JiyWX36iWVTn7+WWaNqWKggGxKH2SN+bGk7OxsjBw5Ej4+PvD19cWYMWNw9erVal9/5swZaDSaKn8+++yz0tdV9fymTZss+2GIqqHRyDyhCxeAX34x/v2FhZLk7dpV+piGUhTZB/H99+XP/v2lajITxEbSl6BesUJ6123byg1OcbH12pCcLLXGBwxgXTAHo6a4vGDBAkRFRcHT0xO+vr4GvWf06NGV4m1MTIzlGklkpzw9pQt5+bJM2jL3aofLl2UecoMGMkHbpgUnioqkbMmhQ8A338gkpyM3Jr137izlre65R2aON2vGBDGphppiMhE5iAkTgE8/lX3/7rmnrIKGFfz9t3Qfd+wA/vc/JojJvjAmV8aVxITY6NYI8PbArK1HUaxTjCo/7aLVwFWrwdwhHS2eIK5O+RXH+qo5+hXH+tXG5VccazRlexyrdsVxgwZSPuTee4Fx46TD++GHssq4Ol27yhKu2bOlBli5D5RXWIzTOXlwb6LD6Rwt2hZ6wcuj7J//1KmSHHjhhZqb9eefssj5wAHZNnnWLPa7qYzaZmKNHDkS58+fR1xcHK5fv46nnnoK48ePx8aNG6t8fWhoKM6fP1/hsZUrV+Ktt97CoEGDKjy+Zs2aCgPVhg54E1lC06YSJuLj5c/y1+W8wmKcybmOoiZt4J5zHS0Kiytc/3/6ScZbo6MNPx9LS5uZiwswfnxZCeoXX5R7ADOVoM4rLMaZC/ko0nnB/UI+WviX+w6UlJQtQze1XjmplpriclFREYYPH47IyEisXr3a4PfFxMRgzZo1pX/3YDl0oir5+cm8o/37AW9vic/VySssxpnMPBTlaeGemYcWng0q3BuUV1wsc5fT0+XYtU0oNjudTkai9SWks7PlcR8fIDRUqm8EBnKSE6memmIyETmQhx6S4Hz//bJaats2gytT5RUW43hGHk5c0gEZWrRr6lXt/UB5584BgwZJWN69WxYREdkTxuTKmCQmALKi+I5WAZi25Qj2pFyEi1ZTY7JY/3xUuD8WDu1sthLT5lJd4vjYsbKkcU2J49tuk8RxgwY2/Riyv3CvXsCYMTIr7JlngMWLZQlvVebPl80p33oLJ2NfxYaEVMQnZyE1Ox8KgCZPAhPjgElxQJifJ6LbBqFjvTB88UUDrFsnlbmqoiiyUvvFF6UP/uOPtt06kdRJTUH22LFj2L59Ow4dOoTbbrsNALB06VIMHjwYixcvRkgVm2e7uLggODi4wmNbtmzBww8/DG9v7wqP+/r6VnotkS317Qv88YeUmmzW4Uql6z+efBuIuwhN3I7S6/+QjmE4cKABIiOBhg1rP0dBgXQCDx+WfihLS5uZv7+sKB47FnjuuTqVoD6ZWcV3AB2BTcnQILn0OzCyfg5aZ2dLBoAlQRyOmuLynDlzAABr16416n0eHh6Mt0QGatZMJosdOSL92ObNy56rOi7UA5J/hQa/lsWFnmFo3Vg6wYoik4h37wa2b5cKXVaRny8jz5mZ8nP9utTVbtxYJjU1bizLp4nsiJpiMhE5mD59gD17JHMbFSXLe6uZAFz1/QCAeEADVHk/UN4ff0jRDhcXGXto29ZSH4rIchiTK2OSmEqF+nli/ZieZQHjRBZSL5ULGLgRMPw9Ed0mCKN6hSEiyNZZVMO5ukqnuXNn4xPH+n2ObZI4btJESmktXw5MmiQbTn38sUwVv1mzZjj30hRMO+WGPe/8WG2yXwFwNjsf6xPOokR3Bq3GBOAfgzsDqNzZvnBBFjh9+aWUD3nnHa4YI/PKvakGvIeHR51XCu3fvx++vr6lCWIA6N+/P7RaLRISEjB06NBaj5GYmIikpCQsW7as0nMTJkzA2LFjER4ejmeeeQZPPfUUNEywkA35+gKtuuZjxq4jSNtZ/WSv8tf/tfvPINQtAI90qPr6X/oeRXZBiIuTuNm/P9CzJxftWEyPHlKyY/VqKfXx5ZfAvHnAs8/KzUwNzmXn1zrhr/Q7cOAs1ioK7vTpjoXuPgi1zKchO2SJuGyq77//HkFBQWjUqBH69u2L+fPnw9/f3yZtIbIHbdtKtcnDh2Ve8TWtEXHhxr3BnREBWDi0Mzav98Ty5bKbUb9+Fmx0SYl0OvWrhfXlMv39gdatZX9hPz9OZiIiIqpOly6yJ+PAgZIo3rZNBrNvMKqfeNP9gH5h2N69wH33SSGPb78Fqlh7QUR2ikliqqR14waYPaQjZqOjlKK6lIeiYh3cXbVo4W9Y6Ql7YWjiePNmWUGlTxzrk8ZWSxxrNLKqqF8/KSUdFQW8/rqUpSw3YLzpUCpmud6O4tDrAFBr6XD987rASxjw7g+YM6QjRpQrG75tG/DPf8rv5IsvZHtkouqYOhMrNLRiamLWrFmYPXt2ndqSkZGBoKCgCo+5urrCz88PGRkZBh1j9erVaN++PaKioio8PnfuXPTt2xeenp7YuXMnnnvuOVy9ehUv1FavnciCNh1KxeyDR1FUItd1Q6//acWXcM+yytd/vfPnJRb89ZdU5xgwQAVVNpxBVSWoV62SEtS9e1f5lk2HUku3DgEM+A7c2LRy3xUt+i+p/jtA9ktNcdkUMTExePDBB9GyZUucOnUK06ZNw6BBg7B//364cJYKUZU0Gumj5uUBi7ekYkuqEXHhxvP7/ryEvv/3AzK3dcSkSWEYO9bMjVQUIDdXVglnZEiCWKeTslbBwUDHjrJamPsakQPhqiUisrjmzSWTe++9srr4iy+AgQON7yeWux/Q9xPrpYXh0Uel2OWXXxpWiYxIrRiTK3OcbB9ZhJeHKzqGONeV35DE8eHDEmutnjhu21Zmhs2dC8yZI1O31q8HIiLwfvxJLN55Ql6nNW7gTAcFhcUKpmw+gotXC/HU7a0xaRLwwQdATIxsh9ykiQU+DzkUU4PsuXPn4FNueXpNq5WmTJmCRYsW1XjcY8eOGd6Ialy7dg0bN27EzJkzKz1X/rFu3bohLy8Pb731FpPEZDMVrv9G0ikVr/+x0a0BSEWN+Piy0tJPPgm0aGHGRpNhypegnjABuPNOqfP9r39VKEFdl+9AiQKUFOsqfQfI/lk6Lhsak9uZWKN2xIgRpf/duXNndOnSBa1atcL333+PfhZd1khk37Ra4NfrJ7HpTxPjgk5BsaLAL+YIQvsXAjBDXCgqKisfnZEhNxparexl1LmzJIcbNOBqYXJYHJAmIqvw95cKlI88Atx7L97/13+xOKuavQVrUaJTUKKTsYKcHwtx332tsX49YKMCQ0Rmw5hcGZPERAaoLXF8+LD8WT5x3LZtWdLYrIljNzcpOzloEPD448Att2DTnBVYfNHXDAcHFu88gXfe8ED6T2FYtkyqW7KvToYwNcj6+PhUGIyuycSJEzFa/4+wGuHh4QgODkZWVlaFx4uLi5GdnW3Q3oaff/458vPz8cQTT9T62p49e2LevHkoLCy0WTlOcl6bDqWanBy82eKdJxDg7YG2rmH47juJc3ffLbsbcNGejZUvQT1lSlkJ6ueew6Zf0s36HQj09sAjXFHsECwdlw2NyeYSHh6OgIAApKSkMElMVINNh1KxZHfd4oK+//f2dyfQ2MeEuKAoQHZ2WQnp7Gx53MdHNk8ODpYEMW8wyElwQJqIrMbTE9iyBZtefMPkBPHNfO86gaFDPeDhwX4i2T/G5MqYJCYykc0Tx1FRQFISzk2agVnn6wOuSqVsbuH5E8g7sgsFqUdQfDkT2vo+8AhpC9+7HoebX9MqD6soQPEtR7FtQQD69Kh+j0qim1kjyAYGBiIwMLDW10VGRiInJweJiYno3r07AGD37t3Q6XTo2bNnre9fvXo1hgwZYtC5kpKS0KhRIyaIyerOZedj1taj1T6vK7qG3ITNKExPRtH5E9AVXIX/4Jfg3aV/te+ZseUoHnALQFRXT9x9N0tLq4pWC4wbJ3s/TJ8OvPQSzm3cjFn9Jlf5clPuAQDg9a1HEdUqoHTvKbJflo7LhsZkc/nrr79w6dIlNGF5G6JqWeLewOC4kJ9ftlI4MxO4fl0mODduDISHy5+ejC3knDggTUTWdC63CLP8bgOKSwBUXvljyv3A7K+OoncE+4lk/xiTK9PaugFEjkSfOB49Gnj/fWD/fuDKFeC332TxT79+wKlTsr3gP/4hezi0by/bDC9ZAuzZA1y9asQJGzTAtNsfQ7Gbe5XLfXMPfI785H2o17wrGvUfD++uA1Fw7necX/Miii6cqfKQGg3g4qZg9W9HTPodkPNSlLJAa8iPUvM2KHXSvn17xMTEYNy4cTh48CD27t2L2NhYjBgxAiEhIQCAtLQ0tGvXDgcPHqzw3pSUFPz4448YW8UGbF999RVWrVqF33//HSkpKVi+fDkWLlyI559/3nIfhqga07YcKd1XqCq6/Fxc3vtfXL90Dm5BLQ06Zomi4EzgETz4IBPEquXvL/tBHDyIaV0eRPH14ipfZso9AAAU6xRM28J7AEegpricmpqKpKQkpKamoqSkBElJSUhKSsLVcje+7dq1w5YtWwAAV69exeTJk3HgwAGcOXMGu3btwv3334+IiAgMHDjQcg0lsnOWuDeoNi6UlEhCOCkJ2LED+OYbmSmdnw+0bg307QsMGQJERgItWzJBTE5NTTGZiBxf2f1A1aUhzXo/QGRnGJMr40piIgsrv+L4qafkseJi4I8/yvY4rm7FsX6f427dAG/vysc+mXkFe1Iuorqg36DHUAQMmQyNi1vpY17t70T66ljkHvgcAfdNqvJ9JToFe1IuIiXrCiKCmCUgw+h0xpUmt/RMrA0bNiA2Nhb9+vWDVqvFsGHD8N5775U+f/36dSQnJyM/P7/C+z788EM0a9YMAwYMqHRMNzc3LFu2DC+//DIURUFERATefvttjBs3zrIfhugmZdf/6rl4+6FZ7Hq4eDdC4fmTyFj3cq3HVaDgcBqv//bgZGhb7PHPrPZ53gOQmuLy66+/jnXr1pX+vVu3bgCA+Ph49OnTBwCQnJyMy5cvAwBcXFzw22+/Yd26dcjJyUFISAgGDBiAefPmsXIHUTUsdW9QGhcyryCivlJWQvrCBblw1K8v5aM7dJDVwu7u5vpIRA5DTTGZiBybxe8H2E8kO8eYXBmTxEQ24OoKdOkiP8YkjvVJY33ieENCKly0GpRUM1u8XrP2lR5z82sK94AwXL94rsY2umg1+PhAKmYP6Vjnz0vOQW1B1s/PDxs3bqz2+RYtWkCpYjrYwoULsXDhwirfExMTg5iYGLO1kchUtV3/AUDj6gYX70ZGH5vXf/vAewCqjZri8tq1a7F27doaX1M+JtevXx87duywXIOIHJBF7w00wMef/IDZTa7J9geBgTILunFj2WfYmIsNkRNSU0wmIsfGsQKimjEmV8YkMZFKGJo4/vzzssRx8wlZULyNq3mgKApK8nPgFhBW4+tKdAriT2RhNhj4yTAMskTWE5+cVWOnry54/bcPpnwHeA/gXBiXiZyLRe8NFCD+iitmP3ynJIhdXCxyHiJHxZhMRNbCsQKimjEmV8YkMZGK1ZQ43neoGG+ezK/5AFXIO/o9Sq5cgm/vkbW+NvVSPvIKi+HlwUsF1Y5Blsg6rhYWIzXb+Ou/MXj9VzdTvwO8B3AujMtEzsMq9wZXS5DXKABeTBATGY0xmYisgWMFRLVjTK6M/5qJ7Iw+cewSkIc3U4x77/VL55AdtxweTdvBq3O/Wl+vADhzKQ8dQxqa1lhyKgyyRNZx9lIeLDMvuIwCYPvePLT05fVfjU7nGP8d4D2A82FcJnIe1ro3YFwgMg1jMhFZA+8HiGrHmFwZk8REdqqo2LgrVMnVv5H12RxoPbwQ8MBUaLSGzQA39jzkvBhkiazDWtflx0bpUHTeKqciI7k30aHJk4a/nvcAzolxmch5WOt6zbhAZBrGZCKyBt4PENWOMbkyJomJ7JS7q9bg1+oK8pD56SzoCvLQeNQiuDbwt8h5iIjI8qx1Xd74sRYtfa1yKjLS6RwtJsYZ9lreAxAROT5rXa8ZF4iIiNSL9wNEZAomiYnsVAt/L2iAWsuIKMVFyPp8Lor/TkPjEfPhHhBm8Dk0N85DZAjOxCKyDkOv/3WhARBzhxe8PCx4EjJZ20IvTIrjPQDVjHGZyHlY696AcYHINIzJRGQNvB8gqh1jcmWc9kFkp7w8XBHm51njaxRdCS58uQiF6ccR+MAUeDRtb9Q5wvw94eXBuSRkGJ3O+B8iMp4h1/+64vVf3XgPQIZgXCZyHrw3IFI3xmQisgbeDxDVjjG5Mv6LJrJj0W2DsD7hLEp0Vc8R+3v3alxLSUD9iNtRcu0qrv4eX+F5707R1R7bRatBdJsgs7aXHJuiGBc4FUtObSRycLVd//VyE7+CriAPJVezAQDXUg6i+MpFAIBP9/ugrVd5BjCv//aB9wBUG8ZlIufCewMi9WJMJiJr4f0AUc0YkytjkpjIjo3sGYa1+89U+3xR5p8AJNBfSzlY6fmaBohLdApG9TK8LCWRsTOrnGEmFpGl1Hb918tN2IKS3KzSv+ef2Aec2AcA8O4YXWXHj9d/+8B7AKoN4zKRc+G9AZF6MSYTkbXwfoCoZozJlTFJTGTHWjdugDsjArDvz0tVzhALHvmmScd10WoQFe6PiKAGdW0iOREGWSLrqe36r9fsuQ+NOi6v//aD9wBUG8ZlIufCewMi9WJMJiJr4f0AUc0YkyvjnsREdm7h0M5w1Rqx27oBXLUaLBza2azHJMfHPR2IrIvXf+J3gGrCuEzkfBgXiNSJMZmIrIn3A0TVY0yujEliIjsX6ueJOUM6mvWYc4d0RKifp1mPSY6PQZbIunj9J34HqCaMy0TOh3GBSJ0Yk4nImng/QFQ9xuTKmCQmcgAjeoRh0oA2ZjnW5AFt8UgP7i9BxmOQJbI+Xv+J3wGqDuMykXNiXCBSH8ZkIrI23g8QVY0xuTLuSUzkIGKjWyPA2wOzth5FsU6pcd+Jm7loNXDVajB3SEcGfTKZsUHTGYIskTXw+k/8DlBVGJeJnBfjApG6MCYTkS3wfoCoMsbkypgkJnIgI3qE4Y5WAZi25Qj2pFyEi1ZT4w2A/vmocH8sHNqZZUOoThhkiWyH13/id4BuxrhM5NwYF4jUgzGZiGyF9wNEFTEmV8YkMZGDCfXzxPoxPXEy8wo2JKQi/kQWUi/lo3z41wAI8/dEdJsgjOoVhoigBrZqLjkQBlki2+L1n/gdoPIYl4mIcYFIHRiTiciWeD9AVIYxuTImiYkcVOvGDTB7SEfMRkfkFRbjzKU8FBXr4O6qRQt/L3h58J8/EZEj4vWf+B0gIqLyGBeIiIiI9wNEVBX+yydyAl4erugY0tDWzSAHpyjGza5SDN8KhYhMxOs/8TvgvBiXiagqjAtE1seYTERqw/sBclaMyZUxSUxERGah0wEajeGvd4YgS0REZCuMy0REROrAmExERKQOjMmVMUlMRERmwSBLRESkHozLRERE6sCYTEREpA6MyZUxSUxERGbBIEtERKQejMtERETqwJhMRESkDozJlTFJTEREZsEgS0REpB6My0REROrAmExERKQOjMmVMUlMRERmwSBLRESkHozLRERE6sCYTEREpA6MyZUxSUxERGbBIEtERKQejMtERETqwJhMRESkDozJlWlt3QAiInIMOp3xP5a0YMECREVFwdPTE76+vga9R1EUvP7662jSpAnq16+P/v374+TJkxVek52djZEjR8LHxwe+vr4YM2YMrl69aoFPQEREZDq1xOUzZ85gzJgxaNmyJerXr49WrVph1qxZKCoqqvF9BQUFmDBhAvz9/eHt7Y1hw4YhMzPTMo0kIiKyILXEZAAYMmQIwsLCUK9ePTRp0gSPP/440tPTLXdCIiIiFWFMroxJYiIiMgs1BVkAKCoqwvDhw/Hss88a/J5//etfeO+99/DBBx8gISEBXl5eGDhwIAoKCkpfM3LkSBw9ehRxcXH4+uuv8eOPP2L8+PGW+AhEREQmU0tcPn78OHQ6HVasWIGjR49iyZIl+OCDDzBt2rQa3/fyyy/jq6++wmeffYYffvgB6enpePDBBy3TSCIiIgtSS0wGgOjoaHz66adITk7GF198gVOnTuGhhx6y3AmJiIhUhDG5Mo2iOMOCaZGbm4uGDRvi8uXL8PHxsXVziIjMwtbXNv35gcsAjDl/LgDLt3vt2rV46aWXkJOTU+PrFEVBSEgIJk6ciEmTJgEALl++jMaNG2Pt2rUYMWIEjh07hg4dOuDQoUO47bbbAADbt2/H4MGD8ddffyEkJMRin8PR2Pp7S0RkCWq4tqk9LgPAW2+9heXLl+PPP/+s8vnLly8jMDAQGzduLO0kHz9+HO3bt8f+/fvRq1cvi7bP2ajhe0tEZG5quLbZQ0zeunUrHnjgARQWFsLNzc2i56LaqeF7S0RkCba+vjEmV8+p9iTW58Nzc3Nt3BIiIvPRX9NsP+fH2GurvP7ma7KHhwc8PDzM1CbDnT59GhkZGejfv3/pYw0bNkTPnj2xf/9+jBgxAvv374evr29pghgA+vfvD61Wi4SEBAwdOtTq7bZXjMlE5IjUE5MBNcfly5cvw8/Pr9rnExMTcf369QoxuV27dggLC2OS2AIYk4nIETEm1y47OxsbNmxAVFQUE8QqwZhMRI5KPXGZMflmTpUkvnLlCgAgNDTUxi0hIjK/K1eu3JgRZV3u7u4IDg5GRobx11Zvb+9K1+RZs2Zh9uzZZmqd4TIyMgAAjRs3rvB448aNS5/LyMhAUFBQheddXV3h5+dX+hoyDGMyETkyW8VkQP1xOSUlBUuXLsXixYurfU1GRgbc3d3h6+tb4fHyMZnMhzGZiBwZY3Jlr732Gt5//33k5+ejV69e+Prrr+t8TDIPxmQicnQcv65IDTHZqZLEISEhOHfuHBo0aACNRmPr5hARmYWiKLhy5YrNSh3Xq1cPp0+fRlFRkdHvVRSl0vW4pllYU6ZMwaJFi2o85rFjx9CuXTuj20LWxZhMRI7I1jEZsF5cNiUmp6WlISYmBsOHD8e4ceOMbh9ZBmMyETkixuSKysfkyZMnY8yYMTh79izmzJmDJ554Al9//TVjgAowJhORo7J1XGZMrp5TJYm1Wi2aNWtm62YQEZmdrWZG69WrVw/16tWz+HkmTpyI0aNH1/ia8PBwk44dHBwMAMjMzESTJk1KH8/MzMQtt9xS+pqsrKwK7ysuLkZ2dnbp+8kwjMlE5KhsHZMB68RlY2Nyeno6oqOjERUVhZUrV9b4vuDgYBQVFSEnJ6fCauLMzEzGWwtgTCYiR8WYXKZ8TA4ICEBAQADatGmD9u3bIzQ0FAcOHEBkZKRF20m1Y0wmIkdm67jMmFw1p0oSExGRfQsMDERgYKBFjt2yZUsEBwdj165dpUnh3NxcJCQk4NlnnwUAREZGIicnB4mJiejevTsAYPfu3dDpdOjZs6dF2kVERKRGxsTktLQ0REdHo3v37lizZg20Wm2Nr+/evTvc3Nywa9cuDBs2DACQnJyM1NRUDmATERHdpC79ZJ1OBwAoLCw0Z5OIiIickj3GZCaJiYjIIaWmpiI7OxupqakoKSlBUlISACAiIgLe3t4AgHbt2uGNN97A0KFDodFo8NJLL2H+/Plo3bo1WrZsiZkzZyIkJAQPPPAAAKB9+/aIiYnBuHHj8MEHH+D69euIjY3FiBEjbFrGjIiISK3S0tLQp08fNG/eHIsXL8aFCxdKn9OvCk5LS0O/fv3w0Ucf4fbbb0fDhg0xZswYvPLKK/Dz84OPjw+ef/55REZGolevXrb6KERERHYtISEBhw4dQu/evdGoUSOcOnUKM2fORKtWrTgJi4iIyIrUFJOZJCYiIof0+uuvY926daV/79atGwAgPj4effr0ASCrki5fvlz6mldffRV5eXkYP348cnJy0Lt3b2zfvr1CKZINGzYgNjYW/fr1g1arxbBhw/Dee+9Z50MRERHZmbi4OKSkpCAlJaVS+URFUQAA169fR3JyMvLz80ufW7JkSWmcLSwsxMCBA/Hvf//bqm0nIiJyJJ6enti8eTNmzZqFvLw8NGnSBDExMZgxY0a1eysSERGR+akpJmsUfc+ciIiIiIiIiIiIiIiIiIgcXs2bQRERERERERERERERERERkUNhkpiIiIiIiIiIiIiIiIiIyIkwSUxERERERERERERERERE5ESYJCYiIiIiIiIiIiIiIiIiciJMEhMREREREREREREREREROREmiYmIiIiIiIiIiIiIiIiInAiTxEREREREREREREREREREToRJYiIiIiIiIiIiIiIiIiIiJ8IkMRERERERERERERERERGRE2GSmIiIiIiIiIiIiIiIiIjIiTBJTERERERERERERERERETkRP4fQRkhLkLtVrMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1442,9 +686,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "The solution found by RQAOA has energy = -9.0 and ground states = ['0011010', '1000100', '1100100', '0011011', '0111011', '1100101']\n", + "The solution found by RQAOA has energy = -9.0 and ground states = ['1100100', '0011010']\n", "\n", - "The exact energy is -3.0 and the solutions are ['1000', '1100', '0010', '1101', '0011', '0111']\n" + "The exact energy is -5.0 and the solutions are ['1000', '0110', '1001', '0111']\n" ] } ], From 030465e8b4baef67679701c170cc9ee5d8afe203 Mon Sep 17 00:00:00 2001 From: KilianPoirier Date: Wed, 18 Oct 2023 06:58:44 +0000 Subject: [PATCH 09/10] Updated demonstration notebooks --- .../qaoa/openqaoa-recursive.ipynb | 34 +- samples/azure-quantum/qaoa/openqaoa.ipynb | 345 +++++++++--------- 2 files changed, 196 insertions(+), 183 deletions(-) diff --git a/samples/azure-quantum/qaoa/openqaoa-recursive.ipynb b/samples/azure-quantum/qaoa/openqaoa-recursive.ipynb index cb03dcf65cb9..bf95f81b2dff 100644 --- a/samples/azure-quantum/qaoa/openqaoa-recursive.ipynb +++ b/samples/azure-quantum/qaoa/openqaoa-recursive.ipynb @@ -311,8 +311,8 @@ " 'schedule': [1, 1, 1, 1],\n", " 'number_steps': 4,\n", " 'intermediate_steps': [{'counter': 0,\n", - " 'problem': ,\n", - " 'qaoa_results': ,\n", + " 'problem': ,\n", + " 'qaoa_results': ,\n", " 'exp_vals_z': array([0., 0., 0., 0., 0., 0., 0.]),\n", " 'corr_matrix': array([[ 0. , 0.15351551, -0.22415966, 0.06753463, 0.28993212,\n", " -0.28993212, -0.15351551],\n", @@ -329,8 +329,8 @@ " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ]])},\n", " {'counter': 1,\n", - " 'problem': ,\n", - " 'qaoa_results': ,\n", + " 'problem': ,\n", + " 'qaoa_results': ,\n", " 'exp_vals_z': array([0., 0., 0., 0., 0., 0.]),\n", " 'corr_matrix': array([[ 0. , 0.1595476 , -0.35002771, 0.03823884, -0.29664148,\n", " -0.08613327],\n", @@ -345,8 +345,8 @@ " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. ]])},\n", " {'counter': 2,\n", - " 'problem': ,\n", - " 'qaoa_results': ,\n", + " 'problem': ,\n", + " 'qaoa_results': ,\n", " 'exp_vals_z': array([0., 0., 0., 0., 0.]),\n", " 'corr_matrix': array([[ 0. , 0.99999992, -0.99999992, -0.9999999 , -0.99999992],\n", " [ 0. , 0. , -0.9999999 , -0.99999992, -0.99999993],\n", @@ -354,17 +354,17 @@ " [ 0. , 0. , 0. , 0. , 0.99999992],\n", " [ 0. , 0. , 0. , 0. , 0. ]])},\n", " {'counter': 3,\n", - " 'problem': ,\n", - " 'qaoa_results': ,\n", + " 'problem': ,\n", + " 'qaoa_results': ,\n", " 'exp_vals_z': array([0., 0., 0., 0.]),\n", " 'corr_matrix': array([[ 0. , 0.22076627, -0.37883018, 0.00745541],\n", " [ 0. , 0. , 0.16551932, -0.22076627],\n", " [ 0. , 0. , 0. , 0.37883018],\n", " [ 0. , 0. , 0. , 0. ]])}],\n", - " 'atomic_ids': {0: '1f40ddeb-3973-49dc-908f-35dcc4c46e19',\n", - " 1: '642f7c83-e19d-4d54-8a85-910d74bf0fd4',\n", - " 2: '4bed9c07-2f1c-41a7-a0ee-534db2969955',\n", - " 3: '49bc9121-d5f2-40de-bf88-1613b26a76db'}}" + " 'atomic_ids': {0: '35a89cab-ab5c-49ab-ae13-286881fd5efb',\n", + " 1: '426e4cbf-8d02-4e21-b8fe-83703cac0052',\n", + " 2: '3df9867d-f977-4381-9002-dea3584808bb',\n", + " 3: 'd56eb4b3-a9a6-4389-9b3f-a30de57952be'}}" ] }, "execution_count": 10, @@ -546,7 +546,7 @@ "\n", "# Set the backend you want to use here.\n", "# WARNING: Quantinuum simulator usage is not unlimited. Running this sample against it could consume a significant amount of your eHQC quota.\n", - "backend_to_use = ionq_sim" + "backend_to_use = rigetti_sim" ] }, { @@ -604,7 +604,7 @@ "name": "stdout", "output_type": "stream", "text": [ - ".............................................................................................................................................................................................................................................................................................................................................................................................................." + "............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................" ] } ], @@ -635,7 +635,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB4kAAAKaCAYAAAAjwm9WAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hU1dbH8d+EkNBD771X6R0FFJFmR7mK14ZYLtiwxmu5elXUa8F2FSxYUa8IggVRkSodBKkiPYJ0SKgBknn/WO8QIiGkzMye8v08zzz7kMycswBl55y191oer9frFQAAAAAAAAAAAAAgKsS4DgAAAAAAAAAAAAAAEDwkiQEAAAAAAAAAAAAgipAkBgAAAAAAAAAAAIAoQpIYAAAAAAAAAAAAAKIISWIAAAAAAAAAAAAAiCIkiQEAAAAAAAAAAAAgipAkBgAAAAAAAAAAAIAoQpIYAAAAAAAAAAAAAKIISWIAAAAAAAAAAAAAiCIkiQEAAAAAAAAAAAAgipAkBsLMsmXL1L9/f9WoUUOFChVSlSpVdP755+vVV1/N9L6nn35aX375pZsgJR04cECPPfaYevXqpdKlS8vj8ei9995zFg8AAP4WLnPyggULNHToUDVp0kRFixZV9erVdeWVV2rNmjXOYgIAwJ/CZU5esWKFrrjiCtWuXVtFihRR2bJldc455+irr75yFhMAAP4WLvPyXz311FPyeDxq2rSp61CAoPF4vV6v6yAA5Mzs2bPVvXt3Va9eXdddd50qVqyopKQkzZ07V+vWrdPatWtPvLdYsWLq37+/s8Tsxo0bVatWLVWvXl21a9fWtGnTNHr0aF1//fVO4gEAwJ/CaU7u37+/fv75Z11xxRU666yztG3bNr322ms6cOCA5s6dyw0wACCshdOc/O233+qVV15Rx44dVblyZR06dEhffPGFZs6cqZEjR+rmm292EhcAAP4STvPyyf744w81aNBAHo9HNWvW1PLly12HBARFrOsAAOTcU089pYSEBC1YsEAlS5bM9L0dO3a4Ceo0KlWqpD///FMVK1bUwoUL1bZtW9chAQDgN+E0Jw8bNkxjxoxRXFzcia8NGDBAzZo10zPPPKOPPvrIYXQAAORPOM3Jffr0UZ8+fTJ9bejQoWrdurVefPFFksQAgLAXTvPyye6991516NBBaWlp2rVrl+twgKCh3DQQRtatW6cmTZqcMsFKUvny5U8cezweHTx4UO+//748Ho88Hk+mHbxbtmzRjTfeqAoVKig+Pl5NmjTRu+++m+l806ZNk8fj0WeffaaHHnpIFStWVNGiRXXRRRcpKSnpjLHGx8erYsWKef69AgAQysJpTu7UqVOmBLEk1atXT02aNNGqVaty9xsHACDEhNOcnJUCBQqoWrVq2rdvX54+DwBAKAnHeXnGjBkaO3asRowYkdvfLhD22EkMhJEaNWpozpw5Wr58ebalIT/88EPddNNNateu3YmVyHXq1JEkbd++XR06dJDH49HQoUNVrlw5TZo0SYMGDVJKSoruuuuuTOfy9WJ44IEHtGPHDo0YMUI9evTQkiVLVLhw4YD9XgEACGXhPid7vV5t375dTZo0yd1vHACAEBOOc/LBgwd1+PBhJScna+LEiZo0aZIGDBiQ9z8EAABCRLjNy2lpabr99tt10003qVmzZvn7zQPhyAsgbHz//ffeAgUKeAsUKODt2LGj9/777/dOnjzZe/To0VPeW7RoUe911113ytcHDRrkrVSpknfXrl2Zvv63v/3Nm5CQ4D106JDX6/V6p06d6pXkrVKlijclJeXE+/73v/95JXlffvnlHMe9YMECryTv6NGjc/wZAABCWbjOyT4ffvihV5L3nXfeyfVnAQAIJeE4J99yyy1eSV5J3piYGG///v29e/bsycXvGgCA0BRu8/Jrr73mTUhI8O7YscPr9Xq9Xbt29TZp0iQ3v2UgrFFuGggj559/vubMmaOLLrpIS5cu1XPPPacLLrhAVapU0cSJE8/4ea/Xqy+++EIXXnihvF6vdu3adeJ1wQUXKDk5WYsXL870mWuvvVbFixc/8ev+/furUqVK+vbbb/3++wMAIFyE85y8evVqDRkyRB07dtR1112Xq88CABBqwnFOvuuuu/TDDz/o/fffV+/evZWWlqajR4/m7jcOAEAICqd5effu3Xr00Uf1yCOPqFy5cnn7DQNhjiQxEGbatm2rcePGae/evZo/f74SExO1f/9+9e/fXytXrsz2szt37tS+ffs0atQolStXLtPrhhtukCTt2LEj02fq1auX6dcej0d169bVxo0b/fr7AgAg3ITjnLxt2zb17dtXCQkJGjt2rAoUKJDjzwIAEKrCbU5u2LChevTooWuvvVZff/21Dhw4cOJhOAAA4S5c5uWHH35YpUuX1u2335773yQQIehJDISpuLg4tW3bVm3btlX9+vV1ww036PPPP9djjz122s+kp6dLkq655prT7hw666yzAhIvAACRKlzm5OTkZPXu3Vv79u3TzJkzVblyZb+eHwAA18JlTv6r/v3765ZbbtGaNWvUoEGDgF4LAIBgCeV5+ffff9eoUaM0YsQIbd269cTXjxw5omPHjmnjxo0qUaKESpcune9rAaGMJDEQAdq0aSNJ+vPPP098zePxnPK+cuXKqXjx4kpLS1OPHj1ydO7ff/8906+9Xq/Wrl1LMhkAgCyE6px85MgRXXjhhVqzZo1+/PFHNW7cOEfXBAAgXIXqnJyVw4cPS7IFXQAARKJQm5e3bNmi9PR03XHHHbrjjjtO+X6tWrV05513asSIETmKAQhXlJsGwsjUqVOzLD/l669w8orjokWLat++fZneV6BAAV1++eX64osvtHz58lPOs3PnzlO+9sEHH2j//v0nfj127Fj9+eef6t27d15/GwAAhL1wmpPT0tI0YMAAzZkzR59//rk6duyY7fsBAAgn4TQn/7U8piQdO3ZMH3zwgQoXLswiLgBA2AuXeblp06YaP378Ka8mTZqoevXqGj9+vAYNGnTG3y8Q7jxeGp4AYaNp06Y6dOiQLr30UjVs2FBHjx7V7Nmz9dlnn6latWr65ZdfVLJkSUlS3759NX36dD3xxBOqXLmyatWqpfbt22v79u1q3769du7cqcGDB6tx48bas2ePFi9erB9//FF79uyRJE2bNk3du3dXs2bN5PF4dMMNN2j79u0aMWKEqlatqqVLl6pIkSLZxvvaa69p37592rp1q9544w1ddtllatmypSTp9ttvV0JCQkD/vAAACJRwmpPvuusuvfzyy7rwwgt15ZVXnvL9a665JiB/RgAABEM4zcmXXnqpUlJSdM4556hKlSratm2bPv74Y61evVovvPCChg0bFow/MgAAAiac5uWsdOvWTbt27coyQQ1EJC+AsDFp0iTvjTfe6G3YsKG3WLFi3ri4OG/dunW9t99+u3f79u2Z3rt69WrvOeec4y1cuLBXkve666478b3t27d7hwwZ4q1WrZq3YMGC3ooVK3rPO+8876hRo068Z+rUqV5J3k8++cSbmJjoLV++vLdw4cLevn37ejdt2pSjeGvUqOGVlOVrw4YN/vgjAQDAiXCak7t27Xra+ZjbAQBAuAunOfmTTz7x9ujRw1uhQgVvbGyst1SpUt4ePXp4J0yY4Lc/DwAAXAqneTkrXbt29TZp0iRPnwXCETuJAWTJtxLr888/V//+/V2HAwBA1GJOBgAgNDAnAwAQOpiXgfyjJzEAAAAAAAAAAAAARBGSxAAAAAAAAAAAAAAQRUgSAwAAAAAAAAAAAEAUoScxAAAAAAAAAAAAAEQRdhIDAAAAAAAAAAAAQBQhSQwAAILO6/UqJSVFFDQBAOQH8wkAAAAAAHkT6zqAYEpPT9fWrVtVvHhxeTwe1+EAAMKU1+vV/v37VblyZcXEsN4qL1JSUlSyZEklJSWpRIkSrsMBAISplJQUVatWTfv27VNCQoLrcMIS98kAAH/gPjn/mJMBAP6S03k5qpLEW7duVbVq1VyHAQCIEElJSapatarrMMLS/v37JYl5GQDgF/v37ydJnEfcJwMA/In75LxjTgYA+NuZ5uWoShIXL15ckti1BADIF9+uJd+8gtxjTgYA+ANzcv4xJwMA/IE5Of+YkwEA/pLTeTmqksS+Mh0lSpRgogUA5Bvln/KOORkA4E/MyXnHnAwA8Cfm5AzPPPOMEhMTdeedd2rEiBFnfD9zMgDA3840L9MgAgAAAAAAAAAAP1mwYIFGjhyps846y3UoAACcFkliAAAAAAAAAAD84MCBAxo4cKDeeustlSpVynU4AACcFkliAAAAAAAAAAD8YMiQIerbt6969OiR7ftSU1OVkpKS6QUAQDBFVU9iAAAAAAAAAAAC4dNPP9XixYu1YMGCM753+PDhevzxx4MQFQAAWQurncRbtmzRNddcozJlyqhw4cJq1qyZFi5c6DosAAAAAAAAAEAUS0pK0p133qmPP/5YhQoVOuP7ExMTlZycfOKVlJQUhCgBAMgQNjuJ9+7dq86dO6t79+6aNGmSypUrp99//52+DgAAAAAAAAAApxYtWqQdO3aoVatWJ76WlpamGTNm6LXXXlNqaqoKFChw4nvx8fGKj493ESoAAJLCKEn87LPPqlq1aho9evSJr9WqVcthRAAAAAAAAAAASOedd56WLVuW6Ws33HCDGjZsqAceeCBTghgAgFAQNuWmJ06cqDZt2uiKK65Q+fLl1bJlS7311lvZfiY1NVUpKSmZXgAAIP9oAQEAAAAAQIbixYuradOmmV5FixZVmTJl1LRpU9fhAQBwirBJEq9fv15vvPGG6tWrp8mTJ+u2227THXfcoffff/+0nxk+fLgSEhJOvKpVqxbEiAEAiEy+FhAFCxbUpEmTtHLlSr3wwgu0gMijTz+VrrhCOnDAdSQAACA7Dz8sPfCA5PW6jgQAgOjy1lvSNddIqamuIwGAyOLxesPj9iYuLk5t2rTR7NmzT3ztjjvu0IIFCzRnzpwsP5OamqrUk2aOlJQUVatWTcnJySpRokTAYw4lCxdKN9xgk+kDD7iOBgDCW0pKihISEqJyPpGkBx98UD///LNmzpyZ488wJ2ctPV3yVRx75hnmaADIrWifk/2BP8Oc2bBBql3bjpOTJf6oACAz5pP8488wa4cOSUWL2vGYMdJVV7mNBwDCQU7nlLDZSVypUiU1btw409caNWqkzZs3n/Yz8fHxKlGiRKZXtBo3Tlq+XFq0yHUkAIBwl5cWEFT3yNrSpRnHW7e6iwMAAGRv6lQbO3UiQQwAQDBNnpxx/Mcf7uIAgEgUNknizp0767fffsv0tTVr1qhGjRqOIgov48fbeOmlbuMAAIS/vLSASExMVHJy8olXUlJSECMOXZMmZRz36OEuDgAAkL1p02zs3t1pGAAARJ2xYzOOWW8OAP4V6zqAnLr77rvVqVMnPf3007ryyis1f/58jRo1SqNGjXIdWshbtUpavdqOv/3WSlsOHOg2JgBA+EpPT1ebNm309NNPS5Jatmyp5cuX680339R1112X5Wfi4+MVHx8fzDDDwnff2fjf/0oXXug2FgAAkDWvN2Mncbdu0rZtUsWKTkMCACAqHDkiffWVHc+eLXXs6DYeAIg0YbOTuG3btho/frw++eQTNW3aVP/+9781YsQIDSTbeUa+XcSS9NFHGQ+kAQDIi7y0gMCp9u2zm1xJ6t3baSgAACAb69ZllLe89FLrTXz8uNuYAACIBj//LO3fL1WpIrVv7zoaAIg8YbOTWJL69eunfv36uQ4j7IwbZ+MFF1gPh7Vr3cYDAAhvtIDwj6JFrdz0vHlShQrSokV248vOJAAAQouv1HTnztKyZdKBA9KKFVLz5k7DAgAg4p13nrRmjbRxoxQTI+3da/fScXGuIwOAyBA2O4mRN5s22UPnmBhp2DD7GkliAEB+3H333Zo7d66efvpprV27VmPGjNGoUaM0ZMgQ16GFlYIFpfPPlx5+WOrfX2rTRvryS9dRAQCAv5o508Zzz5XatrXj+fPdxQMAQDSpV8/undu1k0qXtoXWAAD/IEkc4Y4dk669VrroooyeDbt2WYlLAADyghYQ/te0qY3LlrmNAwAAnOqtt6RZs6TrrydJDACAK2XK2Lhqlds4ACCShFW5aeRe3brS++9n/LpiRWnbNuup1Lq1u7gAAOGNFhD5s2qV9Pbbtoira9eMJPHy5W7jAgAAp4qLs1LTku1ikqQFC9zFAwBANLjzTikpSXrwQZt/GzWSvvtOWr3adWQAEDnYSRxl6ta1kZLTAAC4M2GC9OKL0vPP26+bNbNx2TLJ63UXFwAAyJ4vSbx8uXTwoNtYAACIVMePSx9/LI0fnzHfNmxoI0liAPAfksQRbOFC6ZdfMj9s9iWJN21yExMAAJAmTbKxd28bGzaUChSQ9u6V/vzTXVwAACCzBx6Q/vEPacUK+3WVKlLlylJamt1vAwAA/5s+Xdq9WypbVjr7bPuaL0lMuWkA8B+SxBHs0UelVq2kESMyvjZ8uLRnj3T//c7CAgAgqiUnSz//bMe+JHGhQlK9enZMyWkAAEKD12vtm954wx5U+9x4o3TPPVK5cu5iAwAgko0da+Oll0qx/98ws1EjGzdtkg4dchMXAEQaksQRKjlZ+vFHO+7VK+PrFStKpUq5iQkAANj8nJYmNWgg1aqV8XVfX+Jly9zEBQAIT1u2bNE111yjMmXKqHDhwmrWrJkWLlzoOqyIsHq1tH27LeZq3z7j6//+t7WMaNDAXWwAAESqtDRp3Dg77t8/4+tly0qlS9sirt9/dxMbAESaWNcBIDC++UY6dszKcPhWWQEAAPd8paZPXsQlSddcYw+gzz8/+DEBAMLT3r171blzZ3Xv3l2TJk1SuXLl9Pvvv6sUK4P9YupUGzt1kuLj3cYCAEC0+PlnaccO2+jUvXvG1z0eu29OS5OKFHEXHwBEEpLEEWr8eBsvuyzz19PSpLvvltaulT77TCpePPixAQAQrbxe6bvv7NhXatrn4ouDHw8AILw9++yzqlatmkaPHn3ia7VOLlOBfPEliU9+QO2TnCwtXCi1a8d9NQAA/uQrNX3xxVLBgpm/9/LLwY8HACIZ5aYj0OHD0rff2vGll2b+XoEC0ief2C6mdeuCHxsAANHszz+l9HSpcGGpa1fX0QAAwt3EiRPVpk0bXXHFFSpfvrxatmypt956K9vPpKamKiUlJdMLp0pPl6ZNs+OsksTt2kk9ekizZwc1LAAAIl7z5lKHDplLTQMAAoMkcQT64Qfp0CGpWjWpdetTv1+3ro1r1wY3LgAAol3lytKWLdKKFdbf8K9Wr7ZKHzt2BD82AED4Wb9+vd544w3Vq1dPkydP1m233aY77rhD77///mk/M3z4cCUkJJx4VatWLYgRh4+VK6Vdu6ycZdu2p37f97X584MbFwAAkW7QIGnOHKlv36y/v3+/tHx5cGMCgEhFkjgC+XYRX3aZ9Wr4q3r1bCRJDABA8Hk80ukqgV5zjfS3v1kPJgAAziQ9PV2tWrXS008/rZYtW+rmm2/W4MGD9eabb572M4mJiUpOTj7xSkpKCmLE4WP7dql2balzZyku7tTv+5LECxYENy4AAKLZhg1SiRI2D6eluY4GAMIfSeII9Oqr0o8/SrfdlvX32UkMAEDwHT9upSuz07SpjcuWBT4eAED4q1Spkho3bpzpa40aNdLmzZtP+5n4+HiVKFEi0wunOu88a9H05ZdZf79dOxvnz5e83qCFBQBAxPJ6rU3i3r2nf0/16lJ8vHTkiLRpU/BiA4BIRZI4AhUsaDe0DRpk/X1fkvj334MXEwAA0W7iRKlCBSkx8fTv8SWJKZ0FAMiJzp0767fffsv0tTVr1qhGjRqOIoo8RYpk/fUWLaTYWNtxzGZsAADyb+FC6eqrpTp1pGPHsn5PgQJS/fp2vHp18GIDgEhFkjgKsZMYAIDgmzTJehseOnT69zRrZiM7iQEAOXH33Xdr7ty5evrpp7V27VqNGTNGo0aN0pAhQ1yHFtYOH7YKINkpXDhj3qYvMQAA+Td2rI09e9omqNNp2NDGVasCHxMARDqSxBEkPV3q2FG66y5pz57Tv8+XJD58WEpNDUpoAABENa/XksSS1Lv36d/n20n8++9WPgsAgOy0bdtW48eP1yeffKKmTZvq3//+t0aMGKGBAwe6Di2sjRwplSkj/etf2b/PV3KavsQAAOSP1yt98YUd9++f/XsbNbKRncQAkH+xrgOA/8ybJ82dK61YIT377OnfV7q0tHu3jQAAIPCWL5e2bJEKFZK6dj39+ypXlkqVsh5Mq1dbKUsAALLTr18/9evXz3UYEWXqVCkl5fSlpn0GDrS5ulu3YEQFAEDkWrpUWrfOKnVkt7BaYicxAPgTO4kjyPjxNvbtK8XHZ/9eEsQAAASPbxdx9+5203s6Hg99iQEAcCktTZoxw467d8/+vWefLd16a8bDagAAkDe+UtO9e0tFi2b/XnYSA4D/sJM4Qni90rhxdnzZZW5jAQAAmeWk1LRPYqI0bJjUqVNgYwIAAKdaulTat08qXlxq2dJ1NAAARD6vNyNJfKZS05JUv740eLAli9PSpAIFAhsfAEQyksQRYvlyK8kRH5+zB9DffSe99prUps2Z+ywBAIC8S0mRZs2y45zM0Tl5DwAACIypU2085xwpNgdPTNaskaZNk5o0kTp3DmhoAABEpA0bbD6Ni7MKmWdSpIg0alTg4wKAaECSOEL4dhH37CkVK3bm9+/aJX3zjXToUGDjAgAg2h09Kt13n7RypVS3rutoAABAdnxJ4jOVmvYZNUp64QXpH/8gSQwAQF7Uri1t2SItWiSVKOE6GgCILiSJI4SvH3FOS037HlKvXRuYeAAAgClbVnr66Zy/3+uVvvpKWrZMuv12bpIBAAiW48elmTPtOKdJ4nbtbJw/PzAxAQAQDSpVkvr1y/n7Dx+23cder9SiRcDCAoCIF+M6AOTf8ePS2WdLNWpIF16Ys8/4ksRJSTapAgCA0ODx2G6khx+2dhIAACA4UlOle+6xUpfNm+fsM23b2rh0qX0eABC93njjDZ111lkqUaKESpQooY4dO2rSpEmuw4pIH35oyeF//tN1JAAQ3kgSR4DYWOnVV61/Q5kyOftMmTJSQoIdr18fuNgAAIhmSUnS119LBw/m7nPNmtm4bJn/YwIAAFkrWlR69FGbuwsUyNlnata0qiHHjlmiGAAQvapWrapnnnlGixYt0sKFC3Xuuefq4osv1ooVK1yHFrKefVbq0UP69tvcfa5hQxtXrfJ/TAAQTUgSRxCPJ3fvpeQ0AACB9emnVuVjwIDcfa5pUxvZSQwAQGjzeDJ2Ey9Y4DYWAIBbF154ofr06aN69eqpfv36euqpp1SsWDHNnTs3y/enpqYqJSUl0yvafPqpNGWKtG1b7j7nSxJv3EiVTADID5LEYW7XLmn6dCktLfefJUkMAEBg+SqL9eyZu8+xkxgAgOA6dkwaN87usXOLvsQAgL9KS0vTp59+qoMHD6pjx45Zvmf48OFKSEg48apWrVqQo3Rr3TppyRKr3nHxxbn7bLlyUunS1pN4zZqAhAcAUYEkcZgbO1bq1s16JuVWvXpS8eLSkSN+DwsAgKi3f780a5Yd9+mTu8+evJPY6/VvXAAA4FSLFkmXX247k3I79/p2EpMkBgAsW7ZMxYoVU3x8vG699VaNHz9ejRs3zvK9iYmJSk5OPvFKSkoKcrRuffGFjd2757yFoo/Hk7GbePVq/8YFANEk1nUAyJ9x42w899zcf/bRR6UnnshdmWoAAJAzU6bYrqS6dTOqd+RUo0ZSTIy0e7eV3apUKTAxAgAAM3Wqjeeck/t75C5dpO+/l9q08X9cAIDw0qBBAy1ZskTJyckaO3asrrvuOk2fPj3LRHF8fLzi4+MdRBkaxo61sX//vH2+YUNp9mySxACQH+wkDmN792bcyF56ae4/X7AgCWIAAALFV2q6d+/cf7Zw4YzEMn2JAQAIvGnTbOzWLfefTUiQzj9fKlXKnxEBAMJRXFyc6tatq9atW2v48OFq3ry5Xn75ZddhhZxNm6QFC+zZ9CWX5O0cjRrZuGqV38ICgKjDTuIw9vXX0vHjVpKyXj3X0QAAAB+vN39JYkl65x2pZEmpfn2/hQUAALJw9GhGi4ju3d3GAgCILOnp6UpNTXUdRsjxVcc85xypQoW8naNHD+nZZ6X27f0XFwBEG5LEYcw3mV52Wd7PMXCg9Msv0pdf8hAaAAB/+e03KSlJKlQobzuSJCtdCQAAAm/BAunQIalsWalJk7yd47ffpHfftWog//qXX8MDAISJxMRE9e7dW9WrV9f+/fs1ZswYTZs2TZMnT3YdWsipW1fq2TNv1TF9WrSwFwAg7yg3HaYOHpS++86O85MkXrnSSnKsWeOfuAAAgNSggfVF+vhje1gMAABCl6+NU7duUkwen5Js2yY995xVAglXy5ZZX2VyGQCQNzt27NC1116rBg0a6LzzztOCBQs0efJknX/++a5DCzkXXmjzza23uo4EAKIbO4nD1JQp0pEjUq1a0lln5f08detKS5ZIa9f6LTQAAKKex2OJ4gYN8n6Ow4elN96wxVwjR+b9oTUAAMierx9xfkpNt25tc/Uff0h//ilVquSX0ILq8sul33+XevWy1hkAgNx5J5xXCoWptWulpUul5s3tOTcAIHd43BimLrxQmj9feu01exCdV77JkyQxAAChpWBB6aGHpLffltavdx0NAACR6+23rVR0v355P0exYlKjRna8YIF/4gqm9HRLEPscP+4uFgBAZBs7Vtq61T/nSkyU+veXJk70z/kAINqQJA5THo/Utq3Up0/+zlOvno0kiQEA8I/Jk+0mddy4/J0nNlZq3NiOly/Pf1wAACBrNWtKN9wgVa+ev/O0a2djOCaJFy3K/Otff3UTBwAgsm3bJl15pVS1qrR9e/7P51ugtXp1/s8FANGIJHGUYycxAAD+NX689MUXGf0N86NpUxtJEgMAEPp8SeL5893GkRc1alilMp9Zs9zFAgCIXF9+aS0N2raVKlTI//kaNrSRJDEA5E3YJomfeeYZeTwe3XXXXa5DCbrERGnQIOu3kF++JPHGjdKxY/k/HwAA0czrlSZNsuPevfN/vmbNbFy2LP/nAgAAp3r4Yemll6QdO/J/rrZtbVywIPx6+pYvLw0ZIv30k/T119K117qOCAAQicaOtfHyy/1zPl+SeNUq/5wPAKJNrOsA8mLBggUaOXKkzjrrLNehBF1amjR6tJXjGDAg/+erVMluBitXlnbvlipWzP85AQCIVqtWSZs3S/HxUrdu+T8fO4kBAAicI0ek55+XUlOtlVP58vk7X7Nm9jNATIyV06xUyT9xBlP37q4jAABEql27pGnT7NhfSeIGDTLOvWuXVLasf84LANEi7HYSHzhwQAMHDtRbb72lUqVKuQ4n6ObMsQRxyZL+efjs8djN6y+/kCAGACC/fLuIu3WTihTJ//l8O4nXrLEH2AAAwH/mzLH5tVIlqX79/J8vLk5av17auTO8EsRTp0ojR0p//OE6EgBAJJswwTZAtWwp1anjn3MWLSpVr27Hv/3mn3MCQDQJuyTxkCFD1LdvX/Xo0eOM701NTVVKSkqmV7gbN87GCy+0G1B/8Hj8cx4AAKKdP0tNS1KVKrYwLC3NHjoDAAD/mTrVxu7d/XdfXLly+N1jv/mmdOutliiWpLlzpX/+U5o82W1cAIDI4is13b+/f89LyWkAyLuwShJ/+umnWrx4sYYPH56j9w8fPlwJCQknXtWqVQtwhIHl9WYkiS+7zG0sAAD4PPPMM/J4PLrrrrtch+LUgQPSjBl27K8kscdju5z275caNfLPOQEAgPGVvPRHla5wdfx4RjK4Tx8bx4+Xnn5a+uILd3EBACLLoUPSzJl27K9S0z733GMJaN88BgDIubBJEiclJenOO+/Uxx9/rEKFCuXoM4mJiUpOTj7xSkpKCnCUgbVkibRpk1S4sNSzp//O+/33Vs7S3xM0ACDyLViwQCNHjtRZZ53lOhTntm6VWrWS6tWzl780bGgltAAAgP8cOmQ7ZiX/9uFNTrZ76wYNpGPH/HfeQJkzx2IuU0Zq186+1qWLjbNmuYsLABBZihSxtgbjxmX0EfaXnj1t7q1c2b/nBYBoEOs6gJxatGiRduzYoVatWp34WlpammbMmKHXXntNqampKlCgQKbPxMfHKz4+PtihBoxvF3Hv3v7pc+hTsKC0fDm9DgEAuXPgwAENHDhQb731lp588sls35uamqrUkyaaSGgB8Vf169vD5tTU8CszCQBAtJk925K4Vav6ry+iJBUvLk2ZYonXFSukFi38d+5A+OYbG3v1knyPVDp1snHVKmnXLqlsWTexAQAiS8mS0qWXuo4CAHCysNlJfN5552nZsmVasmTJiVebNm00cOBALVmy5JQEcSSqWNFWWvm71HTdujZu2GClpgAAyIkhQ4aob9++6tGjxxnfG2ktILLj7/Vp27ZJ//iHdMUV/j0vAADRbP16KS7Ov/2IJSkmRmrTxo4XLPDfeQPl229t7Ns342tlykiNG9vxzz8HPyYAQGTxegN7/vR0aeJE6bnnpCNHAnstAIg0YZMkLl68uJo2bZrpVbRoUZUpU0ZNmzZ1HV5QDBkirV4tXXWVf89bpYo90D5+3MpZAwBwJp9++qkWL16s4cOH5+j9kdYC4q/27bNXIMTFSW+8YT2WInADNgAATtx8s83dzz3n/3P7yjbPn+//c/vT5s3SsmWW2P5rSytKTgMA/OXTT21ufO+9wJzf45Guu0564AFpzZrAXAMAIlXYJImRIcbPf2sxMRnltdau9e+5AQCRJykpSXfeeac+/vhjFSpUKEefiY+PV4kSJTK9Isk771gpxnvv9f+5S5fO6K20YoX/zw8AQLQqXNgqdvlb27Y2hnqSePFiKzHdoYPtHj4ZSWIAgL98/rlV11i3LjDn93ikRo3sePXqwFwDACJVWCeJp02bphEjRrgOIyimTw9suQxfyWmSxACAM1m0aJF27NihVq1aKTY2VrGxsZo+fbpeeeUVxcbGKi0tzXWIQTdpkpSWZn0NA6FZMxuXLw/M+QEAkeGZZ56Rx+PRXXfd5TqUkBbospe+ncQrVkgHDwb2WvlxySXSzp3S22+f+j1fknjjRtpSAQDy7sABu1+WpP79A3edhg1tXLUqcNcAgEgU1kniaJGUJHXrJlWoIO3fH5hrkCQGAOTUeeedp2XLlmnJkiUnXm3atNHAgQO1ZMkSFShQwHWIQXXggDRzph337h2Ya/g6ayxbFpjzAwDC34IFCzRy5EidddZZrkMJeQ8/LLVsKX3ySWDOX6WKVKmSLSD75ZfAXMNfSpXK2H11spo1pZUrpS1bpNjYoIcFAIgQkybZxqc6daRA/ojiSxKzkxgAcocf9cPAl1/aeNZZUvHigblGkya2S6lcucCcHwAQOYoXL66mvqzl/ytatKjKlClzytejwU8/SUePSrVqSfXrB+Yavj9WdhIDALJy4MABDRw4UG+99ZaefPJJ1+GEvClTpCVLbP4OlLPPtl24gbxGfni9Vp7zdE4u3QkAQF6NHWtj//7Zzzv5RblpAMgbdhKHgfHjbbz00sBd48YbpV9/lR56KHDXAAAgEvlKZ/XuHbibXl+56WXLAl8iEwAQfoYMGaK+ffuqR48eZ3xvamqqUlJSMr2iyf790sKFdty9e+Cu8+mn0rx50rnnBu4a+TFsmNSxo/Ttt64jAQBEqsOHpW++seNAlpqWMnYS//ablJ4e2GsBQCRhJ3GI27XL+hFLgU0SAwCQH9OmTXMdghNeb+YkcaA0amQJ6Ph4KSVFSkgI3LUAAOHl008/1eLFi7VgwYIcvX/48OF6/PHHAxxV6Jo508pA164tVa8euOsEcrdUfnm90sSJ0vr10rFjp3/f3r3SkCG2oHzpUinKOooAAPJp8mTp4EGpRg2pdevAXqtWLSkuzhLTmzdb2wQAwJmxkzjETZxoq59atrTJLtC8XlZbAQCQU6tXS5s22c1oIHcjFSliD2r/+IMEMQAgQ1JSku688059/PHHKlSoUI4+k5iYqOTk5BOvpKSkAEcZWnzr2gI5b5/s0KHQKzm9Zo0liAsWlM477/TvK1FC+vpracUKWl4AAHKvQgXbQfz3vwd+8VRsrPTFF9LixVLlyoG9FgBEEpLEIW7cOBsvuyzw17rsMut5PHVq4K8FAEAkqFBBevNNKTFRKlo0sNciOQwA+KtFixZpx44datWqlWJjYxUbG6vp06frlVdeUWxsrNLS0k75THx8vEqUKJHpFU1897vdugX+WpdeaonWn34K/LVyw1diumtXqVix07+vQAGpUyc7njUr8HEBACJLx47S559L//53cK7Xr59ttIqLC871ACASkCQOYQcOSD/8YMfBKDV97JiVAPn998BfCwCASFC6tHTLLdK//uU6EgBANDrvvPO0bNkyLVmy5MSrTZs2GjhwoJYsWaIC1AfOJDnZdhhJwdlJXLSolbbOYSXwoPH1h+zb98zv7dLFxpkzAxcPAAAAADfoSRzCihWzvj8//ig1bhz469Wta+PatYG/FgAAyJ2lS6X77rO+xF995ToaAEAoKF68uJo2bZrpa0WLFlWZMmVO+TqklBTpqqusfUOVKoG/Xtu20scfS/PnB/5aObV/vzRjhh336XPm95+cJPZ6Q7vXMgAgdEycKDVoYK9g2bpV+t//pOPHpXvvDd51ASCckSQOcQ0b2isYSBIDAJBz8+fbzqC+faWaNQN/vbg4qzBStKiUni7FUA8GAIBcqVZN+uij4F2vXTsbFywInQTrlClWRaxuXal+/TO/v1076/O4dau0aVNwfuYBAIS3o0el666T9u2T5s6V2rcPznW3bZPuvlsqV44kMQDkFElinECSGACAnHv/fem//5VWrLAx0OrVs0TxwYPSxo1S7dqBvyYAIPxMmzbNdQj4fy1aWIJ1+3YpKUmqXt11RPbg/PLLc74YvUgRqXVrad4860tMkhgAcCZTp1qCuEIFqU2b4F3Xt/hp505p926pTJngXRsAwhV7UELU999LV1whff118K5Zr56N69bZDiUAAJA1r1eaNMmOe/cOzjVjY6VGjex4+fLgXBMAgEhx4ID066/BvdctXFhq1syOQ6UvcefO0tix0pNP5vwzXbtKrVpJBQsGLi4AQOQYO9bGyy6TChQI3nWLFbOqIZL022/Buy4AhDOSxCHqs89sQp08OXjXrF7dHkAfOWKlpAAAQNbWrJE2bLCdveeeG7zr+h40kyQGACB3fvxRat48o8dusPhKTodSX+LceuYZadEiacAA15EAAELd8ePS+PF23L9/8K/vW1i9alXwrw0A4YgkcQg6flyaMMGOL7sseNeNjZV69pQuukhKTQ3edQEACDe+XcTnnGM9goOlaVMbly0L3jUBAIgEvirczZsH97o9e0pXXx28fozZmT/fFrp5vbn7XCj0UgaAcDB8+HC1bdtWxYsXV/ny5XXJJZfotyjb0jp9upV6LlvW7peDzddOYfXq4F8bAMIRSeIQNHNmRt+Es88O7rW/+cYS1HXqBPe6AACEk2CXmvZhJzEAAHkzdaqN3bsH97qXXSZ9/HFwF4Cfzl13SQ0aSB99lLfPHz4s7dnj15AAIKJMnz5dQ4YM0dy5c/XDDz/o2LFj6tmzpw4ePOg6tKDxlZq+5BLbkBRsviQxO4kBIGdIEocgX0mOiy5yM5kCAIDTO3TIVkdLwU8SN20qlS4tVayY+11AAABEq127rB+xJHXr5jQUZ3btkubOteO8/Bk8/bSUkCA995xfwwKAiPLdd9/p+uuvV5MmTdS8eXO999572rx5sxYtWuQ6tKDweq29g+Sm1LREuWkAyC1SkCEmPV0aN86OXa009nqlAwek4sXdXB8AgFC2dKmUlibVqJGxSjlYqlWzh7yUfQQAIOd8i7uaNJHKlw/+9dPTpd9+kwoWlOrWDf71Jen77+1e/6yz7OeJ3KpSRTp2TJo1y/+xAUCkSk5OliSVLl06y++npqYq9aSefykpKUGJK1A8HmuN9P33wa/c4dOmjTRvXvDv1QEgXLGTOMQsXCht2SIVKyb16BH868+caauDu3QJ/rUBAAgHHTtaW4gJE4KfrPV4SBADAJBbvn7ErnYRP/SQ1Lix9NJLbq4vWWspSerTJ2+f9z0jWLBAOnLEPzEBQCRLT0/XXXfdpc6dO6tp06ZZvmf48OFKSEg48aqWl1U8IaZQIauOGRfn5vrFiknt2kklSri5PgCEG5LEIebQIaltW6lfP5tUg61CBWn/fmntWspYAgBwOiVKSM2bu40hLc3t9QEACBeu+hH7tGxp4/z5bq6fliZ9950d5zVJXLu2tbs4etQSxQCA7A0ZMkTLly/Xp59+etr3JCYmKjk5+cQrKSkpiBH6l9fLs2QACEckiUNMt2524/jBB26uX7OmFBNjyept29zEAABAqAqFm96vv7YHtZdf7joSAADCw4gRtpvX1U7idu1sXLpUOqmqaNDMmyft2SOVLGkVUfLC48nYTUzJaQDI3tChQ/X1119r6tSpqlq16mnfFx8frxIlSmR6hau5c60f8DPPuI5E+ukn6fbbpY8/dh0JAIQ+ksQhqmBBN9eNi7NEsWS7iQEAQIbXXrOKHx9+6C6G4sWlDRukX391FwMAAOGkRw/pqaekMmXcXL9mTalsWevpu3Rp8K//7bc2XnCBFBub9/OQJAaA7Hm9Xg0dOlTjx4/XTz/9pFq1arkOKWjGjpV++01avtx1JNbO8bXXMlotAABOjyRxCDl4MDR6+9Sta+Pvv7uNAwCAUPPNN3bDuWOHuxh87aw2bJAOHHAXBwAAyBmPJ2M3sYuS04mJ0ldfSXfdlb/z+JLEP/8spafnOywAiDhDhgzRRx99pDFjxqh48eLatm2btm3bpsOHD7sOLaC8XksSS6FR8aphQxtXr3YbBwCEA5LEIeS996SiRaVbbnEbhy9JzE5iAAAyHDokTZtmx717u4ujTBmpUiU7XrHCXRwAAISD4cOtVYPrBdlt29roop9v0aJSv35Shw75O0/z5tLf/ib961/WmxgAkNkbb7yh5ORkdevWTZUqVTrx+uyzz1yHFlALF0qbN9t806uX62gyJ4lZ1AQA2ctHoSH428qVNnGVLu02DpLEAACcato06yNYvbr1WnKpaVPpzz+tlFf79m5jAQAgVP35p/Ui9nik3bulQoXcxeJyJ7G/xMZKn3ziOgoACF1er9d1CE588YWNfftKhQu7jUWSate2Vo6HD0tJSVKNGq4jAoDQxU7iELJypY2uHzy3bOmfVcYAAESSSZNs7N3bHja71KyZjcuWuY0DAIBQNn26jS1aSKVKOQ1F7dtLjzwi/ec/wb3uAw9I//yntHFjcK8LAIgOJ5ea7t/fbSw+sbFSvXp2TMlpAMgeO4lDiC9J3Lix2zi6dbMXAADIcHKS2DVfX2KSxAAAnN7UqTaGwv1tmTLSE08E95pHj0r//a904IB06aVSzZr5P6fXK61fbzuir7oq/+cDAIS3pUuldetsB3Eo3Cv7NGxoz9pXrZIuuMB1NAAQukgSh4hdu6QdO+zY1zcBAACEht9/txvfggWlc891HY1V/WjXTmrVynUkAACELl+SuHt3t3G4MnOmJYgrVPDfzwyHDkkNGkhpaVLnztaGAwAQvQoVkm680aptFSvmOpoMvkqdmza5jQMAQh1J4hCxapWNNWqExoTq9Up79khxcVLx4q6jAQDArePHpQEDbAyFebFFC2nePNdRAAAQurZssUVeMTHSOee4jsYkJ1vidv/+4OzC/fZbG3v3tj8Hfyha1BLOCxZIs2ZJV1/tn/MCAMJTw4bSO++4juJUd90l3X23VfIAAJwePYlDRKiUmva59FKpbFlp3DjXkQAA4F6jRtKnn2b0WgIAAKFt2jQbW7WSEhKchnLCkiXShRdan+Bg+OYbG/v29e95u3SxceZM/54XAAB/KVuWBDEA5ARJ4hBRp4507bVSr16uIzGVKtm4dq3bOAAAwOmlplrlDwAAkNmCBTaGQj9in9atbUdvUpL055+Bvda6ddJvv0mxsdL55/v33L4k8axZ/j0vACC8rF4tLVokHTvmOhIAQF6RJA4RPXpI778v3XGH60hM3bo2/v672zgAAHBt/XppxQprxRBKXn7ZSj4GazcSAADh5KWX7OH10KGuI8lQrFhG9TBfEjtQfKWmu3Tx/07qzp1tXL5c2rvXv+cGAISPV16R2rSRHnrIdSRZe+opqU8fafFi15EAQOgiSYws+ZLE7CQGAES7ESOkpk1DLxlbqZKUlmYPaAEAQGYej9SggVSjhutIMmvb1sZAJ4mPHrVSm/4uNS1JFSpI9erZ8ezZ/j8/ACA8+OaADh3cxnE606ZJkyZZuwcAQNZIEoeAI0ekVatCqzTHyUniUNs5BQBAME2aZGOnTm7j+KumTW1cvlxKT3cbCwAAyJl27WycPz+w17nnHmnbNmnIkMCcn5LTABDd9u+Xli2z444d3cZyOo0a2bh6tds4ACCUkSQOAb/8YiWn6td3HUmG2rVtTE6Wdu92GwsAAK6sXWuvggWl885zHU1m9epJcXHSgQPS5s2uowEAIHTce6905ZXS3LmuIzmVL0m8YEHgF2QXKCAVLhyYc996qzR+vCWjAQDRZ/58W6xco4ZUubLraLLWsKGNq1a5jQMAQhlJ4hCwcqWNvnJNoaBwYalaNTum5DQAIFr99JONnTpJxYu7jeWvChbMuOn1reAGAADS2LHS55/boudQ06yZFB9vvXzXrQvMNf78M/AJ6HbtpEsusZLWAIDo4ys1HWoVt07GTmIAODOSxCHAlyRu3NhtHH919dXS7bdLJUu6jgQAADdmzLCxWzenYZzWySWnAQCAtHGjtGmTFBsrde7sOppTFSxoSewVK6Ratfx/fq/XekNWq8YiMgBA4MyZY2OolpqWMhZVr19v7R4BAKeKdR0AQjdJ/MwzriMAAMAdr1eaPt2OzznHbSyn06yZjTwEBgDATJ1qY9u2UrFibmM5nX79AnfuFSusDUWhQlKdOoG7jiQtXSp9+aXt1LryysBeCwAQOtLTM5LEobyTuGJFKSHBKousXZuxyBoAkCFsdhIPHz5cbdu2VfHixVW+fHldcskl+u2331yH5RehmiQGACCabdwo/fGH7fjp0MF1NFnr3Nkqf5x/vutIAAAIDb4kcffubuNw5ZtvbOzeXSpSJLDX+ukn6V//kj78MLDXAQCEFq9XGjdOeuop6ayzXEdzeh6P7SZOSJC2b3cdDQCEprDZSTx9+nQNGTJEbdu21fHjx/XQQw+pZ8+eWrlypYoWLeo6vDzbv99W+UoZfRJCyd691s+IBDYAINpUqGAPWtevD/xD1rw6+2x7AQAAe2gdDkni1FTpzTelRYukd96xBWn+8u23Nvbt679znk6XLjb+/LPtKosJm20IAID8KFDA5tlQnmt9fvxRKlrUEsYAgFOFTZL4u+++y/Tr9957T+XLl9eiRYt0TqjWgMyB1attrFBBKlPGbSx/tWyZrQYrXVravdt1NAAABFeRIlKfPq6jAAAAObVuXUYVkFAuf1mwoPTYY1b+8u67pZYt/XPevXstYSsF52eYFi3s56W9e61CGmU8AQChJlRbTwBAqAjbdZ7JycmSpNKlS5/2PampqUpJScn0CjXly0tPPCENGeI6klPVrm3jnj32AgAAoSctTVqzxh6KAwCiTyS3ZsqtvXuldu2sHUOoVgGRbMdt27Z2vGCB/877ww/2c0GjRlKtWv477+mc3JJj1qzAXw8AEBqeekr6/HPp4EHXkQAA8issk8Tp6em666671LlzZzXNZqnq8OHDlZCQcOJVrVq1IEaZMzVqSI88Yq9QU7SoVKmSHa9b5zYWAACC6c8/pcRE6fvvXUdyZkOGSA0aWNlKAED08bVmmjt3rn744QcdO3ZMPXv21MEofHLbtq00b56Vlgx1viTx/Pn+O6evH3EwSk37+NpekCQGgOiwZ4/08MPSlVdKhw+7jubM9uyRLr7Yql+kp7uOBgBCT1gmiYcMGaLly5fr008/zfZ9iYmJSk5OPvFKSkoKUoSRo149G9eudRsHACB0RMOOpWnTpGeekR56yHUkZ9a4sY3Ll7uNAwDgxnfffafrr79eTZo0UfPmzfXee+9p8+bNWrRokevQnClQwHUEZ9aunY3+3Ek8eLA0bJh0xRX+O+eZ+PoSkyQGgOgwd66N9etLZcu6jSUniheXJk2Sli6l+hYAZCXsksRDhw7V119/ralTp6pq1arZvjc+Pl4lSpTI9Ao1P/4orV8fuiuZ6ta1kSQxAMAnGnYszZhh4znnuI0jJ5o1s3HZMrdxAABCw5laM4VDW6a82L/fXuHCt5N4+XL/levs0kV64YWMBHQwtG9vSfm9e6Xdu4N3XQCAG7Nn29ipk9s4cqpgwYzn26tXu40FAEJR2CSJvV6vhg4dqvHjx+unn35SrWA02Amww4elnj2lOnWkXbtcR5M1ksQAgL+Khh1L4ZQk9nXeWL+enlAAEO1y0popHNoy5cWYMVKpUtaGIRxUqSJVrmwLxn/5xXU0eVe8uLRihZXzLFPGdTQAgECbM8fGcEkSS1KjRjauWuU2DgAIRWGTJB4yZIg++ugjjRkzRsWLF9e2bdu0bds2HQ6H5gen8dtvktdrN1LlyrmOJmu+JPHvv7uNAwAQus60Y0kKr11LO3dKK1fasa/PXigrV06qUMGOV6xwGwsAwK2ctGaK1LZMU6dKaWlS+fKuI8m5du2kmBj/LMp+4QXphx+ko0fzf67catAgPEp8AwDy5/hxad48O+7Y0W0sudGwoY3sJAaAU4VNkviNN95QcnKyunXrpkqVKp14ffbZZ65DyzPfA+jGjSWPx20sp9Oiha3EvvFG15EAAEJRTnYsSeG1a2nmTBubNg2fHTG+P3r6EgNA9Mppa6ZwaMuUW16vNG2aHXfv7jSUXHntNSklRbr++vydZ/t26d57rVIZJZ8BAIHia5FQooQ9zw4XviQxO4kB4FRhkyT2er1Zvq7P792UQycniUNVvXp243rTTa4jAQCEopzsWJLCa9dSOJWa9vH1JSZJDADRJxJbM+XW6tWWKC1UyHrkhosqVaSiRfN/nu++s7FVK6lSpfyfL7eOHZOuu06qX1/6/wIzAIAI5Osw1aGDVcIIF75y06G0k9jrlSZMkLZscR0JgGgX6zqAaBYOSWIAAE7Ht2NpxowZ2e5YkmzXUnx8fJAiy5+lS20MpyRxv362mvu884J/7d27pcOHpTP8JwAACJAhQ4ZozJgxmjBhwonWTJKUkJCgwoULO44uOKZOtbFTJylMftzwq2++sbFvXzfXL1hQmj3bymbPmSP16uUmDgBAYN14o3T++VYFI5w0aCAVK2b3rEeO2KIy10aPlgYNkrp0yahmBgAuhNGan8gTLknilBRbKRbCm74AAEEU6TuWpkyxHbnh9IDzvPOkxx93k9h+4AEr3/Xhh8G/NgAgMlsz5ZYvSRxOpaZ9hg+3HVk//pi3zx87Jn3/vR336eO/uHKrSxcbZ81yFwMAILA8Hql69Yx2R+GieHF7vr1wYWgkiCW7f5ds3tyxw20sAKIbSWJHUlNtla0U+kni22+X2rTh4S8AwAwZMkQfffSRxowZc2LH0rZt23T48GHXoflFTIzUpImUkOA6ktA3b570zjvWl6poUemVV1hUBgDBFomtmXIjPT08+xH7rFxp8+ns2Xn7/OzZVuK5bFmpbVv/xpYbviQxu6EAAKHI43EdQWYnP2f3VQQBABdIEjvi9UoffCA99pibnkG5Ua+ejb6kNgAgurFjKTRt2SJ9+620aVNwrpeWJg0ZYsfXXiu9/rp0553SmDHBuT4AAJJ0/Lj0xBPSVVe5TZLmlS/mBQvy9vlvv7WxVy+pQAH/xJQXviTx/Pm2KB4AotGMGTN04YUXqnLlyvJ4PPryyy9dh+Q3kydLl1wivf++60jyx+t1HYE55xzpX/+y4wkTnIYCIMqRJHakUCHp6qttMgi1lUx/VbeujSSJAQBSZO9Yuuwym5/XrHEdSe794x/Wi3DixOBc7+23rR1FiRLSc89Jf/ubff2TT4JzfQAAJCkuTrrtNlukFBfnOprca9fOxvnz8/bg+pdfbHTVj9infn3bzXzkiLR4sdtYAMCVgwcPqnnz5nr99dddh+J3P/5oycw5c1xHkjfffWcVw664wnUkGS6+2Mbvv5cipDAbgDBEkhhn5EsS//672zgAAAikgwelr76yJGd8vOtocq9ZMxuXLw/8tXbvlh56yI7//W+pQgXp8sulggWlpUutdCYAADizFi2k2FjrR7h5c+4/P3my9Ouv7pPEHg99iQGgd+/eevLJJ3XppZe6DsXvfMnhjh3dxpFXcXF2n/rrr27jGDdOuuMOi6V5c+vxfPQoC6wAuEOS2JFvvrFVQvv2uY7kzOrUsXHbNunAAbexAAAQKHPmWMnK6tWlGjVcR5N7TZvauGxZ4K/10EPSnj3SWWfZDmZJKl3aSl1K7CYGAARHerpVtvjtt9ApH5lbhQrZfCrlreS0x2MLxYoX929ceXH22fbzSCjEAgDhIDU1VSkpKZleoejoUWnhQjvu1MltLHnVsKGN69a5bYvw8svSq69KX3xhc/jYsbZQrHNndzEBiG4kiR154AHpggukuXNdR3JmpUpJZcrY8bp1bmMBACBQZsyw8Zxz3MaRVyfvJA7kg3Kv18pJxsVJr71mu598rr7axjFjwvdhPQAgfCxbJg0eLLVubQu9wpWvL/H8+bn7XKjNtXffbX8nt97qOhIACA/Dhw9XQkLCiVe1atVch5SlX36xxGrZshkVJ8NNpUrWKik93V1LxdWr7blDTIx04432tbZtbcE1ALhCktiBY8cyeh02buw2lpyiLzEAINKFe5K4fn0r97x/f97KVeaUxyM99ZS0aZPtGDrZhRdKRYpI69fn/kE3AAC5NXWqjWefbXNguGrXTqpaVSpcOOefOXzYKp9cc43N/aHA43EdAQCEl8TERCUnJ594JSUluQ4pS7Nn29ixY/j+W+/xZOwmXr3aTQxvvWVjv35SlSqnfj/UFn8BiA4kiR1Yt84SxcWKSSG6QOwUt94qvfBCxi4lAAAiyZEjGdU9unZ1G0teFSyYcdMbjL7EFSue+rWiRaVLLrFYXPd6AgBEPl+SuHt3t3Hk1/XXS0lJ0uOP5/wz06fbZ6ZPt2cLoSQ1Vdq503UUABD64uPjVaJEiUyvUOTrRxyupaZ9fPfLq1YF/9qpqdL779vx4MGZv/fVV1Zu+pFHgh8XAJAkdmDlShsbNgyf1VfXXy8NG2a7lAAAiDQLFthNW4UKUr16rqPJu0D2Jd6zx1Y8L1qU/fuGD5e2bz/1xhcAAH9KS7MEqSR16+Y0lHyLycOTmW++sbFPn9B6rvD221LJktI997iOBADgL16vFB9vO4nDWaNGNrrYSTx+vLR7t1UO6dUr8/f277fd2uPHBz8uAIg981vgb74kcbiUmgYAINIdOSK1amWLoULpQWtuDR4s9e5tq5D97Z//tAfSf/xhPalO9+dUvbr/rw0AwF/9/LOUnCwVL25zeCTweu1nkjOVnfZ6pW+/teO+fQMfV25Ur26/h1mzXEcCAMF34MABrT2pV9+GDRu0ZMkSlS5dWtXD+Ebp88+lo0fztqgplDRrJp11lrVrCLZRo2wcNEiK/UtGpk8f+9rKldbqMVz7PgMIT2H+T3t4Csck8fHj0pIl0sSJriMBAMD/zj/fdsh+/LHrSPKne3fp73+Xatf273kXLZJGjrTjV17JeSJ9717/xgEAgCTt2yfdeKMdX3zxqQ9bw9Hbb0vly+dsB+5vv0nr10txcdK55wY+ttzo0MGSCBs2SFu2uI4GAIJr4cKFatmypVq2bClJGjZsmFq2bKlHH33UcWT5FxcX/vNt377S0qXSU08F97rp6VK7dtayyffzy8lKlsxoe8WzdwDBRpLYgXBMEqekSC1b2g34oUOuowEAIDDCfWV0IKSnS0OG2K6lgQOlc84582e2bbOHxLVq2W4iAAD8accOG2vWlF5+2WkoflOihLRrl7XAOBPfLuKuXUOvH3GJElLz5nb8889uYwGAYOvWrZu8Xu8pr/fee891aHl27JjrCMJfTIz0zDNWlet0G8ovusjGCROCFxcASCSJnXjnHendd6X27V1HknOlS0ulStnxunVuYwEAwJ9SUiJrAdSsWbbb948//HO+0aOlefOsnOd//pOzz5Qvb7uHkpOlSZP8EwcAAD7160sLF1qytHRp19H4R9u2Ni5dKqWmZv9eXz/iUCs17dOli42UnAaA8Neli5VpzskipnCRnn7muTYQChQ4/fd8SeJZs6x3MQAES56SxE888YQOZfE09fDhw3riiSfyHVSka91auuEGe4AaTnz9EE5qrQEAcIw5Of9GjbLyTg884DoS/7jvPunOO6XZs/N/rj17pAcftON//UuqVClnn4uJkf72Nzv+5JP8xwEA4YA5OfBOrk5RsqTUqJGzUPyuZk2pbFnbsbV0afbv7dpVatHCehiGIpLEAFxjTvaPQ4ekxYul5culChVcR+Mfw4ZZFQ5fO6VAmz1bmjzZEtPZqVnT+iWnp2csBgOAYMhTkvjxxx/XgQMHTvn6oUOH9Pjjj+c7KIQmksQAEHqYk/Nv+nR7IBspN71Nm9q4bFn+zzVypJW+bNJEuv323H326qtt/Oor260NAJGOOTmwtm2TGjaUXn/dWiBEGo/H+hVK0vz52b/30UelX36R6tULfFx50bmzjUuX8jMAADeYk/1j4ULp+HGpShWpWjXX0fhHoULS4cPS6tXBud6//iX16iU9++yZ33vVVdIll0TOnzWA8JCndvNer1cej+eUry9dulSlI6XWU4D88IMlWbt2Da+exFLGDShJYgAIHczJ+ZOWJs2cacc56bUbDnxJ4uXL83+u+++3dhONG0sFC+busy1aSA0aSL/9Jn35pXTttfmPBwBCGXNy4Bw/bhUqNm2S3nhDGjTIHvJGmrZtrYR2uJf0rFLF/o4aNDjzzikACATmZP/wVafq2NEWM0WChg1tXLUq8Ndav95yAVJGpa3s+Kp4AUAw5SpJXKpUKXk8Hnk8HtWvXz/TZJuWlqYDBw7o1ltv9XuQkeTDD+315JPhlyRmJzEAhA7mZP9Yvtz65hYrZknNSNCsmY3+2ElcoICU1/+MPB7bTfzYY9KYMSSJAUQu5uTAe/hhq/xRvLj0xReRmSCWzryT2Ou1JHLXrvazSyh7+23XEQCIRszJ/uVLEnfq5DYOf/K1qgjGTmLfXNizp1SrVuCvBwB5kask8YgRI+T1enXjjTfq8ccfV0JCwonvxcXFqWbNmurYsaPfg4wkK1faGG4JYokkMQCEEuZk/5gxw8bOnaXYPNVXCT2+ncTr10sHD0pFi+b+HIsX2wrrIkXyF8tVV1mS+McfpR07pPLl83c+AAhFzMmBNXFiRonGd96x3amRqm1bSwC3b28J4b/u2vrlF6lfP6lMGWn7dlvMBQDIwJzsP16vNGeOHUfSH5nv54ht26R9+6SSJQNznWPHpNGj7fjmm3P32XXrpA0bpB49/B8XAPxVrh6HXnfddZKkWrVqqXPnzoqNlKepQZKenlHKIhyTxI0aSc89F7p9jwAgmjAn+4cvSdy1q9s4/Kl8eXvt2GGL09q2zd3n9+61nklFikjffy/Vr5/3WOrVk+65x2IoUSLv5wGAUMacHDjr12dUorjzTumKK9zGE2jlyknTpp3++99+a2OXLuGRIN68WZo1y/7ectu2AgDygjnZf9aulXbtkuLjpZYtXUfjPyVKWFuELVtsN3GHDoG5ztdfWyK6fHnpwgtz/rlp06Tu3aXKlaWkJCkmJjDxAYBPnv6ZKV68uFadVLh/woQJuuSSS/TQQw/p6NGjfgsu0mzeLB06ZDdHdeq4jib3SpaU7rtPuuQS15EAAHyYk/PO681IEkdKP2Kf/PQlfvRRaedOSxL7oyTW889LAwZEbmlQAPBhTvavI0ek/v2tLUTHjrZgOdp9842Nffu6jSMnvF6pVStp4ECrUAIAwcScnH9ery3UuuwySxRHEl9f4kCWnB41ysYbbpDi4nL+uY4draXE1q3MnwCCI09J4ltuuUVr1qyRJK1fv14DBgxQkSJF9Pnnn+v+++/3a4CRxFdqukGDyClpCQBwizk5744dkx56yHa3tGnjOhr/+ve/rX9UbndcLVki/fe/dvzaa+z6AYDcYE72r7g4W2RUsaL0v//l7gFruNu3T/r118xf27VLmjfPjnv3DnpIuebxWDsPyXYTA0AwMSfnX/360vvvS2PGuI7E/8491zZBVawYmPOnplqSV5Juuil3n42Pt8pekjRhgn/jAoCs5ClJvGbNGrVo0UKS9Pnnn6tr164aM2aM3nvvPX3xxRf+jC+ihHM/Yp+NG6Vx46QFC1xHAgCQmJPzIy7OSlf+73+RtzK6U6eMFcg5lZ4uDRli44ABduPsL5s2SU89Jb33nv/O6W9Hj1qcAJBXzMn+FRMjPfCAtGaNVLWq62iCZ948qVSpU3cLT55su7qaNw+fP48uXWwkSQwg2JiTkZ2HHpLGj89IxvpbfLwtwF62TKpbN/efv+giGydO9GtYAJClPCWJvV6v0tPTJUk//vij+vTpI0mqVq2adu3a5b/oIkwkJInfeku6/HJp9OjgXXPNGuvBAAA4FXMy/OXDD233cdGiViLan374QXr4YenFF/17Xn/xeu3nm1q1pPnzXUcDIFwxJ/vHunXSwYMZvy5e3F0sLjRpYgnyP/6Q/vwz4+u+UtP//59VWDg5Sez1uo0FQHRhTs6fQ4esokVamutIwpfHk9EGKrf69JEKFLC/gw0b/BsXAPxVnpLEbdq00ZNPPqkPP/xQ06dPV9//X+K6YcMGVahQwa8BRpLnn7feh9dc4zqSvPOtflq7NjjXW7pUatZM6tDBdvgAADJjTs4br1f6+GN7EB2JDy29Xuntt22n9J49Z37/vn2Sr+rao4/6f4fS5Zdb6eply/LWJznQfvhB+vpr+3P7/HPX0QAIV8zJ+ZecbLt62reX1q93HY0bxYplLCz3VfBKS7OdxFJ4JYlbtZIKFbJS2f9f9RUAgoI5OX9+/tkqV7Rs6TqSwPF6pS1bpOPH/XvezZszL3bLizJlMhZaffVV/mMCgOzkKUk8YsQILV68WEOHDtU///lP1f3/zOHYsWPVqVMnvwYYSUqXls4+W6pTx3UkeVevno3BSBKnp0u33GLJ4a1bpZ9+Cvw1ASDcMCfnzcaNtmirUSPp8GHX0fifx2PlnV95xRKzZ3LkiPUNbNhQuusu/8dTqlRG/8RPPvH/+fPr5CovOfnzAoCsMCfnj9cr3XCD3Wvu3y8lJLiOyJ22bW30VbcoUECaO9fm9Q4d3MWVW/HxUrt2dkzJaQDBxJycP7Nn29ismds4Aql6dVsc7e9FTEOGSJUqSfmtau4rOf3tt/mPCQCyE5uXD5111llalsUTtP/85z8qUKBAvoNC6PLtJN60yZK3cXGBu9Zbb1k/Jsl2NflulAEAGZiT82b6dBvbtpWKFHEbS6A0a2bJ8GXLpK5ds39vxYrSuHG2ozhQc/vVV1tPpU8+kZ580hLZoaJqVWnhQqlNG/vZIz3dSn0CQG4wJ+fPiy9af8CCBaWxY20XTbRq185aPPl2Eku2YNu3aDucdOliFdVmzZIGDXIdDYBowZycP3Pm2BjJ+fRKlay1w+rV/msN+ccfltRNT897qWmfAQOk2rWl88/3T2wAcDp5ShL7LFq0SKtWrZIkNW7cWK1atfJLUJFo8WIra9mli3Tppa6jybsKFaxX4cGD1hOhQYPAXGf7dunBB+14xAgrlwkAOD3m5NyZMcPGc85xG0cgNW1qpalyU965ZMmAhaMLL7SfITZssERsKOyE8nozktVnnWUlMffts9XkDRs6DQ1AGGNOzr1Zs6QHHrDjESNYIOz7/S9YkHmuCkdXXy21aJFRNhMAgok5OffS06MjSdyokc2z//+fh1+8+679+XXtmv9n5lWq2AsAAi1PSeIdO3ZowIABmj59ukr+/9PEffv2qXv37vr0009Vrlw5f8YYEWbMsJXRGzeGd5LY47HdxEuXWhmwQCWJ773XHtK2bGllOgAAWWNOzptoSBL7SoNllyT+6CPrx/vcc7YQLJCKFLGfgT76SBozJjSSxK+/bu0snn7aksJt2liiYt48ksQAco85OW+2b5euvNL67l59tXTbba4jcq9ZMyvVvHevVT955RVbbHXDDa4jy70mTewFAMHEnJx3K1dKKSm2wDeSy0377vdWr/bP+dLSpLfftuObb/bPOQEgGPJUSO/222/XgQMHtGLFCu3Zs0d79uzR8uXLlZKSojvuuMPfMUYE36okf5WvcMlXcjpQfYnT0613YWysNHKkjTt2SK+9Jr30UmCuCQDhijk597Zskdats3LCkbwy2lfeavly24X0V8nJtijrgw+k998PTkxXXWUPG0Khwtv+/dITT1hp02nT7Gv/+Ic9iD/7bKehAQhTzMl5c8cd0p9/2o6ekSPDe9esv8TFSY88Ir35pvUiHj9eGjXKdVQAED6Yk/POt4u4XTt7Jhup/J0k/v57KSlJKl1auuwy/5zz0CH7eaBzZ2v7CACBkKd/6r/77jv9+OOPatSo0YmvNW7cWK+//rp69uzpt+AiycqVNkZCknjoUHvI265dYM4fE2MPaO+/33oEStKvv0q33y6VK2djJP+QAgC5wZyce75dxC1aSAkJTkMJqAYNbL5MTrbeSNWqZf7+v/5lu7fq15fuuis4MfXsaQu/QqEP9AsvSDt3Wn9HX4/Eq65yGxOA8MacnDcvvWQLd154QSpWzHU0oeOf/7TRV4msTx93seTXb79Zn+ny5aXBg11HAyAaMCfn3ezZNkbygmrJFqdJliT2R2sH32Kua6+1Nkb+UKiQ9NZbdt8+fTr9iQEERp52Eqenp6tgwYKnfL1gwYJKT0/Pd1CRxuuVVqyw40hIEnfrJl1++akPm/3NlyD2XbNMGXuY63u4DwBgTs6L6dNt7NrVbRyBFheX0Rbir32Wli2TXn3Vjl991d4bDLGxoZEg3r7dkhGSlZrO4n8hAMg1l3Py66+/rpo1a6pQoUJq37695s+fH9Dr+VPlytK332Y8rEWG1FRrCyFJffu6jSU/fvlFevhh2ykOAMHAfXLeDR5sC4ovvNB1JIFVp47dnx44YNXG8mPvXumbb+zYn4uhYmIy/h4mTPDfeQHgZHlKEp977rm68847tXXr1hNf27Jli+6++26dd955fgsuUuzYYZNFTIzt1kHWfv9d6t3bVhn/VWxsxgrqsWODGxcAhDLm5Nx76inpyy+l6693HUngffaZ/Rxy8mJ5r1caMsR6Jl12WebvBYvXKy1dKh05EvxrS9KTT9rDgLZtbeHbydaskd59139lxwBED1dz8meffaZhw4bpscce0+LFi9W8eXNdcMEF2rFjR8CumV8bNkjjxrmOIrSlp0svvywdPGgLplu0cB1R3nXpYuMvv9iucQAINO6T865TJ+mxx6T27V1HElgFC0o33mgtmGLylCHJUKqUPc9+4w3/bxC7+GIbJ07Muo0UAORXnv4JfO2115SSkqKaNWuqTp06qlOnjmrVqqWUlBS96tuWghN8paZr15YKF3Ybiz+kpdnqpRdekI4d8885vV7rA/jddzY5Z6V/fxvHjbMYAADMyXlRpozdaJ11lutIAq9JE2vVcLIxY6SZM+1nkpdechNXnz72sPvbb4N/7XXrrMejJD377KllxR56yMpPs1IbQG65mpNffPFFDR48WDfccIMaN26sN998U0WKFNG7776b5ftTU1OVkpKS6RVMR47Yvd3ll0uvvx7US4edBx6wsVq1/D/AdqlqValGDUt8z5vnOhoA0YD7ZOTEyJHSf/5jVU3yq1Yt6dZb83+evzrvPKvGlZQkLVni//MDQJ46u1arVk2LFy/Wjz/+qNX/v82iUaNG6tGjh1+DixS+nbGRUGpaspvTq66SDh+2h+x16+b/nJ98Iv34oxQff/oH1ueeayuztm+Xfv5ZOuec/F8XAMIdczJyw+vNKLP88MNS9epu4mjWzBaGjRlju5mD6cUXpePHpV69pO7dT/1+hw7SF1/wEBtA7rmYk48ePapFixYpMTHxxNdiYmLUo0cPzZkzJ8vPDB8+XI8//njAYjqTO++UFi+2RVuRXsoyP2Ji7H57wgTJ4V+X33TpIm3aJM2aJfFjKoBA4z45byZPtue9Z59t8zTOLD09sAu5Che26l9ffmm7iVu2DNy1AESnXP0T9tNPP6lx48ZKSUmRx+PR+eefr9tvv12333672rZtqyZNmmjmzJmBilVSePZauuUWaetWeygZCTyejMTw77/n/3x790p3323HDz98+qRzwYLSJZfY8eef5/+6ABDOQmFODkf//a+Vzvprj95IdeiQ7UK66CJLjHo80tSp9rD5nnvcxXX11TZ+/bUU5A1sev5520H8zDNZf79DBxvnzKGcF4CccTkn79q1S2lpaapQoUKmr1eoUEHbtm3L8jOJiYlKTk4+8UpKSgpIbFn54ANp1Cibjz7+2N1ipXAxerQ0f77N4+HOV3J61iy3cQCIbNwn588zz1i7v/HjXUcSHF6vtHOn9OuveT/H1VfbPJ2fc5yJ7+cAql0BCIRcJYlHjBihwYMHq0SJEqd8LyEhQbfccoteDGAmNBx7LUl2A1ypklSnjutI/MeXyF27Nv/n+uc/rV9igwbSffdl/97+/S1ZfOhQ/q8LAOHM9Zwcrt5+W3riicDewIWSQoWslOdXX2XM2QkJ0qOPWvUOV5o3lxo1klJTg/8AonBh6f77LYastGolxcZK27ZZSS8AOJNwm5Pj4+NVokSJTK9gWLYsowzjo49KF1wQlMuGtVKlpLZtXUfhH74k8dy5/mtbBQB/FW5zcig5ftwWJklSx45uYwmWhQul8uWtylRebN9uVai++urUNkb+1K+ftZFq2pQ5FID/5SpJvHTpUvXK5l/Nnj17atGiRfkO6nRy22sJgeOvJPG8eRl9Ad9448wPrM8/3xLK77yTv+sCQLhzPSeHo337Mnr4REvLgpgY60ss2Q7aUNkZ6/FY6wrJWk4Ew59/SmlpZ35fkSIZ/arnzg1sTAAig8s5uWzZsipQoIC2b9+e6evbt29XxYoVA3LNvEhJsR7Ehw9bycRHHnEdEYKtcWNLenu90vr1rqMBEKm4T867X3+1TTkJCbagNxrUr2/jn39Kycm5//x771lyvUMHa6kUKOXK2SLmDz6wzVMA4E+5ShJv375dBbP5lyg2NlY7d+7Md1BZ8fVaOrl3xJl6LaWmpiolJSXTK9h277YSyf/8Z+g8mPUHfyWJR4ywP5drr826L+BfFSwolSyZv2sCQCRwOSeHq59/tjmnXj2r8BEtmja18Z13pD59QufnEV+S+McfbQV2IKWnW9/LFi1ytovcV3KavsQAcsLlnBwXF6fWrVtrypQpJ76Wnp6uKVOmqGMIbQOaMMFaFVWrZmWmCxRwHRGCLSbG5tV9+6yKGAAEAvfJeTd7to0dOwa2x24oSUjIeDbw/62rcyw9XXrrLTu++Wb/xpWVaPk7ARB8ufrnpUqVKlq+fPlpv//rr7+qUoCeuual19Lw4cOVkJBw4lWtWrWAxJadFSvshnjMmMCWnQg2fyWJP/jAdjb95z+5/+ymTTYhA0A0cjknh6sZM2yMll3EPievAu/cOXR+HqlbV2rXznb3jhsX2Gt9/rm0aJH97JCT/y1O7ksMAGfiek4eNmyY3nrrLb3//vtatWqVbrvtNh08eFA33HBDwK6ZW3//u/1b/PnnUtmyrqOBK/XqsQMKQGC5npPDmS9J3KmT2ziCzXe/nNsk8bRp0rp1UokS0pVX+j2sLHm9Vh3twIHgXA9AdMhVkrhPnz565JFHdOTIkVO+d/jwYT322GPq16+f34LLr8TERCUnJ594JTloLLdypY2NGwf90gFVr56NGzZYWY28KlhQuuce6/+QU16vlZ2uWTOjVwYARJtwm5NDwfTpNnbt6jaOYPMlxcuUke69120sf/XEE9K330o33RS4axw9ahVdJOm++6xU15n07Cl98400cWLg4gIQOVzPyQMGDNDzzz+vRx99VC1atNCSJUv03XffnbLA2rX+/aX27V1HAQCIZK7nZJ/XX39dNWvWVKFChdS+fXvND4MHmL4FsiFUiCQoGja0MbdJ4lGjbBw4UCpa1L8xnc7550stW9o9NAD4S66SxA8//LD27Nmj+vXr67nnntOECRM0YcIEPfvss2rQoIH27Nmjf/qewvlZXnotxcfHq0SJEplewRapSeIqVaRPP7VefXnZkfT55/bQNi88noyk8uef5+0cABDuXM7JPuF043vggO0klaJvJ3G7drbKecUKqVAh19FkdsEFUu/egd1V9PbbtsK7QgXp7rtz9pkKFaw0N7vdAOREKMzJQ4cO1aZNm5Samqp58+apfQhkY3fssJ01W7e6jgSh5PbbbdfW77+7jgRAJAqFOfmzzz7TsGHD9Nhjj2nx4sVq3ry5LrjgAu3YsSOg182PP/+UNm60ksbt2rmOJrh8SeJVq3L+mZ07M6phDR7s/5hOp1UrGydMCN41AUS+2Ny8uUKFCpo9e7Zuu+02JSYmyvv/Te08Ho8uuOACvf766wFbrXxyr6VLLrlEUkavpaFDhwbkmv4QqUnimBhpwIC8ffarr+xhwVlnSQsWSHFxuT/HFVdYCe+xY61cdaiUzgSAYHE5J0sZN75vvvmm2rdvrxEjRuiCCy7Qb7/9pvK5KQ8RJL//bqt7ExKkGjVcRxN80bZ72ufAAenxx+340UelYsXcxgMgMrmek0NRWpp09dXSlCn2IHXqVNcRIVQsWWK7tWbNyqhQBgD+Egpz8osvvqjBgwefaPvw5ptv6ptvvtG7776rBx98MNN7U1NTlZqaeuLXKSkpAY3tdCpWtHvm5cutfHI0yUu56SJFpJdfts1TLVsGJq6sXHyxtWz89lvp2DFaOADwD4/XN1vm0t69e7V27Vp5vV7Vq1dPpUqV8ndsp/jss8903XXXaeTIkWrXrp1GjBih//3vf1q9enWOJviUlBQlJCQoOTk5aLuKK1e21Vhz5mT0t4tmBw9awnzzZiv5+NxzeTvP4cNWLvLgQSs53batf+MEgOy4mE+y42JObt++vdq2bavXXntNki3cqlatmm6//fZTbnyz4uLPMC3NdjNVqxaUyyGHdu60BV/Ll1uJZ3964gnpsces//HKlbm7if7tN+nDD6XixaUHHvBvXAD8hzk5/wLxZ/jII9KTT9oCrfnzI2/RNPIuMVF65hnpxhuld95xHQ0Af2JOlo4ePaoiRYpo7NixJzY5SdJ1112nffv2acJftoD+61//0uO+Va0nCZU/w2iwfbs0fLjUtGlg2yD5Q1qaVKmS3UNPmSKde67riACEspzOy7naSXyyUqVKqW2QM3MDBgzQzp079eijj2rbtm1q0aJFSPZa8tm3zxLEUsaqpEiyYoX0/fdS9erS5Zfn7DNPPGEJ4urV7aFtXhUuLPXrJ332me0mJkkMIJoFe04+evSoFi1apMTExBNfi4mJUY8ePTTH18joL0JhhXSBAiSIQ1FsrDRihLWhWL7cbs79wevN6Kv11FO5X2W9caN9rm5dksQAcs7FfXKomTTJEsSS9esjQYyTdeli46xZbuMAEPlczMm7du1SWlraKc+qK1SooNVZbFVNTEzUsGHDTvw6JSVF1bhpDaoKFex+NBwUKGDPw0ePliZOJEkMwD9y1ZM4FIRir6XT2bTJyk9UqWLlLSPNjBnSsGHS++/n7P3LlkkvvmjHr71mq8rzo39/Gz//3B4EAwCCI7sb323btmX5meHDhyshIeHEK5g3vswRoa1UKetLLEmffOK/83o8Vobrhx8yfmbIDV8vrrVrpV27/BcXAESyTZuka66x43/8w0pOAyfr1MnGNWusbzUARLP4+HiVKFEi0yvYjhyxloIvvmgLd5G9xx+XRo6U9u93c/2LLrJx4kSedQDwj7BLEoeT5s1twli0yHUkgVG3ro1r1575venp0q23SsePS5deKl14Yf6v36ePJeE3bJB++SX/5wMABE5iYqKSk5NPvJKSkoJ27VmzpFq1pHvvDdolkUu+JMKYMf690fV4pB49pJg8/MRbqpTUsKEdz5vnv5gAIFKlptqinD17rNKTb4EwcLJSpTKqhvz8s9tYAMDfypYtqwIFCmj79u2Zvr59+3ZVrFjRUVTZW7xY+t//rBVAtPa4TUmx/sK//pr9+3bvttLUt95q7YlcOP98qVAhex6+fLmbGABEFpLEARYTY2UrIpEvSbxunfVEyM6770qzZ9vu4Zdf9s/1ixSx8tWffCLVr++fcwIAziwvN74uV0jPmGGlgzdvDtolkUv9+knFitnf09y5+T/fZ59Z24/86tDBRn/EBACRbudO6dAhqXRpq/YUH+86IoQqSk4DiFRxcXFq3bq1pkyZcuJr6enpmjJlijp27OgwstPztejp1MkW2Uaj116TOnaUnn8++/d9+KEtimvRQmrdOiihnaJoUSuP/eOPGYuaASA/SBIjz6pXtxVmR49KW7Zk/95zzpHOO8+Suv6sMHrPPdLf/mYPlgEAwRFuN77Tp9vYtavbOHB6RYpIl1xix/ktOf3LL/azQb160t69+TuXL0nMTmIAOLOqVaX586Xvv5dq1HAdDULZ2WdLDRpI5cq5jgQA/G/YsGF666239P7772vVqlW67bbbdPDgQd1www2uQ8vS7Nk2huCtfND4kq2rVp3+PV6vNGqUHd98s9uE+i232HP2aN35DcC/Yl0HEMl69rRSSi+8YDfMkaZAAal2bSuvsXatJY1Pp3596wmYnh68+AAAgTNs2DBdd911atOmjdq1a6cRI0aE5I3vsWMZN73nnOM2FmTv6quljz6yXcAvvijF5vGn1MREG88/334Oy4/27W2cN89+hslL2WoAiCZFi7rbWYPwcdVV9KsGELkGDBignTt36tFHH9W2bdvUokULfffdd6oQgqUmvd6M+2Vfz/ho5EsSr15tfyZZJYBnz7YkcpEizGEAIgtJ4gDZv9+SopL0xhtuYwmkunUtSfz779K55576/cOHpcKF7djjscSyv23aZA+Vy5a1lVQAgMALlxvfX36RDh600pdNmriOBtnp0UNq1Ejq1k06cEAqWTL35/jpJ2nyZFtR/eST+Y+paVN7CBATI/3xR/YL4gAAQM5EazlTANFj6NChGjp0qOswzmjTJmnbNlug26aN62jcqVvXnlkfOCBt3SpVqXLqe3y7iAcMkBISghtfVhYtsufhHTtKV17pOhoA4Yz9EAGyerWNFSvag+lI5etLvHbtqd9LTbUfMP7xDyk5OXAx/Pyz9PDD0ksv2WovAEBwDB06VJs2bVJqaqrmzZun9r5tlyHEV2r67LPZBRrqChaUVqyQ/vvfvCWIvV7pgQfs+JZbrNpJfsXG2s90u3eTIAYAwN+OH5e2b3cdBQBEL98u4latMjb5RKO4OKlOHTvOquT03r3S//5nxzffHLy4svP999ab+P33XUcCINzxuDRAVq60sXFjt3EE2pAh0oIFlqT9q//8x/4cxo0LbPK2Xz8pPt52NK9YEbjrAADCz4wZNlJqOjzkZ2fR2LHSwoVSsWLSI4/4L6Zq1VhgAACAv335pS0K+/vfXUcCANFryxZbrBvN/Yh9GjWy0bfx62R791oP4ObNM1oSuXbRRTZOmWI7oAEgr3jkFSDRkiSuV892C/+1zMbatRllHl96KW87gnKqRAnpggvseOzYwF0HABB+mjWzV9euriNBTqWnSzNnSosX5/wzx45J//ynHd97r1S+fGBiAwAA/lG7trUEmTPHdhQDAILvvvus+qM/F9mGK19f4qx2EteuLX39tTRvXui0TGjc2HY/p6barmIAyCuSxAESLUnirHi9tsM4NdX6C/7tb4G/Zv/+NpIkBgCc7OmnpV9/lVq3dh0Jcuqpp2zn99NP5/wzhw5JXbpIlSpJw4b5N57UVOmqq+wGfP9+/54bAIBo1aSJLTY/cMB+VgMAuFG4sFSmjOso3LvkEumVV6Qbbjj9e+LjgxbOGXk8GbuJJ050GwuA8EaSOECiKUn83/9Kd9wh7dhhv/7f/2wFU3y8fS8YK6wuuiijl2FWK74AAEB48N3ofv21rWrPiYQE6d13rfVE8eL+jSc+3np1rV9v5awBAED+FSggdepkxzNnuo0FAIAOHaTbb7eKmSebMEHatMlNTGdy8cU2fv01VTkA5B1J4gA4ftweUMbFRUeS+MUXpVdfteRscrJ011329cREK0cdDAkJUs+edsxuYgCAZL2EUlNdR4HcOuss6weVmiqNH5+7z/o7QezToYONc+cG5vwAAESjLl1snDXLbRwAEI2ee84qbo0e7TqS0JWSIl19tVSrlrR8uetoTtW5s1S6tLR7t7VvAIC8IEkcALGx0pIl1l+nXDnX0QSeLxH8++82YaamSvXrSw8+GNw4+veXihUjIQAAsNYH55wjlSwpLVvmOhrkhsdjN+KS9Mkn2b931y7pmmtsB3EgkSQGAMD/zj7bxu++kzZudBoKAESdGTOkxYtzXr0pGixbJn30kbR5s/16zBhrbdSwobVJCDWxsVLfvlKVKtLOna6jARCuSBIHUGys6wiCo25dG9eutRVMv/1mJaeD3afhb3+zCfHJJ4N7XQBA6Fm9OuMmqX59t7Eg9/72Nxt//FHavv3073vqKenjj6W//90WBgSKL0k8b15grwMAQDTp3NleBw5I//6362gAIHp4vRk7T32l/yHdeafdW06bZr8eNcrGwYOD004xL157TUpKki67zHUkAMIVSWLk28lJYsl2TzdvHvw4ChWyVyg4flz67DPpppvY2QwALsyYYWOHDsFftIT8q1tXatdOSk+3hWdZ2bhR+u9/7fippwJ7096ypVSwoCWsQ7UfFQAA4SYmRnr/fenee+0hNwAgONaskfbsseeoLVq4jiZ0NGpk4+rV0qJF0i+/WDvJa691G1d2SpQI3QQ2gPBAkjgABg60ng6TJ7uOJDh8SeIvvnAbh4/Xaz/suFSggPVmfucd+isBgAu+JHHXrm7jQN75Sk7/9FPW33/0UenoUem886Tzzw9sLCc/PKHkNAAA/lOnjvSf/0iFC7uOBHm1erW0fr3rKADkhm8XcZs2lgSFadjQxlWrMnYR9+8vlSnjLqacSkuTtm51HQWAcESSOAAWLrSeDgUKuI4kOHxJYkn69lt3cUjSsWPSWWdJDRpI69YF//perzRzpq3g6tXLvvbdd8GPAwCimdcrTZ9ux+ec4zYW5N3AgbbQKqtFaEuXWq8oSXrmmeDE06WL7SiOlp/vAAAItrQ0W2h99KjrSJBTSUn281HLllRbAcLJ7Nk2Umo6M1+SeOFC60csWanpUDd1qlSxoiW0o8GkSfbs3/fcB0D+kCT2s9TUjLLLjRu7jSVY6tWz3oHXX5+RGHWlYEGbFCVp7NjgX//ddy0hceONJIkBwJUNG6QtW2xO8PWSRfgpW9b6FMZk8dNqYqItBhgwwFa/B8MLL9giwCuuCM71AACINv37W8umJ590HQly6v33pSNHpJQU+7vzel1HBCAnSBJnzVdu+o8/bCNSvXrhUZ2sfn1p1y6rerV9u+toAq9wYdsc9o9/uI4EiAwkif1szRrrn5eQIFWq5Dqa4IiJkT75RBo9OusHucHme3gb7CTxli3SsGF23KSJ1KOH/XksX24/XAAAgsNXarptW6lIEbexwD+OH884njHDVg7Hxgb3ITJ9ngAACCxfq4mnn5bmzXMbC3Lm/vulf//bjn/8MaM8K4DQlZ4uNW8u1aghdezoOprQUqWKVLSoHc+caVWtwuE+sEoVWzzt9Upff+06msCrU8f+O165Uvr9d9fRAOEvBFJ6kWXVKhsbNw6PSSQSXXKJJWcXLpQ2bgzONb1e6dZbbfVsu3bWj7hMGTuWoqc/NQCEgi5dpOeek265xXUk8Ie777YqIcuW2a/btLES0/fem7nlRbAcOSIdOBD86wIAEOmuuMISxWlp0rXXSocOuY4IZxIXJz38sPTSS/bre++l7DQQ6mJipI8/tmem5cu7jia0eDwZJaf/+ENq1sxtPLlx0UU2TpzoNo5ASk62Z/DVqmVU8Hz3XbcxAZGAJLGfrVxpY7SUmg5F5ctnlALJqo9hIHzyia3UKljQJidfv8LevW2k5DQABE/dutJ999nDRYS/jRul3bszekIVKSI98IA0fHjwY7nnHqlECeuXCAAA/O+116TKla1K2wMPuI4G2UlPzzi+4w5bqHngAGWnAYS3f/9b+uYbaycYTi6+2MYffojMRVZer3T55VK3bvYzwk032dffe89KgwPIO5LEfkaSODT4Sk5//nngr7V9u3T77Xb86KNWatrHt6pp2zZukgAAyAtf6cmPP85cdtqF0qXtBnTuXLdxAAAQqUqVslZWkiWMf/jBbTzI2tKlUu3a0gsv2K9jYmzBfJEiUoMG0tGjbuMDcHpJSZkXeSCz3r2lPn2sQmQ4adbMSogfPmzl/yPNuHHSlCnWjiI2VurXzzaKbdsmffut6+iA8EaS2M+qVLFm8U2buo4kul16qZUImTdP2rw5sNe6/XZpzx6pRYtTVzq3bm0/fM2cSflxAAiG+fOljz6yPvGIDP36ScWK2XxasKDbG94OHWwkSQwAQOD07Cn94x92fOut7heJ4VT//a+VlT65d3S9etK6dZbcj493FxuA00tLs80tZctK69e7jgb+5PFk7CaeMMFtLP526JA0bJgd33+/LVKKi5Ouu86+9vbb7mIDIgFJYj976SXpt9/spgbuVKwoPf20rSSqWDGw17r+eqlmTVs1W7Bg5u8VKCBVrRrY6wMAMoweLf397xm7GhD+Che2RLGPr2qLC23b2s33xo1WSQQAAATGc89ZWckvv7QdQwgd+/bZokwpI5nvc/Lzl/R0disCoWbFCmn/fquOVL2662jgb1ddJSUmnvpvc7h79lnbBFa9uvTggxlfHzTIxj//pIIFkB8kiRGxHnzQSoTExQX2On36WC+Eli2zfx+TFQAE3vTpNoZb/yBkz9dvqFYt6ZZb3MVRokRGS5GTd84AAAD/KlpUGjvWymcitHzwge3qatJE6to16/esXy+de640alRwYwOQvTlzbGzfngU4kahDB9s01bq160j8Z8MGSxJLthmgSJGM7zVoYIvIFywI/PN/IJKRJPajo0fpOxtN9u3LOP7rDuKTHTtmieRSpaQdOwIeFgBErR07pFWr7LhLF7exwL/OO0/6/ntp2jT35QspOQ0AQPAtXGh9B+GW12ulpiXbqXa6tlrffGOLN++7zyqwAAgNs2fb2KmT2ziAnBo2TEpNtWcCl19+6vcbNaLFI5BfJIn96NlnpZIlpSeecB0JfFassD7BH3/s3/NOmmQlpkePPvN7Cxa0m9lDh+wBNwAgMGbNsrFpU+uxhMhy/vmhURKNJDGAULFx40YNGjRItWrVUuHChVWnTh099thjOkoJI0SYd96x+XfwYBbmu/bTT9ZirVgx6ZprTv++IUOks8+WDhywcqCUnQZCgy9J3LGj2zgQOEePSl99JT30kOtI8i85WVq71na9v/JK9sng/fulP/4IXmxAJCFJ7EcrV0opKVKhQq4jgc8PP1gvo5Ej/XfOlBTp5pttovr115x9plcvG7/7zn9xAAAymzHDRkpNI5C6dJH697cXALi0evVqpaena+TIkVqxYoVeeuklvfnmm3ooEp4KAidp314qUED6+mvp3XddRxPdXn/dxmuvtTYcpxMTY39XhQtbYtmfz2QA5M3OnZZwkzIWviLyHD4sXXaZNHy4tUcMZwkJ0i+/2Dzia/uUlQ8/lCpVku6/P3ixAZGEJLEfrVxpY3b/aCG4fGUoZs2yJvb+8MADtjKpdm3pySdz9hlfknjyZFbQAkCgkCRGMDRsKH3+uZVYBACXevXqpdGjR6tnz56qXbu2LrroIt17770aN25ctp9LTU1VSkpKphcQypo2lZ56yo7vusv6E8KN+++X/v73nP0cVLeu9Mwzdnzfffy9Aa75+hE3bmwt8RCZEhKkbt3seOJEp6H4RWysVabITuPG0sGD0hdfSLt3BycuIJKQJPaT48et5I5EkjiUVKtmq+O8Xmn8+Pyfb+pU6c037fjtt6WiRXP2uY4dpeLFpV27pMWL8x8HACCz/fulpUvtmCQxACBaJScnq3Tp0tm+Z/jw4UpISDjxqlatWpCiA/Lu7rszyhdfd52UluY6oujUoYP0wQdSkyY5e//Qofb3dvAgZacB1+rVsxLEN97oOhIE2sUX2xiuSeI//7RFRqmpOXt/q1ZSixZWatvfLSeBaECS2E82bLB/uAoXlmrUcB0NTuYrBzl2bP7Oc/CgdNNNdnzrrVL37jn/bMGCUo8edkzJaQDwv+LFpS1b7CaoUiXX0SDSeb1Wqs23Gh8AQsHatWv16quv6pZbbsn2fYmJiUpOTj7xSkpKClKEQN4VKCC9/771wp05U3rpJdcRISdOLju9c6e9ALjRqJFVZbjnHteRINAuvNDGn3+2DUvh5v77pcRE6frrc/Z+jyfjmf3bb9v9OoCcI0nsJ75S0w0b2s0LQoev5PT06dKOHXk/z8MPS+vX2+7kZ5/N/efpSwwAgVWxYsbNEBBI335rK/F9N6IA4E8PPvigPB5Ptq/Vq1dn+syWLVvUq1cvXXHFFRo8eHC254+Pj1eJEiUyvYBwUKuWNGKEHf/znxm9NRF448ZJt90mrViR+8/WrStNmSItXChVqOD/2AAAmdWoYTtr09Olb75xHU3u/Pyz9NFHlvjNzYKGq6+WChWSli2z+QZAzpEk9hP6EYeumjWltm1tYsxryWmv15L/MTHSqFFSXp6j9Oplu4l9O5sBAEB4atvWxpUrpX37nIYCIALdc889WrVqVbav2rVrn3j/1q1b1b17d3Xq1EmjRo1yGDkQeDfeKF15pfTCC9JJ/xsgwF56yVpv5bVCW8eOUny8f2MCQtFTTz2lTp06qUiRIipZsqTrcE7YvNmShfRrjR7hWHI6Lc3aFEjWoqBNm5x/tlSpjI1ib7/t/9iASEaS2E9q1pT69JG6dHEdCbLSv79Urpz1JsgLj0d6/nnrO+3bEZxb1atLP/wg3XVX3j4PAMjawYNS795WOuv4cdfRIBqUL5/xYHrBArexAIg85cqVU8OGDbN9xcXFSbIdxN26dVPr1q01evRoxcRwi4/I5vFIn35qD5H5zz04fv1VmjVLio2Vbr45f+c6dsx+Zn/rLf/EBoSao0eP6oorrtBtt93mOpRMvvxS6tdP+vvfXUeCYLnoIhs3bQqf8sujRklLlkglS0pPP537z/sqfX32Wc77GQOQYl0HECmuuspeCE1Dh1qJivyWAq9b1z/xAAD8Z84cK+W/cqWVHgSCoX17a0Mxb550/vmuowEQjXwJ4ho1auj555/XzpOafVasWNFhZEBgeTwZxwcOSFu2SA0auIsn0r3+uo2XXSZVqpS/c332mbXyKlrUKq3VqpX/+IBQ8vjjj0uS3nvvPbeB/MXs2TZ26uQ2DgRPy5a22al+fdeR5Mzu3TY/SNITT9hmr9zq2lV68UXbLEb1CiDnWHeJqFCkSN4SxL/8InXvLq1Z479Y/vxTGjMmfFZxAUComzHDxq5d3caB6NKhg41z57qNA0D0+uGHH7R27VpNmTJFVatWVaVKlU68gGiwYoXUvLntjjt40HU0kSk52XpDStI//pH/8119tXTOOfb3NWiQtQUDollqaqpSUlIyvQKBJHH08XjCJ0EsSY8+Ku3ZIzVrJuV1I77HI919t1Stmn9jAyIdSWI/OHxY2rXLdRTIifR0u5HMiWPHpBtukKZNsxVM/nD0qO1GHjhQWr7cP+cEgGg3fbqN55zjNg5El5OTxCz8AuDC9ddfL6/Xm+ULiAZVqlg5ybVrpfvvdx1NZHr/fenQIalJE//8rB0TI737ri3knzrV+hwD0Wz48OFKSEg48aoWgOzWH39ISUn2/1+7dn4/PcJAamroL8q56y5r5fnKK9bewB/4kRjImbBIEm/cuFGDBg1SrVq1VLhwYdWpU0ePPfaYjua1wayfTZ1qJRDYwRTa9uyxvsAtWtjxmTz7rLR0qVSmjJWq8Ie4OKlbNzv+7jv/nBMAotmRI1buVyJJjOBq0cJKWO3eLa1b5zoaAACiT8mS0ujRdvzf/0qTJzsNJ+J4vfbnKklDhmQu850fdepIzzxjx/ffL23Y4J/zAoHy4IMPyuPxZPtavXp1ns6dmJio5OTkE6+kpCQ/R2/tmSSrvFCsmN9PjxB3441S2bLSwoWuI8levXrSN99kPDfPj9mzpd69pQceyP+5gGgQFkni1atXKz09XSNHjtSKFSv00ksv6c0339RDDz3kOjRJ1gNRyn9vFgRW6dKW8D1+XJowIfv3rliRsXv4lVek8uX9F0evXjaSJAaA/FuwwFbFVqhgNxVAsMTFSc8/L40fL9H6EwAAN84/Xxo61I5vvFHau9dtPJEkNdX6OtatK11zjX/PPWSIbbQ4eND+3kJ9hxui2z333KNVq1Zl+6pdu3aezh0fH68SJUpkevmbL0ncsaPfT40wcOCAvc70LNyV/fv9f87du+25++jRVtUTQPbCIkncq1cvjR49Wj179lTt2rV10UUX6d5779W4ceOy/Vyw+jr4ksSNGwfk9PCj/v1tHDv29O9JS7OblGPHpAsvlK66yr8x+JLEM2faJA0AyLuT+xH7a3cDkFNDh0qXXMKKfAAAXHr2Weu7uHVrRsIY+VeokPTkk9KaNVLx4v4998llp+fOlX791b/nB/ypXLlyatiwYbavuLg412GeFv2Io9vFF9s4dqy1Dwgl+/dLjRpJN90k+TNt07u3bebbtUuaONF/5wUiVVgkibOSnJys0qVLZ/ueYPR1kEgShxNfkviHH6R9+7J+z4gR0vz5UokS0htv+D/pULeuVLu2JaGnTvXvuQEg2hw8KBUtSqlpAACAaFWkiPThh1KBAtKYMdkvCkfuBWohZu3a9ve2ZIm18QAiwebNm7VkyRJt3rxZaWlpWrJkiZYsWaIDDneJvPee9Pbb0rnnOgsBDvXpY4ua16yRunSRNm92HVGGf/9b2rLFFv/Hx/vvvLGx0g032PHbb/vvvECkCssk8dq1a/Xqq6/qlltuyfZ9wejr4PWSJA4njRpJTZpYgjarlUTp6dIXX9jxiy9KVar4PwaPh5LTAOAvTz9tZQVvvNF1JIhG6enS999bi4rDh11HAwBA9GrXTnroIalfP3sIjvz5+GPrDZmWFtjrXHaZ1KBBYK8BBNOjjz6qli1b6rHHHtOBAwfUsmVLtWzZUgsdNoRt2FAaNIg2idGqVCn797xcOemXX6Q2bTIqsrn022+2UUuy0Z9JYinjGdH330ubNvn33ECkcZokfvDBB+XxeLJ9rV69OtNntmzZol69eumKK67Q4MGDsz1/MPo6bNlipRFiY22HKEJfdiWnY2Kk6dOlDz4IbMLBlySePDlw1wCAaFGwoFS4sOsoEI08Hunaa6XHHrMbbgAA4M5jj9li8IoVXUcS3o4ele65xxLuX30VvOvOmSN98knwrgcEwnvvvSev13vKq1u3bq5DQxQ75xxpwQKr2rBzp3TrrYFfBJQdr1e64w7bxNWvn+129rc6dWz3vNdru+kBnJ7TJPE999yjVatWZfuqXbv2ifdv3bpV3bt3V6dOnTRq1CiHkWfw7SKuV08K4fYTOMkVV9g4eXLW/Q4KFpT+/vfA9rbs3l366KOMviAAACD8eDxShw52PHeu21gAAIh2BQpkvo9n51DejBsnbd8uVa4s9e0bnGvOnm07wG+6SVq/PjjXBKLBSy9Jr71mPdsR3WrUkH7+2TZFjR1rc6YrEybYDt+4OPtvNFBuusnGd991mxQHQp3TJHG5cuXUsGHDbF9x/5953bJli7p166bWrVtr9OjRiokJjUrZFStKt98u/e1vriNBTjVubD0PfvrJejJIdvP473/bitlgKFZMGjhQKl8+ONcDAH/ZuHGjBg0apFq1aqlw4cKqU6eOHnvsMR0N1j+gQIhp395GksQAAISGQ4ds4XeTJtK6da6jCT+vv27jzTfbIvpg6NDBdrodOmQJjPT04FwXiGRer/Tss/bcesMG19EgFBQpIr3zTuaWmePHSzt2BC+Gw4elu++243vvDWxl1ksvlXr2lB55hCQxkJ1Y1wHkhC9BXKNGDT3//PPauXPnie9VdFxH6KyzpFdecRoCcsnjkR5+OOPXXq80eLD0ww+WLKahPQCc3urVq5Wenq6RI0eqbt26Wr58uQYPHqyDBw/q+eefdx0eEHTsJAYAILQUKiQlJUkHD0rXXWctpVzumAonv/4qzZplLdXO0OHNr2JiLHFx1ln29/Xf/0pDhwbv+kAk2rjRqgIULCi1bu06GoSi6dOlK6+0ftVffim1ahX4a65caa07q1aVHnoosNcqVIhWj0BOhMZ23DP44YcftHbtWk2ZMkVVq1ZVpUqVTryA/HrvPUsQFyok3X9/8K6bmmor+i64wFZRAUA46NWrl0aPHq2ePXuqdu3auuiii3Tvvfdq3LhxrkMDnGjTxh5sJiVRxg0AgFAQE2P3+cWKWWnNF15wHVH48O0ivvRSKzcdTLVr2zMSSXrgAXaBA/nla3HXqpU98wT+qmJF+7c3KclK/n/6aeCv2bq1tGaNtTYoWjTw1wNwZmGRJL7++uvl9XqzfLnk9Urz5knJyU7DQB7NnStdfLGVMpKs3HT9+sG7flyc7UL//ntp5szgXRcA/C05OVmlS5fO9j2pqalKSUnJ9AIiQfHiUtOmdjxvnttYAACAqVlTevllO37kEdshi+wlJ0sffWTHQ4a4ieG226Ru3Sg7DfiDL0ncqZPbOBC6GjSwe9g+fWwD01VXSYmJgS/NXLq01LZtYK9xsr17rTf3mDHBuyYQTsIiSRyqtm+3EoOlS0tHjriOBrk1YYI0caIdt2uX0Q8hWDweqVcvO/7uu+BeGwD8Ze3atXr11Vd1yy23ZPu+4cOHKyEh4cSrWrVqQYoQCDxfX+L5893GAQAAMtxwg3TRRdLRo9ajODXVdUSh7Y8/bOF8kybWH9iFmBjp3Xdtd9mMGVb+FEDezJljI0liZKdkSXs+/sAD9utnnrG509+b4mbMkL74wjbdBdvnn1tv7iefdHN9INSRJM6HlSttrF2bsh3h6MorM47ffddNj6LevW0kSQzAtQcffFAejyfb1+rVqzN9ZsuWLerVq5euuOIKDT5D07LExEQlJyefeCUlJQXytwME1T33SEuX2k0nAAAIDR6PNGqUVLas7SR+/HHXEYW2Jk2kxYuladPsz86VWrWs6trbb1vZawC5d+CA3Z9IUseObmNB6CtQwJLDY8ZYjuPbb/1bevrYMenWW6X+/TPaGgTT3/4mFSkirVqVsXgCQIZY1wGEM1+SuHFjt3Egb1q2tAmvXDm7GXKhRw+biFetkjZtkmrUcBMHANxzzz26/vrrs31P7dq1Txxv3bpV3bt3V6dOnTRq1Kgznj8+Pl7x8fH5DRMISQ0auI4AAABkpUIFSxQPGSKdfbbraEKfx2NJddd8bcEA5M2KFTZWry5VqeI2FoSPq66yihJjxkg33+y/8776qj37LltWGjjQf+fNqRIlpAEDpNGjbQESu+uBzEgS5wNJ4vA3YIDb65csaSXLf/5ZmjzZvxMwAORGuXLlVK5cuRy9d8uWLerevbtat26t0aNHKyaGwiQAAAAITZdeKvXsaSWMkbVvv5W6dLEH6aEmOVlauFA67zzXkQDho317+39n0ybXkSDctG5tL5/9+6VPPpEGD85blYlt26R//cuOn3lGKlXKL2Hm2qBBliT+7DNpxIjQnO8AV3iqmw8kieEP9CUGEE62bNmibt26qXr16nr++ee1c+dObdu2Tdu2bXMdGuDU119L110n/e9/riMBAAB/dXKCeN8+Z2GEpD/+kC68UKpaVdq503U0mW3eLDVtav0x161zHQ0QXooVc1c5EZHB67V73Ftuka6+Wjp0KPfnePBBSzS3bSvdcIP/Y8ypTp2khg3t9+DPUtpAJCBJnA8kieEPvXpZX4TChV1HAgBn9sMPP2jt2rWaMmWKqlatqkqVKp14AdFs/nzpgw9sJw4AAAhNH30k1axp1bxgRo6U0tNt51gOCwsFTdWqUr169lD/xhstTgBAcHg8VokjNtYSq1262OKdnJozR3r/fTt+9VXJZRE6j0e66SY7fvttd3EAoYgkcR7t3JmxwrJhQ7exILy1aiXt3i19/LHrSADgzK6//np5vd4sX0A0a9/exnnz3MYBAABOb9o0K8F63322QyraHT0qvfWWHQ8Z4jaWrMTESO+8YzvBZ8yQXnvNdUQAEF1uvVWaMsUWEf3yi9Smjf17fCZer3T77XZ8ww0Z98su/f3vtlGrShXp8GHX0QChgyRxHhUsKL38svTAA/S1Qf7ExEiFCrmOAgAA5Ifvpnf1amnvXrexAACArD3xhD0gnjNH+uIL19G4N26ctH27VLmydPHFrqPJWq1a0nPP2fGDD0pr17qNBwCizTnnSAsWSC1a2Ka5886T3nwz+894PNLw4VKHDjaGgvLlpT//lMaPp6IncDKSxHlUsqR0xx3WcB3wlz//dB0BAADIi7Jlpbp17Xj+fLexAACArFWuLN17rx0/+KDtpI1mr79u480322aIUHXrrVL37rbzi7LTABB8NWpYq4YBA6Tjx23R1b592X/m/PNtUVaFCkEJMUdKlHAdARB6SBIDIeDIEalJE7thJVEMAEB46tDBxrlz3cYBAABO77777IH1unVn3gkVyX79VZo1y3pNDh7sOprsnVx2eubM6P57AwBXihSRPvnENs2NH2+b6LJy8GBQw8qTdeukJUtcRwGEBpLEefTjj1aHPzXVdSSIBIUKZZS5+P57t7EAAIC8oS8xAAChr1gx6fHH7fjxx8+8EypS/fyzJV8vvdQWrIc6X9npAQOkK690HQ0ARCePx9pvntxjeOJEy5NItgCpalXp+eetL3EoGj3aqoDdc4/rSIDQQJI4j669VmrVihUn8J9evWz87ju3cQAAgLzp0MFumg8ccB0JAADIzqBBUqNG0t690uTJrqNx47bbpA0bpKefdh1Jzt12m/Tpp9bmAwDg3tKl0t/+JnXubP8+3367Lb6aP9/ujUPRuedabD/9ZDuKgWhHkjgP9u7NKAncqJHbWBA5fEni77+X0tLcxgIAAHKvRQu7IZ4xw3UkAAAgO7Gx0ttvS4sX287UaFW9uu2mChd/TTjs2OEmDgCAqVFD6tbNesZfdZXdCxcubDuJQ1WNGlLPnnb87rtuYwFCAUniPFi1ysaqVWl2Dv/p0EFKSJD27JEWLnQdDQAAyK3YWH42BAAgXHTqZAu8oo3XK23a5DqK/Nm9W7rsMqllSyklxXU0ABC9SpaUvvrKSlD7JCbaIqRQdtNNNo4eLR0/7jYWwDWSxHmwcqWNjRu7jQORJTZW6tHDjik5DQBAeAvV/ksAAOBUa9dKv/3mOorgmDLF+vtedZXrSPKuaFHre7l1q/Too66jAYDoVqCA9Mwzlix++mnp/vtdR3RmF11krQv+/JPn8ABJ4jwgSYxA6d3bRiYnAADC06+/Sl26SGef7ToSAACQEx99ZK3E/vGP6Fjk9frr9vssXdp1JHlXqJD03//a8auvSr/84jYeAIDUr5/tIo6Pdx3JmcXFSddea8dvv+02FsA1ksR5QJIYgdKrlzRokHTffa4jAQAAeVG6tPTzz9LcudKhQ66jAQAAZ9KlixQTI/30kzRpkutoAispSZo40Y7/8Q+3seRXz57WTzo9XbrlFiktzXVEAIBwMmiQjbNmSQcPuo0FcIkkcR6QJEagVKliq5cuu8x1JAAAIC+qVpUqV7YHlYsWuY4GQLRITU1VixYt5PF4tGTJEtfhAGGlZk3pjjvs+P77I7s34ciRllTt1k1q0sR1NPn34otSiRLSggXSqFGuowEAhJPGja1E9ubN1sYAiFYkifPgzTel//xHatrUdSQAAAAINR062Dh3rts4AESP+++/X5UrV3YdBhC2HnpIKlVKWrFCeu8919EERmqq9NZbdhzuu4h9KleWnnrKjhMTpW3b3MYDAAgv/fpJRYq4jgJwiyRxHvTpI917r5SQ4DoSRKL0dGn+fOnZZ+0YAACEF5LEubd7t/TFF66jAMLTpEmT9P333+v55593HQoQtkqVkh55xI4ffTQyy06OGyft2GGJ1UsucR2N/9x2m9S6tVSypJXTBgAgt7xe6cAB11EAbpAkBkLMsWNS9+7Sgw9Kv/7qOhoAAJBbviTxvHlu4wgHmzZJd94pVa8uXXmltGGDfT0tTRo4UJo2zWl4QMjbvn27Bg8erA8//FBFcrgNIjU1VSkpKZleAGx3ba1a0p9/Si+84Doa/3v/fRtvvlkqWNBtLP5UoIA0dqztAm/b1nU0AIBw88MPVnr6tttcRwK4QZIYCDHx8dK559rxd9+5jQUAAORe69b2wHLLFumPP1xHE5qWLpWuuUaqU0d65RXp0CGpeXNp1y77/ptvSmPG2MK5YcOkI0fcxguEIq/Xq+uvv1633nqr2rRpk+PPDR8+XAkJCSde1apVC2CUQPiIj5eeeUYqVkwqXtx1NP73xRfWk3jwYNeR+F/NmvSTBADkTUKCtHq1LTjau9d1NEDwkSQGQlCvXjaSJAYAIPwUKSL16CFddBElq/5q40apd2+pRQvp449tx3CPHtL330uLFmXsALr22oyH2C+9ZIn3xYtdRQ0E14MPPiiPx5Pta/Xq1Xr11Ve1f/9+JSYm5ur8iYmJSk5OPvFKoj4rcMIVV1hVi7vvdh2J/xUtaruII7l9eXq6JcJffNF1JIhGGzdu1KBBg1SrVi0VLlxYderU0WOPPaajR4+6Dg1ANtq2lZo1s4XJY8a4jgYIvljXAQA4lS9J/PPPUkqKVKKE23gAAEDusNAra6VLS3PmSDEx9iD+vvssAfxXxYtLo0ZJF18sDRokrVwptW8vPfaYteSI5S4GEeyee+7R9ddfn+17ateurZ9++klz5sxRfHx8pu+1adNGAwcO1Pu+2rJ/ER8ff8pnABiPRypb1nUU/nX8uFU48XhcRxJ4338v3Xqr7Qq/8EKpXj3XESGarF69Wunp6Ro5cqTq1q2r5cuXa/DgwTp48KCef/551+EBOA2PR7rpJmuD9NZb1n4iGuZMwMfj9Xq9roMIlpSUFCUkJCg5OVklyLohxNWrJ61dK40fL11yietoAJyM+ST/+DMEIt+RI9IHH0hTpkiffppxoz1hgtS0qZWazoldu+yB7xdf2K8HDZLefjswMSP8RPN8snnz5kz9hLdu3aoLLrhAY8eO1f+xd9/xTVXvH8A/6UppaQttoaXQQoGyC2WWKVOmDCcoCgjiAhEBWYogKohMBQQHgqI4vwwVWbKRvfceZZUNpQW6cn9/PL+0TWfaJrnJzef9euXVJrm5OUnTPPee55znREdHo0yZMmbtx5nfQ6LcrFkDrFoFOHpu54svpNN77FjgmWfUbo11KYoMul+9Gnj8cfn7saPfdhhPspo8eTLmzJmDs2fPZnt/YmIiEhMT067HxcUhNDSU7yGRjd2+LZU2EhOB3buzH8hM5GjMjcssN01kp1hymoiIyLEpChATIzN4nMmdO8CECbI+4GuvAb/9Bqxbl35/167mJ4gBmdH1+++ScC5ZUkZ426OMQ28VBdi1S722kHMICwtDjRo10i6VKlUCAFSoUMHsBDERZe/iRVkeYepUYMMGtVtTcIoCfPklcPgwcOOG2q2xPp0OmD1bZhKvWQP8+qvaLSJnd+/ePfj7++d4/8SJE+Hn55d2CQ0NtWHriMjI3x946in5fd48ddtCZGtMEhPZKWOSeOtWddtBREREBVOzJlC2LHDggNotsY1Ll4ChQ4GwMOC994Br14DQUGDGDCkVXRg6HfDSS7KmcWRk+u0//wxcuVK4fRfWrl3A888DgwbJ9eRkoGdPoGFDmclERESOJzRUqlgAwLBhstatI1q7FjhxQpZxePFFtVtjGxUrynEIIGtL37unbnvIeZ0+fRozZ87Ea6+9luM2o0aNwr1799IuFy9etGELiSijfv3k508/AQ8eqNsWIltikpjITrVsCWzaBOzZY7vnTEkB5swBFi0CEhJs97xERERaZJzIt327uu2whX37gPLlgWnTgPh4SeQuXAicOSMzf4sWtczzFCmS/vuuXZI4rlHD9jOFUlOBpUuBxx4DGjSQctrz5klHtJsb4OkpCYXu3YGTJ23bNnJe5cqVg6IoiIqKUrspRJowdqwkV/fskUFJjujLL+Vnr17yWpzF8OFApUpAbCzw/vtqt4Yc3ciRI6HT6XK9HD9+3OQxly9fRvv27fHss8+if//+Oe5br9fD19fX5EJE6mjZEhgwQJY58vRUuzVEtsMkMZGd8vICmjUD3N1t83z37gFPPAG8+abMfgkOBl5+Gbh82TbPT0REpDUNG8pPLSaJFcV0Bm+tWlJCukUL4J9/ZPb0iy9a9zjGxweIipLy1j16AC+8IL9bU0KClLGsUgV48klg82Z5jb16Adu2AX5+Mut5zhygcWPg7l2gSxf5SUREjqVECWDkSPl99Gjg0SN125NfFy8Cy5bJ72++qW5bbE2vl1gMAF99JdVOiApq6NChOHbsWK6X8uXLp21/5coVtGzZEo0bN8bXX3+tYsuJKD9cXIBZs4A2beR3ImfBjzsR4fx56chctUqS0+XLyyygn382nfnD2cVERETm02KS2GCQDucmTSRB+/Ch3O7iIknS9etlDUedzvptqVJFnnPMGMDVVY5bIiNlDUJrmToVGDgQOH0aKF4cGDVKjqO+/14S5UZ6PbB4scwmP3FCylGnplqvXUREZB2DBwOlSwMxMcDMmWq3Jn+++kridsuWQLVqarfG9lq1AsaPl2MFLtNOhVGiRAlUqVIl14uHhwcAmUHcokUL1K1bF/Pnz4cLM01ERGTnGKmI7NjDh1Lmonp1662F8OiRlEo8ehQICZEZMadPy88vvpAZMUYtWkiH95dfArduWac9REREWtGggfw8fdrx46aiAH//LUnYbt2kw/XePWDHjvRtihWzfbvc3aUD+L//pKzk5ctA27bAu+9aZv8HDkgpbaNXX5XjslmzZIbWhAly/JSdoCDgzz+lRPbKlcCIEZZpExER2Y6XF/Dxx/L7J59Yv2KFpSQlAd98I7872yzijMaMAerWVbsV5CyMCeKwsDBMmTIFN27cQGxsLGJjY9VuGhHlw9mzwLBhwMSJareEyDaYJCayY56ewF9/SQJ30ybrPceECUDt2tLRW6eOzP5p2lQ6Qo0uXpRO0h07JHFdqhTw1FOyHl9SknXapoaUFBklvmWLzEj691+1W0RERI6qeHGgcmX5PWMy1dEcOAA8/jjQubMck/j5yQzaCxdkAJk9iI6W45SBA+V62bIF35fBAKxYIa85Kso04RwcDBw6JMdC3t5576t2bZllDMjgu9OnC94uIiJSx0svyRID33yjzoCognBzA374QZZD6NpV7dbYh+PHgatX1W4FadmaNWtw+vRprF27FmXKlEGpUqXSLkTkOA4dkgpSM2YAyclqt4bI+pgkJrJjOh3Qvr38vmKF5farKEDGgYwvviid17mVYAoNldk506dLh2dyMrBkiZwslyqVPkrZnikKcP26JLyNEhOB7t2l3HaZMlIesmxZWQ/6hReylhS7ds22bSYiIsfm6CWnz52TAWRr1wIeHjIb9sIFGWAWHKx260x5eUnc3r7ddNbU2bPmndw/fCjHMzVqAB07ykAxV1dZkzLjgLj8ltJ+9llg8mR5DytWzN9jiYhIfa6usoTAs8/aZjkFS3BxAdq1k4FK7u5qt0Z98+YBNWsC77yjdktIy/r06QNFUbK9EJHj6NhRznWvX5dqWkRaxyQxkZ0zJolXrrTM/h49kpHQ0dGmiWJzThyDgmRNpr17gYMHZWZNqVLA7dtAQED6dtevSweyWlJTZf2l998HeveWNZgqVpRyj0FBMvvHyMMDWL5cymZeviyzh9zdgfBwoHlzOZE02rIFCAsDRo6UNZuJiIjy8uST0iHZurXaLTGfwZD+e3i4DKZ69lmZgfPpp6ZLUdij6GjpHAeA+/eBNm2ARo2AY8dyfsy338ogsVdfle18fIChQ4EzZ6SyyP8vM1dgw4bJADQiInJ8jx6p3QLKrzp1pJ/g11+B1avVbg0REdkzd3egTx/5/dtvVW0KkU0wSUxk51q3lpHLJ0/KTJjCuHFDOkp/+kkSotu2FXxfkZHAZ5/JrNxVq4BOndLvmzMHKFcOaNUKWLBAOmjzS1Fklm/G6/Pny3O++64E606dZL3H8uWl89rIxUU6dj/5REpsbdggnbyJiTLyO+NJvU4n6wr+8Qewc6eUn3r0SN7rDRuAjz5K33bJEplJNGkSULUq8Ntv0i4iIqKcdO0KTJsmA4/snaIAv/wCVKtmOtjr++8l5oWHq9e2gjp6FLh7F9izRzqIP/88PQmeMYa7u8txUliY/L0uXQKmTClc2eqcHD4MPPMM8OCB5fdNRETWNXeuxAZ7rhAyapQMbL50Se2W2I/atYFBg+T3N9+U6iFEREQ56dtXfq5caVqRkkiLdIoT1byIi4uDn58f7t27B19fX7WbQ2S2xx4DNm8GvvwSeOONgu3j+HFJqp49KzOA/vhDEsbW8PLLkhw2KlJE1i/u2VPW9jMux6IoUq7yxo2sl5s3ZZ3DjDOo/fyAuLjsn7NePWDXrvTrb7whyeLQULmEhcnP0qULV27rr7+At9+W8puAJMJnzpQOdXIejCeFx/eQyL5s3y4zno2d3m++CcyerW6bLOXKFTnJX7VKrrdsCXh6Shkx4xrGSUnAn38C3brJOo7WkpIi61SfPSsztH/+2XFKl9orxpPC43tIZL6+fWXwcpMmco5ub9/hd+7IMkoPHgAbN0pfAon794EqVeS44IMPgA8/VLtF2sN4Unh8D4nsR8uWMoHo+eeBL74AAgPVbhFR/pgbUxwuSZyYmIjo6GgcOHAA+/btQ1RUlNmPZaAlRzVhAvDee0CXLsCyZfl//Nq1wNNPA/fuyazbv/+WmbDWdOEC8OOPMpP35Mn029u1M038Fism7cpO3brA7t3p1/v2lc7VEiWyXkqVktnLtvDwoawtOHGizDp2c5MTzNGjbfP8pD7Gk8Lje0jOJD5e4pm/v+kyBvbgwgWZcfTzz3Ld21tmHw0ZImv8aoWiyOyvYcPSZ/BWrCjHKLbu4N+0SSrFpKQAH38sx3hUcIwnhcf3kMh8ly8DERFyTrh4sSwrYS/275eO7OPHgerVgUOH7C+JrbY//pAqZB4esoRW5cpqt0hbGE8Kj+8hkf1YtEgmPAGyZGNQkPy+aZOcyzVsqK1zZtIec2OKFcfJW8fw4cMREhKCAwcOqN0UIptp3x6YN09GvebX8uUyKyYlRUY7L1kiSVVrK1tWOj1Hj5Yyzj/8APz+e9ayTq+/Lj+zS/xmbud331m/3eYoUkRGHr/0ksy6WrZMZikTERFlZ/x4GVz06qvAV1+p3Zp0H38sSzM8eiSdyH36yG0hIWq3zPJ0Oqky0qaNJMVLl5ayk2p0nj/2mFSHefVV4P33pSO/Wzfbt4OIiPKvdGkZSPXJJ8CIEcATTxSuUpUlKIospzBihFTGKFVKzp2ZIM7q6aeBDh2AFSukasq///J9IiKi7PXoIRObDh1KTxADsjThv//KpKF69eT8rlkz6XcvXly99hIVlEMliVesWIHVq1fjf//7H1asWJHn9omJiUjMsKhpXE51aonsXO3asqZuQTRuLDNl6taVRLNeb9m25UWnA6Kj5ZJd2cpPP7VteywpPBxYuhTYskUOBIxWr5aDh1q1VGsaERHZkYYN5ae9rV+YmCgJ4hYtZB3e2rXVbpH1RUTILCK19e8vnQ0zZwIvvghs2wZERqrdKiIiMsfw4cDXXwOnTsnPAQPUa8vNm0CvXpL0BKT62Lx5LImZE50OmDULaNBAqpwZDICrq9qtIiIie+Tikv2yj+XLy9IOly7JOf727cBnn0mMadJEZhpzABI5Ehe1G2Cua9euoX///li4cCG8zJzHP3HiRPj5+aVdQjnVjxxUfgNLhrERKF5ckpgLF9o+QewsmjZN/xvFxQG9ewN16sgMpbt3VW0aERHZAWOS+PBhKT2tlrVrTZdxGDFC1uFdt845EsT2Zto0KTudkCCd+jduqN0iIiIyh68vMG6c/P7hh3IOqBY3N+DIEcDTUwZlL13KBHFeypcHYmIk2c8EMRER5ddXX0kcOXcO+P57oF8/oFIlqezh7W3aj9+unSyfuGABcPasbENkbxwiSawoCvr06YPXX38d9erVM/txo0aNwr1799IuFy9etGIriawvORnYtSv3bS5dks7omTPTbwsI4AgmW3n0SJLGBoP8DSpVAubPl+tEROScQkJkWQKDwTRJaysnTkgSsk0bme1kjElFiwKdO/MYQS1ubsBvvwEVKkiHNTuqiYgcR//+cq538yawapVtnzspKb2TuVgxWdZp1y4pn8yYbp6Mc094rk5ERPml0wHlykk1j2+/lXPuq1eBGTPSt7l6VapNzp8PvPyynPeVKQM8/zwwZw5w8qRarScypWqSeOTIkdDpdLlejh8/jpkzZ+L+/fsYNWpUvvav1+vh6+trciFyVA8eSAnjBg2AK1ey32bvXinrvH8/MGECcP++TZtIAEqWlJP0NWtkDekbN2TEWJMm8vchIiLnpEbJ6du3gbffBmrUAP76S5KQ0dGmFUdIXf7+wIYNwMqV8jsRETkGd3cp67xnD/Dss7Z73uPHJZbPm5d+W4MGEusp/zZuBGrWBHbsULslRETk6IKDpS/YqFgxYPlyqeDVuLEcO1y5Avzyiwzsmjo1fdvkZODYMZs3mQgAoFMU9Sa537hxA7du3cp1m/Lly+O5557DX3/9BV2GIZGpqalwdXVFz5498f3335v1fHFxcfDz88O9e/eYMCaHFB0N7NwJfPedjEDKaOlSoGdPSSZXqwb8/besmUvqSUoCvvhCSpDFx8taFidPysgxcmyMJ4XH95CczbRpwNCh8nvGo+/ffpMqFP7+WS9ubgV7rqQk4MsvgfHjgTt35LYnngAmTzY9aSX7dPSoHMuReRhPCo/vIZH9UxRJDL/9tpzzh4XJmsgeHmq3zLH17g388AMQFSWzsQt67EWC8aTw+B4SadeDB9Kvv2kTsHkz8NprwDPPyH3bt0siuXt3WdKicmVVm0oaYW5MUfXwp0SJEihRokSe233xxRf4+OOP065fuXIF7dq1w6+//oro6GhrNpHIrrRvL8Fk5cr0JLGiyMij4cPl97ZtpcPZz0/dtpKcsA8bJmVEhg+XJDETxEREzqlVK/lZtarp7ePHy1qC2YmIMC1BNW4ccO1a9gnlwMD0fS9dCrzzjvxes6YcJ7RpY8lXQ9aQmgoMHiylx1atkvWKtcpgkDU8ixVTuyVERJZx+rScj0dEWH7fd+4Ar74K/PGHXG/TRtZAZIK48CZPlmor+/cDs2ZJHCYiIrIGLy+gRQu5ZHb+vBxH/PKL9Ou/9BLwwQeyLBGRtTnEGLmwsDCT60WLFgUAVKhQAWXKlFGjSUSqaN9eOpPXrAFSUqRs5BtvAF99Jfe/8YbMXOXoV/tSujTw00/yNzO6cEHWrfjsM5khTuSIEhMTER0djQMHDmDfvn2IiopSu0lEdisqSkoZ3rxpenvz5hInbt9Ov9y9K/e5u5tu+8cfOSeUS5VKX47imWeATp2Arl1lyQOudesYXFyAe/ckWfzsszKjSYuDy86eBV55RV7n+vXyuomIHNnChUC/fkDLlpZfn3jzZqkYdvGinOdPmCCVSfjdaRklSwKTJkkSfswYib+lS6vdKiIicjY9esig7w8+AP78UwaD/fSTHF+89x4QGqp2C0nLmEoiciANGgDFi8tI4l27gEaNgEqVAJ0OmD4dGDRIfif7lDF5//77Ul6kYUOgY0c5Ge3ShesRkmMZPnw4QkJCcODAAbWbQuQQGjTIetvs2VlvS02VRPGDB6a3DxkCxMSYJpSNl5Il07dzcZFlJ8ix6HTA118DJ05I5ZjOnaXsmFYqDRoMMktr1Cj5bHt5AYcPy2x3IiJH1qSJ/Fy9WpLE7dpZZr+XLklVieRkoGJF4OefgXr1LLNvStevHzB/PrBtm8wk/v13tVtERETOqFYtYNkyORf84AM5pvjqK2DFChloy8HfZC0OOfawXLlyUBSFM5bI6bi6SjlpQAIEIOUk9++XtYmYIHYcU6bI+kcA8M8/Uj48KEg6FL7+WjoCiOzZihUrsHr1akyZMkXtphBpjqsrEBCQdbRw375ScvqLL4Aff5T4sX27lKTeskWVppKFeXpKufCQEODYMeCFF2TQgBakpgLffScJ4hYtgIMHmSAmIm0oXx4YOFB+f/ddy31vlykDjBwJ9OkD7N3LBLG1uLjIUg+urlK1xdjXQkREpIYGDWSpyU2bgMcek8HixgSxwSCDxIksySGTxETOrH17+WksL6XTsYPNEQUFAQsWAEePAh9+KH/DlBQZff7JJ6azjuPjVWumam7cABIT1W4F5eTatWvo378/Fi5cCC8vL7Mek5iYiLi4OJMLERFlVaqUJIo9PYHly6W8mKNKTU0f+ObuLjO1vvwSWLtWm6W0ich5vf++rLN+6BDwww8F38+vv0pFCaMPP5TvTh+fQjeRclGrVvp6xP/7n6pNISIiAgA0awZs2AC89Vb6bf/7H1CuHDB2rCxVZI/WrJElFqtXl0lR//wDJCWp3SrKDZPERA6mc2eZXfLokdotIUswrjdx4IDMBJs4UdaYMs4KT04GwsPlwGDGDCkzqkWZR9sPHSqz6Lp2ldIqWn3djkhRFPTp0wevv/466uVjOsPEiRPh5+eXdgnlgipERDmqXx+YN09+/+wzGVTmaI4eBRo3lvUzjWrXBt54g2tpEpH2+PunD+p5//2sS0bkJT5eOlJ79ACefz59wCyrhdnOuHHAb78B33yjdkuIiIiETmd67vS//wH37wPjx0t/8YQJ6k8uio01rYi5ciWwcKGcDy5YAHTqJJOl+vSRhDGrZ9ofnp4TOZiAAEmYTZyodkvI0iIipJzYoEHpt+3ZA9y8KWVE33kHKFsWiI6WDuMzZ9Rrq6UkJ0sSuHx54NSp9NsPHAASEoA//wRef11ed/XqwLBhwLp16rVXy0aOHAmdTpfr5fjx45g5cybu37+PUaNG5Wv/o0aNwr1799IuFy9etNIrISLShhdekJP/ZcuAatXUbo35kpOls6J2bVlPa9Ys9TsuiIhsYeBAOW+5cgWYPt38x+3eDdSpIx2pLi7AE09w3UE1FC0KPPssE/NERGS/Fi2SpRGqVQPu3JEBauXLA9OmAQ8f2qYNiiJLI336KdCokUxm27Ah/f4ePaRE9u+/A2++KQniu3eB778HnnnGdFaxotimzZQ7naI4z58iLi4Ofn5+uHfvHnx9fdVuDhGRWS5dAhYvloOALVtMA+jnn5smlR2FwSAHC++/D5w+LbcNGCAdycb7DxyQEWYrVgDbtsltgJTmPnAgfV83bgAlSti2/VqMJzdu3MCtW7dy3aZ8+fJ47rnn8Ndff0GXofckNTUVrq6u6NmzJ77//nuznk+L7yERkbM7eFBmwu3dK9c7dpTBYGXKWO85GU8Kj+8hkeUsWgS89poM8nnnndy3NRiAqVOlgzc5GQgNBX78UdYfJHXduQN89510cjNpbD7Gk8Lje0hE5khNBX75RapgGPtVn3gC+Osv6z3f9u2yLNKyZaYTfQBJGI8YkfNjt2yRfm2DAZg9O/2+xx6T8tnPPgu0bQvo9dZpv7MyN6YwSUxE5EBiY4ElS6S8yIYNMuo8Kkru27BBLs88I7Nu7fFkVlGAVauA0aOBffvkthIlgDFjgFdfzflg4M4dWdNixQop0T18uNz+4IGUditfHujQQTqjmza1/kGFM8eTmJgYk/WEr1y5gnbt2uGPP/5AdHQ0ypiZCXDm95CIqCAuXJC1KWfPBooUUbs1ppKSZPbwJ58AKSmyLufnnwMvvWT94xHGk8Lje0hkOQYDcOtW3oNY79wBnnsO+Pdfuf7001LmuHhx67eRcpecDFSuDJw7J7OeevVSu0WOg/Gk8PgeElF+pKQAP/wg54lffw20aye3P3oEuLnJxRIOHgRq1Uq/7uEBtG4tywQal8bMrxMngCpV0q/7+gJduqQnjD09C99uZ8ckcTYYaIlIS27elPLjxs7XXr1kzQdATmqffhp46ikpXWYvCeNu3WTEGQD4+ADvvgsMHiy/F8R//8moM+MsYwDw9pYDlQ4d5ECldOnCtjorxpN058+fR3h4OPbt24co44gFM/A9JCIyX2oqUKMGcPw40LOnxHt7ie0AcPastO/hQ4n1X34JlCplm+dmPCk8vodEtpecDDRrBhw6JINq+vWzr+91ZzdpkiwFFRgondj+/mq3yDEwnhQe30MiKoikJMDdPf1Y4qOP0pPH3bubv4zFjRsyG3nZMikT/fXXcruiAHXrSpnrrl2B9u0L3pdrZDAAW7dKpck//pDlOox8fCQWv/FG4Z7D2ZkbU7gmMRGRgwoMNO1I6NxZLh4eciI7YQJQrx4QFialnJOT1WurUf36Mst36FDpUB4zpnAHFU2aSLL811+BPn2A4OD0tYzfeAP47bf0bR89Ml33goiIyFG4ukri1dUV+OknYPJktVtkOkCrfHlgxgzg559liQxbJYiJiOzZ2rWSaDTKeD7i7i7fmXv2AK+8wgSxvRkyRKpz3bxp+jckIiKyRx4e6ccSqakyqPj0aRlgXKuWnKPlNFX01ClgyhQZvBYUJAPX/vxTkrfGvmSdTo5ZfvxRZvoWNkEMAC4uUg3y88+BixelJPXbb8tkn/v3TWcnnz0rpa5tte6ys+FMYiIijYmLA5Yvl5LUK1dK0rRGDRmlbrR5sxwkWPOr8Px5WRvj+efTy50kJAC3b8t6W9ZgXMt4xQpZz/jbb9NLl8yfD8ybJwcdhcV4Unh8D4mI8u/LL2Xgl04nJ9OdOgHh4bZPLuzYIUmNOXPkxF5NjCeFx/eQyPJiYmQATWoqsGmTzETt0UNm3tjDQB/K2+bN6etD//cf0Lixuu1xBIwnhcf3kIgsIT4e+OILOea4e1duq11bZhh37Jh+/vjsszKLN6PatWW2cNeu0nds63NNg0HWP65TJ73k9Pvvy9JGRYvKBKlnn5VjKntbhsnecCYxEZGT8vWVxOwff8jI57//Bj7+OP3+Bw8kaRsYKAF17lzTkh6Fdf26lJCuXFnWcBo1Kn20mre39RLEgIxCq11b1jzessV0bYstW4Dmza333ERERNb25pvA669LXB00CKhQQZIOGd25Y73nf/hQlopo3Bg4fFjiLRERZRUWJoNpAFkWqF49+d788cf0zlqyb82aAS+/LL+/8gqrUhERkeMoWlTO1c6dAz74QK7v2wc88YSUoDaqVk3WLW7TBpg5E7hwAdi7Fxg7FoiKUqfSiYuLnG9mXJO4eHHpT46Pl0osTz0FlCwp/d9Llti+jVrDmcRERE7m2DHgySelJHVGDRrIKLHnngMqVsz/fuPigKlTgWnTJGgDsjbwhAmyb7UZDFLizcur8PtiPCk8vodERAWTnCyDv1asAPbvB957T07iAeDqVSnLVaECEB0t8bdBAznBL+wo6//+A/r2BU6elOsvvQRMnw4EBBRuv4XFeFJ4fA+JrCM2FoiISD836tBBqhsFBanbLjLfzZsy+Pn2bSmzWaeO3L5ypcTDChXkUq6caWe2vVEUWWfy7FngzBnTnxERUnHLEhhPCo/vIRFZw82bMqt4zhyJZxERcvutW7KkUbFiqjbPLAYDsHNn+hrGMTFye9myUs3S6JNPJO5VqiSXiAiZtOSMzI0pTBITETmp48eBZctkTYft29NvnzwZGDZMfk9KkoMFV9fc9/XjjzJ7+NYtuV6vHjBxooxE0yLGk8Lje0hEVHiJiXIxfo2uXp2+xENGbm5AzZrAiBEyGCw/EhJkFPrMmXKyHRICfPWVjEK3B4wnwPLlyzF+/HgcPHgQnp6eaN68OZYuXWr24/keElnPvHkyY2fIEKkA4cJ6fg5nyRIZJHX9uqwlDchAqR9/TN9Gp5M1FMuXl6TxtGnpHe6JiaZrRVpLcrJ0mJ89K2XO27dPv6906Zyrh1WvLrPcLYHxpPD4HhKRNcXHy6xiR6co6Qnju3dluUGjUqVkoF5GpUtLwrhxY9NqmwaD+sdmBoMMRrtxQ5L5N27IcheBgYXft7kxxa3wT0VERI6oShW5jBghM4/++kuSxl27pm/z889SVrJzZ7n98cezn4nk6SkJ4sqVZcTWU0+pU5KEiIjImej1cjFq21ZOMHfvlpPmnTtl/eBr16RsWMZSmTt2yJIQxtnG0dFy8pzZX3/JelaAdJJPneoYI82dxf/+9z/0798fEyZMQKtWrZCSkoLDlurtJ6JC69dPLuS4nnxSzofdMvSgNm4syzidOSOX+Hjg0iW5bNkiSzoZvfqqDMw2JpArVDD9vWzZgnVQz5wpyV3jrOCYGEkOA0BkpGmSODBQksRlypg+f/ny0mlORETOQQsJYkD6nKOj5ZKRwSCD8k6elMuJE9JfffmyXDKrUEEGchlnHWe8hIQUrG87NVWey5jwzfyzQYP0Y8ObN6XCjMFguo+1a4FWrfL/3AXFmcRERJSjnj2BRYvSrxcpIjOUmjSRjuTnn5fbFQX43/+Abt1MT561ivGk8PgeEhHZhqIAFy9KwrhpUyA4WG6fOjW9cohRSEh60rhnT1lTU1GA114Dnn46+1nKanPmeJKSkoJy5crhww8/RL9CZKGc+T0kIiosRZFOXmP55uvXpcqWUbNmkjjOjk4HPHyYPuDrhx/k8eHhspxTxrLQXl7AunXpj42MzDoD2NNTEr+RkcAvv6TffvmyLA9h7ZLYjCdAly5dsH//fly/fh3FixdHmzZtMGnSJISEhJj1eL6HRESWdesWcOqUJI39/NInR8XHAz4+OT/u8celUpfR//4nlTazS/y2aiWTrAC5XrJkzvvt0UMmZQGSUHZ3l2OJYsVkUFeJEsCkSXL8UFicSUxERIW2YIGMblq6VGYZx8TI70uXStB64gkJqDod8Mwz6raViIiIstLpJNkbFmZ6+1NPyUmyccbxoUMyy8gY51u2lMfodMDXX6vRcsrL3r17cfnyZbi4uKB27dqIjY1FVFQUJk+ejBo1auT4uMTERCQmJqZdj4uLs0VziYg0SaeTc+MSJYCGDbPev3o1cO5c9usBp6aaVgT59ltg8+bsn8fbWzqRjbOaXn5ZSmxmnJUcHJz9rOTsKoWQdbRs2RKjR49GqVKlcPnyZQwbNgzPPPMMtm7dqnbTiIicUkCAXDLHaG9vGUydcdax8fdz56TSh9HDh8Czz0oczo6fX/rv/v4S2/395djAmPg1/qxdO31bV1ep7unvn76khRqYJCYiohy5u8toqFatgM8/B/bvl2Txf/8BjRqxpDQREZGjCg8HXnlFLoCsPbxvn5Sh3rULiIpStXlkhrNnzwIAxo0bh2nTpqFcuXKYOnUqWrRogZMnT8Lf3z/bx02cOBEffvihLZtKROS0ihQBqlWTS2aZO5u7dpWS0OfOyWDszOWpMxoyxHptpoJ755130n4vW7YsRo4ciW7duiE5ORnuamYAiIjIhE4nMbdMmaylnZOSZFkJo7t3ZZ3gR4/SB4ZlTP5WrZq+raurJJXN7TMPCir0Syk0JomJiMgsOp2Mdso44omIiIi0wdtbylE3bap2S2jkyJGYNGlSrtscO3YMhv9fvOq9997D008/DQCYP38+ypQpg99//x2vvfZato8dNWoUhmTILsTFxSE0NNRCrSciInNl7kAeOlSddpB13L59Gz/99BMaN26cY4KY1T2IiOyPh4dcjEqVAjZsMP/xjjapikliIiIiIiIiIjsxdOhQ9OnTJ9dtypcvj6tXrwIAqmWYnqbX61G+fHnExMTk+Fi9Xg99xvqmREREZDEjRozArFmz8ODBAzRs2BB///13jtuyugcREaktm5UqiIiIiIiIiEgNJUqUQJUqVXK9eHh4oG7dutDr9Thx4kTaY5OTk3H+/HmUzbiIFhERERXYyJEjodPpcr0cP348bft3330X+/btw+rVq+Hq6opevXpByWEhy1GjRuHevXtpl4sXL9rqZREREQHgTGIiIiIiIiIih+Pr64vXX38dY8eORWhoKMqWLYvJkycDAJ599lmVW0dERKQN5lb4MAoMDERgYCAqVaqEqlWrIjQ0FNu3b0ejRo2yPI7VPYiISG1MEhMRERERERE5oMmTJ8PNzQ0vvfQSHj58iOjoaKxbtw7FixdXu2lERESaUKJECZQoUaJAjzUYDABgsu4wERGRPWGSmIiIiIiIiMgBubu7Y8qUKZgyZYraTSEiInJqO3bswK5du9C0aVMUL14cZ86cwZgxY1ChQoVsZxETERHZA65JTERERERERERERERUQF5eXli8eDFat26NypUro1+/fqhZsyY2btzIktJERGS3OJOYiIiIiIiIiIiIiKiAIiMjsW7dOrWbQURElC+cSUxERERERERERERERERE5ESYJCYiIiIiIiIiIiIiIiIiciJMEhMRERERERERERERERERORGnWpNYURQAQFxcnMotISIiR2aMI8a4QvnHmExERJbAmFx4jMlERGQJjMmFx5hMRESWYm5cdqok8f379wEAoaGhKreEiIi04P79+/Dz81O7GQ6JMZmIiCyJMbngGJOJiMiSGJMLjjGZiIgsLa+4rFOcaHiXwWDAlStX4OPjA51Op3ZzshUXF4fQ0FBcvHgRvr6+ajfHbGy3bbHdtsV225YjtFtRFNy/fx8hISFwceHKDQXhCDHZyBE+k3nha7APfA32ga/BPljqNTAmF54jxeTMtPC/kButvz5A+69R668P4GvUAsZk++GIMVlr/x9aez2A9l6T1l4PwNfkCBzx9Zgbl51qJrGLiwvKlCmjdjPM4uvr6zAftozYbttiu22L7bYte283R0YXjiPFZCN7/0yag6/BPvA12Ae+BvtgidfAmFw4jhiTM9PC/0JutP76AO2/Rq2/PoCvUQsYk9XnyDFZa/8fWns9gPZek9ZeD8DX5Agc7fWYE5c5rIuIiIiIiIiIiIiIiIiIyIkwSUxERERERERERERERERE5ESYJLYzer0eY8eOhV6vV7sp+cJ22xbbbVtst205artJu7TwmeRrsA98DfaBr8E+aOE1kPq0/jnS+usDtP8atf76AL5GLdD66yPr0trnR2uvB9Dea9La6wH4mhyB1l5PRjpFURS1G0FERERERERERERERERERLbBmcRERERERERERERERERERE6ESWIiIiIiIiIiIiIiIiIiIifCJDERERERERERERERERERkRNhkpiIiIiIiIiIiIiIiIiIyIkwSWwnJk6ciPr168PHxwclS5ZEt27dcOLECbWblS+ffvopdDodBg8erHZT8nT58mW8+OKLCAgIQJEiRRAZGYndu3er3axcpaamYsyYMQgPD0eRIkVQoUIFfPTRR1AURe2mZbFp0yZ07twZISEh0Ol0WLp0qcn9iqLggw8+QKlSpVCkSBG0adMGp06dUqex/y+3NicnJ2PEiBGIjIyEt7c3QkJC0KtXL1y5ckW9Bv+/vN7rjF5//XXodDrMmDHDZu3LiTntPnbsGLp06QI/Pz94e3ujfv36iImJsX1jySlpIS5n5khxOiNHjNkZOVL8zsgRY3lmjhrbM3LUOJ8RYz5ZmhZjdF4cNYbnxtHje14cNf7nRgvHBrnRwnFDXrRwXEH2Q+vxWCuxV0vxVguxVWuxVIux0xljJZPEdmLjxo0YMGAAtm/fjjVr1iA5ORlt27ZFQkKC2k0zy65du/DVV1+hZs2aajclT3fu3EGTJk3g7u6OFStW4OjRo5g6dSqKFy+udtNyNWnSJMyZMwezZs3CsWPHMGnSJHz22WeYOXOm2k3LIiEhAbVq1cLs2bOzvf+zzz7DF198gblz52LHjh3w9vZGu3bt8OjRIxu3NF1ubX7w4AH27t2LMWPGYO/evVi8eDFOnDiBLl26qNBSU3m910ZLlizB9u3bERISYqOW5S6vdp85cwZNmzZFlSpVsGHDBhw8eBBjxoyBp6enjVtKzsrR43JmjhSnM3LUmJ2RI8XvjBwxlmfmqLE9I0eN8xkx5pOlaS1G58VRY3hutBDf8+Ko8T83Wjg2yI0WjhvyooXjCrIfWo7HWom9Wou3WoitWoulWoydThkrFbJL169fVwAoGzduVLspebp//74SERGhrFmzRmnevLny9ttvq92kXI0YMUJp2rSp2s3It06dOil9+/Y1ue2pp55SevbsqVKLzANAWbJkSdp1g8GgBAcHK5MnT0677e7du4per1d+/vlnFVqYVeY2Z2fnzp0KAOXChQu2aZQZcmr3pUuXlNKlSyuHDx9WypYtq0yfPt3mbctNdu3u3r278uKLL6rTIKJsOFJczszR4nRGjhqzM3LU+J2RI8byzBw1tmfkqHE+I8Z8sgZHjtF5ceQYnhstxPe8aCH+50YLxwa50cJxQ160cFxB9kUr8VhLsVdr8VZrsVVrsVSLsdNZYiVnEtupe/fuAQD8/f1VbkneBgwYgE6dOqFNmzZqN8Usf/75J+rVq4dnn30WJUuWRO3atfHNN9+o3aw8NW7cGGvXrsXJkycBAAcOHMCWLVvQoUMHlVuWP+fOnUNsbKzJ58XPzw/R0dHYtm2bii3Ln3v37kGn06FYsWJqNyVXBoMBL730Et59911Ur15d7eaYxWAwYPny5ahUqRLatWuHkiVLIjo6OtfyHkTW5khxOTNHi9MZOWrMzkgr8TsjrcTyzBwltmfkiHE+I8Z8sgRHjtF5ceQYnhstxPe8aDH+50arxwa5ccTjhrw4+nEFqUsr8VhLsVdr8VbrsdUZYqkWYqcWY6Wb2g2grAwGAwYPHowmTZqgRo0aajcnV7/88gv27t2LXbt2qd0Us509exZz5szBkCFDMHr0aOzatQuDBg2Ch4cHevfurXbzcjRy5EjExcWhSpUqcHV1RWpqKj755BP07NlT7ablS2xsLAAgKCjI5PagoKC0++zdo0ePMGLECDz//PPw9fVVuzm5mjRpEtzc3DBo0CC1m2K269evIz4+Hp9++ik+/vhjTJo0CStXrsRTTz2F9evXo3nz5mo3kZyMI8XlzBwxTmfkqDE7I63E74y0EMszc6TYnpEjxvmMGPOpsBw5RufF0WN4brQQ3/OixfifGy0eG+TGUY8b8uLoxxWkHq3EY63FXq3FW63HVq3HUq3ETi3GSiaJ7dCAAQNw+PBhbNmyRe2m5OrixYt4++23sWbNGodaM8xgMKBevXqYMGECAKB27do4fPgw5s6da9cB8rfffsNPP/2ERYsWoXr16ti/fz8GDx6MkJAQu2631iQnJ+O5556DoiiYM2eO2s3J1Z49e/D5559j79690Ol0ajfHbAaDAQDQtWtXvPPOOwCAqKgobN26FXPnzmWHMdmco8TlzBw1TmfkqDE7I8Zv++dIsT0jR43zGTHmU2E5aozOixZieG60EN/zwvivXY563JAXLRxXkHq0EI+1GHu1Fm8ZWx2XVmKnVmMly03bmYEDB+Lvv//G+vXrUaZMGbWbk6s9e/bg+vXrqFOnDtzc3ODm5oaNGzfiiy++gJubG1JTU9VuYrZKlSqFatWqmdxWtWpVxMTEqNQi87z77rsYOXIkevTogcjISLz00kt45513MHHiRLWbli/BwcEAgGvXrpncfu3atbT77JUxoF24cAFr1qyx+1FPmzdvxvXr1xEWFpb2P3rhwgUMHToU5cqVU7t5OQoMDISbm5tD/p+S9jhSXM7MUeN0Ro4aszPSSvzOyJFjeWaOFtszctQ4nxFjPhWGI8fovGghhudGC/E9L1qM/7nR0rFBbhz5uCEvWjiuIHVoJR5rMfZqLd5qPbZqNZZqKXZqNVZyJrGdUBQFb731FpYsWYINGzYgPDxc7SblqXXr1jh06JDJbS+//DKqVKmCESNGwNXVVaWW5a5JkyY4ceKEyW0nT55E2bJlVWqReR48eAAXF9NxHa6urmkzMBxFeHg4goODsXbtWkRFRQEA4uLisGPHDrzxxhvqNi4XxoB26tQprF+/HgEBAWo3KU8vvfRSljVU2rVrh5deegkvv/yySq3Km4eHB+rXr++Q/6ekHY4YlzNz1DidkaPG7Iy0Er8zctRYnpkjxvaMHDXOZ8SYTwWhhRidFy3E8NxoIb7nRYvxPzdaOTbIjaMfN+RFC8cVZFtai8dajL1ai7daj61ajKVai51ajZVMEtuJAQMGYNGiRVi2bBl8fHzS6sz7+fmhSJEiKrcuez4+PlnWmfD29kZAQIBdrz/xzjvvoHHjxpgwYQKee+457Ny5E19//TW+/vprtZuWq86dO+OTTz5BWFgYqlevjn379mHatGno27ev2k3LIj4+HqdPn067fu7cOezfvx/+/v4ICwvD4MGD8fHHHyMiIgLh4eEYM2YMQkJC0K1bN7tsc6lSpfDMM89g7969+Pvvv5Gampr2P+rv7w8PDw+1mp3ne505+Lq7uyM4OBiVK1e2dVNN5NXud999F927d8djjz2Gli1bYuXKlfjrr7+wYcMG9RpNTsUR43JmjhqnM3LUmJ2RI8XvjBwxlmfmqLE9I0eN8xkx5pOlaSFG50ULMTw3WojveXHU+J8bLRwb5EYLxw150cJxBdkPrcVjLcZercVbLcRWrcVSLcZOp4yVCtkFANle5s+fr3bT8qV58+bK22+/rXYz8vTXX38pNWrUUPR6vVKlShXl66+/VrtJeYqLi1PefvttJSwsTPH09FTKly+vvPfee0piYqLaTcti/fr12X6ee/furSiKohgMBmXMmDFKUFCQotfrldatWysnTpyw2zafO3cux//R9evX2227s1O2bFll+vTpNm1jdsxp97x585SKFSsqnp6eSq1atZSlS5eq12ByOlqJy5k5SpzOyBFjdkaOFL8zcsRYnpmjxvaMHDXOZ8SYT5am1RidF0eM4blx9PieF0eN/7nRwrFBbrRw3JAXLRxXkP1whnishdirpXirhdiqtViqxdjpjLFSpyiKAiIiIiIiIiIiIiIiIiIicgoueW9CRERERERERERERERERERawSQxEREREREREREREREREZETYZKYiIiIiIiIiIiIiIiIiMiJMElMREREREREREREREREROREmCQmIiIiIiIiIiIiIiIiInIiTBITERERERERERERERERETkRJomJiIiIiIiIiIiIiIiIiJwIk8RERERERERERERERERERE6ESWLSvPPnz0On02H//v1qNyXN8ePH0bBhQ3h6eiIqKirbbRRFwauvvgp/f3/V22+P72FBbdiwATqdDnfv3rX6c40bNy7Hvy8RkTOyx3jCmKwexmQiInXZY0xhXFYP4zIRkXrsMZ4wJquHMZlsiUlisro+ffpAp9Ph008/Nbl96dKl0Ol0KrVKXWPHjoW3tzdOnDiBtWvXZrvNypUrsWDBAvz999+4evUqatSoYZO29enTB926dTO5LTQ01KZtcEQ6nQ5Lly41uW3YsGE5/n2JiNTAmJwVY7L2MCYTkaNgXM6KcVl7GJeJyBEwJmfFmKw9jMmUHSaJySY8PT0xadIk3LlzR+2mWExSUlKBH3vmzBk0bdoUZcuWRUBAQI7blCpVCo0bN0ZwcDDc3NwK/HyF5erqqnobHFHRokVz/PsSEamFMdkUY7JzYEwmInvFuGyKcdk5MC4TkT1iTDbFmOwcGJOJSWKyiTZt2iA4OBgTJ07McZvsShvMmDED5cqVS7tuHCU0YcIEBAUFoVixYhg/fjxSUlLw7rvvwt/fH2XKlMH8+fOz7P/48eNo3LgxPD09UaNGDWzcuNHk/sOHD6NDhw4oWrQogoKC8NJLL+HmzZtp97do0QIDBw7E4MGDERgYiHbt2mX7OgwGA8aPH48yZcpAr9cjKioKK1euTLtfp9Nhz549GD9+PHQ6HcaNG5dlH3369MFbb72FmJgY6HS6tPegXLlymDFjhsm2UVFRJvvQ6XT49ttv8eSTT8LLywsRERH4888/TR5z5MgRPPHEE/D19YWPjw+aNWuGM2fOYNy4cfj++++xbNky6HQ66HQ6bNiwIdtyHRs3bkSDBg2g1+tRqlQpjBw5EikpKSbv16BBgzB8+HD4+/sjODg429ea2bfffouqVavC09MTVapUwZdffpl2X+PGjTFixAiT7W/cuAF3d3ds2rQJALBw4ULUq1cPPj4+CA4OxgsvvIDr16/n+HzmfO527dqFxx9/HIGBgfDz80Pz5s2xd+/etPuN2z755JMmf6/M+87rs2F8nxcvXoyWLVvCy8sLtWrVwrZt29K2uXDhAjp37ozixYvD29sb1atXxz///JPre0pElBFjMmMyYzJjMhHZD8ZlxmXGZcZlIrIPjMmMyYzJjMnOiElisglXV1dMmDABM2fOxKVLlwq1r3Xr1uHKlSvYtGkTpk2bhrFjx+KJJ55A8eLFsWPHDrz++ut47bXXsjzPu+++i6FDh2Lfvn1o1KgROnfujFu3bgEA7t69i1atWqF27drYvXs3Vq5ciWvXruG5554z2cf3338PDw8P/Pfff5g7d2627fv8888xdepUTJkyBQcPHkS7du3QpUsXnDp1CgBw9epVVK9eHUOHDsXVq1cxbNiwbPdh/DK+evUqdu3ala/36MMPP8Rzzz2HgwcPomPHjujZsydu374NALh8+TIee+wx6PV6rFu3Dnv27EHfvn2RkpKCYcOG4bnnnkP79u1x9epVXL16FY0bN86y/8uXL6Njx46oX78+Dhw4gDlz5mDevHn4+OOPs7xf3t7e2LFjBz777DOMHz8ea9asybHdP/30Ez744AN88sknOHbsGCZMmIAxY8bg+++/BwD07NkTv/zyCxRFSXvMr7/+ipCQEDRr1gwAkJycjI8++ggHDhzA0qVLcf78efTp0ydf719m9+/fR+/evbFlyxZs374dERER6NixI+7fvw8AaX+f+fPn5/r3yuuzYfTee+9h2LBh2L9/PypVqoTnn38+7QBmwIABSExMxKZNm3Do0CFMmjQJRYsWLdTrIyLnwpjMmMyYzJhMRPaDcZlxmXGZcZmI7ANjMmMyYzJjslNSiKysd+/eSteuXRVFUZSGDRsqffv2VRRFUZYsWaJk/AiOHTtWqVWrlsljp0+frpQtW9ZkX2XLllVSU1PTbqtcubLSrFmztOspKSmKt7e38vPPPyuKoijnzp1TACiffvpp2jbJyclKmTJllEmTJimKoigfffSR0rZtW5PnvnjxogJAOXHihKIoitK8eXOldu3aeb7ekJAQ5ZNPPjG5rX79+sqbb76Zdr1WrVrK2LFjc91P5teuKIpStmxZZfr06Sa3Zd4XAOX9999Pux4fH68AUFasWKEoiqKMGjVKCQ8PV5KSkrJ93ox/LyPje7hv3z5FURRl9OjRSuXKlRWDwZC2zezZs5WiRYum/W2aN2+uNG3a1GQ/9evXV0aMGJHja65QoYKyaNEik9s++ugjpVGjRoqiKMr169cVNzc3ZdOmTWn3N2rUKNd97tq1SwGg3L9/X1EURVm/fr0CQLlz546iKOZ97jJLTU1VfHx8lL/++ivtNgDKkiVLTLbLvO+8PhvG9/nbb79Nu//IkSMKAOXYsWOKoihKZGSkMm7cuBzbRkSUG8ZkxmQjxmTGZCJSH+My47IR4zLjMhGpizGZMdmIMZkx2dlwJjHZ1KRJk/D999/j2LFjBd5H9erV4eKS/tENCgpCZGRk2nVXV1cEBARkKdHQqFGjtN/d3NxQr169tHYcOHAA69evR9GiRdMuVapUASBrKxjVrVs317bFxcXhypUraNKkicntTZo0KdRrzq+aNWum/e7t7Q1fX9+092P//v1o1qwZ3N3dC7z/Y8eOoVGjRtDpdGm3NWnSBPHx8SYj4DK2AwBKlSqVY+mMhIQEnDlzBv369TP5O3z88cdpf4MSJUqgbdu2+OmnnwAA586dw7Zt29CzZ8+0/ezZswedO3dGWFgYfHx80Lx5cwBATExMgV/vtWvX0L9/f0RERMDPzw++vr6Ij4/P1z7z89nI+L6VKlUKANLet0GDBuHjjz9GkyZNMHbsWBw8eLCgL4uInBxjsm0wJjMmExGZg3HZNhiXGZeJiPLCmGwbjMmMyWQfmCQmm3rsscfQrl07jBo1Kst9Li4uJmUYACm9kFnm4KDT6bK9zWAwmN2u+Ph4dO7cGfv37ze5nDp1Co899ljadt7e3mbv0xoK8x4Z348iRYpYr4H5aEdm8fHxAIBvvvnG5G9w+PBhbN++PW27nj174o8//kBycjIWLVqEyMjItIOshIQEtGvXDr6+vvjpp5+wa9cuLFmyBACQlJSU7fOa85727t0b+/fvx+eff46tW7di//79CAgIyHGfhZXxfTMeyBjft1deeQVnz57FSy+9hEOHDqFevXqYOXOmVdpBRNrGmFw4jMmMyYzJRGRJjMuFw7jMuMy4TESWwphcOIzJjMmMyY6FSWKyuU8//RR//fWXyWLmgIyyiY2NNfnCy7jQfGFl/KJOSUnBnj17ULVqVQBAnTp1cOTIEZQrVw4VK1Y0ueQnsPr6+iIkJAT//fefye3//fcfqlWrVujXUKJECVy9ejXtelxcHM6dO5evfdSsWRObN2/ONjgDgIeHB1JTU3PdR9WqVbFt2zaTv9V///0HHx8flClTJl/tMQoKCkJISAjOnj2b5W8QHh6etl3Xrl3x6NEjrFy5EosWLTIZhXX8+HHcunULn376KZo1a4YqVarkOPLLyJzP3X///YdBgwahY8eOqF69OvR6PW7evGmyjbu7e67vmyU/G6GhoXj99dexePFiDB06FN98802+Hk9EZMSYXHCMyYzJAGMyEVkW43LBMS4zLgOMy0RkOYzJBceYzJgMMCY7EiaJyeYiIyPRs2dPfPHFFya3t2jRAjdu3MBnn32GM2fOYPbs2VixYoXFnnf27NlYsmQJjh8/jgEDBuDOnTvo27cvAFlM/fbt23j++eexa9cunDlzBqtWrcLLL7+cZ8DJ7N1338WkSZPw66+/4sSJExg5ciT279+Pt99+u9CvoVWrVli4cCE2b96MQ4cOoXfv3nB1dc3XPgYOHIi4uDj06NEDu3fvxqlTp7Bw4UKcOHECAFCuXDkcPHgQJ06cwM2bN7MNxm+++SYuXryIt956C8ePH8eyZcswduxYDBkyxKSUSn59+OGHmDhxIr744gucPHkShw4dwvz58zFt2rS0bby9vdGtWzeMGTMGx44dw/PPP592X1hYGDw8PDBz5kycPXsWf/75Jz766KNcn9Ocz11ERAQWLlyIY8eOYceOHejZs2eWEW3lypXD2rVrERsbizt37mT7XJb4bAwePBirVq3CuXPnsHfvXqxfvz7tYJGIKL8YkwuOMZkxmTGZiCyNcbngGJcZlxmXiciSGJMLjjGZMZkx2bEwSUyqGD9+fJayDVWrVsWXX36J2bNno1atWti5cyeGDRtmsef89NNP8emnn6JWrVrYsmUL/vzzTwQGBgJA2giZ1NRUtG3bFpGRkRg8eDCKFSuW76AxaNAgDBkyBEOHDkVkZCRWrlyJP//8ExEREYV+DaNGjULz5s3xxBNPoFOnTujWrRsqVKiQr30EBARg3bp1iI+PR/PmzVG3bl188803aSUi+vfvj8qVK6NevXooUaJElpFDAFC6dGn8888/2LlzJ2rVqoXXX38d/fr1w/vvv1+o1/fKK6/g22+/xfz58xEZGYnmzZtjwYIFJiOxACnZceDAATRr1gxhYWFpt5coUQILFizA77//jmrVquHTTz/FlClTcn1Ocz538+bNw507d1CnTh289NJLGDRoEEqWLGmyzdSpU7FmzRqEhoaidu3a2T6XJT4bqampGDBgAKpWrYr27dujUqVK+PLLL81+PBFRZozJBcOYLBiTGZOJyLIYlwuGcVkwLjMuE5HlMCYXDGOyYExmTHYUOiVzMXMiIiIiIiIiIiIiIiIiItIsziQmIiIiIiIiIiIiIiIiInIiTBITERERERERERERERERETkRJomJiIiIiIiIiIiIiIiIiJwIk8RERERERERERERERERERE6ESWIiIiIiIiIiIiIiIiIiIifCJDERERERERERERERERERkRNhkpiIiIiIiIiIiIiIiIiIyIkwSUxERERERERERERERERE5ESYJCYiIiIiIiIiIiIiIiIiciJMEhMREREREREREREREREROREmiYmIyGFs2rQJnTt3RkhICHQ6HZYuXZrnYzZs2IA6depAr9ejYsWKWLBgQZZtZs+ejXLlysHT0xPR0dHYuXOn5RtPRESkERMnTkT9+vXh4+ODkiVLolu3bjhx4kSej/v9999RpUoVeHp6IjIyEv/8848NWktERKRtc+bMQc2aNeHr6wtfX180atQIK1asULtZRERETqeg58pqYpKYiIgcRkJCAmrVqoXZs2ebtf25c+fQqVMntGzZEvv378fgwYPxyiuvYNWqVWnb/PrrrxgyZAjGjh2LvXv3olatWmjXrh2uX79urZdBRETk0DZu3IgBAwZg+/btWLNmDZKTk9G2bVskJCTk+JitW7fi+eefR79+/bBv3z5069YN3bp1w+HDh23YciIiIu0pU6YMPv30U+zZswe7d+9Gq1at0LVrVxw5ckTtphERETmVgpwrq02nKIqidiOIiIjyS6fTYcmSJejWrVuO24wYMQLLly836YDu0aMH7t69i5UrVwIAoqOjUb9+fcyaNQsAYDAYEBoairfeegsjR4606msgIiLSghs3bqBkyZLYuHEjHnvssWy36d69OxISEvD333+n3dawYUNERUVh7ty5tmoqERGRU/D398fkyZPRr18/tZtCRETktMw5V1abm9oNsCWDwYArV67Ax8cHOp1O7eYQEVmEoii4f/8+QkJC4OKiToGIR48eISkpKd+PUxQly/exXq+HXq+3SLu2bduGNm3amNzWrl07DB48GACQlJSEPXv2YNSoUWn3u7i4oE2bNti2bZtF2kDZY0wmIi2yh5gM2D4u37t3D4B0SOdk27ZtGDJkiMlt7dq1M2vpCLIuxmQi0iJnjcmpqan4/fffkZCQgEaNGuX7eUldjMlEpFX2EJfV6L8251xZbU6VJL5y5QpCQ0PVbgYRkVVcvHgRZcqUsfnzPnr0COFFiiC2AI8tWrQo4uPjTW4bO3Ysxo0bZ5G2xcbGIigoyOS2oKAgxMXF4eHDh7hz5w5SU1Oz3eb48eMWaQNljzGZiLRMrZgM2D4uGwwGDB48GE2aNEGNGjVy3C6nmBwbW5CWkiUxJhORljlLTD506BAaNWqER48eoWjRoliyZAmqVatWgGcmNTEmE5HWOVP/tbnnympzqiSxj48PAPkg+vr6qtwaIiLLiIuLQ2hoaNp3nK0lJSUhFsBFnQ75+WaNAxAaH5/lO9lSs4jJvjEmE5EWqR2TAdvH5QEDBuDw4cPYsmVLgdpL6mNMJiItcraYXLlyZezfvx/37t3DH3/8gd69e2Pjxo1MFDsYxmQi0iq147Ia/deOcq7sVEli45RwX19fBloi0hy1SxH5urjANz9tUBQgNdWq38nBwcG4du2ayW3Xrl2Dr68vihQpAldXV7i6uma7TXBwsFXaRIIxmYi0TO2YDNgmLg8cOBB///03Nm3alOdo8JxiMuOt+hiTiUjLnCUme3h4oGLFigCAunXrYteuXfj888/x1VdfFaTJpBLGZCLSOrXjsq36r/Nzrqw29RblICIibXFxyf/Fyho1aoS1a9ea3LZmzZq0tZk8PDxQt25dk20MBgPWrl3L9ZuIiMixWTEuK4qCgQMHYsmSJVi3bh3Cw8PzfExeMZmIiEizVDhXNhgMSExMtEDjiYiINMTKMbkg58pqc6qZxEREZEUuLkB+R2LlU3x8PE6fPp12/dy5c9i/fz/8/f0RFhaGUaNG4fLly/jhhx8AAK+//jpmzZqF4cOHo2/fvli3bh1+++03LF++PG0fQ4YMQe/evVGvXj00aNAAM2bMQEJCAl5++eV8t4+IiMhuWDEuDxgwAIsWLcKyZcvg4+OTtq6wn58fihQpAgDo1asXSpcujYkTJwIA3n77bTRv3hxTp05Fp06d8Msvv2D37t34+uuvzW8jERGRI7LyufKoUaPQoUMHhIWF4f79+1i0aBE2bNiAVatW5bOhREREGmflmGzOubK9YZKYiIgswwZJ4t27d6Nly5Zp14cMGQIA6N27NxYsWICrV68iJiYm7f7w8HAsX74c77zzDj7//HOUKVMG3377Ldq1a5e2Tffu3XHjxg188MEHiI2NRVRUFFauXImgoKB8t4+IiMhuWDEuz5kzBwDQokULk9vnz5+PPn36AABiYmLgkmHUdePGjbFo0SK8//77GD16NCIiIrB06VLUqFHD/DYSERE5IiufK1+/fh29evXC1atX4efnh5o1a2LVqlV4/PHH89lQIiIijbNyTDbnXNneMElMRESWYYMkcYsWLaDk8rgFCxZk+5h9+/blut+BAwdi4MCB+W4PERGR3bJiXM4tFhtt2LAhy23PPvssnn32WfPbREREpAVWPleeN29ePhtERETkpKwck805V7Y3TBITEZFl2CBJTERERGZiXCYiIrIPjMlERET2gTE5CyaJiYjIMhhkiYiI7AfjMhERkX1gTCYiIrIPjMlZMElMRESWwSBLRERkPxiXiYiI7ANjMhERkX1gTM6CSWIiIrIMnU4CrbkMBuu1hYiIyNkxLhMREdkHxmQiIiL7wJicBZPERE4gITEF528lICnFAA83F5QL8Ia3nv/+RERax+9/4meAiIgyYlwgIiIiHg8QkRH/84k06tS1+/hpRwzWn7iOmNsPkLEwgg5AmL8XWlYuiZ7RYYgI8lGrmaQlLi75G4lFRFbB73/iZ4AAMC4TURrGBSKVMSYTkR3g8QARGJOzwSQxkcZcvP0Ao5ccwubTN+HqokOqIWvdfAXAhdsPsHDHBSzYdh7NKgZiwpORCPX3sn2DSTsYZIlUxe9/4meATDAuEzk9xgUiO8GYTEQq4vEAUQaMyVnw3SDSkF92xaDN9I3YevYWAGQb9DMy3r/17C20mb4Rv+yKsXobScOMQTY/FyKyCH7/Ez8DlAXjMpFTY1wgsiOMyUSkEh4PEGXCmJwFZxITacSs9acwZfXJAj021aAg1aBg5OJDuBmfiIEtIyzcOnIKThI4iewNv/+JnwHKFuMykdNiXCCyM4zJRKQCHg8QZYMxOQu+G0Qa8MuumAIH/cymrD6JXzlKjAqCI7GIbI7f/8TPAOWIcZnIKTEuENkhxmQisjEeDxDlgDE5C84kJnJwF28/wNg/j2R736MLB3Ht59HZ3hf80hToS1fJ9r4P/jyCxhUCue4E5Y+TBE4ie8Hvf8rtM5DZva2/4u6mhXAPDEPIK1/muB0/AxrCuEzkdPITFwDzYgPjApEFMCYTkQ3ldjyQdOMC7m1ZhKTY00hNuAudux7uAaHwjX4KXhHROe6TxwOkGYzJWTBJTOTgRi85hJQ81pPwqdsZHqUqmdzmVrxUjtunGBSMXnIIC/vlfHBAlAWDLJFN8fufzPkMAEBK3E3c2/YbdO6eeW/Lz4B2MC4TOR1z4wJgfmxgXCCyAMZkIrKh3I4HUuOuw5D0EN6RreFa1B9KciIenNiKG//7CP7tB8Inqn22j+PxAGkGY3IWTBITObBT1+5j8+mbeW6nD60O7ypNzd5vqkHB5tM3cfr6fVQs6VOYJpIzYZAlshl+/5O5nwEAuLN+HvQhlaEYDDA8jMt1W34GNIRxmcip5CcuAObHBsYFIgtgTCYiG8nreKBIhfooUqG+yW0+dZ/A1QWDEbdzaY5JYh4PkGYwJmfBd4PIgf20IwauLjqztjUkPoBiSDV7364uOvy4netNUD7odPlbz0Fn3meXiLLi9z+Z+xl4FHMYD47/h+KtXzV73/wMaATjMpFTyc+xQX5jA+MCUSExJhORjeTneMBI5+IKN59AGBLjc92OxwOkCYzJWXAmMZEDW3/iOlLNKCd265/PoSQ9BHQu0IdWR/GWfaEvFZHrY1INCtafvI5xqG6p5pLW5XcklmJeKTwiyorf/2TOZ0AxpOL2mrkoWqstPEqWM3vf/AxoBOMykVMx99igILGBcYGokBiTichGzD0eMCQ9gpKSCEPiAzw8tQMPz+6BV9VmuT6GxwOkCYzJWTBJTOSg4hNTEHP7Qe4bubrDq3JjFClfDy5efki+GYO4nUtw7acRCH5xMjyCK+T68JhbD5CQmAJvPb8qyAwMskQ2we9/MuszACB+3wqkxN1A0POf5Ps5+BnQAMZlIqdhblwACh4bGBeICoExmYhsID/HA3fWfYv4/Svlis4FXpUawb/tG3k+jscD5PAYk7PgfzORg7pwKwF5fUV5lqkKzzJV02+IiIZXlSa4Ou8t3Nn4PYK6j8/18QqA87cSUD3Er9DtJSIiy7DV9//uEwmoVILf//bo5I28PwOpD+Nwd/NPKNa4O1y98v935DEAEZHjMOfYAChcbGBcICIism/mHg8AgG/9rvCq0hSp92/hwfEtUBQDkJqc5+N4PECkPUwSEzmopBRDgR7nXjwERSKi8eDkViiGVOhcXK3yPOSEOBKLyCZs9f3/+/8MKJGPf2mynRuGvD8DdzcthEuRovCp17nAz8NjAAfHuEzkNMz9vi5sbGBcICogxmQisoH8xGn3gFC4B4QCAIpGtsa1X8bg+h/jEdxrGnR5rMHK4wFyaIzJWTBJTORgkpOBo0eBFVsL3nPv5hsIpKZASU6ETu+V67YebswQkJkYZIlsojDfy/n5/n/2aRdUKlHgpyIrOnnDBX//nPP9ybcvI37/KhRv3R+p92+n3a6kJkMxpCLl7jXo9F5wLeKT6/PwGMDBMS4TOQ1zvq8tERsYF4gKiDGZiGygMHHaq0oT3F45Cym3L8M9oIzVnodIdYzJWTBJTGTHjAnhPXvSLwcOAI8eAS4e3gh9B0Dug7uylXI3Fjo3D+g8PHPdTgegXIB3gdpOTohBlsgmygV4QweYXUYqo/x8/9er7A1vfUFaSNbm65/7ZyD1/i1AMeDOv1/hzr9fZbn/8tx+8KnXBf5tXs3xOXgMoAGMy0ROw5xjg8LGBh2AcinxQGpRwDX3aiRElAljMhHZQGH6CpTkRACAITEh1+14nkgOjzE5CyaJiexEbglhnQ6oUgWoWxd4/nn5GRXlhk5zvHDh9oMc95n64F6WtaaSrp3Fg1M7UaR8Xeh0uX8hhgV4wVvPrwkyE4MskU14690Q5s/vf2eW12fAvURZlHjqvSy33920EIakh/Bv8yrcipXK9Tn4GdAAxmUip2HOsUFhY0OYpwLvHVvle6VECSAoCAgOBnx95YSViHLGmExENmBWX0HCXbh6FzO5TUlNQcLhddC56eEeGJbrc/A8kRweY3IW/I8mUkFKiiSEd+82NyEMFC2adT8tK5fEwh0XkGrI/svqxtJJcHH3gL50Vbh4+SH55kXEH1gJnbsexVv0ybWNri46tKxUsvAvlpwHgyyRzfD7n3L7DLh6+cGrUqMst8ftWgYA2d5n8nh+BrSBcZnIqeR1bFCY2ODqokPL2mWBFmFAbCxw7Rpw+DBw8CBQpEh6wjgoCPDwsMwLItISxmQispG8jgdurZwFJekB9KE14OoTgNT4O0g4ugEpty6heKt+cPEokuO+eZ5ImsCYnAWTxERWZm5CuEcPoF69nBPC2ekZHYYF287neL9XpYZIOLIBcTuXwpD04P87BhrDr+nzcC8ekuu+Uw0KXmyY++gxIhMMskQ2w+9/ahOe+2egMPgZ0AjGZSKnktexQWFIXCgL+PrIzOFKlYDUVODGDUkYx8YC5///uf390xPG/v75+x4i0irGZCKykbyOB7yrNkP8wTW4v+8fGB7eh4tHEXgEV0TxFi/DKyI6133zPJE0gTE5CyaJiSzImBDesyc9KZxTQrhuXaB2bfMTwtmJ8AKaJV3DVtcApLpm/Xf2rdcFvvW65H/HBh3qlA5AxZI+BW8cOR+dLn9B1mCwXluINC4iyAfNKgZi69lb2Y4QLuj3vwt0CNYF4MBmHwS1BXwYBuzOgwfA2rXA3r0+KOcZiIuJt5Bq5klLcM9P89zG1UWHxuV5DKAJjMtETiWvY4Oc5BUbcowLrq6SDA4OBmrVkgBlTBifOiUnxu7ukiw2zjT28irISyNyfIzJRGQjeR0PeFdrDu9qzfO9X54nkmYwJmfBIZ1EBZSSItW15s8HBg4EGjaUzvRatYB+/YD164GICGDiRGDTJuDePTlPXrgQGDwYaNascAlibN0KREVhws8fwc3N1VIvSyg6rJ4QidmznWKwDFmKcSRWfi4FMHv2bJQrVw6enp6Ijo7Gzp07c9y2RYsW0Ol0WS6dOnVK26ZPnz5Z7m/fvn2B2kZkSxOejISbi2XXAHR302Fsx0icPQvMmiWhJjXVok9BBWQwyOCzWbOAI0eA9u2B7wdEws3Vsp8BNxcdJjwZadF9kkqsHJc3bdqEzp07IyQkBDqdDkuXLs11+w0bNmQbk2NjYwvxIokoI2scG5gdF7y8gPBwoFEjoGtXoFUrOSF++FAC2PLlwMqVwP79kkjmAQY5ExudKxMRAdY4HlB4nkjawZicBWcSE5kh4wxh4yzhjDOEK1eWUtHGGcJRUVacfZWcDHz4oWSfGzRA6MKF+PCOB0YuPmSxpxjfpTq2x3th4EDg77+B774DSpWy2O5Jq/IbOAsQZH/99VcMGTIEc+fORXR0NGbMmIF27drhxIkTKFky67ooixcvRlJSUtr1W7duoVatWnj22WdNtmvfvj3mz5+fdl2v1+e7bUS2FurvhQ+7VLf493+7+l5oXg9Ytw7491/py+3QQfp9SR2XLwP//ANcuSKD0dq0MQ40s85nINSfM700wcpxOSEhAbVq1ULfvn3x1FNPmf24EydOwNfXN+16dvGbiArGWscG+Y4LOh0QECCX6tWBpCTg+nVJDl+6JDONXVyAEiXSS1P7+srjiLTIBufKRERGlj8e0GF8sVsI9XG30P6IVMSYnAWTxESZZE4I79kjHeQZE8IZS0ZbNSGc2fHjwIsvSoPGjQNGjQLc3NADwM34RExZfbLQT/Fu28ro1TQMvZoCTzwB9O0LREYCX38N5KP/j5yRDYLstGnT0L9/f7z88ssAgLlz52L58uX47rvvMHLkyCzb+/v7m1z/5Zdf4OXllSVJrNfrERwcnO/2EKmtR/0wi37/d68v6wt5egIdOwJ16khy8ocfgBo1gMcflz5cso300tLSf/7yy0BYpiWgrPUZIA2wclzu0KEDOnTokM9GSVK4WLFi+X4cEZnnubph2HkwEYtPFz4uvBhpobjg4QGUKSMXRQHu35eEcWwscOiQjMAuUiS9LHVQkDyGSCvYIU1ENmbR88RIX3TfugL44hrw5psSs4kcFWNyFkwSU64SElNw/lYCklIM8HBzQbkAb3jrtfOxyS4hfOCAVMTKmBDu3l2FhHBGigJ8+SXw7rtAaCiwbRtQv77JJgNbRiCwqB5jF+9HigFIdclHCWqDDnoPHcZ3qW7SCdCxo5yzv/oq8PTTQJ8+wOefM0FAlhUXF2dyXa/XZzuTNykpCXv27MGoUaPSbnNxcUGbNm2wbds2s55r3rx56NGjB7y9vU1u37BhA0qWLInixYujVatW+PjjjxEQEFCAV0Nke2nf/0sPIcWgIBXmz8JxddHBzSXr979RcLAkJg8cANasAWbPBpo3B6KjZSlCsg6DQRLD69bJ7x06SMWSnM5NBraMgL+XHh8sPQIDFBhg/loRLtDB3S3nzwA5H3PjckFFRUUhMTERNWrUwLhx49CkSROL7ZvI2SmKnNM2KRaBao/rMXn9ETk2yMcaxcZjgwENq6PUgzCcPQuUL2/BRup0ckLp6wtUqiRlp2/cSF/P+Px52c7fP33N4+LFnaKDjoiIyJLS+gr+LPjxQNp5YoNS0iEwZQrw1lsAB30SaYZ2sn1kMaeu3cdPO2Kw/sR1xNx+YNLNqAMQ5u+FlpVLomd0GCKCHGexenMTws89Jx2xqiWEM7t6VabzrlwJvPEGMHkykCnBZdQjWIcm372F0X0nYDOKwdVFl+sBgPH+hxcC8E6bSHSvn7WMWIkSwOLFwIIFwKBBwIYNsq5y06YWen2kHQUciRUaGmpy89ixYzFu3Lgsm9+8eROpqakICgoyuT0oKAjHjx/P8+l27tyJw4cPY968eSa3t2/fHk899RTCw8Nx5swZjB49Gh06dMC2bdvgyiwYOYgeEb5o4nEYo71qYvNtg9nf/43LB2DCk5G5lpHU6SQmVqkCrF/PEtTWlrG0dFQU0Lq1sbR07iogDE/qAxETdAg7Ym6a/RkI1gVg1ouRqFOZJaY1x8pxOb9KlSqFuXPnol69ekhMTMS3336LFi1aYMeOHahTp06h909EwIkTkmNt0AAoWzYM7aICMXrJIWw+bX5cMB4blCnuhX37ZNCSt7dM7rUKV9f0ZHCtWlJGw5gwPnVKTuLd3aUBxpnGXoxZ5GA4a4mIVNKjfhiaVCj48UBaX0HFijJ56YsvgM8+k05iVuQjR8SYnAWTxJTm4u0HeQYMBcCF2w+wcMcFLNh2Hs0qBubZuayGlBTg2DFZOzivhHDdukDt2naSEM5syRKgf3/AzQ1Yvlym9uZmzBiEKg+xcFRnnHqok2T/yeuIuZVNsj/ACy0rlcSLDcMw8k0fTB0PvNoz+4ohOp3MJGveHOjVS36OGCEVr1kFjNIUMMhevHjRZG1Ca60HPG/ePERGRqJBgwYmt/fo0SPt98jISNSsWRMVKlTAhg0b0Lp1a6u0hcji/v0XoV4uWDioFU7dTTL7+79iSfODn6enJIZr12YJamvIWFo6OFjGh2XK1eXo4UNg40agWR0vdOkSnT7gL4/PwPP1w7Dmfz44shOoXYlLQWqOncXlypUro3LlymnXGzdujDNnzmD69OlYuHChRZ6DyJlduiRVoKpWBcqWldtC/b2wsJ/5cSHzsUFUFBAfL4WsWrWyUbz38pJRaOHhMjX69u300tR79sg2vr7pCeMSJVjehOwfO6SJSEWFPR5IExIiHcLGRPHAgRYuN0JkA4zJWTBJTACAX3bFpJWeAJBn+Qnj/VvP3kKb6RvxYZfq6KFSiUJjQnjPnvSksEMmhDO6fx94+21g/nygWzdZELhEidwfc+CA9NjPmgX4+iLCFxjXpTrGoToSElOw8r8EvPCiAYt+dEH7JqZlwydOBKpVkxg/YkTOT1G+vHRCT5oEjB0LrFoF/PijdEQQFTTI+vr6mnRG5yQwMBCurq64du2aye3Xrl3Lcz3hhIQE/PLLLxg/fnyez1O+fHkEBgbi9OnTTBKTY7h8WXqFO3cG9HpEBOlNvv/P/7cHSS/2gsePP6Bck7qFXjbCWIL64EGWoLaE/JaWzs7mzXI81LKlXI8I8jH9DBw/j6Q/FsPjmadQrko5k8+A0gb49Vfg9GkgIsLCL47UZeW4bAkNGjTAli1bbPJcRFp2+zawc6cMLqpePev9WeLCuVgkbd8Bj4bRKBcenOOxgYsL0KiRxKgtW6S6hZXGc2ZPpwMCAuRSvTqQlCSzjK9dk6z4qVPSyBIl0mcj+/hw1BPZH3ZIE5EdyHw8cPxyAk6eNqBSRRdUKW3mEpPFiwPDhsmyiNOmAa+9BkRGWr/xRJbCmJwFk8SEWetPFXgR+9T/X89g5OJDuBmfiIEtrdu7mFdCuFIl6Vh1qIRwZlu2yHTdGzeAefOkJ96ck9zhw6V3t3//LHd5690QXswPSVeB8GKAd6YT+4gI4PXXgQkTgH79gMDAnJ/G1RUYPRpo1w548UWgTp30wWM8F3dyVg6yHh4eqFu3LtauXYtu3boBAAwGA9auXYuBAwfm+tjff/8diYmJePHFF/N8nkuXLuHWrVsoVapUvtpHpApFkRE7JUvKF3Im3no3VC/mDlw9CRRzBwqZIDbS6aQiZOXK6SWo9+2TghcsQW2+y5elUMjVqzJbq02bHFeUyNGdO5IYaNYs+2Meb70bqpfwAlwSgBJeWT4DlSvLjLM1a4AKFZzi/Md5OMDJ7/79+xlviQrpwQPgv/8APz+gfv28z8m89W6oHuQNeBuAIO88jw3c3WWpobVrga1bgcceU3FQmIeHZMJDQ+UY6P799FnGhw5J50CRIpIsNpanZukrsgcOEJOJyLl4691QNdgPuANUDQa88jMIzNtbJjfNmyfJ4hdfBJo0sVpbiSyKMTkLJomd3C+7YgqcIM5syuqTKFFUL4vZW0DGhLAxKZw5IexwM4Rzk5Qk9ZsnTQIaNpQed3NLdqxeLZfFi+UsvgA++EAmIn/0EfD553lvX7eu/F2GD5dlKP7+WyY+h4QU6OlJC2wQZIcMGYLevXujXr16aNCgAWbMmIGEhAS8/PLLAIBevXqhdOnSmDhxosnj5s2bh27duiEgIMDk9vj4eHz44Yd4+umnERwcjDNnzmD48OGoWLEi2rVrl+/2Ednc8ePAhQtyUqbCgWt2JairVwfatmUJ6tw8eJCeWM9vaenM1q6V/vBGjQr2eJ1O/l7ffCPtqVu3YPshO2TluBwfH4/Tp0+nXT937hz2798Pf39/hIWFYdSoUbh8+TJ++OEHAMCMGTMQHh6O6tWr49GjR/j222+xbt06rF69Ol/PS0TpkpNljLGLi/TNWit56+0t+9+wQc7LGzSwgwHCOp0cbPj6SudAaqoMtI6NlZnG587Jdv7+6bOM/f3toOHklNghTURa4+Ehs4h//lk6Au7dk84Bxlmyd4zJWTBJ7MQu3n6AsX8eyXWbxNjTuLdlERIvHYWSkgy3YkEoGtUevvW6ZLv9B38eQeMKgfleozhzQnjPHmD/fg0nhDM7dkw6+A8eBMaPl5rPbmb+e6amSqa2SRMpTV1AJUoAI0dKsvitt4CKFfN+jJeXVLd+4gmZ8BwZCXz1FfDMMwVuBjkynS5/gbMAB47du3fHjRs38MEHHyA2NhZRUVFYuXIlgoKCAAAxMTFwydSGEydOYMuWLdl2Qru6uuLgwYP4/vvvcffuXYSEhKBt27b46KOPrLY2MpHFpKamT/8050vbijKXoJ41S0pQN2zIEtQZGUtLr10rE6AKUlo6o0uXgCNHgC5dCjdRKiREYvj69bLONL/+NMLKcXn37t1oaaxxDhnIBQC9e/fGggULcPXqVcTExKTdn5SUhKFDh+Ly5cvw8vJCzZo18e+//5rsg4jMpyjAjh1AQoKsF+zpad3nCwiQ5PD27XIuXq2adZ8v31xd05PBgIzIunZNksanTgFHj8qAauNaxkFBckJLZAs2OFcmIrI5FxfghReAYsWAZcskUdy9u1Mk1ciBMSZnwSSxExu95FDaGsTZeXhuL67/MR4eQRXg17gHdB6eSLkbi9T7N3N8TIpBweglh7CwX3TO25iZEH7mGek41VxCOCNFkZ704cOl1uO2bfKi8+PHH2WK9dathf7SevttWVty9Gjgt9/Mf1z79lLd67XXgGeflWrZX3whJc/IidhoJNbAgQNzLC+9YcOGLLdVrlwZipL9d12RIkWwatWqArWDSHW7d8sihM89ZxcHrZlLUK9dK/G9QwfzC2No2aVLMtu6MKWlM1IUKSISFCTve2G1bi3951u3pq9tTA7OynG5RYsWOcZXAFiwYIHJ9eHDh2P48OH5eg4iytmBA5L/bNrUduddoaFS4fnIEaBoUSDMMkXErMPLS9bACA+XUVp37qSXpt69W7bx9U1PGpcowZFtZD2ctUREWqXTAZ06ycHIjz8CcXFSKquAlS6JrI4xOQsmiZ3UqWv3sfl0zsleQ+ID3Px7GopUqI8ST46CTmfeP0OqQcHm0zdx+vp9VCzpk6+EsHGGsNOUp7xyRaZdrV4NDBggC/vmdyTzw4fA++/LG1jQOpMZeHkBH38szdqxA4jOOdefRWAg8McfUmHkrbeAjRuBhQtljURyEgyyRLbz6JHUfIyKSp8xYycylqBesUJigTOXoLZkaemMjh0DLl60XKVxPz+Z+b11qxyTOePfSnMYl4k06/RpmRxbp47tDwOqVpVE8a5dMtgp02ou9snFRRoaECAHJUlJ6bOML12SN9PFRRLFxtnIPj52MQiPNMLKMXnixIlYvHgxjh8/jiJFiqBx48aYNGkSKleunM+GEhEVUNOmEju/+UbWMXzzTVbsIPvE8+QsmCR2Uj/tiIGriw6pOcwkTji6AYaEuyj+WC/odC4wJD2Czt3DrGSxC3ToPykGiduqpyWEAZlZ5LQJ4cz++EOm3Xp4SA96+/YF28/nn8uJ7YQJFmvaSy8B06YBw4YBmzbl77xYpwN69wYee0xmEzdvLpOkx48vXBlMchAMskS2s2mTLETYqpXaLclRcDDQp4/zlqDOWFoaADp2lOMfS3z1paZK4rliRak2bilNm0oye/16oGtXy+2XVMK4TKRJsbEy8DoiwrIxwFw6nRS/evAA+O8/qURRmMoYqvDwkBFboaFSmiMuLj1pfOiQTNMuUiQ9YVyyJE9oqXCsHJM3btyIAQMGoH79+khJScHo0aPRtm1bHD16FN4O9w9KRA6rVi3gnXekTOWUKTKLqHhxtVtFZIrnyVkwSeyk1p+4nmOCGAAend8Pnd4LKfG3cH3xx0i5fRk6d09412gJ/9b9oXPL+QTJAAXnkq6jSXh1JoQzi4sDBg0Cvv8eeOopWcA3MLBg+7pxA5g4EXjjDekhsBBXV2DyZMlbL1tWsGWOw8NlgtvkybLG8apVUnGkenWLNZPsEYMskW3cuSPlHpo2tfvgmrEE9YYNzlOC2tKlpTPbtQu4exfo0cNy+wRkFniLFtL26Gi7m6RO+cW4TKQ59+7JCkXBwZZZaqCgXF2Bxo0lrm/ZImPWHLaqpE4n5TT8/KTUWWqqnGsbS1OfOyfbBQSkl6b29+csY8ofK8fklStXmlxfsGABSpYsiT179uCxxx7L176IiAqlQgXg3XdlYtNnn0k/eKlSareKKB3Pk7PQ/iukLOITUxBz+0Gu2yTfvgIYUnHjfx+hSHgdlHhyNIrWfBzx+1bg5vIZeT6HrugDfP1dCoYMkVlDdt6HbRubN8uZ/OLFwPz5Mpu4oAliQOpCA8CYMZZpXwbt2gGPPw6MGCET1QrC1RUYOVLyGImJMljg889lZhVplDHI5udCRPm3dq1k8xo3VrslZvP0lMFHr70mFacWLpQwGBendsssKyEB+PNPYN48mZjUt6/MyLVkgvjhQ5lIXru2TGyytDp1pB989Wp5DeTAGJeJNOXRI0nIenvLQB61c5R6vYxXe/hQEteaOc9zdZVEcFSUHLx06iQns0WKSFnqdetkNPW2bZJANpZOI8pNAWNyXFycySUxMdGsp7t37x4AwN/f32oviYgoR6VKSaeyp6fMIDpzRu0WEaXjeXIW2n+FlMWFWwnIq89PSX4EJTkR3jVawf/x1+BVuTH8H38NRaPa48GxTUi+fTn3xwM4fyvBYm12aElJwKhRki0vXVpKV/XpU7iz+tOngS+/lCxsiRIWa2pGn30m58Dfflu4/dSuLWtRv/YaMHiwnGdfzv3jQ0REObl0ScogtmolvbMOJihIQmC3bsD581KC+r//ZNKOIzMYZHbvrFmyVnDHjkD//pZZezizzZuBlBSgZUvL7xuQvvHHH5d+79OnrfMcRESUP6mpEi8NBknM2susXV9foFEj4Pp1qRSiycFFXl5S/qRRI6BLFzkGi4iQetu7dwN//y2lsw4ckJnHjn5QQ3YlNDQUfn5+aZeJEyfm+RiDwYDBgwejSZMmqFGjhg1aSUSUjeLFZUZxSAgwfbrESSKySyw37YSSUvIe4mssJ+1dtbnJ7d7VWiB+/0okXj4Od//ShX4ezTtyBHjxReDwYeCTT2SBXkssxDh6tIxuHjy48PvKQVSUrE88bpy8BB+fgu+rSBGZRdypkyQHIiOBuXOB556zUGPJPrBcB5F1KYpM7yxZUkbgOCitlaC2dmnpjO7cAXbuBJo1A4oWtc5zAFJts1w5WUu6QgV+XTssxmUiTVAUGYh0754sCeDlpXaLTAUFSRWKPXvknNGCKyHZHxcXKbcRECBrKSUlpa9lfPEicPKkbFOiRPp6xj4+6k/7JvUVMCZfvHgRvhlK8+nNGCQ6YMAAHD58GFu2bMl3M4mILMrLC3j7bSm1NXcu0LOnjHYjUhPPk7PQ/iukLDzc8v6zuxYNkJ/exUxv9/YDABgexee5j+NHXfAg96rW2mUwSFa0bl2ptbxjh8wmtkSCePt24Pffpdx0kSKF318uPv5YOiMmT7bM/tq2lQlwrVsD3btLEvr/qyCRFrBcB5F1HT8OXLggawJo4P/H0UtQ26K0dGZr18p71aiR9Z4DkL7sxx+XJRn37bPuc5EVMS4TacKRI5J/bNBAlsK1R+XLywCj/fuBK1fUbo0NeXhI2ZD69WVEdNu2gHHm5qFDMsN4+XKZcXzpkiSVyTkVMCb7+vqaXPJKEg8cOBB///031q9fjzJlytjilRER5c7dHXj1VRnpvHChxEVNlh4hh8Hz5Cw4k9gJlQvwhg7IteS0R3AFPDq/Dyn3b8E9IP3AMuX+bQCAq5dfrs+hKEDPLt7QpQLVqkmutF49+Vmrlv2Nfraoy5eBl1+W6TdvvQVMmmS5ZK6iAMOGATVryvReKwsNlcnKU6cCr78uFUIKKyAA+O034McfgYEDZV3FH36Qatzk4DgSi8h6UlLSp3VWrKh2ayzKWIL60CGZKD1rlsSEhg0tM7bK0gwGmS21bp1c79hRjm+s/ZV28aIkCrp0kT5pawsJkcON9eulv9sBq5sT4zKRw7twQZYxiIwE7D3fU7MmEB8vY5pbtQKKFVO7RTam0wF+fnKpXFmO3W7elFnGsbGyjgMgJ8TBwXIA5O/PWcbOwsoxWVEUvPXWW1iyZAk2bNiA8PDwfDaQRvgPhQABAABJREFUiMiKXFyA55+Xg4Nly2TGUI8ePP8gdfA8OQsmiZ2Qt94NYf5euHA752m+3lWaIW77H4g/uBpFytVKuz3+4GrAxRX6sMhcn6NcgBeWbHfDnj0yaHbPHmDRIiA5WTp8q1ZNTxprKnH822+STfX0BFaulNlelrRsmSxGtWqVzXrOR42SdYnHjgW++cYy+9TpZBbxY48BvXrJuorDhgEffcROaIem0+UvcLJDhMh8u3cDt29LGQYN0umkc7lSJfsuQZ2xtHTt2lIZw5ozh40URcYIBAXJMZOttGoFHD0qhx6tWtnueclCGJeJHNqNGxL+y5WTnKO90+mA6GgZXLRli8RIKxe+sm9ubuklpwFZw9iYMD55UkZ+eXjIMiLG7Zz6DdM4K8fkAQMGYNGiRVi2bBl8fHwQGxsLAPDz80MRfq6IyB7odDLC2s9PZg7FxQH9+slMYyJb4nlyFkwSO6mWlUti4Y4LSDVkP5/YI7gCvGs+joSDa3DDYIBnWA08ijmEB8e3wLfRs3DzCchx364uOrSsXBJ16sjaRP37y+1JSbI0rzFpvGcP8NNP6Ylj44xjh0wc37sn02J//BF45hlZZyEg5/eoQJKTgREjpP5j27aW3Xcu/PyAMWOAIUNkVnH16pbbd9myMhNr6lTg/fdlBtmPP6ZX6CIHw5FYRNbx8CGwcaNkJYOC1G6NVRlLUNeuLcnYhQvl+KBdOyDDcmw2l5AA/PuvJK5LlZJzWVvO6Dp2TGYSv/SSbb86/fxkRve2bTK4T82/ARUA4zKRw4qPB7ZulVPKunUdp2/KzU2WGly7VgYYtWghtxGkc6N8ebkYDDL4z7ie8e7dso2vb3rCODDQPkuqUMFYOSbPmTMHANCiRQuT2+fPn48+ffrka19ERFbVpAng4wN8/TUwYwbw5pu2GXlNZMTz5Cx4uO6kekaHYcG287luE9BuANx8SyD+4L94cHIb3PxKoHjr/vCt3zXXx6UaFLzYMCzL7R4eSEscGyUmSuLYmDR2yMTxpk3Sa3vnDvD99/K7Nc7iv/0WOHVKZivb2BtvADNnSo76778tu29XV2D4cMl7v/iidEJPnAi8/bZTfAdrC4MskXVs3iyBsWVLtVtiMxlLUK9ZIyWoH3tM1uK1ZX+pWqWlM0pNlQR1xYrqzKpu2hTYu1feg27dbP/8VAiMy0QOKSlJZuJ6eACNGzvev2aRItL/u349sHOnxG5HSXLbjIuLJIEDA2UUdmIicP26JIxjYmSmsasrUKKEHBQFB0uHOt9Ix2WDctNERA6jZk2ZjTRrFjBlCjBoEFC8uNqtImdh5Zi8adMmTJ48GXv27MHVq1exZMkSdLPzzhQmiZ1URJAPmlUMxNazt3KcTaxzdUOxpi+gWNMXzN6vq2JA4wqBqFjSx6zt9fr0BLCRwySOExOBDz4AJk+WHtSNG6UWmDXcvw+MGye1mW1ZZ/L/eXhI4va55+Rk3xp5iqgoGUA9apQcJyxfDixYYP9rb1EG7Iwmsrw7d2Rxv2bNnG4ap7EEdeXKUoJ63TqZyduxo22SpWqVls5s1y7g7l1ZskkNer3MBPvnHykjWqqUOu2gAmBcJnI4BoNUb0hMlDL/tliD3hqKF5dKFP/9JwO+atZUu0V2Tq8HQkPloihSgjM2VmYaHzoEHDggnR7GhHHJko774XBWjMlERKbKl5dZQ59/DkyaJInikBC1W0XOwMoxOSEhAbVq1ULfvn3x1FNP5bNx6mCS2IlNeDISbaZvzDFJnH8K3FKSMeG70UCjmQWuGVzYxHG9epJHteqyK4cPy7TXo0clezpsmHWnNn32mZwofvSR9Z4jD888I53Dw4ZJh7U1zlk8PYHp04FOnWQGWWQkMGeOeh3jlE888SWyvLVrpVOwSRO1W6IavV7KTUdFAStWpJegbttWyiFbmtqlpTPKWGm8ZEl12gBIFZidO2VWt7UKppAVMC4TORRFkcoNN24AzZvLxFFHFhIi5+UHDshrCQ9Xu0UOQqeTAxw/Pxkpl5IiHwpjaepz52Qbf39JGAcFye8MzvaNMZmIKKvgYClb+cUXMglrwAApoUVkTVaOyR06dECHDh3y2Sh1MUnsxEL9vfBhl+oYufiQhfaow/jGwQhdecPiNYPNSRzv3p194rhevfQZx4VOHBsMMsJp1CigQgVgxw7pubWmK1dk0d7Bg2VksUp0OonXjz0G/PIL8IL5E8zzrU0b4OBBKXP9/PPAX38Bs2cDxYpZ7znJAnjiS2RZly7J7JEuXThbBNIH2rt3egnq2bMtW4I6c2npTp0kOarmV9WmTdIutSuNu7pKbP7lF1n5olIlddtDZmJcJnIoJ09K/q9+fakyrAUREVIUa88eqcah5oAnh+XmJqPWjKU8EhLSE8YnTwJHjshxYlBQ+kxjq46YL7iExBScv5WApBQDPNxcUC7AG956J+mWZEwmIspesWIyI2nOHFmjuH9/VapokhMpYEyOi4szuVmv10Ov11uyZapxkqMxykmP+mG4GZ+IKatPAgqAQgw+fbdtZXRvWRHouBsYPdrqNYPzShzv3p39jGNj0jjfieNLl2R669q1kvyeONE2J18ffCCzyEaOtP5z5aFZM6BrV/nzPvWUzPy1Fn9/6Yzu0kUGkm3eLEs+q91RTrngiS+R5SgKsGqVdPZZezCSA8mpBHWHDjJ2q6AuXpRyyrGx8na3aaPSUhYZ3Lkjs3ebNweKFlW3LYAkhsuVkwR9xYr8CncIjMtEDuPyZRkkW6WK9VYwUoNOJ3E1IQHYulWWbnD0GdKq8/aWEp3ly8tIstu300tT794t2/j6SrI4OFjWPbZm1bM8nLp2Hz/tiMH6E9cRc/sBMtax0wEI8/dCy8ol0TM6DBFBGv5wMCYTEeXMy0vKTX/3nSSLe/aUTmgiayhgTA7NNHlv7NixGDdunAUbph4miQkDW0ZAl6jHZ2uPwMVNgQLzy0+7QoGbmyvGd6mO7vXD5EZPT2DaNJmC07u3TWsGZ0wcv/qq3JZd4vjHH9MTx9WrZ13jOEvu95dfZFqrlxewejXw+ONWfy0ApOHz50sNZmvU1CyASZPkPZs1SwZ6WZNOl35c0Lu3dCoMGQJ88on8rcnO8MSXyHKOHwdiYqS2L/9XsjCWoK5dW5K7P/5YsBLU9lRaOrN//5V+4EaN1G6J0Onk/f36aymHWq+e2i2iPDEuEzmEO3ekQFWZMgVescmuubjI+sTr1snA39ateS5nMS4ukgQODJQPT2IicP26JI1jYmSmsaurTE03lqb28bFJaeqLtx9g9JJD2Hz6JlxddNkuc6YAuHD7ARbuuIAF286jWcVATHgyEqH+Ko/UswbGZCKi3Lm7yyziX3+VE/x79yS3wOUUyNIKGJMvXrwIX1/ftJu1MosYYJKY/t+ORWFI2hqIFsMPYdu5nA/ijYz3N756HBM+fQWhwcWybtS6tdSEfPNNVWsG55Y4NiaNc0wcV32Auv9OQq3Vn6HIc10k2e3vb7vGjxghize9/rrtnjMPlSvL+/jJJ0DfvrZ5O8LCZAL3tGnAe+9Jnv6nn2T8ARGR5qSkyBddxYpcjycPJUvKIKLDh+UtM7cEtcEgxwDr18t1eygtndHFi8DRo1K9w91d7dakK1VKZnJv2CAxWEPnREREqnjwANiyRQY4NWig3X5QDw+gaVM5p9u6VWK1ipNbtUuvlyWqQkOlKk1cnCSMY2NlqrrBIAPfjWWpS5a0ypImv+yKwdg/jyDl//uUcutbynj/1rO30Gb6RnzYpTp6GCchEBGR83BxkUlmxYoBS5dKovj55+3nRJ2cmq+vr0mSWEuYJCbs2ycJ0jlzvPDaq9Hp5YBOXkfMrWzKAQV4oWWlkngxyICKTboCkTpg6NDsd168OPDzz0DnzpIstpOawTmVqj50KD1pvGfDffw4X49kfAhXl7GoflyHusN0BStVXRDr1sn0qN9+s7u1KMeOBRYulETx1Km2eU4XF5m53LatzC6uVw+YMAF45x0eK9gNjo4msozdu2VakQ0qcGiBTicJy0qVzCtBnbG0dJ06MqZN7dLSGSmKJLyDgyUha29atZIE9n//ye9kxxiXiexaSop8l7q4AE2aaD9pWrSovM6NG+V8u3597SbF7YJOJ6MP/PxkpHdKCnDjRvp6xufOyTb+/umlqYsXL/QfZdb6U7KcWQGkGhSkGhSMXHwIN+MTMbBlRKHaYlcYk4mIzKPTycm8n590PsfFSckvO+sbJwfGmJwFk8ROTlGAd9+Vc4Z+/eS2iCAfjOtSHeNQHQmJKTj/3x4kvdgLHj/+gHJN6sJbn+Fj8+qrwMcfAy+/nPuU0hdekKHDdlwzWK+XxGO9yETg9PvA6alIbNYah979AXuulMp9xnFdeWzNmhZKHBsM8oeJjgaeecYCO7SsoCBg+HD50w8cKJOdbaVmTWDXLplRPGyYLHv9/fcyWJpUptPlL3CyV4goq4cPJdNZu7Z82ZLZsitBXbWq3ObnZ1paOiQEeOUVoHRptVud1dGjwKVL9ltp3M9PyoZu2ybHPhodSKsNjMtEdktRgO3bgfh4GXDj6al2i2wjMFCSwzt2SNXjqlXVbpETcXOTkiClSsn1hIT0hPGJE8CRI9IBHxSUPtM4n50bv+yKKXCCOLMpq0+iRFF9+rJmjo4xmYgofxo3loOFr74CZswABgyQ9ZiICsvKMTk+Ph6nT59Ou37u3Dns378f/v7+CAuzz+MaJomd3KpVUvJp2TI5Z8jMW++G6sXcgasngWLugD7TRsYppRMmAFOm5P5kxprB06cDo0fbZ83gQ4eAF18Ejh0DJk2CfsgQ1HN1RcZl97LMOM4hcVyvnvwsUOL4559lwb/Nm+325GDIEKm+/d57wKJFtn1uT0+ZwZxx2esvv5SxCKQijsQiKrxNm4DUVE7RLITsSlCHhwMXLsjXjr2Vls4oJUUOlSIigPLl1W5Nzpo2lUo069YB3bqp3RrKEeMykd06eBC4elW+T/381G6NbYWFAffvS5wuWpSDfVXj7S0HG+XLyyD127fTS1NfvCjb+PmlJ4wDA3Od7n7x9gOM/fNItvcl3biAe1sWISn2NFIT7kLnrod7QCh8o5+CV0R0jvv84M8jaFwhUBtrFDMmExHlX2SkVC+dOROYPBkYNMi2y0CSNlk5Ju/evRstM1TRHTJkCACgd+/eWLBgQb72ZSs86nBiqakyWfWxx6QadIEYp5TOnCnlivLi4iJf7rt2yfV69STbZzAUsAEWYjDIgrf16skbs2uXvDnZnAQZZxy/9hrw9deSJL5/Xx4ye7ZM/t2/Hxg8WGba+PhIaep+/SSRuWOHTBTL0aNHknnt1k16DeyUtzcwfrzks3fvVqcNrVpJB0vHjlKC+vnnpUIrqcQYZPNzIaJ0d+5IkGjSRIIHFZixBHW3brKm78n/n9TSqZPEcHv9+tm1C7h7F3j8cbVbkju9HmjRAjhwQJIcZKcYl4ns0pkzEpdq106f1OlsqlWT5PDOncCtW2q3huDiIkngGjWANm2ALl2kY6N4cSAmRgYxLlsmg9hPnZIOEMV0neHRSw6lrUGcWWrcdRiSHsI7sjWKt+kPv8bdAQA3/vcR7u9fmWOzUgwKRi85ZLnXqSbGZCKiggkPl9xDUhLw2WfAlStqt4gcnZVjcosWLaAoSpaLvSaIAc4kdmo//CCjd3fsKORkVeOU0vffl5nB5qhZU84I339fkrFq1gy+eFGmHK1fLwvcTpiQ73pfaaWqM0w5zjjjePdu+fnDDzJLyNVVzr+MpaqNaxx7egKYNUvqTK5aZdnXaQV9+kjFj2HD5O1TY9Jz8eIyk7lzZ+CNN+SjtWCBVDUnG+PoaKLC+fdfWRy3cWO1W+LwMpeWbt9e4vAff0g1RWMJanvy8KH0wdapA5QooXZr8lanjhxDrl4N9Oplt4VPnBvjMpHduXZNKjFUrCgXZ6XTSdnpBw9kXebWrVlB0q7o9TLlOyxMksFxcemzjA8elAMsLy+ZYRwUhFM6b2w+fTPH3RWpUB9FKtQ3uc2n7hO4umAw4nYuhU9U+2wfl2pQsPn0TZy+fh8VSzr4AErGZCKiggsOTp+kNnmylJ525gMpKhzG5Cy0/wopWw8eSH62e3egQYNC7sw4pXTRovxNKfX0lBLVa9cCp0/LlB9b1y1etEie9+RJ6U2eNs1iC0JlnHH8zTdSPTo+XmYJzZolJ8X79gFvv50+4zgqMgX93gvCl41/xI67lfHokUWaYjVubsCkScDGjZLnV9Pzz0tSPiJCBj8PGQK7f/80h6OjiQru0iUZudWqlawHRwViMMgYtJkzZXm9J56QSh6RkTIe7KmnZGzY7NkyGSYlRe0Wp9u0SdrfooXaLTGPi4vMeD5/XiYVkR1iXCayK3FxwNatUoyrVi21W6M+V1cpnuLmBmzZIss3kR3S6WRkXeXKQPPmQNeuUvEsJAS4cQPYtg0//boJrvkcLKZzcYWbTyAMifG5bufqosOP22MK8QLsBGMyEVHhFCsms5RCQ2XG0v79KjeIHBZjchbaf4WUrenT5Xh+wgQL7bBPH1mM9913s5QdylPLljIatVMn29UMvnNHnqdnT6BDB8ku2mDqqTFx/PrrWRPHM2cC9bEb+1Ii8fa27umJ46j0UtU7d9pf4rNjR/kTjhihfmd7aKjk+qdOlQRA/fpSCpNshEGWqGAURapHBAXJlz4VSEyMLAOxYoUckgwcKJU6jF81xhLUAwdKLF6/XgqhnD6tbrsBWQZw507pLC9aVO3WmC8iQqp/rVmj/sohlA3GZSK78eiRJEK9vGSAMP/dhF4v+cYHD4Dt2xlLHIKbm9RJr11bSrV07Ij1j4og1YxuIEPSI6Q+uIfkO1cRt3MpHp7dA8+yuY+YSDUoWH/yuoUaryLGZCKiwitSBHjrLSkjOXeujLQmyi/G5Cy0/wopi+vXZfbngAFA+fIW2qlxSumGDcA//+T/8cWKSanqn38GVq6UL/t16yzUuEzWrZP9r1iR/pzFi1vnucyQljhudw7fnGyOvR/+jfv3dWkzoTLOOI6Otr/EsU4nlT6OHgXmz1evHUYuLjKLePduaVuDBtK+1FS1W+YEbBRkZ8+ejXLlysHT0xPR0dHYuXNnjtsuWLAAOp3O5OKZqVqAoij44IMPUKpUKRQpUgRt2rTBKU6LI1s6dkwynO3aOcXBp6XFxwNLl0oMcnUFXnlFliDw8sp+e70eaNtWBmz5+sqhwG+/Affu2bTZJtaulcIsjRqp14aC0OlkNvHNmzLwjeyMlePypk2b0LlzZ4SEhECn02Hp0qV5PmbDhg2oU6cO9Ho9KlasaNfrMhFZSmqqzCBOSZGEqLu72i2yL76+stLGtWsc4OuI4t30iLlv3jTwO+u+xaUveuLKV/1xZ/138KrUCP5t38jzcTG3HiAh0Y7KvxQEO6SJiCzD3V1O+lu0kJP5v/7K/4Q1cm6MyVlo/xVSFuPHy2f7/fctvGPjlNLhwws+pbRHD5lVXKmSzOy1ZM3gR49kf61by9SXgweBF16wzL4t4b33gIAA4J134OkpyeGMM47v34dZieM5c2yfOK5bV97KDz6Qznp7EBkpM7QHDZJZzq1bAxcuqN0qjbNBkP31118xZMgQjB07Fnv37kWtWrXQrl07XL+e8+hyX19fXL16Ne1yIdMH4bPPPsMXX3yBuXPnYseOHfD29ka7du3wyN6m7ZM2paTINMyKFYEKFdRujUMxGGRN3FmzZNUIY2np0qXNe3zJkrKW7tNPSwnqWbPUKUF98aIMtGrVyjETB6VKSdnU9euBxES1W0MmrByXExISUKtWLcyePdus7c+dO4dOnTqhZcuW2L9/PwYPHoxXXnkFq1atKsirI3IIiiLnJHfuSIKY6+5mLyhIJqaePs0lDBzNhVsJMLdr3rd+V5Ts8TECOr2DIuXrQlEMQGreCWYFwPlbCYVqp+rYIU1EZDkuLrKG5pNPAn//Lclizg4iczEmZ+GmdgPItk6eBL76SspMBwRYeOfGKaX16gELFsionoIIDZUO888/B0aNkt9//LFwCzcdPCilpU+elHWQ33nHvv7Bd++WGc3ffptjz4ExcVy/fvptjx5Jpew9e9IvP/wgHdxublJus149SeJau0Pik09kmaJp0yRZbA/0evlIduokiYCaNaUMdc+e8nElC8tv4CzA/+C0adPQv39/vPzyywCAuXPnYvny5fjuu+8wcuTIbB+j0+kQHByc7X2KomDGjBl4//330bVrVwDADz/8gKCgICxduhQ9evTIdxuJ8sXYc8zPWr7ExEjhkmvXgDp1ZCBQTjOHc6PTATVqyNixjRulIMr+/bISRcWKlm51VooCrF4NBAc79vqUrVoBR45IKVUbrN5B5rJyXO7QoQM6dOhg9vZz585FeHg4pk6dCgCoWrUqtmzZgunTp6Ndu3b5em4iR3H0qAwGatgQ8PdXuzX2rUIFGXC8f78svVCqlNotInMkpZhfI9w9IBTuAaEAgKKRrXHtlzG4/sd4BPeaBl0eJ+j5eR67ZINzZSIip6LTybIHfn7SGR4XJ7kIDw+1W0b2jjE5C+2/QjIxahQQEiLl+60i45TShEKM9HRxkUTu7t3ye0FrBqemyuPq15fgsWsXMHSoff1zKwowbJhkdPv0yddDzZlxvGePzKbt3Vse88ILEjMtPeO4XDn5XH32GRAba5l9WkqLFjJOoHNn4KWXJBdz+7barSKjuLg4k0tiDlPRkpKSsGfPHrRp0ybtNhcXF7Rp0wbbtm3Lcf/x8fEoW7YsQkND0bVrVxw5ciTtvnPnziE2NtZkn35+foiOjs51n0QW8fChZCbr1JEpNJSn/JaWNpdaJaiPHgUuXZLnduTBS76+Uip7+3Z1y3aTZZgbl/Nr27ZtJvEWANq1a8d4S5p14YJ8z9eoIeOgKW81a0p/xfbtwN27areGzOHhVvC+Fa8qTZB09RRSbl+26vMQEZGGNWoka2oeOwbMmFG4fASRk+JRlhP57z9g8WKZ8ZlpSU7L+uQT4NYt4P9nCRRKjRqSyXz77fzXDL5wQbYfMUKylzt3ylmnvVm+XJIEn30mPd6FlDlxvG+fJI5/+EHur1IlPXFsLFVdu7ZlEsfvvScDtj78sNAvw+KKFZMJ6b/8IrO2atYE/v1X7VZpjE6Xv1Id/58RCQ0NhZ+fX9pl4sSJ2e7+5s2bSE1NRVCmZFpQUBBicxiZULlyZXz33XdYtmwZfvzxRxgMBjRu3BiXLl0CgLTH5WefRBazaZMMZmrZUu2W2L3sSku/8or5paXNVaJEegnqS5esW4I6JUXiUEQEEB5u+f3bWpMmkmxft07tllAaK8fl/IqNjc023sbFxeHhw4cWeQ4ie3Hzpox3LltWzr/IPDqdnKMWLSrVKbj6i/0r4VnwkmVKsgxCMiTm3qGvA1AuwMFrtRcwJhMRkRlq1JAlJq9dk8linBlEuWFMzoLlpp2EogDvvivJQKsvw5txSulrrxV+dpReL/syt2awosgUoAEDpOTE2rX22wGfkiJrOLdqJbUtrcTTUyYqAzLJu06d9FLVu3enl6r+/vv0UtU1asjE8Lp1pWR1ZGTegwuKF5e1rocPl7y+PXaIdO8uHdl9+gCPPy7tnDgRKFJE7ZZpQAHLdVy8eBG+vr5pN+v1eos1qVGjRmjUqFHa9caNG6Nq1ar46quv8NFHH1nseYjy7fZtyXo+9piM1qEcZSwtXbeuhMzCzhzOja1KUO/aJbNurX5cZiN6vVTuWL5cyqqyTKgdsMO4TOQM4uNlgLa/v5xHOUG/kkW5ucn52tq18j62aGGRsdRkIcnJwPXrclwWGwskJLghQO+FW4kPcnxMasJduHoXM7lNSU1BwuF10Lnp4R4YlutzhgV4wVvv4N2XLG1JRGRd4eHSIf3558CkSTI7ytKjykkbGJOzcPCjLDLX4sXAtm0yY8Umn+v33gO++w4YN06mp1pC8+ZSM3jgQKkZ/Ndfsu+Mizvdvg288YbUiHzhBUkmFytmmee3hu++k3IYCxfavPcgtzWO80ocG9c5zi5xPGCAlLoeMQJYtsymL8lsZcrIbOIvvgBGjpRlr3/6CYiKUrtlDq6AQdbX19ekMzongYGBcHV1xbVr10xuv3btWo5rDmfm7u6O2rVr4/Tp0wCQ9rhr166hVIaMxrVr1xDFDwRZ09q1kuls3Fjtltit+Hg5bjlwQEpP9u8vP23FWIK6dm1JUv/0kwx+ateu8IcWDx7IRPI6dWT2slbUqSNjH1avlnF9TIyozMpxOb+Cg4OzjeG+vr4owtF6pBFJSTID1sNDQrwT9ClZhZcX0LQpsH69VLpq2JAxRS2KIqW/Y2PlcuuW3Fa0KBAcLJdOHiXx084LSDUo2e7j1spZUJIeQB9aA64+AUiNv4OEoxuQcusSirfqBxePnGOAq4sOLSuVtNKrsyF2SBMRWV9QkHRIz5wJTJkCvPmmjP4myogxOQvtv0JCcrIkwjp0kOrLNmGcUvrNN8Dx45bbr5+fJFR//VUyexlrBv/7r1xfvRr4+WfpzbXnBHF8PDB2rMyIrltX7dYASE8cv/EG8O236aWqd+yQhGrdupI4fustWSY6Y6nquXNlVpSiABMmAH/+KR3g9srFBRg8WBLi7u7yeiZNyv+y15RBfkp15DcgA/Dw8EDdunWxdu3atNsMBgPWrl1rMls4N6mpqTh06FBaQjg8PBzBwcEm+4yLi8OOHTvM3idRvl28CBw+LEHZw0Pt1tidzKWlO3eWOGPLBHFGGUtQX74s4882bSpcCepNm+R1tmhhsWbaBRcXqdJx/rz87UhlVo7L+dWoUSOTeAsAa9asYbwlzTAYZGD2o0eS4OQk/MIpXlxKT1+6JIdNZDuPHsnqXTt2yNj8f/+Vbh0PDxlY3aGDXOrUkeOzlxqG5ZggBgDvqs0AnQvu7/sHt1d9ifu7lsLNJxAlnh4D3wZP5tqWVIOCFxvmPtPYIdhZTCYi0iw/P2DoUCA0VNYo3rdP7RaRvWFMzoIziZ3AV18BZ8/KbGKbMk4pHTkSWLrUsvt+7jnTmsFRUVILslUrYMECCQT2bupUmfn88cdqtyRXnp6SQG3QIP22R49kUrdxtnF2M44DA4HevSWfX6uW/XaS1KghJ78ffACMGiVlMn/4QaqmUz7ZYCTWkCFD0Lt3b9SrVw8NGjTAjBkzkJCQgJdffhkA0KtXL5QuXTpt/cTx48ejYcOGqFixIu7evYvJkyfjwoULeOWVVwAAOp0OgwcPxscff4yIiAiEh4djzJgxCAkJQbdu3fLdPqI8KQqwapVMu6hVS+3W2B1bl5Y2V8YS1Js2SRnqAwcKVoL69m0ZVNWihczC0RrjGstr1sh7wxKhKrJyXI6Pj0+rzAEA586dw/79++Hv74+wsDCMGjUKly9fxg8//AAAeP311zFr1iwMHz4cffv2xbp16/Dbb79h+fLl+XpeInukKNIHeeMGV5KwpNKlZRz4wYPynvIczToMBllH21hC+u5dub1YMYnpwcFAQEDOYSIiyAfNKgZi69lb2SaLvas1h3e15vlul6uLDo3LB6BiSQ38Q3HWEhGR7RQpIjOcFiyQxMjzz0uFUiKAMTkbTBJr3L17wIcfSi41MtLGT67Xy5TSF14ANm8GmjWz7P5Ll5apnx07SoI4KEgWp3eEBHFsrLR10CCHPNM1J3F8/z5w5oyM/nZzk8+fcY3junXlZN9eEsd6ffpHybjs9axZUtW8IGXNEhJTcP5WApJSDPBwc0G5AG/HX0PJHDYIst27d8eNGzfwwQcfIDY2FlFRUVi5ciWC/n/t85iYGLhk2O+dO3fQv39/xMbGonjx4qhbty62bt2KatWqpW0zfPhwJCQk4NVXX8Xdu3fRtGlTrFy5Ep55LcJNVBDHjslM4l69nOJA01wZS0uXLm370tLm0uvTx6atWFGwEtRr10pyuGFDa7ZUPTqdlOn+6itg717TZS3Ixqwcl3fv3o2WLVumXR8yZAgAoHfv3liwYAGuXr2KmJiYtPvDw8OxfPlyvPPOO/j8889RpkwZfPvtt2jXrl2+npfIHp06JQOz69UDSmqgMq49qVRJzi137wa8vbW1TIOa4uPTS0jfuCEDvvV66VapVEl+5ud0aMKTkWgzfWOuM4rzy81FhwlP2rojy0rYIU1EZFvu7kC/foCvL7BokSRJOnfm+hXEmJwNJ8haOLfPPgMSEoDx41VqQPfuwLRpwLBhwPbtlvsiTk2Vmbjvvw9UrSq1jj/8UHpcP/pIns+ep66MGye1mkaPVrslFpNd4rhjR+nwHzlSfu7aJYO4UlIkVhvXOLaXxLFx2eu33pJZ0H/9JR+tgIC8H3vq2n38tCMG609cR8ztB8h4aqwDEObvhZaVS6JndBgigjQwEjo7NgqyAwcOxMCBA7O9b8OGDSbXp0+fjunTp+e6P51Oh/Hjx2O8al+U5DRSUmR6ZUQEUKGC2q2xCwaDxIb16+UroXNnWcbA3s/bSpSQgURHjsgqF7Nny1i4xo1lYFROYmKAo0eBbt0kDmqVcaL8hg3qx3anZuW43KJFCyhKzsmABQsWZPuYfSz5Rhpz5Yqc61SuLLMuybJ0OilrnJAAbN0qVUY4Uzv/kpMlGWxMDCckyHsbGChdKkFBMuCtoMdgof5e+LBLdYxcfMhibR7fpTpC/e2gpIwlsEOaiMj2XFykGmmxYlJi9d49mcxmzzkDsj7G5CyYJNawS5ckPzt0qMzKUYWLi8yYbdkS+P13+WIurPPnJYO3ebMkgz/6SHofO3SQNX7tvWbwsWOy4O9nn8lCSxo2ZYrMIE5NlZcMmM443r0798RxvXryeFt2Lvv5yUenc2fgtdfk+RcskFlR2bl4+wFGLzmEzadvwtVFl+3IaQXAhdsPsHDHBSzYdh7NKgZiwpOR2jnhNWKQJcrdrl3AnTtS6ohw4YLMxjWWlm7dWqpCOYqcSlC3by+3ZaYoklAODpbEqda1aiVJ9C1b5G9LKmBcJrK6O3dkLHTp0ipU7nIiLi5Ao0bAunXpccXDQ+1W2TdFkbLRsbFyrHXzptzm7S3HIsHBMujNkoPWetQPw/yfE3FCf7LQ+3q3bWV0r6+BtYiNGJOJiNSh00npLz8/WSsxLk5Kl/FAwnkxJmeh/VfoxMaMkRG2w4er3JAWLYAnnpDkbVJSwfejKJK9q1lTEsXr10ui1ZhB1OuBTz+VaSsxMbLdDz/I4+zJyJFSEnvAALVbYnXVqkllj48+Sl/XyDjj+I03gHnzpFL4/fuyLvCMGTKDbNcumc1bv758huvUkfj91VeSWE5MtH7bn30WOHRIEgDt2kll8IcPTbf5ZVcM2kzfiK1nbwFAnqW1jPdvPXsLbaZvxC+7YnLd3uEYg2x+LkTO4uFDySLWqeP0dSjj44ElS2QAjpubfL8/8YRjJYgzMpagfv11Oe9ctAj49df0uGd09Chw+bIMOrL3mdKW4OsrHfrbt8uAbVIB4zKRVT18CPz3n3zfNWjgHN/tavLwAJo2lS6FrVulGgmZevRIBuHt2CFVsf79Fzh+XBLBUVEyrr5jRzkcDQmxfFWTmTOB1dMj0DEwEno3F7i65O+fwtVFB72bCyY9FYkBLStatnFqY0wmIlJXw4bSF3/iBDB9unRMkHNiTM6CM4k16uBBGRwzc6actKpu0iQZWj1nDvD22/l//K1b0vv6xx/Aiy/KgrF+ftlv+9hjMpVn0KD81wy2tk2bgD//lB5kJ6m9+OGHsmbjxInyMchObmsc794ts4537QLmz5dZyRlnHNerJz+tMeO4dGlg5Ur5uI0YISfZP/4oJ9Wz1p/ClNUFGyGdalCQalAwcvEh3IxPxMCW2Uw5c0Q6Xf4CJ3vSyJls3ChfYBnW73Q2BgOwc6eM5XKk0tLmMpagPnoUWLXKtAQ1IDGkUiXnKkXapImsS7xuHfDkk2q3xgkxLhNZTUqKzGgF5Lsut6UGyHKKFpW4ummTnCPWq+fcX10Gg8wQvnZNZgwbB6gVKybHG0FBUk7aFn2b//wDDB4MDBkCTB0ahou3A/OsuGVkvL9x+QBtVtwCGJOJiOxBjRoSqGbOlPKXgwYB/v5qt4psjTE5C57KaNTw4VLq8NVX1W7J/zNOKR0/XhK3xYqZ/9jVq4E+fSRr+Ouv5pWsNpaQMLdmsC0oipTHrldP1mp2EqVKycueNAl4802gbFnzHpdd4vjhw/RS1Tkljo1JY0sljl1c5JihTRugZ08ZeNbjvRhselT4EloAMGX1SZQoqtdGKS2W6yDK3u3bkh1t3txpF9G7cEE6D69fl+/pVq0cd+ZwbnQ6oHp1OQbbuFEu+/fL6hfG5Y+ciV4v4yL+/huIjpZZS2RDjMtEVqEoMlMzPl6+47QYz+xZiRJyLLFzpxxWVamidotsKz4+vYT09esyYEGvl4RwpUry09PTtm06eFC6OJ54Qoq9AbJG8cJ+0Th17T5+2hGD9SevI+bWA2RMFesAhAV4oWWlknixYRgqltTwcTJjMhGRfShXThInX3whndWDBqm4TiepgjE5CyaJNWjNGpnBsnix5csHFYpxSumnn8olLw8fyvTNmTMlQ7dgQf6/tJ95RoYav/yy1Ax+6y0JAGqcyf/2m2Q11693ii+XjIYNk1LRY8ZIBfCCKlJEOpmjo9Nvy5w43rkT+O679MRxZGR60rgwieNq1aQzaOjYB1h2/whc3CBntbm4t/VX3N20EO6BYQh55csct/vgzyNoXCFQmyOmiUimkHp5Se1dJxMfL8clBw9KCO/f3zkShR4eUoI6KkoSpPv2yfg4uzous5HatSV+rlkD9OrlFINwiUjjDh4ErlyR0sf5GftMllO2rCxZdOiQzC4uU0btFllPcjJw44YkhmNjgYQEiaWBgZIgDw6Wz6Fa8TU2VpLDFStKd4+rq+n9EUE+GNelOsahOhISU3DoXAL+225Ak4YuiAz3hree3ZL/x955hzdVf2H8TSe0tEALbdl7U4YFyp5libIUQUEQkSmK7CF7LxEZMlRAEQQEUUFl71WgbJQtS6CMAl3Qlfz+eH+hu03aJPcmOZ/nyYOmyb0n657v94z3CIIgCBbG15eJ4oULgTlz2NVUtqzSVgmCYshqzMbQanmNq1cPaN9eaWtSkLKltGgGnZOnTlFW+sYNDqr95JOsJ1YLFgT++ou6jyNGJNcMthQxMZzJ/MYbnNFsZ3h4ABMn8mMfPJgBY1NhSOI4ONg0iWMXF+BZ6fNwuq5DJuOHER/+GM+PboDGOfMy7nitDmM2n8fqXoGZPlbVSCWWIKTmzh3g4kU6ZRcXpa2xGEmlpR0dbU9a2lDy52fw9t49dvosXsykgj1Jkzo4MGG+di1w5QpQrpzSFtkR4pcFweTcuMFrWbVq3N4KylGpEovRjh9nLZ6tqEXqdJSN1ktIP37M+9zduabw8+P6Qg2FZ9HRQLt23Gdv2cKEfUa4uzqhnG9u3HEHyvkC7vYxgYuITxYEQVAXuXMDQ4dyROVXX1EB1ZK5AkE5xCenwk7CU/bDjz9S1vDIEZUGYpO2lH7/feq/JyRQn2jCBO76QkL4b3ZxcGCiuVkzJp8DAyl9PWJE6lJXc7BkCbU2t241/7lUykcf0ecOH85uInN+P7ObOK5Rg9LVKRPHV0MjcPDaY4NseLr3O7gWLAedVgvti/AMH5ug1eHgtce49jDCuiW2xMkKQnJ0Okp7+PkBVasqbY3FsBdpaUN48gQ4eZL1YYGBnKF44ABw9izQujVlqe2B0qWBkiXp/0uXtszSS4D4ZUEwMaGhrGUuVYrXMkFZNBqgZk0WpB0+zK2+m5UKM718mZgUDg1ljbmjI+Djw4IEP7/ME7CWRqvlJLELF7i2seVubpMgPlkQBEF95MzJfMGqVcDy5UCXLnbZ3GV3iE9OhSSJbYgXL4CxY4G33lKxomXKltJq1RL/9u+/1CE8fJjJ28mTTd91VbEicOwYbfj8c0axf/gBKFHCtOdJyrNnwJQpzJJWrGi+86gcJyc2kbdrx5xJq1aWPX9mieOTJ9NPHOvnHP96+zYcHTRIyKSN+OXtC4i+dBgFei5A2M6lBtnn6KDBj8duY2JbExRFKIU4WUFIzt9/s5O4Rw+7+L5HRFCsw96kpTNi924GdWvXpl8JCuLS56+/2Flbrhz9oa3LlWo07CZetowJlpo1lbbIThC/LAgmIzwcOHo0MWmnyoJsO8TRkeocu3cDhw5xRrQaOmwzQ6tlIZleQvrZM96fJw9DE76+lJNW82V53Dhg0yaOOQsIUNoaK0B8siAIgjpxcgI+/BDw9AR++olOuV07WezZMuKTUyFJYhtiwQLg/n1gxgylLcmEpC2lO3bwvu+/56B4Ly+WAjdsaL7zu7gA06cDr78OvP8+u7sWLGAQ3xwOYMYMlgJPnGj6Y1sZb74JNGjAj755c+U7iTJKHJ88mbrjuFDfh3DKm3GCWKdNQNjOpchVtQVcfIobbEuCVoe9Vx5iIiRJLAg2QXw82ybLlGELpQ2jl5beu5f7q7ZtJYAOALdvA//8Q6XxpAHrfPkoavL331wG2YsEtZ8fvxf79rEIK0fm0xiE7CJ+WRBMQkwME5A5c7IYW34q6iJHDvrRPXu4d6tXT51rkMjIxE7hhw+5VHR1ZUK4bFn+ay2+cdUqhlTmzFHhmDO1Ij5ZEARBvTg4AO+8w2qtTZtYHdi1q/KBa8E8iE9OhQ2HouyLx4+5SO/f3wqkC5O2lP78M7B+PctPu3dnsjZ3bsvYUb8+9R4HDQJ69uQQnWXLGL01FbduMSE+apQMrQI363PnMin7ww9829VGeonjYyfj0fPP6EyfH3n6L8SHP4Lvu9OMPvftJ9GIiomHu6uVXprFyQpCIsePswL1vfeUtsSsiLR02uh0TAAXKABUqZL67xoNp2mUKZNcgrpVKwaKbZUmTShLeegQu6oFMyN+WRCyTUICRznFxwONGllHl6o9kjs3E/iHDtGfJhUsU4r4eK6P9InhyEj6/3z5gPLlWTyVJ486E9oZsX8/0KcPa/+HDlXaGitCfLIgCIL6adGCHcXff89EcZ8+plc5FZRHfHIqrDQTIaRk6lT+O26csnYYzJtvcuhr166UoP75Z+Dtty1vh6cnsHIl7enTh60tK1eaTgt57Fju/IYNM83xbIBatYDOnfnWdO5sHXOjcuYEfEpFZfq4hBfheHZwDfLU7QxHN+OLHXQAbj6JQqWCFiqUMDXiZAWBREcz6xcQQF1KGyQigo3S589zBl2fPlILlZSLF4H//mP9W0bBXxeX5BLUP/1ECeqWLYG8eS1mrsXw9ATq1uVkkZo1LVcXaLeIXxaEbKHTUV0oLIzj6dzdlbZIyAi9YsXp0xz1YOm50Tod6wP1s4UfP+Z97u60rUoVLgutudDg6lWgY0eqg339tfUluBVFfLIgCIJ1ULs2N65LlwLz5gEDB3JhIdgO4pNTYfuv0A64fp0L9FGjgPz5lbbGAKKjORT+wgWW144bp0yCOCkdOzLSXa0a0Lo1HUB05l2jGXL6NPDjj8CkSeJMUjB9OvDoETB/vtKWGE5svDbTxzw7sBoOOXPBo8abZj2PatE7WWNugmCLHDjA1qMmTZS2xOQkJHAm46JFXH+0bcvxPZIgTiQ+nrMRy5blXEFD0EtQd+rE0SFff81Onfh489qqBHXrUk5z926lLbEDxC8LQrb45x+ODqhVC/D2VtoawRBKl6ZKx5kzTNSam5cvqapy/DiFyXbt4jgJJ6fE0MLrrwOvvQYUKmTdCeKwMKBNG8acNm607teiCOKTBUEQrIeKFYEhQ1jxNXs28OSJ0hYJpkR8cips/xXaAWPGsCJ10CClLTGAkBB2Vn33HaWlO3UCvvgi+wlZU1CgADUzFy2ifQEBtDcr6HQcvFu+PNCrl2nttAFKlgQ+/hiYOZMSXGonJga4diXjy2Vc2H+IPLMdHgFtkRARhvhnoYh/FgpdQhx02gTEPwtFwouITM/l4mTFl2WNxjgHK6Xngi0SFsZIYf36NlcgdOsWsHw5O4irVmU9VfXq8lNOyfHjwPPnQPPmxj1Po+Fe9OOPOfLgwAEmi69cMY+dSuHqyvqJ8+eBe/eUtsbGEb8sCFnm9m2qQlSqBBQporQ1gjFUrcrO3aNH6Y9NiVbLYufz57ke2rIl0e8XL05J8vbtuQwsXdp2loKxsayrDwsD/vjDNtVOzI6ZffKBAwfw5ptvomDBgtBoNPj111/N8zoEQRDsheLFgREjWCk/axZw967SFgmmQvbJqbDibIQAAMHBwIYNlJtWtWxvQgIwbRolG3LmZPL1k08Ss4RqaSnVaBidPX2aulC1a9NuY1t5tm9ni8ysWSwjFlIxdiyvs5MnK21JcmJiKCu3dCnQuzervj08gM6vu0OnS/95CRFPAJ0WT3ctw39Le726xd67jPiw//Df0l54fvinDM+tAVDc24p17KQSSxDYQuLuzsF4NkJEBPDLL8CqVZRH7t2bXTEyezg1SZXG8+XL2jH0EtT9+zMI+9NPvD19alpblaR6dXYi7diBDH2rkE3ELwtClnjyBDhxAihaFKhQQWlrBGPRaFhs5e7OGcUvX2bveJGRVE85fBj47Tdg3z7gxg0qUdaqxclVzZsnyknb2qVUpwP69WPS/ddfgVKllLbISjGzT46KikLVqlWxePFiM70AQRAEO8THBxg5knOS5swBLl9W2iLBFMg+ORWSvbJidDqOuq1SBXj/faWtyYAbN2jgsWO8sE6cmDj0PWlLae/e6tHLLl8eOHKEGczx49lhvHo17c2MhAR2ETdsyB2jkCbe3uyC//xz4NNPKctpaWJiWAUeEsLEcEgIVdDj4pjbr1SJgf7evYGAACcM2+eG20/T7np3zl8M+Tt+nur+ZwdWQxv7Al5BfeCUJ2M91qLebnB3teLLsrGO0w6crGBn6NuOOnRI9HNWTEICu2P27eM1sW1bSifaQRFlltm/n+uzxo2zfyy9BPU//7D27OuvgXr1eLN2iUcHBwbU167lPrt8eaUtslHELwuC0URFMRno5QXUqCE+z1pxdmY37+7d/DwbNwYcHQ17bnw869gfPOB84chIfg+8vemv/PyAPHns57sxezawciXDIfXrK22NFWNmn9y6dWu0bt3aSKMEQRCETPH0BIYOZTfRggWctxUQoLRVQnaQfXIqrDgbIfz+Oytjt20zfMNjUXQ6th19+ikjnfv3p72rGDuWu47Jk4GFCy1uZrq4uLBFu3VrJrmrVgW++gro2TPjHeH33zPTGBxsPzvHLPLpp8DixcDo0cCmTeY9V9KEsD4prE8IOzoClSvTx3/0EQNCVapwZmJSmj7wwergW0jQpm57cnTLDbeyqTsHw0/8BgBp/i3Z8x00aFLWJ+svUA2IkxXsGZ2OmTw/P15ArJybN1kf9fgxr4lNmkjncGY8eULf0qQJu5dMgV6CunRpdigfPAicOwe0aqVMcZUpKV2atXe7dnF+pCrXstaO+GVBMIq4OO6vnZw4P12uS9aNmxsLq/btY2d4YGDa23OdjnLRDx7w9vgx73N3T1zW+fhYf4FWVti0CRg1Chg3joVrQjbIok8ODw9PdrerqytcXV1NaZkgCIKQGTlycN7W998D33wDhIdz4y9YJ7JPToUkia2UuDg25TZvDrRsqbQ1afDoEdC3L7B5M/DBB0yuenqm/dikLaWffKK+qGe9esDZs8Bnn3G+8JYtHMqYVtdzdDR3UJ07U3tKyJAcOZiH796dFd716pnmuCkTwiEh/P+0EsIBAdz4G5L86BpYFKuO3jSNkSlI0OrQrXZRsxxbEAQL8PffnFHTo4dVLyAjIjhj7/x5oHBhKikUyFgEQfg/u3dz9mBgoOmPrZegrlYN+Osvyk+XLctksbXOBdRouI5dtox+WpZNgiAoiVZLOd0XL4CmTTk/XbB+vLzoX44epY+uXJn3x8Qkdgo/eMD/d3RkMrhaNcDXl4+355rvEydYK9+5MzBpktLW2C9FUgxFnzBhAiZOnKiMMYIgCPaMkxMbx3LnBtatY4VZu3b2vVgQbAZJElsp330HXLnCa5Lq+PNPSi/Ex7P0tGPHzJ/zySfAokVMFm/caH4bjcXDg2/6G28AffoA/v7AihUcypiUL79kgnz6dGXstEK6dgXmzaNC9+HDxvtWQxPCvXoZlxBOizJeOdAAz3AkIRcSHA27fPp1nZnpYxwdNKhb0hulfTyyZphakEoswV6Jj2dmtWxZw8YSqJCU0tLt2lFAQ/Y7hnHrFmWhO3Qwb6dRSgnqxYsp0mKtEtR+fgzG79+ftoKHkE3ELwuCQeh0wJkzlBhu0CD92mbBOilcmHvCCxeAZ884o/jpU/4td26geHH6I29v6R7Xc/s2x4xUrUrRN1kPmoAs+uQ7d+7AM8lFSbqIBUEQFMTBAXj7bS4gNm5korhbN1lAWBuyT06FJImtkIgIYMIEVnVWq6a0NUmIjuaQ5CVL2NqyYoXh7Uc5cwLTprGl9MgR6nupkQ4dgDp1mARv0wbo3x+YO5daVg8fArNmccaylSYJlMDBAZgzh91Ev/wCvPVW+o+1ZEI4FZcuAd26YfrN+wjqvRQJJjosADg5aDC9g78Jj6gQ4mQFe+X4cW4OunZV2pIsIdLS2UOnA3bs4JLH3wKX8qQS1AcP8nb2LKdjqE2MxRCaNOEo70OH2C0tmBDxy4JgENeuAdevc//g66u0NYKpiIxM7BQODeV99++zW7hmTSaGpTgpNRERwJtvspv+119lTWgysuiTPT09kyWJBUEQBBXQvDmrCr//ntLTffqIDI01IfvkVEiS2AqZM4ex6KlTlbYkCSdOsHLm9m12BA8YYHy5adKW0kOH1Fuu6ucH/PEHB9YPHUp9yR9/pGNwcOCMZcEogoJYVzBqFCuWnZ2ZEL5wgfMd00oIV6rEZIZZEsJJ0emAr7/m97JoURTZ9hsm6Xww6pfzJjvF5LaVUMTLzWTHUwxxsoI9Eh3NNsjXXkt7DIGKiYhgcvPCBaBIEe5r/PyUtsr6uHgRuHePSuOWXLq4uADNmrHLZ9s265Wg9vRk/d3hw/TrefIobZENIX5ZEDLl3j12EZcrJ3W+1k58POu29YnhyEj6ZW9voEIFJofPn2c3cUCAJIjTIiEBePddFhAeOSJFEyZFfLIgCIJtERhI5dGlS6ksOnAgZ1UI6kd8ciokSWxl3LsHfPEFx+OmGE2iDPHxwIwZwOTJjFKePg2UL5+1YyVtKd282TCZaqXQaNhF3LQpk+N163KQ1bRp3IUKRhETw9HV774LNG5MCbCUCWGzdQhnxP377Brfto2FD3PmAG5u6ALgcWQM5u64ku1TDG9RDp1r2sgsYnGygj2yfz+v/02aKG2JwSQkAMHBNF2kpbNHfDywaxeTC8WLK2NDvnyss7t0ie7KGiWo69UDTp0C9uxR9/LP6hC/LAgZ8uwZcOwYULCgZZQgBNOi07F4/sED3h4/5n3u7kxuVqnCxHBSX1i3Lmu8Dx3iVt7FRTn71cjQoVxL/PEH9+CCCTGzT46MjMS1a9de/f+///6LM2fOwMvLC0WL2ki8QRAEQW1UrEjnuXAhMHs28Omn3KAL6kb2yamQJLGVMWECk2OjRyttCajJ9f77jDSPHg2MH5/9XVbSltI331R/dLNcOZbYVqnC6OzmzUCnTkCpUkpbplr0HcIhIYldwvqEsEbDr1OXLszN1qhhwYRwSn75hW11zs7UYW3dOtmfBzYpg3y5XDFm00Uk6HTQOOgMPrSjgwZODhpMblvJdhLEgDhZwf548oRKGo0bW03FaEpp6aZNpZMmOwQHU12qWzdl7dBo2CVVqlRyCepWrbhUUTsuLqyz2LKFBdmFCiltkY0gflkQ0uXFCyYKPTx43ZFCKesgJia5hPTLlywq9vHhKC5fXy7J0vs8XVxYSLVnD3D0KGdQy6WPfP018NVX/LdlS6WtsUHM7JNPnjyJJkmKVocMGQIA6NGjB1atWmXUsQRBEAQjKFYMGDmSTnTWLCaKVdHZJ6SL7JNTIUliK+LiRY75/fJLzkdXDJ0O+O47tjP7+jISacoZwrNmcYe3fDnn+6qd48eZIB4/Hlizhu1Y8+ez7dXOow2xsclnCJ88mXaHsD4h7OXFt69YMQU/+vBwYNAgYNUqzqBevjzdKrDXchfFvW/zoUb/87gb/xiODhokaNNPFuv/XrekN6Z38LcNiemkiJMV7I1du9iuUru20pYYxO7dwKFokZY2FdHRXALVqKGeYmG9BHW1asBffwHr1v1fgrq6I9SuQF2tGpPuO3daXrrbZhG/LAhpEh9PiXuACUMniYqoFq2WNXn6pPDTp7w/d27uGf38KOTl6Gj4MT08GL7Yv58qFgEB4nO2bWNMe9AgCqYJZsDMPrlx48bQ6QwvXBcEQRBMSP78wIgR7CieO5dqlNZQrW2vyD45FbIdsiJGjgRKlAD69VPQiEePgN69gd9+Y2Zv/nzuskxJlSrUHp40iZ3Knp6mPb4p0ek4q7Z6dbZ5Dx8ODB7M92jLFuCbb1jWbAekTAiHhADnzqWdEA4IYDI4rQ7hwYM5mrp/f6BwYQu/iEOH+J17/JgVGR98kGHEYPRowNfdDbs+D8Sd5xFYE3wbe688xO0n0Ui6PdMAKOrthiZlfdCtdlGU9jHxb0YtaDTGOU57j8YI1s3t28Dff7OYRMVahQkJwIWzQFUAd+8C7XqKtLSp2L+f/zZqpKwdaeHtnShBvX07sHijD+prGqNePKBWjRYHB04cWbMGuHw569NLhCSIXxaEVOh0rPEND6eCgSKKRUKGREUlSkg/fMikvosL69NLl+a/2f3c8udnkdeJEwxn2HMc98IF4J13qD7yxRdKW2PDiE8WBEGwbTw9KT29bBmwYAHQsycXG4L6EJ+cCttPg9sIe/dyLsyMGQrGog8eBCpXZtn15s3sJjZ1gljP5MlAZCS7itXML79Qp2rOHF5ccuViYvjXXylD7e/PD87GiI1lEnj5cqBvX/o8Dw/+O2AAZ3tVqcKu96NHgYgIyl6uWMEO4dq109/YjxzJY40fb+EXNGYMI/2FCtHYnj0zdAJHjvDjnzqVUq1lfD0wsW0l7B/WBBcmtsQfzfNh8/dD8EfzfLgwsSX2D2uCiW0r2W6CGEisxDLmlgUWL16M4sWLI0eOHAgMDMTx48fTfew333yDBg0aIG/evMibNy+CgoJSPf6DDz6ARqNJdmvVqlWWbBPsBJ2OmbcCBXixUyn//sv9SXAw/79LF3Zr2sH61uw8eUJ1jPr12UyuRvQS1AMGAHX8I3EIDfD1Rh9cvqy0ZelTujQls3fuZIGDkE0s4JeN8cmrVq1K5W9ziN69YGHOnwf++4/7kbxql1iwE+Ljgfv3gdOnqYLx55/879hYFgw1awa0bcvPrHhx0yX2ixfn8c+d43fCHgkNBd54g80IP/1kXEe2YCQW2isLgiAICpIjBwPfr70GfPst51sI6kN8ciqkk9gK0GrZoBoYCLz9tgIGvHjBfz/7jHNZV6wwv0Zl4cIKt5QaQGwsZye3bs2da1LateMutlcv7rr69mVZrlojyRmQVofw+fO839ERqFiRyeGePTPuEDYUT082ZX/yCb9yZs+//PMPh0meOwdMmcIsdSa7Y50OGDaMyZauXVP/3d3VCZXyOAP3rwB5nAFXO7nUWkCuY/369RgyZAiWLl2KwMBAzJ8/Hy1btsTly5fhk0bX/r59+/Duu++ibt26yJEjB2bNmoUWLVrg4sWLKJRk6GWrVq2wcuXKV//v6upqtG2CHXHxIttye/RQ5WIxPJxJtgsXKC3dtiOAZYB8rU3Hrl2JcyzVjosL0KxmBKqdWom/cvfBunVOKFOGHUNeXkpbl5rmzYGlS7neqFVLaWusHDP7ZWN9MgB4enricpJKBY1UrQgW5N9/qVRQtSpQsKDS1tgvOh3w/HmihPTjx4x5uLkxzFClCsW4nC0gfVG5MmvTg4PZWW5PhQMvXjBsERMDbN1qvvp/4f+ItKUgCIJ94OTEIHmePMD69Vz0tG8v1fpqQnxyKuwkc2HdrFvHQNnBgwpcT44fB959l/89ahQwfbrljBg5kl2548czMa02li8HbtxgO2la+PpScnr5cmDIEFYP/fijqiOesbFMKpw8aZmEcHr06QN89RXHOWzbZvrjA2B0YtEinqR4cbY/BwQY9NTNm9khvXOnXfgJw7GAk503bx569+6Nnj17AgCWLl2KP/74AytWrMCoUaNSPX7NmjXJ/v/bb7/Fpk2bsHv3bnTv3v3V/a6urvCTAa2CIcTHM0NYtixQsqTS1iQjIYFBzv37GVht356BVs1ppS2zLW7dooxzhw6WCWCbCm88QddWYbgUXhDbtwNffw3Uq8duaDW9Dl9fFmHt28fvrzSaZgMz+2VjfTLApLD4W0EJHj7k3qZkSaBMGaWtsT9iYpgQ1ieGX77k/tLHh9d6Pz+Kclk63qHRcHu+bx8nDzVrxmS1raPVck9/7hxw4ACLCgUzIwFpQRAE+8HBAXjrLSB3buDnn5kofv99kexQC+KTUyFJYpXz8iVVcNu3ZxDPYsTHA9OmsbOybFne16mTZXdtSVtKBw+mdLNaeP6cM5M/+CBjuzQadhE3aUJnULcuMG4c8PnnrCxSEH1COCQkMSmcMiEcEGD+hHBaODsDM2fSn+7cya4ik3LvHl/Yjh3AwIGUNTcwGhAXx3qJVq2AoCAT22WnhIeHJ/t/V1fXNDt5Y2NjERISgtGjR7+6z8HBAUFBQTh69KhB54qOjkZcXBy8UrTP7du3Dz4+PsibNy+aNm2KqVOnwtvbOwuvRrB5goPpA9KSEVCQf/+lROPjx0DNmnQ7klwzPTodXUfBgupalhiKXoK6dGkWHx4+zABxq1Zc7qmluLlpUzbsHzxohjWAkCmG+OWs+uTIyEgUK1YMWq0Wr732GqZPn45KlSqZ9gUIQgoiIjgqxscHqF5dPdc6W0ar5WgGfWL46VPenzs3UKwYk8Le3uqIlTo6smhq9276xSZNFN+qm52JE9nctGmTjEsUBEEQBLMRFMT8xqpVXJD26SMSb4IqsfGlr/WzeDEVLbdvt+BJr15lQvPECSYz33hDOT3FpC2lf/2ljA1pMWsWEBXF2cmGULYsS5P1ifc//2RXsYXK2GNjqaoM0IRbt9JOCH/wATeJVaooX0HdoQNz6iNGMIFtsqKdjRuZuHd1ZZtyy5ZGPX3ZMuDaNW6ohRRksRKrSIrS9QkTJmDixImpHv748WMkJCTA19c32f2+vr64dOmSQaccOXIkChYsiKAkGf5WrVqhY8eOKFGiBK5fv44xY8agdevWOHr0KBzVELkS1EN0NNstAgKA/PmVtgZAamnpPn3MPxHCnrlwgXVGPXpYd5LB2ZmJ2KpVubxatw6qkqD28OAa4NAhFj3kyaO0RVaKGf1yVnxyuXLlsGLFClSpUgXPnz/H3LlzUbduXVy8eBGF1ThaRrAJYmJYcJIjB6cB2UEjgGJERTEh/OABO7fj4znywNeXxUm+vpYrOjaWHDlYlL9nDwWm6tWzbj+fEatXMyQxcybQsaPS1tgR0rUkCIJgn9SqxQ3ukiUcqzlwoMx4UBrxyamQJLGKCQsDpk5lwLdcOQucUKejvPPgwUCBAozM1akDnDplgZOnQ9KW0l271NG6efcu8OWXwNChQJKZppni7MyS3datOQO3WjUep3dvk+5Ak3YI67uE9QlhgB1D9eszIazvEFY6IZwWGg0wZw436GvWsG4hWzx/Dnz6KfDDD/w+LVvG8nUjCA83rIHcbsmik71z5w48PT1f3W2uecAzZ87EunXrsG/fPuRI0mLZpUuXV//t7++PKlWqoFSpUti3bx+apZw3Ltg3+/fTVzZurLQl6UtL22hAUw3Ex7PLqFw5TimwBby92RR/6RJUJ0Fdty7XMbt3020LWUBlfrlOnTqoU6fOq/+vW7cuKlSogGXLlmHKlCkmOYcgJCUhgR3EcXGUEXZxUdoi2yI+Hnj0KDExHBnJdYi3N32lnx9n/FrL2iR3bhYSHDrEPXPVqkpbZHoOHgQ++gj48EMWYwsWRALSgiAI9kuFCsCwYcDChcDs2cCgQUC+fEpbZb+IT06FJIlVzPTp3HhNmGCBkz18yN3Cli3898svORRIDehbSocPN3FLaRYZN44VP1ndVQUGAqdPM8ncty/f82+/ZWm1kaRMCIeEcEObVodwrlxUWF6/HnjttayZbmnq1mVg+PPPgbffzkbl+cGDzDKHhVHio3v3LEUrjG0gtzuy6GQ9PT2TBaPTI1++fHB0dERoaGiy+0NDQzOdbzh37lzMnDkTu3btQpUqVTJ8bMmSJZEvXz5cu3ZNksRCIk+eAMePU4NQYf/4778UpHjyRKSlLUlwMBWisl20pDLSk6Bu2ZJBfqWC+y4u/G5v2cKgvTF1ecL/MaNfzo5P1uPs7Izq1avj2rVrhtsoCAai03FvFBYGNGqkuOu2CXQ61t3qJaQfP6astJsbE8JVqlDSW+kio+xQoAAlyU+f5nemVCmlLTId164lhlaWLLGe5L3NIAFpQRAE+6ZoUeYSFixggPmTT3ifYHnEJ6fC9l+hlfLvvywuGTEiS7lD49iyBahcmbpKv/3GbmI17aL1LaVnzrClVEnOnQO+/56ZewOSWumSKxc7WX//nVFnf39+DhkQG8um7m++Afr1Y2LAw4NJ4H79WCVfuTLwxRf87/BwmrtyJZUsMsmLqZYZM4D79+lDjSY2lgOEGzWiDuu5c1nWCL17l6oggwcDooiYDnona8zNCFxcXBAQEIDdu3e/uk+r1WL37t3JOpNSMnv2bEyZMgXbtm1DDQOGbt29exdPnjxBgQIFjLJPsHF27eK1O4PvmrkJD6di/g8/MCDbpw/FKSRBbH6io5lADQgwWoTCatBLUPfvz6Lm9euBn35igkUpqlVjwmHHDiYnBCMxo1/Oqk9OSkJCAs6fPy/+VjALly5xxE7NmtKokR1iYoDbt1knt3UrR1xcvMjLRZUqHFPw+uv0j4UKWXeCWE/p0rydPs2EuC3w9CmniHl7c2ySdNUrgJn3yoIgCIIVkD8/m+C8vBjAN3B0nmBiLOSTFy9ejOLFiyNHjhwIDAzE8ePHTfxCTId0EquUzz/nAn7IEDOeJDKSJ/jmG6BNG+C77yyQkc4iSVtKO3VSLiI+YgR3jH36mOZ4b77JVuCPPgLatqX09Lx5iHXJlW6HsIMDO4Rr1GC+U82S0aagTBkmwadPB3r1MiLIc/EiZb0vXuSThw9ne3UWGT+eSfmRI7N8CNvHApVYQ4YMQY8ePVCjRg3UqlUL8+fPR1RUFHr27AkA6N69OwoVKoQZM2YAAGbNmoXx48dj7dq1KF68OB48eAAAyJUrF3LlyoXIyEhMmjQJb731Fvz8/HD9+nWMGDECpUuXRksj51ULNsytW8Dff3NwmwLRz4QE1nHt38+gnkhLW559+/hvo0aKmmERvL2B994DLl8Gtm1TVoLawQFo3pw1gpcuseNZMAIz+2VjffLkyZNRu3ZtlC5dGs+ePcOcOXNw69YtfPTRR0adVxAy484dbrEqVpQGDWPRalkcpJeQfvqU9+fODRQrxnBBvnzZ2lZZBVWrMlxy5AilyrNTH640cXFU5Xr0iOtJLy+lLbJTpGtJEARBALioGDyYzWMLFlD2s2ZNpa2yLyzgk9evX48hQ4Zg6dKlCAwMxPz589GyZUtcvnwZPj4+Rh/P3EiSWIWcPMnOjW++AdzdzXSSY8eol3jvHrB0KZOeao82z5jBnf6CBcoM0Nm5kwP7Nm0yaZQ0No8PLk78DRF5vkWtlYPx8Ie96JqwGofia79KCAcE2EdCOD3Gj2cD99SpwPz5mTxYq2Ub/siRQMmS7NSuXj1b5z93jirVCxdad4DA7Gg0xjnOLFxzOnfujEePHmH8+PF48OABqlWrhm3btsH3/wUut2/fhkMSG5YsWYLY2Fi8/fbbyY4zYcIETJw4EY6Ojjh37hy+//57PHv2DAULFkSLFi0wZcoUs81GFqwMnY7X/gIFFBlGfuMG8NdflJauVYvjkKVz2LI8fsxiraZNzbguUxkaDVC+PGU29RLUZ8+yY8zSEtSlS9OOXbuAsmVtPzFhUszsl431yU+fPkXv3r3x4MED5M2bFwEBAThy5AgqVqxo1HkFISP00yGKFuU+SsicqCgmhENDeYuPZ1Gary+vwb6+2Rj7Y6U4OHDUwZ49nFHcrBlgjVsDnY4KIQcP0o+WKaO0RXaMBfbKgiAIgpWQIwdlP3/4gSMow8O52BAsgwV88rx589C7d+9XBdRLly7FH3/8gRUrVmDUqFFGH8/cSJJYZeh0bHisVImFJCYnLo6ZtmnTmHH84w9G3KyBlC2lltR71Gr5wdSrx0E+WSQ2lo2tISEsBkjsENbAwaE3WpZqgoVPu2F/WH389+Hn8J43Fm65bUCzK5vkz0/V6IkTObIh3dlQ//3HH87OncCnnwIzZ5okojFypGkbyG0WC1VHDxw4EAMHDkzzb/v07X7/5+bNmxkeK2fOnNi+fXuW7BDshIsXeW354AOLVvSHh1Ni9+JFBrrfflu9Yh+2zu7dVJIIDFTaEsujl6CuWpVdxevX0x+2bm3ZTqTmzVloffKkfX4OWcYCftkYn/zll1/iyy+/NPocgmAoUVEsasmbl6pLkmNJm/h44OljID/4ft17wffK25uFQH5+fA/t/f1zdqaKxu7dfJ8aNbK+QqW5cykYt2oV0LCh0tbYOdJJLAiCICTF0ZFxpty5gQ0bgOfPmXOw9wWYJciiTw4PD092t6ura5oNRrGxsQgJCcHo0aOTHMIBQUFBOHr0aNZsNjOSJFYZf/5JScM//jDDBuTKFcrvnjoFjB1L6WZrGxqUtKXUkkGmH39kC82RIwZfrJMmhPVJ4ZSS0QEBQPfuDGKwQ7g0EH8ImD4dRSZPBs7/xXNbSyLfjHz2GSUvx4xhkDoVGzawiCBnTmZWmjc3yXl37WJg3MQN5LaJbHwFWyMujkUn5coBJUpY5JQiLa0ubt6kzHHHjoCTHa+a05KgrlsXaNDAMr7R15fziffv53pJuukNRPyyYEfExbHj08mJdb3WlswzJzod446hoewYfvwY8NQCzQHk9QKKFeV1VvY6qXF3Z6J4717gxAkWKlnLmmzzZhY7jxlDVTJBYcQnC4IgCCnRaBhsSJoo7t5dFrLmJos+uUiRIsnu1qtUpuTx48dISEh4pbClx9fXF5dUOofajsNd6iM+nirKTZqwQ8Nk6HRsvxg6FChYkGWw1tqGkbSldODADFpKTciLF0yqv/UWUKdOmg8xJiEcEMBAZ7qS0U5OTIa3asWkfrVqwLx5QN++1rMjNQNubsCUKcCHH3KU9quv8PPn/C78+CPnVS9darL2Jn0Ded262Wogtx9k4yvYGsePs6W3WzeLnE6kpdWFTscagYIFgcqVlbZGeZJKUB86xOXkuXOWk6Bu0oQzRg8eNFkdmO0jflmwE7RaFli9eEH1A2uUBTY1MTGJSeHQUODlS8Yb8+dn8VnBnACOAhUrAMirtLXqxsuL67Jjx6gsUqmS0hZlTkgI0LUrlWimTFHaGgGA+GRBEAQhfZo143zDlSsZg+rbV4JB5iSLPvnOnTvwTDKH0pbGFEqSWEWsXAn8/Tfl6E0WaAsNpTTzH39QK/eLL4BcuUx0cIXQt5R+/jmwbp35z7dgAXD/Pmcig1XqFy4kJoRDQthknF5CuGrVLM4wrFULOH0aGDaMg4S2buWcAj8/074+K6J7dzaQDx/ObiLNgf2889kz/nC6dTNplHrNGuDMGQbC7Tg/bziy8RVsieho4MABXsjz5zfrqURaWp1cuADcu0cFKPEBiTg7M2FbtSqLGiwlQe3hwaKtQ4eAmjWBPHnMdy6bQfyyYCecPcttb4MGjK/ZI1otEBbGpPCDB8DTp7w/d26uLfz8gHz5kjSmPFXMVKukSBEgMpJrAw8Pvqdq5e5d4M03AX9/irDJpV0liE8WBEEQMqJmTS4ylixh8HvgQP6/YHqy6JM9PT2TJYnTI1++fHB0dERoaGiy+0NDQ+Gn0ryOJIlVQlQUm0ffe4/xaJPw22/ARx/xi/z779wp2AIpW0pr1TLbqeLuP4bD1Om41LA/Fs0r82qGcExM8oTw++9nMyGcHu7udA5vvMHX6+/PRHG7diY8ifXg6AjMmcOupd87rkK73z5kNOiHH4BixUx6rhcvWIfw1lsMSgsGIBtfwZbYt4+tpI0bm+0UKaWlO3TgZV4SksoTF8cZhOXLm9y92AxeXpaXoK5bl8V5u3fTPwuZIH5ZsAOuXgWuXQNee83+CqyiopJ3C8fHcz3h68viHV9fTuIRTEP58kBEBGWn3dyYdFcbkZEM+zg7Mxwkn7+KEJ8sCIIgZEb58mwWW7AAmD0b+PRTszct2CVm9skuLi4ICAjA7t270b59ewCAVqvF7t27MXDgQKOOZSkkSawSvviClb/TppngYJGR7Lb97jvuEL79FvDxMcGBVYS+pXTYsP+3lGY/oh4Xxy6ukycTO4TfPzUV3ROApnvHIX8oZwebLSGcEW3asGy5d28OqOzVi6/fDiuKWhS8gKBckRj5ax28PmMOnId/ZpZZDQsXJmsgFwTBnnjyhBHApk3Npr4h0tLqJjiYgeD331faEnVjaQlqFxf+LH//nWMnChc27fEFQbAu7t+n6k/ZspaZQqQ08fHAo0eJSeGICF5nvbx4zfXzA/LmlWIzc6HRMA4QFUV/16yZukTaEhJYvHX9Ou1TaaOKIAiCIAgZUaQIMHIk8NVXTBR/8om6JUyENBkyZAh69OiBGjVqoFatWpg/fz6ioqLQs2dPpU1LE0kSq4AHDxKLQ4oXz+bBjh6l5G5oKLB8OTuJbXGX6OjIN611a2DLFqBtW6OenlZCOGmHcIUKQOuy1zHg1Ne423cSbnyR33IJ4fTInx/YvBlYsQIYNAjYu5dzeNOZk2xzaLXAV19BM3o05hRqg9eiNuK7PEPRz/T5YTx5AkyfDvTrB5QpY/rj2yxSHS3YCjt3sgindm2THzo8HNi+neMlRFpanURFMeFZowbg7a20NdZBUgnqbdsSJahbtTL9e1i1Kjvwd+4UKfBMEb8s2DDPnvFaULAgZ+zaIjod1w16CenHj7klcnNjArByZdaCu7goban94OhIVYs9e7hWaNpUPe//iBGcMrZ1K5VpBJUhPlkQBEEwlHz56NgXLWJnYb9+TFYIpsECPrlz58549OgRxo8fjwcPHqBatWrYtm0bfFUaAJQksQqYNIkbizFjsnGQuDhg8mRmtmrWZAS6dGmT2ahKWrYEgoJYXfP664BT2l9nfUI4JCQxKZwyIRwQwNx6jRpJOoQ7jwH8fFBs3iDAzbIvLV00GnYRN27M9qb69fnFGT/efNqOauDuXUaCd+8GPvsM1WbMwPt9NZgwAeja1fQN1VOmMAAzfrxpj2vzyMZXsAVu3QL++Qfo2NGk19WEBNZxHTgAuLqKtLSa2b+f/zZqpKwd1oiXF/Duu8CVK0wWL1lieglqBwegRQvWyV26JHvlDBG/LNgoL18yQZcrF1UFbMmXxsSw3lsvI/3yJROT+fMzGe7ry72PLb1ma8PVldvw3bu5tmvQQPnL57JlwLx5VMNq3VpZW4R0EJ8sCIIgGIOHB8dsLl9OB//BB2YduWlXWMgnDxw4ULXy0imRJLHCXLoEfPMNm2Lz5s3iQS5fZobz9GlgwgQmDdNJmNoUGg3fuIAASmr365csIaxPChuUEE5JcDCwYQOwciVLtdVGqVLMNMycySqDbdsYLS1XTmnLTM+6dUD//vygdu5kYQCYyF2/Hpg7l2+Bqbh+nXMVJ06UsQ9GIxtfwdrRallkVbCgSVswbtwA/vyTYyUCA1nn4+pqssMLJuTxY64dmjVTp/u3BjQaLkdKlkwuQd2yJaWpTZHYKFWKtZC7dlFm1gxTJ2wD8cuCDRIfz+uKTgfUq2f9216tlusDfbfw06e839OTiiN+fmwmkeucuvDwYBHUgQMMw7z2mnKJ+507gY8/BgYO5E1QKeKTBUEQBGNxdQUGDABWr+ZY0fDwV3FxIRuIT06FlW+prJ9Royg1//HHWXiyTscWjWHDOJTtyBG7qiiJiwMuaqrDvXY3+A6ZgHbfdsXRCx5pJoQDAoBq1QycIazT8T2tUkXdwwidnICxY6nl2K0bUL06MGcOnYctlJY/e8Yfxtq1QOfOzNx6eb36c9GiHL09dy7Qty9zOqZgzBjKtn32mWmOZ1doNMY5Tlv4ngq2xcWLwH//sULTBIvA58+BHTsoLV2sGNCpk0hLq51duxiYDwxU2hLrJ6UE9YYNTO62bm0aCermzYGlS5nUl88rHcQvCzaGTgecOEH/2qSJ9RbzREUldgo/fMh9rYsL1wilSjExnDOn0lYKmeHjwzjDyZNMGpcta3kb/v6bo0tatAC+/NLy5xeMQHyyIAiCkBUcHYEePYDcuYGff+ZCuEMHu0hcmg3xyamQJLGCHDwI/PYbc2BGdxQ9eAB8+CHw11/UpZ8718AMqHWSskM4JAQ4e5YdwsU0U3EZGzAobi46zJ5kXEI4LX7/na0v27ZZR8l2jRrAqVPA8OEsHd66lXOLCxRQ2rKss3cvHWB4ODuk33svzQvyqFFsIp8wgR352UXfQL5ihfUGnRRFKrEEayYujhnCcuWAEiWydSiRlrZObt6kOEvHjtbfmaYm0pKgrlOH8pzZmePo48P13v79rOuThEoaiF8WbIwLFziFpm7dbKhwKUB8PPDoUWJiOCKCawIvLyYW/fz4emSdYH2UKMHP8+xZyp+bqnDZEB4+BN54g8XT69bJ2kX1iE8WBEEQsopGw8BS7twMXD9/DnTvLs4/q4hPToV8kxRC36xaowabJI1i82agd29eCLZuBdq0MYuNSpFRQtjBgVKFNWpwFi0TwkXhOnkQ2i+aC3Tql73kaFwcZxw3b05dRGvBzQ1YvJi7xA8/ZDbim2/oQKyJmBjg8885UKlRI+D777nrTYc8eYBx4zii4bPPgEqVsn5qnY55dn9/+lkhC4iTFayZ4GAWpmRTQeL6ddZvibS0daHTseu7UCGgcmWlrbE90pKgPn8++xLUTZowaXTwILuohBSIXxZsiJs3OaqpShVeq9WMTsclhV5C+vFjykq7ubFbuHJlFrpkp1BGUA/+/kBkJHDsGP2SJQoYXr4E2rcHoqNZX+3paf5zCtlEfLIgCIKQXZo2pdNfuZJVan37AjlyKG2V9SE+ORWSJFaIn38Gjh/ngt7g71lEBDBoEC8E7doxCWjlQ1Pj4iiRdPKkoQnhdDqER4+mNv+ECRzonlW++46tLuvWZf0YStK6NaOuffqwFapnT+Crr6h/pXbOn+cHffkyZbMHDzbox9G/P7BgAXP7W7dm/fS//84gs7U0kKsScbKCtRIVxQtAjRoc/JcFUkpLv/MOA8CCdXD+PHD/PpXGpZPLfJhagtrDgzNJDx4Eata0rs5CiyB+WbARHj3ifrFECWUkfQ0hJoadnfrE8MuX3FPkz8/Etq8vr1niY2wPjYZTv/btYxFUs2bmVbfQ6VgXfvo01TSKFTPfuQQTIj5ZEARBMAU1anBR+fXXbLIaOFCqxYxFfHIqJEmsADExzGm+8QY7jAzi8GF2Nz18SH3dDz+0uh2mPiEcEpKYFE6ZEA4IMCAhnBZJW0oHDcpaS2lEBJPM77/Pk1sr+fIBmzYBq1YBn37K3erq1UDOekpbljZaLQcojRnDqM+JE4ykGIiLCzBjBjvy9+5l8NlY4uOZZA4Kkk6kbCFOVrBW9u9nxM1gp5xISmnpjh3ZIWRlLtquiYsDdu/mOkQCrZbBy4uTJC5fzr4EdZ06XFPu3s25jEISxC8LNkBEBHDkCJOtr72mHv+q1VI15MEDykiHhfF+T08KIfn5cVsmxaf2gZMTi5Z276ZiRpMm5lOAnDQJ+OknFlrVqmWecwhmQHyyIAiCYCrKlaNE7YIFwOzZzIVYeSOhRRGfnApJEivA0qWUy9qyxYAHx8ZyFzBzJnUrd+5ky4XKMTQh/N57LIDJ1gxhPfqW0lGjDHxzUzBnDlvBpk7NpiEqQKNhF3GjRtRObtgQBT8YBWdMAKAiXbM7dzh7eO9eJvinTcuSTEanTsAXX1Au+vhx46/d337LBvKfflJP4MkqEScrWCOPH7M4pWlTox2RSEvbBsHBlIkMClLaEvtDL0F9+DCD6ufOAa1aGSdB7eLCYPzvvwO1awOFC5vXZqtC/LJg5cTG8trg6sqCEKW/otHRiZ3CDx9yz+vszC7hkiWZGJb56PZLzpxA/frc2gYHc3a2qfeWa9YwPDRtGvfAghUhPlkQBEEwJUWKsONpwQJg1iw2imUwslFIgvjkVEiS2MI8ewZMngz06gVUrJjJg//5B+jWjRGzSZOY/FThQPKkCWF9UlifENZogAoVEhPC+g7hXLnMYEjSltJ9+4zrCLt3j1nGzz7jRdZWKFmSHXKzZsF3/AQcxTbk+PdH4LUKSlsGrF0LDBhAiYzdu5mgySIaDTB3LtCwIZXC33vP8OfqG8i7dQOqV8+yCQIgTlawTnbt4nWodm2Dn/L8ObB9O920SEtbN0mVxrMidyxkH2dnLtmqVOHvKisS1FWrMiC/Ywdr5JIG5aNi4nHzSRRi47VwcXJAcW93uLuqbz1tFsQvC1aMVssO4thYyvcqMb83Pp5S16GhTAxHRPB+b28KIPn6UhlBikwFPXnysHDw8GGOsjBCICtTDh+moFyPHlSmE6wM8cmCIAiCqcmXDxgxAli4kIHxfv0MSDglYrd7ZfHJqbCDT93yZPQDmzGD84kmTcrgADodsHgx2yKLFaOOZY0aljE+E1ImhPUdwi9fWjghnB5JW0qDgw3/EU+YwNJfW9xtOToCY8bgUrGWcOvWDeW6vgbcm82ZBUpENJ4+ZXJ43Trg3Xf5XTfBEMEGDTiqe8wY4K23DO/mmzvXdhrIFUecrKBCMlz03rzJTO9bbzFTlQnx8XTJBw+KtLStsG8fP79GjZS2RPDy4rJAL0H99dfswjJEgtrBgeMiVq/mT9rZOwJrgm9j7+WHuB0WDV2Sx2oAFPVyQ5NyPugaWBRlfD3M+bKURfyyoDIMDUTpdNxnPnnC67Ol9pM6HRAenigh/egRk9U5c7JLuHJlFoUpkbAWrIeCBRkHOXOG392SJbN/zBs3gPbtWdO4fLmsPa0S8cmCyrDb5JAg2Bq5clGdc/lyJos/+IAVa+lwNVT2yuKTUyNXfxNhyA+sRiEfLF1dFMOGeaBAgXQOdO8ey0O3b2cibc4cwM3NAq8gNfqE8M3fgHZgxeqGa6kTwu++q1BCOC2StpSuX0/jMuPiRWDFCg57z53b/DYqxIsKAaiPENxsPxI+n34KbN0KrFzJXayl2L2bzioigp3Ehnw+RjBzJoM3ixYBQ4dm/vh79/h1+ewzUeQQBFvCsEVvfnS9fRxlChbkhSMTRFra9nj8mEmIoCDFllpCGqQlQd2yJdedGQXFS5YEvIpGo9/687gd+xiODhokaHWpHqcDcCssGquDb2HV0ZtoUDofpnfwRxEv+RIIgjnISiDq8mXWcdWqxQYJcxIbm9gpHBoKvHjBOJCPD+Dvz+Swh4ck5QTjKF2aW95TpzjNxNc368d69gxo04Zdyr/8IkUKgiBkHUkOCYKN4urKPNLq1cxxhIcDzZsne8idsGiM2XweB6/JXllIjSSJs4kxP7BbT24hf4+buFIoH+6EpfED27QJ6NOHq/4//6TOnoXIqEP4NTBJXLQoMPMjFSWE0yNpS2nHjplH8UeOBEqU4ExjG+cF3HB3xEL49HyDeoz+/sCyZcDbb5v3xC9f8vP48kvKSq9aZRZZ7/Llgd692RXcsye7kjJi4kR2BowaZXJT7BOpxBIUxqhF77FbWKXzRYNC7pj+7GW6i16RlrZddu1ibVitWkpbIqREL0FdtSq7in/+OXMJ6nUnbmPR9YuITeDvPq3ff1L0fz9y4wmCvtyPSW0roUtNG6sYE78sKEhWA1Gf1PHHrYtuqFCBftfUaLUs+NInhsPCeL+nJ7cnfn5MTDs6mv7cgv2g0TBmEhlJFZqmTfkdM5a4OIqlhYYCx47JaAyrRnyyoCCSHBIEO8DRkR1+efIAGzcymNWxI+DggHUnbmPC7xcRr5W9MgDxyWkgSeJsYOwPDBr+/fitFD+w8HAOF//+e6BDB8oDmLFkOj6eCeGTJ9OWjC5fPnmH8GsA0ACYMgX//x8rQN9SungxJRfSY+9e4I8/OADPnkpyW7bkkKS+fbnr7NGDg+6zsnPNjLNnOfD36lV2aw8aZNaL68SJwI8/AtOns0s4PS5eBL77jiblyWM2c+wLjca4z1ZaMgQTYvSi9/9/PnI/Os1Fr0hL2zY3b7JT7a23ACdZDauWvHm5Hr1yhZ386UlQL9p7FXN3XMnSORK0OiRodRj1y3k8jozBwCZlTGS9ChC/LChElgNR15/g6PX9+LBqJbxdyXSBqOhoJoQfPAAePmTizdmZ3Z0lS/JfUZQQTI2DA1CnDrBnD5UxmjUzToVGpwM++YSjMXbu5BxswYoRnywohCSHBMGO0Gg4nyJ3biqsPn+ORcXqY+7ua1k6nM3ulcUnp0LCYlnEZMGoC1cwcHJvah6uXMlknQm/ePqEcEhIYlI4rYRwly4ce5xmh/Apk5ljOVK2lKY181ar5eziwEDzd9KqEW9vtub88AN3n/v3878bNDDN8RMSmIEdO5afx8mTBkm6ZhdfX2DECH70H3/MJvG0GDkSKF7cLhrILYdUYgkKYeoE0bVrTEg9fcrZb40aibS0LaHTATt2AIUKAZUqKW2NYAhly9KfHz7MW1IJ6vUnb2f595+SuTuuIH8uV3S2lUCY+GVBAbLlk3U6ADosP3Menj5ZD0QlJHCesD4xHBHB+729gTJl2C3s5WUX8R5BYZydgfr1OXXpyBFOxTK0S/3LLyn6tWIF1TUEK0d8sqAAUkgpCHZKkyaApyfWrd6BudeyliBOiU3tlcUnp0KSxFlg3Yn0g1G6+Dg8O/gjoi7uhfZlJJzzF0eehu8jZ4nqaT5+7pUY5H+tNTrPGcYy5mxgkoSwLTFxIrX4p0/nbOeUrFvHN+ngQfuNEGg0LExo2BDo3p2ZkJEjgUmTstdZfesWj3vgADBsGNvQLZhhGTIEWLKE+ek1a1L/Xd9Avn69fTWQmx1xsoICmNQn77iCm5dc4fGwKIoXBzp3FmlpW+T8eeD+fdaQ2av7t0bSkqDOWzgai29eTPPxsY9u4fmhtYh9cA0JUc+gcXaFs3cReAZ2hFuZwHTPM/73i6hbKp9tSOuJXxYsjKl9sqGBKJ2O4lz6ucKPHrEeOGdOJoQrV6Y/l3W/oATu7kC9euwIPnmSYy4yW3/8/ju30SNHcr0i2ADikwULo5RPFgRBHdwpUQETcoUC8dpUC4+Y+1cQdX43Xt4+j/jnoXDI6QnXguWQp+H7cPYqlO4xbWavLD45Fbb/Ck3MnbBoTPg97WAUADz+40uEn/gV7hUbI29QH2gcHPDw54l4eSe95+gwvuKbuJPHzyg74uPZRbFyJTBwIDudPDwYOOvVi0mwMmWAGTOYpwsPZwJ59Wrgs89YzWrTCWIgsaV0wQLqSiZFPyO3fXu+GfZOiRLctU6fDnzxBb9Qf/9t/HF0Omo9V6kC3LhBba3Zsy3egufuDkyeDKxdy414UvQN5LVqUWlbMCF6J2vMTRCygel9MrD59kXUaxmN7t0lQWyLxMWxm6dCBaCoxDisEr0E9bvvAhtvn0dsfNqSeQnhD6GNfQF3/2bIG9Qbuet2BgA82jQFEWe2pXv8eK0OYzafN4vtFkf8smBBzOGTx/9+EXfCotP8W2wscOcOcOIEiz937AAuXODf/P2pNtCmDYujCxeWBLGgLN7e3H/evg3880/Gjz19mj6uQwduzwUbQXyyYEEs7ZMFQVAfYzafR7wOaVamhR/biOjLR5CjWFXkDeqDXFVb4uWdC7i/chBiH91M95g2s1cWn5wK6SQ2kjGbz7+a45CSmHuXEf3PAeRp8iFyB3YEAOSq3BT3vv0Yz/athN/7aQ1I1bz6ga3ulXZXQ9IOYf3tzJm0O4QDAtgh7OFhmtdr9QwdypbSzz9P3lK6eDFw9y6wfbtytqkNR0dg1ChGVLp25Zdp1ixWIRhyMQwLo3bzhg18/qJFig77/eADSnQNH85ctd4nrl/P39CBA9JBZnKkEkuwMKb3yQAcdPj+4nkE1U6/01CwXo4dAyIjgaAgpS0RsosmdwRuxz5O9+85S9VEzlI1k93nEfAG7q/6DOHHf4VHtVZpPi9Bq8PBa49x7WEESvtY+YJa/LJgQczhk5Puk7VajoHQS0iHhfExnp5AkSKsD86f33ApX0GwNEWKUPr84kXGa4oUSf2Y//4D3nwTqFiRBf5yWbYhxCcLFsTcPlkQBHVzNTQCB6+lv1f2qNkB+doOh8bR+dV97hUa4N53AxF+bCPyvTkszefZzF5ZfHIqJElsBJn9wKIvHwY0DsmCThonF+Sq2hzP9v+A+PBHcPLMn+p5SX9gxb08UiWEz54FXrxgQqtcOVZDd+4sCWGD0LeU9ulDDeKAAEYUpk7lfeXKKW2h+qhenV+8UaOAQYOArVvZsl4ofbkJ7NrFrGxUFGW8O3e2mLnp4eTEJuY33gD+/JOdBDExbCBv1850o5eFJIiTFSyIJXyyVS96hVRERQGHDgE1a3IWpWDdrAm+DUcHDRLSCYClhcbBEU4e+RDz4GqGj3N00ODHY7cxsa2VD60WvyxYCHP75I07IuAU7YG4OErP+/pyUpOvL+Bm5Wp3gn1RoQITxceP87vr7Z34t6goJog1GspNy3fbxhCfLFgI2ScLgpDZXjlH4Qqp7nP2KgSXfEUR9/hOhse2ib2y+ORU2P4rNCH6H1h6xIbegLNXITi4Jl/NuxQo++rv6aHRadB26G14eiZKRu/eDZQuTYmhAweA588pTaSXjG7QQBLEBtGzJ0txhw+nHPL06WzPnjBBacvUS86cwFdfUbft4kVqtm3YkPpxL17wy9i8OVvaz59XRYJYz+uvA02aUHU8Pp7NzXfuADNnKm2ZjWIhuY7FixejePHiyJEjBwIDA3H8+PEMH//zzz+jfPnyyJEjB/z9/fHnn38m+7tOp8P48eNRoEAB5MyZE0FBQbh6NeMEgqA85vTJ+kWvYFvs28fLTsOGSlsimIK9lx8alCDWxr5EQvRzxD29j/Djv+LFjRDkKFY1w+ckaHXYe+WhqUxVDgv4ZVP7ZME6MadPdoAGf127jTJlgKZNWexZpw6n5UgSTbA2NBoW/Xt5AYcPMzEMAAkJFOO6epU12gUKKGunYAZU6JMF20T2yYIgGLpXTopOp0NC9DM4uHlm+Dib2CuL3HQqbP8VmpDMfmAJkWFwzJU31f2Oubxe/T09dBodtL4PJSFsDvQtpXv3AitWAAsXMmvo66u0ZeqneXMmfoOCmPx9/31+OQFqnteoASxdCsyfz4Ry4cJKWpsKjQaYM4dy7YsXs4G8d2/mswUzYAEnu379egwZMgQTJkzAqVOnULVqVbRs2RIPH6a9QDly5Ajeffdd9OrVC6dPn0b79u3Rvn17XNAPrQMwe/ZsLFiwAEuXLkVwcDDc3d3RsmVLvHz5MstvhWB+zOmTbWLRKyTj0SOKZDRoIEkFWyAyJh63DZyJ9nTPt7i7oCvuLeuNp3tXwK1sHXi16J/p824/iUZUTHx2TVUWM/tlc/hkwToxp0/WQodr0Q9RqRK7LmVcjGDtODoCdesyTHHoEBAXRxGvLVsoylU14zomwVpRmU8WbBfZJwuCfWPMXjkpURf3ISHiCdzLZy69afV7ZUkSp8L2X6GJMOQHpouPBZJouevROLkk/j0DYpyj0bt/vCSEzcHrrwONG1Ny2suL/wqG4eXFQb4//EDdqypVgL59gVq1ABcXRt0HDVLtBTMgAHjvPY6ljo0FJk5U2iIbxgJOdt68eejduzd69uyJihUrYunSpXBzc8OKFSvSfPxXX32FVq1aYfjw4ahQoQKmTJmC1157DYsWLQLASrn58+dj7NixaNeuHapUqYIffvgB9+7dw6+//pqdd0MwI5bwyVa/6BWSsWsXkDs3XZdgHDodoNWyyyk+nsHs2FiOcHj5kqIi0dHshoqMpIxmeDhryp494wzRsDDgyRPg8WMm7B8+BEJDOVf0/n3g3j3OYbx7l4oft28Dt24BN28C//4L3LgBXL8OXLvGLquDp6JgaF20Z8128OkyFd5tBiNnyQDodFogIS7z1w3g5pOobLxzKsDMftnUPlmwTsQnC4LxuLoC9evTh/78MzBvHm9t2ihtmWA2VOaTBdtEfLIgCLeeGL5X1hP35A7Cdi6Ba6HycPdvlunjrX6vLEniVMhMYgMx5AemcXJJM+ikd7B6h5se+h9YpYK5s2ilkC4aDWWn9+0D2rfnrGLBcDQadhGXKMGd6/LlQGAgu4c9M5ahUAP9+gFr11J6WhrI1Ud4eHiy/3d1dYWrq2uqx8XGxiIkJASjR49+dZ+DgwOCgoJw9OjRNI999OhRDElRFNKyZctXCeB///0XDx48QFBQ0Ku/586dG4GBgTh69Ci6dOmS1ZclmBFL+eSN26NQ1CM3dDpY9S3/HaAbWOsTult5eyx9c3cHypVjkrF9e+XtUeJWJT9wsCtQrz5wJtTw56kVlwJaFOhh2GOdvYvA2bsIACCXfzOErhuHhxsnw6/7PGgyaUmMjddm11SrxBC/bA6fLFgnsk8WhKzh6QnkyMFE8RdfAJ98orRFghoxl08WbBPxyYIgGLuHTYh8ioc/T4KDqzvytR8NjYOjWc4jqBtJEhuIIV98x1xeSIh4kup+vVSHXroju+cRsoBOB6xcyTainTvZ7iKJYsPR6ah9PnAgkDcv8O67lO5u2BBYswaopO5h9UuX8uM+fpydS5IoNg86aKCD4RqA+scWKVIk2f0TJkzAxDRavh8/foyEhAT4pvgAfX19cenSpTTP8eDBgzQf/+DBg1d/19+X3mME9WEpn9ynnxax9423zxJoNIbfqmmZJP72W+Cck3HPtYVb4cLscH32jBKPStujxM1XCyAKGNAfeOSsvD3Zvd2OcMD4I1n77biVr4ewbYsQH/YfnL0zHpPh4mTdFcPm9Mvm8MmCdSL7ZEHIGv/8A3TpAvTowa7i69eBMmWUtkowF2rzyYJtIj5ZEARj9rDal1EI3TAB2pdR8O02C04e3mY5j9rIqk+2ZSRJbCCGfPFdfEoi/NY5aGOi4eCaOPAu9t4V/t23ZKbH+HmdAyJqA9Wri+S0SfnzT3YRf/cd0L8/tZzGjVPaKuvgyRO24m7cyG7ihQuZbO/XD+jWjXrOM2cCn36qSvmFkyfZRTx/PjBpEuWmlyxR2irbRKvlzZjHA8CdO3fgmaQjPa0uYkFIiqV88q+/OKBMPuUTYilvRnMKQABw4ACA17LwfCvm7Fng118pJlK0qNLWKMg9AMuArl0BFFTamOwTFeOOCUdgtIwWAOjiYgAA2piM5bE0AIp7W3dBofhlwRJYyidbcyBKEFLy+DHwxhssZJs8meMVzpxhYXNBG/DTQmrEJwuWQHyyIAjFvd2hQeZ7ZV18LB5unIz4p//Bt8tUuOQzPGBi7XvlrPpkW0au6gai/4FlhFv5eoBOi4gz217dp4uPQ+T5nXApWA5OnvkzPoAO+GqaOxo1Yg6ufHnm4L78koHdiIjsvw67JD4eGDECaNKEUeJPPgFmz2ZLqZAxO3YA/v7A7t3Ahg3UKs39f0mZatWYge3fHxg8GGjRgsMEVYROBwwfDlSsCHz8MecSf/MNIMW05kHvZI25AYCnp2eyW3ob33z58sHR0RGhKX67oaGh8PPzS/M5fn5+GT5e/68xxxSUxxI+WQOgYXV3lC4NlCoFlCxJxf3ixYFixZhwLFKEwb1ChRjQK1AA8POjWoGPD5A/P5AvH+DtzfHuefMCefLwMurpyWKwXLkYEHRzA3LmpOygqytHvjs7A05O7H51cMhigtiOiYsD9uwBKlSw8wSxDeLu6oSiXm4ZPiYh6lmq+3QJ8Yi6sAcaJ1c4Z7IJLurtBndX666nNadfNodPFqwTi/hknQ7Fl30FHD3KvZ0gWDExMUCHDlQ52bqV68IqVbiWPHaMyieC7aE2nyzYJpbaJ1tzckgQbB1D9so6bQIe/ToLMfcuIX/7UXAtVMGoc1j7XjmrPtmWkSSxgRjyA3MtWA5u5evj2f7v8XTvCkSc2YbQn8Yg/vlD5G3cM9NzFMvnhudPnHDuHJV8mzcHbtxgYkufOK5QQRLHRrNyJfD338CcOYywjxnDqPukSUpbpl5evGBncMuWQOXKwPnzQKdOqR+XIwe/jDt3MvPq7w+sW2d5e9NB30A+ezY/8oEDmdQZNUppy2wTcztZFxcXBAQEYPfu3UnOqcXu3btRp06dNJ9Tp06dZI8HgJ07d756fIkSJeDn55fsMeHh4QgODk73mILyWMInW/uiV2CgNTISSDJyXLAhmpTzgaND+mGwJ9sWIfSnMXh2aC0izm7Hs8PrcG/FQMSGXkeeht3g4JIz3ec6OmjQpKyPOcy2KOb0y+bwyYJ1YhGfHBcB94Xzgbp1WYHVqRNnKNy5Y6JXIQiWQacDPvoIOHEC+O03Fh8CDFMEBrKA8NAhbscF20JtPlmwTWSfLAgCkPle+eme7/DiWjBylgxAwotIRF7Ym+yWEbawV5YkcWrkqm4ETcr5YHXwLSRo02/Yz/fGEDw78COiLuxFwstIuPgUh8/b45GjaOUMj63/gTk5Mc/m7w988AH/Fh/PeTUhIYm3TZuAly+5mShXjoq/+ptIVSchKgoYPx547z2+OQDbucaOBUaOZCK0fHllbVQbp06xEuHff4EFC9iCm5mMdFAQcO4cMGAA5xVv2QIsXsyWOYXQN5A3bgy8/jrvc3UFpk/n1+HgQaBBA8XMs0ksIdcxZMgQ9OjRAzVq1ECtWrUwf/58REVFoWdPbma6d++OQoUKYcaMGQCAQYMGoVGjRvjiiy/Qpk0brFu3DidPnsTy5csBABqNBp999hmmTp2KMmXKoESJEhg3bhwKFiyI9u3bG2+gYDEs4ZMF6yUykkHWmjXp9gXbo2tgUaw6ejPdv7tXaIDIczsRcfpPaF9EwMElJ1z8SiNv455wKxOY4bETtDp0q2397efm9sum9smC9WJ2n9yoCjD7ETNr27YB27cDffvyS1uxIgtbW7YEGjakLIcgqJSpU4Eff2Rdde3ayf/m5MTZxLt3A4cPcx/rJBE7m0FpnyzYD7JPFgQhs71ybOgNAMCLa8fx4trxVH/PVblJus+1hb2yyE2nRpacRpDZDwwANE4uyNv0Q+Rt+qFRx87oB2ZI4vjkSUkcp8kXXwBhYcC0acnv//hjztYdPRrYvFkZ29RGQgJbbseP55ctJIRBF0Px8gJ++gl4802+vwcPAt9/T5lvBVi1ig3kP/yQXKK1c2d+LYYNY5eZyLeaDks42c6dO+PRo0cYP348Hjx4gGrVqmHbtm3w9fUFANy+fRsOSYoa6tati7Vr12Ls2LEYM2YMypQpg19//RWVKydufkaMGIGoqCj06dMHz549Q/369bFt2zbkyJHDeAMFi2F2nxxo3Ytee2ffPtY3NWqktCWCudA990BRl3y4E/sEujQmLrlXbAT3isZ/ARwdNKhb0hulfax/4Wxuv2wOnyxYJxbZJzs6MqtWuzYwcSL3eLt3M2H8889UN8qRg4lifdK4YkVZ7AuqYd06brUnT+aeNC1y5gTq1QP27gWOHwfq1JGvsK2gtE8W7AelYteCIKiHMr4eaFA6H47ceJJmwYhf15lZOq6t7JUlSZwaSRIbQWY/sKziqE1A3SKeRv3AMkscnzyZccdxjRpMHOfKZbKXoT5CQ5n0/PTTRB0nPTlysKW0a1dpKQXYNdy9O0uWR41i4MXFxfjjaDR8Txs0AHr0AJo1A4YOZcl0OnNmzUFaDeR6HByoPN60KeNJ77xjMbNsHks52YEDB2LgwIFp/m3fvn2p7uvUqRM6pSWX/n80Gg0mT56MyZMnZ80gQRHM5pN1WtS9eQalO8+hIkKlSiY7tmAZHj2iKEbz5tJQZos8fcpGwitXgLeL+WPxv/sRE2+6a4CTgwbTO/ib7HhKYgm/bGqfLFgnZvPJGQWivLwoO92pEzV8//knscv488+5BylcODFhHBQE5M1rMtsEwRiOHmXcpls3ipplRN68rIU4fJhTn6pUsYiJgplR2icL9oMiPlkQBNUxvYM/mn6xH/E6nckKzmxlryxJ4tTITGIjmd7BH04ZaLpnBSdtAqZP/5Czc3VZd+D6xPEHHwCLFnEjEhFBFeDvvmO+7vp1juRt2BDw9EyccTx/PnOlkZEme1nKo090jhmT9t+7dGEGcfjwbL3vVo1Ox5bbqlWBu3c56Hr69KwliJNStCgr+2fPpmR1rVrc4VqIefOAJ09SN5DradIEaNOGjeQxMRYzy+aRmQ6CpTGLT3Z2wvR3awH37/PaOHQoEB5u0nMI5mXXLiB3bkpNC7ZDXBw7xBcvBh48YJHXJz3dMKmtaQs5JrethCKZzHKzFsQvC5bELD7Z0ECURsOu4SFDmCQOC2PCuFMnborfeQfIl49tmRMn8r6EBJPaKgjp8e+/QLt2XJd8+61hncEFC3IZevkyny9YP+KTBUticp+s08EJWptIDgmCvXBstxsebatkUkUSW9kri09OjSSJjaSIl5mCUS0bAR9+CLz1FltgTIQ+cdyzZ8aJ49Gj008cR0ebzBzLcekS8M03LNNNr2Jc31IaHAxs3GhZ+9TA48fA22/zy/HWW8DZsxyCZCocHKjpfOIEr6Y1ajB7a+Yrq76B/JNPUjeQJ2X2bODmTWDpUrOaY1eIkxUsjdl8cruWdJRTp/IiUb48sHat/RYUWRH//ssO06AgmeNnS1y+DHz9NdeldepwqkWFCgy0d6lZFMNalDXJeYa3KIfONW1HQk/8smBJzOaTsxKIypmT3cPz5gEXLwK3bwPLlrGz+KuvgLp1gfz5mTz+7jsWywqCGXj+HHjjDY7+2rzZOHGtMmWAkiWpEPfwoflsFCyD+GTBkpjcJ2s0mPznIhT5dZ3pjikIgtlYuJCjLd6oUBSDm8peOSXik1MjSeIsYPJgVIOy7CLetImdnP7+wJ9/muT4aZFe4vjs2bQTx3ol5rFjrajjeNQooEgRRhEzImlLaWysZWxTA9u28Uuwbx8T5CtXskLAHFSpwkTxwIHsyAsKAu7cMc+5wOYAJ6f0G8j1VKwI9OrFmVDPnpnNHLtCpzPOwUq+TTAFZksQubrSl/zzD4fDde1Kn3HhgknOJZgenQ7YsYM5gIoVlbZGMAVPnwI//cQ5jt7ewIABXKemFDwZ2KQMZnb0h6ujBo5pzCfOCEcHDVydHDCroz8+blLahNYrj/hlwdKY0id3r2rCQFSRIsBHH3HWzKNHwJEjHEl05w7Qpw//XqkSO5F37ABevDDNeQW7Jj6edQj37gF//MFmdmPQaDgizMeHX9mICPPYKVgG8cmCpTHpPjmoDDrXKckg2rRp8gUVBJWi0zEe/umnDMH/8AMwqPn/98pODnA0UmHAVvfK4pNTI0niLPIqGJWFH5gG6fzAOnakJG/16kxcDhhgsTZeJyfm8tJKHE+YwMfcuZu847hiReD991WYOD54EPjtN8omG1KqO2sWW4+WLDG/bWpg1kygdWvqV50/zy5ic5MjB/DFF5SgvnqVCeq1a01+mqQN5F5emT9+0iTO7J450+Sm2CVSiSUohVl8sp6iRRlU3rGDEtTVqjGILBLUquPcOcoQt2hhmJSjoF6SSkuHhjLI3rUrE8Xp0aVmUewq+Qx1XZjcyexaoP973ZLe2DW4kc1URSdF/LKgBNnxyfpA1Gd1/eHvWBq3bpnBQCen5LLTjx4B69dzCOyGDexA9vICWrUCvvwS+Ptv+4gMCSZFp2OAds8e1mSXL5+14zg48KuZIwdw6JCMSrJmxCcLSmAKnzyroz8+blaWC/MpUxhwGzhQxjYIgsqIi6NI7YwZDMHPmcN1BPD/vfLgRqhbkhtqe98ri09OjSSJs0FWf2Axt7yxtms6P7ACBdhFvGgRuzurV2cXpgLoE8dt2/L/v1+VvOO4aVPg2jWVJY51Okoc16hBXQVDqFSJV9EpU2y7pfSfv/nvr79Rd+KvvzjsyJI0bcoo/uuvM9r77rtsEzIR+gbygQMNe3yBAvy6zJ9PFTpBEKyXrPrkAhpvLHrdgEVv8+aJEtTLlgHlygFr1kjgWCXExbEOqWJF+gHBetFLSx86xDzOgAGJ0tIZcv06ity6jNWdK2HnZw3xfmAxFPN2Q8qnaQAU83bD+4HFsGtwQ6zuFWgTc5UEQU1kNxA16I2iKF4cOHmSE3LMipdXouz0nTtUDNF3SY0ezb1isWKJncgm3LsItsuCBaxBX7KEChjZwcWFU6FiY9lRLHkZQRCMwWTJIY2GCeJvvuFIpnfeYdeFIAiKExUFtGvHENWaNexrSEkRLzes7hUoe2UhTWRaWzbR/8CuhkZgTfBt7L3yELefRCcTutMAKOrthiZlfdC2YlG0qO2BZbmA5cvTOahGQ5nkZs04HLhuXWD8eG5SFR6wp08c67uOAcoo/f03Z+WEhHAzv3Ej1woaDatmAwISb9WrA7lymcnAn38Gjh8H9u5NLJcxhEmT2Nk6c6bttZXGx7NbesJvAI7zdb5VQjl78ualDW++CfTvzy/T998zgZwN9A3ka9YYN+tp2DCub8eOpQyHkHWMra6yh0oswbIY65O71S6KkL0euBgMNK4BODtncgK9BHXXrlx1d+tGZ754MVC5shlfmZAZR49yY5TdQKygHGFhnIZx9SpQqhR/Xhl1DidDqwW2b2fnf4UKKKPRYGLbSpiISoiKicfNJ1GIjdfCxckBxb3d4e5qH1sg8cuCkmTFJ5f28Xj1t4AAXtcPH+a13Wz7x6RoNEwK66Wno6M5Dmr7dt6++457zMBAdhy3bAnUrAk4OlrAOMFa2LoVGDwYGD6ctQWmIFcuTj/Zv58xl5o1RTXF2hCfLChJdn1yMj76CPD1ZWNOy5YMxOXJY4FXIQhCWjx+TEHav/9m32FQUMaPL+PrYfd7ZfHJqbH9T91CGPMDGzeOe85Bg7j/TJfy5VkqOnky5bD++gtYvZqRMxWRVuI4Lo5jHPVJ45CQ9BPHNWpQvTPbG/+YGCbS33gDaNzYuOcWLEix/tmz2bJS1EZkFG7cYGv3sWPABwuAFQBKKJggTsq777IkukcPRn4GD6ZEeI4cRh9K30AeEAB06WLccz08WCMwYABNqF7d6NML/0ecrKAWjPHJeYPYtRgczEuSQRQpwqKknTuBTz6hE/v0U/pqc813F9IlMpJJhFq1DBs1IKiLuDh2DR8+zLXgO+9wnWhU8PvsWepS9+6d6onurk6oVDC3aY22EsQvC2ogq4EoBwfWSu/ezWtE06ap55GbHTc3yk63asX/v32b4ye2b6cU9cSJLIANCuJjWrQAChe2sJGCmjh7lvvRdu1MX3ueLx+Tw8HB3MNWqGDa4wvmRXyyoAZMlhx680066DfeABo0YKVnoULmNV4QhFT8+y+XoM+esZDstdeMe7697pXFJ6dG5KbNgP4HVr1oXlQqmDuVk+3fHyhenM1ImeLiQmnLgwcZ/KpaFfj2W9XLWzo7JyaNFy9mjjI8nJumb78FmjRhp8jo0VxPJJWq/uorBgKMlqpeuhS4eZNds1lh+HAgd25m8a0dnQ5YsYLfl/v3WQH/8cdKW5WaIkWAXbs4LGHxYu56z50z+jD6BvKk8xaM4aOPgLJlgREjVP/TUjUy00FQI5n5ZG9vFisdOsSOJaPQS1BPmyYS1Aqybx+v/Q0bKm2JYAw6XaK09OHDTAZ9/LGB0tJJiY1lkKpyZUnOpED8sqA2MvPJKdHL7MbEUDFC8e9o0aKJstOPH/Pi9cknTB737s29TeXKLD7esUNkOO2M+/eZLylXDvjxx6ztSzOjaFHGTS5coDq6YD2ITxbUhrE+ORV16nATHR7O//7nH/MYKghCmpw5wz20VsseQ2MTxPaM+OTUSJJYAVxcOER861YGNg2ibl3++jt35ga0Qwfg0SMzWml69InjDz/MOHE8alTyxHH37gYkjp89Y8d1r158UlbQt5SuXs332lp59Ajo2JHvxTvv8A2uV09pq9LHwYGt9SdPMipcsyYwd67BV+DYWBYbtGnD71BWcHJibcGuXYznCFlDnKxgrTRqxH/378/Ck11cgJEjgUuX6Ly6daOaxfnzpjRRSIdHj4BTp5ggzplTaWsEQwkLA376CVi3joUa/fuzSzBTyfe0OHKEkrCZ6WrZIeKXBVvAw4NbYf31XjV1WE5ONGzSJG5sHz0C1q+nFPX69ZTgzJuX7R3z5zN4rhrjBVMTHQ20bcuPeMsWwN3dfOeqWJH1CMePA0+emO88gmkRnyzYJBUqcC2eJw/jjkeOKG2RINgFe/YwBlK4MGsWVSY6q3rEJ6dGksQK0akTZRGHDzfii+bhwTlImzfzClC5MvDHH2a109yklzg+cyYxcXzlSvLEcaVKaSSOZ8xgpfakSdkzqFevxJZSa+TPPwF/f3ae//ILvy8e6cwRURv+/sCJE5RsHTGCEtS3bmX6tCVLstdArqdtW37Hhg8HEhKydyx7RZysYK24ufH3f/IkG4OyRJEiwIYNlKAODaV2/eDBwPPnJrVVSM7OnYxJ1KyptCWCIcTFAXv3snv44UPWsnXtasTs4ZRERHBNHBjIZIyQDPHLgq2QPz9VP/79l3tDVeLlxYvad9+xxfP8eSqCabXczFasCBQrxoLvjRuBp0+VtlgwEVotFdH++YcJ4oIFzXs+fV113rx0gUYr4QiKID5ZsFkKFaJ6ob8/iza3bFHaIkGwaTZsAFq3Zq3i3r2Aj4/SFlkf4pNTI0lihdBo2Cx58iQLjY2ifXtuOgMCqGfUr59N7QycnamSnF7iuHFjBgdGjmRQv5LHbcTM+QqbSw/DVxsKZE2qOunJZ81i1Hn7dhO+KjMTHc2hum3aUF/i/Hl2m1sbrq7UjN6zB7h+nRUEP/6YbtW9voH8ww8zme9tABoNT33+PPDDD9k7lr0iTlawZgIDWYi0a1c2DxQURAnq6dOBb77hcNUMrmNC1rlxgwokzZqxoUtQLzodm+2zLS2dkj17AEdH0RpPB/HLgi1RvDhd6rlzwH//KW1NJmg0yWWnw8KAv/4C3nqLVc6dOnHArL4TOThYqlStmDFjWMf/00+sEbQEjo5s2nNy4lcqLs4y5xWyjvhkwabJk4cx1NdfZ8z622+VtkgQbJIFC4AuXViX+PvvQK5cSltknYhPTo0kiRWkQQOgXTtuKmJijHyynx+7iL/+mhmt6tWpN2SjpJU4johg4nh3nbGIyZEHC5yHvUoc586duuPY4Dx627YcfjVihHVs1k+c4Oe/ahXfnD/+AAoUUNqq7NG4MSNAb77JsuwuXRhcScHMmWwgnzzZNKcNDKSjHTeOeXfBOMTJCtaMkxPzu5cvU50gW7i40IdcusTk1fvvU9NaJKhNhlbLuHvhwlmfMiFYBr209Pr1zIlkS1o6KaGhwOnTXDOI1niaiF8WbA396PHgYCtrxHVzo+z0l1+y3fTWLWDpUracfvklULs220A6dwZWrLCCLLigZ8UK1pjPncutqyVxdWXYIjqa8RG5hqsb8cmCzZMjBxf8/ftTNWPqVCmUFgQTodNx1OKgQVTA/P57hp2ErCE+OTWSJFaYmTOpRrV4cRaerNHQ+Z4+zayovhI5Pt7kdqoRZ2egqvY0Sh/7EZ7zJmLvSY9XieNvvmHM8PLlxI7jlFLV6Uoz6du8z53jfGK1Eh8PTJnCz93Tk9+DAQOy2ZKjIvLkYffdunXMBFSpkqzF7/ZtjvcaNsy0OfHp0ymBOX++6Y5pL+h0xjlY2S8IaqNSJapl7dhhou9n4cLcKO/cyVmFIkFtMs6dY46wRQvbcXu2Rkpp6c6dgffey4a0dEp27KDWZo0aJjqg7SF+WbA1NBqObMqdm0XAVlvUWbRoouz048fcmA4cyCq1jz7i+qFyZW50du5kVaygOvbuBfr25W3wYGVs8PRkOCA0FDh7VhkbBMMQnyzYBY6OwMKFwLRp7L4YMMA6mm8EQcXExQEffMAc0pdfsjjNQTJ62UJ8cmrkK6Uw5csnFlhluRq6XDngyBG2JE+ezHLSq1dNaqcq0enYqVWuHDfTSN1xHByMZInjRo0SE8f16ydPHC9YkCRxrG8pHTtWndGH69fZnTZxIkuJjhzh+2CLdO7M7rvy5YHmzYHPPgNevMC4cQwQDRtm2tOVKsV17MyZzOkIhiOVWIK1o9Ew6Xj/vombfoOCGLnTS1CXKycS1NkgLo4qwxUrchS0oC700tKLFyeXli5f3oQJ/WvXeGveXLTGM0D8smCL6GV2HRx4jbH6+mgnp+Sy048esUi2Vi3KMLRowXnHrVuzivWff2T9oAIuX6Z6eJMmzIcoWbDm68s6RL1rFNSJ+GTBbtBoGJ/+7jvufTt1kmInQcgikZEUPP3pJ94++0xpi2wD8cmpkSSxCpgwAYiNZew4yzg7M0F86BCrkatVA5Yvt+0N5Pbt7CydNSvDAGHSxPHXXydPHC9fnpg4HjEieeJ4WOx0JDx4iJtDvlLPyGedjrM9qlZlW86hQ/zcs63ZqHIKF2bH0JdfAkuX4kXlGjj3wxlMmgR4eJj+dOPGMfBkKhlre0GcrGALFC3KOam7d5t4vltSCepGjRIlqM+dM+FJ7IOjR1nQFRSktCVCSsLCgLVr2UCfP78JpaWTotVyTaD/sQrpIn5ZsFVy5OC+LTKSMrs2teX19k6Unb57l1VrU6awE2vUKFZIFS/OSvNNm4Bnz5S22O548gRo04YTwDZsUMdWvFQpoGxZiovdv6+0NUJaiE8W7I4PPwR++w3Yto0FT1Y1J0IQlOfRI+6lDx8G/vqLkxgF0yA+OTWSJFYBfn6MGy9YYII5iHXqMPv53nvUPWrXjslEWyMhgW9agwZZGv6jTxz36pU8cXz6dGLi+OC9UvgaA+C1bAZKejxCpUpAjx4pOo4tycOHQPv2DAi8+y4/5zp1LGyEgjg4AJ99Bt2Jk7j30BnBqIXeT2ebRbrG25uFj0uXAleumPzwNos4WcFWaNaMgefgYDMcXC9BvWsXV/2vvcZyUJGgNojISNZH1apFpWFBHei7u7/+ml9rk0tLJ+XMGepqtmwpWuOZIH5ZsGVy5+Yo3/v3bbjeSqOh7PTQoSyOCQsD/vwT6NCBzvDttznsvV49VrcGB4usp5mJieHb//w5sHUrJySphSpVOOb62DFZVqoR8cmCXdKmDTcJFy8yfnv3rtIWCYJVcOMGl3e3bwP79zNGJZgO8cmpkSSxShg6lCpSn39ugoPlykVJj99+4w6hcmVgyxYTHFhF/PADq6rnzjVZgNDZmQ3YSRPH/e6MhXsuDfY0mYJGjdgAlrTjuHJlCyWO//gD8PenrPSvv/LzzZXLTCdTNzvuVUbFyGDc6jAYjp+PYllVtqsrUvPJJ5x1PGaMyQ8tCILK8fbmmNODB814XW/WjBLUM2ZQIaJcOWD1ahtrhzI9e/dSarRhQ6UtEYDk0tJHjnAja3Jp6aTExDDQVLkyCy4EQbBrChSgzO6VK5zGY/O4uSWXnb55E1iyhFXn8+Yxa+7jw0qdlSuB//5T2mKbQqcD+vQBjh9nqKVkSaUtSo5Gw6lZuXKxhkDUXQVBUAW1azNgGhnJ8Qp//620RYKgak6f5k8F4B67enVl7RHsA0kSqwR3dxb/rl0LhISY6KBt2zKRWqsW/7tPHzplayc6mnrAnTvztZkR5wL54Dh2DCodWIKvB19N1XHcsKGZE8dRUUC/fsAbbwA1awIXLrA73E5JSACGDwcCG7ii9KZZzBbcvMmy6R9+MGlyJWdOYNo0qrgdOWKyw9o0Uokl2BKNGjHYtm+fGU/i4sKL2qVLQOPGQPfudCw22xKVPR4+pP9t1IjXaEFZUkpLDxjA2Yxmld08coTrQNEaNwjxy4I9ULo0b6dPU2TArihWLFF2+vFjZgY//pj7o169WEzj7w8MGwbs3ClZw2wyYwa3nCtWJAZv1YaTEwu2tFrGIqSxXD2ITxbsmvLluY7Pm5fB08OHlbZIEFTJ7t2MdxQtyp+J2grSbAU1+eRp06ahbt26cHNzQx4FJWokSawievbkiKHhw02Y6/L1ZRfx0qXAmjUsPzl2zEQHV4j58xkpztYQZyP49FOWqY8eDSDtjuOUieN//jFB4vj4cX5eq1fz89uyhZ+nHaNvIJ8z5/8dSvp5nu3b8w1+5x0OiTIRXbvysx42TJr7DEFNTlYQsoubG6/nISGMu5qVwoWBdesoQf3kCSWoBw0SrcAU7NpFWceaNZW2xL5JT1ray8vMJ46I4CKqdm3RGjcQ8cuCvVC1KrdJR48C4eFKW6MQ+uygXnb60SOuLWrUAH76ifMgvbyA118HvvrKLEpMtsyGDVR9mziRPk/NuLkxDvH8OUMKso9VB+KTBbunYEHgwAE67aAgSjIIgvCKdesoGFOvHvfb+fMrbZHtoiafHBsbi06dOqF///7mO4kBSJJYRTg5AbNnsznyr79MeGCNhvOJT5/mxrB+fWDCBEb5rI2HD4GZM1khbalympw5galTWaF99GiaD0mZOD5+PHniuEGDjBPH+sYYAEB8PDBpEsuT8+blQfr2tfu5e/oG8nfeoYzWK3LnZvZ4wwaWXPn7c2aXCXBwYEL66FFg82aTHNKmUZOTFQRTUKsWLzE7d1rohM2acd7qjBnAd99RgtrEKgnWyo0bwNWrjCc4OiptjX1icWnplOzZwwVXgwYWOJltIH5ZsBccHFg/kjMnm2ljYpS2SAV4eyfKTt+9y8LayZMZAxgxAnjrLT5Ov8999kxRc9VMcDD37e+9B4wfr7Q1hpE3L/fMd+9SjExQHvHJggBurv/6i2qJHTtylJ4gCJg/H3j3Xd5+/91uJ0xaDDX55EmTJmHw4MHw9/c330kMQJLEKuP116k4OWIEc4UmpWxZ7prHjqWObr16HOBkTUyZwijA2LGWPW+3bqx2M6KlNGnieMmSjBPH9eoBHh7A62Wu4lqB+tBOnoI7PcYieschfm5C5g3knTqxzbhyZaBlS3aAv3iR7fMGBQGtWgGjRllnXYUlUZOTFQRT4OTEvO2VK8C//1ropCklqHv0YEvz2bMWMkB9aLWs/SlSBKhQQWlr7JMnTxKlpX18LCQtnZQHD0RrPAuIXxbsCWdnFuPGx4vMbio0muSy00+fslIZAE6dAt5+G8iXj2/glCncuMobCAC4dYvTnl57jfV71lS3XagQpzJduiSN42pAfLIg/J8cOdgyOWAAxyJOnixF0YLdotUCI0cCgwcz7rxqlQX32HZMVn1yeHh4sluMDVWmSpJYZWg07Fy8eJEXBpPj7EyNpMOHuTmsXp1SxtbgkK9coa1jxrAy2pLoW0qPHMlWS2m6ieNTOuzruhybb1aDS8QTNHQ4jKIrJsLDyxmVKwMffAAsXJii49iOePSIDeQDBgClSmXwwEKFgG3bKKH2zTdAQAADH9lk1izg2jUm94X0kY2vYItUqsRLy86dFnaVegnq3buTS1DbYafPuXOcM9mihXUFZ20BvbT0kiWUXe/ShdXNZpeWTsnOnTxpjRoWPrF1I35ZsDfc3Vl8+/QpcOKEdWxxFcHNjW8UAPzyCzOIX39Nze65c9mC6uPDi/7KlcC9e4qaqxTh4Wx2c3MDfv2VeQ1ro2xZoEQJ4ORJ7qkF5RCfLAhJcHRksdL06VS67N9fipMEuyMujvH+OXMYxp4xQ+IdliKrPrlIkSLInTv3q9uMGTOUfSEmRJLEKqRGDQbgxo83cHZtVggMZEdGt250xm++yQismhkzhjMsPv1UmfM3b84OVRO3lDqHhaLa+LZosLovXD/shqKPT2NPVCBOnQKWLWPH8d9/s/Bb33Fsb4njyZOZpx83zoAHOzjwOxISAri6UntuxoxsLTirVOH7PWmSHc85MwCdzjgHK4E7wRrQaJicvH+fyUqL07QpJahnzbJLCerYWCYpK1Vi3lywDDod1U6SSksPGMCvn8U3rteu8da8Odv7BYMRvyzYI97eHBdx5w73UIIBFCvGbq5Nm1iYdugQL/o3brC6uVAhdiIPHw7s2gW8fKm0xWYnPp458tu3ga1brXcuoEbDOsP8+enPIyKUtsh+EZ8sCCnQaIDRo1mM9O23VLUwgRqgIFgDkZFMxaxfD/z0k3KpDnslqz75zp07eP78+avb6NGj0zz+qFGjoNFoMrxdunTJgq84cyRJrFKmT+f+bN48M54kVy5mIX//naXWlSsDv/1mxhNmgyNHuGmdOlXZEt7Zs03bUrplCzfcwcH8HJYtA3LlgosLm7w/+ih5x3FGiWN/f9tMHOsbyEePNrKBvGJFvq9DhwKff07Z1mzoxU6eTCc+a1aWD2HzSHW0YKsULUqZ4z17FJKdd3HhBf/yZSaNe/SgI7ADCeqjR+nPmjVT2hL74ckTYM0aYMMGhaSlk6LVAtu3M4FRvrwCBlg34pcFe6VIEW5t//6bST7BCJycuMHUy04/fMjoZY0adA7Nm1PZ4fXX2fZy6ZJNZrMGD+aoi40bua20ZhwcgDp1WD996BAL8ATLIz5ZENLhgw8YD92xgz4mLExpiwTBrDx8yP31kSMc0d25s9IW2R9Z9cmenp7Jbq6urmkef+jQofjnn38yvJUsWdKCrzhzJEmsUooXBz75hDlJszf4vvkmZ7nWqQO0b8/MZGSkmU9qBDodg+PVqgFduyprS5UqDM5nt6U0MpLV2m3bstP1wgV+DhmQWeK4fv2ME8fWmksYMwYoUCCLVVUuLuwi3r+f7QRVq1LHPQuBjMKFGSyYNw+4ezcLttgBatv4hoWFoWvXrvD09ESePHnQq1cvRGZwbQsLC8Mnn3yCcuXKIWfOnChatCg+/fRTPH/+PNnj0qoAW7dunXlfjKA4QUG8dB87pqARhQoxULtnDzfPr73Gi6ONSlBHRnI6Rq1aQN68Sltj+8TGUt18yRImihWTlk7K6dPcRYvWeJZQk1821icDQOPGjVP52379+pnPSMGmKF+e9SUnTlAuX8gi+fIlyk7/9x9lVSZPptMYMYJVdCVKAH37Uro6xbrZGlm4EFi0iGoazZsrbY1pcHFhvCA2lkFpSUBaHjX5ZEFQHa+/zj3upUsshr5zR2mLBMEs3LjBmP3du8CBA+wBECyPuX1y/vz5Ub58+QxvLi4u5nlxWUSSxCpmzBgW8k6aZIGT+fiwi3j5cs5ArFqV7TtqYPNm2jJnDstglWbKFGZnZ8/O2vOPHWO2d80avt+//cb3PwsYkji+eJGJ4w8/5HPeeScxcazv0FIr+gbyadOAnDmzcaAGDRjQ6NgR6NmTMjZZiBaNHMkG/PHjs2GLDaO2jW/Xrl1x8eJF7Ny5E1u3bsWBAwfQp0+fdB9/79493Lt3D3PnzsWFCxewatUqbNu2Db169Ur12JUrV+L+/fuvbu3btzfjKxHUgJcXULMmOzDMNgrCUJo0YeXP7NkM2pYrB3z/vc1Fk/bu5TqoQQOlLbFt9NLSX3/NdYGi0tJJiYlhsMjfX7TGs4ia/LKxPllP7969k/nb2Vldfwt2h0YDBATQfx8+rK4aaKtFo+E1edgwyk6HhQF//AG0a8ei3LfeovRT/fqJnchWNmPyzz+Bzz4Dhgxh3tuWyJULqFuXhWAhITbZAK5q1OSTBUGVBAbSYUdH82J18aLSFgmCSTl1iv15Gg3j3dWqKW2R/aImn3z79m2cOXMGt2/fRkJCAs6cOYMzZ85kWlBtalSQcRPSw8sLGDuWeUSLyJRrNEDv3px9mD8/N3fjxnEgj1LExXEGcKtWbONSA0lbSv/7z/DnxcUBEybwffX25vvcu7fJI7ApE8cnTjBxvGYN/161amLiuG7d1B3Hakkc63Qce2WyBnJPT3YRb9wI7NvHF71tm9GHmDCBhzl/3gQ22RhqcrL//PMPtm3bhm+//RaBgYGoX78+Fi5ciHXr1uHevXtpPqdy5crYtGkT3nzzTZQqVQpNmzbFtGnTsGXLFsSnuA7myZMHfn5+r245lJTBFyxGw4asVdq3T2lLQO3foUO5QGjWjBfxhg2tVzYiBQ8fsom0YcNsFgkJGaIqaemUHDnCuZeiNZ5l1OKXs+KT9bi5uSXzt56enuYxUrBJHB2533FxEZlds+Dunlx2+t9/WXHk4wPMncuAv68vZSlWrQIy+b0rzblzlHx8442s14Ornfz5qRx+8yanmAiWQy0+WRBUTbly3APoC44OHVLaIkEwCbt2AY0aUTn28GGKsAjKoSafPH78eFSvXh0TJkxAZGQkqlevjurVq+PkyZPmO2kaSJJY5Xz8MXOS6czBNg+lS9MRT5hAqd4PPrDgyVOwfDlnAKttlzZyJDfFhraUXrnC1pxp0/icQ4eAMmXMa2MSXFwSR/l9/nli4ljfcVyvXvqJ40WLlEkcb97MtaHJG8jfeosZ3qpVgdatgYEDjXpxffvyJzJihAltsnPCw8OT3WJiYrJ9zKNHjyJPnjyoUaPGq/uCgoLg4OCA4OBgg4/z/PlzeHp6wsnJKdn9H3/8MfLly4datWphxYoV0Ekpvl3g5sau1pAQ4NEjpa35P4UKAWvXsuPy6VObkaDeuRPIk4fd24LpSUta+r33FJaWTkp4OHfPgYGiNa4ApvbL2fHJa9asQb58+VC5cmWMHj0a0WqoZBSsCldXxplfvuSeRhIvZqR4cY5U+uUXqjYdPAj07w9cv05Zq0KFOL5p+HBGS02w5jcVDx4wOVy6NIunHB2Vtsh8FCtGlfDz52WMkiAIKqRAAapTVK9Ozf9ff1XaIkHIFmvXsqauQQOGbfLnV9oiQU2sWrUKOp0u1a1x48YWtUOSxConRw5g+nT6xIMHLXhiJycmM48cSdTm2rDBsppE4eHU2v7gA2Ys1UTu3Eyir1yZcUupTgcsXcrFzbNnfD/Hj+f7qzBJO46XLk2eOF66NDFxPHQoE8eenvwYevY0f+JY30DesqWZGsgLFgT++out0999Ry26kBCDnursDMycySbkXbvMYJsVk9VKrCJFiiB37tyvbjNmzMi2LQ8ePIBPChl3JycneHl54cGDBwYd4/Hjx5gyZUoqOczJkydjw4YN2LlzJ9566y0MGDAACxcuzLbNgnVQqxZdgOp+/02aUKHCBiSor19nfVhQkG0HaZVALy29eDH9eP36idLSqmLPHjpc0RrPFmrxy1n1ye+99x5+/PFH7N27F6NHj8bq1avRrVu3bNki2CceHtzPPHpElQqp7bMAzs7JZacfPmSU9LXXgB9/ZODfywto0wZYsIBtrQp9MNHRVMxOSAC2bKEss61TqRJQpAg/mrAwpa2xD9TUtSQIqid3bsbs2rZlo8eyZUpbJAhZYt48qmN27cppk+7uSlskAOKT00L5TJWQKV268KIyfDgDehadD1erFvDTT9zgzZpFDaYVKwA/P/Ofe9YsJqgnTzb/ubJCnz6U1ho5ksOLUvLgATOwf/wB9OtHyS2VewN94rh6dSphA+w2unCBOVT9be1a3u/oCFSsyByr/la1KrvtsoO+gXzjxuy/pnTRaNhF3KwZ0K0bULs2MHEis9OZZCU6dGCgafhwvh9qGJWtBox1nPrH3rlzJ5l8pKura7rPGTVqFGbNmpXhcf/55x/DjUiH8PBwtGnTBhUrVsTEiROT/W3cuHGv/rt69eqIiorCnDlz8Omnn2b7vIL6cXJi8nLjRqoqqkomSC9B/e67lIb44ANeUAcOVNoyg9Fq2UVcpAi7XATT8tdfwIn/gLJlWYilms7hpDx4wIKH1q1FazybmNsvm9snJy3S8vf3R4ECBdCsWTNcv34dpUqVyvJxBfvEx4d7lZMnmTQuW1Zpi+yMfPm4Pnn3XSaDz58Htm/nbfhwYNAgtri2bMlbs2ZMEpgZrRbo0YP73QMHqOJmD2g0VGvZt4/CHc2aZX8PL2RMVn2yINgtrq6MR/v5MaZ6/z6bdSwaFBeErKHVMl0wdy7VYadNk6+umhCfnBpJElsBDg6U3G3alEHpTp0sbIA+QDd/PuWnK1cGvvmGmTJzcfcuM+NDhqh3p+biwpbSt9+mZmPSmXm//cYEsYMDsHUrK6StFBcXFny/9pplEsdJG8irVDHby0qkQgVWX0yaxC7vP/8EVq8GSpZM9ykaDX+T9epRjuz99y1gpxWQVSfr6elp8IzBoUOH4oNMJPBLliwJPz8/PHz4MNn98fHxCAsLg18mRS4RERFo1aoVPDw8sHnzZjhnMpwzMDAQU6ZMQUxMTIYJbsF2qFiRiok7drBeSHWL/YIFeVHu04dzK/SD3SMilLXLAM6eBUJDgV69VPi+WimxscCZ40AtAM+es/hQdZ3DSdmxg9nrJNLEQtYwt1+2hE9OSmBgIADg2rVrkiQWskSJEnSFZ8+yW7RgQaUtslM0Gm709NLTUVGUFt22jUnj5cu5qaxTJzFpHBBglsrcceOATZuokB0QYPLDqxpHR+5nd+/mNKwmTVhvKJgHCUgLQhZwcGAsumBBNnTcuwd8/bUq1BkFIT1iYzllY+1aiqV88onSFgkpEZ+cGrmqWglNmjDPOHo0pZBcXBQwokEDDqzr3Rvo2JG6w199xVJsUzN+PI87cqTpj21KOnbk5nX4cJalR0UBgwdTwrhdOybTbXDYgDkTx4o0kLu4sKzr9deZ8a1ald/tnj3TzVLUrcuP//PPWbiRI0fi36Ji4nHzWRxiC5SFy7M4FI+Jh7ur7V9uLeFk8+fPj/wG/Kbq1KmDZ8+eISQkBAH/j/js2bMHWq32VZA5LcLDw9GyZUu4urri999/R46kH2w6nDlzBnnz5pUEsR2h0TBeuWIFBTaqVlXaonRo3JgdmSNHAl9+CbRvz3+7d1elBEJsLFWGK1VSb32YNaGXlt6+HfCIZJK4UyfAuajSlmXA1avUG+/SRbTGTYC5/bK5fXJKzpw5AwAoUKCAcYYKQhL8/bnXOHaMe2wZe64C3N25D3v9df7/zZuJXcZz5jCT6+1NiWp90tgE14FVqzjaa84cLpHskRw5KBq3Zw8QHMyksRTpmQcJSAtCFtFouJ/182MlcWgosG6dKA4JqiQigr1k+/YB69cr0OgnGIT45NSoL0IopMusWZS2XLpUQSPy5wc2bwa+/ZYziqtWpT6RKTl3jju2CRM4CFfNaDTUjjh9mp2o1apxsfLtt3yfbDBBnB76xHHv3slnHIeEAEuWMKl6/nzyGcdVqiTOOD52jLHhefOYZ1ckQVCvHhMqnTpx8dmxI4eXpcPMmVS8WbAAuBoagYm/X0SjOXtReeJ2tNn5GB16zEObnY9ReeJ2NJqzFxN/v4iroerv5MsqOp1x8xzMOXasQoUKaNWqFXr37o3jx4/j8OHDGDhwILp06YKC/28b+e+//1C+fHkcP34cABPELVq0QFRUFL777juEh4fjwYMHePDgARISEgAAW7ZswbfffosLFy7g2rVrWLJkCaZPn45PpDTQ7ihShMUve/ZwjrpqcXampD5AWf2ePRkNPH1aWbvS4OhR4MWL5MIcQtZ48oRKFz//zHjKO+/wfmc11yslJLCLuFgxoHx5pa2xCdTil7Pik69fv44pU6YgJCQEN2/exO+//47u3bujYcOGqGIRqRnBVtFoOFHJ05Pb2BcvlLZISEXx4kDfvmzvffyYOtD9+nEe0YcfsqOsalVgxAi2wcbEGH2K/fspuPLRR9yf2jO5c7Pu/cEDdtkL5kEtPlkQrJYePTg4ftcuzn+SgeqCyggNZQHisWMUR5EEsXoRn5waSRJbEZUqcU80eTLw7JmChmg0TKCdPcvIY8OGbKeMjTXN8UeOBEqX5q7NGqhZk8HMyZOZFD57VnQy/0/KxPHJk8kTx3XqMHE8ZAj/u1w5Jltu3gQWL6ZjtXjgxtOT7YGbNgEHD7LdIK2Z0wDKlAG694/GV+eC0Xz+AawOvoVbYdFI6Tt0AG6FRWN18C00n38A738XjDth0WZ/KZbGGAdrbNVWVlizZg3Kly+PZs2a4fXXX0f9+vWxfPnyV3+Pi4vD5cuXER3Nz+LUqVMIDg7G+fPnUbp0aRQoUODV7c6dOwAAZ2dnLF68GHXq1EG1atWwbNkyzJs3DxMmTDDvixFUSbNmid1IVsG0acDevdT1r1GDs4qfPlXaKgD0DYcPM3AvXV1ZJzaW8fKvv2aiWD/+0dMMoi8m58wZ4OFDdojJGsokqMkvG+uTXVxcsGvXLrRo0QLly5fH0KFD8dZbb2HLli3mM1KwG5ycWBsKUGY3Pl5Ze4QMcHamotnUqaxCfviQclXVq3NEUFAQRxS0acPK3StXMo3kXb3KWuAGDegvxeUwrFOtGt+ba9eUtsY2UZNPFgSrpXVr7mevXGHh8+3bSlskCAAohlWvHhXRDxxgslhQL+KTU6PmfgIhDSZN4p5o5kzeFKVUKV75Zs6kYdu2AT/+yBmvWWXXLh5n0ybrGIhz+TI7tK5epXRnhw58X4R0SU+qevNmBrIDA/m2/vwzE8ZJpapr1EiUqja7soxeSvzDDxl06N+fXeNJNLLXnbiNQ54X4ZSTgYgEbcYBCf3fj9x4gqAv92NS20roUlPNup/GoTa5Di8vL6xduzbdvxcvXhy6JEGkxo0bJ/v/tGjVqhVatWplMhsF68bLi3VChw4xVpkrl9IWGUDjxuwiXrgQmDiRqiCzZrEyW0EJ6r17GbRv0EAxE6yapNLS0dF8H+vVs46lFAB2ge3Zw8KsQoWUtsZmUJNfNtYnFylSBPv37zefQYLdkzMn48t791Jmt25dSRZaBfnyJVZA6XRUIdNLUw8fDgwaxE5kvSx106Zslf0/YWHc2uXPD2zcaEV+0gKULs3ixzNnuKY1YmS8YABq8smCYNXUqsXq4pYt6by3bQMqV1baKsGOCQnhxIy8eYEjR7gMEdSN+OTUSCexlVGwIOWQ5s9XScGUkxMwdiw1IqOimPlbtChrffhaLTd2desy2apmdDqWHVevzvanY8eYRJwxg607glG4uFBhvHRpzm04eZIb1JAQvs36juPBg/nfHh6Uqv7wQzN3HBcowC7ixYtpYPXqrGAHsGjvVYz65TxiErTQOBj3fU/Q6hATr8WoX85j0d6rZjBcGaQSS7BHGjVibnXfPqUtMQJnZ0o4XLrE+X4ffqioBHVoKAOSjRrJaKms8Pgxa/T00tIDBrAWwKoC34cPAy9fsiNMMBnilwUhY/LkYYHqvXvcawhWhkaTXHY6LAzYuhV4801m/zt25Czj/3cixx4NwVtv6RAWBvzxhyiXpEXVqlxLHD0KPH+utDW2hZp88rRp01C3bl24ubkhT5485juRIJiLsmV5ocqfn9f4AweUtkiwU3bu5N67RAk2D0iC2DpQk09WC5IktkKGD2cx7LhxSluShBo1gFOnGGj+5BNKgNy7Z9wx1qxhlHjOHHWXcT94wPLjjz/mbMdTp/j6x4/nVWPqVKUttDr0DeQzZiQGtfUdx336AMuWJUpVnzyZmDg+dy554rhqVTMkjjUaRtxPn6YUdd26WDfha8zdccUEBwfm7riC9SfUUPGRfcTJCvZIzpycunDqVIYjzNVJwYL0vfv2KSpBvWsXA7U1alj0tFZPbCzfuyVL+JHpG6usLugdHs6S69q1mbERTIb4ZUHInIIFKbN7+TJw44bS1gjZwt09UXZa/4EuWgTkywfdrNnoV/csjuyLxeZqk1Dq0PfA/ftKW6w6NBoWTri7M9j98qXSFtkOavLJsbGx6NSpE/r372++kwiCufHz44D5114DWrTgHHtBsCBr1rCDuGFD1qrly6e0RYKhqMknqwWRm7ZCPDyo7jxgABNk1aopbdH/cXNjdu6NN5ip8/cHli8H3nor8+e+eMG5xm+9xU5itbJ5MzWSnZ3ZYdq6deLffHw4T3nSJCbKS5ZUzk4rQt9AXqcOi70zwtWVctMBAYn3xcQAFy6w61h/+/HHRKnqSpUSn5Mtqepy5YAjR3Bn0ixMiPIDnHSpihliH93C80NrEfvgGhKinkHj7Apn7yLwDOwItzKB6R56/O8XUbdUPhTxckv3MdaAyHUI9krNmhQZ2LkTeO89pa3JAo0asRBm0SJgwgSLSlBfv87Zd++8w2u2kDkppaUbNqS0tJO1rur37EmcOSmYFPHLgmAYpUuzGPXUKSbHfH2VtkgwCSVKAP36Af36Yfb0BKz83BGr2/6MBve2Aj1D6FCrVEmUpq5fnxtOO8fZmW/F7t0U+mjcWNZopkBNPnnSpEkAgFWrVpnvJIJgCTw9GZv94APg7bcZk5biB8ECfPEFMGwYe8eWLbMyFS9BVT5ZLUgnsZXSqxfVNUaMUNqSNGjdmnpdjRrRSX/wAbtEMmLhQlbyzphhERONJiKCie+OHRmNPX8+eYJYz+DBlDsZM8byNlop+gbyuXOz1kCuTxyn13FcuzZw9qyJOo6dnTGmRHPEu7imaWxC+ENoY1/A3b8Z8gb1Ru66nQEAjzZNQcSZbekeNl6rw5jN1q9xJ5VYgr3i5AQ0a8bx9FbbheTszAvl5cusxP7wQ2YeT50y2ym1WmDHDqBoUaB8ebOdxqZIKi1doAALBhs1suIE8YMHXAQ0bgzkyKG0NTaH+GVBMAyNhoXXPj5Ur8xs6ypYF5s2AaM+d8S4cUC33zqxsi80lBvRatWA1as57sDLiwXvCxcCV65kbYSWjeDmxmXg8+d8u+z4rTAZWfXJ4eHhyW4xMTHKvhBBUBuurryeDxrEzdH48XLREsyGVssxoMOGsdftu+8kQWyNyD45NZIktlKcndnks3MnO0lUR7583I2tXMl/q1YFDh5M+7FPngDTp7PKt0wZy9ppCIcP0/6ffwZWrODrSU9Dws0NmDIFWL8eOH7csnZaIS9f0ql27GjaBvKUieOQEOMSx8HBaSeOr4ZG4OC1x0hIZ72Zs1RN+HaejDz134NHtVbwrNkOvu9Nh7NPCYQf/zVdexO0Ohy89hjXHkaY5g0QBMHiVKwIFC5Mv2zVe9ICBZiF3LePw+Fr1uR4BTNIUJ89Czx8yLHIap4yoQbSkpbu0sUKpaWTotNxEevlJVrjgiAojoMD9wU5c1JmV/IwtsGJE8D77wOdO1Pw6xX581P+5fvvOSbrzBmqqbx4wchvuXJUBuvXD/j1V7usHPDyAmrVAu7cAS5eVNoa+6VIkSLInTv3q9sMtTZWCIKSODgA8+YBs2czJtu7NxAfr7RVgo0RGwt06wZ8+SVF2KZOlTiGYDtIktiKaduWMkAjRgAJCUpbkwYaDbuIz54FChViq8vo0byqJmXqVJZkjB+viJnpEhvLDGbDhhxWdfYsdSQy8wA9elBqe/hwK88UmJ8FCyzXQJ5Z4jgwMDFxXLt28sTx118zcfz9kdtwdDBuBaBxcISTRz5oYyIzfJyjgwY/HrPu2cRSiSXYMxoNG3AfPOC1xOpp1IhdxF98wQ6bsmVZKGWiH25sLFWGK1dmcl1IG52OgVl9AVPDhiyQL1tWactMwLVrbL1v0UJ0LM2E+GVBMA69zG58PEelq3KPLRjM7duMmVStytr1dLfxGg0fNGIENZafPAG2bGFX8Z49QIcOgLc3nfC0adxA2skFs3Bhhjb++Qe4dUtpa6ybrPrkO3fu4Pnz569uo0ePTvP4o0aNgkajyfB26dIlC75iQbAwGg3jsD/8wAKgjh05m0cQTEBEBNCmDfvGNmxgHb1gvcg+OTXWKk4ngP5v7lwmtFavZj5WlZQsCezfz9bnCRPYNfLjj2y7un6dkc+JE1nNqxb++YflQefOsQpt5EjDA5iOjqxea92am8u2bc1rq5WibyDv21e5YHfSGcd9+vA+/YzjkydTzzgu1PchnPJmnvjXxr6ELj4G2phovLgajBc3QuBWIeNZiwlaHfZeeYiJqGSKl6YIMtNBsHeKFKFr27OH89CtXnbI2Rn47DO234wYwVkX33xDv/3aa9k69JEjbNZp1sw0ptoijx8Df/3FPGq5chyXaNWdw0lJSOB6sHhxvjjBLIhfFgTjcXenzO6+fdwP1KolXSLWSEQE8Oab3O/9+is7xA0mVy4miN94g///77/0Wdu3M6YxdiyVxZo3p3Nu0YJKLDZKuXKJxdXu7umLqgkZk1Wf7OnpCU9Pz0wfP3ToUHyQSVCwZMmShhsgCNbK++8zvvz22xwlsGULC30EIYuEhgKvv84a5x07WE8vWDeyT06NJImtnMBA4J13uE955x2qHasSR0fO6W3ZksnXgABusA4d4vCnzz5T2kKi0zH4PXw4A5fHjtFWY2nZkpHvkSPpSax2WKD50DeQT5igtCXJSZo41hMTAxw/FY/3fzesCvHpnm8RqZ9BrHGAW9k68GrRP9Pn3X4SjaiYeLi7Wuf3RZysIPDSv3gxZxo2bKi0NSaiQAFWo/XuzZLZGjWA/v15Ic9C1jIigkniwEAgTx7Tm2vtxMYCBw7wO5Q7N6WlbaJzOCmnTwOPHrE7S7IvZkP8siBkDW9vJoePHaO6UMWKSlskGENCAn3nzZtcb/j6ZvOAJUpQdrpfP1YOHz2amDT+6Sc+pmpVxgBatmSVgatrdl+GatBouDeOiuIkrmbNmEcXjMPcPjl//vzIr6bGC0FQklatgL172fpZvz6wbRtQrJjSVglWyNWr/Dq9fMkpmlWqKG2RYApkn5wakZu2AaZP50y/r75S2hIDCAhga+ZHHwGDBnHO75Ah6shu37vH7t9PPqF9ISFZSxAD3EnNmQNcusQp9kIy9A3ko0apq4E8PVxdAa9iUQY/3rNmO/h0mQrvNoORs2QAdDotkBCX6fN0AG4+Mfw8akOnM06qQ9TYBVtEP7/t8GGO9LUpGjakBPW8edmSoN67l7VTDTIWWLA7bFpaOikxMfwSVKnCcSSC2RC/LAhZp0gRqoJcvMiZrIL1MHQo8wEbNvAzNCnOzsllpx8+BNasYZL4+++ZQfX2ZhfyokWMLtvAxdXBAahbF3BxYZ1/ygliQuaoySffvn0bZ86cwe3bt5GQkIAzZ87gzJkziLS5zYtg19SsyU15TAwvYOfPK22RYGWcPMm6LxcXFp1Jgth2UJNPVguSJLYBSpViEHHGDDZlqB43Nw6jrVyZUeIpU5gsVpJNmzhs59w57igXLsx+4rp6dXZNT5jAtinhFZ9/rq4GckOIjTc8CeLsXQQ5i1dDLv9m8Ok0AbrYl3i4cTJ0BngVY86jNmSmgyCQhg0ZTNu3T2lLzIBegvryZZbU9urFTfepUwY9PTSUTaSNGgE5cpjXVGvi8WPm3TduZOP2gAF8j2xSiOTwYZZii9a42RG/LAjZo0IFoGhR4PhxjsoR1M/XX7N4fuFCNvWanfz5gffeY4L43j0ucsaN4xzMIUNY6VWqFBVYfv0VCA+3gFHmwcWFDXkxMWymFp9hHGryyePHj0f16tUxYcIEREZGonr16qhevTpOnjxpvpMKghKUKZMoKdGgAUchCoIBbN8ONG5MF37okDSi2xpq8slqQZLENsK4cQxIT5mitCUGsmULB7+uXcsg4TvvAN27A8+fW9aO8HAOc377baBJE1aWmXI3OXUq8OwZ8MUXpjumlXP8OLB+Pb+ramggN4QXL4DL/2T9culWvh5i719FfNh/mT7Wxcl6L8viZAWB5MyZ2HRrFcVbWUEvQb1/PwOhNWowsxkWluHTdu5kt3WNGhayU+XExvI9WbKEy4X33gO6dLGh2cMpCQ9noKZ2bdEatwDilwUhe2g09FdeXqxvibJewR+7YPt24NNPKVjWP/NJP6bHwQGoVo0jp/bs4ZpoyxbKne7ezREL3t5cJE6fTuUyK7vweniwNvDRI65z7aGzxlSoySevWrUKOp0u1a1x48bmO6kgKIWfH6u3a9RgvHfTJqUtElTO6tUUBGnShO5bRlrbHmryyWrBerMRQjK8vYHRoxlkvHpVaWsyIT6eG6egICZnf/4ZWLWKlbVVq3IQnyU4eJDn++UXnv/nn01/5S9WjLvUOXOA+/dNe2wrRKcDhg1j03b37kpbkzYvXnD+2KJFQM+elBPx8ADee9M9y5tgXVwMAEAbk3FkSQOguLd71k6iAsTJCkIiNWsyB7Zzp9KWmBl9NvzLLym3WK4cxyyk8QO/do3jBoKCAEdHBWxVEXpp6UWLWDzVqBFz7GXKKG2Zmdm9m93oojVuEcQvC0L2cXRkUszJiZ0kcZlPkBEU4MIF1p23aqWi+uxcuRhlXrgQuHKFi6AFC1h1MHMmExZ+fkDXrsAPPwAPHihtsUHkz0/T//2XL0swDPHJgqAgnp7An38CHTsCnTpRdkIQUqDTMXzfvTvQowewebP1NDcJxiE+OTWSJLYhPv2UjT2jRyttSSZ8+y1lKufMYXm2RsOr77lzHP7UuDGTyDEx5jl/bCzfpEaNgMKFgbNneX6NxjznGz2ampoTJ5rn+FbEli3Mzc+erY4EgT4hvHhx8oRwnTpUBzt/nv+9ZAlw8pgTinllvDpIiHqW6j5dQjyiLuyBxskVzvmKZvj8ot5ucHe1Xm1RcbKCkIiTE5OhV68CN24obY2ZcXJiQdTly0Dr1sBHHzGiHhLy6iFaLRPmRYsC5csraKsKePQoUVq6UCHg44+Za7dJaemk3L/PNVeTJqI1biHELwuCaXB1pczuixcis6tGQkOZiy1eHPjpJ3XsM9OkZMlE2eknT6jG0rs31089ejCYU60aMGoUsHevqgf/Fi/O9dy5c8B/mYtlCRCfLAiK4+IC/PgjRyd9/DEwdqzIIQiv0GqBoUOBESP41fjmGzvYn9sx4pNTI193GyJnTqob9+jBzWudOkpblAYREZzR+/773AAlpXhxSoDMmQOMH0+9qDVrgEqVTHf+v//mnOALFyjxNHy4+XeRefJQD3zoUAbRK1Y07/lUStIGcovMh0rBixeMTYeE8HbyJL8OCQlsaqpShb+ZgQNZGV25MteQSWl61werg28hQZv2QvLJtkXQxUbDtUhlOHp4IyHyKaL+3of4J3eRt2kvOLjkTNc+RwcNmpT1MeVLtjjGOk57cLKCfVOhAmuRduwA+vShCqFN4+fHTpjevbnxrlkT6NsXmDYNZ2564eFD5o/NVZOldmJjGQ8+dgzInZvS0jbfOaxHp+MPwdsbCAhQ2hq7QfyyIJgOT0/uFQ4eBM6cAapXt19/piZevADat2d9+datLPi1CpydWSHWsCEwbRrw8CGr6bZvp8rZrFmAuzsLq1q25K10aVV96SpXBiIjgeBgmmmzozJMhPhkQVABDg7AvHms1B02jEWsy5ZJNtDOiYnhJMr169lENGCA0hYJ5kZ8cmrkKmhjdOtGxcdhwyiHpaI9BJk7l3OH0xue7OjIytmWLSm7FBBAKaZPP81edF2rpabjyJFAiRLcyVSvnvXjGUv//pSWGjmS7bR2iL6BfO1a838vUyaEQ0Io65lWQjgggBtcV9fMj9s1sChWHb2Z7t/dKzRA5LmdiDj9J7QvIuDgkhMufqWRt3FPuJUJzPDYCVodutXOuNNY7YiTFYTkaDRAixbAihXstEhZG2WzNGhACerFi4Hx4xH765/YO+AfVK6UE4UKqW1hYn50OhYlbd9O/9SoUaJ0qd2gb6l/910Vt3jZHuKXBcG0+PoCr73GvYWHhx0V+qgUrZZqUGfPsgirSBGlLcoGPj6Mf3Ttyhd27hwXDtu2UeIqLo5xjFatGCtp2lTxjLhGA9SqxTr/Q4eAZs1EljMjxCcLgooYOpQFzh98QDmKDRvkAmanhIdThfzQISp9deyotEWCJRCfnBp7Ck/ZBQ4ObMRt3pwqRh06KG1REu7fZ5L4s8+oN5kR1atz9z1qFDB4MMuCV61iS5ax/Pcfd487dzLZPHMm264tiasrMGMG0KULd1GNG1v2/AqjbyDv1s30uXlDEsK1a7OpzZiEcFoUy+sBX10+PNA+gcYxdTexe8VGcK/YyOjjOjpoULekN0r7WEvpe9qIkxWE1BQpQkGMPXv4r7Oz0hZZCL0EdefOODLjKF7EOqDZ4o5AibF21Un66BHw11+c21e+POO6efIobZWFSUhgF3Hx4pxZLVgM8cuCYHpKluTe5swZNnoWLKi0RfbLxIns+tm0ieIlNoODAysLq1VjkXlkJOWnt2/nbckSrrPq1k3sMq5eXRHJGkdHoF49YPdu4PBhdhTbVRGcEYhPFgSV0bUrh6x37Mgqly1bgHz5lLZKsCAPHnBa1r//crvasKHSFgmWQnxyamxd+NAu0cv5jhzJglPVMGECk7OjRhn2+Jw5ga++4pX6n38Af3/uAo3h55/5vIsXeZyvvrJ8gljPO+9w9zp8uH1cXZKQWQO5oSSdIfzhh0DVqokzhAcPZrK4dm3g668pJx0RwX+XLaPUa0BA1hPEFy8CgYHAuW/94eRo2k44JwcNpnfwN+kxBUFQD82aAVFRHAVhb0S4++GIbwcElnyEPE+u0w/27w+EhSltmlmJiWFt2tKl9H/vvQd07myHCWIAOH2a2fKWLVUocSMIgmA8VaowOXzsGPDsmdLW2CerV3NvOXOmHXT95MoFvPkmldGuXgWuX6dKWd68LESvUYMdcd268Y0JDbWoeTlycGZ3ZCR/ExmN+IyKicfl0Oe4HfUUl0OfIyom3nKGCoIgpKRFCzbyXL/OC9nNm0pbJFiIK1dYa/XoEUeJSIJYsHekxs9GmT2bhafLl7ODUnEuXgS++46zH4yNkDZvDpw/D/Trx07cLVu4QcroOM+fA598wk1Sp06M0np5ZecVZB+NhtnSRo2Y7H73XWXtsRD6BvJBg4BixQx/3osXVNk6eTLtDmF/fyZtTdEhnBFaLbBwIYsuSpYEjux0w+X4Shj1y3mTnWNy20oo4mX90jZSiSUIaZM3L+X4Dh2iTGWuXEpbZDn27GFHSYN3iwDvn2IVz7hxLOKaOZMVPzY0rFmnS6xLs1tp6aTExPBLoM+oCBZF/LIgmAeNhvuQvXsTZXaVqkO2Rw4eBD76iEuIESOUtkYBSpZkwV3//kBsLKsQ9V3Ga9bwMdWqJXYZ16sHuLiY1aTcuVmsfegQ9/BVqyb+7WpoBNYE38beyw9xOywa+hzywsuABkBRLzc0KeeDroFFUcbXupW1MkJ8siColBo1gCNHKOdfty5l/qtUUdoqwYycOAG8/jobyffty1zsVLA9xCenxnaickIyqlQBevQAJk2ivr7ijBpFmcH+/bP2fC8vJlZ/+IFJ4ipVeCVPiwMHuCv57Tc+fv165RPEeho2BNq2BcaMYeDUDpgwgdXFo0en/5gXLzgm+uuvk3cI166d2CEcGMgOYn2HcEgIiyCy2yGcEf/9x3XiZ58BffvynNWrA11qFsWwFmVNco7hLcqhc03bWJHodImO1pBbRlXmgmBrNGxISb69e5W2xHKEhlKOs3Fj+gE4OXHsw+XLQJs2QO/elII4eVJhS03Do0esTdu0CShUiEVMDRvacYIYYLQ4JoYZFMHiiF8WBPPh5MSmI4Ayu/HSEGkRrl3jSK26dam6bPcCFS4urEibPp2b1dBQ4McfWUG9ciVnF3t5sRN58WK+gWaiQAHula9cYVPenbBovP9dMJrPP4DVwbdwK0mCWI8OwK2waKwOvoXm8w/g/e+CcScs2mw2Kon4ZEFQMaVL05kXKAA0aJB+vFmwerZtY3yiTBluVSVBbJ+IT06NJIltmClTKPkze7bChuzbx5nCM2Zkr4JVowHef5+lqSVKcMMzfHhisjUmhu2ejRuzZfXcOT5ebTvHmTOBO3e4SbNx9A3k48YlNn5nlBD+7LOME8J9+5ovIZySDRsyViof2KQMZnb0h6uTAxwdjPuOOTpo4OrkgFkd/fFxk9Imtlw5jHGwxlZtCYK1kzMnY3inTwMPHyptjWXYuZNxyVQjiP38gO+/ZyvQy5dss+7XD3jyRBE7s0tMDP2EXlq6a1c7lpZOyvPn7G6qU0feDIUQvywI5iVnTjZphocDx4/bRwBJSZ4+Bd54A/D2ZkGWmZtjrRMfHy5EVq+mpNepU8DYsQwMDR7MqHipUsCAASyqj4gw6elLl+Zt6c7bCJq3H0ducG2XoM34x6H/+5EbTxD05X6sO3HbpHapAfHJgqByfH0Zvw4MpArDxo1KWySYmB9+YM1UUBCwa5d6+skEyyM+OTWSJLZhChfmPmDePHZEKoJWy0RurVqUfTYFxYpRunDWLGbuatUCNm+mI//ySyZh9+wxTtvYklSoQH2sqVO507Vhhg9nIZ6DA9CrV8YJ4RMnlEsIJ+X5c9YWdO7MhcP581Q8T4suNYti1+BGqFvSGwAyTRbr/163pDd2DW5kMx3EesTJCkLG1KzJXNnOnUpbYn6uXWMXSfPm7KBOk/r1edH/6ivgp5+AcuWAb76xmouDTgdcuJDowxo1omBKadup/ckee/Ywgq9vtRMsjvhlQTA/efNyb/Pff9w3COYhLg54+22qdmzdKoFdg3BwYGvvqFGUsnnyBPj9d0pl7dgBtG/PN7JxYxb0nzplEkdwKOwqfr51HjEJ2kyTwylJ0OoQE6/FqF/OY9Heq9m2RU2ITxYEK8DDg06mUyfgnXc46lCwenQ6NtD16AH07MlCMzfrn/gnZAPxyamxZwE8u2DECCbcxo9nR6fFWb+e7aAHDpi2o9fRkRnIZs0oWdmxIzuTjh3jwEe1M3EiZaCmTwfmzFHaGpOgnyGsnx+8fz8TBAAwbFjiDOEBA5j89fe3fAI4M/bvB7p3B549Y4VZt26Zf22LeLlhda/AxFlLVx7i9pPkUloaAEW93dCkrA+61S6K0j62OWvJWMdpD05WEJLi6Mjik59/5vWxVCmlLTIPWi1jj8WKMe+bIU5OwCefcBM+ciRnCHz7LTOvNWpYxN6s8OgR8OefwM2bQPnyLDaXZtkk3L/PSrDXX/+/1rigBOKXBcEyFCzIYtizZxlfLlFCaYtsC52ORVgHD7Lzp0wZpS2yUjw82EL15pv8/+vXE2cZT5/OkVg+Pqzwa9kSaNGCnXVGsO7EbXyx64pJzJ274wry53K1mcJq8cmCYCW4uDAg6OfHfer9+2zyUZtKpWAQWi0wZAjr0sePZzhePkpBfHJqJEls4+TOzZmwn37Kzk1/fwuePCaGG4127TjTwdTcvcss+IMHrJA9fZqJ41WrgCJFTH8+U+LnR1unT+fQwuLFlbbIKF6+ZBBEnxAOCWE3VUIC4OwMVKrEjtzixSnbXKWK+hLCSYmJoST23Ln8qv7wg/GN6GV8PTCxbSVMRCVExcTj5pMoxMZr4eLkgOLe7nB3tf3LrThZQcicChXoonbuZBDZwQY1Xc6cYRL1o4+M2ID5+tJ/9+5Nv1irFhPG06ZRV1IlxMSwoCg4mEnhrl2lczgVOh0Dzt7eaWiNC5ZE/LIgWI4yZRJVkdzdmWsTTMPcuSx4X7UKaNhQaWtsCL3s9IABQGwsR0Rs386BjWvW8DHVqzNh3LIlB0FnoPF9JywaE36/mObfYu5fQdT53Xh5+zzin4fCIacnXAuWQ56G78PZq1C6xxz/+0XULZUPRbysv+VLfLIgWBEODnQ+BQqw6+XePXZgOTsrbZlgBDExbATauBFYsoQTrgQBEJ+cFjYYmhRS0rcvA5gjR1r4xIsXc/buzJmmP/b69cx4X7rESPupU/z38mVmJH/6yfTnNDVDh1LeaexYpS3JkJcvE2cI9+oFVKuWKBk9aBBz8zVrJpeMHjECePyYIydr1lR3gvjCBXY4z59vOqVyd1cnVCqYG9WL5kWlgrntIkEMiFyHIBiCRsPGjNBQFtvYGrGxVDT09wcKpR/zS5969ahA8tVXwLp1QNmyqpCgTikt3bixSEuny9WrwL//8ouerta4YAnELwuC5dBomE/z8QGOHDH5qFe75ddfGccYM4YykYKZcHHh3Izp0xlbefCAc40rVQJWrACaNGHxV9u2XAxdu5bqEGM2n0d8OvLS4cc2IvryEeQoVhV5g/ogV9WWeHnnAu6vHITYRzfTNSteq8OYzbah4y4+WRCskKFDWTSzZg0l+qOilLZIMJDwcIpa/fYbk8SSIBaSIj45NZIktgOcnTli5q+/gN27LXTSp08px9G7N3UYTcWzZ9QA7tKF1aznzlG7E+C/587x/vfe403NM39z5QImTeJiIyREaWsAMCF8/HjmCeGFCxkkj4zkHvKbb1iMoFcGHTOG+0c1V3prtRxhXaMGEB/P1z1ihMSzs4PanGxYWBi6du0KT09P5MmTB7169UJkZGSGz2ncuDE0Gk2yW78Uq8nbt2+jTZs2cHNzg4+PD4YPH474+HhzvhTBxihcmDG3vXuZVLUlDh/m+IGmTbNxEL0E9eXLlETs04eO6MQJk9lpDA8fUmFi0yZ+dh9/TNUJJ/uo/zGOhARqjZcowQS/oChq8svTpk1D3bp14ebmhjwGarPrdDqMHz8eBQoUQM6cOREUFISrV21rRqVgWzg40F3lyAEcOsQOFiHrhIRQsePtt4EpU5S2xs7w9WXcZfVqSq2eOsVNfng4JerKlGEn8scfA7//jqs3HuDgtcfpziD2qNkBhQasgFfzvvCo2hJ56nWBX9dZ0GkTEH5sY7pmJGh1OHjtMa49tP6qCzX5ZEEQjOC994A//uAYxaZN2REjqJr79xmPPnWKYyo6dFDaIkFtiE9OjSSJ7YSOHYE6dahwbJEv9rRpjHxPnGi6Y+7bxy7hrVs5z/enn9iJmxQvL97/448cFlilCltD1cqHH1J7dPhwtilZEH1CeMmS5AnhwMDME8L9+jG5mlaHsL6BfNYsi74co7h7lw1OQ4awE+zkSb5+IXuozcl27doVFy9exM6dO7F161YcOHAAffr0yfR5vXv3xv3791/dZs+e/epvCQkJaNOmDWJjY3HkyBF8//33WLVqFcaPH2/OlyLYIM2aAdHRVPazFcLD2T1Vu7aJ5vPqJagPHeKaIjCQFUlPnpjg4JkTE8N857JlfG1du3J0sswezoBTp6g13qKFDHtSAWryy7GxsejUqRP69+9v8HNmz56NBQsWYOnSpQgODoa7uztatmyJly9fms9QQcgmLi5A/fp0W0eOsHZGMJ67d1knVrky1alscTyH1eDgwDb50aMZkwkLY2tWq1aUp27XDmv6T4KjLn0nkqNwBWgck8u0OnsVgku+ooh7fCfD0zs6aPDjsdumeCWKoiafLAiCkTRvzplDN29S+ermTaUtEtLhyhVOR3j8GDh4kGsyQUiJ+OTUyFLbTtBoOE7h9Glg7Vozn+zmTWYWR4xggDe7xMQwidq0KatVz51jpDa94KNGw7+fO0cdyGbNKBGixoCSkxMwezbbyf76y2ynefmSMpkAm5eTJoQ//fR/7d15XJTV/gfwzwybAiKyiSioiPuWmSlkXVFTtLLMLEsruy4t0qqWa+6WN39Zmdf0amqm1zbtWplKSmUuqBRlpiimYiCgEqIgIMzz++PrsMg2M8zyzMzn/XrxMmd5njM0Pt/nnO8531MxIXzwoJRHMyQhfDNLLSA3p02bKlYqX7JEZvtT3akpyB47dgzbt2/HqlWr0LNnT/Tu3RtLly7Fpk2bkJ6eXuN7PT09ERwcXPrj4+NT+tzOnTvxxx9/4OOPP8Ytt9yCQYMGYd68eVi2bBmKHG1JKFlUo0ay7e7evY5TkjI+XqqXmL0jpi9B/d57st1EmzayJ5SFRt4VBThyhKWljVZQIF+Crl2BkBBbt4agrrg8Z84cvPzyy+jcubNBr1cUBe+88w5mzJiB+++/H126dMFHH32E9PR0fPnll5ZrKJEZeHtL6MrOltWwVp4LbPeuXpUEsZub5CLr17d1i6iCBg0qlp0+eRLxPQaiRGPc8KKiKCjJz4HW06fG15XoFMSfyKpLi1VBTTGZiExw660y+0unk1VYjrh3lJ1LSJD7L09PmYzfqZOtW0RqxZhcGZPETiQqSlYUT59u4Xzp9OmyX83EiXU/1pEjMor+3nuSTN21CwgLM+y9YWHy+rfeAt5/X47z2291b5O53XOP7P/z6qtS97iOyq8QHju2LCGs38MpObnmhHCPHqYnTfULyGfNqvPHMLucHJk78OijlSuVk23l5uZW+Ck0Q22+/fv3w9fXF7fpa6AD6N+/P7RaLRISEmp874YNGxAQEIBOnTph6tSpyM/Pr3Dczp07o3G5CTADBw5Ebm4ujh49Wud2k3PRlyz+/ntbt6TuMjKApCRJqFpk4o2rKxAbK0FsyBBZUWyBEtT60tKbN0tp6dhYlpY22N69MrGvXz9bt4TqyBJx2VinT59GRkYG+pe7WWvYsCF69uyJ/Y5UgoEcVkCA9KvOnpXJqWSYkhKp7HnqlBQQCw62dYuoNldDWyC1xK32F94k7+j3KLlyCV7t7qz1tamX8pFXyO19iMjGWrWSPk/TplLPOD7e1i2iG7Ztk7VlbdvKCuLQUFu3iMi+MEnsZN54A0hPlwShRSQmylLluXMBLy/Tj6PTAW+/LUtYdToZBJ40yfg6U1qtvO/QIZnC3aOHLKlW0xQQ/TLvo0ellpYRbk4Id+tWcYVwYmJZQvijj+Q9GzeaJyF8s/ILyNXWmY+Pl8rj33xTfaVyqjtFMW4Wln5VRWhoKBo2bFj688Ybb9S5LRkZGQgKCqrwmKurK/z8/JCRkVHt+x577DF8/PHHiI+Px9SpU7F+/XqMGjWqwnEb31QhQf/3mo5LVJX69aVv+csvkpy0V4oilRn8/YHu3S18ssaNgTVrpHNeXCwBb/z4Ou8NVb609JUrsg3fww8DDRuaqd2O7vJlmVkfGclfmoqoKS4bSx9Tq4q5jLdkL8LCgA4dpKLTuZor6tINr74qfbZPPpHqT6R+Zy/lwdjF8tcvnUN23HJ4NG0Hr861Ty5TAJy5lGdS+9TC1JhMRCoTFCSzvHv1krL7n35q6xY5vbVrZR753XfLuATHe6k2jMmVcV2Ek2nTRhbfLFgg2+H6+5vx4IoiZaE7dABGjzb9OOfOyft375ZNYxcsqHsms0sXSRRPny5t/OYbScgauirZ0m67TZa4zpwJjBhRZYK9oEBWvyYmlv38/ruMkbu6ShmN7t3l/2/37tKpLv9r+/lny36E6dMlEL/yimXPY4zCQmnX22/LYm01/S93RMaW4NC/9ty5cxVKOnvUUNt8ypQpWFTLhtfHjh0zvBE3Kb9ncefOndGkSRP069cPp06dQqtWrUw+LlF1evSQ8BQXJ9UO7FFKCvDnn8AjjwAuLlY6aVSU/OI++ACYMQP44gtg4UKZMWVEIxRFYunOnRIz+vSRPCdXDhtp1y7Zl4KbPqmKpeOyoTG5nVr3ICGygg4dZPLRwYNS/tCs/W8Hs2KF9NuWLgUGDbJ1a8hQRcXGTcAvufo3sj6bA62HFwIemAqN1rD7NmPPozamxmQiUiFvb+Crr4AxY2QMNzMTeP55W7fK6SgKsGgRMHWqzBtftoz9eDIMY3Jl/KfjhF5/XVaVzp8v+7GazbZtsmTz669Nvyr/97/Ac89JwN21S2pFmEu9esD//Z+Ud37ySUkcL1sm9ayq29/YmhYskI18lyxBwaQZBiWEx4+X/PLNCWFr0y8gX7lS/tepwZEjknBJTpZK5a+8YvxCdDKOqUHWx8enwmB0TSZOnIjRtUxCCQ8PR3BwMLJuWppZXFyM7OxsBBux1L1nz54AgJSUFLRq1QrBwcE4ePBghddkZmYCgFHHJdJzcZHS959+KqUV7W0ugk4nCe7mzaW0k1XpS1A//DDw2mtSImPVKontt99e69uzsuTW5exZoH172YqAi2BNkJ4us9juuce2NyNUiaXjsqEx2RT6mJqZmYkmTZqUPp6ZmYlbbrnFpGMS2YJGIxPC8vOlCEa/fnUruOWo4uKACRMkrMfG2ro1ZAx3V8M72bqCPGR+Ogu6gjw0HrUIrg0MnzVhzHnUiAPSRA7G3V1WojRpIqUc09Nl0rIaxpedQEkJ8PLLMrFs9mzJdfBXT4ZiTK6MSWInFBQkY6lz5shEJxPHbioqLpbaUNHRwODBxr//77+lV/jf/8qK2mXLgEaNzNCwKvTtK4OZEyZIPcmvvpJ6zZY6Xy0KCiShefhwS7RqE4s7Zi1Cm9njkF7SuFJCuHt3yW2raQy2/ALyp56ydWvkwr1kCTBtmqycP3RIfmdkedYIsoGBgQgMDKz1dZGRkcjJyUFiYiK636h/u3v3buh0utLEryGSkpIAoHSAOjIyEgsWLEBWVlZpOeu4uDj4+PigQ4cORn4aItGuneyZExcHtGxpXxNafvkFuHABGDfOhp2yoCApQT1unMT2Xr1kRfHChbIp5E0KC6VCWEKCVMAYNcr+kvOqoSiyDNvfH7j1Vlu3hm5i6bhsaEw2RcuWLREcHIxdu3aVJoVzc3ORkJCAZ5991iLnJLIUFxfgjjtkDvRPP0l31M34LVwd1h9/AA89BAwYYOZJ7GQVLeoDGqDWktNKcRGyPp+L4r/T0HjEfLgHGF7iSwOghb99z67ggDSRA9JqZVVKkyayMiU9XSYtM8hbVGEh8PjjUkxsxQoZLycyBmNyZXY0DEnm9PLLMqY6bZqZDrh2rfTu3nrL+FHi3bsli7dtmyxH3bjR8gnbRo3KzrV9uyzF3bXLsueEJIT11THL7yF8++0y8WwBpgOurtgRNQcJCVKa7Jdf5B7j2WfldWpKEANlC8gXLbJ9WY9z52RF3qRJMgOdCWLrMmY/B2MDsrHat2+PmJgYjBs3DgcPHsTevXsRGxuLESNGICQkBACQlpaGdu3ala4MPnXqFObNm4fExEScOXMGW7duxRNPPIG77roLXW58kQYMGIAOHTrg8ccfx6+//oodO3ZgxowZmDBhQo1lsolqotHIwGhmJvDrr7ZujeEKC+X637kzcOOflW1FRQGHD8t04k8/laXNK1bINGNIPvPIEeD996UCRt++sviYCeI6OHECOH1avsBWqzVOhlJTXE5NTUVSUhJSU1NRUlKCpKQkJCUl4erVq6WvadeuHbZs2QIA0Gg0eOmllzB//nxs3boVR44cwRNPPIGQkBA88MADlmsokYXoK/Ln5wMHDjjHYJMhsrKAe++VLYE2bbJ9f5IMUFwMnD8vAxXffguv73YizKPmL7SiK8GFLxehMP04Ah+YAo+m7Y06ZZi/J7w87PvLoaaYTERm9vLLsujpv/8F7r8fyLPvPdTV7PJl2Qr6q6+AzZuZICbTMCZXZt93WWQyT09g3jzZl/iVVwyqyli9vDyp6/DYY7LU1VAFBWUbxkZHS5mO0NA6NMQEjz4qvfUnn5Ts4ksvAW+8YZZMrH6FcGKijFnXVDK6bIWwH7B4OjpNmQI0fBGoZ+3ancbRLyDv00eqTNrSxo1SqbxBA/NXKifDqG0m1oYNGxAbG4t+/fpBq9Vi2LBheO+990qfv379OpKTk5Gfnw8AcHd3x3fffYd33nkHeXl5CA0NxbBhwzBjxozS97i4uODrr7/Gs88+i8jISHh5eeHJJ5/E3LlzLfthyOE1ayZxYfduoGNHqV6ldvv2SaxT1fXWxUVWEw8fDkyZIlng//wHWYvWYNu5zjh7VipfDBjA0tJ1VlIiq4hbtpTSHaQ6aorLr7/+OtatW1f6927dugEA4uPj0adPHwBAcnIyLl++XPqaV199FXl5eRg/fjxycnLQu3dvbN++HfXUNmOSyEA+PjKfac8emRR245+B0yooAB54QBLn8fHy+yEVUhQZlc/MBDIygIsXJWB4egLBwUCXLoh2y8b6Q+dQoqt6PfHfu1fjWkoC6kfcjpJrV3H19/gKz3t3iq729C5aDaLbBJn1I9mCmmIyEVnAiBFAYCAwdKiMcX/zjfydzCY9HRg0SBYIffedVGkhMgVjcmVMEjuxJ56Qck6TJ0vZRZPLRL79NnDpkuypa6jffpP6jsnJsk/wSy/Zrr5maKhEl3ffld3u4+KADRuArl0NPkRhISrsIXz4cMWEcMeOsnewQSWjY2NlmdOUKcCN1RRqpV9Avm6d7cqM/v23JIc3bbJ8pXKqmdqCrJ+fHzZu3Fjt8y1atICilA1khIaG4ocffqj1uM2bN8e2bdvM0kai8vr2lWvY/v3AP/5h69bULDdXksS9egG+vrZuTRWCgoAPP0ThU8/g+5UnkPBje/iVZGDUsPpo1Y3ZYbP4+We5/3voIW4ApVJqistr167F2rVra3xN+ZgMyGriuXPnciIWOZTGjSU5/PPPMrk1IsLWLbINRZEJ67/8AvzwA9C8ua1bRBUUFpYlhTMzJaPv4iIJjy5dJDns7V0a/0e6+mBtQmq1hyvK/BMAcC3lIK6lHKz0fE1J4hKdglG9DC9NrVZqislEZCH9+klQGzRIMpg7dsiEWqqz5GRg4ECZp7xnj4yzE5mKMbkyJomdmIuLbJ0waJCUaRgyxISDZGbKQZ5/HmjRovbX63SSVJ4+XcpAHj4sdSptTauV8iB33w2MHAn06AHMnw9MnFipfOLNCeHERFkxXD4hXKc9hOvVk4T7qFES+e6807yf1Uz0C8gffVQS4LawaxcwerSU5d64UdpCtsMgS1Q3jRpJZY+9e2V71wYNbN2i6sXHy2rn3r1t3ZKq6UtLxx28HYXte6Cv+wH0evMBuP77uuxVPG4cyyPXRUGBfAm6dJE9uEiVGJeJ1KlVK+DqVUmQenk552V0zhypyvnpp3WsakbmodMB2dmSFM7IkJnYgJRdad5cZjcEBFR779S6cQPcGRGAfX9eqnI1cfDIN01qlotWg6hwf0QEqfim2ECMyUROols3mU09cKCUD9m2jaVD6ighQapXBgfLjpHNmtm6RWTvGJMrY5LYyQ0cKFWWX3sNGDzYhD2A5swB3Nwk6Vub1FQp6/zDD5J8nT9fNmdSk06dgIMHgZkzgSlTUPjVTvw2eT0S05uUJoR//x24fl36R/qS0WPHSqLU6IRwdR59VJLpkyfLkjIVrtAxZQG5uRQUyH7aS5bYrlI5VcYgS1R3d90FJCVJ/s2kyVtWkJEhbRw0yEwxz8yysqQvXlZaWoOGDSOBJ45IxZBnnwVWrZJl2z172rq59umnn2TWXL9+tm4J1YBxmUi9unSRRPGBA1JJxJm2QNi4UYYRFiyQ3SHIRvLyylYKZ2bKrHd3d0kIR0TIn/XrG3y4hUM7o/+SH6otOW0KV60GC4eqYFGBGTAmEzmR8HCZ+X3vvVIibMsW9ptM9M03cq/QvTuwdSsrR5J5MCZXxiSxk9NoZCFw9+7A6tXA009XfD6vsBhncq6jqEkbuOdcR4vCYnh53PjaHD8OrFwJLFpU81VaUaQnOGGCbDS0e7dsYqsyZSuEPZD497+QGDETv//kges/ucNFq0Onzhp0767B2LFlK4SN6DMZR6sF3npLbiI+/1x1vWf9AvLYWOtXTvn1V1lkfeKE7SuVU0WKYlzgVMw3fkDkMOrVk37kjh2Sv2zc2NYtqkhRZBtaf3+JhWpSWCjbZyQkAH5+EitatSr3gqAgudkZO1buSXr1kv9+4w1ZHUOGuXxZJrBFRTlXVsMOMS4TqZdGI3E+Pl7m3fTrp86JV+a2dy/w1FMyd3zqVFu3xskUFwMXLpStFr56Vb6I/v5S5S04WMZ1TJygHurniTlDOmLK5iNma/LcIR0R6udptuPZEmMykZMJCpLx7+HDZXb1Rx/JvsVksDVrpADYkCGyK6TFxuDJ6TAmV8YkMaFbNxlInTVLKi2fz7uCDQmpiE/OQmp2PhQAePJtIO4iNHE7EObniei2QRi5YTFah4ZKprA6f/8tK3Y++UQO/v77qti8sLBQylAePozqVwjf2QBjx+ej+3cL0GXHv1C/zX3AWx/IyLM19O0ry7unTgXuv19m9arEnDmy6tyQBeTmUlIiq5dnzFBXpXIqw5lYROZx221S1CIuTuKzmqSkAKdPS/9WLdWaS0tLx0l879sXiIysoX2RkcChQ8CKFRLIvviCJaiNsWuXVIJRa61xKsW4TKRurq6yZeGuXZI87dPHscPQn38CDzwgc7RWrlRlsSzHoigysUu/t/DFi3Kh9/SUhHDnzjIb0c3NbKcc0SMMF68WYvHOE3U+1uQBbfFID/vfi1iPMZnICXl7y/LXsWOlYmRmJvDii7Zuleopiszjnj5dFrMtW+bY90dkfWqJyWfOnMG8efOwe/duZGRkICQkBKNGjcL06dPhbuU8EJPEBACYNw/4Yns+Biw8gnTlIly0mirLBCkAzmbnY/2BM1gb/hDu7HI/FuaVILSqqtG7dskU4bw8YNMm4JFHLP45qqJPCCcmliWFqysZXXmFsCcwaQ7wSQfgmWekI7V2rexdbA2LFgFduwIffAC88IJ1zlkL/QLyN9+0Xr787Fn5Kv34o3orlRMRmYuLi2wF8emnkpSNiLB1i4ROJ4nY5s2BNm1s3RqRmQl8+2350tIGLm51cQGee05mdk+ZIhPa/vMf4N//ZgnqmqSnS0mPe+9lICYiMgNPT5lzEx8vE8R69XLM5GlOjoQOX19g82ZVzX92LIWFZeWjMzJknyYXFyAwUAY6goMlaWHBL1lsdGsEeHtg1tajKNYpRpWfdtFq4KrVYO6Qjg6VICYiJ+bmJuPITZpIKcT0dMmAsiRilUpKJI++bBkwd64sFHLE+yIiADh+/Dh0Oh1WrFiBiIgI/P777xg3bhzy8vKwePFiq7aFSWICAOzPSkXwP48irUSBRotab+RLbjy9L98d/Zf8gDlDOmKE/ia+oEBWv77zjtTNWrvWarvKl08I65PC5RPCHTvKCi2jS0Y/8ohM8x49WkagX3hBsqSWrnXRqZPU45o7F3jiCVWswp4yRf531rSA3FwURUqKTJggg/4qrVRON6hlJhaRI2jXDggLk6RseLg6+pC//CJVCseNs31HraBASksfPCgTlh5/XH5PRgsMrFyCeswY6bgHBpq72fZNUaQOemAgcOuttm4NGYBxmcg+NGok85P27ZO+q6NVS7p+XeZkZWTIbgX+/rZukQPR6YDs7LIS0n//LY83bCg3ksHBsqWGlZdgjegRhjtaBWDaliPYk1L9IgQ9/fNR4f5YOLSzw5SYLo8xmciJaTQyhtykCfDyy8D589IHNWMlB0dQUCD9+s2bZf722LG2bhE5KrXE5JiYGMTExJT+PTw8HMnJyVi+fDmTxGR978eflHJAGuMHfUtuzAydsvkILl4tRKxfvpSVTkkBliyRZKqFRrYNSQhXv0LYBM2ayUaM770nmdLvvgM+/ljqdVvS3Lmyp/OiRTJobUN79gD/+58kbi29Z1Z2tize/uwzVVUqpxqoJcgSOQKNRuYkrVoFJCXZPidXWCirnLp0AUJCbNeOm0tL9+sned06j33qS1CvXAlMmyY90wULgPHjWdtK78QJ4MwZCcr8ndgFxmUi+9G0qcTY334DGjQAWrSwdYvMQ1GA55+XiV07d8q2QVRHeXllK4UzM2WvYXd3KR0dESF/qmDjxlA/T6wf0xMnM29sZ3YiC6mXbmxndoMGQJi/J6LbBGFUrzBEBDWwVXMtjjGZiPDiizJ55/HHgaws4PPPpboDISdHtqRISAC2bJF9iIksxdSYnJubW+FxDw8PeJi5wtrly5fhZ63SreUwSezkNh1KNct+MQCweOcJBO54H4+4ukrGtlMnsxwXqJwQTkyUv9+cEB4zRlYK1zkhXB2tVsqD9O8vG0X27ClJ3MmTLTdgGhIiNZYXL5bSmKGhljlPLRRFPuatt8pelJb03XdSXjo/36aVyslI7PgSmVfTphJK4+PlT1uWZty7t2y/X1vJzAS2bQNSUyXuDxgA+PiY8QQuLlJ2+qGHpCLKc89Jln7ZMslEO7OSEhndDw8HWre2dWvIQIzLRPalTRvgyhXpSnt5OUZBiyVLgBUrgA8/BKKjbd0aO1VcLKVc9EnhK1dkNqGfn2Tdg4NlObqty7xUo3XjBpg9pCNmoyPyCotx5lIeiop1cHfVooW/F7w8nGNYkjGZiADIAGdgoGREo6OBb74BgoJs3SqbSksDBg0C/vpLdq6MirJ1i8jRmRqTQ2/KycyaNQuzZ882W7tSUlKwdOlSq68iBpgkdmrnsvMxa+vRKp/TFV1DbsJmFKYno+j8CegKrsJ/8Evw7tK/+gMqCl4f8CyiXroLocG+JrfL0ITwP/8pf3btaoOJsp06yfSmWbNkxdG2bcBHH1luyverr8rqppkzpXy3DXz+uXzk3bstV/b02jUZl3/3XatXKiczYMeXyPz69ZNKCvv22a7cfm6ulIfs1cvA/X7NrHxpaX//OpSWNlRgoCSH9SWoIyPlpuPNNx1jxN4UiYnApUuSQFfpIDRVxrhMZF80GpmQm5cncb9vX1lVbK+2bgUmTQJee012UCIDKYrcfOlLSF+8KBdoT09JCHfqJAkFO9zY2cvDFR1DbHAzqQKMyURUqm9f4McfJTN6xx2ypY9FO7jqdfw4MHCghL69e4H27W3dInIGpsbkc+fOwafcSoXqVhFPmTIFixYtqvGYx44dQ7t27Ur/npaWhpiYGAwfPhzjxo0zvHFmwiSxE5u25QiKq9kXRpefi8t7/wsXn0C4BbVEYeqR2g+o0aBY64pp3yRj/ZieBrXBLhLC1fHwkAHjwYNlv+AuXYClS+W/zT2A2qABMHu2DFa//LL8IqyoqEiSt/fcY7kZ4ElJUsHy1CmLVyonC2HHl8j8fH3L9ins3t02g8W7d8s4ZO/e1j2vvrT0zp0Sh8xWWtpQvXpJZnrlSmD69LIS1E8/7VzllvVZ+q5dZR8tshuMy0T2R6uVuUm7dwM//SSxzw5zgfjlF+DRR4GhQ4GFC23dGjtQWCirhPVlpAsK5F4jMFDGGRo3lptATtSyW4zJRFTBLbdIJ3/gQFk6u22b7feYsrL9+4F775UCmtu3SyU1ImswNSb7+PhUSBJXZ+LEiRg9enSNrwkvNzEkPT0d0dHRiIqKwsqVKw1vmBkxSeykTmZewZ6Ui9U+7+Lth2ax6+Hi3QiF508iY93LBh23RKdgT8pFpGRdqbSfTGGh7Bl8+LAdJoRrctddwK+/ymZLo0cDX30lNbX8/c17nrFjgXfekZrPO3ea99i1WL4cOH1a9iM2t5ISqaQ9cybQoYPZK5WTFbHjS2QZd94pg63x8dbfm+f8eQlxgwfL3ChrsXhpaUPdXIJ6wgRg9WrnKkH900+SpbdlrXEyCeMykX3ST8zatUvGj++6y74mz6alAffdJ3279evtq+1Wo9MB2dllJaSzs+VxHx8gLExWDAcEONekNAfHmExElbRsKctn77kH+Mc/ZDPe/jVU8HQgX38NPPywbBn5v//JrglE1mLpmBwYGIhAA6vQpaWlITo6Gt27d8eaNWugtdGNM5PETmpDQipctBqUVLOSWOPqBhdv067QLloN1u1NxQNhHZGYWJYULp8Q7tBBAoHdJYSr07ChlJu+7z5ZYdS5M7BmjcwIMxc3N2DRIpmOvXOnjJhbQU4OMG+e/L/q2NG8xz5zRhZe//ST5L7nzrVuEoLMix1fIsuoV0/6jNu3y6rixo2tc15FAeLiZIzSWpOarV5a2lDOWoI6J0emeEdF2abWONUJ4zKR/fL2lkvvjz9KX/q22+xjEWlennSJNRopN+3paesWqUheXtlK4awsGRxxd5cbu/BwSQzb9aAI1YQxmYiqFBgos8GHD5eZ2evWSSkOB7Z6tQyd338/sGGDjHcQWZNaYnJaWhr69OmD5s2bY/Hixbhw4ULpc8HBwZY5aTWYJHZS8clZ1SaI66pEp2DNjizMX9GxNCFslyuETTF8uPTmn3oKiIkBYmMlsWuu3vH998t+FZMnS+0xK8wsfvNN2St4zhzzHVNRZFZ5bKzMFouPlwQI2TdFMS5wKpa5BBE5pNtuk8RpXBwwapR1znnypFSRGDHC8uFGUYDffpPPZ5PS0obSl6D+z3+AadMcvwT1rl3Sa7d2rXEyC8ZlIvsWGFgW/xs0AMptW6ZKJSWyfdDJkzIJ2Ol3KCguBi5cKEsMX7kij/v7A23aSFK4USP7yP5TnaklJp85cwbz5s3D7t27kZGRgZCQEIwaNQrTp0+Huz3WtidyBF5espx23DjgscckZrxsWEVPe6Io0nWeOVOKdS1d6phdaFI/tcTkuLg4pKSkICUlBc2aNbvpnNbtnDNJ7ISuFhYjNTvfoudwbZSP+D3FuP1WV+ebPdy0qSz3ev994LXXgO++k6lR5liGpdFIbebISODjj4Enn6z7MWuQmioVrl99VfaIMIdLl2Qs/YsvZIXY0qVcnOQo1DITi8gRubgAd98NfPIJkJICRERY9nw6nSRsW7SQcUxLUk1paUO5uADPPFOxBPWqVVKCOjLS1q0zn/R0ydzfdx/LfNgpxmUi+9e8ueQWjxyR1cU3jR+pypQpsvPS1q0yMdzpKAqQmyuD+xkZwMWLcmH19JTVwp06AUFB9rnJNNWZWmLy8ePHodPpsGLFCkREROD333/HuHHjkJeXh8WLF1vmpERUOzc3qUgZEgK88or0xRYtcpg9G0pKZJfG5cuB+fNlvjXnSJGtqCUmjx49uta9i62FSWIndPZSHqwxFyEwPA+enk6a/dNqgRdekL0kRo6U+qBz5kjSuK7TpHr1khXLM2bIBg4WXJY9c6YkcCdPNs/xduyQRdYFBcCnn8rHIMehliBL5KjatpVt6uLipCqhJfuLP/8sY5sPPmi5zltBgVSSOHRIZaWlDRUQICuKx4yRRLG+ksibb8ogsD1TFAnagYFAt262bg2ZiHGZyDF07AhcvSorij09AT8/W7eoslWrZC7zO+/I1opOo7BQSkfrE8MFBdLfDwwEunSR5HCDBhwJJ9XE5JiYGMTExJT+PTw8HMnJyVi+fDmTxES2ptEACxdKKY4XXwTOnwc+/NDuJxcVFMjQ+P/+J/cLY8bYukXk7NQSk9XEMaajkFGKiq3zzbbWeVStQwcgIUGyrDNmSE3l06frftyFC2Xp1Tvv1P1Y1UhKkpLQs2dLv7Yurl2TnHlMjEygPnKECWJHpA+yxvwQkeE0Glllm5Ul12hLKSyUfYG7dLFMqUhFAX79VQpu/PKLlJZ+5hk7SxCXpy9BvXw58OWXks1ftkymS9ur5GTgzBn5wrEGmN1iXCZyDBoN0KOHTN7duxfIt2xRMKPt2iVlI597Tvp8Dk2nk1l0v/8uH3zrVuDAASA7W2by3XWXbBF1551A69ZSGoUJYoLpMTk3N7fCT2FhodnbdvnyZfipcfYJkbN6/nlg0ybgs8+kqpN+uwI7lJMDDBwIfPutdJWZICY1YD+5MiaJnZC7q3X+t1vrPKrn7i5J3R9/BNLSZNR9zZq6FbSPiJCe+BtvyD5HFvDqq1JidOzYuh3n559lL+r//Ad4912pxN20qXnaSETkbJo2BTp3lhW4RUWWOcfevZIo7tvX/MfOyADWrpUOYosWsjf9HXc4QB5SX4L6xAkpQx0bKyP6+/fbumXGKykpW67eurWtW0NERJAwc8cdUkXkp5+A69dt3SJx/DgwbJhM+Hr3XQfNh+bnA3/+CezbJ0nh+HjZ+8PTUzaNvvdeGQHv2lVWDtv9TQ2pSWhoKBo2bFj688Ybb5j1+CkpKVi6dCmefvppsx6XiOro4YdlAPXAASA6WhYK2Zm//pI5U/p5Vffea+sWEVF1mMVzQi38vWDxvpsCzJ3shf/7P1mNlJtr6RPagd69ZenUQw8B//yn9KYvXjT9eDNnSi983jzztfGGHTtkfPjNN2VbDFOUlEgOu2dP2cowMVFmljvIdhpUBc7EIrKOvn2lQsO+feY/dm6u5DV79TLvfvEFBTJ7eOVKGWt9/HEJh6ree9gU+hLUBw5IwIuKkpiflWXrlhkuMRG4dElWETvkaL/zYFwmciz16kmXMi9PilXVZc6xOVy8KKWlmzYFPvkEcHWUzcyKi2VWW1KSDNB/843ExoICmUXdt6+sFo6MBFq2tOj2T+Q4TI3J586dw+XLl0t/pk6dWuXxp0yZAo1GU+PP8ePHK7wnLS0NMTExGD58OMaNG2fpXwERGSs6WhYcpafLTLFTp2zdIoMdOyZd4dxcmYQeGWnrFhGVYT+5Mke5jScjeHm4IszPE2ezLVenykvxxF9nXPH1l2XlsNq0kRWl+p9bb3XAweHa+PjIKuJ77wXGj5flYB9+CAwaZPyxAgKAqVMlWfz882Zb7VNSItWxe/eWvq8pTp8GnnhCbgRee022Y7bzLTTIANzTgcg6fH1lAs6+fRJP67olQHm7d8v1undv8xxPUYDffpOJR0VFstKoVy8nWGTTs6eM4K9aJbF6yxZg/nxZbazmD6/fKLprV8vUGierYlwmcjwNG8pA608/yfzjW26xTTsKC4GhQ2Wv5F27zDuxzOoURUaxMzJkpdaFC3JBrF8fCA6W/ZKCgtihpToxNSb7+PjAx4CBs4kTJ2L06NE1via83N4u6enpiI6ORlRUFFauXGl4w4jIurp2lY7/wIGSdd22TQYBVGzfPhn2btZM5lqFhNi6RUQVsZ9cGZPETiq6bRDWJ5xFia766ce5iV9BV5CHkqvZAIBrKQdRfEVWvvp0vw/ael5Vvs9Fq8HwyCDMXiSTcI8fl4m3+p8vv5QVUIATJ46HDZPe/T//CQweLBs4vfWWlKwyxosvyr6H06bJXhVmsH697Bl84IDxC4gUBVi3TlYM+/kBP/wgpUXIOTDIElnPnXfKfr67d5s+oedm58/LgPPgwVIBoq4yMqQPe+4c0LGjLEx1ihiv5+ICPP20xPxp02RC16pVErejomzduqrt2SM1TPv1s3VLyAwYl4kcU3CwJId/+QXw9padiKxJUWRLokOHZF5RixbWPb9ZFBVJQlifGL52TSqABAXJRO7gYJmFx4oaZCaWjsmBgYEIDAw06LVpaWmIjo5G9+7dsWbNGmhZ7o1I3Vq0kFU4994L9OkDbN4M3H23rVtVpa1bgUcekTnTX34pE9yJ1Ib95MqYJHZSI3uGYe3+MzW+JjdhC0pyy8oj5p/YB5yQ2pbeHaOrTRKX6BSM6hUGQEpOdeokP08+Kc8bkzi+7TagWzcHHVQOCZHam8uWydLdXbuAjz+WD22o+vVlZdLo0VIftI71O/LzgRkzgOHDJaAb4+JFGQvfvFn+X7/3noP+f6NqMcgSWU+9etI//PZbWZnbuHHdjtuso+IAACLXSURBVKcowM6dUqSirhOT9YtRDx0C/P2lskTLlnU7pl0LCJA622PHAhMmSKmw0aOBRYtkMFotcnJkhtgddzCAOwjGZSLHFREhq3iTkiRRHBxsvXPPny/d1k2b7Kh8pE4HZGeXJYazZSI8fHyA0FD5BQYEqLvaB9k1tcTktLQ09OnTB82bN8fixYtx4cKF0ueCrXkhISLjBATIuPHDD8us7rVrgZEjbd2qClatknHhBx+UBUj16tm6RURVU0tMVhMmiZ1U68YNcGdEAPb9eana1cTNnvvQ6OO6aDWICvdHRFD1tS8NSRwfPlx14vi22+RPh0kcazRAbKys2Bk1SnrZs2YBU6YYvqnTqFHAkiWSaN6zp06znd99V7ZNfOMN49737beyKLqoCPj8c1k0Rc6HQZbIurp3l4rGO3dKKKjLYpeTJ4EzZ4BHHzV973hFkZXI330n8aB/f5lwxPHWG26/XZKwq1bJyuLyJajVsJHjrl3Sk7/jDlu3hMyEcZnIsXXtKoni/ftlm1xrlHzetAl4/XVg7lxZKaRq+fmSEM7IkE7u9euAm5vMrAsPlz+NreRFZCK1xOS4uDikpKQgJSUFzZo1q/CcYuuNzomoZl5eMlj+9NMyAJCRAUycaOtWQVGkW/v66zIn+t13OQZA6qaWmKwmKhiRIltZOLQz+i/5ocaS08Zy1WqwcGhn499nYuJYnzS2+8Rx+/bSu58zR5LE27bJtKtWrWp/r4uLlKoeMEB+QUOHmtSECxckOfzss4adFpB+9+TJwL//LdtjfPgh95pwZopiXOBkH5SoblxcpMrUJ58Ap06ZXm5Sp5M9g1u0MH17+/KlpTt1knbZbUy2pJtLUL/wQlkJalsmZ9PSZPPo++4zT61xUgXGZSLHptHIZKz4eNmjuF8/y67a2b9fCmGMGiXVp1SnpEQ6tfrE8JUr8ri/v9zgBAfLnkgsIU02oJaYPHr06Fr3LiYiFXNzA1avlsHXSZOA9HQZE7ZR2fiSEln79MEHwIIFwNSpDLOkfmqJyWrCJLETC/XzxJwhHTFl8xGzHXPukI4I9TPPbNzaEseHD8ufW7Y4SOLY3V0i6uDBwOOPy0ZT77wjS3Rri7B33y1J4tdekz0q3NyMPv3cuXKamTMNe31iolQ2OXsWWLpUZovxRsC5cSYWkfW1bQs0by6ricPDTesb/vyzbBnw4IPGX8dZWtpEN5eg7t1bbnYWLap77XBj6WuNBwXJjRM5DMZlIsfn5iYhZNcu2a6wTx/LrN45fRq4/36gRw+Z26SKfp+iALm5ZSWkL1yQC1n9+pIQ7tRJYpu7u61bSsSYTETmo9HI0t0mTYDnn5cYuGaN1ePdtWvAY48BX30li4aeesqqpycyGWNyZbaZZkKqMaJHGCYNaGOWY00e0BaP9Agzy7Gqo08cP/mkJCb37ZN+4ZEjEg8HDJAO7IwZ0kH29QXatZNk5ttvAz/8IK9XtTvukHqdDz8sg8cPPigd3tr8619ASgrwn/8YfcqTJ2XW17RpMm5dk+JiyWX36iWVTn7+WWaNqWKggGxKH2SN+bGk7OxsjBw5Ej4+PvD19cWYMWNw9erVal9/5swZaDSaKn8+++yz0tdV9fymTZss+2GIqqHRyDyhCxeAX34x/v2FhZLk7dpV+piGUhTZB/H99+XP/v2lajITxEbSl6BesUJ6123byg1OcbH12pCcLLXGBwxgXTAHo6a4vGDBAkRFRcHT0xO+vr4GvWf06NGV4m1MTIzlGklkpzw9pQt5+bJM2jL3aofLl2UecoMGMkHbpgUnioqkbMmhQ8A338gkpyM3Jr137izlre65R2aON2vGBDGphppiMhE5iAkTgE8/lX3/7rmnrIKGFfz9t3Qfd+wA/vc/JojJvjAmV8aVxITY6NYI8PbArK1HUaxTjCo/7aLVwFWrwdwhHS2eIK5O+RXH+qo5+hXH+tXG5VccazRlexyrdsVxgwZSPuTee4Fx46TD++GHssq4Ol27yhKu2bOlBli5D5RXWIzTOXlwb6LD6Rwt2hZ6wcuj7J//1KmSHHjhhZqb9eefssj5wAHZNnnWLPa7qYzaZmKNHDkS58+fR1xcHK5fv46nnnoK48ePx8aNG6t8fWhoKM6fP1/hsZUrV+Ktt97CoEGDKjy+Zs2aCgPVhg54E1lC06YSJuLj5c/y1+W8wmKcybmOoiZt4J5zHS0Kiytc/3/6ScZbo6MNPx9LS5uZiwswfnxZCeoXX5R7ADOVoM4rLMaZC/ko0nnB/UI+WviX+w6UlJQtQze1XjmplpriclFREYYPH47IyEisXr3a4PfFxMRgzZo1pX/3YDl0oir5+cm8o/37AW9vic/VySssxpnMPBTlaeGemYcWng0q3BuUV1wsc5fT0+XYtU0oNjudTkai9SWks7PlcR8fIDRUqm8EBnKSE6memmIyETmQhx6S4Hz//bJaats2gytT5RUW43hGHk5c0gEZWrRr6lXt/UB5584BgwZJWN69WxYREdkTxuTKmCQmALKi+I5WAZi25Qj2pFyEi1ZTY7JY/3xUuD8WDu1sthLT5lJd4vjYsbKkcU2J49tuk8RxgwY2/Riyv3CvXsCYMTIr7JlngMWLZQlvVebPl80p33oLJ2NfxYaEVMQnZyE1Ox8KgCZPAhPjgElxQJifJ6LbBqFjvTB88UUDrFsnlbmqoiiyUvvFF6UP/uOPtt06kdRJTUH22LFj2L59Ow4dOoTbbrsNALB06VIMHjwYixcvRkgVm2e7uLggODi4wmNbtmzBww8/DG9v7wqP+/r6VnotkS317Qv88YeUmmzW4Uql6z+efBuIuwhN3I7S6/+QjmE4cKABIiOBhg1rP0dBgXQCDx+WfihLS5uZv7+sKB47FnjuuTqVoD6ZWcV3AB2BTcnQILn0OzCyfg5aZ2dLBoAlQRyOmuLynDlzAABr16416n0eHh6Mt0QGatZMJosdOSL92ObNy56rOi7UA5J/hQa/lsWFnmFo3Vg6wYoik4h37wa2b5cKXVaRny8jz5mZ8nP9utTVbtxYJjU1bizLp4nsiJpiMhE5mD59gD17JHMbFSXLe6uZAFz1/QCAeEADVHk/UN4ff0jRDhcXGXto29ZSH4rIchiTK2OSmEqF+nli/ZieZQHjRBZSL5ULGLgRMPw9Ed0mCKN6hSEiyNZZVMO5ukqnuXNn4xPH+n2ObZI4btJESmktXw5MmiQbTn38sUwVv1mzZjj30hRMO+WGPe/8WG2yXwFwNjsf6xPOokR3Bq3GBOAfgzsDqNzZvnBBFjh9+aWUD3nnHa4YI/PKvakGvIeHR51XCu3fvx++vr6lCWIA6N+/P7RaLRISEjB06NBaj5GYmIikpCQsW7as0nMTJkzA2LFjER4ejmeeeQZPPfUUNEywkA35+gKtuuZjxq4jSNtZ/WSv8tf/tfvPINQtAI90qPr6X/oeRXZBiIuTuNm/P9CzJxftWEyPHlKyY/VqKfXx5ZfAvHnAs8/KzUwNzmXn1zrhr/Q7cOAs1ioK7vTpjoXuPgi1zKchO2SJuGyq77//HkFBQWjUqBH69u2L+fPnw9/f3yZtIbIHbdtKtcnDh2Ve8TWtEXHhxr3BnREBWDi0Mzav98Ty5bKbUb9+Fmx0SYl0OvWrhfXlMv39gdatZX9hPz9OZiIiIqpOly6yJ+PAgZIo3rZNBrNvMKqfeNP9gH5h2N69wH33SSGPb78Fqlh7QUR2ikliqqR14waYPaQjZqOjlKK6lIeiYh3cXbVo4W9Y6Ql7YWjiePNmWUGlTxzrk8ZWSxxrNLKqqF8/KSUdFQW8/rqUpSw3YLzpUCpmud6O4tDrAFBr6XD987rASxjw7g+YM6QjRpQrG75tG/DPf8rv5IsvZHtkouqYOhMrNLRiamLWrFmYPXt2ndqSkZGBoKCgCo+5urrCz88PGRkZBh1j9erVaN++PaKioio8PnfuXPTt2xeenp7YuXMnnnvuOVy9ehUv1FavnciCNh1KxeyDR1FUItd1Q6//acWXcM+yytd/vfPnJRb89ZdU5xgwQAVVNpxBVSWoV62SEtS9e1f5lk2HUku3DgEM+A7c2LRy3xUt+i+p/jtA9ktNcdkUMTExePDBB9GyZUucOnUK06ZNw6BBg7B//364cJYKUZU0Gumj5uUBi7ekYkuqEXHhxvP7/ryEvv/3AzK3dcSkSWEYO9bMjVQUIDdXVglnZEiCWKeTslbBwUDHjrJamPsakQPhqiUisrjmzSWTe++9srr4iy+AgQON7yeWux/Q9xPrpYXh0Uel2OWXXxpWiYxIrRiTK3OcbB9ZhJeHKzqGONeV35DE8eHDEmutnjhu21Zmhs2dC8yZI1O31q8HIiLwfvxJLN55Ql6nNW7gTAcFhcUKpmw+gotXC/HU7a0xaRLwwQdATIxsh9ykiQU+DzkUU4PsuXPn4FNueXpNq5WmTJmCRYsW1XjcY8eOGd6Ialy7dg0bN27EzJkzKz1X/rFu3bohLy8Pb731FpPEZDMVrv9G0ikVr/+x0a0BSEWN+Piy0tJPPgm0aGHGRpNhypegnjABuPNOqfP9r39VKEFdl+9AiQKUFOsqfQfI/lk6Lhsak9uZWKN2xIgRpf/duXNndOnSBa1atcL333+PfhZd1khk37Ra4NfrJ7HpTxPjgk5BsaLAL+YIQvsXAjBDXCgqKisfnZEhNxparexl1LmzJIcbNOBqYXJYHJAmIqvw95cKlI88Atx7L97/13+xOKuavQVrUaJTUKKTsYKcHwtx332tsX49YKMCQ0Rmw5hcGZPERAaoLXF8+LD8WT5x3LZtWdLYrIljNzcpOzloEPD448Att2DTnBVYfNHXDAcHFu88gXfe8ED6T2FYtkyqW7KvToYwNcj6+PhUGIyuycSJEzFa/4+wGuHh4QgODkZWVlaFx4uLi5GdnW3Q3oaff/458vPz8cQTT9T62p49e2LevHkoLCy0WTlOcl6bDqWanBy82eKdJxDg7YG2rmH47juJc3ffLbsbcNGejZUvQT1lSlkJ6ueew6Zf0s36HQj09sAjXFHsECwdlw2NyeYSHh6OgIAApKSkMElMVINNh1KxZHfd4oK+//f2dyfQ2MeEuKAoQHZ2WQnp7Gx53MdHNk8ODpYEMW8wyElwQJqIrMbTE9iyBZtefMPkBPHNfO86gaFDPeDhwX4i2T/G5MqYJCYykc0Tx1FRQFISzk2agVnn6wOuSqVsbuH5E8g7sgsFqUdQfDkT2vo+8AhpC9+7HoebX9MqD6soQPEtR7FtQQD69Kh+j0qim1kjyAYGBiIwMLDW10VGRiInJweJiYno3r07AGD37t3Q6XTo2bNnre9fvXo1hgwZYtC5kpKS0KhRIyaIyerOZedj1taj1T6vK7qG3ITNKExPRtH5E9AVXIX/4Jfg3aV/te+ZseUoHnALQFRXT9x9N0tLq4pWC4wbJ3s/TJ8OvPQSzm3cjFn9Jlf5clPuAQDg9a1HEdUqoHTvKbJflo7LhsZkc/nrr79w6dIlNGF5G6JqWeLewOC4kJ9ftlI4MxO4fl0mODduDISHy5+ejC3knDggTUTWdC63CLP8bgOKSwBUXvljyv3A7K+OoncE+4lk/xiTK9PaugFEjkSfOB49Gnj/fWD/fuDKFeC332TxT79+wKlTsr3gP/4hezi0by/bDC9ZAuzZA1y9asQJGzTAtNsfQ7Gbe5XLfXMPfI785H2o17wrGvUfD++uA1Fw7necX/Miii6cqfKQGg3g4qZg9W9HTPodkPNSlLJAa8iPUvM2KHXSvn17xMTEYNy4cTh48CD27t2L2NhYjBgxAiEhIQCAtLQ0tGvXDgcPHqzw3pSUFPz4448YW8UGbF999RVWrVqF33//HSkpKVi+fDkWLlyI559/3nIfhqga07YcKd1XqCq6/Fxc3vtfXL90Dm5BLQ06Zomi4EzgETz4IBPEquXvL/tBHDyIaV0eRPH14ipfZso9AAAU6xRM28J7AEegpricmpqKpKQkpKamoqSkBElJSUhKSsLVcje+7dq1w5YtWwAAV69exeTJk3HgwAGcOXMGu3btwv3334+IiAgMHDjQcg0lsnOWuDeoNi6UlEhCOCkJ2LED+OYbmSmdnw+0bg307QsMGQJERgItWzJBTE5NTTGZiBxf2f1A1aUhzXo/QGRnGJMr40piIgsrv+L4qafkseJi4I8/yvY4rm7FsX6f427dAG/vysc+mXkFe1Iuorqg36DHUAQMmQyNi1vpY17t70T66ljkHvgcAfdNqvJ9JToFe1IuIiXrCiKCmCUgw+h0xpUmt/RMrA0bNiA2Nhb9+vWDVqvFsGHD8N5775U+f/36dSQnJyM/P7/C+z788EM0a9YMAwYMqHRMNzc3LFu2DC+//DIURUFERATefvttjBs3zrIfhugmZdf/6rl4+6FZ7Hq4eDdC4fmTyFj3cq3HVaDgcBqv//bgZGhb7PHPrPZ53gOQmuLy66+/jnXr1pX+vVu3bgCA+Ph49OnTBwCQnJyMy5cvAwBcXFzw22+/Yd26dcjJyUFISAgGDBiAefPmsXIHUTUsdW9QGhcyryCivlJWQvrCBblw1K8v5aM7dJDVwu7u5vpIRA5DTTGZiBybxe8H2E8kO8eYXBmTxEQ24OoKdOkiP8YkjvVJY33ieENCKly0GpRUM1u8XrP2lR5z82sK94AwXL94rsY2umg1+PhAKmYP6Vjnz0vOQW1B1s/PDxs3bqz2+RYtWkCpYjrYwoULsXDhwirfExMTg5iYGLO1kchUtV3/AUDj6gYX70ZGH5vXf/vAewCqjZri8tq1a7F27doaX1M+JtevXx87duywXIOIHJBF7w00wMef/IDZTa7J9geBgTILunFj2WfYmIsNkRNSU0wmIsfGsQKimjEmV8YkMZFKGJo4/vzzssRx8wlZULyNq3mgKApK8nPgFhBW4+tKdAriT2RhNhj4yTAMskTWE5+cVWOnry54/bcPpnwHeA/gXBiXiZyLRe8NFCD+iitmP3ynJIhdXCxyHiJHxZhMRNbCsQKimjEmV8YkMZGK1ZQ43neoGG+ezK/5AFXIO/o9Sq5cgm/vkbW+NvVSPvIKi+HlwUsF1Y5Blsg6rhYWIzXb+Ou/MXj9VzdTvwO8B3AujMtEzsMq9wZXS5DXKABeTBATGY0xmYisgWMFRLVjTK6M/5qJ7Iw+cewSkIc3U4x77/VL55AdtxweTdvBq3O/Wl+vADhzKQ8dQxqa1lhyKgyyRNZx9lIeLDMvuIwCYPvePLT05fVfjU7nGP8d4D2A82FcJnIe1ro3YFwgMg1jMhFZA+8HiGrHmFwZk8REdqqo2LgrVMnVv5H12RxoPbwQ8MBUaLSGzQA39jzkvBhkiazDWtflx0bpUHTeKqciI7k30aHJk4a/nvcAzolxmch5WOt6zbhAZBrGZCKyBt4PENWOMbkyJomJ7JS7q9bg1+oK8pD56SzoCvLQeNQiuDbwt8h5iIjI8qx1Xd74sRYtfa1yKjLS6RwtJsYZ9lreAxAROT5rXa8ZF4iIiNSL9wNEZAomiYnsVAt/L2iAWsuIKMVFyPp8Lor/TkPjEfPhHhBm8Dk0N85DZAjOxCKyDkOv/3WhARBzhxe8PCx4EjJZ20IvTIrjPQDVjHGZyHlY696AcYHINIzJRGQNvB8gqh1jcmWc9kFkp7w8XBHm51njaxRdCS58uQiF6ccR+MAUeDRtb9Q5wvw94eXBuSRkGJ3O+B8iMp4h1/+64vVf3XgPQIZgXCZyHrw3IFI3xmQisgbeDxDVjjG5Mv6LJrJj0W2DsD7hLEp0Vc8R+3v3alxLSUD9iNtRcu0qrv4eX+F5707R1R7bRatBdJsgs7aXHJuiGBc4FUtObSRycLVd//VyE7+CriAPJVezAQDXUg6i+MpFAIBP9/ugrVd5BjCv//aB9wBUG8ZlIufCewMi9WJMJiJr4f0AUc0YkytjkpjIjo3sGYa1+89U+3xR5p8AJNBfSzlY6fmaBohLdApG9TK8LCWRsTOrnGEmFpGl1Hb918tN2IKS3KzSv+ef2Aec2AcA8O4YXWXHj9d/+8B7AKoN4zKRc+G9AZF6MSYTkbXwfoCoZozJlTFJTGTHWjdugDsjArDvz0tVzhALHvmmScd10WoQFe6PiKAGdW0iOREGWSLrqe36r9fsuQ+NOi6v//aD9wBUG8ZlIufCewMi9WJMJiJr4f0AUc0YkyvjnsREdm7h0M5w1Rqx27oBXLUaLBza2azHJMfHPR2IrIvXf+J3gGrCuEzkfBgXiNSJMZmIrIn3A0TVY0yujEliIjsX6ueJOUM6mvWYc4d0RKifp1mPSY6PQZbIunj9J34HqCaMy0TOh3GBSJ0Yk4nImng/QFQ9xuTKmCQmcgAjeoRh0oA2ZjnW5AFt8UgP7i9BxmOQJbI+Xv+J3wGqDuMykXNiXCBSH8ZkIrI23g8QVY0xuTLuSUzkIGKjWyPA2wOzth5FsU6pcd+Jm7loNXDVajB3SEcGfTKZsUHTGYIskTXw+k/8DlBVGJeJnBfjApG6MCYTkS3wfoCoMsbkypgkJnIgI3qE4Y5WAZi25Qj2pFyEi1ZT4w2A/vmocH8sHNqZZUOoThhkiWyH13/id4BuxrhM5NwYF4jUgzGZiGyF9wNEFTEmV8YkMZGDCfXzxPoxPXEy8wo2JKQi/kQWUi/lo3z41wAI8/dEdJsgjOoVhoigBrZqLjkQBlki2+L1n/gdoPIYl4mIcYFIHRiTiciWeD9AVIYxuTImiYkcVOvGDTB7SEfMRkfkFRbjzKU8FBXr4O6qRQt/L3h58J8/EZEj4vWf+B0gIqLyGBeIiIiI9wNEVBX+yydyAl4erugY0tDWzSAHpyjGza5SDN8KhYhMxOs/8TvgvBiXiagqjAtE1seYTERqw/sBclaMyZUxSUxERGah0wEajeGvd4YgS0REZCuMy0REROrAmExERKQOjMmVMUlMRERmwSBLRESkHozLRERE6sCYTEREpA6MyZUxSUxERGbBIEtERKQejMtERETqwJhMRESkDozJlTFJTEREZsEgS0REpB6My0REROrAmExERKQOjMmVMUlMRERmwSBLRESkHozLRERE6sCYTEREpA6MyZUxSUxERGbBIEtERKQejMtERETqwJhMRESkDozJlWlt3QAiInIMOp3xP5a0YMECREVFwdPTE76+vga9R1EUvP7662jSpAnq16+P/v374+TJkxVek52djZEjR8LHxwe+vr4YM2YMrl69aoFPQEREZDq1xOUzZ85gzJgxaNmyJerXr49WrVph1qxZKCoqqvF9BQUFmDBhAvz9/eHt7Y1hw4YhMzPTMo0kIiKyILXEZAAYMmQIwsLCUK9ePTRp0gSPP/440tPTLXdCIiIiFWFMroxJYiIiMgs1BVkAKCoqwvDhw/Hss88a/J5//etfeO+99/DBBx8gISEBXl5eGDhwIAoKCkpfM3LkSBw9ehRxcXH4+uuv8eOPP2L8+PGW+AhEREQmU0tcPn78OHQ6HVasWIGjR49iyZIl+OCDDzBt2rQa3/fyyy/jq6++wmeffYYffvgB6enpePDBBy3TSCIiIgtSS0wGgOjoaHz66adITk7GF198gVOnTuGhhx6y3AmJiIhUhDG5Mo2iOMOCaZGbm4uGDRvi8uXL8PHxsXVziIjMwtbXNv35gcsAjDl/LgDLt3vt2rV46aWXkJOTU+PrFEVBSEgIJk6ciEmTJgEALl++jMaNG2Pt2rUYMWIEjh07hg4dOuDQoUO47bbbAADbt2/H4MGD8ddffyEkJMRin8PR2Pp7S0RkCWq4tqk9LgPAW2+9heXLl+PPP/+s8vnLly8jMDAQGzduLO0kHz9+HO3bt8f+/fvRq1cvi7bP2ajhe0tEZG5quLbZQ0zeunUrHnjgARQWFsLNzc2i56LaqeF7S0RkCba+vjEmV8+p9iTW58Nzc3Nt3BIiIvPRX9NsP+fH2GurvP7ma7KHhwc8PDzM1CbDnT59GhkZGejfv3/pYw0bNkTPnj2xf/9+jBgxAvv374evr29pghgA+vfvD61Wi4SEBAwdOtTq7bZXjMlE5IjUE5MBNcfly5cvw8/Pr9rnExMTcf369QoxuV27dggLC2OS2AIYk4nIETEm1y47OxsbNmxAVFQUE8QqwZhMRI5KPXGZMflmTpUkvnLlCgAgNDTUxi0hIjK/K1eu3JgRZV3u7u4IDg5GRobx11Zvb+9K1+RZs2Zh9uzZZmqd4TIyMgAAjRs3rvB448aNS5/LyMhAUFBQheddXV3h5+dX+hoyDGMyETkyW8VkQP1xOSUlBUuXLsXixYurfU1GRgbc3d3h6+tb4fHyMZnMhzGZiBwZY3Jlr732Gt5//33k5+ejV69e+Prrr+t8TDIPxmQicnQcv65IDTHZqZLEISEhOHfuHBo0aACNRmPr5hARmYWiKLhy5YrNSh3Xq1cPp0+fRlFRkdHvVRSl0vW4pllYU6ZMwaJFi2o85rFjx9CuXTuj20LWxZhMRI7I1jEZsF5cNiUmp6WlISYmBsOHD8e4ceOMbh9ZBmMyETkixuSKysfkyZMnY8yYMTh79izmzJmDJ554Al9//TVjgAowJhORo7J1XGZMrp5TJYm1Wi2aNWtm62YQEZmdrWZG69WrVw/16tWz+HkmTpyI0aNH1/ia8PBwk44dHBwMAMjMzESTJk1KH8/MzMQtt9xS+pqsrKwK7ysuLkZ2dnbp+8kwjMlE5KhsHZMB68RlY2Nyeno6oqOjERUVhZUrV9b4vuDgYBQVFSEnJ6fCauLMzEzGWwtgTCYiR8WYXKZ8TA4ICEBAQADatGmD9u3bIzQ0FAcOHEBkZKRF20m1Y0wmIkdm67jMmFw1p0oSExGRfQsMDERgYKBFjt2yZUsEBwdj165dpUnh3NxcJCQk4NlnnwUAREZGIicnB4mJiejevTsAYPfu3dDpdOjZs6dF2kVERKRGxsTktLQ0REdHo3v37lizZg20Wm2Nr+/evTvc3Nywa9cuDBs2DACQnJyM1NRUDmATERHdpC79ZJ1OBwAoLCw0Z5OIiIickj3GZCaJiYjIIaWmpiI7OxupqakoKSlBUlISACAiIgLe3t4AgHbt2uGNN97A0KFDodFo8NJLL2H+/Plo3bo1WrZsiZkzZyIkJAQPPPAAAKB9+/aIiYnBuHHj8MEHH+D69euIjY3FiBEjbFrGjIiISK3S0tLQp08fNG/eHIsXL8aFCxdKn9OvCk5LS0O/fv3w0Ucf4fbbb0fDhg0xZswYvPLKK/Dz84OPjw+ef/55REZGolevXrb6KERERHYtISEBhw4dQu/evdGoUSOcOnUKM2fORKtWrTgJi4iIyIrUFJOZJCYiIof0+uuvY926daV/79atGwAgPj4effr0ASCrki5fvlz6mldffRV5eXkYP348cnJy0Lt3b2zfvr1CKZINGzYgNjYW/fr1g1arxbBhw/Dee+9Z50MRERHZmbi4OKSkpCAlJaVS+URFUQAA169fR3JyMvLz80ufW7JkSWmcLSwsxMCBA/Hvf//bqm0nIiJyJJ6enti8eTNmzZqFvLw8NGnSBDExMZgxY0a1eysSERGR+akpJmsUfc+ciIiIiIiIiIiIiIiIiIgcXs2bQRERERERERERERERERERkUNhkpiIiIiIiIiIiIiIiIiIyIkwSUxERERERERERERERERE5ESYJCYiIiIiIiIiIiIiIiIiciJMEhMREREREREREREREREROREmiYmIiIiIiIiIiIiIiIiInAiTxEREREREREREREREREREToRJYiIiIiIiIiIiIiIiIiIiJ8IkMRERERERERERERERERGRE2GSmIiIiIiIiIiIiIiIiIjIiTBJTERERERERERERERERETkRP4fQRkhLkLtVrMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB4kAAAKaCAYAAAAjwm9WAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xUVfrH8e+QkFCEUKRK6L2HKqAIgogClhW7K8VFZUFFUHdZ+1pQFxUrKKvAqtgrKCJFwQKIQChKr5EOQkINkMzvj+c3hEiAlJk5Uz7v1+u+zp3JnXufIHLm3uec53i8Xq9XAAAAAAAAAAAAAICoUMh1AAAAAAAAAAAAAACA4CFJDAAAAAAAAAAAAABRhCQxAAAAAAAAAAAAAEQRksQAAAAAAAAAAAAAEEVIEgMAAAAAAAAAAABAFCFJDAAAAAAAAAAAAABRhCQxAAAAAAAAAAAAAEQRksQAAAAAAAAAAAAAEEVIEgMAAAAAAAAAAABAFCFJDAAAAAAAAAAAAABRhCQxEGaWLl2q3r17q1q1aipSpIjOOeccXXTRRXrppZeyHffkk0/qs88+cxOkpP379+vhhx9W9+7dVaZMGXk8Ho0fP95ZPAAA+Fu49Mnz58/X4MGD1ahRIxUvXlxVq1bVNddco1WrVjmLCQAAfwqXPvnXX3/V1VdfrZo1a6pYsWI6++yz1bFjR02aNMlZTAAA+Fu49Mt/9sQTT8jj8ahx48auQwGCxuP1er2ugwCQOz/99JM6d+6sqlWrqk+fPqpYsaJSUlI0d+5crV27VmvWrDl+7FlnnaXevXs7S8xu2LBBNWrUUNWqVVWzZk199913GjdunPr27eskHgAA/Cmc+uTevXvrxx9/1NVXX62mTZtq27Ztevnll7V//37NnTuXG2AAQFgLpz75q6++0osvvqh27dqpcuXKOnjwoD7++GN9//33eu2113Trrbc6iQsAAH8Jp375RL///rvq1asnj8ej6tWra9myZa5DAoIi1nUAAHLviSeeUEJCgubPn69SpUpl+9mOHTvcBHUKlSpV0tatW1WxYkX98ssvat26teuQAADwm3Dqk4cOHaqJEycqLi7u+HvXXnutmjRpoqeeekpvv/22w+gAACiYcOqTL730Ul166aXZ3hs8eLBatmyp5557jiQxACDshVO/fKJ77rlH5557rjIyMrRr1y7X4QBBQ7lpIIysXbtWjRo1OqmDlaTy5csf3/d4PDpw4IAmTJggj8cjj8eTbQbv5s2b1b9/f1WoUEHx8fFq1KiR3nzzzWzn++677+TxePT+++/rX//6lypWrKjixYvrsssuU0pKyhljjY+PV8WKFfP9uwIAEMrCqU9u3759tgSxJNWpU0eNGjXS8uXL8/aLAwAQYsKpT85JTEyMEhMTtXfv3nx9HgCAUBKO/fLs2bP10UcfadSoUXn9dYGwx0xiIIxUq1ZNc+bM0bJly05bGvKtt97S3/72N7Vp0+b4SORatWpJkrZv365zzz1XHo9HgwcPVrly5TRlyhTdcsstSktL05AhQ7Kdy7cWwz/+8Q/t2LFDo0aNUteuXZWcnKyiRYsG7HcFACCUhXuf7PV6tX37djVq1ChvvzgAACEmHPvkAwcO6NChQ0pNTdUXX3yhKVOm6Nprr83/HwIAACEi3PrljIwM3XHHHfrb3/6mJk2aFOyXB8KRF0DY+Oabb7wxMTHemJgYb7t27bz33Xefd+rUqd4jR46cdGzx4sW9ffr0Oen9W265xVupUiXvrl27sr1/3XXXeRMSErwHDx70er1e77fffuuV5D3nnHO8aWlpx4/74IMPvJK8L7zwQq7jnj9/vleSd9y4cbn+DAAAoSxc+2Sft956yyvJ+8Ybb+T5swAAhJJw7JNvu+02rySvJG+hQoW8vXv39v7xxx95+K0BAAhN4dYvv/zyy96EhATvjh07vF6v13vBBRd4GzVqlJdfGQhrlJsGwshFF12kOXPm6LLLLtPixYv1zDPP6OKLL9Y555yjL7744oyf93q9+vjjj9WrVy95vV7t2rXr+HbxxRcrNTVVCxcuzPaZm2++WSVKlDj+unfv3qpUqZK++uorv/9+AACEi3Duk1esWKFBgwapXbt26tOnT54+CwBAqAnHPnnIkCGaNm2aJkyYoEsuuUQZGRk6cuRI3n5xAABCUDj1y7t379ZDDz2kBx98UOXKlcvfLwyEOZLEQJhp3bq1PvnkE+3Zs0c///yzhg8frn379ql379767bffTvvZnTt3au/evXr99ddVrly5bFu/fv0kSTt27Mj2mTp16mR77fF4VLt2bW3YsMGvvxcAAOEmHPvkbdu2qUePHkpISNBHH32kmJiYXH8WAIBQFW59cv369dW1a1fdfPPNmjx5svbv33/8YTgAAOEuXPrlBx54QGXKlNEdd9yR918SiBCsSQyEqbi4OLVu3VqtW7dW3bp11a9fP3344Yd6+OGHT/mZzMxMSdJNN910yplDTZs2DUi8AABEqnDpk1NTU3XJJZdo7969+v7771W5cmW/nh8AANfCpU/+s969e+u2227TqlWrVK9evYBeCwCAYAnlfnn16tV6/fXXNWrUKG3ZsuX4+4cPH9bRo0e1YcMGlSxZUmXKlCnwtYBQRpIYiACtWrWSJG3duvX4ex6P56TjypUrpxIlSigjI0Ndu3bN1blXr16d7bXX69WaNWtIJgMAkINQ7ZMPHz6sXr16adWqVZo+fboaNmyYq2sCABCuQrVPzsmhQ4ck2YAuAAAiUaj1y5s3b1ZmZqbuvPNO3XnnnSf9vEaNGrrrrrs0atSoXMUAhCvKTQNh5Ntvv82x/JRvfYUTRxwXL15ce/fuzXZcTEyMrrrqKn388cdatmzZSefZuXPnSe/973//0759+46//uijj7R161Zdcskl+f01AAAIe+HUJ2dkZOjaa6/VnDlz9OGHH6pdu3anPR4AgHASTn3yn8tjStLRo0f1v//9T0WLFmUQFwAg7IVLv9y4cWN9+umnJ22NGjVS1apV9emnn+qWW2454+8LhDuPlwVPgLDRuHFjHTx4UFdeeaXq16+vI0eO6KefftL777+vxMRELVq0SKVKlZIk9ejRQ7NmzdK///1vVa5cWTVq1FDbtm21fft2tW3bVjt37tSAAQPUsGFD/fHHH1q4cKGmT5+uP/74Q5L03XffqXPnzmrSpIk8Ho/69eun7du3a9SoUapSpYoWL16sYsWKnTbel19+WXv37tWWLVs0evRo/eUvf1FSUpIk6Y477lBCQkJA/7wAAAiUcOqThwwZohdeeEG9evXSNddcc9LPb7rppoD8GQEAEAzh1CdfeeWVSktLU8eOHXXOOedo27Zteuedd7RixQo9++yzGjp0aDD+yAAACJhw6pdz0qlTJ+3atSvHBDUQkbwAwsaUKVO8/fv399avX9971llneePi4ry1a9f23nHHHd7t27dnO3bFihXejh07eosWLeqV5O3Tp8/xn23fvt07aNAgb2Jiordw4cLeihUrert06eJ9/fXXjx/z7bffeiV53333Xe/w4cO95cuX9xYtWtTbo0cP78aNG3MVb7Vq1bySctzWr1/vjz8SAACcCKc++YILLjhlf8ztAAAg3IVTn/zuu+96u3bt6q1QoYI3NjbWW7p0aW/Xrl29n3/+ud/+PAAAcCmc+uWcXHDBBd5GjRrl67NAOGImMYAc+UZiffjhh+rdu7frcAAAiFr0yQAAhAb6ZAAAQgf9MlBwrEkMAAAAAAAAAAAAAFGEJDEAAAAAAAAAAAAARBGSxAAAAAAAAAAAAAAQRViTGAAAAAAAAAAAAACiCDOJAQAAAAAAAAAAACCKkCQGAAAAAAAAAAAAgCgS6zqAYMrMzNSWLVtUokQJeTwe1+EAAMKU1+vVvn37VLlyZRUqxHir/KBPBgD4A31ywdEnAwD8gT654OiTAQD+ktt+OaqSxFu2bFFiYqLrMAAAESIlJUVVqlRxHUZYok8GAPgTfXL+0ScDAPyJPjn/6JMBAP52pn45qpLEJUqUkGR/KCVLlnQcDQAgXKWlpSkxMfF4v4K8o08GAPgDfXLB0ScDAPyBPrng6JMBAP6S2345qpLEvjIdJUuWpKMFABQY5Z/yjz4ZAOBP9Mn5R58MAPAn+uT8o08GAPjbmfplFogAAAAAAAAAAAAAgCgSVknizZs366abblLZsmVVtGhRNWnSRL/88ovrsAAAAAAAAAAAAAAgbIRNuek9e/aoQ4cO6ty5s6ZMmaJy5cpp9erVKl26tOvQAAAAAAAAAAAAACBshE2S+Omnn1ZiYqLGjRt3/L0aNWo4jAgAAAAAAAAAAAAAwk/YlJv+4osv1KpVK1199dUqX768kpKSNHbs2NN+Jj09XWlpadk2AAAAAAAAAAAAAIhmYZMkXrdunUaPHq06depo6tSpGjhwoO68805NmDDhlJ8ZMWKEEhISjm+JiYlBjBgAgMi1efNm3XTTTSpbtqyKFi2qJk2a6JdffnEdFgAAAAAAAAAgF8Km3HRmZqZatWqlJ598UpKUlJSkZcuWacyYMerTp0+Onxk+fLiGDh16/HVaWhqJYgAACmjPnj3q0KGDOnfurClTpqhcuXJavXq1Spcu7To0AAAAAAAAAEAuhE2SuFKlSmrYsGG29xo0aKCPP/74lJ+Jj49XfHx8oEMDACCqPP3000pMTNS4ceOOv1ejRg2HEQEAAAAAAAAA8iJsyk136NBBK1euzPbeqlWrVK1aNUcRhbdHHpGGDZO8XteRAADCzRdffKFWrVrp6quvVvny5ZWUlKSxY8ee9jPp6elKS0vLtsG8/750zTXS/v2uIwEAAD5er3TvvdJDD7mOBACA6LN7t9S7t/TFF64jAYDIFjZJ4rvvvltz587Vk08+qTVr1mjixIl6/fXXNWjQINehhZ3166VHH5Wee05au9Z1NACAcLNu3TqNHj1aderU0dSpUzVw4EDdeeedmjBhwik/M2LECCUkJBzfWP7BeL3SdddJH34ovfCC62gAAIDPsmXSyJHSY49J27a5jgYAgOgyeLD08cfS5Ze7jgQAIlvYJIlbt26tTz/9VO+++64aN26sxx57TKNGjdKNN97oOrSwM2VK1v7q1e7iAACEp8zMTLVo0UJPPvmkkpKSdOutt2rAgAEaM2bMKT8zfPhwpaamHt9SUlKCGHHo2rs3a3/TJmdhAACAP4k9YXGuBQvcxQEAQDRq0CBrn0qYABA4YZMklqSePXtq6dKlOnz4sJYvX64BAwa4DiksDRggnX227a9a5TYWAED4qVSpkho2bJjtvQYNGmjTabKc8fHxKlmyZLYNUunS0vjxtr9ihdNQAADACRo0kG66yfYXLnQbCwAgPD311FPyeDwaMmSI61DCzj33ZO3v3u0uDgCIdGGVJIZ/FC5siWKJJDEAIO86dOiglStXZntv1apVqlatmqOIwltSkrXJyVJmptNQAADACVq0sJaZxACAvJo/f75ee+01NW3a1HUoYalYMcm3ShXPrwEgcEgSR6l69aylkwUA5NXdd9+tuXPn6sknn9SaNWs0ceJEvf766xo0aJDr0MJKRoa0b5/NVIqLk9LSpA0bXEcFAAA2b5YWLcoayEWSGACQF/v379eNN96osWPHqnTp0q7DCTszZ1pfXKeOvWa5RAAIHJLEUeaBB6Q77rC1HOrXl2rWdB0RACDctG7dWp9++qneffddNW7cWI899phGjRqlG2+80XVoYWXBAqlMGekvf5EaN7b3lixxGxMAAJAmTLBZxKNG2evff5d27HAaEgAgjAwaNEg9evRQ165dT3tcenq60tLSsm3R7tgxqXdvqUoVG0gtkSQGgECKdR0AgiczUxo71m5uZ8yQli93HREAIFz17NlTPXv2dB1GWJsxw26ACxe2dYnLlpUqVXIdFQAg3GzevFn/+Mc/NGXKFB08eFC1a9fWuHHj1KpVK9ehha0ZM6y96CKpWzepVi2pRAm3MQEAwsN7772nhQsXav78+Wc8dsSIEXr00UeDEFX4mDtX2rNHKl1aeuYZSxC3b+86KgCIXCSJo8j8+ZYgLllSOu8819EAABDdpk+3tksXqUkTt7EAAMLTnj171KFDB3Xu3FlTpkxRuXLltHr1akpbFsDhw9KPP9r+hRfashAAAORGSkqK7rrrLk2bNk1FihQ54/HDhw/X0KFDj79OS0tTom8h3ij15ZfWdu8ude5sGwAgcEgSR5FJk6zt3t3WPpSs7LRvFhMAAAiOQ4eyHkCfoQIZAACn9PTTTysxMVHjxo07/l6NGjUcRhT+fvpJSk+36h7167uOBgAQThYsWKAdO3aoRYsWx9/LyMjQ7Nmz9fLLLys9PV0xMTHHfxYfH6/4+HgXoYYsX5K4Rw+3cQBAtGBN4igyebK1vuqgjzwilSplpTsAAEDw/PijPYA+5xypbl0btPXII9Jll0k7d7qODgAQLr744gu1atVKV199tcqXL6+kpCSNHTv2tJ9h/cPT85Wa7tJF8nikgweljz+WnnrKbVwAgNDXpUsXLV26VMnJyce3Vq1a6cYbb1RycnK2BDFOtmmTtHSpVKiQTXKSpDlzpHHjrAQ1AMD/SBJHiU2bpMWLrZO95BJ7Ly5OSkuTVq1yGxsAANHGV2q6a1d7AO3xSBMnWtWPRYvcxgYACB/r1q3T6NGjVadOHU2dOlUDBw7UnXfeqQkTJpzyMyNGjFBCQsLxLdrLWv7ZiUliSTpyROrdWxo+XNq9211cAIDQV6JECTVu3DjbVrx4cZUtW1aNGzd2HV7I++ora889Vypb1vZvuknq319assRdXAAQyUgSRwlfqY527aSzz7b9unWtJUkMAEBwnbgesU9SkrXJyUEPBwAQpjIzM9WiRQs9+eSTSkpK0q233qoBAwZozJgxp/zM8OHDlZqaenxLSUkJYsShLTVVmj/f9i+80NpSpaRatWyfgVwAAASOL0l8YqnpOnWsXb06+PEAQDRgTeIoUaiQVLWq1KtX1nu+JPHKlVbm0uNxExsAANHmb3+zfvnEJHHz5tIHH/AAGgCQe5UqVVLDhg2zvdegQQN9/PHHp/wM6x+eWrFiNpDrl1+sn/Zp2VJau1ZasMCqgAAAkFvfffed6xDCxoQJ0tSpUps2We/VqWPvkSQGgMAgSRwlbrtNuvVW6ejRrPdq17Z2zx4rm+WbYQwAAALr9tttOxEziQEAedWhQwetXLky23urVq1StWrVHEUU3goXljp3tu1ELVvaQK6FC93EBQBANChdWrruuuzv+SY5kSQGgMCg3HQU8XhsHWKfYsUk3/JTlJwGAMAtX5J45UrpwAG3sQAAwsPdd9+tuXPn6sknn9SaNWs0ceJEvf766xo0aJDr0CJKixbWLljgNg4AAKKNr9w0z64BIDBIEkeB1aulY8dy/lm9etbS0QIAEBxvvy2tWWNLPZyoQgWpYkV7f8kSN7EBAMJL69at9emnn+rdd99V48aN9dhjj2nUqFG68cYbXYcWdnbskIYMkSZPPvlnviTx2rXS3r3BjAoAgMjn9Uq9e0tPPHFyP+tLEq9dK2VmBj00AIh4JIkjXGamdMEFUrly0tKlJ/+8Y0epRw/7OQAACKxNm6S//tUGae3bd/LPk5Ks0sfmzcGPDQAQnnr27KmlS5fq8OHDWr58uQYMGOA6pLA0c6b0wgvSAw+c/LMyZaTq1W1/0aKghgUAQMRbvlz6+GPpscds6YcTVasmxcZKhw9Lv//uJj4AiGSsSRzhFi6Utm6Vzjoraw2HEz34YPBjAgAgWs2YYW2bNlLJkif//O23pYQEKSYmuHEBABDtZs60tkuXnH/+zjtW9aNGjeDFBABANPjyS2s7dZKKF8/+s9hYafx464PPPjvYkQFA5CNJHOF8pbK6dZPi493GAgBAtJs+3dquXXP+eZkywYsFAABk8Q3kuvDCnH/evn3wYgEAIJr4ksQ9euT8c1bRAIDAodx0hPMliXv2PPUxXq+0axfrOgAAEEheb9YD6FPNUgIAAMG3YYO0bp3NVurY0XU0AABEj717pR9+sP1TJYkBAIFDkjiCbdkiLVggeTzSpZfmfExmplS5sq1JnJIS3PgAAIgmv/4qbd8uFS0qtWt36uNuu01q2FD67bfgxQYAQDQ7cTmIEiVyPiYzU3r6aemaa6S0tODFBgBAJPvmGykjQ6pfX6pZM+djtm6V/vc/6a23ghsbAEQDksQRzFeqo00bW7chJ4UKSaVL2/6qVcGJCwCAaOQrNd2x4+mXgPjtN2n5cmnhwuDEBQBAtMtNpY9ChaRXXpE+/FBKTg5KWAAARLwzlZqW7B65Tx/p8ceDExMARBOSxBEsN6WmJaluXWtJEgMAEDi5LTXdvLm1ixYFNBwAAPD/Vq+29lTrEfu0aGHtggWBjQcAgGgRHy+dddbpk8R16li7bp107Fhw4gKAaBHrOgAEzsMP24Pmq646/XG+JPHKlQEPCQCAqPXWW9KsWVKzZqc/LinJWmYpAQAQHD//bIni6tVPf1zLltLnn1PtAwAAf3n9demll6TY02QpqlSRihSRDh+WNm6UatUKXnwAEOlIEkewFi2yRjqfDjOJAQAIvFKlpMsvP/NxJ84k9noljyeQUQEAAI8n6774dJhJDACA/51uOSbJlnyoXVtatsyeX5MkBgD/odw0VK+etSSJAQBwr1EjG0W9Z4+UkuI6GgAAIpvXm/tjW7a0dsUK6cCBwMQDAEC02LQp98f6Sk77logAAPgHSeII5PVKd98tffKJdOTImY/3jZjesMHKdgAAAP8aNEh68EFp8+YzHxsfb4liiXWJAQAIpGPH7KFz797S7t1nPr5iRalyZbvnZlkIAADyb+tWqVo1qX793D2P9j2/JkkMAP5FuekItGSJNGqU9NprubvRLV9euuIKqWpV65SLFAl0hAAARI/9+22dpWPHpL59c/eZ1q2lzEwpIyOgoQEAENUWLpTWrrX75lKlcveZFi2knTttTcQOHQIaHgAAEeurr6xNSMjds2jfTGIqYQKAf5EkjkCTJll70UVS0aJnPt7jkT79NLAxAQAQrb7/3hLE1atLNWvm7jOvv85axAAABNqMGdZ26iTFxOTuM//9ryWUz7R+IgAAOLUvv7S2R4/cHX/xxdKUKVKDBoGLCQCiEUniCDR5srU9e7qNAwAASNOnW9u1a+4TvySIAQAIvJkzre3SJfefqVAhMLEAABAt0tOladNsP7dJ4ipVbAMA+BdrEkeY7duln3+2/dx2sj5790rr1/s9JAAAopovSZyXB9A+x47ZBgAA/OvwYemHH2z/wgvdxgIAQDT5/ntblqliRSkpyXU0ABDdSBJHmK++krxeqWVLqXLl3H/uo4+k0qWlv/41cLEBABBtduyQliyx/bw+gO7dWypRQpo1y/9xAQAQ7ebMsURxpUp5L135j3/Y2sTz5wcmNgAAIpmvCuall0qF8pCd+Ppr6ZFHpAULAhIWAEQlksQRxrceca9eefucb43EVav8Gw8AANHMV8ayWTOpfPm8f/7wYSk52a8hAQAAZa1HfOGFeV/mYelSadEiksQAAOSHbz3ivC6VOG6c9Oij0nff+T0kAIhaJIkjiNcrbd5s+3ntZOvUsXbnTmnPHv/GBQBAtNqzxyp15KfUtK/s1qJF/o0JAABINWpI7dpJF1+c98+2aGEtM5kAAMgbr1d67jnpttukrl3z9tm6da1lkhMA+E+s6wDgPx6PNG+erStcvXrePluihJWn3rJFWr1aatMmICECABBVBg6Ubr1VOngw759t3txaksQAAPjfLbfYlh8tW1q7cKH/4gEAIBp4PFYBM69VMKWsSU6rV/s3JgCIZswkjkA1auS9XJbEaCwAAAIhJsYGY+WVbybxihXSoUP+jQkAAOSfbybxsmW2NAQAAAg8ksQA4H8kiSOE11vwm1OSxAAA+M+BA9Y/51elSlK5clJmpq19CAAA/OO336TU1Px/vmpVqWxZ6dgx+mgAQJbRo0eradOmKlmypEqWLKl27dppypQprsMKGWlp0v33Sz/9lL97ZV+S+Pff81etCwBwMpLEEeLXX+0m9dpr8/9A2pckXrnSf3EBABCt+veXqlWTPv88f5/3eLJmEycn+y0sAACi3vXXS2XKSN98k7/PezyUnAYAnKxKlSp66qmntGDBAv3yyy+68MILdfnll+vXX391HVpImDZNevJJqW/f/FXBLFtWKlXK9teu9WdkABC9WJM4QkyebCOo9u/PXycrSR06SH//u3Teef6NDQCAaJOZKc2YIe3eLZ19dv7P062bVLy4VKWK/2IDACCa7dghLVli+77BWPnRsqW0bl3+778BAJGn158W2n3iiSc0evRozZ07V40aNXIUVej48ktre/TI3+c9Hpvk9PPPVgmzSRP/xQYA0YokcYSYNMnaP30XyZNzz7UNAAAUzJIlliA+6yypTZv8n2fYMNsAAIB/fPuttU2b2rIO+fX44zYbCgCAnGRkZOjDDz/UgQMH1K5duxyPSU9PV3p6+vHXaWlpwQov6DIzpa++sv38Jokl6bXXbCB19ep+CQsAol7Ylpt+6qmn5PF4NGTIENehOLdrlzRnju0XpJMFAAD+MX26tZ06SYULOw0FAACcYOZMa7t0Kdh5CoXt0xQAQCAtXbpUZ511luLj43X77bfr008/VcOGDXM8dsSIEUpISDi+JSYmBjna4Fm4UNq+3QZSd+yY//M0b25rE3OfDQD+EZa3NfPnz9drr72mpk2bug4lJEyZYusQN2smFfS7xL590oIF0rZt/okNAIBoNGOGtQV9AC1ZH79pkxTBg8oBAAgaXx994YX+OV9mpnT0qH/OBQAIf/Xq1VNycrLmzZungQMHqk+fPvrtt99yPHb48OFKTU09vqWkpAQ52uDxlZq+6CIpLs5tLACALGGXJN6/f79uvPFGjR07VqVLl3YdTkjwR6lpn+uvl1q1kj77rODnAgAgGqWnS7Nn237XrgU/X/fuUrVqWTfVAAAgfzZulNaulWJiCjaLyeeee6TSpaUJEwp+LgBAZIiLi1Pt2rXVsmVLjRgxQs2aNdMLL7yQ47Hx8fEqWbJkti1SFXQ9Yp89e6THHpP+/veCxwQACMMk8aBBg9SjRw91zcVT1/T0dKWlpWXbIs2RI9LUqbbfs2fBz1e3rrWrVhX8XAAARKO5c6WDB6UKFaRGjQp+vlq1rF20qODnAgAgmvlmEbdpI/njOXyhQlbpY+HCgp8LABCZMjMzs607HI0OHJA2bLD9Sy8t2LkKFZIeekgaPZpqWwDgD7GuA8iL9957TwsXLtT8+fNzdfyIESP06KOPBjgqt44elR54QPr+e6l164KfjyQxAAAFU768dNddUrFiksdT8PMlJVmbnFzwcwEAEM26dZPGjLHZv/7QsqW1Cxb453wAgPA2fPhwXXLJJapatar27duniRMn6rvvvtNU3wyfKFW8uLR1q7RkiVSpUsHOlZBg99w7dkhr1kgtWvgnRgCIVmGTJE5JSdFdd92ladOmqUiRIrn6zPDhwzV06NDjr9PS0pRY0EV7Q0zx4tK999rmD/XqWUuSGACA/GnQQBo1yn/n8yWJFy2y9Yn9kXgGACAaVaki3Xab/87nezC9eLEN4C5c2H/nBgCEnx07dujmm2/W1q1blZCQoKZNm2rq1Km66KKLXIfmXExM1r1tQdWpY0niVatIEgNAQYVNuekFCxZox44datGihWJjYxUbG6tZs2bpxRdfVGxsrDIyMk76TDSt6+AvvpnE69bZTS4AAGfy1FNPyePxaMiQIa5DiUiNG9sN9a5d0ubNrqMBAAA+tWpZ2er0dGn5ctfRAABce+ONN7Rhwwalp6drx44dmj59etQniDMzbbCzP9WpY+3q1f49LwBEo7BJEnfp0kVLly5VcnLy8a1Vq1a68cYblZycrJiYGNchBt3GjdJbb0m7d/vvnJUr2+zkjAxp/Xr/nRcAEJnmz5+v1157TU2bNnUdSkj47Tfp22+lw4f9d84iRWx2skTJaQDA6TFw69S++kp65ZWsNRH9oVChrFlRrEsMAMDJZs2SqlaV/vUv/53TN8mJJDEAFFzYJIlLlCihxo0bZ9uKFy+usmXLqnHjxq7Dc+LDD6Wbb5ZuuMF/5/R4sjralSv9d14AQOTZv3+/brzxRo0dO1alz7C4X3p6utLS0rJtkei116QLL5SGDfPveZs3t3bRIv+eFwAQORi4dXqvvy4NHiy9955/z8u6xAAAnNqXX0q//+7fqljMJAYA/wmbJDFONmmStT17+ve8AwdKzz6bNWsJAICcDBo0SD169FDXrl3PeOyIESOUkJBwfEtMTAxChME3fbq1nTv797xXXinde6/UqZN/zwsAiAx5GbgVjY4dk777zva7dPHvuc8/X7r4YoncPAAAJ/vyS2t79PDfOX1J4rVr/XdOAIhWsa4DKIjvfHd5UeiPP6Qff7R9fyeJBwzw7/kAAJHnvffe08KFCzV//vxcHT98+HANHTr0+Ou0tLSISxRv3Wrlpj0e/yeJ//IX2wAAyMmJA7cef/zx0x6bnp6u9PT0468jtbrHiRYulFJTpYQEqUUL/577iitsAwAA2a1bJ61YIcXESN26+e+8DRpIy5dLNWr475wAEK3COkkczb7+2tYNbtSIDhEAEFwpKSm66667NG3aNBUpUiRXn4mPj1d8fHyAI3Nrxgxrk5KksmXdxgIAiB55Hbg1YsQIPfroowGOKrT4+uhOnexBNQAACDzfLOLzzpNKlfLfeePipPr1/Xc+AIhmlJsOU5MnW9url//PfeyYtHix9Pnn/j83ACD8LViwQDt27FCLFi0UGxur2NhYzZo1Sy+++KJiY2OVkZHhOkQnfA+gc1F9O1/++MOusWlTYM4PAAg/voFb77zzTq4Hbg0fPlypqanHt5SUlABH6d7Mmdb6u9T0iXbulLZsCdz5AQAIN4EoNQ0A8C+SxGHo6FFpyhTb93epaUnav19q3txKZu3b5//zAwDCW5cuXbR06VIlJycf31q1aqUbb7xRycnJionCKTpeb9Z6xIFKEvfvb+f+5JPAnB8AEH7yM3ArPj5eJUuWzLZFssOHpR9+sP1AJYkffFAqX1565pnAnB8AgHBz4IDkWykyEEniKVOkvn2lN97w/7kBIJpQbjoMLV4s7d1rpSzPPdf/5y9Vym5wd+yQVq/2/5pNAIDwVqJECTVu3Djbe8WLF1fZsmVPej9arFol/f67lb3q0CEw10hKsiofycmBOT8AIPz4Bm6dqF+/fqpfv77+8Y9/ROXArT9btswGWlesaGsYBkKdOtYuWBCY8wMAEG4OHpQGDrR+OBD976+/ShMmSOnp0i23+P/8ABAtSBKHoVatrIzVypWBW0+pbl1LEq9aRZIYAIAzqVNHWrhQWrFCKlYsMNdISrJ20aLAnB8AEH4YuHVmrVpJe/ZIa9dKHk9grtGypbWLFkmZmVIharYBAKJcuXLS888H7vy+AVqrVwfuGgAQDUgSh6lKlWwLlLp1rSTXqlWBuwYAIHJ856sjFaUKFbIkri+RGwjNm1v72282Wjo+PnDXAgAgkpQokdWPBkK9elLRolZac9UqqX79wF0LAABkJYlXrbLlnwI1EAwAIh3jW5GjunWtJUkMAEBoSEyUypSRjh2z0loAAOTku+++06hRo1yHEVViY7OS0AsXOg0FAADnNm2Spk+XjhwJ3DVq1bLE8L59Vg0TAJA/JInDzCuvSF27Sp9+Gtjr1Ktn7cqVgb0OAADhbvFiqW9f6eOPA3sdj4eS0wAA5MWUKVKbNlIwcua+ktOsSwwAiHZvvy1ddJF0ww2Bu0Z8vFStmu1TchoA8o8kcZj55BNpxgxp48bAXufEmcReb2CvBQBAOPvqK2nCBLsRDjRfkjg5OfDXAgAg3E2bJs2fb0s1BFqLFtYykxgAEO2+/NLaiy4K7HVOLDkNAMgf1iQOI6mp0uzZtt+zZ2CvVauW9PTTlixmXQcAAE5txgxru3QJ/LWuvtpuhDt0CPy1AAAId8Hso887Txo0yFoAAKLV7t3S3Lm2f+mlgb1WnTpW1nrbtsBeBwAiGUniMDJ1qq1DWL++VLt2YK8VHy/dd19grwEAQLg7dEj64Qfb79o18Ndr08Y2AABwejt2SEuW2P6FFwb+enXqSC+/HPjrAAAQyr7+WsrMlJo2lRITA3utxx+XRo6UihYN7HUAIJKRJA4jkydbG+hZxAAAIHd+/FFKT5cqV5bq1XMdDQAA8Pn2W2ubNpXKlXMbCwAA0cJXarpHj8Bfq3TpwF8DACIdSeIwkZFhax5KUq9ewbnm5s3SvHnW4XbuHJxrAgAQTnxlLLt2Dd7SDL/+asnpFi2kVq2Cc00AAMLNzJnWBmMWsc/Bg9LixbZkU/v2wbsuAACh4Ngxm0ksBSdJDAAouEKuA0DuzJ1razqUKhW8m83PPpOuukp64YXgXA8AgHAzfbq1wSg17fPii9Jtt0kffxy8awIAEG6CuR6xz8SJdr/+0EPBuyYAAKHi55+lPXukMmWkc88NzjX//nfpggukLVuCcz0AiDTMJA4ThQpJ3btLlSpJsUH6r1a3rrWrVgXnegAAhJMjR6SjR20/mA+gk5KsXbQoeNcEACCcHD4stWxpM3s7dgzedVu0sHbhQptNHKwqIwAAhIJ27ew+dcMGKSYmONecPl1avVpaudKWgQIA5A1J4jDRrp00ZYrdaAaLL0m8Zo2Vuw5W5w4AQDiIi5OSk6Vdu6Szzw7edX1J4uTk4F0TAIBwUqSI9P77wU/UNm4sFS5ss6g2bJBq1AjetQEAcM3jkZo3ty1Y6tSxJPGqVSyXCAD5QbnpMBPMG9zERCk+3mZJbdgQvOsCABBOgpkglqQmTazCyPbt0tatwb02AADhJNgzeePirJ+WpAULgnttAACiUZ061q5e7TYOAAhXJInDwLJl0u+/B/+6hQpldbSUnAYAILv0dDfXLVZMqlfP9plNDABAdl6vlZwMZhWuE7Vsae3ChW6uDwCAC2+/Lf31r9LMmcG9LkliACgYksRhYNgwm9X75pvBv7bvITRJYgAAsmzaJJUqJXXvbksyBBvrEgMAkLPly6X69e2hcWZm8K/vW5eYmcQAgGjy3nuWKP755+Be17dcIkliAMgfksQhbt8+6bvvbL99++Bf39fRrlwZ/GsDABCqZsyQDh+W9u6VYmKCf33fGk8kiQEAyM43g6lGDauOFWy+mcQLFribzQz/e/NN6bzzpFGjXEcCIJSNGDFCrVu3VokSJVS+fHldccUVWhkFD1UPHcrqf3v0CO61fTOJ1651M4AbAMJdrOsAcHrTpklHjki1a2fN6g2ma6+1kdC+h9EAAMCSxJLUtaub6199tT2Epn8GACA7Xx994YVurt+kifTcc9ZPe73BXxcZ/rdxo/Tss9Jvv9ngAwA4lVmzZmnQoEFq3bq1jh07pn/961/q1q2bfvvtNxUvXtx1eAHz7beWKE5MlBo3Du61ExOlIkWksmWlnTulihWDe30ACHckiUPc5MnW9uzp5uayWTPbAACA8XrdJ4mrV7cNAABkycjIqsTVpYubGIoUke6+2821ERhTp1qCWGIpLgCn9/XXX2d7PX78eJUvX14LFixQx44dHUUVeF9+aW2PHsF/fh0TI+3ZY/0vACDvSBKHsMzMrE62Vy+3sQAAAPPbb9K2bVLRolK7dq6jAQAAPgsX2lIQCQlZZZ+BgkpOztpftYoZ4gByLzU1VZJUpkyZHH+enp6u9PT046/T0tKCEpc/eb3Zk8QukCAGgPxjTeIQNn++tGOHVLKkrX3jyrRp0siRVmIJAIBoN326teefL8XHu4tj9mzp3nulzz93FwMAAKHEtx5ip042s8iVXbukt96SXnvNXQzwn0WLsvb37rX/vgBwJpmZmRoyZIg6dOigxqeowTxixAglJCQc3xITE4McZcH9+qs9My5SxN1SDwCA/CNJHMImTbK2e3cpLs5dHA89ZA+hf/7ZXQwAAIQK16WmfaZPt0FcX3zhNg4AAEKF6/WIfdaskW6+2e6lvV63saBgMjKkJUuyv0fJaQC5MWjQIC1btkzvvffeKY8ZPny4UlNTj28pKSlBjNA//vjDliq88EKpWDE3MXz/vV2/Xz831weAcEa56RB2zz1S48bSOee4jaNuXWnuXG6EAACQpEsvlY4dk7p1cxtH8+bWnji7BQCAaHbvvVKTJtIll7iNo1kzm8m8Y4e0ZYv7e3rk3+rV0sGDlvg491ybrb5qldShg+vIAISywYMHa/LkyZo9e7aqVKlyyuPi4+MV77I8lR907Ghl+U+omh10GRnSt99KtWu7iwEAwhVJ4hBWqpR03XWuo7AksUSSGAAASbr9dttcS0qydtky6cgRt1VHAAAIBRddZJtrRYtKDRpYH71wIUnicOZbj7hpU6lhQ5slnpHhNCQAIczr9eqOO+7Qp59+qu+++041atRwHVLQuMx116lj7fr10tGjUuHC7mIBgHBDuWmcUb161pIkBgAgdFSvLiUk2E3w8uWuowEAACdq2dLaBQvcxoGC8VVsad5cevFFW3fzb39zGhKAEDZo0CC9/fbbmjhxokqUKKFt27Zp27ZtOnTokOvQAmLLFunAAddRSJUrW8WHjAxLFAMAco8kcYi67z7piSekrVtdR8JMYgAAfKZMkX7/3XUUxuOh5DQAAD6vvipNmyYdPuw6EtOihbULF7qNAwUzdKg0aZI0YIB99wKA0xk9erRSU1PVqVMnVapU6fj2/vvvuw4tIP7xD6lsWem//3Ubh8eTNZt49Wq3sQBAuKHcdAg6cMBGqKanS1dcIVWq5DYe33oOf/wh7dolnX2223gAAHDhwAHp8stt5u769TaT17WkJGnWrKxSiAAARKN9+6S77pKOHQudPpqZxJGhQgWpZ0/XUQAIF16v13UIQZORYYOo09OzErQu1akjLV5sk5x69HAdDQCED2YSh6AZM6yDrV7d1rxxrVgxqWpV22c2MQAgWn3/vSWIq1WzLRT41iVmtDQAIJp9/70liGvWDI0EsSQ1a2Yzm7ZskbZvdx0N/MHrlbp1s4H8Gza4jgYA3Pr5Z2n3blsCqX1719EwkxgA8ouZxCHou++sveSS0ClnNH68VKqU1KCB60gAAHBjxgxru3YNnf758sttbbzERNeRAADgjq+PvvBCt3Gc6KyzrPx1gwY2GxXh55dfrNT0BRfY3y2Px5Yd2bbNBtCHyoAEAHDhyy+tvfhiqXBht7FItlxixYpSfLzrSAAgvDCTOAQtXmxtq1Zu4zhR5842W6lIEdeRAADgxvTp1nbt6jaOEyUkWLWPUElaAwDggi9J3KWL2zj+rEsXqXJl11Egv775Rvr3v6U33sh6r25da6myBiDaTZlibaiUdu7TR9q6VXr+edeRAEB4IUkcYrzerCRx06ZuYwEAAGbnzqx1f0NplhIAANFu586se2j6aPiT77tf8+ZZ79WrZy1JYgDRbN++rH8jQ2WAFgOnASB/SBKHmK1bbT2HQoWkRo1cR5Nl505p1CgbRQsAQLT59ltrmzaVypd3G8ufTZokXXml9MILriMBACD4fH10kyah10f/8Yf08MNSv36uI0F+LFpkbVJS1nvMJAYAK8efmWnLHp1zjutoAAAFQZI4xGzYIBUrZjceRYu6jiZLWpp0993Sk0/alwAAAKJJKJaa9tm4UfrsM1v3EACAaDNnjrWhOIs4NtYGWo8fL+3a5Toa5MW+fdKaNbbfrFnW+ySJAUCqXdvKOg8b5jqS7O64w9aL//xz15EAQPiIdR0Asmvf3m5Gdu50HUl21apJhQtL6elSSoq9BgAgWjzxhJXRql/fdSQn881u8c12AQAgmjz7rM3ULV7cdSQnK1lSqlNHWr1aWrhQ6tbNdUTIrSVLrD3nHKlcuaz3fUniDRvs+Uh8fNBDAwDnEhOlIUNcR3Gy3bttEPXKla4jAYDwETYziUeMGKHWrVurRIkSKl++vK644gqtjNB/8QsVkipUcB1FdrGxNkpMYsQsACD6lCsnXXtt9pkkoaJZM1t/acsWaccO19EAAIItmu6Vc1KokC0HUauW60hy1rKltQsWuI0DeZNTqWnJSprXry916iTt2RP0sAAAp1GnjrWrV7uNAwDCSdgkiWfNmqVBgwZp7ty5mjZtmo4ePapu3brpwIEDrkOLGpRVAgAg9Jx1VtbNcHKy01AAAA5wrxzaSBKHp6VLrW3ePPv7Ho+0fLk0c6ZUsWLQwwIA57ZulSZMCM1ELEliAMi7sCk3/fXXX2d7PX78eJUvX14LFixQx44dHUXlX+npUuvWUqNG0n//G3rlskgSAwCi0RNP2APBm26SqlZ1HU3Omje3/nnRIkpZAkC0iYZ75VMZNkzavl26++6sZGyoadHC2oUL3caBvHn1VWnoUKlYMdeRAEBomT5d6ttXatdO+ukn19Fkx7NrAMi7sEkS/1lqaqokqUyZMqc8Jj09Xenp6cdfp6WlBTyugli+3Ear/v57aN6I+DraKKpcBgCIcpmZ0qhR0q5dUseOoZskTkqSPviAdYkBAGe+Vw63++RT8Xqld9+1GU39+7uO5tR8SeL166U//pBO8wgDISQmRqpX7/THHDtmS3MBQDSZM8fadu3cxpET30zirVul/fut6hYA4PTCptz0iTIzMzVkyBB16NBBjRs3PuVxI0aMUEJCwvEtMTExiFHm3eLF1jZtajOWQo3vBokkMQAgWixZYgnis86S2rZ1Hc2pJSVJRYrYA3MAQPTKzb1yuN0nn8rKlfYQOD5eat/edTSnVqqUrZdcvLi0dq3raOAPM2ZIiYnShRe6jgQAgi+Uk8SlS0tly9r+mjVuYwGAcBGWSeJBgwZp2bJleu+990573PDhw5Wamnp8S0lJCVKE+bNkibXNmrmN41RatJB+/plZSgCA6PHjj9a2by8VLuw2ltPp0kXat096/33XkQAAXMrNvXK43SefyowZ1nboYAOlQtns2VJqqi0vhdA3ebJ0442n/l5VqpRVgGMAPYBos39/1vPrc891G8upnHuuJbCPHHEdCQCEh7ArjDN48GBNnjxZs2fPVpUqVU57bHx8vOLj44MUWcH5OtmmTd3GcSrFi3NTCwCILvPmWRuKo6RPRKlDAEBu75XD7T75VHxJ4i5d3MaRG5Uru44AeTFzpjRxos1Gu/bak3/uK2e6Y4e0d68ljQEgGsyfb0syValiWyiaPNl1BAAQXsJmJrHX69XgwYP16aefaubMmapRo4brkPzK680qNx2qM4kBAJCsTGXr1q1VokQJlS9fXldccYVWRuhUirlzrQ3VUdI5oeQ0AESXSL9XzklGhvTtt7YfDklihJfkZGuTknL+ecmSUqVKtr96dVBCAoCQEMqlpgEA+RM2SeJBgwbp7bff1sSJE1WiRAlt27ZN27Zt06FDh1yH5hfbt0s7d0qFCkmNGrmO5tSmTZPuuEP64APXkQAAXJk1a5YGDRqkuXPnatq0aTp69Ki6deumAwcOuA7Nr3bvznrw16aN21hy46OPpCZNpEGDXEcCAAimSL9Xzklyss3gLFlSatnSdTRnduyYdNNNUoMGVnYaocvrzVpiq3nzUx9Xt661q1YFPCQACBnhlCTOyHAdAQCEh7ApTjh69GhJUqdOnbK9P27cOPXt2zf4AfnZzp32YFeSihZ1G8vpzJkjvfyydPCgdM01rqMBALjw9ddfZ3s9fvx4lS9fXgsWLFDHjh0dReV/q1dbn5yYKJUp4zqa3Fm2LPTXZQQA+Fek3yvnJC3NEnjVqoXHkguxsdIPP0gbN1oC8k//qRBCNm2yAQiFC59+AH/dutKsWSSJAUSXN96wZ8OhXAVz7VqpWzd7dr11q+toACD0hcHtlPFGeO3EJk1sTeLMTNeRnB6jZQEAf5b6/1Niypwmk5qenq709PTjr9PS0gIeV0Gde649hA6XG0vfbJelS6WjR+3hJgAg8kX6vXJOOne2ZOuxY64jyb2WLS1JvHAhSeJQ5is13bChFBd36uN4NgIgGpUvL11+uesoTq98eWndOttn3XgAOLOwKTcdLQqF+H8RboQAACfKzMzUkCFD1KFDBzVu3PiUx40YMUIJCQnHt8TExCBGmX+xsTaTOBzUrCmVKCGlp0sRukQ0AADZhMMsYp8WLaxdsMBtHDi93JSalmwW3fnnh/ZyYQAQjUqUkCpWtH3WjQeAMwvxlGT0CPUZxD516li7Y4eNxgIARLdBgwZp2bJleu+990573PDhw5Wamnp8S0lJCVKE0aNQoawHmr4HnAAARJrp06XffnMdRd751k4mSRzadu+WYmKkpKTTH3fRRdLs2dIDDwQnLgBw7ZVXpIcflpYvdx3JmfkmOZEkBoAzI0kcAtLTrfRF69ahn3gtUUKqXNn26WgBILoNHjxYkydP1rfffqsqVaqc9tj4+HiVLFky2xbKVq60MoODBrmOJG9IEgMAItmyZdJf/iK1ayctXuw6mrzxzSRetUrat89tLDi1l16y/z633OI6EgAILW+8If3739YXhzrfJCeeXQPAmZEkDgErVthNyJo1UkKC62jOzDcai1KWABCdvF6vBg8erE8//VQzZ85UjRo1XIfkd3Pn2gjpJUtcR5I3vlkvvvX0AACIFDt3Sr162b1zixZSgwauI8qb8uWlKlUkr5d+OtQVLSqddVbujj18WDp4MLDxAIBrBw5k3Ru3a+c2ltzwJYlZLhEAzowkcQjwjYBu2lTyeNzGkhu+JPGGDU7DAAA4MmjQIL399tuaOHGiSpQooW3btmnbtm06dOiQ69D8Zt48a9u2dRtHXvkemtev7zoSAAD8Jz3dZhBv2CDVqiV99JEUF+c6qrxr00Zq0kSKoK9MUa1fP6lYMentt11HAgCBNX++lJFhg53OUEQsJFBuGgByjyRxCPCNxGrWzG0cufXII9KuXay9AwDRavTo0UpNTVWnTp1UqVKl49v777/vOjS/mTvX2nPPdRtHXjVrZus0vvqq60gAAPAPr1e6/Xbphx+s8tbkyVLZsq6jyp+PPrL7/27dXEeCnIwebd/9Xnstd8eXKmV/P5mpBsBn9uzZ6tWrlypXriyPx6PPPvvMdUh+4bs/DodZxJINnG7TRmrVynUkABD6Yl0HgOwzicNBpUquIwAAuOT1el2HEFAHD2YN4Aq3JDEAAJFm5Ehp/HgpJkb64IPwrpYRDpXDotncuVZN5tJLc3e8b6YaSWIAPgcOHFCzZs3Uv39//eUvf3Edjt/MmWNtuNwf16+fVR0MAHB6JIlDgO9BdLgkiQEAiGQLFlgprcqVw6OUVk4yMqS0NKl0adeRAACQfxkZ0tSptj9qVOTMwD12zBLGMTGuI8GJFi2yNikpd8f7ksQrVwYmHgDh55JLLtEll1ziOgy/8nqzksThMpMYAJB7lJt2bPt2accOu0Fs3Nh1NLl3331Sjx7S1q2uIwEAwL/CtdS0z/vvSyVLSn37uo4EAICCiYmRvvpKmjhRGjTIdTT+cfnlUokSkT3D6eBBSyqEk8OHpeXLbb9589x9xpckXrdOOno0IGEBiHDp6elKS0vLtoWa7dvt38i4OKlFC9fR5M3Ro9L+/e6un5FhS0GtWOEuBgA4E5LEjh04IF15pdS1q1SsmOtocu+zz+xmnU4OABBpihe3NYzCdZR0pUr2cNY3GwYAgHBz+HDWflycdP31kVOqOTPTfr+FC11HEhher3TddVLPntKmTa6jyb3ffrMZ3mXK5L6SzDnnSEWL2uc2bAhoeAAi1IgRI5SQkHB8S0xMdB3SSSpWlPbssX8n4+NdR5N7Dz1kz9qfespdDGPG2CC3a68Nv8FTAKIHSWLHataUPvlE+uYb15HkDWvvAAAi1d//bjfAw4a5jiR/mjWzNiVF2r3bbSwAAOTV4cNSly7SkCGWfIs0vllYCxa4jSNQPvtMmjRJmjbN7eytvDqx1HRuByQUKiTVqWP7PBsBkB/Dhw9Xamrq8S0lJcV1SDmKiZFq1XIdRd6ULm3fI1z9++z1SqNH2/6SJZE7OAxA+CNJjHxxvfaO1yvdeKOVvKasEwAgEMJ1xlJCgg1Ck6TkZKehAACQJ16vdOut0k8/SRMmSL//7joi/2vZ0tpIfFiclibdcYft33ef1LChdOSI25hyy/edKbelpn0uu0zq00cqV87fEQGIBvHx8SpZsmS2Df7hG8SzerWb6//wg/Trr1mv33zTTRwAcCYkiR3bti08y024nkn8zTe2LtVXX0mzZrmJAQAQedLSImPWUlKStcFIEk+dautUAQBQUE8/Lb31ls1Y+vBDqXp11xH5n28m8a+/SocOuY3F3x54QNq8WapdWzr3XEsS9+7tOqrcKVlSqlYt6ztUbj32mDR+vNSmTUDCAgCnDhyQ6teX/vrX7EtBhIMTk8Qunr2PGWNt48bSxRfbBgChiCSxQ0eOSFWr2po3O3a4jiZvXCeJn3kmaz8jw00MAIDI89hjNhN35EjXkRSM7wFnINclPnzYSoF27y716xeeg94AAKHj00+l4cNt/6WXpK5d3cYTKOecI5Uvb/exS5a4jsZ/5s+XXn7Z9kePlipXlpYvl777LjwG4D3xhK0rfMMNriMBEM7279+v5ORkJf//aN3169crOTlZm8JpkfYT/PKLVZH89lupSBHX0eRNjRq2LMCBA9LWrcG//iWXSK1bS+PGSV9/bZUnACAUkSR2aMUKK5Xs9YZfaaJ69axdty745Z4XLJBmzrQyoBs3MhILAOA/8+ZJBw9KZ5/tOpKC8ZVKDFSS+NdfpbZtpRdesNe1atn3gU2bIm9WFAAg8BYtkm66yfYHD5YGDnQbTyB5PFmziSOl5PSxY1Ym3Ou1/45du9p3kTJlpH37LIEcLvKz3MiRI+7KmQIILb/88ouSkpKU9P+jdocOHaqkpCQ99NBDjiPLnzlzrG3Xzm0c+REXl1WRxMW/0TfdJP38s9SqVfCvDQB5QZLYocWLrW3aNPzWPaxcWSpWTCpeXNqyJbjX/s9/rL3xRpuJDQCAPxw9aiOlJSuRGM5atLCRytde698Zvl6v9MordqO7ZIkNcps82WZ89etnZRq/+MJ/1wMARL7Dh6Urr7RBWt26Sc8/7zqiwLv4YvudExNdR+Ifv/8u7d8vlS4tPfusvVeokNS5s+3PmOEuttxIT8//96XUVHs2UreuzVYDEN06deokr9d70jZ+/HjXoeWLL0kcrvfHvkqYoTCQ5/ffpSeftIHVABBK8pUk/ve//62DBw+e9P6hQ4f073//u8BBRQtfaalmzdzGkR8ej3Vqe/faA+FgWb/e1qaSpHvusTY11WZlA0A0ok/2n6VLbRZsQkLWzWS4qlRJ+vxz6aGH/DcQ7Y8/LPE8eLA90O/e3b7L9OhhP/d9H3j3Xf9cDwDCDX1y/hQpIo0aJbVsKb3/vhQb6zqiwBsyRPrkE6lnT9eR+Ef16vY96ptvrJS2T5cu1oZ6kvjf/7aBb889l/fPJiRIpUrZ/po1fg0LQAHQJxec1yvNnWv74TiTWLLKFtddF9xJRj/8YBW39uzJ/n6fPtL990sTJgQvFgDIjXwliR999FHt37//pPcPHjyoRx99tMBBRYsTZxKHo7Jlgz8DunRp6dFHrWRHs2bSpElWErRfv+DGAQChgj7Zf+bNs7ZNG5v9guwKF7a1BePi7GH+l19KFStm/fz6662dMsUGkQFAtKFPzr8rrrCSjL5kG8JPkSInl9T0JYl/+slmioeqRYuk3bulokXz93nf4MJVq/wXE4CCoU8uuPXrpR077D7Qt0xCuBk2zAYxd+sWvGuOHGmDwf48FqFvX2vHj5cyM4MXDwCcSb4egXq9XnlyyA4uXrxYZcqUKXBQ0SKcZxK7UqqU9MAD0ltv2euWLW39o3nzpO3bnYYGAE7QJ/uPb5R0uJbS+jOvV9q8WVq2LP/nOLH8YokS0gcf2LqCd911ciK9SROpcWNbl++TT/J/TQAIV/TJefPf/0obN2a9jrYBWl6v/f5/nmkUTj7/3GZLZWTk/PM6daQqVey7wY8/Bje2vEhOtrZ58/x93pckXrnSH9EA8Af65ILzlZpOSrKBQDiz33+3CU2SdOut2X921VV2T71unTR7dvBjA4BTydNtWOnSpVWmTBl5PB7VrVtXZcqUOb4lJCTooosu0jXXXBOoWCPK9u22eTxSo0auo8mfhQulyy/PGgnlQuXKNlrZ67UZTQAQLeiT/c83k7htW7dx+Msnn9iD2b/9LX+f/+03+7N46aWs91q0OH0FFN9sYkpOA4gm9Ml599FH0oABVr1jxw7X0bhx1VVWptm3nFK4SU2VBg602VKvvprzMR6PVQHr398qgIWi7dulrVst1iZN8ncOZhIDoYM+2X9iYuze77zzXEdSMBkZNis6GLN3x46163TqJDVokP1nxYpZ6WtJevPNwMcCALmVp9V+Ro0aJa/Xq/79++vRRx9VQkLC8Z/FxcWpevXqaheuixQEmdcr3XuvtHOnVLy462jy59gx6YsvbN3DQDt4ULr2WnvQ3atX9lHmvXpJv/xisfTvH/hYACAU0Cf7l9cr3XyzjZaOlCSx70HnkiV2YxwTk7vPeb3SmDHS0KG29vB//mOjoHMzevy662ydpZkzpW3bspejBoBIRZ+cNwsWWJ8r2eCiE9ewjSa+xOLChW7jyK8HHrDkau3apx+QNmJE8GLKD98s4rp1pbPOyt85SBIDoYM+2X+uu842X2WpcJSZaVUp9++XNmyQqlUL3LWOHrUksSTdfnvOx/Tvb8d89JH08stSyZKBiwcAcitPSeI+ffpIkmrUqKEOHTooNjZPH8cJKlaUnnnGdRQFU6eOtVu3Svv2WcmMQBk/Xpo82Upm9uiRPUl82WXSww9L06ZJhw7lfx0hAAgn9Mn+5fFI//qX6yj8q3ZtG4h24ICVP2zY8Myf2bVLuuUWG3gl2dpN48fnvrxYzZpWrnvuXJsZdccd+Q4fAMIGfXLubdli92+HDkndu9u6fdGqZUtrFyxwG0d+/Pyz9Mortj9mTHjfgxe01LSUvdy012vfKwG4QZ/sf+H8b1qhQlZda8UKafXqwCaJv/jCnpGXLy9deWXOx7RtK9Wvb/G8/75VVQEA1/K16k+JEiW0fPny468///xzXXHFFfrXv/6lI0eO+C04hLbSpaVy5Wx/9erAXScjQ3r2WdsfNkz68/e7Zs2kxESbbTxzZuDiAIBQRJ+MUylUyPpIKesB6OlMn27lxL74QoqLs753ypS8Vwy5/37p7bfdLkcBAC7QJ5/ewYO2XNGWLVaC8b33Tr63iya+JPGSJbZmb7g4dswqjHi90l//KnXpcubPZGRYYnnFisDHl1f+SBLXri3deKNVYTnV+swAgos+uWD275fS011H4R++SU6BrvYwZoy1t9xi99M58XhsNnHRolZdFABCQb6SxLfddptW/f+/rOvWrdO1116rYsWK6cMPP9R9993n1wAj1bx50u7drqMouGCUVfrkE2ndOqlsWalfv5N/7vFYyWlJmjQpcHEAQCiiT/aP77+Xfv/ddRT+53vguWjR6Y/bvFm69FIb+Vy/vn1PGTo0e+WO3OrZ0x6UBrLCCACEIvrkU/N67V7ul1/svm7SJOmECqBRqUYNK4F55Ij022+uo8m9UaOkxYulMmWyBnOfyb332uypl14KaGj50qqV1LWrVULJr2LFbIDcgw9G98AHIJTQJxfMK69YPx0J1bZ8SeJATnA6etT69Lg4G0h1OrfdZkszRcKfLYDIkK8k8apVq9T8/586fvjhh7rgggs0ceJEjR8/Xh9//LE/44tIR45I558vnX22tHGj62gKpl49awOVJPZ6s8pyDxp06vWb+/a1LzD33x+YOAAgVNEnF5zXazObEhPDs+Tj6SQlWXummcTnnCM9+qitnbRgQcFm0wBAtKJPPrXUVGnNGqlwYRsEXKuW64jc83ikFi1sP1y+f+zbJz3+uO3/5z9ZlcXOpGNHa2fMCExcBTFsmC1d1amT60gA+BN9csHMmWMzicuUcR1JwfkmOAUySVy4sC23tG2bVL366Y8tWZK1iAGElnwlib1erzIzMyVJ06dP16WXXipJSkxM1K5du/wXXYRaudJGGJUsKVWt6jqagjlx7Z1AmDXLRpsXKSINHnzq41q3lv7+d3vADwDRhD654FavlvbskeLjpSZNXEfjX74k8aJFlgz38XqlsWOtxKXPP/8pjR5ts2EKau9e6emnpWuvLfi5ACBc0CefWqlS0uzZ0ldfZSUMkZUkXrjQbRy5VaKEVV+5666cq3ydSqdOVp1k5UqrXhKJjh2zgRCBLmcKIHfok/PP65XmzrX9du3cxuIPwZhJ7FO6dN6OX7zY+g8AcClfSeJWrVrp8ccf11tvvaVZs2apR48ekqT169erQoUKfg0wEvkeyDZtaqOHw1nduja7N1C/h28Wcf/+uR+lDADRhD654ObNs7Zly1OvHRSuGjWS7r5bev556f+fkWj3bumqq6wM1vXXS4cO2fv+7Mu9Xiu5+MEH0rJl/jsvAIQy+uSTpaVl7RcvbmV9keXSS60U85VXuo4k95o0sZLTefneUKpU1hrMoTSbeOtWGyjoD6+8YokIyocCoYE+Of82bJC2b7fZsb5/u8OZL0m8bl1gErLz5+cvAd29u1Xw+vprv4cEAHmSryTxqFGjtHDhQg0ePFj333+/ateuLUn66KOP1L59e78GGIkWL7a2WTO3cfjDZZdZyam33w7M+fv0sVnCQ4ee+di0NOm116Q77wxMLAAQiuiTC843SrptW7dxBEKRItJzz0l//asUE2MPZps2lT791G76+/e3GdT+Vrq0dMkltv/uu/4/PwCEIvrk7H7/XWrQwMoTn1jNAlk6d7aB0aGePE9NzV59JD+6dLE2lJLEjzxipVRHjCj4uXxV1phJDIQG+uT8mzPH2qQku58Md+ecY4Oj//EPK6Htb3fdZX1AXp+NN2pk7Ztv+j8mAMgLj9frv9u1w4cPKyYmRoULF/bXKf0qLS1NCQkJSk1NVUmHxf+7d5emTrWE5pkWs0fu7dwpVahgDyBSUqQqVVxHBCBShUp/cjr0ybnXqpWtBfj++9I11zgNJWCOHJEeeEAaOdL6yXr1pIkTs8pcBsL770vXXSfVrGnlF8O9egqA0BRK/cmpRGOffOCAlZVeuFBq3NgGZBUv7pdTw4FBg+z5xciR0pAh+TvH9OnSRRfZw/qUlND4XtC2rfTzz/75Drh2rVS7tiVUDhyw8tpAtKFPLrhQ+DO84w7p5Zct+TlqlJMQwsbixTYbODbW+raKFXP/2WXLrDpHbKy0ZQsVNAH4X277lNiCXGTBggVavny5JKlhw4ZqEcgnjREkkmYSh5Jy5aT27aUff5QmTZIGDnQdEQAED31y/hw6lNUvR+JMYskeVN5xhzRunL2+9VabXRzoh/W9etk11q2zB7CR+ucLAH8W7X1yZqbUt68liM8+2+7NSBCf2p499mdVoYIl1EPN3LnS6NE2yKxp0/yfp0MHq16yebPNtq1Xz38x5sexY1mzo5s3L/j5qle3Ki2HD9ss+qpVC35OAAUX7X1yfkTSesSBNnq0tX/5S94SxJL1+a1bW7nqt9+2ZaIAwIV8jW3csWOHOnfurNatW+vOO+/UnXfeqVatWqlLly7auXOnv2OMKDt2SNu22ajZULwBzI/HH7eRT//7n//O+fTTNkr5xDWscqNXL2snTfJfLAAQyuiTC2bhQntIWLFi5D7MW7HCEsSlSkmffGIzgYLxsL5YMenyy22fktMAogF9snnkEemjjyxh9umnljzDqT32mJWbfv1115Gc7OhR6bbbLEHcp4904YX5P1fRovYwffZsqUYN/8WYX6tXW0K3eHGbAVxQMTFZ51m5suDnA1Aw9Mn5d8MN0hVX2EScSJGZKW3a5N8lAfbtk955x/Zvvz1/5+jf39px41iaA4A7+UoS33HHHdq/f79+/fVX/fHHH/rjjz+0bNkypaWl6U4WhD2t+Hh7OPvgg5EzmnrHDiuRsWyZf863d68lnu+9V/rhh7x99rLLrJ0xQ9q/3z/xAEAoo08umPr1rezyY4+FRtnDQGjZ0sppr14tXXllcK99ww3Wvv++lJER3GsDQLC57JNfeeUVVa9eXUWKFFHbtm31888/B/R6p+LrUyVLep53npMwwkrLltYuWOA2jpyMGmWzbcuWtUHcBdWvn3T++VJcXMHPVVCLFlnbrJn/SkOzLjEQOrhPzr+777ZBXomJriPxnwkTpGrVrMKWv7z9tj17rldP6tQpf+e47jpbpmDp0tD8HgAgOuSr3PTXX3+t6dOnq0GDBsffa9iwoV555RV169bNb8FFooSEyFuH2N83QmPGWCfbuLF0ySV5+2z9+lKtWrYe0DffWLkPAIhk9MkFU7asdP31rqMIPFdV1S66yB4utG9vg8DKlnUTBwAEg6s++f3339fQoUM1ZswYtW3bVqNGjdLFF1+slStXqnz58gG77p+lpGTNiLnvPis5jTPz9dHJyTagKibGaTjHbdggPfyw7Y8caaXDI0lysrX+KDXtQ5IYCB3cJ+NEvkoPq1f753xeb1ap6dtvz/+A81Kl7Nn1xInSe+9JrVr5Jz4AyIt8jZfMzMxU4cKFT3q/cOHCyszMLHBQCC++tYT8cSOUni698ILt33tv3jtZjydrNjElpwFEA/pkhLK4OFuT+L33SBADiHyu+uTnnntOAwYMUL9+/dSwYUONGTNGxYoV05tvvpnj8enp6UpLS8u2+UNiovTKK9JVV0lPPumXU0aFunWtytjBg9KXX7qOxni90t//Lh06ZLOj+vTx37mnTJEGD/ZfJbL8CkSS+JJLpIcesjKtANziPjl/Zs+W1q+PvNLHdepYu3GjPXsuqN9/t61IkYL3kffcI33xhTRiRMHjAoD8yFeS+MILL9Rdd92lLVu2HH9v8+bNuvvuu9WlSxe/BReJPvxQmjvXPx1SqPCNll2zpuClJN9+29ZsPuccK7mRH7162ejrAwcKFgsAhAP65PzbsUN65pm8L22AvInNV90aAAg/LvrkI0eOaMGCBeratevx9woVKqSuXbtqzpw5OX5mxIgRSkhIOL4l+rGe5C232D1vqMyGDQcxMVL37rZ/+eVWeWzvXqchyeu1hOfZZ1ulL38uyTF6tA0m+Oor/50zP/r0sfWWO3Tw3zk7d5YefdRaAG5xn5x3Xq90zTVSzZr27DqSVKgglShhaxOvW1fw8yUmSps3S9OmSaVLF+xcSUn2LDuHMQ0AEBT5ShK//PLLSktLU/Xq1VWrVi3VqlVLNWrUUFpaml566SV/xxgxjh6VbrxRatdOOuE7SthLTLSRU0ePWkmq/MrMlP7zH9u/++78r1N0/vnSzp3SBx/kPxYACBf0yfn344/SP/4hDRrkOpLo8Ouv0m+/uY7i1A4dojwkgIJx0Sfv2rVLGRkZqlChQrb3K1SooG3btuX4meHDhys1NfX4lpKS4teY/JlQjBZvvikNHGj7//2vtHKl23gKFbJ1Gzdtyqoc5i++3MyMGf49b17deKMlwBs2dBsHgMDgPjnvNm6Utm+3ZGVSkuto/MvjyZpN7K+S00WLSued559z+UTaDG4A4SFfczsSExO1cOFCTZ8+XStWrJAkNWjQINvoZZxs5UpLpJYoIVWv7joa/ylUyDrapUvt4WqtWvk7z+TJ9meUkCANGJD/eGJjCz6KCwDCBX1y/vlGR597rts4osHTT0v//Kd07bVWejrUeL1WGvKbb2zwQPv2riMCEI7CpU+Oj49XfHy86zBwgpIlpVdftWpa8+ZJbdtm/Sw9XQrmf64T10UuWtT/5/clib//Pvi/WzBs3CitWCG1bBl56zgD4SRc+uRQ4itAkpRkk4EiTZ060sKFBR8YvGWLVKmSfwfFeb3SI49IEyZYye+qVf13bgA4kzzNJJ45c6YaNmyotLQ0eTweXXTRRbrjjjt0xx13qHXr1mrUqJG+//77QMUqSXrllVdUvXp1FSlSRG3bttXPP/8c0Ov50+LF1jZtGnmjq5s1k5o0sdnA+VWrlt0UDx5sN8n+sGuXf84DAKEmFPrkcDdvnrUnPohFYFx4obVffCHt3+82lpxMnWoJYsliBIC8cNknn3322YqJidH27duzvb99+3ZVrFgxINdE4HTsKN17b9brlSulGjWk8eODM7tozhypQQMrnxkojRpZ2c9Dh7ISEsG2aJE0f77F4G9XXWXlw1nOBHCD++T88/2bHKmDqP0xkzgzU7rgAusrly3zT1yS5Qm+/94GGk2Y4L/zAkBu5ClJPGrUKA0YMEAlc8jgJSQk6LbbbtNzzz3nt+D+7P3339fQoUP18MMPa+HChWrWrJkuvvhi7dixI2DX9KclS6xt1sxtHIHw1lv2+/Xokf9zNGokvfuu9NhjBY8nI8NusMuXl9auLfj5ACDUuO6Tw92xY/ZwUIrcm+BQ0qqVDQY7dCj0krBer3T//VmveWYEIK9c9slxcXFq2bKlZpxQuzczM1MzZsxQu3btAnJNBM+oUdLWrVK/ftLFF0vr1wfuWkeP2hq9q1dL77wTuOt4PFmDx1yVnH78calNG1sf2d/q1rWWJSwAN7hPzj9fkjhSvz507WrVra68Mv/nmDFDWrPG+uYaNfwXmyT172/tuHEFm4QFAHmVpyTx4sWL1b1791P+vFu3blqwYEGBgzqV5557TgMGDFC/fv3UsGFDjRkzRsWKFdObb74ZsGv604kziXFq/phlHRNja2h4vdKkSQU/HwCEGtd9crj79Vfp4EGrXFG/vutoIp/HI91wg+2/+67bWP7M45Fefz1roNv8+fZ3AwByy3WfPHToUI0dO1YTJkzQ8uXLNXDgQB04cED9+vUL2DURHC+9JD3zjJX9nDZNatxYev55GxTtb88/b0tIlS0rjRzp//OfyPW6xMnJ1jZv7v9z+9ZwJkkMuOG6T/YJt0qYhw5l/dsYqUniCy6QRoywag/5NWaMtTffLBUv7p+4fP7yF3s+sX69lZwGgGDJU5J4+/btKly48Cl/Hhsbq507dxY4qJwcOXJECxYsyLZ2RKFChdS1a1fNOUWNovT0dKWlpWXbXPLNJI7kJHF+SmCtXGkjlv19E9Wrl7WhNmMJAPzBZZ8cCXzrEbdpIxXK07ch5Nf111s7dar0xx9uY/mzli1tUFmVKjaTyleKHAByw3WffO2112rkyJF66KGH1Lx5cyUnJ+vrr79WhQoVAnZNBEdsrJWfXrJE6tTJBjENHSp16ODfMpfr19taiJL07LOBX0vXlyTevdv63WBKTZXWrbP9QCSJmUkMuOW6T5bCsxLmL79Yta1KlVgP91Q2b5Y+/9z2b7/d/+cvVsyWYZSkMJkPByBC5Omx6DnnnKNlp7kTWbJkiSpVqlTgoHKya9cuZWRknHSjW6FCBW3bti3Hz4wYMUIJCQnHt8TExIDElhs7d1opCsnW7o00Bw/aDVaJEnmfffPsszaD5777/BuTL0k8e7a0Z49/zw0ArrnskyOBbyA3paaDp0EDW3Lj6FHp449dR2PS07P2PR7p0UetxGYkD+gD4H+h0CcPHjxYGzduVHp6uubNm6e2bdsG9HoIrjp1bNbt66/bLKN58/w3GNrrlQYOtFlknTvb7KhAq15d2rDBBoyfJpcTEL4Kb1WrSmXK+P/8JIkBt0KhTw7HSpiNG0sffig98YR/KjyGqq1bpe++k3btyvtn33jDKnmcf74tmRgIviIwH31kg5oAIBjylCS+9NJL9eCDD+rw4cMn/ezQoUN6+OGH1bNnT78FV1DDhw9Xamrq8S0lJcVZLCVL2k3d2LHSWWc5CyNgihWTUlKkAwdsbYbc2rZNmjDB9u+9178x1aolNWxoHfjXX/v33ADgWrj1yaHm1VftASuVOIPLN5s4FKp8HDpkieu77pJ8xWb697ey2GXLuo0NQHihT0YwFCokDRggLV9us4lPvH/O4a9ern3wgVX5iIuzMprBSg5Uqxac6/xZIEtNS5bQl6Tt23nAD7jguk/OayXMUKmCWbq01Lt35N8fX3GFDYiaNStvnzt2zAZqSTawKlDatrV71EOHrH8GgGCIzcvBDzzwgD755BPVrVtXgwcPVr3/X2xlxYoVeuWVV5SRkaH7778/IIGeffbZiomJ0fbt27O9v337dlWsWDHHz8THxys+Pj4g8eRVfLx04YW2Raq6da1856pVuZ+B8+KL0pEjUvv2VjLL3y67TPrtNysh6XswDQCRwGWfHAni463UNILrr3+1AVwXX+w6Eunll6285mef2XqPAJBf9MkIpsqVrRqXz5Ej9p2mc2ebAZbXQenTpll7//1Zs2CDKSNDiokJ3vUCnSQuWVKqWNEGxK9eLbVqFZjrAMiZ6z75dJUwV6xYcdLxI0aM0KOPPhqweJBd3bpWVSyv1R6mTbNy0+XK2drBgeLxSHfcYX0VRWEABEueksQVKlTQTz/9pIEDB2r48OHy/v8CtB6PRxdffLFeeeWVgK17FBcXp5YtW2rGjBm64oorJEmZmZmaMWOGBg8eHJBrIm9OTBLnxr590ujRtu/vUtM+vXpJTz0lffWVlbcMdikrAAgUl30ykF+VK9vm2t690ogRtv/oozZowGfhQmn6dKlHj8CVEQMQWeiT4dJXX0lLl9r2+efSa6/lbTDW2LE2s+qiiwIWYo6OHZOuvtrKfq5YIQXrf5FFi6xNSgrcNf79b/tu4Wq2NBDNwq1PHj58uIYOHXr8dVpaWtCXS9yyxdbAPf986YILgnrpoPNVe1i9Om+f697dKoRu35793jEQAjlTGQBykqcksSRVq1ZNX331lfbs2aM1a9bI6/WqTp06Kl26dCDiy2bo0KHq06ePWrVqpTZt2mjUqFE6cOCA+oVBLYznnpPKl5d69pRKlXIdTWDkde2d//7XHtLWq5e1frC/tW1raypdeKGUmRmYawCAKy77ZEl65ZVX9J///Efbtm1Ts2bN9NJLL6lNGEzPfeMNGz18ww2RfxMcyrxed+tdjRwp7dljs5r/+tfsP3viCemTTyw+ksQAcst1n4zodcUVVi76tttsnd/u3a1ve/753C2f4PHYc4pgi421ih5790ozZwav8tfzz0sLFkjnnhu4awwYELhzAzgzl31yXithhkIVzFmzpAcflFq3tvvkSJbfJLHHE9nVQQFEtzytSXyi0qVLq3Xr1mrTpk3QbnyvvfZajRw5Ug899JCaN2+u5ORkff311yE1AiwnR49Kw4fbjdoff7iOJnD+v4KLVq4887FHj9rNmSTdc4+trxQIMTG25nGfPoEf6QUArrjok99//30NHTpUDz/8sBYuXKhmzZrp4osv1o4dO4Jy/YL45BNbT2jxYteRRCevV3r4Yal27bzfnPvD9u1Z30Eef/zkEpcdO1o7e3Zw4wIQGVz0yUC3bjaTeMgQe5D91lu2puH771u/+2dHj1p56V27gh5qNl26WDtjRvCu2amTNGyYlYQGENlc9MknVsL08VXCbNeuXVBiyCvfUsmBHDwTKvKTJM6pHw00r9f+u9x9t1XeAIBAClBqLnAGDx6sjRs3Kj09XfPmzVPbMCjQv3KlrRNUooRUvbrraAInLzOJjxyR+va1GTo33RTQsAAAAfDcc89pwIAB6tevnxo2bKgxY8aoWLFievPNN12HdlperzRvnu1Hw01wKPJ4bHmKdeuk994L/vUff1w6eNDWb/z/FUyy8SWJf/jB1kkEACAcnHWWDYL66Se7z96500pP52TkSOnJJ63Pc1lxq2tXa4OZJA6GAwfsd/rgA9eRAHBh6NChGjt2rCZMmKDly5dr4MCBIV0Jc+5ca0M0h+1XviTx9u1SWtqZj09Pt0FXw4bZsonBcuyY3auOGiV9/XXwrgsgOoVdkjgcLVlibZMmgZsxGwpq17ayjR07SocPn/7Y4sVtnZ6lS6UiRQIf26pVdiO8dm3grwUAke7IkSNasGCBuvqe7EkqVKiQunbtqjm+Ych/kp6errS0tGybC2vXSrt3S3FxUrNmTkKAskpKvvtucEdm798vvfOO7T/1VM7lrps2lUqWtIcGvu9wAACEi3PPlRYulB591Cqn+Pq6w4ctIbx2rd2LS9K//uX2GcX551vZ6Q0bbPBYoE2aZN89tmwJ7HU2bbIE+C23uJmBBsCtcKqEeehQ1lrt0ZAkTkiw5SCl3M0m/ugjm/z1wQdS0aKBje1EhQtnTaoK8XH4ACJABKcsQ4fvAWOkP4wuVkz69Vfp009zn/gN1lqEQ4ZI995rnTsAoGB27dqljIyMk25yK1SooG3btuX4mREjRighIeH4lpiYGIxQT+IbJd2iBcsQuHTllfbnv3x5cBOxZ51l13z5Zalz55yPiYmRzjvP9ik5DQAIR3Fx0kMP2UBun2HDrO/r398Sxl26SDfe6C5GyfplX2WXYMwmfvZZ6YYbpGnTAnudmjUt+b5/v3SKr8YAIly4VMJcsMBmrVasKFWr5jqa4HjoIRtEVaXKmY8dM8baW2+1QU3B5Jt4PmmSFAaregEIYySJg8C35mHTpm7jCBX33WelMoI5orZXL2snTQreNQEAWYYPH67U1NTjW0pKipM4fKWmQ/QePWokJEg9etj+u+8G99oVKkiDBp3+GNYlBgBEkh07pP/9z/q12bNtoNbo0cEbtH06wVqX2OuVkpNtv3nzwF4rPj5rqbHcLMcFAK6cuB5xKPQJwTBokDRggN0Xns7SpbYEUUyMVYYItsaNpdatLYnvq4YFAIFAkjgIomUmsY/Xa2v95eSXX6T//Efq2VPavDl4MfmSxD/9ZGszAQDy7+yzz1ZMTIy2b9+e7f3t27erYsWKOX4mPj5eJUuWzLa54JtJzHrE7vlKTr/3XnAGji1dmvtjzz/f2l9+oUwkACD8lS9v/WC3bvb6ySez1mV0rVs363cDXeZ0wwYpNdVmWTdoENhrSVK9etaSJAYQyn75xdpoKDWdV6+9Zu0VV0iVK7uJoX9/a998k/tSAIFDkjjAdu3KWu+mcWO3sQTDxIk2O+jmm3P++X/+Y+311+eurIe/VKkiJSVZh/rll8G7LgBEori4OLVs2VIzTpjykZmZqRkzZqhdCN9dZmRIBw7YPjOJ3evRQypRQtq4MWsEe6DMmWMVXXr0sL8HZ9KqlY0aX7UqekbUAwAiW/XqVtFr925p6FDX0WRp395mN991V2Cv45tF3KiRJYoDrW5da0kSAwhl77xj69i7Xn4gmA4elL7/Xvrii1Mfs3+/VeCQpIEDgxNXTq67zpZ0XLbMSoMDQCAEuZp+9ClbVtq0yRa5L1HCdTSBV7q0tG9fzjdC69ZlrQl8773BjUuSLrtMWrTISk737Rv86wNAJBk6dKj69OmjVq1aqU2bNho1apQOHDigfr6Fc0JQTIz0229WUeLss11Hg6JFbWT0wYP2/SFQvF5p+HDbr1TJ/h6cSVyc1KFD4GICAMAFj0cqU8Z1FG4Eq9S0D0liAOEgNtYm1UST1atteaEyZWzgVE4mTrTn23XqSJ07Bze+E5UqJf3lLzaAmTXuAQQKSeIA83ikxETbooHvRmj1aikzUyp0wlz1556z9y6+2M36zL16SY8+Kk2dKh0+bCOxAAD5c+2112rnzp166KGHtG3bNjVv3lxff/21KpxpYZ8QUK6c6wjgM2pU4K/xzTfSrFm2PuDDDwf+egAAIO/++ENavjxwg7QWLbI2WMkQksQAEJpq17b2jz8sSVy27MnHdOliVTfq18/+bNuFl1+2qp2u4wAQufjnBX5VrZpUuLAlYVNSst7fudPWT5Ck++5zE1uLFraGRGam9OuvbmIAgEgyePBgbdy4Uenp6Zo3b57ahngNZ9bwiT6ZmdK//mX7gwblbdDezp3S3/8ude3K3x0AAAJpxQqr8tK9u3T0aGCuEeyZxElJ0htv2AYAoeiZZ6yy008/uY4kuIoXl845x/ZXr875mFq1pGeflQYMCF5cp1K6NAliAIHFPzEBds89NnvVty5xpIuNtY5Uyj5i9pVXpEOHpJYt3ZXp8HhsDaZduywOAEB0adbMEn7r17uOBCfyem3N4Hfe8f+5P/rI1tgqUSKr5HRuFS8u/fe/0owZ0oYN/o8NAACYunWt7Of+/dL8+YG5xvffS599FryZxGXLWvKlffvgXA8A8urjj6Vx46LzXufESpjh4uhRKzsNAP5GkjiAjh2zkhCPPGIJ0mhRr561JyaJmzSRGje2tYg9Hjdx+eIoVszd9QEAbmzdKi1dKs2cmXM5KbgzZ449QP37360Sib8cPSo98IDt33NP3tehLlZMat3a9mfP9l9cAAAgu0KFsgaTz5gRmGtUqyZdfrl01lmBOT8AhJPDh7PK8Ldr5zYWF+rUsfbPSwL88Yd0/fXWF4VSNam0NKlqVVtLeeNG19EAiDQkiQNo1SopPd1uQmrUcB1N8PhGY61cmfXeVVdJS5ZIV1/tJqacZGS4jgAAECzz5lnbqJFUsqTbWJDduedKVarYje9XX/nvvBs32oC9cuWku+/O3znOP99aksQAAARWly7WBipJ7MKyZdLYsTaLGQBCyYIFNqi2QgWpenXX0QSfL0n855nEEyZI771ng4xDScmSUoMGlrieMMF1NAAiDUniAFq82NomTaJr7YC2baWePe33PpHHExp/DhMnWmxPPOE6EgBAsPiSxOee6zYOnKxQIem662z/3Xf9d97atW2Nw+nTrdx0fnTsaC1JYgAAAsuXJJ4zRzp40L/nfuEF6bHHTp4xFmgTJ0q33urf7zcA4A9z5ljbrp3bio+u5FRu2uuVxoyx/dtvD70/l/79rR0/XsrMdBoKgAgTAim7yLVkibVNm7qNI9iuukqaNEkaMMBmBL34onTggOuoshw+bCN6J01yHQkAIFjmzrW2bVu3cSBnN9xg7eTJNqPYX+LiCvY9rEMHeziwZo20ZYv/4gIAANnVri0lJkpHjvh/zcWxY6WHHgr+2pO+JESwk9MAcCYnJomjUevW0quvSs89l/Xet9/av9clSmTdn4aSv/zFZhSvX88gZgD+RZI4gHwziZs1cxuHK16v3YjddZf0/POuo8nSo4c98P3lF2nzZtfRAAACLSNDmj/f9plJHJqaN5fq1bOBXJ9/XrBzpabaw+CjRwseV0KCxSZRKhIAgEDyeAJTcvrQIassIklJSf47b26QJAYQirxeksSVKkkDB0oXXJD13ujR1t50U/4rUQVSsWJZFbjefNNtLAAiC0niAPLNJI7GJLHXK334oa1xUbSodNttriPKUqFC1kyyyZPdxTFrlvT11+6uDwDR4tdfraLFWWfZOj4IPR6PdP31tl/Qkoz/+Y+VdvzLXwoel2Qlp2vWtJlNAAAgcG65Rfrvf6XBg/13zmXLbMBguXKWFAimevWsTUnxfwltAMivtDSpVCmpcGGpZUvX0YSGrVulzz6z/dtvdxrKafXrZ+1HH/m3AheA6EaSOEDS0qTdu23/z2vzRoMuXaRrr7X9/v3thiyUXHaZta5KTm/cKPXuLV16qdtENQBEg6NHpYsusi0mxnU0OBVfkvi336T09PydY/v2rOolvjWbCuo//5HWrpX++lf/nA8AAOTsvPMsUZyY6L9zJidb27x58NeXLFtWKlPG9oNd6hoATiUhwe65du+22anR6rffpAkTbILTG29Ix45J7duH9rKRbdvawPdDh6SpU11HAyBSkCQOkJIlpX37stYyiDY7d2btDx3qLo5T6dXL2unTg79e8sGD0pVXSrt2WbmrLl1s5jUAIDBatpS++Ub65BPXkeB06taV5s2zhGx8fP7O8fjj1s+2aSNdcYV/4ipc2D/nAQAAwbdokbXBLjXtQ8lpAKEqGp9Xn+jVV6W+fa0SZtWqVv1h4EDXUZ2exyO9/LINgLr6atfRAIgUJIkDKDZWqlPHdRRu+GbbtGljJRpDTaNGUo0aNlNp+vTgXdfrtRKYixbZ7Or33rMvIImJlAkBAKBNm/zP9l6/XnrtNdsfMcL/s4UyMmwAIAAACJyUFOmFF7L69II6cSaxCySJAYSazEzXEYQG3zP71aulm2+Wli/Pqm4Vyi68MDqXtgQQOCSJERB33GElO4KZgM0Lj0fq08e2c84J3nWff1565x17AP7hh/aFZO5cafNmm+UGAPCv9HRpxw7XUSCvjh2zElp58fDDVlq8a1e7cfanl16ycpGPPOLf8wIAgOwWLpSGDJGee67g5/J6s8o8u0oSDxkiffutdNttbq4PACc6fNhK4XfqJKWmuo7GrT8P4vF4wm95qmPHXEcAIBKQJA6QG26QbropetedKVrURmGFcumShx+Wxo+XWrUKzvWmT5fuvdf2R42SLrjA9nv2tJa1iQHA/374QapQQerc2XUkyK2XX7YBXK+8kvvPLFsmvf227T/5pP9jKlPGKn7Mnu3/cwMAgCwXXCAVKmQP7VNSCnYuj0fautW+J/iSAcGWlGTJmLPPdnN9ADjRwoXS3r02a7ZkSdfRuOWbSbxsWfCXIiyoXbusimfdujZQGgAKgiRxABw7ZusevvOO/0sdInxNnWolXfr1kwYNynrflyT+6isrZQkA8J+5c62tWNFtHMi92Fib/T1xYu4/U6iQ1KWLdNVVUuvW/o+pY0drFy6k5DQAAIFUqlTWQO4ZMwp+vthYW24q3GaHAUAgzJljbbt2PLOuXj1rP9wGlSckWEXK9eulr792HQ2AcEeSOABWr7bylsWLh+Z6vMji9doD35kzA3+tZ56R3n9fevXV7F/EOnSwzn3nTmn+/MDHAQDRxJckPvdct3Eg93r3tge6ixZJK1fm7jMNG0rTpklvvRWYmBIT7SFCZmbWgxUAABAYXbpY648kcSgYP14aPlzas8d1JACine9ehvtju+csX972Bw50G0teFS5sM4kladw4t7EACH8kiQNg8WJrmzSxmS0IXR9+KLVsaesEBYLXmzU72OORrrlGKlIk+zGFC0vdu9s+JacBwH+8XmnePNtv29ZtLMi9s8+WunWz/Xffzdtnixb1fzw+vtnElJwGACCwTkwSe735P8/gwVKfPtKSJf6JK78eekh66ilpxQq3cQCIbl5v9pnEsIHGEydKffu6jiTv+vWzdtIkq8QFAPlFCjMAfDcgzZq5jQNn1rWrlZ1aulTasMH/53/mGalHD+mPP05/HOsSA4D/rV9vVRri4mw9OISP66+39t13T/9weNo06e677b9zoJEkBgAgONq3l+LjbT3hgiRWP/pI+t//pEOH/BdbfvjWQ161ym0cAKJbSoq0ZYs9B/WV9Y92TZvavWc4lt5u1Ehq08aWvXz77fyfZ+9ee3ayeLH0/ffSl1/affiYMdJLL/ktXAAhLNZ1AJHIlyRu2tRtHDizMmWk886TZs2ykVd33OG/c3/9tZWU8nrt3H36nPrYSy6xvy+XXGIzj1kvCQAKzjeLuHlze9CI8HH55VZ5Y9UqKzvdosXJx2RmSv/8py0bERsr/ec/gY3pggusnTdPOnz45MogABBsGzZs0GOPPaaZM2dq27Ztqly5sm666Sbdf//9iouLcx0ekG9Fi9qyTN9/L/32m9SgQd7PsW2btH27VXdr0sT/MeZF3bo2K5okMQCXfLOImzWzJRIR/vr1k37+WXrgARs87Ut2jx9vy2GmpdmWmpq1X7hw9iWULr/81AOh4+P9+6wcQGgiSRwAvnLTzCQOD5ddZkniL77wX8e3Zo2NRPN6pQEDpJtvPv3xZctm/b0BAPgH6xGHrxIlpF69bFmIiRNzThJ/9JEliM86S7rvvsDHVKuWdNVV9qA5PZ0kMQD3VqxYoczMTL322muqXbu2li1bpgEDBujAgQMaOXKk6/CAAnnjDalcufwnMpKTra1bVypWzG9h5YtvJvHKlW7jABB4TzzxhL788kslJycrLi5Oe/fudR3ScaVLW7XD5s1dRwJ/ue46Sw4fPmybb/mlceNOnfj9831sQoL1kyVLZm0JCVn7vslMK1bYfTD5DiDykCT2s0OH7MFmbKz70arInV69pGHDpO++s5FVCQkFO9++fdIVV1i5jnbtrDRHOJYtAYBwd/HF0pEj0qWXuo4E+TFggFS1qvTXv578s6NHbbS0JN1zjz1EDjSPxxLTABAqunfvru7dux9/XbNmTa1cuVKjR48+bZI4PT1d6enpx1+npaUFNE4gP6pXL9jnFy2yNhSWHKHcNBA9jhw5oquvvlrt2rXTG2+84TqcbLp1sw2Ro1Qp6fHHpXfeyUoQS9KVV1oy988JX9/m9WY9q/7sM6u6cTpjx0q33mrLNk6bFqjfBoArJIn9rGhRK4eUnk5py3BRp45Uv76NiJo6VbrmmvyfKzPTykr/+qtUqZL08cd5+3tw6JA0c6bUubP70c4AEO4uvZQEcTi76CLbcuIrn3X22dLQoUENCwBCWmpqqsqUKXPaY0aMGKFHH300SBEBBXfiw+zc8s0kDoUZc74k8erV9szgTA/jAYQvX/86fvx4t4EgagwbZtuJhgzJ/edz0ydddJEdN3265T0aNsxTiABCHF9NA4QEcXjp1cvaqVMLdp6nn5Y+/VSKi5M++cQSxXnRsqXUs6cligEAwMkOHZJ8uY3777cKLsG0a5f19UePBve6AHAma9as0UsvvaTbbrvttMcNHz5cqampx7eUlJQgRQjkzf/+Z0tO/Oc/ef9sKCWJq1e3anOHD0u//+46GgChJD09XWlpadm2QNi1S9q8OSCnRhSoXt3WLpasYiaAyEKSGJCVtJw5UxozpmDnufRS6zhfeSV/a2BeeKG1kycXLA4AiHaLFtmaxCdU00QYysiQvvlG+vvfs5Kyr75qDziqVpVuvz248Xi9Ur160l/+klXGEgD87Z///Kc8Hs9ptxUrVmT7zObNm9W9e3ddffXVGjBgwGnPHx8fr5IlS2bbgFCUmmr9bV5LWx49aknZQoVCI0kcG2vLW23aJFWp4joaAKFkxIgRSkhIOL4lJiYG5Dr/+5/9+9O/f0BOjyhw553W/u9/0p49bmMB4F8kif2sUydLDi5c6DoS5EWdOlbiuXDhgp2nWTNp2TLpb3/L3+d79rR28mR7EA0AyJ9nnrF14U+zJCPCgNdraxKPHp31gPjGG6VBg2ztpSJFghuPxyOdd57tz54d3GsDiB7Dhg3T8uXLT7vVrFnz+PFbtmxR586d1b59e73++usOIwf8q0sXa3/4wWbh5lbhwrYE1L59UvnygYktrzp0kBITKTUNhKP8DN7KrWBV95gzx1pf+Xsgry64QGrSRDp4UHrzTdfRAPAn1iT2o2PHpHnz7OaFwdjRIy1NWrlSat3aXhcvnv9zdepkn9+82cpjJSX5I0IAiD7z5lnbtq3bOFAwsbHSNddIL78svfuuVeyoWNFeu9Kxo/TFF5Ykvuced3EAiFzlypVTuXLlcnXs5s2b1blzZ7Vs2VLjxo1TITJQiCANGtgSTlu3WoKjc+e8fb5YscDEBSC6DBs2TH379j3tMScO3sqL+Ph4xQdhzUJfkrhdu4BfChHK47HZxAMG2P34kCFSTIzrqAD4A3eQfrR6tSWIixWT8vndAA7t2CHddZfUrVvuP5OZKd18s80qmjix4DEUKSJddJHtU3IaAPJnxw5p/Xq7ifEN4EH4uuEGaz/6yEYtu9axo7Xff2/fAwDAlc2bN6tTp06qWrWqRo4cqZ07d2rbtm3atm2b69AAv/B4spZkmjHDbSwFtXq19MAD0pNPuo4EQF6VK1dO9evXP+0WFxfnOsxT+v13m4wSEyO1auU6GoSzG26QypSxSh2rV7uOBoC/kCT2oyVLrG3ShBJC4ahoUVuTeNo0mxmcG489Jn3+ud281q7tnzhOLDkNAMg73yziBg2khAS3saDgzj1Xql7dBuIVL27lI11KSrI49u61JSYAwJVp06ZpzZo1mjFjhqpUqaJKlSod34BI4Ss5nZck8YUXWnnn5OSAhJQvW7ZITzxBiU4g0m3atEnJycnatGmTMjIylJycrOTkZO3fv99ZTL5ZxE2bFqz6IVCsmDR1qpSSItWv7zoaAP5CKtOPfEniZs3cxoH8KVHCyj1L0qRJZz7+88+lRx6x/dGjpTZt/BPHpZda+/PPNhsOAJA3c+dae+65buOAf3g80lVXZb12PUEuNlZq3972WZcYgEt9+/aV1+vNcQMihS9JPH++LfV0JkePSj/9ZFuJEoGNLS9864CuXy8dOeI2FgCB89BDDykpKUkPP/yw9u/fr6SkJCUlJemXX35xFhOlpuFPrVrZRCsAkYMksR8tXmxt06Zu40D+XXaZtV98cfrjli+XbrrJ9u+4Q+rXz38xVKokjR9v18jlUmQAgBOwHnHkuf126ayzLFnse1jskq/kNEliAAACq2pV6fzzpWuvlVJTz3z8ypVSeroliGvUCHx8uVWxon2XycyU1q1zHQ2AQBk/fnyOg7c6+WalOECSGIGQmSn99pvrKAD4Q6zrACIJM4nDX8+e0uDB0o8/Srt3S2XLnnzM3r3S5ZdL+/dLF1wgPfus/+Po08f/5wSAaJCRYZUYJGYSR5Lata1fjolxHYnp3VtKTLTvAQAAILDyMijLV2K6WbPQWgbM47HZxAsXWiKbMp0AgmXoUOn7723ADeAPO3bY36eUFFvzukwZ1xEBKIgQ+sp8ahs2bNAtt9yiGjVqqGjRoqpVq5YefvhhHQmhGj1Hj9oaddWq2ZrECE/VqtnNZGam9NVXOR/z2mvS6tX2cPiDD6TChYMbIwDg9L76Sho5UmrUyHUk8Ke4uNBJEtevbwO6qld3HQkAADjRokXWJiW5jSMnvpLTq1a5jQNAdLn6aunFF+2ZJ+AP5crZ+sSHDklvvOE6GgAFFRZJ4hUrVigzM1Ovvfaafv31Vz3//PMaM2aM/vWvf7kO7bjChW2N2g0bpIQE19GgIHr1svZU6xLfe6/0xBPSp59K5csHLo5PP5WuuUb67rvAXQMAIk1MjHTeedKwYaGTUAQAAEDBZGZa9bYzlZz2zSRu3jzQEeUdSWIAQCTweKQ777T9l1+Wjh1zGw+AggmLJHH37t01btw4devWTTVr1tRll12me+65R5988onr0BCBLrvMZgnXrJnzzwsVkv71L6lly8DG8dVX0ocfWrIYAACElpQU6fnnbVQ+AAAIrIsvtqpfX3556mO83vBIEq9d6zYOANHj88+t1PThw64jQaS5/nrp7LOlTZukL75wHQ2AggiLJHFOUlNTVeYMBe/T09OVlpaWbQuUffvshgThr1UraeNG6amnst5btky65Rbp4MHgxdGzp7WTJvF3CwBy64knpHfesX4ZCKTly219r+efdx0JAACRz5f0nTHj1MccOCC1b2/LQYTisiM9ekjr1knTprmOBEC0GDxY6thRmjvXdSSINEWKSLfeavsMnAbCW1gmidesWaOXXnpJt91222mPGzFihBISEo5viYmJAYupSxerxz9rVsAugSDxeGzz+eMP6fLLpTfflO67L3hxdOkixcdL69dLK1YE77oAEK727ZMefFC66SZp/37X0SDStWtnJc03bLDR0wAAIHC6dLF2xoxTD6I+6ywbZL1+vd1Lh5pSpaQaNVgSBUBw/P67bYUKSa1bu44GkWjgQOvTZs2SFi92HQ2A/HKaJP7nP/8pj8dz2m3Fn7JjmzdvVvfu3XX11VdrwIABpz3/8OHDlZqaenxLSUkJyO+RkWEzTXfvlipXDsgl4MCxY9Ls2VY+Y906G4386KPBu/5ZZ0mdO9v+5MnBuy4AhKtffrGHhlWrSpUquY4Gka5ECalFC9v//nu3sQAAEOnOP18qXNiqfq1b5zoaAAh9c+ZY27SpVLy421gQmapUka66yvY/+shtLADyL9blxYcNG6a+ffue9piaJywMu2XLFnXu3Fnt27fX66+/fsbzx8fHKz4Iw0fXrJEOHZKKFTv1OrYILxkZNsL399/tddGi0mefSWXLBjeOnj2lr7+2JPG99wb32gAQbnwltM49120ciB4dO0rz59ugshtvdB0NAACRq3hx+473/fc2m7hWrZOPSU2VSpbMXhks1IwfL02dKvXpI3Xv7joaAJHMd3/crp3bOBDZHnzQZhRfcIHrSADkl9OZxOXKlVP9+vVPu8XFxUmyGcSdOnVSy5YtNW7cOBUqFDqVsn3lFJo0oWxQpIiJkerWzXo9bpzUrFnw4+jRw9off7Sy1wCAUyNJjGDr2NHa2bPdxgEAQDTwlZyePj3nnzdvLlWsGNolL3/4QXrvPdYHBRB4vpnEJIkRSI0bS506hfYALQCnFzqZ1tPwJYirVq2qkSNHaufOndq2bZu2bdvmOjRJ0pIl1jZt6jYO+NfQoZYsfvhh6dpr3cRQvbr9vWrVStq61U0MABAOvF5p3jzbb9vWbSyIHuedZ+2KFdKOHW5jAQAg0vmSxDNnSpmZ2X+2d6+0YYP1x1WrBjuy3PMNRl+1ym0cACJberq0YIHtkyRGsOzfb8s3AggvYZEknjZtmtasWaMZM2aoSpUqqlSp0vEtFPhGqZIkjiw9elgZ8UcecRvHzz/bKONGjdzGAQCStGHDBt1yyy2qUaOGihYtqlq1aunhhx/WkSNHnMa1caO0fbutVZeU5DQURJEyZaySTOHC0rJlrqMBACCytW0rDR8uvfuuDRA8ke+5TLVqUunSwY8tt0gSAwiGRYukI0eks8/OuTw/4G9PPGFrFH/2metIAOSV0zWJc6tv375nXLvYJd9MYhfliBFYhQu7jkAKwrLaAJBrK1asUGZmpl577TXVrl1by5Yt04ABA3TgwAGNHDnSWVyLFlnbrJmtIw8EyyefSOecw987AAACrXBh6cknc/6Z77tgqA8WrFfP2lWrLNFNeU4AgdCihU042bqVf2cQHOnpUmqq9OKLUu/erqMBkBdhkSQOZZmZ9g/f4sU2kwQIlNRU63DLl3cdCYBo1r17d3Xv3v3465o1a2rlypUaPXq00yTxlVdKv/8u7drlLAREqdq1XUcAAACSk61t3txlFGdWs6ZUqJC0b59VwalY0V0sJKmByBUXxzJMCK7bb5dGjJC+/94GboX6oC0AWcKi3HQoK1RIevZZafp0qVQp19EgUj35pJWIcZh/AYBTSk1NVZkyZU57THp6utLS0rJt/nbOOVT1AAAAiGQZGdKUKdI//mGlVH3CJUkcHy9Vr277LktOr1kjVaokVaggXXSRdM890v/+ZxMgHK8iAwAIQ5UrS1dfbfsvveQ2FgB5Q5IYCAO1aknHjkmTJ7uOBACyW7NmjV566SXddtttpz1uxIgRSkhIOL4lJiYGKUIg8J5+2kq6TZniOhIAACKbxyPdfLP0zDPSzz/be+np0q+/2n44zFyqW1eKjZW2bHEXw65dUvHi0o4dNunh2WelPn0syV68uCXhfTIzpW3bTl4HGgCAE915p7UTJ0o7d7qNBUDukSQuoNWrpb17XUeBSHfxxXYTuXy5tHat62gARKJ//vOf8ng8p91WrFiR7TObN29W9+7ddfXVV2vAgAGnPf/w4cOVmpp6fEtJSfFb7MnJUo8e0gsv+O2UQJ6sXm0ltWbNch0JAACRrVAhqXNn258xw9pDh6Q77pB69pTCYRzi229LBw9K113nLoZzz7VZw199JY0dKw0eLHXsKCUk2AD1smWzjl29Ovus42HDsmYdp6e7+x0AAKGlbVupdWvrG8aOdR2NGyTHEY5Yk7iAbrrJRq9+9pl0+eWuo0GkKlVKOv986dtvpS+/zBqZBQD+MmzYMPXt2/e0x9SsWfP4/pYtW9S5c2e1b99er7/++hnPHx8fr/j4+IKGmaPvv7cHXJJ0110BuQRwWh07Sm+8Ic2e7ToSAAAiX5cu0ocfWpL44Yftfvm551xHlXsnJmBdOuss6ZJLsr/n9UopKVKRIlnvrV1ryfmdO23W8fTpWT+LjZWef96SzJIlv9PS3K61DABww+OxZ9Z//as0Zoz0z39a/xHJ3n7bqnBUrGgVOebMkTZskEqWdB0ZkHskiQsgI0NautT269d3GwsiX8+eliSePJkkMQD/K1eunMqVK5erYzdv3qzOnTurZcuWGjdunAo5/tY/d661557rNAxEsY4drZ0/3x6OFivmNh4AACJZly7Wzp0rHThg5ZGRO9On23Osv//d1kf+M49Hqlo1+3uXXirt22clvRcvlpYsyWr37rV1KH2+/daeXZQvLzVtKjVrZm23biSOASAaXH21VcK85ZbITxBPmCD162eDv375RVq3Ttqzx9Zkvv9+19EBuUeSuADWrrWyRkWLSrVru44Gka5nTyvr9N13doNWooTriABEo82bN6tTp06qVq2aRo4cqZ0n1NKp6OjJz7x51pIkhivVqll5y5QUe2B94YWuIwIAIHLVqmWJzE2brKJMpUpSjRrhM2tn3z5L0q5da1VIYoP0ZC4jQxo61JLE+/ZJDz2U+88WK2YlRFu3znrPN+u4dOms9zZtskSzb61j36zjsmUtqXxiQhkAEHni46UnnnAdReBNnGgJYq9XuuYa+17ywANWdfa552yCF8/uES4ifDxHYC1ebG3jxlJMjNtYEPnq1pXq1JGOHpWmTXMdDYBoNW3aNK1Zs0YzZsxQlSpVVKlSpeObCzt3Zq3VfuJDKyCYPJ6s2cSUnAYAILA8nqzZxNOn29JMCQnSihVu48qt4sWtXPacOdLGjcG77jvvWIK4VKms8tAF4Zt1fOJD8IEDpf37bVm2sWNtrehq1aTdu6VHHin4NQEA4SUz03UE/vfBB1ZS2+uVbr3VZg57PNJ119nz+z/+kF5+2XWUQO6RJC6AJUusbdbMbRyIHv/4h/Tqq1L79q4jARCt+vbtK6/Xm+Pmgm8WcYMG9sALcIUkMQAAweNLEn/2mc2KjY+3GcbhoFAhGwAuSatWBeeahw9LDz5o+8OHS2XKBO5avlnHf/ub9OKLlpyOj7drOrplAAAE2dKl0pVXWl8QST75RLrhBkt+9+8vjR6dVVY7JsZmE0vSs8/aoCkgHJAkLgBfkrhpU7dxIHrccouNzGUtHwAwviRx27Zu4wA6dpSqVAmfB9QAAISznj1tjdynnrLXTZpIhQu7jSkv6ta1NlhJ4ldftVLQ55xjs3uDqUMHK0v91FM20woAEPkOH7aBXO+8I23f7joa//j2W+naa235hr/+VXr99ZPXXb7+eluWdPdu6ZVX3MQJ5BVJ4gLwlZtmJjEAAG4cOmQl+1iPGK7Vq2cPX8eOdR0JAACRLyFBathQSk62182bu4wm7+rVszYYSeK9e7PWh/z3v6WiRQN/zT8rVy741wQAuNO6tT2nOXLEkqmRoGVLm6Bwww3SuHE5Lz8aG5s1m/i996iggfBAkjifvF7pn/+UbruNmcQIrq1brZTFO++4jgQA3Bs50h589enjOhJEO4+H2TEAAARbuCaJgzmT+JlnbH3Ehg2lm28O/PVOZ948acgQHpojMm3YsEG33HKLatSooaJFi6pWrVp6+OGHdeTIEdehAU7ceae1o0dbsjjclSwpTZ0qTZiQc4LY58YbpTfflObO5RkBwkOs6wDClccj3X676ygQjaZNk/7+dykpyTodAIh2sbG2AaEgM9NKKlar5joSAAAi26ZN0pdf2n5SkttY8iqYSeLrr7e1If/2N7ffmffulS68UDp4UOrUSbriCnexAIGwYsUKZWZm6rXXXlPt2rW1bNkyDRgwQAcOHNDIkSNdhwcE3VVXSZUq2YSnjz+2/ijcTJ8uLVok3XuvvS5e/MyfiY2V+vULbFyAPzGTGAgzl1xigxQWLZI2b3YdDQAA8NmwwcopNmli6xQBAIDASUjI2g+3Cm9169o6hnFx0tGjgb1WkybSpEnS5ZcH9jpnUqqUzSKWrDLfsWMuowH8r3v37ho3bpy6deummjVr6rLLLtM999yjTz755JSfSU9PV1paWrYNiBRxcdLAgbb/4otuY8mP776TLrtMuu8+6f3383eOY8ekFSv8GhbgdySJ8+nHH6VffrFF2IFgKlcua+1N36hpAADgXmKiJYf37ZMWL3YdDQAAkS0hwfrbxYuls85yHU3elC0rHTokrV4tFS4cmGtkZgbmvAVx3332u69cKb3xhutogMBLTU1VmTJlTvnzESNGKCEh4fiWmJgYxOiAwLv1VksWz50r/fyz62hy7/vvpR49rK++9NL8Vb9Ys8aWerjgAquiAYQqksT5NHSoLcD+xReuI0E06tnT2smT3cYBAACyxMRI551n+7Nnu40FAIBo0LRp+M0ilqw6WFxcYK9x3XW2TNq2bYG9Tl4kJEgPPmj7jzwiHTjgNBwgoNasWaOXXnpJt9122ymPGT58uFJTU49vKSkpQYwQCLwKFWyA0EsvSQ0auI4md376ySp5HjwodetmpbLj4/N+nmrVrFrIjh3Sa6/5P07AX0gS50NGhrRsme2H480Iwp8vSTx9uo1oAgAAoaFjR2tJEgMAAFfmzJE+/FAaO1b64w/X0WR3++1SjRqWvH7uOdfRAGf2z3/+Ux6P57Tbij/Vk928ebO6d++uq6++WgMGDDjluePj41WyZMlsGxBpHntMGjxYKlHCdSRnNm+e1L27DWLq0kX67DOpSJH8natwYelf/7L9Z57hGT5CF0nifFi3zkaSFCki1anjOhpEoyZNrKTloUPSzJluY9m0yTpQ1l4EAEA6/3xrZ8+WvF63sQCIHunp6WrevLk8Ho+Sk5NdhwMgFyZNkjp0yFqn11+8Xukf/7D9fv2s1GUoiY+XnnjC9p95xmZYAaFs2LBhWr58+Wm3mjVrHj9+y5Yt6ty5s9q3b6/XX3/dYeQA8mLnTksQ79sndepkFWSLFi3YOfv0kapWtYFR/HOAUEWSOB98a8w1bmxlBYFg83hsNnFsrLRqlbs4Dh6U2rSxNZIrVZL+9jcrgc3IKABAtGrZ0m4kd++Wli93HU1gfPyx9MMPVjoLQGi47777VLlyZddhAMiDQ4espKW/12j88ktbS7FIESvpHIquvVbq1ctmEp9muVYgJJQrV07169c/7Rb3//XjN2/erE6dOqlly5YaN26cChXi0TsgSUeOSG++aeWb09NdR5OzcuWkRx+1gd+TJknFihX8nHFxWbOJn35aOny44OcE/I2eKh+WLLG2WTO3cSC6PfigtGuXdPfd7mIoVkz66CPb37lTeuMNu9ErV07q3Vt6+20pM9NdfAAABFtcnNSune1HYslpr1caNMhunMuWla64Qnr1VWnNGmZOA65MmTJF33zzjUaOHJmr49PT05WWlpZtAxB8deta68+B3xkZ0j//aft33SVVqeK/c/tToUI2Q2vAABv8DkQCX4K4atWqGjlypHbu3Klt27ZpWygtDA444vHYs+xp02w5hFB1551WtfOss/x3zn79rCLo1q22DAQQakgS54NvJjHrEcOlSpWkhATXUUjnnWejwaZPt/UlqlSxdRs+/thKSJ04aHLvXmdhAgAQNDffbKOFzz3XdST+sWtX1qzhtDQrvVW2rJXh+vxzSxrXqSPVqiU99ZTTUIGos337dg0YMEBvvfWWiuVyusOIESOUkJBwfEtMTAxwlABy4lu+bPdu2/zhrbekX3+VSpXKKjkdDo4dcx0BUHDTpk3TmjVrNGPGDFWpUkWVKlU6vgHRrnBh6e9/t/0XXgidAca//ir16CHt2ZP1nr8HL8XFScOH2/4PP/j33IA/kCTOB99MYpLECBVHjgT3ei+8IJ241FnhwlKXLtJLL9kaxb/8Ij3wgCWNfQ4ftlFTrVtb8vjXX0PnCwEAAP7Up4/1dc2bu46k4DZutJnR/ftbdZCEBOm992z9wF9+kZ58UrrgAvsusH599pvrgwetzOVPP/HwFwgEr9ervn376vbbb1erVq1y/bnhw4crNTX1+JaSkhLAKAGcSvHiWTN9V68u+Pm8XivfLNlgtdKlC37OYJg40RLm8+e7jgQomL59+8rr9ea4AZBuvdXWpf/lF2nePNfRSCtW2PPsr76Shg0L7LX695e+/dbupfF/7N13XFPX+wfwTwAJgoACCqLgxI17b60VRx1damsd1drxU6u1dbZu6+rQttra1lat1dql1lFX3XvvvXGBW4YKQu7vj+cbwiaBJDfj83698hKSm5tzQ8xz73nOeQ7ZGiaJc+GHH4DPPnOMjj+yb4cPA/XqyYwea/n7b2DwYKBRI0kIp6fRyHqMEyfKzCK9AwdkhrE+gVylipTXGjoU2LlTymIRERGR7Th7VspKX7ggaxvevm14zMVF4v3IkcCWLcD9+8CqVUDv3oZttm2TNZ0aNZKZxy+9BMyZA1y6ZO0jIbIvI0aMgEajyfZ25swZfPPNN4iNjcVI/dQEI2m1Wvj4+KS5EZE6zFlyWqORDugxY9IO2LZ1a9cCV67IzGfm0oiIHFfhwsDrr8vPX3+tblvOnwdatgSioyXHY+SqLbmm1Ur/vUZj2dchyg2N4kTDmWJiYuDr64tHjx7xQpgcwo0bMvJYowGiooAiRSz7esePy2yi+HhZC1k/StlY0dHAypXA8uVSnjohwfDY559bftQWkbkwnuQd30NydA8fSimpoCDAhAl+NuPIEaB1a+DOHaBCBVk7ytR1DffsAWbMkJh//37ax8qUkYGXLVuarcnZUhSpahIXJ+cxwcFS9ovsnyPGkzt37uBeDrVnS5cujS5dumDlypXQpOptSk5OhqurK7p3744FCxYY9XqO+B4S2Yv33pMBVB9/DEyapHZr1HH1qiTLExNlNlfbtmq3iHKL8STv+B6Sozt8GKhZU0o6X70q12XWdvGiVMO6cQMID5c1iAMCrPf69+7JQOx69az3muScjI0pZq6wTkTWVKyYBNZDh4A1a6S8paXcvw907iwdq61aAdOnm76PwEDgrbfkFhsLrFsnCeNVq2T9B72//wZ+/11er107WU+JiIjInkybJuvzvvkm8PPParfGNLt2Sfx99AioUUPideHCpu+nfn2J58nJcq6yfr3cdu2SC/OgIMO2//4r1UZat5akuqJIQjc2VspWV6hg2HbTJplxFRdn2Eb/c1ycnFvoc2Zvvw388Yfcn7pqiZ+frB398cfW7RAgMkbhwoVR2Ij/dF9//TUmpcoq3bx5ExEREfj9999Rj71ORHahQgWgRAmZYZQX588DZcva5wylEiWAgQOBL76Q2cStWwOurmq3ioiILKFGDalWtX27DJKaMMG6r3/5MtCihSSIK1WSAc3WvB7cswd4/nlZEuL8+bzHfyJz4ExiIjs3dqwE1FdeAf780zKvkZQko3n/+w8oVUrWCvL3N9/+nz2TtQz1Xn0V+Osv+dnNTYL32LFSrpLIFjCe5B3fQ3J0a9ZIorVMGRklbC82bJBBWo8fA40by0AuX1/zvkZsrHQKtG1r6Mzu1k0SyoCUstbpDNu7ucnsIv22L70ELFuW9f4fPwby55efe/UCfvkl7eP58sm5R4ECwK1b8i8giWl77Fx3downBleuXEGpUqVw+PBhVDdhbSS+h0TqMUfsuX5d1vStX18GSpk7blvD/ftyzvTwITB/vmUHwJPlMJ7kHd9DcgZ//w38+KMsQfjcc9Z7XUWRvuXdu4Hy5WXZpNQDl63h6VOJdzdvSpL8nXes+/rkXIyNKVyTmMjOvfCC/LtunXSgWsLw4ZIg9vIC/vnHvAliIG2CGJD1DUeNkhFdSUnSYd2smczISt1pTGQKfnaIyJoaNpRk58WLMkrZniQlARERcm5hiY5mb29JoKfuFO/USQaJFSqU9vva3V3akPocp149SWT36CFlOocNkwFzM2ZIZ4NLqiucSZNkbeUbN2RmdFIS8OQJsHq1LHWROkHcpIns79Ah8x8zERFRZswxOGncOOl0Tk4G7DWn5Ocn/QAAMHq0HA8RETmml1+W9eitmSAGJObOmydrA2/aZP0EMQB4eEg/OwBMnmy5vnwiU3AmMZGd0+lk/YboaEnkmjvAPnsGdOggHcV//SWB3JrOnZOO30WL5PfevSWgE5mqRw8peT5lSsaBCaZiPMk7vofkDGrVkoTjb7/JTFl7sXu3LGehRumr5GSZ3evpKQlca60bvH8/ULeu4feaNYF+/YDXX7ffDndnwXiSd3wPiWxDbmYVnzol6ynqdLKcQ4MGlmmbNTx5ImsTX78uS0W8+qraLSJTMZ7kHd9DIvOJigL27ZPbhx/KgGRb8OQJULq0tO+HH+S6k8gSOJOYyEm4uBjW8121yvz7z5dPZtusXWv9BDEgF4kLFwJz58pM5p49rd8GcgzvvQcsXQqcOKF2S4jIWTRtKv9u365uO3Ly44/AmTOG3xs0UG9tJFdXoHhxmVFkrQQxIAn9//4DunaV1z10SOJG0aJAnz7AyZPWawsRETmXnj1lNtOmTaY/d9QoSRC/+KJ9J4gBWSri+++l/CcTxEREju/GDakesXdv3vcVGwts3gxMny5LMoaGyrVcp07Ap5/KoGBbkT9/2tnEz56p2x4iJomJHMDLL8tFVIsW5tvn48cykhmQDtuICPPt21QaDdC3L3D1atpjPHmSJYTJeA0bSsnRGjXUbgkROQt9knjbNnXbkRVFkYvSt98Gnn8euHtX7Rapx8VFqrEsWSKdFV9+CVSsKOdD8+YB166p3UIiInJUDx9KZbBz50x73s6dshyUi4vEc0fQrp0sNUVERI5v3DhZHujLL017XmIicPCgxE69JUuAli0l+fr333L9ptEAVaoAb75p/qUT8+qdd6Ta4ZUrwC+/qN0acnZMEhM5gHbtpBxTx47m2V9iItC6tQSshATz7NMcUgf0s2eB+vWlFLYzd2pT9h48SDv7K69lpomITNG4sfx74gRw7566bUlPUYARI4CPP5bfbfHCWS0BAcAHH0j82LEDeP99SaLrjRsnZag3bzYMqCMiIsqtcuXkX1OSxIpimIXUty9QoYL526W2W7ekFCcRETmmgQPl37//lqUGMqPTSXz89Ve5LqtfX5YDql0bWLbMsF3dukCJEjKLePp0qUrx6BFw/Djw889SOcqW5M8PDBsGuLlxQDKpz03tBhCR7Xn/fRmVfPy4XHiWKaN2izI6eRJISgL+/Vdmhi5ZAjRqpHaryJYoCtCrl5QP/fVX4KWX1G4RETmbwoVlPeIaNaR8sq1ITgb695eSjgDw+eeyRhOlpdHIuUXq84ukJGDOHBm1/ttvQNmywFtvSbwJClKvrUREZL9ykyS+fVsGS+fPD4wda5l2qemXX2TZh1deARYsULs1RERkCVWrAs2bS0L322+lKkZSkiROAeDwYZkd/PBhxucWKgTExxt+r1ZNZuXak3fflb7KkiXVbgk5O84kJnIQiiLrCf72W972M2eOdBprNLIvW0wQAxJE9+6VC+rr16Uk1fTpLD9NBp9/DqxcKZ8JnnARkVq6dQPKl5e4aguePQN69DDE+h9/ZILYFG5uwOrVUm3F2xu4cEFmZIeEyLnJxo1qt5CIiOxNbpLEgYFSqWTrVqBYMcu0S00VKsiSDwsXAkePqt0aIiKylPffl3+//lquqUaMMDxWurTMBvbwkCXkBg8GFi0Czp+XSl32fh3r6cn+SrINTBITOYjISFk7r0ePzEdYGWP7dkOpj08/lTLWtqxqVeDAAeC112RW1PDhUnLb1kp6kvVt3w6MHCk/f/UVULOmuu0hIrIV48bJIDA3N/n3rbfUbpH9qVVLBtXdvAn89JOUPEtKknJny5er3ToiIrI3+iTx5cuy9JOx3NyAOnUs0ya11a0LdOkig+H113VEROR4OnSQRGl8vEwC2rfP8Jivr1S5jImRipczZsiyP2XL2s4gbHM5dkxmVBOpgUliIgdRogRQqZIkS9etM/35165JKaekJLkYSz1yy5Z5e8sosu+/B7Ramd3z7bdqt4rUdPu2zNxLTga6dwfeflvtFhGRM9PpgNmzga5d5eJWbUOHSlJz+XJpE+VegQJAnz7A7t3SeTFoENCvn+Hxc+ckmZyUpF4biYjI9hUtCnh5yfXLpUvZb/vkiVzvJiRYp21q+vRTSYSvWQNs3qx2a4iIyBLc3IBVq4BvvpEk6erVaR+vXBnIl0+VplnN0qVSLrtfP147kjqYJCZyIC+8IP+uWmXa83Q6SRDfvi1B6eef7WtElkYjicC9e2Umtb0kuMn89InhmzdlZv2cOfb1WSYix+PiAnzxBfDHH5JMVMPTp4afCxaUUdjt26vTFkdVpQowc6ZUOdH76CNZT7FmTZahJiKirGk0QNOmQIsWOSd/v/kG6N8fiIiwTtvUVLasrNcIAMOGcWkpIiJHVbkyMGCALCXo7a12a6yvdWsgIECWMsrrMpJEucEkMZED0SeJ//1XkmXGcnGR8pNly8rMIi8vS7TO8qpVA375xTDC7NkzKU11/7667SLrWbAA+O8/Wdfjr79klhcRkdqaNpV/t22z/mvfuiWlKL/6ynCfC68ALE5RgOefBwoVklnGrVoBnTrJ+llERETp/fsvsGmTXNNm5f59YMoU+blPH+u0S22jR8s13YEDwJ9/qt0aIiIi8ytQwLC+8qRJpvXpE5mD3XURJSQkoHr16tBoNDhy5IjazSGyKQ0aSGfk/fumz1Zq2xY4fVrWgXAUn3wCTJ0K1KgB7NmjdmvIGnr2lL/7999L+XUiIlugVpL4yhWgSRPgxAlg+nTbKHftLDQaYOBASQoPHAi4ugIrVsgo+Y8+Ah4+VLuFRERkb6ZOlfgRHi7Vk5xBkSIyi9jdXZbIIiIickT9+wN+frJk0ZIlareGnI3dJYmHDRuG4OBgtZtBZJPc3IB27eRnY0pOb98OXLyY9vmO5LXXZHZ0ZKR0kn/5pczsUUNSkpQOS0hIu76Eohjuz+z27Jnx27L8lnyGJ04E3nhD7ZYQERnok8T79slagtZw5ozEvosXgVKlJOb7+FjntcnA3x/4+muZTdy2rcT1L74AfvpJ7ZYREZEtSkzM/P5r1ySeAJIsdnW1XpvUNmQIcPasDLIiIiJyRN7ehtnEEydyNjFZl10lidesWYP169fj888/V7spRDZLX3L6v/+y3+7iRSl7WKcOcPSo5dulhurVgYMHgS5dJDH74YdA587AgweWfd2nT4GtW4EZMyRZWakSoNUCHh5y0wd9QMqA6u/P7Pbee4ZtY2Ky37ZaNfWS4Gp69kwGAOS0fhcRkVrKlAGKFpWO3337LP96hw5Jgvj6dYlB27cDpUtb/nUpaxUrSinRf/+VZHH//obHHj1Sr11ERGQbzp4FiheXgV2ZGTtWrneaNZM44ky8vByr4hkREVFmBgyQCqFnzwJ//KF2a8iZ2E2SODo6Gv369cPChQvh6elp1HMSEhIQExOT5kbk6Nq2BVavlg7hrMTFGZKlYWFA+fJWa57V+fhImY5vv5USVStWSPnpQ4fMs/9794ANG9KWs75+HWjeXEY8L1okZbytMcu3WzcpbwnI6926ZfnXtAUffyyJ9/btnTNJTkS2T6OxXsnpHTuAFi2Au3eBWrVk0FKxYpZ9TTJe27aSKPbwkN+TkoDGjYGOHZ1rveLISPmsEhGRCAwEbtwAbt4EYmPTPnbiBLBggfw8bZrhms8Z7d8P/PKL2q0gIiIyPx8f6UsuUiRtFUoiS7OL4rKKoqB379549913Ubt2bVy5csWo502ZMgXjx4+3bOOIbIyvr6HkdGZ0OqBXL7nQDAoCli0zdFQ6Ko1GZuTWrw+8+ioQHS1lPEwVFSXJ5dS3q1flsS5dgN9/l5/LlAGqVJFS1zVryq1aNcNrursb9hkUlP26hPnyGX728cl626QkIPX4mZUrpU29egFDh8pgAEe0YgXw2Wfy8//9n3N3mBCRbWvaFPjrL4lBesWKSfnpfPmkXH7qW926wMKFhm07dZIZp+m3c3OT7/gpU2S7gwel8kTTphILWGLatu3dK6XBT5wA1q6V9YtHjwYKFlS7ZZazejXQsyfg4gIcPiwz54iInF3BgtIpfPu2DBqqWdPwmLu7DDLy8ADq1VOtiarbu1eu6T09geeflyotREREjuSDDyRRbOQcSSKzUDVJPGLECEybNi3bbU6fPo3169cjNjYWI0eONGn/I0eOxJAhQ1J+j4mJQUhISK7aSuQoPv0UWLpULjSXLgWcaYlv/QziY8fSJk2fPUubjFUUmQ18756UrAakRGhoaNo1gvXCwtLO0tJoZO1BY7i4SGLfGBqN8dtu2CBt/vFHYO5c4JVXgBEj0nY22LvLlyUJDgCDBwMvvaRqc4iIstWjh9xSD1K6f1+WKMhM+vi8a5fMDs5MnTqGnwcNAgICgBdf5IWlPWjUSM4ZPvxQZhh/+aXMkJowAejXTwYBOIpnz4BPPgGmT5ff69ThWltERKmVKydJ4nPn0l63lSsHrFrF5XXq1gUaNAB27wbGjQO+/17tFhEREZmXl5faLSBnpFEU9Ypz3rlzB/fu3ct2m9KlS6NLly5YuXIlNKmmiCUnJ8PV1RXdu3fHAn3dnRzExMTA19cXjx49gg+nVZADS0wExoyRROHWrUCBAnL/P/9ImWlAEod9+6rWRJuxeTPw1lvAyJGyTrN+hvDdu3JhfvCgYdu6dYH4eMPs4Jo1JYlsbOLW2nbsAKZOlRk7eq1bS7K4eXP7nnX79KmU5zx4UEaTb92adoa2pTGe5B3fQyLgwgWpBKG/PXtm+Nnb2zBQCZDO4ceP026vvwUESPUIsm9r18qo8dOn5ffKlYFNm2Rmmb27cUOWxdCXmB44UCqBaLV53zfjSd7xPSSyDX37Aj//DIwfL9fzlNGOHUCTJoCrq1ThqFBB7RZRaownecf3kIgAqQS6bJlUBnv+ebVbYz8SE2X5xZAQmZjl7IyNKaqOTS9cuDAKFy6c43Zff/01Jk2alPL7zZs3ERERgd9//x31nLnWDlEW8uWTkpYXLwL//SeJYUUBZs+Wx/v3Z4IYkPdk9Gjg0iWZrZOavoSnTmcIKrt3y8WovWjcWJIKx47JrJ0lS4D16yUBfuCA2q3Lmw8/lASxvz/wxx/WTRATEZlL2bLGb/vCC5ZrB9mGNm2AVq1kZtSYMRLjjLhUsnk7dsjM9rt3pZPjp5+kwgkREaVVrpz8e/as/LtiBbBmDTB2rCxTRHKN27GjvDcjR0oHOhERkaOZNUuqhFWpAhw9yoSnMVasAN5/X5aGLFhQqnY1aiTnDrVrA/nzq91C22UXH6/Q0FBUqVIl5Vbuf2fOZcqUQXEuYkWUgUZj6Exetcpw34oVkiycMUO9ttkSjUZm2b79tpSteucd6Zjdvx+IjZU1j1IHYXtKEKdWtSrw66+ytlX//tLxrJ9FHBMDzJ8vI63sxa1bwOLF8vPChTI6jIiIyBG4uUmsvnBB4rM+Xj98KJ3hDx6o2brcCQ6WWfLVq8sALyaIiYgyp08SnzsnlUKGDwfmzDEM9iYxZYpcpy9fDuzcqXZriNLq2LEjQkND4eHhgaJFi6JHjx64efOm2s0iIjvTo4cMsD1xggOijLVsmSSIAbl+Xr0aGDUKaNpUqq+lXrbD2ZfwSM8uksREZDp9knj1apkNCwAeHsDQoWnX33V2vr6SGN61Sy7A335bRhd5eKjdMvMrVUpGonXqZLhvzhzgzTeBMmWAmTOBuDjVmme0okWlk/n774G2bdVuDRERkfkVKiRxW2/SJFlCIixMkgVJSeq1zRhPnhh+Ll0a2LhRKrKYMnueiMjZVKokHZmNG8tAoTNnpKrERx+p3TLbUqkS0KeP/DxsmFQII7IVLVq0wB9//IGzZ8/i77//xsWLF/EKR8gRkYkKFZKZxAAwYYKhb58MEhKkWpXe9OlSMfThQ5kANnOmDFAOCpJzh9RLHTVrJktWvPUWMG+eTKxy5vMJVdcktjau60DOJDFRLijj4mTtgjVr7HcmLFnOjz/KzOKoKPndz0/WCRw4UD4/lDnGk7zje0hEZLwNG4DBg4FTp+T3SpVkJtULL9he6bFNm4A33pAER+vWln89xpO843tIZFseP5ZBQTdvShWwwYPVbpHtuXlTEurDhkkHr63FQmfFeJLRihUr0LlzZyQkJCBfJjM2EhISkJBqSltMTAxCQkL4HhIR7t8HSpaUapdLl8oSPpb05IlUgLKHr56NG6UCV7lyUjk1O4oCPHokJagB4OlTmTSWvqpmkSJSnrp9e8dZptPYuMzTKCIH5e4uI5AB6VjculXd9pBt6tcPuHwZ+OEHmd1z/z4wfjwQGioj1m1lGJGiAEOGAGvXqt0SSi0hIQHVq1eHRqPBkSNH1G4OEZHDev55WYtq1iwZ0HXqlFQGqVLFsASD2pKTgYkTpa23bgHTptnOeQQRkT35+mtJgpYoAbz3ntqtsU3BwVKW++23mSAm23X//n0sWrQIDRs2zDRBDABTpkyBr69vyi2E62kR0f/4+ckau4DMJjbHtZWiyEShLVtkxq3ejBmAl5fMYH7lFam4aYvXcrduAa+/DrRqBZw9K0tF5lTRX6MxJIgBqR566xawcqUs7dG4scwyvn1bSlavW2fYVlHkvV+zJu375Wh4KkXkwAYPlmTxuHFAy5Zqt4ZslYeHJIvPnAF+/x2oUUNGr9+8aVgLUW3z5skJS4cOQGSk2q0hvWHDhiE4OFjtZhAROYXU6xUPGyYjvE+fljLOart9W5aAGDNGSqG9+aZcdNvKeQQRkb24d0+u3wFZaiB1aURKi8lhslXDhw+Hl5cX/P39ERkZiX/++SfLbUeOHIlHjx6l3K5du2bFlhKRrfvgA6BAAeDIkZxnzKYXFSVJzylTgN69gfr1JQlctCjQokXa68jgYEmI6nTA33/LjNoGDaSf2BaWOkpKkkF0FSoAv/0m5wADBkiiODfdkn5+UpVr6lRg+3aZabxzpwx07tnTsN3588DYsUC7dvKcqlVlAN/nnwM//SRrRqduY0yMbSbXc+KmdgOIyHIiIiTZxzLTZAxXV6BLF+DVV2X2eeoBrGfPAiNHAu+8IwMOrLmu9dGj0ikOyOit0FDrvTZlbc2aNVi/fj3+/vtvrFmzJsftMyujRUREpitUSC5eR42SZSNeftnw2L59wB9/yEDB4sWt057t24Fu3WRwWf78wHffAb16Wee1iYgczccfyxp7gMyUoezpdNJZ/O23wPr1MgvKnBRF1js8d06uiWvUkJv+sZ07pROdfS6ObcSIEZg2bVq225w+fRoVKlQAAAwdOhR9+/bF1atXMX78ePTs2ROrVq2CJpPRc1qtFlqOBiGiLPj7y2zi9evlOjC9u3clPp05I7fXXzfEqf/+A3r0yPgcFxegVCkpu6zXvj0QHS2Df2fOBH79VWbpdusmlU2OHpUSzWq4cgV46SXg8GH5vW5difu1apnvNbRaoGFDuaXXuzewY4cM1j5+XG5606ZJdS9A3qPateWcoGBB+XulvnXrBnTuLNs+eiR/n/Tb+PioM9CaSWIiB8eLFTKVRpNxDcHPPpPRZ8uWycipl16ShHKLFjKzyVJiYiRp/fSpjNoaPtxyr0XGi46ORr9+/bB8+XJ4enoa9ZwpU6Zg/PjxFm4ZEZHz8PWVpSFSmzZN1qv66ivgtdeAoUOB8HDLteHECTkXSE6WUd1//mm4SCYiItMNGSJLAH38MWfKGuPZM2D0aFlCacYM4JNP8ra/qCjg55+lw/3sWUkOP3hgeHzMGEPn+/79QJMmsobhiy9Kec5mzaw7oJqs48MPP0Tv3r2z3aZ06dIpPwcEBCAgIADlypVDxYoVERISgj179qBBgwYWbikROaKxY6W6iEYj118zZxqSwvfupd02NNQQp6pUkaRlhQpA+fLyb4UKstygh0fa5xUoILciRYC5c4HJk2Xw7+zZ8tzUCeJ79yR5bS2BgZJULVRIZkX362e9c6Ry5aS6JSBJ9J07ZQZ2VJScH/xvbBAAQznq5GR5j9L/bfR/F0ASzq+8kvH19AnmRYtk8p+1aBTFHidA546xCzUTEVFap07JOoh//QXcuWO4PyBAZjBNm2b+EWWKIonov/6Sk5xDh6x7EpIdZ44niqKgXbt2aNSoET755BNcuXIFpUqVwuHDh1G9evUsn5fZTOKQkBCnfA+JiCxlzRpg+nRZY0qvTRtJFrdoYZlRyW++KZ30c+ZIx4K1OXNMNhe+h0RkzxYvBrp3B7y9gYsXgcKFM98uORm4ds2Q/NXPDu7UyVC56vx56RBOLzRUOslfe03iHiCVO955J+0ahX5+Mkvo5ZeB555zvnLhjCcZRUZGokSJEti8eTOaN2+e4/Z8D4koO7t3Z5ztGhpqSAC//DLQtKn5Xu/pU5mtrK9SdfMmULq0LDU0ZIis52vua0x9yeuXXjJMfjt8WNqQVYy3FU+eyGC/Bw8y3ho3lqQ9IOXDBwwwPHb/vqGSDABs3gwYETJyZGxMYZKYiIiMlpQEbNsma1L8/beMiipaVC629YH74kWgZMm8z2L/5hspqZIvn5SyrFcvz803G0eMJ8aW0Fq/fj3++OMPbN26Fa6urkYnidNzxPeQiMhW7N8vVUD+/lsusgG5yP7777zve+9eGX2uH7j17JlUFVFr/WHGk7zje0hE9kynA+rUkUHFAwfKjKuEBMMahTdvymyc8+fTdsDqvfEGsHCh/JyUBLz1FhAWJknhcuUk5mVVPCkxUTpy//5bqm7dvWt4bMsWmVnsTJw9nuzduxf79+9H48aNUahQIVy8eBGjR49GdHQ0Tp48aVRZaWd/D4koe48eSeUMfVI4LMz8Sy1kZ948oE8fw++1asm6ya++Cri7533/R4/Kmr+7d0u/8IABed+nvXjyxJA0LlHCPAOwmSTOBAMtEZH5JCXJBfHduzKiGpDR2cWKSUfxK6/ITOBGjXJXBuT//k9Km8ycCQwaZNam55kjxpM7d+7gXvpaKOmULl0aXbp0wcqVK9Osp5ScnAxXV1d0794dCxYsMOr1HPE9JCKyNRcvSifCzz8DU6fK4CtAEruJiaZ1KCiKxORhw2RZipUrbaMUKuNJ3vE9JCJ7999/wPPPG37v3dtQHjIxEcifX5LJ7u6S9NUngMuXB2rWBKpVy3sbkpJkcPPff8vahQcPGgZOjxwJXLokM7zatVOn8oY1OHs8OX78OAYNGoSjR48iPj4eRYsWRZs2bfDJJ5+gWLFiRu3D2d9DIrJ9p07J8ka//GJY1zg4WBK6/fvLurqmiomRQV7ffCN9ywUKyKDnd981b9udDZPEmWCgJSKyrLNngfr105bcCg6WhHHXrvKYKR3KGzcCLVuqNzspK84cTyIjIxETE5Py+82bNxEREYG//voL9erVQ3F9DZocOPN7SERkbXfvyiwo/UyohQuBwYPlIn7AAFl7KjsPHsiI8eXL5fcuXYD586XTXW2MJ3nH95CIHEGnTsCKFYaf9TELkFm9oaEyMyevFa9MpdNJicxbt+R3Dw9ZCuKVV4AXXjD/sk1qYjzJO76HRGQv7t6VJYdmz5Y1ej09pdKkn5/x+1AUWb7hgw8McfLVV4EvvzSUuKbcY5I4Ewy0RESWl5goI7n/+EMuzB89Mjw2ZgwwfnzWz9WXxLSFmUnZYTwxYLlpIiL7k7oj3cNDZlx9+KHMrkrvwAG5UL9yRWZgzZghJcBsZQAX40ne8T0kIkeQkABcvgyEhFi39GZOFEVi6V9/ySzjixcNj7m7A716AT/8oF77zInxJO/4HhKRvUlIAJYsAW7fBoYONdw/fLgMimrePOtrx6FDgc8/l5/LlpWEc+vWFm+y0zA2pth4NzwREdkbd3cpoTV/PhAdLeUoe/QAvL1lpLTe9u3ARx8B+/bJhTMATJ8OtG+fdi0nIiIiMq+lS2UwV506UiJszhwpu/nKK7LmMCCxefZsWTbiyhWgVClg1y5ZDsJWEsRERER6Wq2sz2hLCWJAYmadOsC0abIu8pEjwCefABUrZlz64dkzYO5c6Wi3hqQkID5eXpeIiCg3tFoZ8JQ6Qbx3r/TxtmwpyzosWCDJ5PTeeEPi4IQJwPHjTBCrhTOJiYjIKp4+lRMHfcdy376yRiIAlCwJREQAP/4os4kXLAB69lStqTliPMk7vodEROpTFGDbNlnvafVqua95c2DzZiAuDqhaVWZlde4sazsWLKhiY7PAeAKsXr0aEyZMwLFjx+Dh4YFmzZpheeo6qznge0hEpI5Tp6Q8Z8mS8rt+bWUXF6BJExm8VaqUXEs/fSqP6ZeI2LNHYrf+sfS3CROAGjVk299/Bz7+OO3jCQmSJAaAf/4BOnbM+/EwnuQd30MicgRXrkiSeP584MkTuS8oSCYRBQZKFSu9hw9t8zrTERgbU9ys2CYiInJiHh5pf3/5ZRm1vHKlnDx8/73c37OnnDQQERGRZWk0QLNmcjt5Ukp9desmjxUoILONd+wABg3i7GFb9ffff6Nfv36YPHkyWrZsiaSkJJw4cULtZhERkREqVUr7e3IyULu2lKfeulVuqW3dakgS798PTJqU9b7ffdeQJH7yJG2Z6/SePjW97URERFkpWRL49ltg4kRZUmHWLODmTRmc7OYmZagrV5ZtmSBWH2cSExGRqh4/Bv79F/jzTxkxPXeu7ZUIS4/xJO/4HhIRkTk4czxJSkpCyZIlMX78ePTt2zfX+3Hm95CIyBZduSJLQ6xaJZU9tFoZdD1tmpTtBGT5pj//lPszu7VqBYSGyrbR0ZIkzmpbDw+5Fs8rxpO843tIRI4oMVFi1rx5sgTDxx/LoGSyLM4kJiIiu+DpKWW0XnlF7ZYQERER2Y9Dhw7hxo0bcHFxQY0aNRAVFYXq1avjs88+Q5UqVbJ8XkJCAhJSLQoWExNjjeYSEZGRSpYEhgyRW1aaNJGbMQID5UZERKQGd3ege3e5ke0xwzgxIiIiIiIiIrKmS5cuAQDGjRuHTz75BKtWrUKhQoXQvHlz3L9/P8vnTZkyBb6+vim3kJAQazWZiIiIiIiIbAiTxEREREREREQ2YsSIEdBoNNnezpw5A51OBwD4+OOP8fLLL6NWrVqYN28eNBoN/vzzzyz3P3LkSDx69Cjldu3aNWsdGhEREREREdkQlpsmIiIiIiIishEffvghevfune02pUuXxq1btwAAlSpVSrlfq9WidOnSiIyMzPK5Wq0WWq3WLG0lIiIiIiIi+8UkMREREREREZGNKFy4MAoXLpzjdrVq1YJWq8XZs2fRuHFjAMCzZ89w5coVlChRwtLNJCIiIiIiIjvHJDERERERERGRnfHx8cG7776LsWPHIiQkBCVKlMBnn30GAHj11VdVbh0RERERERHZOiaJiYiIiIiIiOzQZ599Bjc3N/To0QNPnjxBvXr1sGnTJhQqVEjtphEREREREZGNY5KYiIiIiIiIyA7ly5cPn3/+OT7//HO1m0JERERERER2xkXtBhARERERERERERERERERkfUwSUxERERERERERERERERE5ESYJCYiIiIiIiIiIiIiIiIiciJOtSaxoigAgJiYGJVbQkRE9kwfR/RxhUzHmExERObAmJx3jMlERGQOjMl5x5hMRETmYmxcdqokcWxsLAAgJCRE5ZYQEZEjiI2Nha+vr9rNsEuMyUREZE6MybnHmExERObEmJx7jMlERGRuOcVljeJEw7t0Oh1u3rwJb29vaDQatZuTrZiYGISEhODatWvw8fFRuzm5wmOwDTwG28BjsA3mOgZFURAbG4vg4GC4uHDlhtxgTLYuHoNt4DHYBh6DbWBMth32FJP1HOH/QGqOdjyA4x2Tox0P4HjH5GjHA9jfMTEm5509xWR7+3xmhsdgG3gMtoHHYBvMeQzGxmWnmkns4uKC4sWLq90Mk/j4+NjtB1qPx2AbeAy2gcdgG8xxDBwZnTeMyergMdgGHoNt4DHYBsZk9dljTNZzhP8DqTna8QCOd0yOdjyA4x2Tox0PYF/HxJicN/YYk+3p85kVHoNt4DHYBh6DbTDXMRgTlzmsi4iIiIiIiIiIiIiIiIjIiTBJTERERERERERERERERETkRJgktlFarRZjx46FVqtVuym5xmOwDTwG28BjsA2OcAxkfY7wueEx2AYeg23gMdgGRzgGUo+jfX4c7XgAxzsmRzsewPGOydGOB3DMYyLH4QifTx6DbeAx2AYeg21Q4xg0iqIoVns1IiIiIiIiIiIiIiIiIiJSFWcSExERERERERERERERERE5ESaJiYiIiIiIiIiIiIiIiIicCJPEREREREREREREREREREROhEliIiIiIiIiIiIiIiIiIiInwiSxDZkyZQrq1KkDb29vFClSBJ07d8bZs2fVblaeTJ06FRqNBoMHD1a7KSa5ceMG3njjDfj7+yN//vwIDw/HgQMH1G6W0ZKTkzF69GiUKlUK+fPnR5kyZTBx4kQoiqJ207K0bds2dOjQAcHBwdBoNFi+fHmaxxVFwZgxY1C0aFHkz58frVq1wvnz59VpbBayO4Znz55h+PDhCA8Ph5eXF4KDg9GzZ0/cvHlTvQZnIqe/Q2rvvvsuNBoNZs6cabX2GcOYYzh9+jQ6duwIX19feHl5oU6dOoiMjLR+Y8lmMSbbDsZkdTAu2wbGZSIDR4zN6dlrrE7N3uN2evYax1NzhJiemiPE9/QcId6T83DEeGyv8dfeY649xlhHiKmOEEcdIW7a0nUyk8Q2ZOvWrejfvz/27NmDDRs24NmzZ2jdujXi4+PVblqu7N+/H99//z2qVq2qdlNM8uDBAzRq1Aj58uXDmjVrcOrUKXzxxRcoVKiQ2k0z2rRp0/Ddd99h1qxZOH36NKZNm4bp06fjm2++UbtpWYqPj0e1atUwe/bsTB+fPn06vv76a8yZMwd79+6Fl5cXIiIi8PTpUyu3NGvZHcPjx49x6NAhjB49GocOHcLSpUtx9uxZdOzYUYWWZi2nv4PesmXLsGfPHgQHB1upZcbL6RguXryIxo0bo0KFCtiyZQuOHTuG0aNHw8PDw8otJVvGmGwbGJPVw7hsGxiXiQwcLTanZ6+xOjVHiNvp2WscT80RYnpqjhDf03OEeE/Ow9Hisb3GX0eIufYYYx0hpjpCHHWEuGlT18kK2azbt28rAJStW7eq3RSTxcbGKmFhYcqGDRuUZs2aKYMGDVK7SUYbPny40rhxY7WbkSft27dX+vTpk+a+l156SenevbtKLTINAGXZsmUpv+t0OiUoKEj57LPPUu57+PChotVqld9++02FFuYs/TFkZt++fQoA5erVq9ZplImyOobr168rxYoVU06cOKGUKFFCmTFjhtXbZqzMjqFr167KG2+8oU6DyG4xJquDMdk2MC7bBsZlorTsOTanZ8+xOjVHiNvpOUIcT80RYnpqjhDf03OEeE/OxZ7jsT3HX0eIufYeYx0hpjpCHHWEuKn2dTJnEtuwR48eAQD8/PxUbonp+vfvj/bt26NVq1ZqN8VkK1asQO3atfHqq6+iSJEiqFGjBn788Ue1m2WShg0bYuPGjTh37hwA4OjRo9ixYwfatm2rcsty5/Lly4iKikrzefL19UW9evWwe/duFVuWN48ePYJGo0HBggXVborRdDodevTogaFDh6Jy5cpqN8dkOp0Oq1evRrly5RAREYEiRYqgXr162ZYlIQIYk9XCmGybGJdtB+MyOTN7js3p2XOsTs0R4nZ6jhjHU3PUmJ6aPcb39Ow93pNjs+d4bM/x1xFirqPFWEeNqfYYR+09blr7OplJYhul0+kwePBgNGrUCFWqVFG7OSZZsmQJDh06hClTpqjdlFy5dOkSvvvuO4SFhWHdunV477338P7772PBggVqN81oI0aMQLdu3VChQgXky5cPNWrUwODBg9G9e3e1m5YrUVFRAIDAwMA09wcGBqY8Zm+ePn2K4cOH47XXXoOPj4/azTHatGnT4Obmhvfff1/tpuTK7du3ERcXh6lTp6JNmzZYv349XnzxRbz00kvYunWr2s0jG8WYrB7GZNvEuGw7GJfJWdlzbE7P3mN1ao4Qt9NzxDiemiPG9NTsNb6nZ+/xnhyXPcdje4+/jhBzHS3GOmJMtdc4au9x09rXyW5m3yOZRf/+/XHixAns2LFD7aaY5Nq1axg0aBA2bNhgt+uI6XQ61K5dG5MnTwYA1KhRAydOnMCcOXPQq1cvlVtnnD/++AOLFi3C4sWLUblyZRw5cgSDBw9GcHCw3RyDI3v27Bm6dOkCRVHw3Xffqd0cox08eBBfffUVDh06BI1Go3ZzckWn0wEAOnXqhA8++AAAUL16dezatQtz5sxBs2bN1Gwe2SjGZPUwJpM1MC6rh3GZcsteY3N6jhCrU3OEuJ0e47j9stf4np4jxHtyXPYajx0h/jpCzGWMtW32GkcdIW5a+zqZM4lt0IABA7Bq1Sps3rwZxYsXV7s5Jjl48CBu376NmjVrws3NDW5ubti6dSu+/vpruLm5ITk5We0m5qho0aKoVKlSmvsqVqyIyMhIlVpkuqFDh6aMxgoPD0ePHj3wwQcf2O3ouKCgIABAdHR0mvujo6NTHrMX+gB79epVbNiwwa5GYW3fvh23b99GaGhoyv/vq1ev4sMPP0TJkiXVbp5RAgIC4ObmZvf/x8l6GJPVxZhsmxiXbQPjMjkre47N6TlCrE7NEeJ2eo4Yx1NzpJiemj3H9/QcId6TY7LneOwI8dcRYq6jxVhHiqn2HEcdIW5a+zqZM4ltiKIoGDhwIJYtW4YtW7agVKlSajfJZM899xyOHz+e5r4333wTFSpUwPDhw+Hq6qpSy4zXqFEjnD17Ns19586dQ4kSJVRqkekeP34MF5e0Y0BcXV1TRqHYm1KlSiEoKAgbN25E9erVAQAxMTHYu3cv3nvvPXUbZwJ9gD1//jw2b94Mf39/tZtkkh49emRYpyUiIgI9evTAm2++qVKrTOPu7o46derY/f9xsjzGZNvAmGybGJdtA+MyORtHiM3pOUKsTs0R4nZ6jhjHU3OUmJ6avcf39Bwh3pNjcYR47Ajx1xFirqPFWEeJqfYeRx0hblr7OplJYhvSv39/LF68GP/88w+8vb1TatX7+voif/78KrfOON7e3hnWoPDy8oK/v7/drE3xwQcfoGHDhpg8eTK6dOmCffv24YcffsAPP/ygdtOM1qFDB3z66acIDQ1F5cqVcfjwYXz55Zfo06eP2k3LUlxcHC5cuJDy++XLl3HkyBH4+fkhNDQUgwcPxqRJkxAWFoZSpUph9OjRCA4ORufOndVrdDrZHUPRokXxyiuv4NChQ1i1ahWSk5NT/o/7+fnB3d1drWankdPfIf2JQb58+RAUFITy5ctbu6lZyukYhg4diq5du6Jp06Zo0aIF1q5di5UrV2LLli3qNZpsDmOybWBMVg/jMuOyuTAuk7k4QmxOzxFidWqOELfTs9c4npojxPTUHCG+p+cI8Z6chyPEY0eIv44Qc+0xxjpCTHWEOOoIcdOmrpMVshkAMr3NmzdP7ablSbNmzZRBgwap3QyTrFy5UqlSpYqi1WqVChUqKD/88IPaTTJJTEyMMmjQICU0NFTx8PBQSpcurXz88cdKQkKC2k3L0ubNmzP9/Pfq1UtRFEXR6XTK6NGjlcDAQEWr1SrPPfeccvbsWXUbnU52x3D58uUs/49v3rxZ7aanyOnvkF6JEiWUGTNmWLWNOTHmGH766SelbNmyioeHh1KtWjVl+fLl6jWYbBJjsu1gTFYH47JtYFwmMnDU2JyePcbq1Ow9bqdnr3E8NUeI6ak5QnxPzxHiPTkPR43H9hh/7T3m2mOMdYSY6ghx1BHipi1dJ2sURVFAREREREREREREREREREROwSXnTYiIiIiIiIiIiIiIiIiIyFEwSUxERERERERERERERERE5ESYJCYiIiIiIiIiIiIiIiIiciJMEhMREREREREREREREREROREmiYmIiIiIiIiIiIiIiIiInAiTxEREREREREREREREREREToRJYiIiIiIiIiIiIiIiIiIiJ8IkMRERERERERERERERERGRE2GSmBzelStXoNFocOTIEbWbkuLMmTOoX78+PDw8UL169Uy3URQFb7/9Nvz8/FRvvy2+h7m1ZcsWaDQaPHz40OKvNW7cuCz/vkREzsgW4wljsnoYk4mI1GWLMYVxWT2My0RE6rHFeMKYrB7GZLImJonJ4nr37g2NRoOpU6emuX/58uXQaDQqtUpdY8eOhZeXF86ePYuNGzdmus3atWsxf/58rFq1Crdu3UKVKlWs0rbevXujc+fOae4LCQmxahvskUajwfLly9Pc99FHH2X59yUiUgNjckaMyY6HMZmI7AXjckaMy46HcZmI7AFjckaMyY6HMZkywyQxWYWHhwemTZuGBw8eqN0Us0lMTMz1cy9evIjGjRujRIkS8Pf3z3KbokWLomHDhggKCoKbm1uuXy+vXF1dVW+DPSpQoECWf18iIrUwJqfFmOwcGJOJyFYxLqfFuOwcGJeJyBYxJqfFmOwcGJOJSWKyilatWiEoKAhTpkzJcpvMShvMnDkTJUuWTPldP0po8uTJCAwMRMGCBTFhwgQkJSVh6NCh8PPzQ/HixTFv3rwM+z9z5gwaNmwIDw8PVKlSBVu3bk3z+IkTJ9C2bVsUKFAAgYGB6NGjB+7evZvyePPmzTFgwAAMHjwYAQEBiIiIyPQ4dDodJkyYgOLFi0Or1aJ69epYu3ZtyuMajQYHDx7EhAkToNFoMG7cuAz76N27NwYOHIjIyEhoNJqU96BkyZKYOXNmmm2rV6+eZh8ajQZz587Fiy++CE9PT4SFhWHFihVpnnPy5Em88MIL8PHxgbe3N5o0aYKLFy9i3LhxWLBgAf755x9oNBpoNBps2bIl03IdW7duRd26daHValG0aFGMGDECSUlJad6v999/H8OGDYOfnx+CgoIyPdb05s6di4oVK8LDwwMVKlTAt99+m/JYw4YNMXz48DTb37lzB/ny5cO2bdsAAAsXLkTt2rXh7e2NoKAgvP7667h9+3aWr2fM527//v14/vnnERAQAF9fXzRr1gyHDh1KeVy/7Ysvvpjm75V+3zl9NvTv89KlS9GiRQt4enqiWrVq2L17d8o2V69eRYcOHVCoUCF4eXmhcuXK+Pfff7N9T4mIUmNMZkxmTGZMJiLbwbjMuMy4zLhMRLaBMZkxmTGZMdkZMUlMVuHq6orJkyfjm2++wfXr1/O0r02bNuHmzZvYtm0bvvzyS4wdOxYvvPACChUqhL179+Ldd9/FO++8k+F1hg4dig8//BCHDx9GgwYN0KFDB9y7dw8A8PDhQ7Rs2RI1atTAgQMHsHbtWkRHR6NLly5p9rFgwQK4u7tj586dmDNnTqbt++qrr/DFF1/g888/x7FjxxAREYGOHTvi/PnzAIBbt26hcuXK+PDDD3Hr1i189NFHme5D/2V869Yt7N+/36T3aPz48ejSpQuOHTuGdu3aoXv37rh//z4A4MaNG2jatCm0Wi02bdqEgwcPok+fPkhKSsJHH32ELl26oE2bNrh16xZu3bqFhg0bZtj/jRs30K5dO9SpUwdHjx7Fd999h59++gmTJk3K8H55eXlh7969mD59OiZMmIANGzZk2e5FixZhzJgx+PTTT3H69GlMnjwZo0ePxoIFCwAA3bt3x5IlS6AoSspzfv/9dwQHB6NJkyYAgGfPnmHixIk4evQoli9fjitXrqB3794mvX/pxcbGolevXtixYwf27NmDsLAwtGvXDrGxsQCQ8veZN29etn+vnD4beh9//DE++ugjHDlyBOXKlcNrr72WcgLTv39/JCQkYNu2bTh+/DimTZuGAgUK5On4iMi5MCYzJjMmMyYTke1gXGZcZlxmXCYi28CYzJjMmMyY7JQUIgvr1auX0qlTJ0VRFKV+/fpKnz59FEVRlGXLlimpP4Jjx45VqlWrlua5M2bMUEqUKJFmXyVKlFCSk5NT7itfvrzSpEmTlN+TkpIULy8v5bffflMURVEuX76sAFCmTp2ass2zZ8+U4sWLK9OmTVMURVEmTpyotG7dOs1rX7t2TQGgnD17VlEURWnWrJlSo0aNHI83ODhY+fTTT9PcV6dOHeX//u//Un6vVq2aMnbs2Gz3k/7YFUVRSpQoocyYMSPNfen3BUD55JNPUn6Pi4tTAChr1qxRFEVRRo4cqZQqVUpJTEzM9HVT/7309O/h4cOHFUVRlFGjRinly5dXdDpdyjazZ89WChQokPK3adasmdK4ceM0+6lTp44yfPjwLI+5TJkyyuLFi9PcN3HiRKVBgwaKoijK7du3FTc3N2Xbtm0pjzdo0CDbfe7fv18BoMTGxiqKoiibN29WACgPHjxQFMW4z116ycnJire3t7Jy5cqU+wAoy5YtS7Nd+n3n9NnQv89z585NefzkyZMKAOX06dOKoihKeHi4Mm7cuCzbRkSUHcZkxmQ9xmTGZCJSH+My47Ie4zLjMhGpizGZMVmPMZkx2dlwJjFZ1bRp07BgwQKcPn061/uoXLkyXFwMH93AwECEh4en/O7q6gp/f/8MJRoaNGiQ8rObmxtq166d0o6jR49i8+bNKFCgQMqtQoUKAGRtBb1atWpl27aYmBjcvHkTjRo1SnN/o0aN8nTMpqpatWrKz15eXvDx8Ul5P44cOYImTZogX758ud7/6dOn0aBBA2g0mpT7GjVqhLi4uDQj4FK3AwCKFi2aZemM+Ph4XLx4EX379k3zd5g0aVLK36Bw4cJo3bo1Fi1aBAC4fPkydu/eje7du6fs5+DBg+jQoQNCQ0Ph7e2NZs2aAQAiIyNzfbzR0dHo168fwsLC4OvrCx8fH8TFxZm0T1M+G6nft6JFiwJAyvv2/vvvY9KkSWjUqBHGjh2LY8eO5fawiMjJMSZbB2MyYzIRkTEYl62DcZlxmYgoJ4zJ1sGYzJhMtoFJYrKqpk2bIiIiAiNHjszwmIuLS5oyDICUXkgvfXDQaDSZ3qfT6YxuV1xcHDp06IAjR46kuZ0/fx5NmzZN2c7Ly8vofVpCXt4j/fuRP39+yzXQhHakFxcXBwD48ccf0/wNTpw4gT179qRs1717d/z111949uwZFi9ejPDw8JSTrPj4eERERMDHxweLFi3C/v37sWzZMgBAYmJipq9rzHvaq1cvHDlyBF999RV27dqFI0eOwN/fP8t95lXq901/IqN/39566y1cunQJPXr0wPHjx1G7dm188803FmkHETk2xuS8YUxmTGZMJiJzYlzOG8ZlxmXGZSIyF8bkvGFMZkxmTLYvTBKT1U2dOhUrV65Ms5g5IKNsoqKi0nzhpV5oPq9Sf1EnJSXh4MGDqFixIgCgZs2aOHnyJEqWLImyZcumuZkSWH18fBAcHIydO3emuX/nzp2oVKlSno+hcOHCuHXrVsrvMTExuHz5skn7qFq1KrZv355pcAYAd3d3JCcnZ7uPihUrYvfu3Wn+Vjt37oS3tzeKFy9uUnv0AgMDERwcjEuXLmX4G5QqVSplu06dOuHp06dYu3YtFi9enGYU1pkzZ3Dv3j1MnToVTZo0QYUKFbIc+aVnzOdu586deP/999GuXTtUrlwZWq0Wd+/eTbNNvnz5sn3fzPnZCAkJwbvvvoulS5fiww8/xI8//mjS84mI9BiTc48xmTEZYEwmIvNiXM49xmXGZYBxmYjMhzE59xiTGZMBxmR7wiQxWV14eDi6d++Or7/+Os39zZs3x507dzB9+nRcvHgRs2fPxpo1a8z2urNnz8ayZctw5swZ9O/fHw8ePECfPn0AyGLq9+/fx2uvvYb9+/fj4sWLWLduHd58880cA056Q4cOxbRp0/D777/j7NmzGDFiBI4cOYJBgwbl+RhatmyJhQsXYvv27Th+/Dh69eoFV1dXk/YxYMAAxMTEoFu3bjhw4ADOnz+PhQsX4uzZswCAkiVL4tixYzh79izu3r2baTD+v//7P1y7dg0DBw7EmTNn8M8//2Ds2LEYMmRImlIqpho/fjymTJmCr7/+GufOncPx48cxb948fPnllynbeHl5oXPnzhg9ejROnz6N1157LeWx0NBQuLu745tvvsGlS5ewYsUKTJw4MdvXNOZzFxYWhoULF+L06dPYu3cvunfvnmFEW8mSJbFx40ZERUXhwYMHmb6WOT4bgwcPxrp163D58mUcOnQImzdvTjlZJCIyFWNy7jEmMyYzJhORuTEu5x7jMuMy4zIRmRNjcu4xJjMmMybbFyaJSRUTJkzIULahYsWK+PbbbzF79mxUq1YN+/btw0cffWS215w6dSqmTp2KatWqYceOHVixYgUCAgIAIGWETHJyMlq3bo3w8HAMHjwYBQsWNDlovP/++xgyZAg+/PBDhIeHY+3atVixYgXCwsLyfAwjR45Es2bN8MILL6B9+/bo3LkzypQpY9I+/P39sWnTJsTFxaFZs2aoVasWfvzxx5QSEf369UP58uVRu3ZtFC5cOMPIIQAoVqwY/v33X+zbtw/VqlXDu+++i759++KTTz7J0/G99dZbmDt3LubNm4fw8HA0a9YM8+fPTzMSC5CSHUePHkWTJk0QGhqacn/hwoUxf/58/Pnnn6hUqRKmTp2Kzz//PNvXNOZz99NPP+HBgweoWbMmevTogffffx9FihRJs80XX3yBDRs2ICQkBDVq1Mj0tczx2UhOTkb//v1RsWJFtGnTBuXKlcO3335r9POJiNJjTM4dxmTBmMyYTETmxbicO4zLgnGZcZmIzIcxOXcYkwVjMmOyvdAo6YuZExERERERERERERERERGRw+JMYiIiIiIiIiIiIiIiIiIiJ8IkMRERERERERERERERERGRE2GSmIiIiIiIiIiIiIiIiIjIiTBJTERERERERERERERERETkRJgkJiIiIiIiIiIiIiIiIiJyIkwSExERERERERERERERERE5ESaJiYiIiIiIiIiIiIiIiIicCJPEREREREREREREREREREROhEliIiIiIiIiIiIiIiIiIiInwiQxEREREREREREREREREZETYZKYiIjsxrZt29ChQwcEBwdDo9Fg+fLlOT5ny5YtqFmzJrRaLcqWLYv58+dn2Gb27NkoWbIkPDw8UK9ePezbt8/8jSciInIQU6ZMQZ06deDt7Y0iRYqgc+fOOHv2bI7P+/PPP1GhQgV4eHggPDwc//77rxVaS0RE5Ni+++47VK1aFT4+PvDx8UGDBg2wZs0atZtFRETkdHJ7rawmJomJiMhuxMfHo1q1apg9e7ZR21++fBnt27dHixYtcOTIEQwePBhvvfUW1q1bl7LN77//jiFDhmDs2LE4dOgQqlWrhoiICNy+fdtSh0FERGTXtm7div79+2PPnj3YsGEDnj17htatWyM+Pj7L5+zatQuvvfYa+vbti8OHD6Nz587o3LkzTpw4YcWWExEROZ7ixYtj6tSpOHjwIA4cOICWLVuiU6dOOHnypNpNIyIiciq5uVZWm0ZRFEXtRhAREZlKo9Fg2bJl6Ny5c5bbDB8+HKtXr07TAd2tWzc8fPgQa9euBQDUq1cPderUwaxZswAAOp0OISEhGDhwIEaMGGHRYyAiInIEd+7cQZEiRbB161Y0bdo00226du2K+Ph4rFq1KuW++vXro3r16pgzZ461mkpEROQU/Pz88Nlnn6Fv375qN4WIiMhpGXOtrDY3tRtgTTqdDjdv3oS3tzc0Go3azSEiMgtFURAbG4vg4GC4uKhTIOLp06dITEw0+XmKomT4PtZqtdBqtWZp1+7du9GqVas090VERGDw4MEAgMTERBw8eBAjR45MedzFxQWtWrXC7t27zdIGyhxjMhE5IluIyYD14/KjR48ASId0Vnbv3o0hQ4akuS8iIsKopSPIshiTicgROWtMTk5Oxp9//on4+Hg0aNDA5NcldTEmE5GjsoW4rEb/tTHXympzqiTxzZs3ERISonYziIgs4tq1ayhevLjVX/fp06colT8/onLx3AIFCiAuLi7NfWPHjsW4cePM0raoqCgEBgamuS8wMBAxMTF48uQJHjx4gOTk5Ey3OXPmjFnaQJljTCYiR6ZWTAasH5d1Oh0GDx6MRo0aoUqVKllul1VMjorKTUvJnBiTiciROUtMPn78OBo0aICnT5+iQIECWLZsGSpVqpSLVyY1MSYTkaNzpv5rY6+V1eZUSWJvb28A8kH08fFRuTVEROYRExODkJCQlO84a0tMTEQUgGsaDUz5Zo0BEBIXl+E72VyziMm2MSYTkSNSOyYD1o/L/fv3x4kTJ7Bjx45ctZfUx5hMRI7I2WJy+fLlceTIETx69Ah//fUXevXqha1btzJRbGcYk4nIUakdl9Xov7aXa2WnShLrp4T7+Pgw0BKRw1G7FJGPiwt8TGmDogDJyRb9Tg4KCkJ0dHSa+6Kjo+Hj44P8+fPD1dUVrq6umW4TFBRkkTaRYEwmIkemdkwGrBOXBwwYgFWrVmHbtm05jgbPKiYz3qqPMZmIHJmzxGR3d3eULVsWAFCrVi3s378fX331Fb7//vvcNJlUwphMRI5O7bhsrf5rU66V1abeohxERORYXFxMv1lYgwYNsHHjxjT3bdiwIWVtJnd3d9SqVSvNNjqdDhs3buT6TUREZN8sGJcVRcGAAQOwbNkybNq0CaVKlcrxOTnFZCIiIoelwrWyTqdDQkKCGRpPRETkQCwck3Nzraw2p5pJTEREFuTiApg6EstEcXFxuHDhQsrvly9fxpEjR+Dn54fQ0FCMHDkSN27cwC+//AIAePfddzFr1iwMGzYMffr0waZNm/DHH39g9erVKfsYMmQIevXqhdq1a6Nu3bqYOXMm4uPj8eabb5rcPiIiIpthwbjcv39/LF68GP/88w+8vb1T1hX29fVF/vz5AQA9e/ZEsWLFMGXKFADAoEGD0KxZM3zxxRdo3749lixZggMHDuCHH34wvo1ERET2yMLXyiNHjkTbtm0RGhqK2NhYLF68GFu2bMG6detMbCgREZGDs3BMNuZa2dYwSUxEROZhhSTxgQMH0KJFi5TfhwwZAgDo1asX5s+fj1u3biEyMjLl8VKlSmH16tX44IMP8NVXX6F48eKYO3cuIiIiUrbp2rUr7ty5gzFjxiAqKgrVq1fH2rVrERgYaHL7iIiIbIYF4/J3330HAGjevHma++fNm4fevXsDACIjI+GSatR1w4YNsXjxYnzyyScYNWoUwsLCsHz5clSpUsX4NhIREdkjC18r3759Gz179sStW7fg6+uLqlWrYt26dXj++edNbCgREZGDs3BMNuZa2dYwSUxEROZhhSRx8+bNoWTzvPnz52f6nMOHD2e73wEDBmDAgAEmt4eIiMhmWTAuZxeL9bZs2ZLhvldffRWvvvqq8W0iIiJyBBa+Vv7pp59MbBAREZGTsnBMNuZa2dYwSUxEROZhhSQxERERGYlxmYiIyDYwJhMREdkGxuQMmCQmIiLzYJAlIiKyHYzLREREtoExmYiIyDYwJmfAJDEREZkHgywREZHtYFwmIiKyDYzJREREtoExOQMmiYmIyDw0Ggm0xtLpLNcWIiIiZ8e4TEREZBsYk4mIiGwDY3IGTBITOYH4hCRcuRePxCQd3N1cUNLfC15a/vcnInJ0/P4nfgaIiCg1xgUiIiLi+QAR6fF/PpGDOh8di0V7I7H57G1E3n+M1IURNABC/TzRonwRdK8XirBAb7WaSY7ExcW0kVhEZBH8/id+BggA4zIRpWBcIFIZYzIR2QCeDxCBMTkTTBITOZhr9x9j1LLj2H7hLlxdNEjWZaybrwC4ev8xFu69ivm7r6BJ2QBMfjEcIX6e1m8wOQ4GWSJV8fuf+BmgNBiXiZwe4wKRjWBMJiIV8XyAKBXG5Az4bhA5kCX7I9FqxlbsunQPADIN+qnpH9916R5azdiKJfsjLd5GcmD6IGvKjYjMgt//xM8AZcC4TOTUGBeIbAhjMhGphOcDROkwJmfAmcREDmLW5vP4fP25XD03WacgWadgxNLjuBuXgAEtwszcOnIKThI4iWwNv/+JnwHKFOMykdNiXCCyMYzJRKQCng8QZYIxOQO+G0QOYMn+yFwH/fQ+X38Ov3OUGOUGR2IRWR2//4mfAcoS4zKRU2JcILJBjMlEZGU8HyDKAmNyBpxJTGTnrt1/jLErTmb62NOrxxD926hMHwvq8Tm0xSpk+tiYFSfRsEwA150g0zhJ4CSyFfz+p+w+A+k92vU7Hm5biHwBoQh+69sst+NnwIEwLhM5HVPiAmBcbGBcIDIDxmQisqLszgcS71zFox2LkRh1AcnxD6HJp0U+/xD41HsJnmH1stwnzwfIYTAmZ8AkMZGdG7XsOJJyWE/Cu1YHuBctl+Y+t0JFs9w+Sadg1LLjWNg365MDogwYZImsit//ZMxnAACSYu7i0e4/oMnnkfO2/Aw4DsZlIqdjbFwAjI8NjAtEZsCYTERWlN35QHLMbegSn8Ar/Dm4FvCD8iwBj8/uwp2/J8KvzQB4V2+T6fN4PkAOgzE5AyaJiezY+ehYbL9wN8fttCGV4VWhsdH7TdYp2H7hLi7cjkXZIt55aSI5EwZZIqvh9z8Z+xkAgAebf4I2uDwUnQ66JzHZbsvPgANhXCZyKqbEBcD42MC4QGQGjMlEZCU5nQ/kL1MH+cvUSXOfd60XcGv+YMTsW55lkpjnA+QwGJMz4LtBZMcW7Y2Eq4vGqG11CY+h6JKN3reriwa/7uF6E2QCjca09Rw0xn12iSgjfv+TsZ+Bp5En8PjMThR67m2j983PgINgXCZyKqacG5gaGxgXiPKIMZmIrMSU8wE9jYsr3LwDoEuIy3Y7ng+QQ2BMzoAziYns2Oazt5FsRDmxe/9+BSXxCaBxgTakMgq16ANt0bBsn5OsU7D53G2MQ2VzNZccnakjsRTjSuERUUb8/idjPgOKLhn3N8xBgWqt4V6kpNH75mfAQTAuEzkVY88NchMbGBeI8ogxmYisxNjzAV3iUyhJCdAlPMaT83vx5NJBeFZsku1zeD5ADoExOQMmiYnsVFxCEiLvP85+I9d88CzfEPlL14aLpy+e3Y1EzL5liF40HEFvfAb3oDLZPj3y3mPEJyTBS8uvCjICgyyRVfD7n4z6DACIO7wGSTF3EPjapya/Bj8DDoBxmchpGBsXgNzHBsYFojxgTCYiKzDlfODBprmIO7JWftG4wLNcA/i1fi/H5/F8gOweY3IG/N9MZKeu3otHTl9RHsUrwqN4RcMdYfXgWaERbv00EA+2LkBg1wnZPl8BcOVePCoH++a5vUREZB7W+v4/cDYe5Qrz+98WnbuT82cg+UkMHm5fhIINu8LV0/S/I88BiIjshzHnBkDeYgPjAhERkW0z9nwAAHzqdIJnhcZIjr2Hx2d2QFF0QPKzHJ/H8wEix8MkMZGdSkzS5ep5+QoFI39YPTw+twuKLhkaF1eLvA45IY7EIrIKa33///m3DoVN+C9N1nNHl/Nn4OG2hXDJXwDetTvk+nV4DmDnGJeJnIax39d5jQ2MC0S5xJhMRFZgSpzO5x+CfP4hAIAC4c8heslo3P5rAoJ6fglNDmuw8nyA7BpjcgZMEhPZmWfPgFOngDW7ct9z7+YTACQnQXmWAI3WM9tt3d2YISAjMcgSWUVevpdN+f5/9WUXlCuc65ciCzp3xwWrfsv68Wf3byDuyDoUeq4fkmPvp9yvJD+DoktG0sNoaLSecM3vne3r8BzAzjEuEzkNY76vzREbGBeIcokxmYisIC9x2rNCI9xfOwtJ928gn39xi70OkeoYkzNgkpjIhukTwgcPGm5HjwJPnwIu7l4I+QBA9oO7MpX0MAoaN3do3D2y3U4DoKS/V67aTk6IQZbIKkr6e0EDGF1GKjVTvv9rl/eClzY3LSRL8/HL/jOQHHsPUHR48N/3ePDf9xkevzGnL7xrd4Rfq7ezfA2eAzgAxmUip2HMuUFeY4MGQMmkOCC5AOCafTUSIkqHMZmIrCAvfQXKswQAgC4hPtvteJ1Ido8xOQMmiYlsRHYJYY0GqFABqFULeO01+bd6dTe0/84TV+8/znKfyY8fZVhrKjH6Eh6f34f8pWtBo8n+CzHU3xNeWn5NkJEYZImswkvrhlA/fv87s5w+A/kKl0Dhlz7OcP/DbQuhS3wCv1Zvw61g0Wxfg58BB8C4TOQ0jDk3yGtsCPVQ4LV3l3yvFC4MBAYCQUGAj49csBJR1hiTicgKjOoriH8IV6+Cae5TkpMQf2ITNG5a5AsIzfY1eJ1Ido8xOQP+jyZSQVKSJIQPHDA2IQwUKJBxPy3KF8HCvVeRrMv8y+rO8mlwyecObbGKcPH0xbO71xB3dC00+bQo1Lx3tm10ddGgRbkieT9Ych4MskRWw+9/yu4z4OrpC89yDTLcH7P/HwDI9LE0z+dnwDEwLhM5lZzODfISG1xdNGhRowTQPBSIigKio4ETJ4Bjx4D8+Q0J48BAwN3dPAdE5EgYk4nISnI6H7i3dhaUxMfQhlSBq7c/kuMeIP7UFiTdu45CLfvCxT1/lvvmdSI5BMbkDJgkJrIwYxPC3boBtWtnnRDOTPd6oZi/+0qWj3uWq4/4k1sQs285dImP/9cx0BC+jV9DvkLB2e47WafgjfrZjx4jSoNBlshq+P1PrUpl/xnIC34GHATjMpFTyencIC8kLpQAfLxl5nC5ckByMnDnjiSMo6KAK/97bT8/Q8LYz8+07yEiR8WYTERWktP5gFfFJog7tgGxh/+F7kksXNzzwz2oLAo1fxOeYfWy3TevE8khMCZnwCQxkRnpE8IHDxqSwlklhGvVAmrUMD4hnJkwT6BJYjR2ufoj2TXjf2ef2h3hU7uj6TvWaVCzmD/KFvHOfePI+Wg0pgVZnc5ybSFycGGB3mhSNgC7Lt3LdIRwbr//XaBBkMYfR7d7I7A14M0wYHMePwY2bgQOHfJGSY8AXEu4h2QjL1qCuk/NcRtXFw0aluY5gENgXCZyKjmdG2Qlp9iQZVxwdZVkcFAQUK2aBCh9wvj8ebkwzpdPksX6mcaenrk5NCL7x5hMRFaS0/mAV6Vm8KrUzOT98jqRHAZjcgYc0kmUS0lJUl1r3jxgwACgfn3pTK9WDejbF9i8GQgLA6ZMAbZtAx49kuvkhQuBwYOBJk3yliDGrl1A9eqY/NtEuLm5muuwhKLB+snhmD3bKQbLkLnoR2KZcsuF2bNno2TJkvDw8EC9evWwb9++LLdt3rw5NBpNhlv79u1Ttundu3eGx9u0aZOrthFZ0+QXw+HmYt41APO5aTC2XTguXQJmzZJQk5xs1pegXNLpZPDZrFnAyZNAmzbAgv7hcHM172fAzUWDyS+Gm3WfpBILx+Vt27ahQ4cOCA4OhkajwfLly7PdfsuWLZnG5KioqDwcJBGlZolzA6PjgqcnUKoU0KAB0KkT0LKlXBA/eSIBbPVqYO1a4MgRSSTzBIOciZWulYmIAAucDyi8TiQHwpicAWcSExkh9Qxh/Szh1DOEy5eXUtH6GcLVq1tw9tWzZ8D48ZJ9rlsXIQsXYvwDd4xYetxsLzGhY2XsifPEgAHAqlXAzz8DRYuabffkqEwNnLkIsr///juGDBmCOXPmoF69epg5cyYiIiJw9uxZFCmScV2UpUuXIjExMeX3e/fuoVq1anj11VfTbNemTRvMmzcv5XetVmty24isLcTPE+M7Vjb7939EHU80qw1s2gT895/05bZtK/2+pI4bN4B//wVu3pTBaK1a6QeaWeYzEOLHmV4OwcJxOT4+HtWqVUOfPn3w0ksvGf28s2fPwsfHJ+X3zOI3EeWOpc4NTI4LGg3g7y+3ypWBxETg9m1JDl+/LjONXVyAwoUNpal9fOR5RI7ICtfKRER6Zj8f0ADBNyujMCuCkCNgTM6ASWKidNInhA8elA7y1Anh1CWjLZoQTu/MGeCNN6RB48YBI0cCbm7oBuBuXAI+X38uzy8xtHV59Gwcip6NgRdeAPr0AcLDgR9+AEzo/yNnZIUg++WXX6Jfv3548803AQBz5szB6tWr8fPPP2PEiBEZtvfz80vz+5IlS+Dp6ZkhSazVahEUFGRye4jU1q1OqFm//7vWkfWFPDyAdu2AmjUlOfnLL0CVKsDzz0sfLlmHobS09J+/+SYQmm4JKEt9BsgBWDgut23bFm3btjWxUZIULliwoMnPIyLjdKkVin3HErD0Qt7jwhvhZooL7u5A8eJyUxQgNlYSxlFRwPHjMgI7f35DWerAQHkOkaNghzQRWZk5rxPbh5THzzND0fYSsHw54Oub9/YRqYYxOQMmiSlb8QlJuHIvHolJOri7uaCkvxe8tI7zscksIXz0qFTESp0Q7tpVhYRwaooCfPstMHQoEBIC7N4N1KmTZpMBLcIQUECLsUuPIEkHJLuYUIJap4HWXYMJHSun6QRo106u2d9+G3j5ZaB3b+Crr5ggIPOKiYlJ87tWq810Jm9iYiIOHjyIkSNHptzn4uKCVq1aYffu3Ua91k8//YRu3brBy8srzf1btmxBkSJFUKhQIbRs2RKTJk2Cv79/Lo6GyPpSvv+XH0eSTkEyjJ+F4+qigZtLxu9/vaAgSUwePQps2ADMng00awbUqydLEZJl6HSSGN60SX5u21YqlmR1bTKgRRj8PLUYs/wkdFCgg/FrRbhAg3xuWX8GyPkYG5dzq3r16khISECVKlUwbtw4NGrUyGz7JnJ2iiLXtI0KhqHS81p8tvmknBuYsEax/tygf/3KKPo4FJcuAaVLm7GRGo1cUPr4AOXKSdnpO3cM6xlfuSLb+fkZ1jwuVMgpOuiIiIjMKaWvYEXuzwf014mvVwM6dACaNgXWrAGCgy3YcCKyKsfJ9pHZnI+OxaK9kdh89jYi7z9O082oARDq54kW5Yuge71QhAXaz2L1xiaEu3SRjljVEsLp3bol03nXrgXeew/47DMgXYJLr1uQBo1+HohRfSZjOwrC1UWT7QmA/vEnV/3xQatwdK2TsWxI4cLA0qXA/PnA++8DW7bIusqNG5vp+Mhx5HIkVkhISJq7x44di3HjxmXY/O7du0hOTkZgYGCa+wMDA3HmzJkcX27fvn04ceIEfvrppzT3t2nTBi+99BJKlSqFixcvYtSoUWjbti12794NV2bByE50C/NBI/cTGOVZFdvv64z+/m9Y2h+TXwzPtoykRiMxsUIFYPNmlqC2tNSlpatXB557Tl9aOntlEIoXtQGIDDyOvZF3jf4MBGn8MeuNcNQsz9JhDsfCcdlURYsWxZw5c1C7dm0kJCRg7ty5aN68Ofbu3YuaNWvmef9EBJw9KznWunWBEiVCEVE9AKOWHcf2C8bHBf25QfFCnjh8WAYteXnJ5F6LcHU1JIOrVZMyGvqE8fnzchGfL580QD/TmOUuyd5w1hIRqaRbnVA0KpP78wF9X0GjRsCOHUBEBNCwIbBunfSlE9kdxuQMmCSmFNfuP84xYCgArt5/jIV7r2L+7itoUjYgx85lNSQlAadPy9rBOSWEa9UCatSwkYRwesuWAf36AW5uwOrVMrU3O6NHI0R5goUjO+D8E40k+8/dRuS9TJL9/p5oUa4I3qgfihH/540vJgBvd5cqX+lpNDKTrFkzoGdP+Xf4cKl4zSpglCKXQfbatWtp1ia01HrAP/30E8LDw1G3bt0093fr1i3l5/DwcFStWhVlypTBli1b8Nxzz1mkLURm999/CPF0wcL3W+L8w0Sjv//LFjE++Hl4SGK4Rg2WoLaE1KWlg4JkfFi6XF2WnjwBtm4FmtT0RMeO9QwD/nL4DLxWJxQb/vbGyX1AjXJcCtLh2FhcLl++PMqn6klq2LAhLl68iBkzZmDhwoVmeQ0iZ3b9ulSBqlgRKFFC7gvx88TCvsbHhfTnBtWrA3FxUsiqZUsrxXtPTxmFVqqUTI2+f99QmvrgQdnGx8eQMC5cmOVNyPaxQ5qIVJTX8wG9SpXknKBNG0kar1oF1K9vtcMgMg/G5AyYJCYAwJL9kSmlJwDkWH5C//iuS/fQasZWjO9YGd1UKlGoTwgfPGhICttlQji12Fhg0CBg3jygc2dZELhw4eyfc/So9NjPmgX4+CDMBxjXsTLGoTLiE5Kwdmc8Xn9Dh8W/uqBNo7Rlw6dMkUD/9deS/M1K6dLSCT1tGjB2rIwa+/VX6Yggym2Q9fHxSdMZnZWAgAC4uroiOjo6zf3R0dE5riccHx+PJUuWYMKECTm+TunSpREQEIALFy4wSUz24cYN6RXu0AHQahEWqE3z/X9l50EkvtET7r/+gpKNauV52Qh9Cepjx1iC2hxMLS2dme3b5XyoRQv5PSzQO+1n4MwVJP61FO6vvISSFUqm+QworYDffwcuXADCwsx8cKQuC8dlc6hbty527NhhldcicmT37wP79sngosqVMz6eIS5cjkLinr1wr18PJUsFZXlu4OICNGggMWrHDqluYaHxnJnTaAB/f7lVrgwkJsos4+hoyYqfPy+NLFzYMBvZ25ujnsj2sEOaiGxAhvOBkxeROPdnuL/VByUrlzGqr6B4cbn+7NRJBpD9+SfQvr0VGk9kLozJGTBJTJi1+XyuF7FP/t96BiOWHsfduAQMaGHZ3sWcEsLlyknHql0lhNPbsUOm6965A/z0k/TEG3ORO2yY9O7265fhIS+tG0oV9EXiLaBUQcAr3YV9WBjw7rvA5MlA375AQEDWL+PqCowaJeVF3ngDqFkTmD4dGDCA1+JOz8JB1t3dHbVq1cLGjRvRuXNnAIBOp8PGjRsxYMCAbJ/7559/IiEhAW+88UaOr3P9+nXcu3cPRYsWNal9RKpQFBmxU6SIfCGn46V1Q+WC+YBb54CC+YA8Joj1NBqpCFm+vKEE9eHDUvCCJaiNd+OGFAq5dUtma7VqleWKEll68EASA02aZH7O46V1Q+XCnoBLPFDYM8NnoHx5mXG2YQNQpoxTXP84Dzu4+D1y5AjjLVEePX4M7NwJ+PoCderkfE3mpXVD5UAvwEsHBHrleG6QL58sNbRxI7Brl6xFqNqgMHd3yYSHhMg5UGysYZbx8ePSOZA/vySL9eWpWfqKbIEdxGQici5eWjdUDsgPJD8EAvKb1FdQqJB0Q3TvLsniH36QSlhEdoExOQMmiZ3ckv2RuU4Qp/f5+nMoXECLrmaaUZw6IaxPCqdPCNvdDOHsJCZK/eZp06RWx3//ydRdY6xfL7elS+UqPhfGjJGJyBMnAl99lfP2tWrJ32XYMFmreNUqmfgcHJyrlydHYIUgO2TIEPTq1Qu1a9dG3bp1MXPmTMTHx+PNN98EAPTs2RPFihXDlClT0jzvp59+QufOneHv75/m/ri4OIwfPx4vv/wygoKCcPHiRQwbNgxly5ZFRESEye0jsrozZ4CrV2XUjgonrpmVoK5cGWjdmiWos/P4sSGxbmpp6fQ2bpT+8AYNcvd8jUb+Xj/+KO2pVSt3+yEbZOG4HBcXhwsXLqT8fvnyZRw5cgR+fn4IDQ3FyJEjcePGDfzyyy8AgJkzZ6JUqVKoXLkynj59irlz52LTpk1Yv369Sa9LRAbPnskYYxcXKftoqeStl5fsf8sWuS6vW9cGBghrNHKy4eMjnQPJyTLQOipKZhpfvizb+fkZZhn7+dlAw8kpsUOaiBxM/vwyi3jAAJlwdOuWTCpimCWbx5icAZPETuza/ccYu+JkttskRF3Aox2LkXD9FJSkZ3ArGIgC1dvAp3bHTLcfs+IkGpYJMHmN4vQJ4YMHgSNHHDghnN7p09LBf+wYMGGC1Hx2M/K/Z3KyZGobNZLS1LlUuDAwYoQkiwcOBMqWzfk5np5S3fqFF2TCc3g48P33wCuv5LoZZM80GtMCZy7OHLt27Yo7d+5gzJgxiIqKQvXq1bF27VoEBgYCACIjI+GSrg1nz57Fjh07Mu2EdnV1xbFjx7BgwQI8fPgQwcHBaN26NSZOnGixtZGJzCY52TD905gvbQtKX4J61iwpQV2/PktQp6YvLb1xo0yAyk1p6dSuXwdOngQ6dszbRKngYInhmzfLOtP8+nMQFo7LBw4cQAt9jXPIQC4A6NWrF+bPn49bt24hMjIy5fHExER8+OGHuHHjBjw9PVG1alX8999/afZBRMZTFGDvXiA+Xso9enhY9vX8/SU5vGePXItXqmTZ1zOZq6shGQzIiKzoaEkanz8PnDolA6r1axkHBsoFLZE1WOFamYjI2lxdgW+/BYoVAz75RBLFX33FPgCycYzJGTBJ7MRGLTuesgZxZp5cPoTbf02Ae2AZ+DbsBo27B5IeRiE59m6Wz0nSKRi17DgW9q2X9TZGJoRfeUU6Th0uIZyaokhP+rBhUutx9245aFP8+qtMsd61K89fWoMGydqSo0YBf/xh/PPatJHqXu+8A7z6qlTL/vprKXlGTsRKI7EGDBiQZXnpLVu2ZLivfPnyUJTMv+vy58+PdevW5aodRKo7cEAWIezSxSZOWtOXoN64UeJ727bGF8ZwZNevy2zrvJSWTk1RpIhIYKC873n13HPSf75rl2FtY7JzFo7LzZs3zzK+AsD8+fPT/D5s2DAMGzbMpNcgoqwdPSr5z8aNrXfdFRIiFZ5PngQKFABCzVNEzDI8PWUNjFKlZJTWgweG0tQHDsg2Pj6GpHHhwuzVJsvhrCUiclAajSSIg4KkXzgqSrqqLT14jSjXGJMzYJLYSZ2PjsX2C1kne3UJj3F31ZfIX6YOCr84EhqNcf8ZknUKtl+4iwu3Y1G2iLdJCWH9DGGnKU9586ZMu1q/HujfXxb2NXUk85MnEolfeSX3dSZT8fQEJk2SZu3dC9TLOtefQUAA8NdfUmp04EBg61Zg4UJZI5GcBIMskfU8fSo1H6tXN8yYsRGpS1CvWSOxwJlLUJuztHRqp08D166Zr9K4r6/M/N61S87JnPFv5XAYl4kc1oULMjm2Zk3rnwZUrCiJ4v37ZbBTutVcbJOLizTU319OShITDbOMr1+XN9PFRRLF+tnI3t42MQiPHISFY/KUKVOwdOlSnDlzBvnz50fDhg0xbdo0lC9f3sSGEhHlzltvAUWKAF27AhERwD//AAULqt0qokzwOjkDJomd1KK9kXB10SA5i5nE8ae2QBf/EIWa9oRG4wJd4lNo8rkblSx2gQb9pkUiYXfllIQwIDOLnDYhnN5ff8nwKnd36UFv0yZ3+/nqK7mwnTzZbE3r0QP48kvgo4+AbdtMuy7WaIBevYCmTWU2cbNmMkl6woS8lcEkO8EgS2Q927bJQoQtW6rdkiwFBQG9eztvCerUpaUBoF07Of8xx1dfcrIknsuWlWrj5tK4sSSzN28GOnUy335JJYzLRA4pKkoGXoeFmTcGGEujkeJXjx8DO3dKJYq8VMZQhbu7jNgKCZHSHDExhqTx8eMyTTt/fkPCuEgRXtBS3lg4Jm/duhX9+/dHnTp1kJSUhFGjRqF169Y4deoUvOzuPygR2auOHeX6t0MH6Rtes0ZKURPZFF4nZ8AksZPafPZ2lgliAHh65Qg0Wk8kxd3D7aWTkHT/BjT5POBVpQX8nusHjVvWF0g6KLiceBuNSlVmQji9mBjg/feBBQuAl16SBXwDAnK3rzt3gClTgPfekx4CM3F1BT77TPLW//yTu2WOS5WSCW6ffSZrHK9bJ6VGKlc2WzPJFjHIElnHgwdS7qFxY5sPrqlLUG/Z4jwlqM1dWjq9/fuBhw+Bbt3Mt09AZoE3by5tr1fP5iapk6kYl4kczqNHskJRUJB5lhrILVdXoGFDies7dsiYtXz51GtPnmg0Uk7D11dKnSUny7W2vjT15cuynb+/oTS1nx9nGZNpLByT165dm+b3+fPno0iRIjh48CCaNm1q0r6IiPKiYUM5N4iIkJ/XrpUqJEQ2g9fJGTBJ7ITiEpIQef9xtts8u38T0CXjzt8TUaBqa3g064WnkccRe3AldE/jUbhT9uuJaQo8xg+fJ8FLy49Yiu3bZXrtvXvAvHky5TYvF5aTJsm/o0ebp32pREQAzz8PDB8OtG+fuwt+V1dgxAjZV/fuMlhg2jQpRe0E363OiUGWyDo2bpRsXsOGarfEaB4eMvioRg1JQDpqCer4ePnzmLu0dGpPnshE8ho1ZGKTudWsKWMQ1q+X6iLsA7djjMtEDuXpU+l09fKSgTxqfz9rtTJebdMmSVw3buwgXyOuroYZxIBMmY6KkpnG588Dp07JBbI+YRwUJLOOibKTy5gcExOT5m6tVgutVpvj0x89egQA8PPzM/41iYjMpGJFOTdo00bOD1atMssqiUTmwevkDBz/CCmDq/fikfUcYqE8ewrlWQK8qrSE3/PvwLN8Q/g9/w4KVG+Dx6e34dn9G9k/H8CVe/Fma7NdS0wERo6UGpvFiknpqt6983ZVf+EC8O23koUtXNhsTU1t+nS5Bp47N2/7qVFD1qJ+5x1g8GA5QbiR/ceHiIiycv26lEFs2VJ6Z+1MYKCEwM6dgStXpAT1zp0yacee6XQyu3fWLFkruF07oF8/8yeIARlzlpQEtGhh/n0D0jf+/PMycerCBcu8BhERmSY5WeKlTiedrbYya9fHRzp9b9+WSiFKTh0N9sjTU8qfNGggdTRbtpRKXo8fAwcOSM/3unVynR8VZf8nNWRTQkJC4Ovrm3KbMmVKjs/R6XQYPHgwGjVqhCpVqlihlUREGRUrJteuVarI0hQrV6rdIiLKCqd5OqHEJF2O2+jLSXtVbJbmfq9KzRF3ZC0SbpxBPr/sFxUw5nUc3smTwBtvACdOAJ9+Kgv0mmMhxlGjZMTy4MF531cWqleXGUTjxskheHvnfl/588vyye3bS3IgPByYMwfo0sVMjSXbwJFYRJalKDK9s0gRGYFjpxytBLWlS0un9uABsG8f0KQJUKCAZV4DkGqbJUvKWtJlyvDr2m4xLhM5BEWRgUiPHsmSAJ6earcorcBAqUJx8KBcM5pxJSTb4+IiZaf9/aUkSmKiYS3ja9eAc+dkm8KFDbOMvb3Vn/ZN6stlTL527Rp8UpXdMWYWcf/+/XHixAns2LHD5GYSEZlTwYIyjqp7d+DFF2XVxb591W4VOT1eJ2fg+EdIGbi75fxndy3gL/96FUx7v5cvAED3NC7HfZw55YLH2Ve1dlw6nWRFa9UCEhKkbuPIkeZJEO/ZA/z5p5SbtnBZq0mTpDPis8/Ms7/WrWUC3HPPAV27ShL6f1WQyBHog6wpNyIy3pkzwNWrUsffAf7/6EtQv/OOdHgvXAj89ReQrqqezYqPB1asAH76STrw+/QBOnWyXIIYkIS6p6flS3VpNDKb+M4dKZ1NdopxmcghnDwp+ce6dWUpXFtUurQMMDpyBLh5U+3WWJG7u5QNqVNHRkS3bi1TpgC58F23Dli9WmYcX78uSWVyTrmMyT4+PmluOSWJBwwYgFWrVmHz5s0oXry4NY6MiChbHh7AH3/Idf9bb0lfs0NWHiH7wevkDDiT2AmV9PeCBsi25LR7UBk8vXIYSbH3kM/fcGKZFHsfAODq6ZvtaygK0L2jFzTJQKVKkiutXVv+rVbN9kY/m9WNG8Cbb8r0m4EDZSFecyVzFQX46COgalWZ3mthISEyWfmLL4B33wWCg/O+T39/OTn49VdgwABZV/GXX6QaN9k5jsQispykJMO0zrJlXZ/9nAABAABJREFU1W6NWelLUB8/LhOlZ82SmFC/vnnGVpmbTiezpTZtkt/btZPzG0t/pV27JomCjh2lT9rSgoPldGPzZunvtsPq5sS4TGT3rl6VZQzCwwFbz/dUrQrExcmY5pYtZfaQU9FoAF9fuZUvL+dud+/KLOOoKFnHAZAL4qAgOQHy8+MsY2dh4ZisKAoGDhyIZcuWYcuWLShVqpSJDSQishxXV7nODw4GPvlEBpR9841tXu+TE+B1cgZMEjshL60bQv08cfV+1tN8vSo0QcyevxB3bD3yl6yWcn/csfWAiyu0oeHZvkZJf08s2+OGgwdl0OzBg8DixcCzZxIAKlY0JI0dKnH8xx+STfXwANauldle5vTPP7IY1bp1VoukI0fKusRjxwI//miefWo0Mou4aVOgZ09ZV/Gjj4CJE9kJbdc0GtMCJztEiIx34ABw/76UYXBAGo10LpcrZ9slqFOXlq5RQypjWHLmsJ6iyBiBwEA5Z7KWli2BU6fk1KNlS+u9LpkJ4zKRXbtzR8J/yZKSc7R1Gg1Qr54MLtqxQ2KkhQtf2TY3N0PJaUDWMNYnjM+dk5Ff7u6yjIh+O6d+wxychWNy//79sXjxYvzzzz/w9vZGVFQUAMDX1xf5+bkiIhug0QAffwwULQq8/bas1rBokXShE1kVr5MzYJLYSbUoXwQL915Fsi7z+cTuQWXgVfV5xB/bgDs6HTxCq+Bp5HE8PrMDPg1ehZu3f5b7dnXRoEX5IqhZU9Ym6tdP7k9MlKV59UnjgwclGOgTx/oZx3aZOH70SKbF/vor8MorsuCuf9bvUa48ewYMHy71H1u3Nu++s+HrC4weDQwZIrOKK1c2375LlJCZWF98ISPJ1q+Xt1BfoYvsDEdiEVnGkyfA1q2SlQwMVLs1FqUvQV2jhiRjFy6U84OICCDVcmxWFx8P/PefJK6LFpV1lKw5o+v0aZlJ3KOHdb86fX1lRvfu3TK4T82/AeUC4zKR3YqLA3btkkvKWrXsp2/KzQ1o3FgGe+3cKWsou7HXSXh6ysi30qWlLMn9+4b1jA8ckG18fAwJ44AATrFyJBaOyd999x0AoHnz5mnunzdvHnr37m3SvoiILKlPHxkf1aWLdG//8w9QqJDarSKnwuvkDHi67qS61wvF/N1Xst3GP6I/3HwKI+7Yf3h8bjfcfAuj0HP94FOnU7bPS9YpeKN+aIb73d2RkjjWS0iQxLE+aWyXieNt26TX9sEDYMEC+dkSV/Fz5wLnz8tsZSt77z0pAzJ8OLBqlXn37eoKDBsmJwZvvCGd0FOmAIMGOcV3sGNhkCWyjO3bJTC2aKF2S6wmdQnqDRukNFXTprIWrzX7S9UqLZ1acrIkqMuWVWdWdePGwKFD8h507mz916c8YFwmskuJiTIT190daNjQ/v5r5s8PNGokM4r37ZPYbS9JbqtxcZEkcECAjMJOSABu35aEcWSkzDR2dQUKF5aToqAgwNubb6Q9s0K5aSIie/HCC3J92b69XOevWWP7y2qQA7FwTN62bRs+++wzHDx4ELdu3cKyZcvQ2cY7U5gkdlJhgd5oUjYAuy7dy3I2scbVDQUbv46CjV83er+uig4NywSgbBFvo7bXag0JYD27SRwnJABjxgCffSY9qFu3Si0wS4iNBcaNk9rM1qwz+T/u7pK47dJFLvYtkaeoXl0GUI8cKbOWV68G5s/nSYJdYWc0kfk9eCCL+zVp4nTTOPUlqMuXlxLUmzbJTN527ayTLFWrtHR6+/cDDx8C3bpZ/7UBOVdr3lzei3r1ZCY12QnGZSK7o9NJ9YaEBCnzb4016C2hUCGpRLFzpwz4qlpV7RbZOK0WCAmRm6IAMTGSMI6Oljfw6FHp9NAnjIsUsd8Ph7NiTCYiSkN/nhARIYPi1q6VPn8ii7NwTI6Pj0e1atXQp08fvPTSSyY2Th1MEjuxyS+Go9WMrVkmiU2nwC3pGSb/PApo8E2uawbnNXFcu7bkUS267MqJEzLt9dQpyZ5+9JFlpzZNny4XihMnWu41cvDKK9I5/NFH0mFtiWsWDw9gxgwZSda7NxAeDnz3nXod42QiXvgSmd/GjdIp2KiR2i1RjVYrF47Vq8sIY30J6tatpRyyualdWjq11JXGixRRpw2AVIHZt09mdVuqYApZAOMykV1RFKnccOcO0KyZTBy1Z8HBcl1+9KgcS6lSarfITmg0coLj6ysj5ZKS5EOhL019+bJs4+cnCePAQPmZwdm2MSYTEWVQoYIMjmvTRuZfrVzp1F0fZC0Wjslt27ZF27ZtTWyUupgkdmIhfp4Y37EyRiw9bqY9ajChYRBC1t4xe81gYxLHBw5knjiuXdsw4zjPiWOdDvjqK5nuWqYMsHev9Nxa0s2bsmjv4MEyslglGo1Mmm7aFFiyBHjd+AnmJmvVCjh2TMpcv/aanCTMng0ULGi51yQz4IUvkXldvy6zRzp25GwRSB9or16GEtSzZ5u3BHX60tLt20tyVM2vqm3bpF1qVxp3dZXYvGSJrHxRrpy67SEjMS4T2ZVz5yT/V6eOVBl2BGFhUhTr4EGpxqHmgCe75eYmo9b0pTzi4w0J43PngJMn5TwxMNAw09iiI+ZzLz4hCVfuxSMxSQd3NxeU9PeCl9ZJuiUZk4mIMhUcLNe9nTvLNefvv0sXCJHF5DImx8TEpLlbq9VCq9Was2WqcZKzMcpKtzqhuBuXgM/XnwMUAHkYfDq0dXl0bVEWaHcAGDXK4jWDc0ocHziQ+YxjfdLY5MTx9esyvXXjRkl+T5linYuvMWNkFtmIEZZ/rRw0aQJ06iR/3pdekpm/luLnJ53RHTsC/fvLkpwLFqjfUU7Z4IUvkfkoCrBunXT2WXowkh3JqgR127Yydiu3rl2TcspRUfJ2t2ql0lIWqTx4ILN3mzUDChRQty2AJIZLlpQEfdmy/Aq3C4zLRHbjxg0ZJFuhguVWMFKDRiNxNT4e2LVLlm6w9xnSqvPyknU3SpeWkWT37xtKUx84INv4+EiyOChI1j22ZNWzHJyPjsWivZHYfPY2Iu8/Ruo6dhoAoX6eaFG+CLrXC0VYoAN/OBiTiYiyVLCglJvu0QN48UVgzhygXz+1W0UOK5cxOSTd5L2xY8di3LhxZmyYepgkJgxoEQZNghbTN56Ei5sCBcaXn3aFAjc3V0zoWBld64TKnR4ewJdfyhScXr2sWjM4deL47bflvswSx7/+akgcV66ccY3jDLnfJUtkWqunJ7B+PfD88xY/FgDS8HnzpAazJWpq5sK0afKezZolpactSaMBuneX5HSvXtKpMGQI8Omn8rcmG8MLXyLzOXMGiIyUqyT+X8lAX4K6Rg1J7v76a+5KUNtSaen0/vtP+oEbNFC7JUKjkff3hx+kHGrt2mq3iHLEuExkFx48kAJVxYvnesUmm+biIusObtokA3+fe47Xcmbj4iJJ4IAA+fAkJAC3b0vSODJSZhq7usrUdH1pam9vq5Smvnb/MUYtO47tF+7C1UWT6TJnCoCr9x9j4d6rmL/7CpqUDcDkF8MR4qfySD1LYEwmIsqWh4d0vw8aJH36t24Bo0dzNQWygFzG5GvXrsHHxyflbkeZRQwwSUz/s3dxKBJ3BaD5sOPYfTnrk3g9/eMNb53B5KlvISSoYMaNnntOakL+3/+pWjM4u8SxPmmcZeK44mPU+m8aqq2fjvxdOkqy28/Peo0fPlwWb3r3Xeu9Zg7Kl5f38dNPgT59rPN2hIbKBO4vvwQ+/ljy9IsWyfgDIiKHk5QkX3Rly8qNslSkiAwiOnFC3jJjS1DrdHIOsHmz/G4LpaVTu3YNOHVKqnfky6d2awyKFpWZ3Fu2SAx2oGsiIiJVPH4M7NghA5zq1nXcjlB3d1lrcONGmVHctKmqk1sdl1YrS1SFhEhVmpgYSRhHRclUdZ1OBr7ry1IXKWKRJU2W7I/E2BUnkfS/PqXs+pZSP77r0j20mrEV4ztWRjf9JAQiInIarq7AN98AxYpJFcubN+Uan+cMZAt8fHzSJIkdCZPEhMOHJUH63XeeeOfteoZyQOduI/JeJuWA/D3RolwRvBGoQ9lGnYBwDfDhh5nvvFAh4LffgA4dJFlsIzWDsypVffy4IWl8cEssfp2nxTOMh6vLWFQ+o0GtjzS5K1WdG5s2yfSoP/6wubUox44FFi6URPEXX1jnNV1cZOZy69Yyu7h2bWDyZOCDD2ynU9/pcXQ0kXkcOCDTiqxQgcMRaDSSsCxXzrgS1KlLS9esKWPa1C4tnZqiSMI7KEgSsramZUtJYO/cKT+TDWNcJrJpSUnyXeriAjRq5PgdoAUKyHFu3SrX23XqOG5S3CZoNDL6wNdXRnonJQF37hjWM758Wbbx8zOUpi5UKM9/lFmbz8tyZrmQrFOQrFMwYulx3I1LwIAWYXlqi01hTCYiMopGA4wcKQOU33pLwtbixdZZ8ZGcBGNyBkwSOzlFAYYOlWuGvn3lvrBAb4zrWBnjUBnxCUm4svMgEt/oCfdff0HJRrXgpU31sXn7bWDSJODNN7OfUvr66zJ02IZrBmu1knisHZ4AXPgEuPAFEpo8h+NDf8HBm0Wzn3FcS55btaqZgpZOJ3+YevWAV14xww7NKzAQGDZM/vQDBshkZ2upWhXYv19mFH/0kSx7vWCBDJYmlWk0pgVO9goRZfTkiWQ6a9SQL1syWmYlqCtWlPt8fdOWlg4OlgvOYsXUbnVGp04B16/bbqVxX18pG7p7t5z7OOhAWsfAuExksxQF2LMHiIuTATceHmq3yDoCAiQ5vHevVD2uWFHtFjkRNzfpcS9aVH6PjzckjM+eBU6elMHpgYGGmcYmdm4s2R+Z6wRxep+vP4fCBbSGZc3sHWMyEZFJeveW1RJefVVWfVyxwrrFPcmBWTgmx8XF4cKFCym/X758GUeOHIGfnx9CQ23zvIZJYie3bp2UfPrnH7lmSM9L64bKBfMBt84BBfMB2nQb6aeUTp4MfP559i+mrxk8Y4bUjLDFmsHHjwNvvAGcPg1MmwbtkCGo7eqK1MvuZZhxnEXiuHZt+TdXiePffpMF/7Zvt9mLgyFDpPr2xx/LiC5r8vCQGcypl73+9lsZi0Aq4kgsorzbtg1ITuYUzTzIrAR1qVLA1avytWNrpaVTS0qSU6WwMKB0abVbk7XGjaUSzaZNQOfOareGssS4TGSzjh2TtfYaN5bBN84kNBSIjZU4XaAAB/uqxstLTjZKl5ZB6vfvG0pTX7sm2/j6GhLGAQHZTne/dv8xxq44meljiXeu4tGOxUiMuoDk+IfQ5NMin38IfOq9BM+welnuc8yKk2hYJsAx1ihmTCYiMln79rJEVPv2QJMmwNq1PG8gM7BwTD5w4ABapKqiO2TIEABAr169MH/+fJP2ZS0863BiyckyWbVpU6kGnSv6KaXffCPlinLi4iKlqffvl99r15Zsn06XywaYiU4nC97Wri1vzP798uZkchGkn3H8zjvADz9Ikjg2Vp4ye7ZM/j1yBBg8WGbaeHtLaeq+fSWRuXevTBTL0tOnknnt3Fl6DWyUlxcwYYLksw8cUKcNLVtKB0u7dlKC+rXXpEIrqUQfZE25EZHBgwcSJBo1kuBBuaYvQd25s6zpe+5/k1rat5cYbqtfP/v3Aw8fykhpW6bVAs2bA0ePSpKDbBTjMpFNunhR4lKNGoZJnc6mUiXp5N23D7h3T+3WEFxcJAlcpQrQqhXQsaN0bBQqBERGyiDGf/6RQeznz0sHiJJ2neFRy46nrEGcXnLMbegSn8Ar/DkUatUPvg27AgDu/D0RsUfWZtmsJJ2CUcuOm+841cSYTESUK/XqyfIc8fFAw4ZS+IIoTywck5s3bw5FUTLcbDVBDHAmsVP75RcZvbt3bx4nq+qnlH7yicwMNkbVqnJF+MknkoxVs2bwtWsy5WjzZlngdvJkk+t9pZSqTjXlOPWM4wMH5N9ffpFZQq6ucv2lL1WtX+PYwwPArFlSZ3LdOvMepwX07g3MnCllnzdvVmfSc6FCMpO5QwfgvffkozV/vlQ1Jyvj6GiivPnvP1kct2FDtVti99KXlm7TRuLwX3/JRaW+BLUtefJE+mBr1pSyWrauZk05h1y/HujZ02YLnzg3xmUimxMdLZUYypaVm7PSaKTs9OPH0vH73HMyCJlshFYrU75DQyUZHBNjmGV87JicYHl6ygzjwECc13hh+4W7We4uf5k6yF+mTpr7vGu9gFvzByNm33J4V2+T6fOSdQq2X7iLC7djUbaInQ+gZEwmIsq18uWBXbtkklDjxsCqVTK2nihXGJMzcPwjpEw9fiz52a5dgbp187gz/ZTSxYtNm1Lq4SElqjduBC5ckCk/1q5bvHixvO65c9Kb/OWXZlsQKvWM4x9/lOrRcXEyS2jWLLkoPnwYGDTIMOO4engS+n4ciG8b/oq9D8vj6VOzNMVi3NyAadOArVslz6+m116TpHxYmAx+HjIENv/+ORyOjibKvevXZeRWy5ayHhzlik4nY9C++UaW13vhBankER4u48FeeknGhs2eLZNhkpLUbrHBtm3S/ubN1W6JcVxcZMbzlSsyqYhsEOMykU2JiZEOzsBAGSDs7FxdpYPXzQ3YsUOWbyIbpNHIyLry5YFmzYBOnaSHPjgYuHMH2L0bi37fBlcTB4tpXFzh5h0AXUJcttu5umjw657IPByAjWBMJiLKk+Bg6X+uUUP6fZcvV7tFZLcYkzNw/COkTM2YIefzkyebaYe9e8tivEOHZig7lKMWLWQ0avv21qsZ/OCBvE737kDbtpJdtMLUU33i+N13MyaOv/kGqIMDOJwUjkG7uxoSx9UNpar37bO9xGe7dvInHD5c/c72kBDJ9X/xhSQA6tSRUphkJQyyRLmjKFI9IjBQvvQpVyIjZRmINWvklGTAAKnUof+q0ZegHjBAYvHmzVII5cIFddsNyDKA+/ZJZ3mBAmq3xnhhYbLe84YN6q8cQplgXCayGU+fSiLU01MGCPO/m9BqJd/4+DGwZw9jiV1wc5M66TVqSKmWdu2w+Wl+JBvRDaRLfIrkx4/w7MEtxOxbjieXDsKjRPYjJpJ1Cjafu22mxquIMZmIKM98feV6v2NH4OWXge+/V7tFZJcYkzNw/COkDG7fltmf/fsDpUubaaf6KaVbtgD//mv68wsWlFLVv/0mq9BXrQps2mSmxqWzaZPsf80aw2sWKmSZ1zJCSuI44jJ+PNcMh8avQmysJmUmVOoZx/Xq2V7iWKMBPvsMOHUKmDdPvXboubjILOIDB6RtdetK+5KT1W6ZE7BSkJ09ezZKliwJDw8P1KtXD/v27cty2/nz50Oj0aS5eaSrFqAoCsaMGYOiRYsif/78aNWqFc5zWhxZ0+nTkuGMiHCKk09zi4uTUcTz5smspLfekiUIPD0z316rBVq3lgFbPj5yKvDHH8CjR1ZtdhobN0phlgYN1GtDbmg0Mpv47l0Z+EY2xsJxedu2bejQoQOCg4Oh0Wiw3Ijh/Fu2bEHNmjWh1WpRtmxZm16XichckpNlBnFSkiRE8+VTu0W2xcdHVtqIjuYAX3sU56ZFZKxx08AfbJqL6193x83v++HB5p/hWa4B/Fq/l+PzIu89RnyCDZV/yQ12SBMRmYVWK135/fvLNf24cabPVyMnx5icgeMfIWUwYYJ8tj/5xMw71k8pHTYs91NKu3WTWcXlysnMXnPWDH76VPb33HMy9eXYMeD1182zb3P4+GPA3x/44AN4eEhyOPWM49hYGJU4/u476yeOa9WSt3LMGOmstwXh4TJD+/33ZZbzc88BV6+q3SoHZ4Ug+/vvv2PIkCEYO3YsDh06hGrVqiEiIgK3b2c9utzHxwe3bt1KuV1N90GYPn06vv76a8yZMwd79+6Fl5cXIiIi8NTWpu2TY0pKkmmYZcsCZcqo3Rq7otPJmrizZsmqEfrS0sWKGff8IkVkLd2XX5YS1LNmqVOC+to1GWjVsqV9Jg6KFpWyqZs3AwkJareG0rBwXI6Pj0e1atUwe/Zso7a/fPky2rdvjxYtWuDIkSMYPHgw3nrrLaxbty43R0dkFxRFrkkePJAEMdfdzVxgoExMvXCBSxjYm6v34mFs37xPnU4o0m0S/Nt/gPyla0FRdEByzglmBcCVe/F5aqfq2CFNRGQ2Li7AV18BU6cC48dL/7na1S3JjjAmZ+CmdgPIus6dk1IMkydLPtKs9FNKa9cG5s+XqTy5ERIiHeZffQWMHCk///pr3hZuOnZMSkufOyfrIH/wgW39Bz9wQIZBzZ2bZc+BPnFcp47hvqdPpVL2wYOG2y+/SGB0c5Nym7VrSxLX0h0Sn34qyxR9+aUki22BVisfyfbtJRFQtaqUoe7eXT6uZGamBs5c/B/88ssv0a9fP7z55psAgDlz5mD16tX4+eefMWLEiEyfo9FoEBQUlOljiqJg5syZ+OSTT9CpUycAwC+//ILAwEAsX74c3bp1M7mNRCbR9xzzs2aSyEgpXBIdDdSsKQOBspo5nB2NBqhSRcaObd0qBVGOHJGVKMqWNXerM1IUYP16ICjIvtenbNkSOHlSSqlaYfUOMpaF43Lbtm3Rtm1bo7efM2cOSpUqhS+++AIAULFiRezYsQMzZsxARESESa9NZC9OnZLBQPXrA35+arfGtpUpIwOOjxyRpReKFlW7RWSMxCTja4Tn8w9BPv8QAECB8OcQvWQ0bv81AUE9v4Qmhwt0U17HJlnhWpmIyJloNDIpKChIBotHR0vXev78areMbB5jcgaOf4SUxsiRstD7wIEWeoHUU0rj8zDS08VFErkHDsjPua0ZnJwsz6tTR6LH/v3Ahx/a1n9uRQE++kgyur17m/RUY2YcHzwos2l79ZLnvP665O/NPeO4ZEn5XE2fDkRFmWef5tK8uYwT6NAB6NFDcjH376vdKtKLiYlJc0vIYipaYmIiDh48iFatWqXc5+LiglatWmH37t1Z7j8uLg4lSpRASEgIOnXqhJMnT6Y8dvnyZURFRaXZp6+vL+rVq5ftPonM4skTyUzWrClTaChHppaWNpZaJahPnQKuX5fXtufBSz4+Uip7zx51y3aTeRgbl021e/fuNPEWACIiIhhvyWFdvSrf81WqyDhoylnVqtJfsWcP8PCh2q0hY7i75b5vxbNCIyTeOo+k+zcs+jpEROS4evUCVq6UOWatWrG/lyg3eJblRHbuBJYulRmf6ZbkNK9PPwXu3QP+N0sgT6pUkUzmoEGm1wy+elW2Hz5cspf79slVp61ZvVqSBNOnS493HqVPHB8+LInjX36RxytUMCSO9aWqa9QwT+L4448Bd3cp9WFrChaUCelLlsisrapVgf/+U7tVDkajMa1Ux/8yIiEhIfD19U25TZkyJdPd3717F8nJyQhMl0wLDAxEVBYjE8qXL4+ff/4Z//zzD3799VfodDo0bNgQ169fB4CU55myTyKz2bZNBjO1aKF2S2xeZqWl33rL+NLSxipc2FCC+vp1y5agTkqSOBQWBpQqZf79W1ujRpJs37RJ7ZZQCgvHZVNFRUVlGm9jYmLw5MkTs7wGka24e1fGO5coIddfZByNRq5RCxSQ6hRc/cX2FfbIfcky5ZkMQtIlZD/BQAOgpL+d12rPZUwmIqKctW0ryx+dOwc0aSJVXIiyxJicActNOwlFAYYOlWSgxZfhTT2l9J138j47SquVfRlbM1hRZApQ//6Ary+wcaPtdsAnJckazi1bSkSzEA8PmagMyCTvmjUNpaoPHDCUql6wwFCqukoVmRheq5aUrA4Pz3lwQaFCstb1sGGS17fFDpGuXaUju3dv4PnnpZ1TprAciVnkslzHtWvX4OPjk3K3Vqs1W5MaNGiABg0apPzesGFDVKxYEd9//z0mTpxottchMtn9+5L1bNpURutQllKXlq5VS0JmXmcOZ8daJaj375dZtxY/L7MSrVYqd6xeLWVVWSbUBthgXCZyBnFxMkDbz0+uo5ygX8ms3Nzkem3jRnkfmzc3y1hqMpNnz4Dbt+W8LCoKiI93g7/WE/cSHmf5nOT4h3D1KpjmPiU5CfEnNkHjpkW+gNBsXzPU3xNeWjvvvmRpSyIii6pbV84bIiKkytXatXJdT5QBY3IGdn6WRcZauhTYvVtmrFjlc/3xx8DPPwPjxsn0VHNo1kxqBg8YIDWDV66Ufade3On+feC996RG5OuvSzK5YEHzvL4l/PwzcPo0sHCh1XsPslvjOKfEsX6d48wSx/37S6nr4cOBf/6x6iEZrXhxmU389dfAiBFSkmTRIqB6dbVbZudyGWR9fHzSdEZnJSAgAK6uroiOjk5zf3R0dJZrDqeXL18+1KhRAxcuXACAlOdFR0ejaKqMRnR0NKrzA0GWtHGjZDobNlS7JTYrLk7OW44eldKT/frJv9aiL0Fdo4YkqRctksFPERF5P7V4/FgmktesKbOXHUXNmjL2Yf16GdfHxIjKLByXTRUUFJRpDPfx8UF+jtYjB5GYKDNg3d0lxDtBn5JFeHoCjRvLrKB9+2TwEWOKOhRFSn9HRcnt3j25r0ABWQcyKAho714Ei/ZdRbJOyXQf99bOgpL4GNqQKnD19kdy3APEn9qCpHvXUahlX7i4Zx0DXF00aFGuiIWOzorYIU1EZHHlygG7dgHt2smM4hUr5F+iNBiTM3D8IyQ8eyaJsLZtpfqyVeinlP74I3DmjPn26+srCdXff5fMXuqawf/9J7+vXy8r1S9aZNsJ4rg4YOxYmRFdq5barQFgSBy/9x4wd66hVPXevZJQrVVLEscDB8oIrdSlqufMkVlRigJMniyBeNs2tY8oay4uwODBkhDPl0+OZ9o005e9plRMKdVhakAG4O7ujlq1amHjxo0p9+l0OmzcuDHNbOHsJCcn4/jx4ykJ4VKlSiEoKCjNPmNiYrB3716j90lksmvXgBMnJCi7u6vdGpuTvrR0hw4SZ6yZIE4tdQnqGzdk/Nm2bXkrQb1tmxxn8+Zma6ZNcHGRKh1XrsjfjlRm4bhsqgYNGqSJtwCwYcMGxltyGDqdDMx++lQSnJyEnzeFCknp6evX5bSJrOfpU1m9a+9eGZv/33/SrePuLgOr27aVW82acn7Wo35olgliAPCq2ATQuCD28L+4v+5bxO5fDjfvABR+eTR86r6YbVuSdQreqJ/9TGO7YGMxmYjIURUtKhXBataUa9Nly9RuEdkcxuQMOJPYCXz/PXDpkswmtir9lNIRI4Dly8277y5d0tYMrl5dakG2bAnMnw+EhJj39Szhiy9k5vOkSWq3JFseHpJArVvXcN/TpzKpWz/bOLMZxwEBQK9eks+vVs12O0mqVJGL3zFjgJEjpUzmL79I1XQykRVGYg0ZMgS9evVC7dq1UbduXcycORPx8fF48803AQA9e/ZEsWLFUtZPnDBhAurXr4+yZcvi4cOH+Oyzz3D16lW89dZbAACNRoPBgwdj0qRJCAsLQ6lSpTB69GgEBwejc+fOJrePKEeKAqxbJ9MuqlVTuzU2x9qlpY2VugT1tm1y0Xn0aO5KUN+/L4OqmjeXWTiORr/G8oYN8t6wRKiKLByX4+LiUipzAMDly5dx5MgR+Pn5ITQ0FCNHjsSNGzfwyy+/AADeffddzJo1C8OGDUOfPn2wadMm/PHHH1i9erVJr0tkixRFBtjeucOVJMypWDEZB37smLynvEazDJ1O1tHWl5B++FDuL1hQYnpQEODvn3WYCAv0RpOyAdh16V6myWKvSs3gVamZye1yddGgYWl/lC3iAP+hOGuJiMhqfHykX6FXL+CVV2Sg97vvqt0qshmMyRkwSezgHj0Cxo+XXGp4uJVfXKuVKaWvvw5s327++g7FisnUz3btJEEcGAh89pl9JIijoqSt779vl1e6xiSOY2OBixdl9Lebm3z+9Gsc16olF/u2kjjWag0fJf2y17NmSVXz3JQ1i09IwpV78UhM0sHdzQUl/b3sfw0lY1ghyHbt2hV37tzBmDFjEBUVherVq2Pt2rUI/N/a55GRkXBJtd8HDx6gX79+iIqKQqFChVCrVi3s2rULlSpVStlm2LBhiI+Px9tvv42HDx+icePGWLt2LTxyWoSbKDdOn5aZxD17OsWJprFSl5YuVsz6paWNpdUaxqatWZO7EtQbN0pyuH59S7ZUPRqNlOn+/nvg0KG0y1qQlVk4Lh84cAAtWrRI+X3IkCEAgF69emH+/Pm4desWIiMjUx4vVaoUVq9ejQ8++ABfffUVihcvjrlz5yIiIsKk1yWyRefPy8Ds2rWBIg5QGdeWlCsn15YHDgBeXo61TIOa4uIMJaTv3JEB31qtdKuUKyf/mnI5NPnFcLSasTXbGcWmcnPRYPKL1u7IshB2SBMRWZVWCyxeLAOd3nsPuHlTciRcvoIYkzNygqyFc5s+HYiPByZMUKkBXbsCX34JfPQRsGeP+b6Jk5NlJu4nnwAVK0qt4/Hjpcd14kR5PVueujJunNRqGjVK7ZaYTWaJ43btpMN/xAj5d/9+meidlCQlnvVrHNtK4li/7PXAgTLabOVK+Wj5++f83PPRsVi0NxKbz95G5P3HSH1prAEQ6ueJFuWLoHu9UIQFOsBI6MxYKcgOGDAAAwYMyPSxLVu2pPl9xowZmDFjRrb702g0mDBhAiao9kVJTiMpSaZXhoUBZcqo3RqboNNJbNi8Wb4SOnSQZQxs/cKtcGEZSHTypKxyMXu2jIVr2FAGRmUlMhI4dQro3FnioKPST5TfskX92O7ULByXmzdvDkXJOhkwf/78TJ9z+PBhk16HyNbdvCnXOuXLy6xLMi+NRkpGxsfLOoMtW3Kmdm48eybJYH1iOD5e3tuAAOlSCQyUAW+5PQcL8fPE+I6VMWLpcbO1eULHygjxs4GSMubADmkiIqtzcQFmzJCB6MOGAbduAd99l/01OzkBxuQM+F/CgV2/LvnZDz+UL0NVuLjIjNkWLYA//5Qy0Xl15Ypk8LZvl2TwxInS+9i2razxa+s1g0+flgV/p0+XhZYc2Oefywzi5GQ5ZCDtjOMDB7JPHNeuLc+3Zueyr698dDp0AN55R15//nyZFZWZa/cfY9Sy49h+4S5cXTSZjpxWAFy9/xgL917F/N1X0KRsACa/GO44F7x6DLJE2du/H3jwAHjtNbVbYhOuXpXZuPrS0s89B+TPr3arjJdVCeo2beS+9BRFEspBQZI4dXQtW0oSfccO+duSChiXiSzuwQMZC12smAqVu5yIiwvQoAGwaZMhrri7q90q26YoUjY6KkrOte7elfu8vORcJChIBr2Zc9BatzqhmPdbAs5qz+V5X0Nbl0fXOg6wFrEeYzIRkSo0GmDoUIl7ffpITFyyxDaWtSKVMCZn4PhH6MRGj5YRtsOGqdyQ5s2BF16Q5G1iYu73oyiSvataVRLFmzdLolWfQdRqgalTZdpKZKRs98sv8jxbMmKElMTu31/tllhcpUpA376Sx9eva6Sfcfzee8BPP0ml8NhYWRd45kyZQbZ/v8zmrVNHPsM1a0rp0e+/l8RyQoLl2/7qq8Dx45IAiIiQyuBPnqTdZsn+SLSasRW7Lt0DgBxLa+kf33XpHlrN2Iol+yOz3d7u6IOsKTciZ/HkiWQRa9Z0+jqUcXHAsmUyAMfNTb7fX3jBvhLEqelLUL/7rgw0WrwY+P13Q9zTO3UKuHFDBh3Z+kxpc/DxkQ79PXtk+RNSAeMykUU9eQLs3Cnfd3XrOsd3u5rc3YHGjaVLYdcuqUZCaT19KoPw9u6Vqlj//QecOSOJ4OrVZVx9u3ZyOhocbP6qJt98A6yfEYZ2AeHQurnA1cW0/xSuLhpo3Vww7aVw9G9R1ryNUxtjMhGRqnr0kNi4aRPQqhVw757aLSLVMCZnwJnEDurYMWDBAjlJ9/FRuzWQBV/Dw6Wmw6BBpj//3j3pff3rL+CNN2TBWF/fzLdt2lSm8rz/vuk1gy1t2zZgxQrpQXaS2ovjx8uajVOmyMcgM9mtcXzggMw63r8fmDdPZiWnnnFcu7b8a4kZx8WKAWvXysdt+HC5yP71V7monrX5PD5fn7sR0sk6Bck6BSOWHsfduAQMaJHJlDN7pNGYFjjZk0bOZOtW+QJLtX6ns9HpgH37ZCyXPZWWNpa+BPWpU8C6dWlLUAMSQ8qVc65SpI0aybrEmzYBL76odmucEOMykcUkJcmMVkC+61i20DoKFJC4um2bXCPWru3cX106ncwQjo6WGcP6AWoFC8r5RmCglJO2Rt/mv/8CgwcDQ4YAX3wYimv3A3KsuKWnf7xhaX/HrLgFMCYTEdmANm1kzlm7dnKtvnYtEOpARSvISIzJGfBSxkENGyalDt9+W+2W/I9+SumECZK4LVjQ+OeuXw/07i1Zw99/N65kta+vZMmNrRlsDYoi5bFr15a1mp1E0aJy2NOmAf/3f0CJEsY9L7PE8ZMnhlLVWSWO9UljcyWOXVxkvEGrVkD37rLsdbePI7Htad5LaAHA5+vPoXABrWOU0mK5DqLM3b8v2dFmzZx2Eb2rV6Xz8PZt+Z5u2dJ+Zw5nR6MBKleWc7CtW+V25IisfvHoEfD662q30Lq0WhkXsWoVUK+ezFoiK2JcJrIIRZGZmnFx8h3niPHMlhUuLOcS+/bJaVWFCmq3yLri4gwlpG/flgELWq0khMuVk389PKzbpmPHpIvjhRek2BsgaxQv7FsP56NjsWhvJDafu43Ie4+ROlWsARDq74kW5YrgjfqhKFvEgc+TGZOJiGxCnTpSkSQiQipfrV3LJUOcDmNyBkwSO6ANG2QGy9Kl5i8flCf6KaVTp8otJ0+eyPTNb76RDN38+aYvrvzKKzLU+M035dt/4EDJVqpxJf/HH5LV3LzZKb5cUvvoIykVPXq0VADPrfz5pZO5Xj3DfekTx/v2AT//bEgch4cbksZ5SRxXqiSdQR+OfYx/Yk/CxQ1yVZuNR7t+x8NtC5EvIBTBb32b5XZjVpxEwzIBjjlimohkCqmnp1yBOJm4ODkvOXZMQni/fs6RKHR3lxLU1atLgvTwYRkfZ1PnZVZSo4bEzw0bgJ49nWIQLhE5uGPHgJs3pfSxKWOfyXxKlJAli44fl9nFxYur3SLLefYMuHNHEsNRUUB8vMTSgABJkAcFyedQrfgaFSXJ4bJlpbvH1TXt42GB3hjXsTLGoTLiE5Jw/HI8du7RoVF9F4SX8oKXlt2SRERkXWFhkijWzyhesUIKkxI5K56NORidTmYRN2oEdO6sdmvSST+lNLt6DocOSVnpS5dkodqBA3OfWA0OBtaskbqPw4alrRlsLQkJsibzCy/IGs1OxtsbGDdO/uwffCAdxuZiTOJ4717zJI7d3YGHZY/D7aKCHJYfRlLMXTza/Qc0+XIexp2kUzBq2XEs7Fsvx21tGkdiEWV07Rpw8qQEZXd3tVtjNalLS7u6Ol5paWMVLiydtzdvykyf2bMlqeBMpUldXCRhvngxcO4cUL682i1yIozLRGZ36ZJ8l1WvLpe3pJ7KlWUw2r59MhbPz0/tFpmHokjZaH0J6bt35T4vLzmnCAqS8wtbGHj2+DHQqZNcZ69cKQn77Hhp3VA+0BfXvIDygYCXc6zAJRiTif6fvfMOb6r+wvibTmhpgRbaMsreUIYFCmVDWaKIKIKCICIIiCh7yEY2IgoIKAIKKKgICip7rwJlI1tZQsso0AWd+f3x/kJ3m6RJ7k1yPs+Tp5Am956kyT3f7xnvEQRV4efHeEXnzhQeXbMGeO01pa0SLIL45EzYSXjKfli9mrKGhw6pNBCbtqX0u+8y/z45mfpEEydy1xcWxp95xcGBieZWrZh8Dgqi9PXIkZlLXc3B4sXU2ty82fznUinvvQd88QUwYgS7icz5+cxr4rhuXUpXZ0wcX4mIxv6rD/Sy4dHub+FavDK0KSlIeRqV42OTU7TYf/UBrt6Ltm6JLXGygpAerZbSHn5+QK1aSltjMexFWlofHj4Ejh9nfVhQEGco7tsHnD4NtG/PCmZ7oEIFoFw5+v8KFSyz9BIgflkQTExEBGuZy5fntUxQFo2GkpF79gAHD3Kr72alwkzPnqUmhSMiWGPu6Aj4+LAgwc8v9wSspUlJ4SSxc+e4trHlbm6TID5ZEARBdXh6MnbxzjtAly7AwoVscBJsHPHJmZAksQ3x9CkwbhyrXlSraJmxpbR27dTf/fsvdQgPHmTydsoU03ddVasGHDlCGz75hJ7g+++BsmVNe560PH4MTJ3KLGm1auY7j8pxcmIT+SuvMGfSrp1lz59b4vj48ewTx7o5xxtv3oSjgwbJubQRP7t5DnEXD6JY7y8RuX2JXvY5Omiw+shNTOpogqIIpRAnKwjp+ftvdhL36mUXn/foaIp12Ju0dE7s3MmgboMG9CshIVz6/PUXO2srV6Y/tHW5Uo2G3cRLlzLBUq+e0hbZCeKXBcFkREUBhw+nJu1UWZBthzg6Up1j507gwAHOiFZDh21upKSwkEwnIf34Me8vVIihCV9fykmr+bI8fjywfj3HnAUGKm2NFSA+WRAEQZW4uLDpzs8P+OADqoBNnSprPZtGfHImJElsQ3z5JXD3LjBjhtKW5ELaltJt23jfd98BgwdTI2rPHvMOAnBxAaZP5+CBt99md9eXXzKIbw4PMGMGS4EnTTL9sa2Ml1/mrIcRIxgsVrqTKKfE8fHjmTuOS7x/D06Fc04Qa1OSEbl9CQrUagMXnzJ625KcosXuy/cwCZIkFgSbICmJbZMVK7KF0obRSUvv3s2CoI4dJYAOADdvAhcuUGk8bcC6SBGKmvz9N5dB9iJB7efHz8WePSzCypf7NAYhr4hfFgSTEB/PBGT+/CzGlq+KusiXj3501y7u3Ro1UucaJCYmtVP43j0uFV1dmRCuVIk/rcU3rlzJkMqcOSocc6ZWxCcLgiCoFgcHYN48FrmPGMH8ytKltr0/t2vEJ2dCPuo2woMHXKQPGGAF0oVpW0p//hlYt47lpz17MllbsKBl7GjcmHqPH30E9O7NITpLlzJ6aypu3GBCfPRoGVoFbtbnzmVS9vvv+barjewSx0eOJ6H3n3G5Pj/m5F9IiroP3zenGXzumw/jEBufBHdXK700i5MVhFSOHmVbyFtvKW2JWRFp6azRapkALlYMqFkz8+81Gk7TqFgxvQR1u3YMFNsqLVpQlvLAAXZVC2ZG/LIg5JnkZI5ySkoCmjWzji5Ve6RgQSbwDxygP00rWKYUSUlcH+kSwzEx9P9FigBVqrB4qlAhdSa0c2LvXqBfP9b+DxumtDVWhPhkQRAE1TN8OP1z79704evWWe8oCyEHxCdnwkozEUJGPv2UP8ePV9YOvXn5ZQ597d6dEtQ//wy8/rrl7fD0BFasoD39+rG1ZcUK02khjxvHnd/w4aY5ng1Qvz7QtSvfmq5drcPZ5s8P+JSPzfVxyU+j8Hj/GhQK7gpHN8OLHbQArj+MRfXiFiqUMDXiZAWBxMUx6xcYSF1KGyQ6mo3SZ89yBl2/flILlZbz54H//mP9W07BXxeX9BLUP/5ICeq2bYHChS1mrsXw9ASCgzlZpF49y9UF2i3ilwUhT2i1VBeKjORseXd3pS0SckKnWHHyJEc9WHputFbL+kDdbOEHD3ifuzttq1mTy0JrLjS4cgXo3JnqYF99ZX0JbkURnywIgmAV9OhBf925M9CqFbB5M+DtrbRVgkkRn5wJSRLbANeucYE+eTJQtKjS1uhBXBxnDp87x/+PH69MgjgtnTuz9Pjdd4H27TmEYPbsvGUwT57kUIMlS7hLFZ4zfTqrp+fPB8aOVdoa/UhISsn1MY/3rYJD/gLwqPuyWc+jWsTJCgLZt4+tRy1aKG2JyUlOZpP0nj0iLZ0dSUmcjVipEucK6oNOgvrCBWDrVq7rbFWCOjiY4xx27uTySzAj4pcFIU9cuMDRAQ0aSHDQWqhQgR27p05xC+7nZ97zPXvGpLAuMRwfz5FKutnVfn62EwqIjAQ6dGDM6ZdfrDvZrQjikwVBEKyGNm0Y83jxRe7Jt24FSpdW2irBZIhPzoTtv0I7YOxYbkI++khpS/QgLIydVd9+S2npLl2Azz5j4lhpihWjZubChbQvMJD2GoNWyyEGVaoAffqY1k4boFw55uFnzqR8h9qJjweuXs75cpkY+R9iTm2FR2BHJEdHIulxBJIeR0CbnAhtSjKSHkcg+Wl0rudycbLiy7JGk+po9blJVkmwRSIjmUVt3Nh2ooL/58YN4Ouv2UFcqxYwaBBQp458lTNy9Cjw5AnQurVhz9NogGrV6B+Dglhr8NVXwOXL5rFTKVxdWT9x9ixw547S1tg44pcFwWhu3qQqRPXqgL+/0tYIhlCrFpOzhw/TH5uSlBTg/n36sO3bObFK5/fLlKEkeadOXAZWqGA7S8GEBBZ2RUYCf/xhm2onZsfMPnnfvn14+eWXUbx4cWg0GmzcuNE8r0MQBMFOqFuXI0cSE9lXduaM0hYJJkP2yZmw4myEAAChocBPP1FuWtWyvcnJwLRpLMPOn5/J1w8/TM0Szp+vtIVEo2F09uRJ6kI1aEC7k5IMO87WrWyRmTXL9lqATMS4cbzOTpmitCXpiY+nrNySJUDfvsALL1ARveuL7tBqs39ecvRDQJuCRzuW4r8lfZ7fEu5cQlLkf/hvSR88OfhjjufWACjjbcU6doY4WEOrtgTBWtixg/6jYUOlLTEZ0dHAr78CK1dSHrlvX1bUyuzhzKRVGi9SxLhj6CSoBwxgEPbHH3l79Mi0tipJnTrsRNq2DTn6ViGPiF8WBKN4+BA4dgwoVQqoWlVpawRD0WhYbOXuzhnFz57l7XgxMVRvO3gQ+O03dhb98w9HKNSvz8lVrVunyknb2qVUqwX692fSfeNGoHx5pS2yUszsk2NjY1GrVi0sWrTITC9AEATB/qhQgYniYsU4amHPHqUtEkyC7JMzIdkrK0ar5ajbmjWBt99W2poc+OcfGnjkCDBqFDBpEiOgQPqW0r591aOXXaUKvcCUKcCECewwXrWK9uZGcjK7iJs25Y5RyBJvb3bBf/IJMHgwZTktTXw8q8DDwpgYDgujCnpiInP71asz0N+3LxAY6IThe9xw81HWXe/ORUujaOdPMt3/eN8qpCQ8hVdIPzgVynlgZylvN7i7WvFlWeQ6BHtH13b06qupfs6KEWlpw9m7l+uz5s3zfqysJKgbNeLN2iUeHRwYUP/hB+DSJS67BDMgflkQDCY2lslALy92kIjPs06cndnNu3Mn/57Nm1MGWh+SkljHHh5OGemYGH4OvL3pr/z8gEKF7OezMXs2sGIFwyGNGyttjRVjZp/cvn17tG/f3kCjBEEQhNzw9WVMpHNnoG1bYM0a5admCnlE9smZsOJshPD776yM3bJF/w2PRdFq2XY0eDAjnXv3Zr2rGDeOu44pU4AFCyxuZra4uLBFu317Jrlr1QK++ALo3TvnHeF33zHTGBpqPztHIxk8GFi0CBgzBli/3rznSpsQ1iWFdQlhR0egRg0mhN97jwGhmjWBfPnSH6NluA9Whd5AckrmtidHt4Jwq5S5czDq2G8AkOXv0j3fQYMWlXyMf4FqQJysYM9otczk+fnxAmLlXL/O+qgHD3hNbNFCOodz4+FD+pYWLdi9ZAp0EtQVKrBDef9+yly1a6dMcZUpqVCBtXc7dgAVK6p0LWvtiF8WBINITOT+2smJ89PlumTduLmxsGrPHnaGBwVlvT3XaikXHR7O24MHvM/dPXVZ5+Nj/QVaxrB+PTB6NDB+PAvXhDxgpE+OiopKd7erqytcXV1NaZkgCIKQCx4eHLfQuzfwxhucoDlokNJWCUYj++RMSJLYSklMZFNu69asYlEd9+8D778PbNgAvPMOk6uenlk/Nm1L6Ycfqi/q2agRcPo08PHHnC+8aROHMmbV9RwXxx1U167UnhJyJF8+5uF79mSFd6NGpjluxoRwWBj/n1VCODCQG399kh/dg0ph5eHrpjEyA8kpWvRoUMosxxYEwQL8/Tdw+zbQq5dVLyCjozlj7+xZoGRJKikUy1kEQfg/O3dy9mBQkOmPrZOgrl0b+Osvyk9XqsRksbXOBdRouI5dupR+WpZNgiAoSUoK5XSfPgVatuT8dMH68fKifzl8mD66Rg3eHx+f2ikcHs7/OzoyGVy7NruGChSw75rvY8dYK9+1KzB5stLW2C/+GYaiT5w4EZMmTVLGGEEQBDvGxYWqGsWKMX1x9y5j2va8VhBsB0kSWynffgtcvgysXau0JVnw55/Au+9Sp2n9euox5MaHHwILFzJZ/Msv5rfRUDw8+Ka/9BLQrx8QEAAsX86hjGn5/HMmyKdPV8ZOK6R7d2DePCp0HzxouHPVNyHcp49hCeGsqOiVD03wGIeSCyDZUb/Lp1/3mbk+xtFBg+By3qjg42GcYWpBKrEEeyUpiZnVSpX0G0ugQjJKS7/yCgU0ZMOjHzduUBb61VfN22mUUYJ60SKKtFirBLWfH4Pxe/dmreAh5BHxy4KgF1otcOoUJYabNMm+tlmwTkqW5J7w3Dng8WPOKH70iL8rWBAoU4b+yNtbusd13LzJMSO1alH0TdaDJsBIn3zr1i14prkoSRexIAiCcjg4AHPnMlE8fDgTxUuXWude3K6RfXImJElshURHAxMnsqqzdm2lrUlDXByvkIsXs7Vl+XL924/y5wemTWNL6aFD1PdSI6++CjRsyCR4hw7AgAH0Dm5ujCrMmsUZy1aaJFACBwdgzhx2E/36K/Daa9k/1pIJ4UxcvAj06IHp1+8ipO8SJJvosADg5KDB9FcDTHhEhRAnK9grR49Sp7B7d6UtMQqRls4bWi2wbRuXPAEWuJSnlaDev5+306c5HUNtYiz60KIFR3kfOMBuacGEiF8WBL24ehW4do37B19fpa0RTEVMTGqncEQE77t7l93C9eoxMSzFSZmJjgZefpnd9Bs3yprQZBjpkz09PdMliQVBEATlGTaM64jevbnG+Okn042cEiyA7JMzIUliK2TOHMaiP/1UaUvScOwYW1tu3mRH8MCBhpebpm0pPXBAveWqfn4cRLBkCb3Czp3A6tWcRezgwBnLgkGEhLCuYPRoViw7OzMhfO4c5ztmlRCuXp3JDLMkhNOi1QJffcXPZalS8N/yGyZrfTD617MmO8WUjtXh7+VmsuMphjhZwR6Ji2Mb5AsvZD2GQMVERzO5ee4c4O9PoQw/P6Wtsj7Onwfu3KHSuCWXLi4uQKtW7PLZssV6Jag9PVl/d/Ag/XqhQkpbZEOIXxaEXLlzh13ElStLna+1k5TEum1dYjgmhn7Z2xuoWpXJ4bNn2U0cGCgJ4qxITgbefJMFhIcOSdGESRGfLAiCYFN07861RefO3Jdv3kzlL8EKEJ+cCUkSWxl37gCffcbxuBlGkyhDUhIwYwYwZQqjlCdPAlWqGHestC2lGzboJ1OtFBoNu4hbtmRyPDiYg6ymTeMuVDCI+HiOrn7zTaB5c0qAZUwIm61DOCfu3mXX+JYtLHyYMwdwc0M3AA9i4jF32+U8n2JEm8roWs9GZhGLkxXskb17ef1v0UJpS/QmORkIDaXpIi2dN5KSgB07mFwoU0YZG4oU4Qb14kW6K2uUoG7UCDhxAti1S93LP6tD/LIg5Mjjx8CRI0Dx4pZRghBMi1bL4vnwcN4ePOB97u5MbtasyeBtWl8YHMwa7wMHuJV3cVHOfjUybBjXEn/8wT24YELM7JNjYmJw9erV5///999/cerUKXh5eaFUKRuJNwiCIKiM1q05suvFF7mn3bpVubiAYACyT86EJImtjIkTmRwbM0ZpS0BNrrffZqR5zBhgwoS877LStpS+/LL6o5uVK7PEtmZNRmc3bAC6dAHKl1faMtWi6xAOC0vtEtYlhDUafpy6dWNutm5dCyaEM/Lrr2yrc3amDmv79ul+PahFRRQp4Iqx688jWauFxkGr96EdHTRwctBgSsfqtpMgBsTJCvbHw4dU0mjeHChQQGlr9CKjtHTLltJJkxdCQ4GoKNaLKYlGwy6p8uXTS1C3a8elitpxcWGdxaZNQFAQUKKE0hbZCOKXBSFbnj5lotDDg9cdKZSyDuLj00tIP3vGomIfH47i8vXlkiy7v6eLCwupdu0CDh/mDGq59JGvvgK++II/27ZV2hobxMw++fjx42iRpmh16NChAIBevXph5cqVBh1LEARB0J/AQKYG2ralQtaWLSzCF1SM7JMzIUliK+L8eY75/fxzoGBBBQ3RaoFvv2U7s68vI5GmnCE8axZ3eF9/zfm+aufoUSaIJ0wA1qyhJ5g/n22vdh5tSEhIP0P4+PGsO4R1CWEvL759pUsr+KePigI++ghYuZIzqL/+Olu9kBcKlsKdZUVQd8BZ3E56AEcHDZJTsk8W634fXM4b018NsA2J6bSIkxXsjR072K7SoIHSlujFzp3AgTiRljYVcXFcAtWtqx5ZKZ0Ede3awF9/AWvX/l+Cuo4j1K5AXbs2k+7bt1teuttmEb8sCFmSlESJe4AJQyeJiqiWlBTW5OmSwo8e8f6CBbln9POjkJejo/7H9PBg+GLvXqpYBAaKz9myBRg8mNvgAQOUtsZGMbNPbt68ObRa/QvXBUEQBNNRvjwTxS++CDRtCmzcaFVic/aH7JMzIdshK2LUKKBsWaB/fwWNuH8f6NsX+O03Zvbmz+cuy5TUrEnt4cmT2ans6Wna45sSrZazauvUYZv3iBHAkCF8jzZtAr75hmXNdkDGhHBYGHDmTNYJ4cBAJoOz6hAeMoSjqQcMAEqWtPCLOHCAn7kHD1iR8c47OUYMxowBfN3dsOOTINx6Eo01oTex+/I93HwYh7TbMw2AUt5uaFHJBz0alEIFHxN/Z9SCRmOY47T3aIxg3dy8Cfz9N4tJVKxVmJwMnDsN1AJw+zbwSm+RljYVe/fyZ7NmytqRFd7eqRLUW7cCi37xQWNNczRKAtSq0eLgQLmuNWuAS5eMn14ipEH8siBkQqtljW9UFIN3iigWCTkSG5sqIX3vHpP6Li6sT69QgT/z+ncrWpRFXseOMZxhDaob5uLcOeCNN6g+8tlnSltjw4hPFgRBsGl8fCg9/dpr9KmrVtG/CipEfHImbD8NbiPs3s25MDNmKBiL3r8fqFGDZdcbNrCb2NQJYh1TpgAxMewqVjO//kqdqjlzeHEpUICJ4Y0bWUIUEMA/nI2RkMAk8NdfA++/zw22hwd/DhzI2V41a7Lr/fBhIDqaspfLl7NDuEGD7Df2o0bxWBMmWPgFjR3LSH+JEjS2d+8cncChQ/zzf/oppVor+npgUsfq2Du8Bc5Naos/WhfBhu+G4o/WRXBuUlvsHd4CkzpWt90EMZBaiWXIzQgWLVqEMmXKIF++fAgKCsLRo0ezfew333yDJk2aoHDhwihcuDBCQkIyPf6dd96BRqNJd2vXrp1Rtgl2glbLzFuxYrzYqZR//wWWLmV3JkAp/9q17WJ9a3YePqQ6RuPGbCZXIzoJ6oEDgYYBMTiAJvjqFx9cuqS0ZdlToQKrsLdvZ4GDkEcs4JcN8ckrV67M5G/zid69YGHOngX++4/7kcJql1iwE5KSgLt3gZMnqYLx55/8d0ICC4ZatQI6duTfrEwZ0yX2y5Th8c+c4WfCHomIAF56ic0IP/5oWEe2YCAW2isLgiAIylGgAHvGunRh/GXBAqUtErJEfHImpJPYCkhJYYNqUBDw+usKGPD0KX9+/DHnsi5fbn6NypIlFW4p1YOEBM5Obt+eO9e0vPIKd7F9+nDX9f77LMtVayQ5B7LqED57lvc7OgLVqjE53Lt3zh3C+uLpyabsDz/kR87s+ZcLFzhM8swZYOpUZqlz2R1rtcDw4Uy2dO+e+ffurk6oXsgZuHsZKOQMuNrJpdYCch3r1q3D0KFDsWTJEgQFBWH+/Plo27YtLl26BJ8suvb37NmDN998E8HBwciXLx9mzZqFNm3a4Pz58yiRZuhlu3btsGLFiuf/d3V1Ndg2wY44f55tub16qXKxGBXFJNu5c5SW7tgZwFJAPtamY8eO1DmWasfFBWhVLxq1T6zAXwX7Ye1aJ1SsyOpmLy+lrctM69bAkiVcb9Svr7Q1Vo6Z/bKhPhkAPD09cSlNpYJGqlYEC/Lvv1QqqFULKF5caWvsF60WePIkVUL6wQPGPNzcGGaoWZPdOM4WkL6oUYO16aGh7Cy3p8KBp08ZtoiPBzZvNl/9v/B/RNpSEATBLnBxAb7/nmvNwYOBO3eA6dOlWF9ViE/OhJ1kLqybtWsZKNu/X4ELytGjwJtv8t+jR1v2qjZqFLtyJ0xgYlptfP018M8/bCfNCl9flg99/TUwdCiwaxewerWqI54JCUwqHD9umYRwdvTrB3zxBTByJOcjmQWtFli4kCcpU4btz4GBej11wwZ2SG/fbhd+Qn8s4GTnzZuHvn37onfv3gCAJUuW4I8//sDy5csxevToTI9fs2ZNuv8vW7YM69evx86dO9GzZ8/n97u6usJPBrQK+pCUxAxhpUpAuXJKW5OO5GQGOffuZWC1UycGWjUnlbbMtrhxgzLOr75qmQC2qfDGQ3RvF4mLUcWxdSvw1VdAo0bshlbT6/D1ZRHWnj38/EqjaR4ws1821CcDTAqLvxWU4N497m3KlQMqVlTaGvsjPp4JYV1i+Nkz7i99fHit9/Nj942l4x0aDbfne/Zw8lCrVkxW2zopKdzTnzkD7NvHokLBzEhAWhAEwW5wcABmz6b43NChVEz55ht17bvtGvHJmZAkscp59owquJ06MYhnMZKSgGnT2FlZqRLv69LFsru2tC2lQ4ZQulktPHnCmcnvvJOzXRoNu4hbtOCs2+BgYPx44JNPACdlv366hHBYWGpSOGNCODDQ/AnhrHB2BmbO5ByH7dvZVWRS7tzhC9u2DRg0iLLmekYDEhNZL9GuHRASYmK77JSoqKh0/3d1dc2ykzchIQFhYWEYM2bM8/scHBwQEhKCw4cP63WuuLg4JCYmwitD+9yePXvg4+ODwoULo2XLlvj000/h7e1txKsRbJ7QUPqArGQEFOTffynR+OABUK8e3Y4k10yPVkvXUby4upYl+qKToK5QgcWHBw8yQNyuHZd7aqlubtmSDfv795thDSDkij5+2VifHBMTg9KlSyMlJQUvvPACpk+fjurVq5v2BQhCBqKjOSrGxweoU0c91zpbJiWFoxl0ieFHj3h/wYJA6dJMCnt7q0Pe2NGRRVM7d9Ivtmih+Fbd7EyaBKxbB6xfzyJwQRAEQRBMz5AhXPP06sWCxZ9/tkqRUcEOsPGlr/WzaBEVLbduteBJr1xhQvPYMSYzX3pJOT3FtC2lf/2ljA1ZMWsWEBvL2cn6UKkSS5N1ifc//2RXsYXK2BMSqKoM0IQbN7JOCL/zDjeJNWsqX0H96qvMqY8cyQS2yYp2fvmFiXtXV7Ypt21r0NOXLgWuXuWGWsiAkZVY/hlK1ydOnIhJkyZleviDBw+QnJwMX1/fdPf7+vri4sWLep1y1KhRKF68OELSZPjbtWuHzp07o2zZsrh27RrGjh2L9u3b4/Dhw3BUQ+RKUA9xcWy3CAwEihZV2hoAmaWl+/Uz/0QIe+bcOdYZ9epl3UkGZ2cmYmvV4vJq7VqoSoLaw4NrgAMHWPRQqJDSFlkpZvTLxvjkypUrY/ny5ahZsyaePHmCuXPnIjg4GOfPn0dJNY6WEWyC+HgWnOTLx2lAdtAIoBixsUwIh4czEJqURMlFX18WJ/n6Wq7o2FDy5WNR/q5dFJhq1Mi6/XxOrFrFkMTMmUDnzkpbY0dI15IgCIJd8uabDB+9+ioL0f74QzXhJPtFfHImJEmsYiIjgU8/ZcC3cmULnFCrpfbBkCHUQzhwAGjYEDhxwgInz4a0LaU7dqijdfP2beDzz4Fhw4A0M01zxdmZJbvt23MGbu3aPE7fvibdgabtENZ1CesSwgA7hho3ZkJY1yGsdEI4KzQaYM4cbtDXrGHdQp548oTDIL7/np+npUtZvm4AUVH6NZDbLUY62Vu3bsHT0/P53eaaBzxz5kysXbsWe/bsQb40LZbdunV7/u+AgADUrFkT5cuXx549e9Aq47xxwb7Zu5e+snlzpS3JXlraRgOaaiApiV1GlStzSoEt4O3NpviLF6E6CergYK5jdu6k2xaMQGV+uWHDhmjYsOHz/wcHB6Nq1apYunQppk6dapJzCEJakpPZQZyYSBlhFxelLbItkpKA+/dTE8MxMVyHeHvTV/r5ccavtaxNChZkIcGBA9wz16qltEWmZ/9+4L33gHffZTG2YEEkIC0IgmC3hISw36B9e+63t24FypZV2io7RnxyJiRJrGKmT+fGa+JEC5zs3j3uFjZt4s/PP+dQIDWgaykdMcLELaVGMn48W1yM3VUFBQEnTzLJ/P77fM+XLWNptYFkTAiHhXFDm1WHcIECVFhetw544QXjTLc0wcEMDH/yCfD663moPN+/n1nmyEhg5UqgZ0+johWGNpDbHUY6WU9Pz3TB6OwoUqQIHB0dERERke7+iIiIXOcbzp07FzNnzsSOHTtQs2bNHB9brlw5FClSBFevXpUksZDKw4fA0aMs/VTYP/77LwUpHj4UaWlLEhpKydI8Fy2pjOwkqNu2ZZBfqeC+iws/25s2MWhvSF2e8H/M6Jfz4pN1ODs7o06dOrh69ar+NgqCnmi13BtFRgLNminuum0CrZZ1tzoJ6QcPKCvt5saEcM2alPRWusgoLxQrRknykyf5mSlfXmmLTMfVq6mhlcWLrSd5bzNIQFoQBMGuqVOHxYtt29IX//kn7xMUQHxyJmz/FVop//4LLFjAPKQRuUPD2LQJqFGDukq//cZuYjXtonUtpadOsaVUSc6cAb77jpl7PZJa2VKgADtZf/+dUeeAAP4dciAhgU3d33wD9O/PxICHB5PA/fvT0dSoAXz2Gf8dFUVzV6zg2N1c8mKqZcYM4O5d4MsvjXhyQgIHCDdrRh3WM2eM1gi9fRuYN4+N9qKImA06J2vIzQBcXFwQGBiInTt3Pr8vJSUFO3fuTNeZlJHZs2dj6tSp2LJlC+rqMXTr9u3bePjwIYoVK2aQfYKNs2MHr905fNbMTVQUFfO//54B2X79WIkqCWLzExfHBGpgoMEiFFaDToJ6wACgSBEWlf34IxMsSlG7NhMO27YxOSEYiBn9srE+OS3Jyck4e/as+FvBLFy8yBE79erxmiYYR3w8cPMm6+Q2b+aIi/PnebmoWZNjCl58kf6xRAnrThDrqFCBt5MnmRC3BR494hQxb2+OTZKuegUw815ZEARBUD/lyrEo29+foepdu5S2yE6xkE9etGgRypQpg3z58iEoKAhHjx418QsxHdJJrFI++YQL+KFDzXiSmBie4JtvgA4dgG+/tUBG2kjStpR26aJcRHzkSO4Y+/UzzfFefpmtwO+9B3TsSOnpefOQ4FIg2w5hBwd2CNety3ynmiWjTUHFikyCT58O9OljQJDn/HnKep8/zyePGMH2aiOZMIFJ+VGjjD6E7WOBSqyhQ4eiV69eqFu3LurXr4/58+cjNjYWvXv3BgD07NkTJUqUwIwZMwAAs2bNwoQJE/DDDz+gTJkyCA8PBwAUKFAABQoUQExMDCZPnozXXnsNfn5+uHbtGkaOHIkKFSqgrYHzqgUb5sYN4O+/ObhNgehncjLruPbuZVBPpKUtz549/NmsmaJmWARvb+Ctt4BLl4AtW5SVoHZwAFq3Zo3gxYvseBYMwMx+2VCfPGXKFDRo0AAVKlTA48ePMWfOHNy4cQPvvfeeQecVhNy4dYtbrGrVgFKllLbGukhJYXGQTkL60SPeX7AgULo0wwVFiuRpW2UV1KrFcMmhQ5Qqz0t9uNIkJlKV6/59rie9vJS2yE6RriVBEAQBLILetYu+uV07YNUqoGtXpa2yMyzgk9etW4ehQ4diyZIlCAoKwvz589G2bVtcunQJPj4+Bh/P3EiSWIUcP87OjW++AdzdzXSSI0eol3jnDrBkCZOeao82z5jBnf6XXyozQGf7dg4NWL/epFHShEI+OD/pN0QXWob6K4bg3ve70T15FQ4kNXieEA4MtI+EcHZMmMAG7k8/BebPz+XBKSlswx81iiVaoaF51u84c4Yq1QsWWHeAwOxoNIY5TiOuOV27dsX9+/cxYcIEhIeHo3bt2tiyZQt8/1/gcvPmTTiksWHx4sVISEjA66+/nu44EydOxKRJk+Do6IgzZ87gu+++w+PHj1G8eHG0adMGU6dONdtsZMHK0Gp57S9WTJFh5P/8A/z1F6Wl69fnOGTpHLYsDx6wWKtlSzOuy1SGRgNUqUKZTZ0E9enT3MRaWoK6QgXasWMHUKmS7ScmTIqZ/bKhPvnRo0fo27cvwsPDUbhwYQQGBuLQoUOoVq2aQecVhJzQTYcoVYr7KCF3YmOZEI6I4C0piUVpvr68Bvv65mHsj5Xi4MBRB7t2cUZxq1aANW4NtFoqhOzfTz9asaLSFtkxFtgrC4IgCNZBgQIUFO3TB+jWjeuwjz5S2io7wgI+ed68eejbt+/zAuolS5bgjz/+wPLlyzF69GiDj2duJEmsMrRaNjxWr875sSYnMZGZtmnTmHH84w9G3KyBjC2lltR7TEnhH6ZRIw7yMZKEBDa2hoWxGCC1Q1gDB4e+aFu+BRY86oG9kY3x37ufwHveOLgVtAHNrjxStChVoydNAj78MIfZUP/9xy/O9u3A4MHAzJkmiWiMGmXaBnKbxULV0YMGDcKgQYOy/N0eXbvf/7l+/XqOx8qfPz+2bt1qlB2CnXD+PK8t77xj0Yr+qChK7J4/z0D366+rV+zD1tm5k0oSQUFKW2J5dBLUtWqxq3jdOvrD9u0t24nUujWndBw/bp9/B6OxgF82xCd//vnn+Pzzzw0+hyDoS2wsi1oKF6bqkuRYsiYpCXj0ACgKvl93nvK98vZmIZCfH99De3//nJ2porFzJ9+nZs2sr1Bp7lwKxq1cCTRtqrQ1do50EguCIAhpcHZmQ1Tx4sDHH3PU4owZsv6yCEb65KioqHR3u7q6ZtlglJCQgLCwMIwZMybNIRwQEhKCw4cPG2ezmZEkscr4809KGv7xhxk2IJcvU373xAlg3DhKN1vb0KC0LaWWDDKtXs0WmkOH9L5ap00I65LCGSWjAwOBnj0ZxGCHcAUg6QAwfTr8p0wBzv7Fc1tLIt+MfPwxJS/HjmWQOhM//cQigvz5mVlp3dok592xg4FxEzeQ2yay8RVsjcREFp1UrgyULWuRU4q0tLq4fp0yx507A052vGrOSoI6OBho0sQyvtHXl/OJ9+7lekm66fVE/LJgRyQmsuPTyYl1vdaWzDMnWi3w5Am7hMPDqZDhmQK0BlDYCyhditdZ2etkxt2dieLdu4Fjx1ioZC1rsg0bWOw8dixVyQSFEZ8sCIIgZECjYX9TsWKpieJly2RNZnaM9Mn+/v7p7tapVGbkwYMHSE5Ofq6wpcPX1xcXL1402FxLYMfhLvWRlEQV5RYt2KFhMrRatl8MG8bylIMHrbcNI21L6aBBObSUmpCnT5lUf+01oGHDLB9iSEI4MJCBzmwlo52cmAxv145J/dq1gXnzgPfft54dqRlwcwOmTgXefZejtJ9/hJ884Wdh9WrOq16yxGTtTboG8uDgPDWQ2w+y8RVsjaNH2dLbo4dFTifS0upCq2WNQPHiQI0aSlujPGklqA8c4HLyzBnLSVC3aMEZo/v3m6wOzPYRvyzYCSkpLLB6+pTqB9YoC2xq4uNTk8IREcCzZ0ycFy3K4rPi+QEcBqpVBVBYaWvVjZcX12VHjlBZpHp1pS3KnbAwoHt3KtFMnaq0NQIA8cmCIAhCtnz0EQv2evbkuu2XXyhJLZgJI33yrVu34JlmDqUtjSmUJLGKWLEC+Ptv4PvvTRhoi4igNPMff1Ar97PPrP8qo2sp/eQTYO1a85/vyy9TNR/AKvVz51ITwmFhbDLOLiFcq5aRMwzr1wdOngSGD+cgoc2bWU7k52fa12dF9OzJBvIRI9hNpNm3l3c+fswvTo8eJo1Sr1kDnDrFQLgd5+f1Rza+gi0RFwfs28cLedGiZj2VSEurk3PngDt3qDQuPiAVZ2cmbGvVYlGDpSSoPTxYtHXgAFCvHlCokPnOZTOIXxbshNOnue1t0gRIE7exK1JSgMhIJoXDw4FHj3h/wYJcW/j5AUWKpOmwfqSYqVaJvz8QE8O1gYcH31O1cvs28PLLQEAARdjk0q4SxCcLgiAIOdCtG+DjQzW5li2ZyjFzKMp+MdIne3p6pksSZ0eRIkXg6OiIiIiIdPdHRETAT6V5HUkSq4TYWDaPvvUW49Em4bffgPfe4wf599+5U7AFMraU1q9vtlMl3n0Ah0+n42LTAVg4r+LzGcLx8ekTwm+/nceEcHa4uwOLFwMvvcTXGxDARPErr5jwJNaDoyMwZw67ln7vvBKv/PYuo0Hffw+ULm3Scz19yjqE115jUFrQA9n4CrbEnj1sJW3e3GynyCgt/eqrvMxLQlJ5EhM5g7BKFZO7F5vBy8vyEtTBwSzO27mT/lnIBfHLgh1w5Qpw9Srwwgv2V2AVG5u+WzgpiesJX18W7/j6chKPYBqqVAGioyk77ebGpLvaiIlh2MfZmeEg+furCPHJgiAIQi60bMlehfbtuffduhUoV05pq2wQM/tkFxcXBAYGYufOnejUqRMAICUlBTt37sSgQYMMOpalkCSxSvjsM1b+TptmgoPFxLDb9ttvuUNYtoylKLaErqV0+PD/t5TmPaKemMguruPHUzuE3z7xKXomAy13j0fRCM4ONltCOCc6dGDZct++LCnq04ev38PDQgaohzbFzyGkQAxGbWyIF2fMgfOIj80ydGzBgnQN5IIg2BMPHzIC2LKl2dQ3RFpa3YSGMhD89ttKW6JuLC1B7eLCr+Xvv3PsRMmSpj2+IAjWxd27VP2pVMkyU4iUJikJuH8/NSkcHc3rrJcXr7l+fkDhwlJsZi40GsYBYmPp71q1UpdIW3Iyi7euXaN9Km1UEQRBEAQhB2rXBg4dAtq2ZaL4r7+AOnWUtkowlKFDh6JXr16oW7cu6tevj/nz5yM2Nha9e/dW2rQskSSxCggPB2bPBgYPBsqUyePBDh+m5G5EBPD11+wktsVdoqMj37T27YFNm4COHQ16elYJ4bQdwlWrAu0rXcPAE1/h9vuT8c9nRS2XEM6OokWBDRuA5cs5rGD3bs7hzWZOss2RkgJ88QU0Y8ZgTokOeCH2F3xbaBj6mz4/jIcPgenTgf79gYoVTX98m0WqowVbYft2FuE0aGDyQ0dFsRr0779FWlqtxMYy4Vm3LuDtrbQ11kFaCeotW1IlqNu1M/17WKsWO/C3bxcp8FwRvyzYMI8f81pQvDhn7NoiWi3XDToJ6QcPuCVyc2MCsEYN1oK7uChtqf3g6MiA7a5dXCu0bKme93/kSEpTbt5MZRpBZYhPFgRBEPSkbFkWfHXoADRrBvz6KxASorRVNoQFfHLXrl1x//59TJgwAeHh4ahduza2bNkCX5UGACVJrAImT+bGYuzYPBwkMRGYMoWZrXr1GIGuUMFkNqqStm15hRw1CnjxRcAp64+zLiEcFpaaFM6YEA4MZG69bt00HcJdxwJ+Pig97yPAzbIvLVs0GnYRN2/O9qbGjfnBmTDBfNqOauD2bUaCd+4EPv4YtWfMwNvvazBxItC9u+kbqqdOZQBmwgTTHtfmkY2vYAvcuAFcuAB07mzS62pyMuu49u0DXF1FWlrN7N3Ln82aKWuHNeLlBbz5JnD5MpPFixebXoLawQFo04Z1chcvch0nZIP4ZcFGefaMCboCBagqYEu+ND6e9d46Gelnz5iYLFqUyXBfX+59bOk1WxuurtyG79zJtV2TJspfPpcuBebNoxpW+/bK2iJkg/hkQRAEwQCKFmV/WJcuTHt89x332oIJsJBPHjRokGrlpTMiSWKFuXgR+OYbNsUWLmzkQS5dYobz5Elg4kQmDbNJmNoUGg3fuMBASmr3758uIaxLCuuVEM5IaCjw00/AihUs1VYb5csz0zBzJqsMtmxhtLRyZaUtMz1r1wIDBvAPtX3789KpqVPZqTR3Lt8CU3HtGucqTppEhywYgGx8BWsnJYVFVsWLm7QF459/gD//5FiJoCDW+bi6muzwggl58IBrh1at1On+rQGNhsuRcuXSS1C3bUtpalMkNsqXZy3kjh2UmTXD1AnbQPyyYIMkJfG6otUCjRpZ/7Y3JYXrA1238KNHvN/Tk4ojfn6cfSvXOXXh4cEiqH37GIZ54QXlEvfbtwMffAAMGsSboFLEJwuCIAgG4u4O/PYbp0++9RbXikOGKG2VDSA+ORNWvqWyfkaPBvz9uag3GK2WLRrDh3Mo26FDHGxoJyQmAuc1deDeoAd8h07EK8u64/A5jywTwoGB1PTXSzJaq+V7WrOmuocROjkB48ZRy7FHDw4omDMHGDjQNkrLHz/mF+OHH4CuXZm59fJ6/utSpTh6e+5c4P33mdMxBWPHUrbt449Nczy7QqMxzHHawudUsC3Onwf++4/KBSZYBD55AmzbRmnp0qVZAapSZRnh/+zYwcB8UJDSllg/GSWof/qJyd327U0jQd26NbBkCZP68vfKBvHLgo2h1QLHjtG/tmhhvcU8sbGpncL37nFf6+LCNUL58kwM58+vtJVCbvj4MM5w/DiTxpUqWd6Gv//m6JI2bYDPP7f8+QUDEJ8sCIIgGIGzM3vYihcHhg4F7t5lz5gd5C3Nh/jkTEiSWEH272c1yA8/GNFRFB4OvPsup5f3789MmeJDc81Hxg7hsDDg9Gl2CJfWfIpL+AkfJc7Fq7MnG5YQzorff2fry5Yt1lGyXbcucOIEMGIES4c3b+bc4mLFlLbMeHbvBnr14hCu1atZLpXFBXn0aDaRT5zIjvy8omsgX77ceoNOiiKVWII1k5jIDGHlyhwAkwdEWto6uX6d4iydO1t/Z5qayEqCumFDynPmZY6jjw/Xe3v3sq5PEipZIH5ZsDHOneMUmuDgPKhwKUBSEnD/fmpiODqaawIvLyYW/fz4emSdYH2ULcu/5+nTlD83VeGyPty7B7z0Eoun166VtYvqEZ8sCIIgGIlGwwmjxYoBH33ERPG33+ZtP23XiE/OhCwjFULXrFq3LpskDWLDBuoMODkxIdihg1lsVIqcEsIODpQqrFuXs2iZEC4F1ykfodPCuUCX/nlLjiYmcsZx69bURbQW3NyARYu4S3z3XWYjvvmGmQlrIj4e+OQTDlRq1owDF0qVyvbhhQoB48ezkurjj4Hq1Y0/tVbLPHtAANCzp/HHsWvEyQrWTGgoC1PyqCBx7Rrrt0Ra2rrQatn1XaIEUKOG0tbYHllJUJ89m3cJ6hYtmDTav59dVEIGxC8LNsT16xzVVLMmr9VqRqvlkkInIf3gAWWl3dzYLVyjBgtdJLBnGwQEADExwJEj9EuWKGB49gzo1AmIi2N9taen+c8p5BHxyYIgCEIe+fBDriXffpvFYuvXs0hNMBDxyZmQJLFC/PwzcPQoF/R6f86io1kusmIF8MorTAJa+dDUxERKJB0/rm9COJsO4TFjWEIzcSLw9dfGG/Ttt2x1WbvW+GMoSfv2jLr268dWqN69gS++oP6V2jl7ln/oS5comz1kiF5fjgEDgC+/ZG5/82bjT//77wwyW0sDuSoRJytYK7GxvADUrcvBf0aQUVr6jTcYABasg7NnWY37zjvSyWVOTC1B7eHBmaT79wP16llXZ6FFEL8s2Aj373O/WLasMpK++hAfz2CdLjH87Bn3FEWLMrHt68trlvgY20Oj4dSvPXtYBNWqlXnVLbRa1oWfPEk1jdKlzXcuwYSITxYEQRBMwBtvcH35yivcW//xh8SeDEZ8ciYkSawA8fHMab70EjuM9OLgwdQykWXLuCuwsh2mLiEcFpaaFM6YEA4M1CMhnBVpW0o/+si4ltLoaCaZ336bJ7dWihRhKdHKlcDgwdytrloF5G+ktGVZk5LCAUpjxzLqc+wYIyl64uICzJjBjvzdu+kgDSUpiUnmkBDpRMoT4mQFa2XvXkbc9HbKqWSUlu7cmR1CVuai7ZrERGDnTq5DJNBqGby8OEni0qW8S1A3bMg15c6dnMsopEH8smADREcDhw4xGPbCC+rxrykpVA0JD6eMdGQk7/f0pBCSnx+3ZVJ8ah84ObFoaedOKma0aGE++efJk4Eff2ShVf365jmHYAbEJwuCIAgmokULxqDat+cYlq1bWXwt6In45ExIklgBliyhXNamTXo8OCGBu4CZM6lbuX27VXzr9U0Iv/UWG7fyNENYh66ldPRoPd/cDMyZw1awTz/NoyEqQKNhF3GzZtRObtoUxd8ZDWdMBKAiXbNbtzh7ePduJvinTQPy5TP4MF26AJ99Rrnoo0cNv3YvW8YG8h9/VE/gySoRJytYIw8esDilZUuDHZFIS9sGoaGUiQwJUdoS+0MnQX3wIIPqZ84A7doZJkHt4sJN8u+/Aw0aACVLmtdmq0L8smDlJCTw2uDqyoIQpT+icXGpncL37nHP6+zMLuFy5ZgYlvno9kv+/EDjxtzahoYyaGvqveWaNQwPTZvGPbBgRYhPFgRBEExI7dpsWGjblmuOv/5iQaWgB+KTMyFJYgvz+DEwZQrQpw9QrVouD75wAejRgxGzyZOZ/DRXOWoeSJsQ1iWFdQlhjQaoWjU1IazrEDaLXn7altI9ewzrCLtzh1nGjz8G/P3NYJxClCvHDrlZs+A7YSIOYwvy/bsaeKGq0pYBP/wADBxI3bWdO5mgMRKNBpg7F2jalErhb72l/3N1DeQ9egB16hhtggCIkxWskx07eB1q0EDvpzx5wkrNCxdEWtraSas0bozcsZB3nJ25ZKtZk98rYySoa9ViQH7bNtbIpQ3Kx8Yn4frDWCQkpcDFyQFlvN3h7qq+9bRZEL8sWDEpKewgTkigfK8S83uTkih1HRHBxHB0NO/39qYAkq8vlRGkyFTQUagQCwcPHuQoCwMEsnLl4EEKyvXqRWU6wcoQnywIgiCYmDJluD7o0IF9Yr/+CrRurf/z7XavLD45E3bwV7c8OX3BZszgfKLJk3M4gFYLLFrEtsjSpVkWUreuZYzPhYwJYV2H8LNnFk4IZ0faltLQUP2/xBMnsvTXFndbjo7A2LG4WLot3Hr0QOXuLwB3ZgODBikT0Xj0iMnhtWuBN9/kZ90EQwSbNOE8hrFjgdde07+bb+5c22kgVxxxsoIKyXHRe/06M72vvcZMVS4kJdEl798v0tK2wp49/Ps1a6a0JYKXF5cFOgnqr75iRbQ+EtQODhwXsWoVv9LO3tFYE3oTuy/dw83IOGjTPFYDoJSXG1pU9kH3oFKo6OthzpelLOKXBZWhbyBKq+U+8+FDXp8ttZ/UaoGoqFQJ6fv3mazOn59dwjVqsChMiYS1YD0UL844yKlT/OyWK5f3Y/7zD9CpE2sav/5a1p5WifhkQWXYbXJIEGyMIkWAXbvYvPDii5w+2b179o+/EiF7ZfHJmZGrv4nQ5wtWt4QPlqwqheHDPVCsWDYHunOH5aFbtzKRNmcO4OZmgVeQGV1C+PpvwCtgxepPVzMnhN98U6GEcFakbSldt47G5cb588Dy5cC8eUDBgua3USGeVg1EY4TheqdR8Bk8GNi8GVixgrtYS7FzJ/DOOyzD/+EH/f4+BjBzJoM3CxcCw4bl/vg7d/hx+fhjzg4TBME20G/RWxTdbx5FxeLFeeHIBZGWtj0ePGASIiREsaWWkAVZSVC3bct1Z05B8XLlAK9Scei/7ixuJjyAo4MGySnaTI/TArgRGYdVoTew8vB1NKlQBNNfDYC/l3wIBMEcGBOIunSJdVz16zPwZU4SElI7hSMigKdPGQfy8QECApgc9vCQpJxgGBUqcMt74gSnmfj6Gn+sx4/ZIVSoEDuEpEhBEARjkeSQINgm7u7Axo1Av35UyoyI4FTHtNyKjMPYDWex/6rslYXMSJI4jxjyBbvx8AaK9rqOyyWK4FZkFl+w9ev5bXZxAf78kzp7FiKnDuEXwCRxqVLAzPdUlBDOjrQtpZ075x7FHzUKKFuWM41tnKdww+2RC+DT+yXqMQYEAEuXAq+/bt4TP3vGv8fnn1NWeuVKs8h6V6kC9O3LruDevdmVlBOTJrEzYPRok5tin0gllqAwBi16j9zASq0vmpRwx/THz7Jd9Iq0tO2yYwdrw+rXV9oSISM6CepatdhV/PPPuUtQrz12EwuvnUdCMr/3WX3/06L7/aF/HiLk872Y3LE6utWzsYox8cuCghgbiPqwYQBunHdD1ar0u6YmJYUFX7rEcGQk7/f05PbEz4+JaUdH059bsB80GsZMYmKoQtOyJT9jhpKYSLG0iAjgyBEZjWHViE8WFESSQ4Jg+zg7sweueHE2Tt25A8yeTXey9thNTPz9PJJSZK8MQHxyFkiSOA8Y+gWDhr8/eiPDFywqChg8GPjuO+DVV6kfZMaS6aQkJoSPH89aMrpKlfQdwi8AQBNg6lT8/z9WgK6ldNGizKUzadm9G/jjDw7As6eS3LZtOSTp/fe56+zVC/jyS+N2rrlx+jTLmK5cYbf2Rx+Z9eI6aRKwejUwfTq7hLPj/Hng229pUqFCZjPHvtBoDPvbSkuGYEIMXvT+/9eH7sZluegVaWnb5vp1dqq99hrgJKth1VK4MNejly+zkz87CeqFu69g7rbLRp0jOUWL5BQtRv96Fg9i4jGoRUUTWa8CxC8LCmF0IOraQxy+thfv1qqO16ubLhAVF8eEcHg4cO8eE2/OzuzuLFeOP0VRQjA1Dg5Aw4aUgDxwgLO1DVGh0WqBDz/kaIzt2zkHW7BixCcLCiHJIUGwHzQaYNo0oFgxppru3gXqv3MFn++SvXI6xCdnQsJiRmKyYNS5yxg0pS81D1esYLLOhB88XUI4LCw1KZxVQrhbN449zrJD+ITJzLEcGVtKs5p5m5LC2cVBQebvpFUj3t5szfn+e+4+9+7lv5s0Mc3xk5OZgR03jn+P48f1knTNK76+wMiR/NN/8AGbxLNi1CigTBm7aCC3HFKJJSiEqRNEV68yIfXoEWe/NWsm0tK2hFYLbNsGlCgBVK+utDWCPlSqRH9+8CBvaSWo1x2/afT3PyNzt11G0QKu6GorgTDxy4IC5Mkna7UAtPj61Fl4+hgfiEpO5jxhXWI4Opr3e3sDFSuyW9jLyy7iPYLCODsDjRtz6tKhQ5yKpW+X+uefU/Rr+XKqawhWjvhkQQGkkFIQ7JNBg7jefW/GTRw0MkGcEZvaK4tPzoQkiY1g7bHsg1HapEQ83r8ased3I+VZDJyLlkGhpm8jf9k6WT5+7uV4FH2hPbrOGc4y5jxgkoSwLTFpErBqFVtK58zJ/Pu1a/km7d9vvxECjYaFCU2bAj17MhMyahQweXLeOqtv3OBx9+0Dhg9nG7oFMyxDhwKLFzM/vWZN5t/rGsjXrbOvBnKzI05WUACT+uRtl3H9ois87pVCmTJA164iLW2LnD3Litreve3X/VsjWUlQFy4Zh0XXz2f5+IT7N/DkwA9ICL+K5NjH0Di7wtnbH55BneFWMSjb80z4/TyCyxexDWk98cuChTG1T9Y3EKXVUpxLN1f4/n3WA+fPzwBZjRr057LuF5TA3R1o1IgdwcePc8xFbuuP33/nNnrUKK5XBBtAfLJgYZTyyYIgqIOglnEoevI8EpIzrztSEp4iKvRXxN+5hIS7l5HyLAbeL36MAjVDcjymzeyVxSdnwvZfoYm5FRmHib9nHYwCgAd/fI6oYxvhXq05Cof0g8bBAfd+noRnt7J7jhYTqr2MW4X8DLIjKYldFCtWsDqkQQPAw4OBsz59mASrWBGYMYN5uqgoJpBXrQI+/pjVrDadIAZSW0q//JK6kmnRzcjt1Ilvhr1Ttix3rdOnA599xg/U338bfhytllrPNWsC//xDba3Zsy3egufuDkyZAvzwAzfiadE1kNevT6VtwYTonKwhN0HIA6b3ycCGm+fRqG0cevaUBLEtkpjIbp6qVYFSEuOwSnQS1G++Cfxy8ywSkrKWzEuOuoeUhKdwD2iFwiF9UTC4KwDg/vqpiD61JdvjJ6VoMXbDWbPYbnHELwsWxBw+ecLv53ErMi7L3yUkALduAceOsfhz2zbg3Dn+LiCAagMdOrA4umRJSRALyuLtzf3nzZvAhQs5P/bkSfq4V1/l9lywEcQnCxbE0j5ZEAT1MXbDWaRAm2VhWkpcFJ4c/BGJD2/B2ScbCc4ssJm9svjkTNj+KzQxYzecfT7HISPxdy4h7sI+FGrWC4VbvguP2u3g++Z0OHn64PGeFdkcUZPrFyxjQrhhw/QJ4V270ieEnzxJnxBu0sQOEsLZMWwYtcQ++ST9/YsWAbdvc3axQBwdgdGjgdBQJtEDA5lgT0nR7/mRkWxTf/tt4OWX+aFVUBfrnXeAatWYENam+cquW8cG8rlzpYPM5IiTFSyM6X0yAActvjt/Vq4PNsqRI0BMDBCSc4GsYAVoCkbjZsIDaJH1NSB/+Xrw7ToFhRq/BY/a7eBZ7xX4vjUdzj5lEXV0Y7bHTU7RYv/VB7h6L9pMllsQ8cuCBTGHT067T05JAR4+BM6fZ7HPb7/xmh4ZCfj7c8/bqRMFkipVAjw9Za0vqAt/f465OH+eBQ5Z8d9/3EpXq8Z4jlyWbQjxyYIFMbdPFgRB3VyJiMb+qw+ynUHuWMALJQetQsmBK1C4xbt6H9dm9srikzMhctMGoPuCZUfcpYOAxgEetds9v0/j5IICtVrj8d7vkRR1H06eRTM9L+0XrIyXx3PJaN3t9Gng6VNucitXZjV0167M4dWuzYSxkA26ltJ+/ahBHBjISMKnn/K+ypWVtlB91KnDD97o0cBHHwGbN7NCoUSJ7J+zYwezsrGxlPHu2tVi5maHkxObmF96CfjzT3YSxMezgfyVV0w3ellIg8h1CBbEEj65go84WFsiNhY4cACoV4/1Y4J1syb0JhwdNNlufLNC4+AIJ48iiA+/kuPjHB00WH3kJiZ1tPKh1eKXBQthbp/8y7ZoOMV5IDGR0vO+vpzU5OsLuFm52p1gX1StyhnZR4/ys+vtnfq72FgmiDUayk3LZ9vGEJ8sWAjZJwuCkNteWePkDMcChY06tk3slcUnZ8L2X6EJ0X3BsiMh4h84e5WAg2v61bxLsUrPf58dGq0GHYfdhKdnaofwzp1AhQqUGNJ1CF+4kL5DWBLEetC7d/qW0unT2Z49caLSlqmX/PmBL76gbtv589Rs++mnzI97+pQfxtatOfT67FlVJIh1vPgi0KIFVceTkoCFC1m1LQ3kZsJClViLFi1CmTJlkC9fPgQFBeHo0aM5Pv7nn39GlSpVkC9fPgQEBODPP/9M93utVosJEyagWLFiyJ8/P0JCQnDlSs4JBEF5zOmTdYtewbbYs4eXnaZNlbZEMAW7L93TK0GckvAMyXFPkPjoLqKObsTTf8KQr3StHJ+TnKLF7sv3TGWqcljAL5vaJwvWiTl9sgM0+OvqTVSsCLRsyWLPhg05LUeSaIK1odGw6N/LCzh4kIlhAEhOBrp3B65cYY12sWLK2imYARX6ZME2kX2yIAj67pWNwSb2ytJJnAnbf4UmJLcvWHJMZJZVGI4FvJ7/Pju0Gi1SfO9JQtgc6FpKd+8Gli8HFixg1tDXV2nL1E/r1kz8hoQw+fv22/xwAsCpU9zhLlkCzJ/PhHLJkkpamwmNBpgzh/LrixaxgbxvX+azBTNgASe7bt06DB06FBMnTsSJEydQq1YttG3bFvfuZb1AOXToEN5880306dMHJ0+eRKdOndCpUyec0w2tAzB79mx8+eWXWLJkCUJDQ+Hu7o62bdvi2bNnRr8Vgvkxp0+2iUWvkI779ymS0aSJJBVsgZj4JNzUcybao13LcPvL7riztC8e7V4Ot0oN4dVmQK7Pu/kwDrHxSXk1VVnM7JfN4ZMF68ScPjkFWlyNu4fq1dl1KRLSgrXj6AgEBzNMceAAkJhIEa9NmyjKVSvnOibBWlGZTxZsF9knC4J9Y8he2Visfq8sSeJM2P4rNBH6fMG0SQmAo3Om+zVOLqm/z4F45zj0HZAkCWFz8OKLnI87dCjLdocOVdoi68HLi4N8v/+eulc1awLvvw/Urw+4uDDq/tFHqr1gBgYCb73FsdQJCcCkSUpbZMNYwMnOmzcPffv2Re/evVGtWjUsWbIEbm5uWL58eZaP/+KLL9CuXTuMGDECVatWxdSpU/HCCy9g4cKFANhFPH/+fIwbNw6vvPIKatasie+//x537tzBxo0b8/JuCGbEEj7Z6he9Qjp27AAKFqTrEgxDq+Us0ORkqnIkJtKfxscDz55RVCQujt1QMTGU0YyKYk3Z48fAo0ec9PHwIfDgARP29+4BERFAeDhw9y5w5w7nMN6+TcWPmzeBGzeA69eBf/8F/vkHuHYNuHqVXVb7T8RmM4k4M571XoFPt0/h3WEI8pcLhFabAiQn5v66AVx/GJuHd04FmNkvm9onC9aJ+GRBMBxXV6BxY/rQn38G5s3jrUMHpS0TzIbKfLJgm4hPFgThxkP998rGYvV7ZUkSZ0JmEuuJPl8wjZNLlkEnnYPVOdzs0H3BqhcvaKSVQrZoNJSd3rMH6NSJs4oF/dFo2EVctix3rl9/DQQFsXvY01Np63Klf3/ghx8oPS0N5OojKioq3f9dXV3h6uqa6XEJCQkICwvDmDFjnt/n4OCAkJAQHD58OMtjHz58GEMzFIW0bdv2eQL433//RXh4OEJCQp7/vmDBgggKCsLhw4fRrVs3Y1+WYEYs5ZN/2RqLUh4FodXCqm9FbwE9wFqfiJ3K22Ppm7s7ULkyk4ydOilvjxK3mkWB/d2BRo2BUxH6P0+tuBRLQbFe+j3W2dsfzt7+AIACAa0QsXY87v0yBX4950GTS0tiQlJKXk21SvTxy+bwyYJ1IvtkQTAOT08gXz4mij/7DPjwQ6UtEtSIuXyyYJuITxYEwVJ7WHvdK9sqkiTWE30++I4FvJAc/TDT/TqpDp10R17PIxiBVgusWME2ou3b2e4iiWL90WqpfT5oEFC4MPDmm5TubtoUWLMGqK7uYfVLlvDPffQoO5ckUWwetNBAC/01AHWP9ff3T3f/xIkTMSmLlu8HDx4gOTkZvhn+gL6+vrh48WKW5wgPD8/y8eHh4c9/r7svu8cI6sNSPrlf/xQk3DXcPkug0eh/q53CJPGyZcAZJ8Oeawu3kiXZ4fr4MSUelbZHiZtvCoBYYOAA4L6z8vbk9XYz2gETDhn33XGr0giRWxYiKfI/OHvnPCbDxcm6K4bN6ZfN4ZMF60T2yYJgHBcuAN26Ab16sav42jWgYkWlrRLMhdp8smCbiE8WBMFSe1hr3isb65NtGUkS64k+H3wXn3KIunEGKfFxcHBNHXiXcOcyf+9bLtdj/LzWAdENgDp1RHLapPz5J7uIv/0WGDCAWk7jxyttlXXw8CFbcX/5hd3ECxYw2d6/P9CjB/WcZ84EBg9WpfzC8ePsIp4/H5g8mXLTixcrbZVtkpLCmyGPB4Bbt27BM01HelZdxIKQFkv55I2/OqBiEeUTYhlvBnMCQCCwbx+AF4x4vhVz+jSwcSPFREqVUtoaBbkDYCnQvTuA4kobk3di490x8RCMktHSJsYDAFLic5bH0gAo423dBYXilwVLYCmfbM2BKEHIyIMHwEsvsZBtyhSOVzh1ioXNxW3ATwuZEZ8sWALxyYIglPF2hwbG7ZX1xdr3ysb6ZFtGrup6ovuC5YRblUaANgXRp7Y8v0+blIiYs9vhUrwynDyL5nwALfDFNHc0a8YcXJUqzMF9/jkDu9HReX8ddklSEjByJNCiBaPEH34IzJ7NllIhZ7ZtAwICgJ07gZ9+olZpwf9LytSuzQzsgAHAkCFAmzYcJqgitFpgxAigWjXggw84l/ibbwAppjUPOidryA0APD09092y2/gWKVIEjo6OiMjw3Y2IiICfn1+Wz/Hz88vx8bqfhhxTUB5L+GQNgKZ13FGhAlC+PFCuHBX3y5QBSpdmwtHfn8G9EiUY0CtWDPDzo1qBjw9QtChQpAjg7c3x7oULA4UK8TLq6clisAIFGBB0cwPy56fsoKsrR747OwNOTux+dXAwMkFsxyQmArt2AVWr2nmC2AZxd3VCKS+3HB+THPs4033a5CTEntsFjZMrnIvk/KEo5e0Gd1frrqc1p182h08WrBOL+GStFmWWfgEcPsy9nSBYMfHxwKuvUuVk82auC2vW5FryyBEqnwi2h9p8smCbWGqfbM3JIUGwdfTZK+cVa98rG+uTbRlJEuuJPl8w1+KV4ValMR7v/Q6Pdi9H9KktiPhxLJKe3EPh5r1zPUfpIm548tAJZ85Qybd1a+Cff5jY0iWOq1aVxLHBrFgB/P03MGcOI+xjxzLqPnmy0papl6dP2Rncti1QowZw9izQpUvmx+XLxw/j9u3MvAYEAGvXWt7ebNA1kM+ezT/5oEFM6owerbRltom5nayLiwsCAwOxc+fONOdMwc6dO9GwYcMsn9OwYcN0jweA7du3P3982bJl4efnl+4xUVFRCA0NzfaYgvJYwidb+6JXYKA1JgZIM3JcsCFaVPaBo0P2YbCHWxYi4sexeHzgB0Sf3orHB9fizvJBSIi4hkJNe8DBJX+2z3V00KBFJR9zmG1RzOmXzeGTBevEIj45MRruC+YDwcGswOrShTMUbt0y0asQBMug1QLvvQccOwb89huLDwGGKYKCWEB44AC344JtoTafLNgmsk8WBAHIfa8MAFFhm/D44FrEnNkOAHh69SgeH1yLxwfXIuVZ9qpbtrBXliRxZuSqbgAtKvtgVegNJKdk37Bf5KWheLxvNWLP7Ubysxi4+JSBz+sTkK9UjRyPrfuCOTkxzxYQALzzDn+XlMR5NWFhqbf164Fnz7iZqFyZir+6m0hVpyE2FpgwAXjrLb45ANu5xo0DRo1iIrRKFWVtVBsnTrAS4d9/gS+/ZAtubjLSISHAmTPAwIGcV7xpE7BoEVvmFELXQN68OfDii7zP1RWYPp0fh/37gSZNFDPPJrGEXMfQoUPRq1cv1K1bF/Xr18f8+fMRGxuL3r25menZsydKlCiBGTNmAAA++ugjNGvWDJ999hk6dOiAtWvX4vjx4/j6668BABqNBh9//DE+/fRTVKxYEWXLlsX48eNRvHhxdOrUyXADBYthCZ8sWC8xMQyy1qtHty/YHt2DSmHl4evZ/t69ahPEnNmO6JN/IuVpNBxc8sPFrwIKN+8Nt4pBOR47OUWLHg2sv/3c3H7Z1D5ZsF7M7pOb1QRm32dmbcsWYOtW4P33+aGtVo2FrW3bAk2bUpZDEFTKp58Cq1ezrrpBg/S/c3LibOKdO4GDB7mPdZKInc2gtE8W7AfZJwuCkNteGQCiQjcgOere8//HXT4EXD4EAChQvQUc8mWtGGALe2WRm86MLDkNQJ8vmMbJBYVbvovCLd816Ng5fcH0SRwfPy6J4yz57DMgMhKYNi39/R98wNm6Y8YAGzYoY5vaSE5my+2ECfywhYUx6KIvXl7Ajz8CL7/M93f/fuC77yjzrQArV7KB/Pvv00u0du3Kj8Xw4ewyE/lW02EJJ9u1a1fcv38fEyZMQHh4OGrXro0tW7bA19cXAHDz5k04pClqCA4Oxg8//IBx48Zh7NixqFixIjZu3IgaNVI3PyNHjkRsbCz69euHx48fo3HjxtiyZQvy5ctnuIGCxTC7Tw6y7kWvvbNnD+ubmjVT2hLBXGifeKCUSxHcSngIbRYTl9yrNYN7NcM/AI4OGgSX80YFH+tfOJvbL5vDJwvWiUX2yY6OzKo1aABMmsQ93s6dTBj//DPVjfLlY6JYlzSuVk0W+4JqWLuWW+0pU7gnzYr8+YFGjYDdu4GjR4GGDeUjbCso7ZMF+0Gp2LUgCOqhoq8HmlQogkP/PMy2YKTkwOUGH9dW9sqSJM6MJIkNQJ8vmDE4piQj2N/ToC9Ybonj48dz7jiuW5eJ4wIFTPYy1EdEBJOegwen6jjpyJePLaXdu0tLKcCu4Z49WbI8ejQDLy4uhh9Ho+F72qQJ0KsX0KoVMGwYS6azmTNrDrJqINfh4EDl8ZYtGU964w2LmWXzWMrJDho0CIMGDcryd3v27Ml0X5cuXdAlK7n0/6PRaDBlyhRMmTLFOIMERTCbT9amIPj6KVToOoeKCNWrm+zYgmW4f5+iGK1bS0OZLfLoERsJL18GXi8dgEX/7kV8kumuAU4OGkx/NcBkx1MSS/hlU/tkwToxm0/OKRDl5UXZ6S5dqOF74UJql/Enn3APUrJkasI4JAQoXNhktgmCIRw+zLhNjx4UNcuJwoVZC3HwIKc+1axpERMFM6O0TxbsB0V8siAIqmP6qwEI+XyvSa8DtrJXliRxZmQmsYFMfzUATrlouhuKU0oypk9/l7NztcZ/cXWJ43feARYu5EYkOpoqwN9+y3zdtWscydu0KeDpmTrjeP585kpjYkz2spRHl+gcOzbr33frxgziiBF5et+tGq2WLbe1agG3b3PQ9fTpxiWI01KqFCv7Z8+mZHX9+tzhWoh584CHDzM3kOto0QLo0IGN5PHxFjPL5pGZDoKlMYtPdnbC9DfrA3fv8to4bBgQFWXScwjmZccOoGBBSk0LtkNiIjvEFy0CwsNZ5PVhbzdM7mjaQo4pHavDP5dZbtaC+GXBkpjFJ+sbiNJo2DU8dCiTxJGRTBh36cJN8RtvAEWKsC1z0iTel5xsUlsFITv+/Rd45RWuS5Yt068zuHhxLkMvXeLzBetHfLJgSUzuk7VaOCHFJpJDgmAvFNC44d1aslfOCvHJmZEksYH4e5kpGNW2GfDuu8Brr7EFxkToEse9e+ecOB4zJvvEcVycycyxHBcvAt98wzLd7CrGdS2loaHAL79Y1j418OAB8Prr/HC89hpw+jSHIJkKBwdqOh87xqtp3brM3pr5yqprIP/ww8wN5GmZPRu4fh1YssSs5tgV4mQFS2M2n/xKWzrKTz/lRaJKFeCHH+y3oMiK+PdfdpiGhMgcP1vi0iXgq6+4Lm3YkFMtqlZloL1bvVIY3qaSSc4zok1ldK1nOxJ64pcFS2I2n2xMICp/fnYPz5sHnD8P3LwJLF3KzuIvvgCCg4GiRZk8/vZbFssKghl48gR46SWO/tqwwTBxrYoVgXLlqBB3717ujxfUjfhkwZKY3CdrNJjy50L4b1xrumMKgmA27t0D/vkHeCOwFIaFyF45I+KTMyNJYiMweTCqSSV2Ea9fz07OgADgzz9NcvysyC5xfPp01oljnRLzuHFW1HE8ejTg788oYk6kbSlNSLCMbWpgyxZ+CPbsYYJ8xQpWCJiDmjWZKB40iB15ISHArVvmORfYHODklH0DuY5q1YA+fTgT6vFjs5ljV2i1hjlYybcJpsBsCSJXV/qSCxc4HK57d/qMc+dMci7B9Gi1wLZtzAFUq6a0NYIpePQI+PFHznH09gYGDuQ6NaPgyaAWFTGzcwBcHTVwzGI+cU44Omjg6uSAWZ0D8EGLCia0XnnELwuWxpQ+uWctEwai/P2B997jrJn794FDhziS6NYtoF8//r56dXYib9sGPH1qmvMKdk1SEusQ7twB/viDzeyGoNFwRJiPDz+y0dHmsVOwDOKTBUtj0n1ySEV0bViOQbRp0+QDKggqRasF/vuPS1xfXzZPfdjq/3tlJwc4GqgwYKt7ZfHJmZEksZE8D0YZ8QXTIJsvWOfOlOStU4eJy4EDLdbG6+TEXF5WieOJE/mYW7fTdxxXqwa8/bYKE8f79wO//UbZZH1KdWfNYuvR4sXmt00NzJoJtG9P/aqzZ9lFbG7y5QM++4wS1FeuMEH9ww8mP03aBnIvr9wfP3kyZ3bPnGlyU+wSqcQSlMIsPllHqVIMKm/bRgnq2rUZRBYJatVx5gxliNu00U/KUVAvaaWlIyIYZO/enYni7OhWrxR2lHuMYBcmd3K7Fuh+H1zOGzuGNLOZqui0iF8WlCAvPlkXiPo4OAABjhVw44YZDHRySi87ff8+sG4dh8D+9BM7kL28gHbtgM8/B/7+2z4iQ4JJ0WpZh7BrF2uyq1Qx7jgODvxo5ssHHDggo5KsGfHJghKYwifP6hyAD1pV4sJ86lQG3AYNkrENgqAytFrgxg3GREqW5E0XF+lWrxR2DGmG4HLcUNv7Xll8cmYkSZwHjP2Cxd/wxg/ds/mCFSvGLuKFC9ndWacOuzAVQJc47tiR//9uZfqO45YtgatXVZY41mopcVy3LtC1q37PqV6dUt9Tp9p2S+mFv/lz42/AggXAX39x2JEladmSUfwXX2S098032SZkInQN5IMG6ff4YsX4cZk/nyp0giBYL8b65GIabyx8UY9Fb+vWqRLUS5cClSsDa9ZI4FglJCayDqlaNfoBwXrRSUsfOMA8zsCBqdLSOXLtGvxvXMKqrtWx/eOmeDuoNEp7uyHj0zQASnu74e2g0tgxpClW9QmyiblKgqAm8hqI+uilUihTBjh+nBNyzIqXV6rs9K1bVAzRdUmNGcO9YunSqZ3IJty7CLbLl1+yBn3xYipg5AUXF06FSkhgR7HkZQRBMASTJYc0GiaIv/mGI5neeINdF4IgKE5yMnM0kZFA2bLsIs6Iv5cbVvUJkr2ykCUyrS2P6L5gVyKisSb0JnZfvoebD+PSCd1pAJTydkOLSj7oWK0U2jTwwNICwNdfZ3NQjYYyya1acThwcDAwYQI3qQoP2NMljnVdxwBllP7+m7NywsK4mf/lF64VNBpWzQYGpt7q1AEKFDCTgT//DBw9CuzezbJbfZk8mZ2tM2faXltpUhK7pSf+BuAoX+drZZWzp3Bh2vDyy8CAAfwwffcdE8h5QNdAvmaNYbOehg/n+nbcOOD77/Nkgt1jaHWVPVRiCZbFUJ/co0EphO32wPlQoHldwNk5lxPoJKi7d2c3cY8edOaLFgE1apjxlQm5cfgwEBub90CsoByRkZyGceUKUL48v145dQ6nIyUF2LqVnf9Vq6KiRoNJHatjEqojNj4J1x/GIiEpBS5ODijj7Q53V/vYAolfFpTEGJ9cwcfj+e8CA3ldP3iQ13az7R/TotEwKayTno6L4ziorVt5+/Zb7jGDgthx3LYtUK8e4OhoAeMEa2HzZmDIEGDECNYWmIICBTj9ZO9exlzq1RPVFGtDfLKgJHn1yel47z1moLp2pR/87TegUCELvApBELIiKYl76GfPgAoVcp8mWdHXw+73yuKTM2P7f3ULYcgXbPx47jk/+oj7z2ypUoWlolOmUA7rr7+AVasYOVMRWSWOExM5xlGXNA4Lyz5xXLcu1TvzvPGPj2ci/aWXgObNDXtu8eKclzt7NltWStmIjMI//7C1+8gR4J0vgeVgSZEaePNNlkT36sXIz5AhlAjPl8/gQ+kayAMDgW7dDHuuhwdrBAYOpAl16hh8euH/iJMV1IIhPrlwCLsWQ0N5SdILf38WJW3fDnz4IZ3Y4MH01eaa7y5kS0wMkwj16+s3akBQF4mJ7Bo+eJBrwTfe4DrRoOD36dPUpe7bN9MT3V2dUL14QdMabSWIXxbUgLGBKAcH1krv3MlrRMuWmeeRmx03N8pOt2vH/9+8yfETW7dSinrSJBbAhoTwMW3aUNtPsFtOn+Z+9JVXTF97XqQIk8OhodzDVq1q2uML5kV8sqAGTJYcevllOuiXXgKaNGGlZ4kS5jVeEIRMxMczQZycTLE7NwObfu11ryw+OTMiN20GdF+wOqUKo3rxgpmc7IABHBw+erQeB3NxobTl/v0MftWqBSxbpnp5S2fn1KTxokXMUUZFcdO0bBnQogUvYmPGcD2RVqr6iy8YCDBYqnrJEuD6dXbNGsOIEUDBgsziWztaLbB8OT8vd++yAv6DD5S2KjP+/sCOHZxXvGgRd71nzhh8GF0D+Zw5hjWQ63jvPaBSJWDkSNV/tVSNzHQQ1EhuPtnbm8VKBw6wY8kgdBLU06aJBLWC7NnDa3/TpkpbIhiCVpsqLX3wIJNBH3ygp7R0WhISGKSqUUOSMxkQvyyojdx8ckZ0Mrvx8VSMUPwzWqpUquz0gwe8eH34IZPHfftyb1OjBouPt20TGU474+5d5ksqVwZWrzZuX5obpUoxbnLuHNXRBetBfLKgNgz1yZlo2JCb6Kgo/vvCBfMYKghClsTFARcv8t9VqhieILZnxCdnRpLECuDiAsyYQRmiPXv0fFJwMHDqFOU8+vYFXn0VuH/fjFaaHl3i+N13c04cjx6dPnHcs6ceiePHj9lx3acPn2QMupbSVav4Xlsr9+8DnTvzvXjjDb7BjRopbVX2ODiwtf74cUaF69UD5s7V+wqckMBigw4d+BkyBicn1hbs2MF4jmAc4mQFa6VZM/7cu9eIJ7u4AKNGcXXepAk1cps3B86eNaWJQjbcvw+cOMEEcf78Slsj6EtkJPDjj8DatSzUGDCAXYK5Sr5nxaFD3CGHhJjcTmtH/LJgC3h4cCusu96rpg7LyYmGTZ7Mje39+8C6dZSiXreOEpyFC7PDeP58Bs9VY7xgauLigI4d+SfetAlwdzffuapVYz3C0aPAw4fmO49gWsQnCzZJ1apcixcqxLjjoUNKWyQIdkFUFAuuXVxYnGbI2EVBfHJWSJJYIbp0oSziiBEGfNA8PDgHacMGVi3XqAH88YdZ7TQ32SWOT51KTRxfvpw+cVy9ehaJ4xkzWKk9eXLeDOrTJ7Wl1Br5808gIICd57/+ys+LRzZzRNRGQABw7BglW0eOpAT1jRu5Pm3x4rw1kOvo2JGfsREjKNMhGI44WcFacXPj9//4cTYGGYW/P/DTT5Sgjoigdv2QIcCTJya1VUjP9u2MSdSrp7Qlgj4kJgK7d7N7+N491rJ1727A7OGMREdzTRwUxGSMkA7xy4KtULQoVT/+/Zd7Q1Xi5cWL2rffssXz7FkqgqWkcDNbrRpQujQLvn/5BXj0SGmLBRORkkJFtAsXmCAuXty859PVVRcuTBdosBKOoAjikwWbpUQJqhcGBLBoc9MmpS0SBJsmMhK4epWjmipVMrLQ2s4Rn5wZSRIrhEbDZsnjx1lobBCdOnHTGRhIPaP+/W1qZ+DsTJXk7BLHzZszODBqFIP61T1uIn7OF9hQYTi++KmYcVLVaU8+axajzlu3mvBVmZm4OA7V7dABeOEFfj5efVVpqwzH1ZWa0bt2AdeusYJg9epsq+51DeTvvpvLfG890Gh46rNnge+/z9ux7BVxsoI1ExTEQqQdO/J4oJAQSlBPnw588w11f3K4jgnG888/VCBp1YoNXYJ60WrZbJ9naemM7NoFODqK1ng2iF8WbIkyZehSz5wB/vtPaWtyQaNJLzsdGQn89Rfw2muscu7ShQNmdZ3IoaFSpWrFjB3LOv4ff2SNoCVwdGTTnpMTP1KJiZY5r2A84pMFm6ZQIcZQX3yRMetly5S2SBBsknv3WDRZuDBQvjzXA4LhiE/OjCSJFaRJE+CVV7ipiI838Ml+fuwi/uorZrTq1KHekI2SVeI4OpqJ450NxyE+XyF86Tz8eeK4YMHMHcd659E7duTwq5EjrWOzfuwY//4rV/LN+eMPoFgxpa3KG82bMwL08sssy+7WjcGVDMycyQbyKVNMc9qgIDYAjB/PvLtgGOJkBWvGyYn53UuXqE6QJ1xc6EMuXmTy6u23qWktEtQmIyWFcfeSJY2fMiFYBp209Lp1zInkSVo6LRERwMmTXDOI1niWiF8WbA3d6PHQUCtrxHVzo+z055+z3fTGDWDJEracfv450KAB4OPD0VLLl1tBFlzQsXw5a8znzuXW1ZK4ujJsERfH+Ihcw9WN+GTB5smXjwv+AQOomvHpp1IoLQgmQqvl8vDWLcDXl8WTDpLVMxrxyZmRj5PCzJzJL/iiRUY8WaOh8z15kllRXSVyUpLJ7VQjzs5ArZSTqHBkNTznTcLu4x7PE8fffMOY4aVLqR3HGaWqs5Vm0rV5nznD+cRqJSkJmDqVf3dPT34OBg7MY0uOiihUiN13a9cyE1CzZroWv5s3Od5r+HDT5sSnT2dl1vz5pjumvaDVGuZgZb8gqI3q1amWtW2biT6fJUtyo7x9O2cVigS1yThzhjnCNm1sx+3ZGhmlpbt2Bd56Kw/S0hnZto0l1HXrmuiAtof4ZcHW0Gg4sqlgQRYBW21RZ6lSqbLTDx5wYzpoEKvU3nuP64caNbjR2b6dVbGC6ti9G3j/fd6GDFHGBk9PhgMiIoDTp5WxQdAP8cmCXeDoCCxYAEybxu6LgQOto/lGEFSMVsslYng4l4glS0oMJK+IT86MJIkVpkqV1AIro6uhK1cGDh1iS/KUKSwnvXLFpHaqEq2WnVqVK3Mzjcwdx6GhSJc4btYsNXHcuHH6xPGXX6ZJHOtaSseNU2f04do1dqdNmgSMGcO/f+XKSltlHrp2ZfddlSpA69bAxx8DT59i/HgGiIYPN+3pypfnOnbmTOZ0BP2RSizB2tFomHS8e9fETb8hIYzc6SSoK1cWCeo8kJhIleFq1TgKWlAXOmnpRYvSS0tXqWLCzezVq7y1bi1a4zkgflmwRXQyuw4OvMZYfX20k1N62en791kkW78+ZRjatOG84/btWcV64YKsH1TApUtUD2/RgvkQJYO1vr6sQ9S5RkGdiE8W7AaNhvHpb7/l3rdLFyl2EgQjSU6mb3/0CChblj5fyDvikzMjSWIVMHEikJDA2LHRODszQXzgAKuRa9cGvv7atjeQW7eys3TWrBwDhGkTx199lT5x/PXXqYnjkSPTJ46HJ0xHcvg9XB/6hXpGPmu1nO1Rqxbbcg4c4N/d1qfUlyzJjqHPPweWLMHTGnVx5vtTmDwZ8PAw/enGj2fgyVQy1vaCOFnBFihVinNSd+408Xy3tBLUzZqlSlCfOWPCk9gHhw+zoCskRGlLhIxERgI//MAG+qJFTSgtnZaUFK4JdF9WIVvELwu2Sr583LfFxFBm16a2vN7eqbLTt2+zam3qVEYJR49mhVSZMqw0X78eePxYaYvtjocPgQ4dOAHsp5/UsRUvXx6oVIniYnfvKm2NkBXikwW74913gd9+A7ZsYcGTVc2JEATlSUwELl/merdCBdYMCqZBfHJmJEmsAvz8GDf+8ksTzEFs2JDZz7feou7RK68wmWhrJCfzTWvSxKjhP7rEcZ8+6RPHJ0+mJo733ymPrzAQXktnoJzHfVSvDvTqlaHj2JLcuwd06sSAwJtv8u/csKGFjVAQBwfg44+hPXYcd+45IxT10ffRbLNI13h7s/BxyRI6ZEE/xMkKtkKrVlyIh4aa4eA6CeodO9gt9MILVEgQCWq9iIlhfVT9+lQaFtSBrrv7q6/4sTa5tHRaTp2irmbbtqKzlQvilwVbpmBBjvK9e9eG6600GspODxvG4pjISODPP4FXX6UzfP11Dntv1IjVraGhIutpZuLj+fY/eQJs3swJSWqhZk2OuT5yRJaVakR8smCXdOjATcL584zf3r6ttEWCYBXEx7OhLSGBQnSenkpbZFuIT86MJIlVwrBhrAj55BMTHKxAAUp6/PYbdwg1agCbNpngwCri++9ZVT13rskChM7ObMBOmzjuf2sc3AtosKvFVDRrxgawtB3HNWpYKHH8xx9AQABlpTdu5N+3QAEznUzdbLtTA9ViQnHj1SFw/GQ0W5TyXF2RmQ8/5KzjsWNNfmhBEFSOtzfHnO7fb8breqtWlKCeMYMKEZUrA6tW2Vg7lOnZvZtSo02bKm2JAKSXlj50iHkKk0tLpyU+noGmGjVYcCEIgl1TrBhldi9f5jQem8fNLb3s9PXrwOLFrDqfN49Zcx8fVuqsWAH895/SFtsUWi3Qrx9w9ChDLeXKKW1RejQaTs0qUIA1BKLuKgiCKmjQgAHTmBiOV/j7b6UtEgRVExfHPTbAfbWbm7L2CPaBJIlVgrs7i39/+AEICzPRQTt2ZCK1fn3+u18/OmVrJy6OesBdu/K1mRHnYkXgOG4squ9bjK+GXMnUcdy0qZkTx7GxQP/+wEsvAfXqAefOsTvcTklOBkaMAIKauKLC+lnMFly/zrLp7783aXIlf35g2jSquB06ZLLD2jRSiSXYEs2aMdi2Z48ZT+LiwovaxYtA8+ZAz550LDbbEpU37t2j/23WjNdoQVkySksPHMjZjGaV3Tx0iOtA0RrXC/HLgj1QoQJvJ09SZMCuKF06VXb6wQNmBj/4gPujPn1YTBMQAAwfDmzfLlnDPDJjBrecy5czz6FGnJxYsJWSwliENJarB/HJgl1TpQrX8YULM3h68KDSFgmCKomKYgexiwv7CFxdlbbINlGTT542bRqCg4Ph5uaGQgpK1EiSWEX07s0RQyNGmDDX5evLLuIlS4A1a1hqfeSIiQ6uEPPnM1KcpyHOBjB4MMvUx4wBkHXHccbE8YULJkgcHz3Kv9eqVfz7bdpk9xPqdQ3kc+b8v0NJN8+zUye+wW+8wSFRJqJ7d/6thw+X5j59UJOTFYS84ubG63lYGOOuZqVkSWDtWkpQP3xICeqPPhKtwAzs2EFZx3r1lLbEvslOWtrsM5Kio7mIatBAtMb1RPyyYC/UqsVt0uHDDK7ZJbrsoE52+v59ri3q1gV+/JHzIL28gBdfBL74wixKTLbMTz9R9W3SJPo8NePmxjjEkycMKcg+Vh2ITxbsnuLFgX376LRDQijJIAjCcyIjgatXqQhSqZKZi6/tHDX55ISEBHTp0gUDBgww30n0QJLEKsLJCZg9m82Rf/1lwgNrNJxPfPIkN4aNGwMTJzLKZ23cuwfMnMkKaUvpO+XPD3z6KSu0Dx/O8iEZE8dHj6ZPHDdpknPiWNcYAwBISgImT2Z5cuHCPMj779v93D1dA/kbb1BG6zkFCzJ7/NNPwM6drJbfts0k53RwYEL68GFgwwaTHNKmUZOTFQRTUL8+LzHbt1vohK1acd7qjBnAt9+ydNTEKgnWyj//AFeuMJ7g6Ki0NfaJxaWlM7JrFxdcTZpY4GS2gfhlwV5wcGD9SP78bKaNj1faIhXg7Z0qO337Ngtrp0xhDGDkSOC11/g43T738WNFzVUzoaHct7/1FjBhgtLW6Efhwtwz375NMTJBecQnCwK4uf7rL6oldu7MUXqCICAiAvj3X/rvChUk5mFu1OSTJ0+ejCFDhiAgIMB8J9EDSRKrjBdfpOLkyJHMFZqUSpW4ax43jjq6jRpxgJM1MXUqowDjxln2vD16sNrNgJbStInjxYtzThw3agR4eAAvVryCq8UaI2XKVNzqNQ5x2w7w7ybk3kDepQvbjGvUANq2ZQf406d5Pm9ICNCuHTB6tHXWVVgSNTlZQTAFTk7M216+zAW7RcgoQd2rF1uaT5+2kAHqIyWFtT/+/kDVqkpbY588fJgqLe3jYyFp6bSEh4vWuBGIXxbsCWdnFuMmJYnMbiY0mvSy048esVIZAE6cAF5/HShShG/g1KncuMobCAC4cYPTnl54gfV71lS3XaIEpzJdvCiN42pAfLIg/J98+ah0MXAgxyJOmSJF0YLdotWyoOv2bcDPDyhTxrrWGtaKsT45Kioq3S3ehipTJUmsMjQadi6ePw+sXGmGEzg7UyPp4EFuDuvUoZSxNTjky5dp69ixrIy2JLqW0kOH8tRSmm3i+IQWe7p/jQ3Xa8Ml+iGaOhxEqeWT4OHljBo1gHfeARYsyNBxbEfcv88G8oEDgfLlc3hgiRLAli2UUPvmGyAwkIGPPDJrFiU/vv46z4eyaWTjK9gi1avz0rJ9u4VdpU6CeufO9BLUdtjpc+YMK2vbtJENk6XRSUsvXkzZ9W7dgDfftIC0dEa2b+dJ69a18ImtG/HLgr3h7s7i20ePgGPHrGOLqwhubnyjAODXX5lB/OoranbPncsWVB8fXvRXrADu3FHUXKWIimKzm5sbsHEj8xrWRqVKQNmywPHj3FMLyiE+WRDS4OjIYqXp06l0OWCAFCcJdodWyyVYRAQL4kuUkHiHpTDWJ/v7+6NgwYLPbzNmzFD2hZgQSRKrkLp1GYCbMEHP2bXGEBTEjowePeiMX36ZVyU1M3YsZ1gMHqzM+Vu3ZoeqiVtKnSMjUHtCRzRZ9T5c3+2BUg9OYldsEE6cAJYuZcfx33+z8FvXcWxvieMpU5inHz9ejwc7OPAzEhYGuLpSe27GjDwtOGvW5Ps9ebIdzznTA63WMAcrgTvBGtBomJy8e5fJSovTsiUlqGfNsksJ6oQEJimrV2feXLAMWi3VTtJKSw8cyI+fxTeuV6/y1ro12/sFvRG/LNgj3t4cF3HrFvdQgh6ULs1urvXrWZh24AAv+v/8w+rmEiXYiTxiBLBjB/DsmdIWm52kJObIb94ENm8GihZV2iLj0GhYZ1i0KP15dLTSFtkv4pMFIQMaDTBmDIuRli2jqoUJ1AAFwRpITuYW99EjFnP5+ChtkX1hrE++desWnjx58vw2ZsyYLI8/evRoaDSaHG8XL1604CvOHUkSq5Tp07k/mzfPjCcpUIBZyN9/Z6l1jRrAb7+Z8YR54NAhblo//VTZEt7Zs03bUrppEzfcoaH8OyxdChQoABcXNnm/9176juOcEscBAbaZONY1kI8ZY2ADebVqfF+HDQM++YSyrXnQi50yBYiJYZ5GyBqpjhZslVKlKHO8a5dCsvMuLrzgX7rEpHGvXnQEdiBBffgw/VmrVkpbYj88fAisWQP89JNC0tJpSUkBtm5lAqNKFQUMsG7ELwv2ir8/t7Z//80kn2AATk7cYOpkp+/dA378kZXsa9awYMfLi3OyvviCWsY2mM0aMoSjLn75hdtKa8bBAWjYkPXTBw6wAE+wPOKTBSEb3nmH8dBt2+hjIiOVtkgQzEpiImPdMTGcP2xxlS7BaJ/s6emZ7ubq6prl8YcNG4YLFy7keCtXrpwFX3HuSJJYpZQpA3z4IXOSZm/wffllznJt2BDo1ImZyZgYM5/UALRaBsdr1wa6d1fWlpo1GZzPa0tpTAyrtTt2ZKfruXP8O+RAbonjxo1zThxbay5h7FigWDEjG8hdXNhFvHcv2wlq1aKOuxGBjJIlGSyYN4+zIoTMqG3jGxkZie7du8PT0xOFChVCnz59EJPDtS0yMhIffvghKleujPz586NUqVIYPHgwnjx5ku5xWVWArV271rwvRlCckBBeuo8cUdCIEiUYqN21i5vnF17gxdFGJahjYjgdo359oHBhpa2xfRISqG6+eDETxYpJS6fl5EkmKERr3CjU5JcN9ckA0Lx580z+tn///uYzUrApqlRhfcmxY5TLF4ykSJFU2en//qOsypQpdBojR7KKrmxZ4P33KV2dYd1sjSxYACxcSDWN1q2VtsY0uLgwXpCQwIJySUBaHjX5ZEFQHS++yD3uxYsshr51S2mLBMEsxMez9j8hgSpdnp5KW2SfmNsnFy1aFFWqVMnx5uLiYp4XZySSJFYxY8eykHfyZAuczMeHXcRff80ZiLVqsX1HDWzYQFvmzGEZrNJMncrs7OzZxj3/yBFme9es4fv9229G60rokzg+f56J43ff5XPeeCM1cazr0FIrugbyadOA/PnzcKAmTRjQ6NwZ6N2bMjZGRItGjWID/oQJebDFhlHbxrd79+44f/48tm/fjs2bN2Pfvn3o169fto+/c+cO7ty5g7lz5+LcuXNYuXIltmzZgj59+mR67IoVK3D37t3nt06dOpnxlQhqwMsLqFePHRhmGwWhLy1asPJn9mwGbStXBr77zuaiSbt3cx3UpInSltg2Omnpr77iukBRaem0xMczWBQQIFrjRqImv2yoT9bRt2/fdP52trHrb8Hu0GiAwED674MH1VUDbbVoNLwmDx9O2enISOCPP4BXXmFR7muvUfqpcePUTmQrmzH555/Axx8DQ4cy721LFCgABAezECwszCYbwFWNmnyyIKiSoCA67Lg4XqzOn1faIkEwKXFxrIMAWMzo5qasPfaMmnzyzZs3cerUKdy8eRPJyck4deoUTp06lWtBtalRQcZNyA4vL2DcOOYRLSJTrtEAffty9mHRotzcjR/PgTxKkZjIGcDt2rGNSw2kbSn97z/9n5eYCEycyPfV25vvc9++Jo/AZkwcHzvGxPGaNfx9rVqpiePg4Mwdx2pJHGu1HHtlsgZyT092Ef/yC7BnD1/0li0GH2LiRB7m7FkT2GRjqMnJXrhwAVu2bMGyZcsQFBSExo0bY8GCBVi7di3u3LmT5XNq1KiB9evX4+WXX0b58uXRsmVLTJs2DZs2bUJShutgoUKF4Ofn9/yWT0kZfMFiNG3KWqU9e5S2BNT+HTaMC4RWrXgRb9rUemUjMnDvHptImzbNY5GQkCOqkpbOyKFDnHspWuNGoxa/bIxP1uHm5pbO33pKub1gAI6O3O+4uIjMrllwd08vO/3vv6w48vEB5s5lwN/Xl7IUK1cCuXzflebMGaBrV+Cll4yvB1c7RYtSOfz6dXYyCZZDLT5ZEFRN5crcA+gKjg4cUNoiQTAJUVH0uy4u/Jhno1IsWAg1+eQJEyagTp06mDhxImJiYlCnTh3UqVMHx48fN99Js0CSxCrngw+Yk8xmDrZ5qFCBjnjiREr1vvOOBU+ega+/5gxgte3SRo3ipljfltLLl9maM20an3PgAFCxonltTIOLS+oov08+SU0c6zqOGzXKPnG8cKEyieMNG7g2NHkD+WuvMcNbqxbQvj0waJBBL+799/kVGTnShDbZOVFRUelu8fHxeT7m4cOHUahQIdStW/f5fSEhIXBwcEBoaKjex3ny5Ak8PT3h5OSU7v4PPvgARYoUQf369bF8+XJopRTfLnBzY1drWBhw/77S1vyfEiWAH35gx+WjRzYjQb19O1CoELu3BdOTlbT0W2+paB5SVBQ7CYKCRGtcAUztl/Pik9esWYMiRYqgRo0aGDNmDOLUUMkoWBWurowzP3vGPY0kXsxImTIcqfTrr1Rt2r8fGDAAuHaNslYlSnB804gR7EQ2wZrfVISHMzlcoQKLpxwdlbbIfJQuTZXws2dljJIgCCqkWDGqU9SpQ83/jRuVtkgQ8kRkJFMbBQoAlSqppCBbUA0rV66EVqvNdGvevLlF7ZAkscrJlw+YPp0+cf9+C57YyYnJzEOHUrW5fvrJsppEUVHU2n7nHWYs1UTBgkyir1iRc0upVgssWcLFzePHfD8nTOD7qzBpO46XLEmfOF6yJDVxPGwYE8eenvwz9O5t/sSxroG8bVszNZAXLw789Rdbp7/9llp0YWF6PdXZGZg5k03IO3aYwTYrxthKLH9/fxQsWPD5bcaMGXm2JTw8HD4ZZNydnJzg5eWF8PBwvY7x4MEDTJ06NZMc5pQpU/DTTz9h+/bteO211zBw4EAsWLAgzzYL1kH9+nQBqvv+t2hBhQobkKC+do2bqJAQ2w7SKoFOWnrRIvrxxo1TpaVVxa5ddLiiNZ4n1OKXjfXJb731FlavXo3du3djzJgxWLVqFXr06JEnWwT7xMOD+5n796lSIbV9FsDZOb3s9L17LGp74QVg9WoG/r28gA4dgC+/ZHuNQn+YuDgqZicnA5s2MYhr61SvDvj7808TGam0NfaBmrqWBEH1FCzImF3Hjmz0WLpUaYsEwSgiIii04uXFQjSJb6gD8cmZUT5TJeRKt25UNh4xggE9i86Hq18f+PFHbvBmzaIG0/LlgJ+f+c89axYT1FOmmP9cxtCvH6W1Ro3i8KKMhIczA/vHH0D//pTccne3vJ0GoEsc16lDJWyA3UbnzjGHqrv98APvd3QEqlVjjlV3q1Ur73MVdA3kv/yS99eULRoNu4hbtQJ69AAaNAAmTWJ2Ohev/eqrDDSNGMH3Qw2jstWAoY5T99hbt26lk490zUF3ZfTo0Zg1a1aOx71w4YL+RmRDVFQUOnTogGrVqmHSpEnpfjd+/Pjn/65Tpw5iY2MxZ84cDB48OM/nFdSPkxOTl7/8wsV+2bJKW5QGnQT1m29SGuKdd3hBHTRIacv0JiWFXcT+/uxyEUzLX38Bx/5jBXPbtirqHE5LeDgLHtq3F63xPGJuv2xun5y2SCsgIADFihVDq1atcO3aNZQvX97o4wr2iY8P9yrHjzNpXKmS0hbZGUWKcH3y5ptMBp89C2zdytuIEcBHH7HFtW1b3lq1YpLAzKSkAL16cb+7bx9V3OwBjYZqLXv2ULijVSuZjWhujPXJgmC3uLoyHu3nx5jq3bts1rFoUFwQjEOr5YTKiAh+hIsXl4+umhCfnBlJElsBDg6U3G3ZkkHpLl0sbIAuQDd/PuWna9QAvvmGmTJzcfs2M+NDh6p3p+biwpbS11+nZmPamXm//cYEsYMDsHkzK6StFBcXFny/8IJlEsdpG8hr1jTby0qlalVWX0yezC7vP/8EVq0CypXL9ikaDb+TjRpRjuztty1gpxVgrJP19PTUe8bgsGHD8E4uEvjlypWDn58f7t27l+7+pKQkREZGwi+XIpfo6Gi0a9cOHh4e2LBhA5xz0YIJCgrC1KlTER8fn2OCW7AdqlWjYuK2bawXUt1iv3hxXpT79ePcCt1g9+hoZe3Sg9OnuZHq00eF76uVkpAAnDoK1Afw+AmLD1XXOZyWbduYvU4jTSwYh7n9siV8clqCgoIAAFevXpUksWAUZcvSFZ4+zW7R4sWVtshO0Wi40dNJT8fGUlp0yxYmjb/+mpvKhg1Tk8aBgWapzB0/Hli/ngrZgYEmP7yqcXTkfnbnTk7DatFCJDDNiQSkBcEIHBwYiy5enA0dd+4AX32lCnVGQciOlBTgxg0qdfj7s1BRUBfikzMjV1UroUUL5hnHjKEUkouLAkY0acKBdX37Ap07U3f4iy9Yim1qJkzgcUeNMv2xTUnnzty8jhjBsvTYWGDIEEoYv/IKk+lFiyptpckxZ+JYkQZyFxfOi37xRWZ8a9XiZ7t372yzFMHB/PN/8gkLN/LlS/1dbHwSrj9OREKxSnB5nIgy8Ulwd7X9y60lnGzRokVRVI/vVMOGDfH48WOEhYUh8P8Rn127diElJeV5kDkroqKi0LZtW7i6uuL3339HvrR/2Gw4deoUChcuLAliO0KjYbxy+XIKbNSqpbRF2dC8OTsyR40CPv8c6NSJP3v2VKUEQkICVYarV1dvfZg1oZOW3roV8IhhkrhLF8C5lNKW5cCVK9Qb79ZNtLhMgLn9srl9ckZOnToFAChWrJhhhgpCGgICuNc4coR7bBl7rgLc3bkPe/FF/v/69dQu4zlzmMn19qZEtS5pbILrwMqVHO01Zw6XSPZIvnwUjdu1CwgNZdJYivTMgwSkBcFINBruZ/38WEkcEQGsXSuKQ4IqSU4G/vmHRYnlysk6U62IT86M+iKEQrbMmkVpyyVLFDSiaFFgwwZg2TLOKK5Vi/pEpuTMGe7YJk7kIFw1o9FQRvrkSXai1q7NxcqyZXyfbDBBnB26xHHfvulnHIeFAYsXM6l69mz6Gcc1a6bOOD5yhLHhefOYZ1ckQdCoERMqXbpw8dm5M4eXZcPMmVS8+fJL4EpENCb9fh7N5uxGjUlb0WH7A7zaax46bH+AGpO2otmc3Zj0+3lciVB/J5+xaLWGzXMw59ixqlWrol27dujbty+OHj2KgwcPYtCgQejWrRuK/79t5L///kOVKlVw9OhRAEwQt2nTBrGxsfj2228RFRWF8PBwhIeHIzk5GQCwadMmLFu2DOfOncPVq1exePFiTJ8+HR9++KH5XoygSvz9WfyyaxfnqKsWZ2dK6gOU1e/dm9HAkyeVtSsLDh8Gnj5NL8whGMfDh1S6+PlnxlPeeIP3O6u5Xik5mV3EpUsDVaoobY1NoBa/bIxPvnbtGqZOnYqwsDBcv34dv//+O3r27ImmTZuipkWkZgRbRaPhRCVPT25jnz5V2iIhE2XKAO+/z/beBw+oA92/P+cRvfsuO8pq1QJGjmQbbHy8wafYu5eCK++9x/2pPVOwIOvew8PZZS+YB7X4ZEGwWnr14uD4HTs4/0kGqgsqIzERuHyZxYgVK0qCWM2IT86MJImtiOrVuSeaMgV4/FhBQzQaJtBOn2bksWlTtlMmJJjm+KNGcZp7mjlkqqZePQYzp0xhUvj0adHJ/D8ZE8fHj6dPHDdsyMTx0KH8d+XKdKrXrwOLFjFxbPHAjacn2wPXrwf272e7QVYzp0Gn33NAHL44E4rW8/dhVegN3IiMQ0bfoQVwIzIOq0JvoPX8fXj721Dciowz+0uxNIY4WEOrtoxhzZo1qFKlClq1aoUXX3wRjRs3xtdff/3894mJibh06RLi4vi3OHHiBEJDQ3H27FlUqFABxYoVe367desWAMDZ2RmLFi1Cw4YNUbt2bSxduhTz5s3DxIkTzftiBFXSqlVqN5JVMG0asHs3df3r1uWs4kePlLYKAH3DwYMM3MtmyngSEhgv/+orJop14x89zSD6YnJOnQLu3WOHmKyhTIKa/LKhPtnFxQU7duxAmzZtUKVKFQwbNgyvvfYaNm3aZD4jBbvByYm1oQBldpOSlLVHyAFnZyqaffopq5Dv3aNcVZ06HBEUEsIRBR06sHL38uVcI3lXrrAWuEkT+ktxOQzr1K7N9+bqVaWtsU3U5JMFwWpp35772cuXWfh886bSFgkCANarXbrEmHblyuYRXRVMh/jkzKi5n0DIgsmTuSeaOZM3RSlfnlW9M2fSsC1bgNWrOePVWHbs4HHWr7eOgTiXLrFD68oVSne++irfFyFbspOq3rCBgeygIL6tP/9M55pWqrpu3VSparMry+ikxN99l0GHAQPYNZ5GI3vtsZs44HkeTvkZiEhOyTkgofv9oX8eIuTzvZjcsTq61VOz7qdhqE2uw8vLCz/88EO2vy9Tpgy0aYJIzZs3T/f/rGjXrh3atWtnMhsF68bLi3VCBw4wVlmggNIW6UHz5uwiXrAAmDSJqiCzZrEyW0EJ6t27GbRv0kQxE6yatNLScXF8Hxs1so6lFADuqnftYmFWiRJKW2MzqMkvG+qT/f39sXfvXvMZJNg9+fMzvrx7N2V2g4MlWWgVFCmSWgGl1VKFTCdNPWIE8NFH7ETWyVK3bMlW2f8TGcmtXdGiwC+/WJGftAAVKrD48dQprmkNGBkv6IGafLIgWDX167O6uG1bOu8tW4AaNZS2SrBjYmNZYOXoyASxTKJTP+KTMyOdxFZG8eKUQ5o/XyUFU05OwLhx1IiMjWXmb+FC4/rwU1K4sQsOZrJVzWi1LDuuU4ftT0eOMIk4YwZbdwSDcHGhwniFCsCePew4jolhx/FXX6V2HA8Zwn97eFCq+t13zdxxXKwYu4gXLaKBdeqwgh3Awt1XMPrXs4hPToHGwbDPe3KKFvFJKRj961ks3H3FDIYrg1RiCfZIs2bMre7Zo7QlBuDsTAmHixc53+/ddxWVoI6IYECyWTMZLWUMDx6wRk8nLT1wIGsBrCrwffAg8OwZO8IEkyF+WRByplAhFqjeucO9hmBlaDTpZacjI4HNm4GXX2b2v3NnzjL+fydywuEwvPaaFpGRwB9/iHJJVtSqxbXE4cPAkydKW2NbqMknT5s2DcHBwXBzc0OhQoXMdyJBMBeVKvFCVbQor/H79iltkWCnREWxsd3VlSKjkiC2DtTkk9WCJImtkBEjWAw7frzSlqShbl3gxAkGmj/8kBIgd+4Ydow1axglnjNH3WXc4eEsP/7gA852PHGCr3/CBF41Pv1UaQutDl0D+YwZqUFtXcdxv37A0qWpUtXHj6cmjs+cSZ84rlXLDIljjYYR95MnKUUdHIy1E7/C3G2XTXBwYO62y1h3TA0VH3lHnKxgj+TPz6kLJ07kOMJcnRQvTt+7Z4+iEtQ7djBQW7euRU9r9SQk8L1bvJh/Ml1jldUFvaOigEOHODNbApUmRfyyIORO8eKU2b10CfjnH6WtEfKEu3uq7LTuD7pwIVCkCLSzZqN/8Gkc2pOADbUno/yB74C7d5W2WHVoNCyccHenUs6zZ0pbZDuoyScnJCSgS5cuGDBggPlOIgjmxs+PA+ZfeAFo04Zz7AXBgjx8SGHRAgU4jtBJ9HqtBjX5ZLUgH18rxMOD6s4DBzJBVru20hb9Hzc3ZudeeomZuoAA4Ouvgddey/25T59yrvFrr7GTWK1s2ECNZGdndpi2b5/6Ox8fzlOePJmJ8nLllLPTitA1kDdsyGLvnHB1pdx0YGDqffHxwLlz7DrW3VavTpWqrl499Tl5kqquXBk4dAi3Js/CxFg/wEmbqZgh4f4NPDnwAxLCryI59jE0zq5w9vaHZ1BnuFUMyvbQE34/j+DyReDv5ZbtY6wBkesQ7JV69SgysH078NZbSltjBM2asRBm4UJg4kSLSlBfu0Zppjfe4DVbyJ2M0tJNm1Ja2mo3pbt2pc6cFEyK+GVB0I8KFViMeuIEk2O+vkpbJJiEsmWB/v2B/v0xe3oyVnziiFUdf0aTO5uB3mF0qDVrpkpTN24sLUCgS27cmM3ZBw9SnUTWaHlHTT558uTJAICVK1ea7ySCYAk8PRmbfecd4PXXGZOW4gfBAkREALdvU7CkdGl197oJmVGTT1YL0klspfTpQ3WNkSOVtiQL2renXlezZnTS77zDLpGcWLCAlbwzZljERIOJjmbiu3NnRmPPnk2fINYxZAjlTsaOtbyNVoqugXzuXOOcqi5xnF3HcYMGwOnTJuo4dnbG2LKtkeTimqWxyVH3kJLwFO4BrVA4pC8KBncFANxfPxXRp7Zke9ikFC3GbrB+jTupxBLsFScnoFUrVpFabReSszMvlJcusRL73XeZeTxxwmynTEkBtm0DSpWiNJOQO2mlpYsVY8Fgs2ZWnCAOD+cioHlzIF8+pa2xOcQvC4J+aDQsvPbxoXplbltXwbpYvx4Y/Ykjxo8HevzWhZV9ERHciNauDaxaxXEHXl4seF+wgNqRxozQshHc3LgMfPKEb5cdvxUmw1ifHBUVle4WHx+v7AsRBLXh6srr+UcfcXM0YYJctASzodUCt24xQeznJwlia0X2yZmRJLGV4uzMJp/t29lJojqKFOFubMUK/qxVC9i/P+vHPnwITJ/OKt+KFS1rpz4cPEj7f/4ZWL6cr6dIkawf6+YGTJ0KrFsHHD1qWTutkGfP2EDeubNpG8gzJo7DwgxLHIeGZp04vhIRjf1XHyA5m/Vm/vL14Nt1Cgo1fgsetdvBs94r8H1rOpx9yiLq6MZs7U1O0WL/1Qe4ei/aNG+AIAgWp1o1oGRJ+mWr3pMWK8Ys5J49HA5frx7HK5hBgvr0aeDePY5Flo1VzmQlLd2tmxVKS6dFq+Ui1stLtMYFQVAcBwfuC/Lnp8yu5GFsg2PHgLffBrp2peDXc4oWpfzLd99xTNapU1RTefoUGD6cKlLlyjFGsXGjXVYOeHkB9eszGH7+vNLW2C/+/v4oWLDg89sMtTZWCIKSODgA8+YBs2czJtu3L5CUpLRVgo2RkgL8+y9jGP7+QIkSEscQbAdJElsxHTtSBmjkSCA5WWlrskCjYRfx6dO8cjZrBowZw0hnWj79lFfaCRMUMTNbEhKYwWzalMOqTp/mDOLcPECvXpTaHjHCyjMF5ufLLy3XQJ5b4jgoKDVx3KBB+sTxV18xcfzdoZtwdDBsBaBxcISTRxGkxMfk+DhHBw1WH7Hu2cRSiSXYMxoNG3DDw3ktsXqaNWMX8WefscOmUiUWSpnoi5uQQJXhGjWYXBeyRqtlYFZXwNS0KQvkK1VS2jITcPUqW+/btBEdSzMhflkQDEMns5uUxFHpqtxjC3pz8yZjJrVqsXY92228RsMHjRxJjeWHD4FNm9hVvGsX8Oqr1JNs2hSYNo0bSDu5YJYsydDGhQvAjRtKW2PdGOuTb926hSdPnjy/jRkzJsvjjx49GhqNJsfbxYsXLfiKBcHCaDSMw37/PQuAOnfmbB5BMAHJydy+Pn7MGjIfH6UtEvKC7JMzY63idALo/+bOZUJr1SrmY1VJuXLA3r1sfZ44kV0jq1ez7eraNUY+J01iNa9auHAB6NEDOHOGVWijRukfwHR0ZPVa+/bcXHbsaF5brRRdA/n77ysX7E4747hfP96nm3F8/HjmGccl3r8Hp8K5J/5TEp5BmxSPlPg4PL0Siqf/hMGtas6zFpNTtNh9+R4mobopXpoiyEwHwd7x96dr27WL89CdnZW2KI84OwMff8z2m5EjOevim2/ot194IU+HPnSIzTqtWpnGVFvkwQPgr7+YR61cmeMSrbpzOC3JyVwPlinDFyeYBfHLgmA47u6U2d2zh/uB+vWlS8QaiY4GXn6Z+72NG9khrjcFCjBB/NJL/P+//9Jnbd3KmMa4cVQWa92azrlNGyqx2CiVK6cWV7u7Zy+qJuSMsT7Z09MTnp6euT5+2LBheCeXoGC5cuX0N0AQrJW332Z8+fXXOUpg0yYW+giCkSQmMkH87BkFUD08lLZIyCuyT86MJImtnKAg4I03uE954w2qHasSR0fO6W3blsnXwEBusA4cYPnNxx8rbSHRahn8HjGCgcsjR2irobRty8j3qFHAiy9a8bBA86FrIJ84UWlL0pM2cawjPh44eiIJb/+uXxXio13LEKObQaxxgFulhvBqMyDX5918GIfY+CS4u1rn50WcrCDw0r9oEWcaNm2qtDUmolgxVqP17Uvp6bp1gQEDeCE3ImsZHc0kcVAQUKiQ6c21dhISgH37+BkqWJDS0jbROZyWkyeB+/fZnSXZF7MhflkQjMPbm8nhI0cYCKxWTWmLBENITqbvvH6d6w1f3zwesGxZyk73789I8eHDqUnjH3/kY2rVYgygbVtWGbi65vVlqAaNhnvj2FhO4mrVinl0wTDM7ZOLFi2KompqvBAEJWnXDti9G+jQgRIhW7ZweKwgGMizZ8CVK0wXVK6s4ryLYBCyT86MyE3bANOnUw//iy+UtkQPAgPZmvnee8BHH3HO79Ch6rjK3rnD7t8PP6R9YWHGJYgB7qTmzAEuXgS+/da0dtoAugby0aPV1UCeHa6ugFfpWL0f71nvFfh0+xTeHYYgf7lAaLUpQHJirs/TArj+UP/zqA2t1jCpDlFjF2wR3fy2gwc50temaNqUEtTz5uVJgnr3btZONclZYMHusGlp6bTEx/NDULMmx5EIZkP8siAYj78/VUHOn+dMVsF6GDaM+YCffuLf0KQ4O6eXnb53D1izhkni775jBtXbm13ICxemRpatHAcHIDgYcHFhnX/GCWJC7qjJJ9+8eROnTp3CzZs3kZycjFOnTuHUqVOIsbnNi2DX1KvHTXl8PC9gZ88qbZFgZcTGApcu0QdKgti2UJNPVguSJLYBypdnEHHGDDZlqB43Nw6jrVGDUeKpU5ksVpL16zls58wZ7igXLMj71b9OHXZNT5zItinhOZ98oq4Gcn1ISNI/CeLs7Y/8ZWqjQEAr+HSZCG3CM9z7ZQq0engVQ86jNmSmgyCQpk25kdizR2lLzIBOgvrSJVZo9+nDTfeJE3o9PSKCTaTNmgH58pnXVGviwQPm3X/5hY3bAwfyPbJJIZKDB1mSLVrjZkf8siDkjapVgVKlgKNHOSpHUD9ffcXi+QUL2NRrdooWBd56iwniO3e4yBk/nnMwhw5lpVf58lRg2bgRiIqygFHmwcWFDXnx8WymFp9hGGryyRMmTECdOnUwceJExMTEoE6dOqhTpw6OHz9uvpMKghJUrJgqKdGkCUchCoIePHkCXL7MpqHKlW1KIESAunyyWpAksY0wfjwD0lOnKm2JnmzaxMGvP/zAIOEbbwA9e/IqbEmiojjM+fXXgRYtWFlmyt3kp59yqv1nn5numFbO0aPAunX8rFpLFdbTp8ClC8ZfLt2qNELC3StIivwv18e6OFnvZVmcrCCQ/PlTm26tonjLGHQS1Hv3MhBaty4zm5GROT5t+3Z2W9etayE7VU5CAt+TxYu5XHjrLaBbNxuaPZyRqCgGaho0EK1xCyB+WRDyhkZDf+XlxfqWWOsV/LELtm4FBg+mYNmA3Cf9mB4HB6B2bY6c2rWLa6JNmyh3unMnRyx4e3OROH06lcus7MLr4cHawPv3uc61h84aU6Emn7xy5UpotdpMt+bNm5vvpIKgFH5+rN6uW5fx3vXrlbZIUDkPH3IGsYcHa71ssnDbzlGTT1YL1puNENLh7Q2MGcMg45UrSluTC0lJ3DiFhDA5+/PPwMqVrKytVYuD+CzB/v0836+/8vw//8w30pSULs1d6pw5wN27pj22FaLVAsOHs2m7Z0+lrcmap085f2zhQqB3b6phengAb73sbvQmWJsYDwBIic85sqQBUMbb3biTqABxsoKQSr16zIFt3660JWZGlw3//HPKLVauzDELWXzBr17luIGQEMDRUQFbVYROWnrhQhZPNWvGHHvFikpbZmZ27mQ3umiNWwTxy4KQdxwdmRRzcqLMbmLuE2QEBTh3jnXn7dqpqD67QAHKTi9YwHaka9eoqOblBcycyYSFnx/QvTvw/fdAeLjSFutF0aI0/d9/+bIE/RCfLAgK4ukJ/Pkn0Lkz0KULZScEIQNaLV3x9etMD5Qvz/ovwfYQn5wZ+ajbEIMHs7FnzBilLcmFZcsoUzlnDsuzNRqgVy9KPfv7A82bM4kcH2+e8yck8E1q1gwoWRI4fZrn12jMc74xY6ipOWmSeY5vRWzaxNz87NnqSBDoEsKLFqVPCDdsSHWws2f578WLgeNHnFDaK+fW5+TYx5nu0yYnIfbcLmicXOFcpFSOzy/l7QZ3V+stURMnKwipODkxGXrlCvDPP0pbY2acnFgQdekS0L498N57jKiHhT1/SEoKE+alSgFVqihoqwq4fz9VWrpECeCDD5hrt/kK5bt3ueZq0UK0xi2E+GVBMA2urpTZffpUZHbVSEQEc7FlygA//qiOfWaWlCuXKjv98CHVWPr25fqpVy8Gc2rXBkaPBnbvVvXg3zJluJ47cwb4L3exLAHikwVBcVxcgNWrOTrpgw+AceNEDkF4jlYL3L5Nn+bnx54vc6UJBOURn5wZWw9H2RX581PduFcvbl4bNlTaoiyIjuaM3rff5gYoLWXKUAJkzhxgwgTqRa1ZA1Svbrrz//035wSfO0eJpxEjzL+LLFSIeuDDhjGIXq2aec+nUtI2kFtkPlQGnj5lbDosjLfjx/lxSE5mU1PNmvzODBrEyugaNbiGTEvL2z5YFXoDySlZLyQfblkIbUIcXP1rwNHDG8kxjxD79x4kPbyNwi37wMElf7b2OTpo0KKSjylfssUx1HHag5MV7JuqVVmLtG0b0K+fHVSh+vmxE6ZvX26869UD3n8fmDYNp6574d495o/tdbOVkMB48JEjQMGClJa2+c5hHVotvwje3kBgoNLW2A3ilwXBdHh6cq+wfz9w6hRQp479+jM18fQp0KkT68s3b2bBr1Xg7MwKsaZNgWnTgHv3WE23dStVzmbNAtzdWVjVti1vFSqo6kNXowYQEwOEhtJMmx2VYSLEJwuCCnBwAObNY6Xu8OEsYl261A6qdYWcSElh9/CjR+xd87Hu0KygB+KTMyNXQRujRw8qPg4fTjksFe0hyNy5nDuc3fBkR0dWzrZtS9mlwEBKMQ0enLfoekoKNR1HjQLKluVOpk4d449nKAMGUFpq1Ci209ohugbyH34w/+cyY0I4LIyynlklhAMDucF1dc39uN2DSmHl4evZ/t69ahPEnNmO6JN/IuVpNBxc8sPFrwIKN+8Nt4pBOR47OUWLHg1y7jRWO+JkBSE9Gg3Qpg2wfDk7LTLWRtksTZpQgnrRImDCBCRs/BO7B15Ajer5UaKE2hYm5kerZVHS1q30T82apUqX2g26lvo331Rxi5ftIX5ZEEyLry/wwgvcW3h42FGhj0pJSaEa1OnTLMLy91faojzg48P4R/fufGFnznDhsGULJa4SExnHaNeOsZKWLRXPiGs0QP36rPM/cABo1Qpwy1l4y64RnywIKmLYMBY4v/MO5Sh++kkuYHZKcjKnQcTEUPBDCp7sA/HJmbGn8JRd4ODARtzWrali9OqrSluUhrt3mST++GPqTeZEnTrcfY8eDQwZwrLglSvZkmUo//3H3eP27Uw2z5zJtmtL4uoKzJgBdOvGXVTz5pY9v8LoGsh79DB9bl6fhHCDBmxqMyQhnBWlC3vAV1sE4SkPoXHM3E3sXq0Z3Ks1M/i4jg4aBJfzRgUfayl9zxpxsoKQGX9/CmLs2sWfzs5KW2QhdBLUXbvi0IzDeJrggFaLOgNlx9lVJ+n9+8Bff3FuX5UqjOsWKqS0VRYmOZldxGXKcGa1YDHELwuC6SlXjnubU6fY6Fm8uNIW2S+TJgHr1gHr11O8xGZwcGBlYe3aLDKPiaH89NatvC1ezHVWcHBql3GdOopI1jg6Ao0aATt3AgcPsqPYrorgDEB8siCojO7dOWS9c2dWuWzaBBQporRVggVJTGQtc0ICC/+sRo1EyDPikzNj68KHdolOznfUKF7wVMPEiUzOjh6t3+Pz5we++IKBxQsXgIAA7gIN4eef+bzz53mcL76wfIJYxxtvcPc6YoR9XF3SkFsDub6knSH87rtArVqpM4SHDGGyuEED4KuvKCcdHc2fS5dS6jUw0PgE8fnzQFAQcGZZAJwcTdsJ5+SgwfRXA0x6TEEQ1EOrVkBsLEdB2BvR7n445PsqgsrdR6GH1+gHBwwAIiOVNs2sxMezNm3JEvq/t94Cuna1wwQxAJw8yWx527YqlLgRBEEwnJo1mRw+cgR4/Fhpa+yTVau4t5w5k/F9m6ZAAeDll6mMduUKW56+/JLtTjNmcFaSnx8rsletYlecBcmXjzO7Y2L4nchpxGdsfBIuRTzBzdhHuBTxBLHxSZYzVBAEISNt2rCR59o1XsiuX1faIsFCPHsGXLzI0YiVK0uCWBCkxs9GmT2bhadff80OSsU5fx749lvOfjA0Qtq6NXD2LNC/PztxN23iBimn4zx5Anz4ITdJXbowSuvllZdXkHc0GmZLmzVjsvvNN5W1x0LoGsg/+ggoXVr/5z19SpWt48ez7hAOCGDS1hQdwjmRkgIsWMCii3LlgEPb3XApqTpG/3rWZOeY0rE6/L2sX9pGKrEEIWsKF6Yc34EDlKksUEBpiyzHrl3sKGnypj/w9glW8YwfzyKumTNZ8WNDw5q12tS6NLuVlk5LfDw/BLqMimBRxC8LgnnQaLgP2b07VWZXqTpke2T/fuC997iEGDlSaWsUoFw5FtwNGMD2p8OHU7uM16zhY2rXTu0ybtQIcHExq0kFC7JY+8AB7uFr1Ur93ZWIaKwJvYndl+7hZmQcdDnkBZcADYBSXm5oUdkH3YNKoaKv7UbpxScLgkqpWxc4dIhy/sHBlPmvWVNpqwQzEhsLXL3KPXrFimZ3kYIKEZ+cGduJygnpqFkT6NULmDwZiIpS2hqwe7hMGW5kjMHLi4nV779nkrhmTVZ7ZcW+fdyV/PYbH79unfIJYh1NmwIdOwJjxzJwagdMnMjq4jFjsn/M06ccE/3VV+k7hBs0SO0QDgpiB7GuQzgsjEUQee0Qzon//uM68eOPgfff5znr1AG61SuF4W0qmeQcI9pURtd61j2LWIdWm+po9bnlVGUuCLZG06aU5Nu9W2lLLEdEBOU4mzenH4CTE8c+XLoEdOgA9O1LKYjjxxW21DTcv8/atPXrgRIlWMTUtKkdJ4gBRovj45lBESyO+GVBMB9OTmw6AiizmyQNkRbh6lWO1AoOpuqy3QtUuLiwIm36dG5WIyKA1atZQb1iBWcXe3mxE3nRIr6BZqJYMe6VL19mU96tyDi8/W0oWs/fh1WhN3AjTYJYhxbAjcg4rAq9gdbz9+Htb0NxKzLObDYqifhkQVAxFSrQmRcrBjRpkn28WbB6njyhn3J1ZQexJIjtE/HJmZEksQ0zdSolf2bPVtiQPXs4U3jGjLxdfTUa4O23WZpatiw3PCNGpCZb4+PZ7tm8OVtWz5zh49W2c5w5E7h1i5s0G0fXQD5+fGrjd04J4Y8/zjkh/P775ksIZ+Snn3JWKh/UoiJmdg6Aq5MDHB0M+4w5Omjg6uSAWZ0D8EGLCia2XDkMcbCGVm0JgrWTPz9jeCdPAvfuKW2NZdi+nXHJTCOI/fyA775jK9CzZ2yz7t8fePhQETvzSnw8/YROWrp7dzuWlk7LkyfsbmrYUN4MhRC/LAjmJX9+NmlGRQFHj9pHAElJHj0CXnoJ8PZmQZYEdrPAx4cLkVWrKOl14gQwbhwDQ0OGsGWqfHlg4EAW1UdHm/T0FSrwtmT7TYTM24tD/3Btl5yS85dD9/tD/zxEyOd7sfbYTZPapQbEJwuCyvH1Zfw6KIgqDL/8orRFgol5+JC1Uh4eQKVKdl7MbeeIT86MJIltmJIluQ+YN48dkYqQksJEbv36lH02BaVLU7pw1ixm7urXBzZsoCP//HMmYXftMkzb2JJUrUp9rE8/5U7XhhkxgoV4Dg5Anz45J4SPHVMuIZyWJ09YW9C1K+d7nz1LxfOs6FavFHYMaYbgct4AkGuyWPf74HLe2DGkmc10EOsQJysIOVOvHnNl27crbYn5uXqVXSStW7ODOksaN+ZF/4svgB9/ZCnvN99YzcVBqwXOnUv1Yc2aUTClgu3U/uSNXbsYwde12gkWR/yyIJifwoW5t/nvP+4bBPOQmAi8/jpVOzZvVo9QmKpxcGBr7+jRlLJ5+BD4/XdKZW3bBnTqxDeyeXMW9J84YRJHcCDyCn6+cRbxySm5JoczkpyiRXxSCkb/ehYLd1/Jsy1qQnyyIFgBHh50Ml26AG+8wVGHgtWj1QLh4Rw5XaQIa6VsaOKVYATikzMjNRM2zsiRTLhNmMCOTouzbh3bQfftM21Hr6MjM5CtWlGysnNndiYdOcKBj2pn0iTKQE2fDsyZo7Q1JkE3Q1g3P3jvXiYIAGD48NQZwgMHMvkbEGD5BHBu7N0L9OwJPH5MpfIePXL/2Pp7uWFVn6DUWUuX7+Hmw/RSWhoApbzd0KKSD3o0KIUKPrY5a8lQx2kPTlYQ0uLoyOKTn3/m9bF8eaUtMg8pKYw9li7NvG+OODkBH37ITfioUZwhsGwZM69161rEXmO4fx/4809uNKtUYbG5NMum4e5dVoK9+OL/tcYFJRC/LAiWoXhxFsOePs34ctmySltkW2i1LMLavx/YsYPNsIIReHhQdvrll/n/a9dSZxlPn86RWD4+rPBr2xZo04addQaw9thNfLbjsknMnbvtMooWcLWZwmrxyYJgJbi4MCDo58d96t27bPJRm0qloBdaLXD7NtXcihXjTf6UgvjkzEiS2MYpWJAzYQcPZudmQIAFTx4fz43GK69wpoOpuX2bWfDwcFbInjzJxPHKlYC/v+nPZ0r8/Gjr9OkcWlimjNIWGcSzZwyC6BLCYWHspkpOBpydgerV2ZFbpgxlm2vWVF9COC3x8ZTEnjuXH9Xvvze8Eb2irwcmdayOSaiO2PgkXH8Yi4SkFLg4OaCMtzvcXW3/citOVhByp2pVuqjt2xlEtsUK1lOnmER97z0DNmC+vvTfffvSL9avz4TxtGnUlVQJ8fEsKAoNZVK4e3fpHM6EVsuAs7d3FlrjgiURvywIlqNixVRVJHd35toE0zB3LgveV64EmjZV2hobQic7PXAgkJDAERFbtwJbtgBr1vAxdeowYdy2LQdB56DxfSsyDhN/P5/l7+LvXkbs2Z14dvMskp5EwCG/J1yLV0ahpm/D2atEtsec8Pt5BJcvAn8vtzy9VDUgPlkQrAgHBzqfYsXY9XLnDjuwnJ2VtkwwgJQUFnU/egSUKgUULaq0RYJaEJ+cGRsMTQoZef99BjBHjbLwiRct4uzdmTNNf+x165jxvniRkfYTJ/jz0iVmJH/80fTnNDXDhlHeadw4pS3JkWfPUmcI9+kD1K6dKhn90UfMzderl14yeuRI4MEDjpysV0/dCeJz59jhPH++6ZTK3V2dUL14QdQpVRjVixe0iwQxIHIdgqAPGg0bMyIiWGxjayQkUNEwIAAokX3ML3saNaICyRdfAGvXcliQCiSoM0pLN28u0tLZcuUK8O+//KBnqzUuWALxy4JgOTQa5tN8fIBDh0w+6tVu2biRcYyxY4FevZS2xoZxceHcjOnTGVsJD+dc4+rVgeXLgRYtWPzVsSMXQ1evZjrE2A1nkZSNvHTUkV8Qd+kQ8pWuhcIh/VCgVls8u3UOd1d8hIT717M1KylFi7EbbEPHXXyyIFghw4axaGbNGkr0x8YqbZGgJ8nJdFWPHwPlykmCWEiP+OTMSJLYDnB25oiZv/4Cdu600EkfPaIcR9++1GE0FY8fUwO4WzdWs545Q+1OgD/PnOH9b73Fm5pn/hYoAEyezMVGWJjS1gBgQvjo0dwTwgsWMEgeE8M95DffsBhBpww6diz3j2qu9E5J4QjrunWBpCS+7pEjJZ6dF9TmZCMjI9G9e3d4enqiUKFC6NOnD2JiYnJ8TvPmzaHRaNLd+vfvn+4xN2/eRIcOHeDm5gYfHx+MGDECSUlJ5nwpgo1RsiRjbrt3M6lqSxw8yPEDLVvm4SA6CepLlyiJ2K8fHdGxYyaz0xDu3aPCxPr1/Nt98AFVJ5zso/7HMJKTqTVetiwT/IKiqMkvT5s2DcHBwXBzc0MhPbXZtVotJkyYgGLFiiF//vwICQnBlSu2NaNSsC0cHOiu8uUDDhyg+oRgPGFhVOx4/XVg6lSlrbEzfH0Zd1m1ilKrJ05wkx8VRYm6ihXZifzBB8Dvv+PKP+HYf/VBtjOIPeq9ihIDl8Or9fvwqNUWhRp1g1/3WdCmJCPqyC/ZmpGcosX+qw9w9Z71V12oyScLgmAAb70F/PEHxyi2bMmOGEHVJCYylBAXxy1p4cJKWySoDfHJmZEksZ3QuTPQsCEVji3ywZ42jZHvSZNMd8w9e9glvHkz5/n++CM7cdPi5cX7V6/msMCaNdkaqlbefZfaoyNGsE3JgugSwosXp08IBwXlnhDu35/J1aw6hHUN5LNmWfTlGMTt22xwGjqUnWDHj/P1C3lDbU62e/fuOH/+PLZv347Nmzdj37596NevX67P69u3L+7evfv8Nnv27Oe/S05ORocOHZCQkIBDhw7hu+++w8qVKzFhwgRzvhTBBmnVipuWw4eVtsR0REWxe6pBAxPN59VJUB84wDVFUBArkh4+NMHBcyc+nvnOpUv52rp35+hkmT2cAydOUGu8TRsZ9qQC1OSXExIS0KVLFwwYMEDv58yePRtffvkllixZgtDQULi7u6Nt27Z49uyZ+QwVhDzi4gI0bky3degQa2cEw7l9m3ViNWpQncoWx3NYDQ4ObJMfM4YxmchI4LffgHbtKE/9yitYM2AyHLXZO5F8JatC45heptXZqwRcipRC4oNbOZ7e0UGD1UdumuKVKIqafLIgCAbSujVnDl2/TuWr69eVtkjIhmfPKDqalARUrsz+LEHIiPjkzMhS207QaDhO4eRJ4IcfzHyy69eZWRw5kgHevBIfzyRqy5asVj1zhpHa7IKPGg1/f+YMdSBbtaJEiBoDSk5OwOzZbCf76y+znebZM8pkAmxeTpsQHjw4fUL46FHKo+mTEM6IuRrITcnatemVyj//nNX+Qt5Rk5O9cOECtmzZgmXLliEoKAiNGzfGggULsHbtWty5cyfH57q5ucHPz+/5zdPT8/nvtm3bhr///hurV69G7dq10b59e0ydOhWLFi1Cgq21hApmpXBhjt09eNB2JCl376Z6SePGJj6wToL6yy85bqJSJc6EMlPkXasFzp4VaWmDefaMH4JatYDixZW2RoC6/PLkyZMxZMgQBAQE6PV4rVaL+fPnY9y4cXjllVdQs2ZNfP/997hz5w42btxoPkMFwQQUKEDXFRnJblgL1wJbPTExTBA7OzMXmT+/0hYJ6fDwSC87feUKdtdri2SNYeFFrVaL5LjHcHDzzPFxySla7L58Ly8WqwI1+WRBEIzghRdY/ZWSwi4sW5wdZeXExrKD2MGBMWlZPwjZIT45M5IktiOCg9lR/MknZs6XfvIJ59UMG5b3Y509yyj6l18ymbpzJ6fN60OpUnz8nDnAwoU8zpkzebfJ1HTowPk/I0ey1CmPpO0Qfu+91ISwbobTpUs5J4Tr1TM+aaprIJ84Mc8vw+Q8fszagTffzKxULihLVFRUulu8CbT5Dh8+jEKFCqGuTgMdQEhICBwcHBAaGvq/9u48Lspy/R/4Z4ZNARHZQUFFXHHJY6aQdURNscU0s+xoZcewTFrVMtPcNU9+s7KO5anUY3pstZ+VpaRU5oJKUeZJFDc8IKASICDrPL8/LodFthmY5ZmZz/v14qUyM89zDw7P9dz3dd/X3ehrN2/eDD8/P/Tu3RsvvvgiiouLax23T58+CKwxAWbUqFEoKCjAsWPHWtxuciz6ksXff2/tlrRcVhaQkiIJVbNMvHF2BuLjJYiNGSMris1QglpfWvrzz6W0dHw8S0sbbN8+mdg3fLi1W0ItZI64bKwzZ84gKysLI2rcrLVt2xaDBg3CAXsqwUB2y89P+lXnzsnkVDJMZaVU9jx1SgqIBQVZu0XUlMLQTkivdGn6idcpOvY9Kq9chkePW5p8bvrlYhSVcnsfIrKyLl2kz9O+veyvl5ho7RbRNfn5wIkTssCpe3ep7EJEhmOS2MGsWAFkZkqC0CySk2Wp8uLFgIdH84+j0wGvvSZLWHU6GQSeNcv4OlNarbzu8GGZwj1woCypVtMUEP0y72PHpJaWEa5PCPfvX3uFcHJydUL43/+W12zZYpqE8PVqLiBXW2c+MVEqj3/9dcOVyqnlFMW4WVj6VRWhoaFo27Zt1deKFSta3JasrCwEBATU+p6zszN8fHyQlZXV4Ov+9re/4cMPP0RiYiJefPFFbNq0CZMnT6513MDrKiTo/93YcYnq07q19C1/+UWSk7ZKUaQyg68vMGCAmU8WGAisXy+d84oKCXjTprV4b6iapaWvXJFt+O67D2jb1kTttnf5+TKzPiqKPzQVUVNcNpY+ptYXcxlvyVaEhQG9eklFp/ONV9Sla55/XvpsH30k1Z9I/c5dLoKxi+XLL59HbsJauLXvAY8+TU8uUwCcvVzUrPapRXNjMhGpTECAzPIePFjK7n/8sbVb5PAuXZLCFm3aSNExTvCmpjAm18VfGwfTrZssvlm2TLbD9fU14cEVRcpC9+oFTJnS/OOcPy+v37NHNo1dtqzlmcy+fSVR/NJL0savv5aErKGrks3txhtliev8+cDEifUm2EtKZPVrcnL11++/yxi5s7Ps1zRggPz/DhggneqaP7affzbvW3jpJUm8Pvecec9jjNJSaddrr8libTX9l9sjY0tw6J97/vz5WiWd3RqpbT5nzhysbGLD6z/++MPwRlyn5p7Fffr0QXBwMIYPH45Tp06hS5cuzT4uUUMGDpTwlJAg1Q5sUVoacPo0cP/9gJOThU4aHS0/uHfeAebNAz77DFi+XGZMGdEIRZFYumuXxIyhQyXPyY6lkXbvlmnbJq81Ti1h7rhsaEzuodY9SIgsoFcvmXx06BDg7m7i/redefdd6betWQOMHm3t1pChyiqMm4BfWfgncj5ZBK2bB/zGvgiN1rD7NmPPozbNjclEpEKensCXXwJTp8oYbnY28OST1m6Vw1EU+dFnZEgFl7CwhnemJKqJMbkuDoE5oJdfllWlS5fKfqwms2OHLNn86qvmj67+5z/AE09IwN29W/YhNpVWrYD/+z8p7/zww5I4fvttqWelhiiybJlsmrB6NUpmzTMoITxtmuSXr08IW5p+Afm6dfJfpwZHj0rCJTVVKpU/95zxC9HJOM0Nsl5eXrUGoxszc+ZMTGliEkp4eDiCgoKQc93SzIqKCuTm5iLIiKXugwYNAgCkpaWhS5cuCAoKwqFDh2o9Jzs7GwCMOi6RnpOTlL7/+GMprWhrcxF0Oklwd+woZZ0sSl+C+r77gBdekBIZ770nsf2mm5p8eU6O3LqcOwf07ClbEXARbDNkZsostjvusO7NCNVh7rhsaExuDn1Mzc7ORnBwcNX3s7OzccMNNzTrmETWoNHIhLDiYimCMXx4ywpu2auEBGDGDAnr8fHWbg0Zw9XZ8E62rqQI2R8vgK6kCIGTV8K5jeGzJow5jxpxQJrIzri6ykqU4GAp5ZiZKZOW1TC+7AAURdaYXbwo/wXBwfzRk+EYk+tiktgBBQTIWOqiRTLRqZljN7VVVEhtqJgY4PbbjX/9n39Kr/A//5EVtW+/DbRrZ4KG1WPYMBnMnDFD6kl++aXUazbX+ZpQUiIJzSNHOqNLt3jcvGAlui2MQ2ZlYJ2E8IABkttW0xhszQXkjzxi7dbIhXv1amDuXFk5f/iw/MzI/CwRZP39/eHv79/k86KiopCXl4fk5GQMuFb/ds+ePdDpdFWJX0OkpKQAQNUAdVRUFJYtW4acnJyqctYJCQnw8vJCr169jHw3RKJHDyA0VAZIO3e2rQktv/wiHbO4OCt2ygICpAR1XJzE9sGDZUXx8uUypfg6paVSISwpSSpgTJ5se8l51VAUWYbt6wv85S/Wbg1dx9xx2dCY3BydO3dGUFAQdu/eXZUULigoQFJSEqZPn26WcxKZi5MTcPPNMgf6p5+kO+pi/Bauduu//wXuvRcYOdLEk9jJIjq1BjRAkyWnlYoy5Hy6GBV/ZiBw4lK4+hle4ksDoJOvbc+u4IA0kR3SamVVSnCwrEzJzJRJywzyZqXTyZaHf/4pq4fN1B0hO8aYXJcNDUOSKT37rIypzp1rogNu2CC9u1dfNX6UeM8eyeLt2CHLUbdsMX/Ctl276nN9+60sxd2927znhCSE9dUxa+4hfNNNMvFsGV4CnJ2xM3oRkpKkNNkvv8g9xvTp8jw1JYiB6gXkK1davzzn+fOyIm/WLJmBzgSxZRmzn4OxAdlYPXv2RGxsLOLi4nDo0CHs27cP8fHxmDhxIkJCQgAAGRkZ6NGjR9XK4FOnTmHJkiVITk7G2bNnsX37djz00EO49dZb0ffaB2nkyJHo1asXHnzwQfz666/YuXMn5s2bhxkzZjRaJpuoMRqNDIxmZwO//mrt1hiutFSu/336ANd+rawrOho4ckTqVH78sSxtfvddoLISgOQzjx4F3npLKmAMGyaLj5kgboETJ4AzZ+QDbLFa42QoNcXl9PR0pKSkID09HZWVlUhJSUFKSgoKCwurntOjRw9s27YNAKDRaPDMM89g6dKl2L59O44ePYqHHnoIISEhGDt2rPkaSmQm+or8xcXAwYOOMdhkiJwc4M47ZZB361br9yfJABUVwIULMlDxzTfw+G4Xwtwa/0Arukpc/GIlSjOPw3/sHLi172nUKcN83eHhZtsfDjXFZCIysWeflUVP//kPcPfdQJFt76GuZpWVwMmTQF6e9OOZIKbmYEyuy7bvsqjZ3N2BJUtkX+LnnjOoKmPDioqkhvXf/iZLXQ1VUlK9YWxMjJTpCA1tQUOa4YEHpLf+8MOSXXzmGWDFCpNkYvUrhJOTZcy6sZLR1SuEfYBVL6H3nDlA26eBVpau3Wkc/QLyoUOlyqQ1bdkilcrbtDF9pXIyjNpmYm3evBnx8fEYPnw4tFotxo8fjzfffLPq8fLycqSmpqK4uBgA4Orqiu+++w6vv/46ioqKEBoaivHjx2PevHlVr3FycsJXX32F6dOnIyoqCh4eHnj44YexePFi874ZsnsdOkhc2LMHiIyU6lVqt3+/xDpVXW+dnGQ18YQJwJw5kgX+17+Qs3I9dpzvg3PnpPLFyJEsLd1ilZWyirhzZyndQaqjprj88ssvY+PGjVX/7t+/PwAgMTERQ4cOBQCkpqYiPz+/6jnPP/88ioqKMG3aNOTl5WHIkCH49ttv0UptMyaJDOTlJfOZ9u6VSWHXfg0cVkkJMHasJM4TE+XnQyqkKEB+vsxmzMoCLl2SgOHuDgQFAX37IsYlF5sOn0elrv71xH/ueR9X05LQOuImVF4tROHvibUe9+wd0+DpnbQaxHQLMOlbsgY1xWQiMoOJEyVjOW6cjHF//TUzmCZWVgakpcmf3bqpZ7tDsj2MyXUxSezAHnpIyjnNni1lF5tdJvK114DLl2VPXUP99pvUd0xNlX2Cn3nGevU1Q0OB774D3ngDePFFqfe5eTPQr5/BhygtRa09hI8cqZ0QjoyUvYMNKhkdHy/LnObMAa6tplAr/QLyjRutV2b0zz8lObx1q/krlVPj1BZkfXx8sGXLlgYf79SpExSleiAjNDQUP/zwQ5PH7dixI3bs2GGSNhLVNGyYXMMOHAD++ldrt6ZxBQWSJB48GPD2tnZr6hEQAHzwAUofeRzfrzuBpB97wqcyC5PHt0aX/swOm8TPP8v93733cgMolVJTXN6wYQM2bNjQ6HNqxmRAVhMvXryYE7HIrgQGSnL4559lcmtEhLVbZB2KIhPWf/kF+OEHoGNHa7eIaiktrU4KZ2dLRt/JSRIefftKctjTsyr+T3L2woak9AYPV5Z9GgBwNe0QrqYdqvN4Y0niSp2CyYMNL02tVmqKyURkJsOHS1AbPVr2mdi5UybUUouVlMgKYkWRgmGtW1u7RWTLGJPrYpLYgTk5ydYJo0fLtrxjxjTjINnZcpAnnwQ6dWr6+TqdJJVfekmu6keOSJ1Ka9NqpTzIbbcBkyYBAwcCS5cCM2fWKZ94fUI4OVlWDNdMCLdoD+FWrSThPnmyTDO/5RbTvlcT0S8gf+ABSYBbw+7dwJQpUpZ7yxZpC1kPgyxRy7RrJ5U99u2T7V3btLF2ixqWmCirnYcMsXZL6qcvLZ1w6CaU9hyIYa4HMfiVsXD+Z7nsVRwXx/LILVFSIh+Cvn1lDy5SJcZlInXq0gUoLJQEqYeHY15GFy2Sqpwff9zCqmZkGjodkJsrSeGsLJmJDUjZlY4dZXaDn1+D905dA9vglgg/7D99ud7VxEGTXmlWs5y0GkSH+yIiQMU3xQZiTCZyEP37y2zqUaOkfMiOHSwd0kJFRZIgdnEBuna1japrpG6MyXUxSezgRo2SKssvvADcfnsz9gBatEiu0i+91PRz09OlrPMPP0jydelS2ZxJTXr3Bg4dAubPB+bMQemXu/Db7E1IzgyuSgj//jtQXi79I33J6EcflUSp0QnhhjzwgCTTZ8+WJWUqXKHTnAXkplJSIvtpr15tvUrlVBeDLFHL3XorkJIi+bdmTd6ygKwsaePo0SaKeSaWkyN98erS0hq0bRsFPHRUKoZMnw68954s2x40yNrNtU0//SSz5oYPt3ZLqBGMy0Tq1bevJIoPHpRKIo60BcKWLTKMsGyZ7A5BVlJUVL1SODtbZr27ukpCOCJC/jRiqdbycX0wYvUPDZacbg5nrQbLx6lgUYEJMCYTOZDwcJn5feedUiJs2zb2m5opPx84dUom1XXp0oy8BVE9GJPr4q+Wg9NoZCHwgAHA++8Djz1W+/Gi0gqczStHWXA3uOaVo1NpBTzcrn1sjh8H1q0DVq5svL6vokhPcMYM2Whozx7ZxFZlqlcIuyH5z38gOWI+fv/JDeU/ucJJq0PvPhoMGKDBo49WrxA2W3kLrRZ49VW5ifj0U9X1nvULyOPjLV855ddfZZH1iRPWr1ROtSmKcYFTMd34AZHdaNVK+pE7d0r+MjDQ2i2qTVFkG1pfX4mFalJaKttnJCUBPj4SK7p0qfGEgAC52Xn0UbknGTxY/r5ihayOIcPk58sEtuhox8pq2CDGZSL10mgkzicmyryb4cPVOfHK1PbtAx55ROaOv/iitVvjYCoqgIsXq1cLFxbKB9HXV6q8BQXJuE4zJ6iH+rhj0ZhIzPn8qMmavHhMJEJ93E12PGtiTCZyMAEBMv49YYLMrv73v2XfYjLYpUsy8dvbW8aeOfZLpsKYXBeTxIT+/WUgdcECqbR8oegKNielIzE1B+m5xVAA4OHXgIRL0CTsRJiPO2K6B2DS5lXoGhoqmcKG/PmnrNj56CM5+FtvqWLzwtJSKUN55AgaXiF8Sxs8Oq0YA75bhr47/4HW3e4CXn1HRp4tYdgwWd794ovA3Xerqp7GokUye8uQBeSmUlkpq5fnzVNXpXKqxplYRKZx441S1CIhQeKzmqSlAWfOSP9WLdWaq0pLJ0h8HzYMiIpqpH1RUcDhw8C770og++wzlqA2xu7dUglGrbXGqQrjMpG6OTvLloW7d0vydOhQ+w5Dp08DY8fKHK1161RZLMu+KIpM7NLvLXzpklzo3d0lIdynj8xGdHEx2SknDgzDpcJSrNp1osXHmj2yO+4faPt7EesxJhM5IE9PYPt2mZj8wANyPX76aWu3SvUURcJWZqbM5Q4L4z0DmZZaYvLZs2exZMkS7NmzB1lZWQgJCcHkyZPx0ksvwdXCeSAmiQkAsGQJ8Nm3xRi5/CgylUtw0mrqLROkADiXW4xNB89iQ/i9uKXv3VheVInQ+qpG794tU4SLioCtW4H77zf7+6iPPiGcnFydFG6oZHTdFcLuwKxFwEe9gMcfl47Uhg2yd7ElrFwJ9OsHvPMO8NRTljlnE/QLyF95xXL58nPn5KP044/qrVRORGQqTk6yFcTHH0tSNiLC2i0SOp0kYjt2BLp1s3ZrRHY28M03NUtLG7i41ckJeOIJmdk9Z45MaPvXv4B//pMlqBuTmSklPe68k4GYiMgE3N1lzk1iokwQGzzYPgdC8/IkdHh7A59/rqr5z/altLS6fHRWluzT5OQE+PvLQEdQkCQtzPghi4/pCj9PNyzYfgwVOsWo8tNOWg2ctRosHhNpVwliInJgLi4yjhwcLKUQMzOlkhWXxdZLUYDz56XwRUiIhC17vC8iAoDjx49Dp9Ph3XffRUREBH7//XfExcWhqKgIq1atsmhbmCQmAMCBnHQE/f0YMioVaLRo8ka+8trD+4tdMWL1D1g0JhIT9TfxJSWy+vX116Vu1oYNQIcOZm2/Xs2EsD4pXDMhHBkpK7SMLhl9//0yzXvKFBmBfuopyZKard70Nb17Sz2uxYuBhx5SxSrsOXPkv7OxBeSmoijA5s1SFbRtW9VWKqdr1DITi8ge9OghM2YTEmRLIzX0IX/5RTprcXHW76iVlEhp6UOHZMLSgw/Kz8lo/v51S1BPnSodd39/UzfbtimK1EH39wf+8hdrt4YMwLhMZBvatZP5Sfv3S9/V3qollZfLnKysLNmtwNfX2i2yIzodkJtbXUL6zz/l+23byo1kUJAsw7LwEvWJA8Nwcxc/zN12FHvTGl6EoKd/PDrcF8vH9bGbEtM1MSYTOTCNRsaQg4OBZ58FLlyQPqgJKznYA51Oqpbl5cnEdO4IReailpgcGxuL2NjYqn+Hh4cjNTUVa9euZZKYLO+txJNSDkhj/KBv5bWZoXM+P4pLhaWI9ymWstJpacDq1ZJMNdPItiEJ4YZXCDdDhw6yEeObb0qm9LvvgA8/lHrd5rR4sezpvHKlDFpb0d69wP/7f5K4NfeeWbm5snj7k09UVamcGqGWIEtkDzQamZP03ntASor1c3KlpbLKqW9fmdFrLdeXlh4+XPK6LR771JegXrcOmDtXljktWwZMm2bftT+NceIEcPasBGX+TGwC4zKR7WjfXmLsb78BbdoAnTpZu0WmoSjAk0/KxK5du2TbIGqhoqLqlcLZ2bLXsKurlI6OiJA/zT2Z3QChPu7YNHUQTmZf287sRA7SL1/bzuwaDYAwX3fEdAvA5MFhiAhoY63mmh1jMhHh6adl8s6DDwI5OcCnn0p1B0JFBXDqlIS4Ll04/kvm1dyYXFBQUOv7bm5ucDNxhbX8/Hz4WKp0aw1MEju4rYfTTbJfDACs2nUC/jvfwv3OzpKx7d3bJMcF6iaEk5Pl39cnhKdOlZXCLU4IN0SrlfIgI0bIRpGDBkkSd/Zs8w2YhoRIjeVVq6Q0Zmioec7TBEWRt/mXv8helOb03XdSXrq42KqVyslI7PgSmVb79hJKExPlT2uWZty3r3q/X2vJzgZ27ADS0yXujxwJeHmZ8AROTlJ2+t57pSLKE09Ilv7ttyUT7cgqK2V0Pzwc6NrV2q0hAzEuE9mWbt2AK1ekK+3hYR8FLVavBt59F/jgAyAmxtqtsVEVFVLKRZ8UvnJFZhP6+EjWPShIlqNbu8xLA7oGtsHCMZFYiEgUlVbg7OUilFXo4OqsRSdfD3i4OcawJGMyEQGQAU5/f2DsWAmMX38NBARYu1VWVVYma83KyuReiHlzMrfmxuTQ63IyCxYswMKFC03WrrS0NKxZs8biq4gBJokd2vncYizYfqzex3RlV1GQ9DlKM1NRduEEdCWF8L39GXj2HdHwARUFL4+cjuhnbkVokHez22VoQvjvf5c/+/WzwkTZ3r2BpCRgwQJZcbRjB/Dvf5tvyvfzz8vqpvnzpXy3FXz6qbzlPXvMV/b06lUZl3/jDYtXKicTYMeXyPSGD5dKCvv3W6/cfkGBlIccPNjA/X5NrGZpaV/fFpSWNpS/vySH9SWoo6LkpuOVV+xjxL45kpOBy5clga7SQWiqi3GZyLZoNDIht6hI4v6wYbKq2FZt3w7MmgW88ILsoEQGUhS5+dKXkL50SS7Q7u6SEO7dWxIKNrixs4ebMyJDrHAzqQKMyURUZdgw4McfgdGjZWvDnTvN3MFVr5IS4ORJCX3du6uiEAY5gObG5PPnz8OrxkqFhlYRz5kzBytXrmz0mH/88Qd69OhR9e+MjAzExsZiwoQJiIuLM7xxJsIksQObu+0oKhrYF0ZXXID8ff+Bk5c/XAI6ozT9aNMH1GhQoXXG3K9TsWnqIIPaYBMJ4Ya4ucmA8e23y37BffsCa9bI3009gNqmDbBwoQxWP/us/CAsqKxMkrd33GG+GeApKVLB8tQps1cqJzNhx5fI9Ly9q/cpHDDAOoPFe/bIOOSQIZY9r7609K5dEodMVlraUIMHS2Z63TrgpZeqS1A/9phjlVvWZ+n79ZN9tMhmMC4T2R6tVuYm7dkD/PSTxD4bzAXil1+ABx4Axo0Dli+3dmtsQGmprBLWl5EuKZF7DX9/GWcIDJSbQE7UslmMyURUyw03SCd/1CggOloWH1l7jykLKyyUFcQuLlKsyhbvd8g2NTcme3l51UoSN2TmzJmYMmVKo88JrzExJDMzEzExMYiOjsa6desMb5gJMUnsoE5mX8HetEsNPu7k6YMO8Zvg5NkOpRdOImvjswYdt1KnYG/aJaTlXKmzn0xpqewZfOSIDSaEG3PrrcCvv8pmS1OmAF9+KTW1fH1Ne55HHwVef11qPu/aZdpjN2HtWuDMGdmP2NQqK6WS9vz5QK9eJq9UThbEji+Redxyiwy2JiYCY8ZY9twXLkiIu/12mRtlKWYvLW2o60tQz5gBvP++Y5Wg/uknydJbs9Y4NQvjMpFt0k/M2r1bxo9vvdW2Js9mZAB33SV9u02bbKvtFqPTAbm51SWkc3Pl+15eQFiYrBj283OsSWl2jjGZiOro3Fn2dbrjDuCvfwW2bZPtDR1AXh5w+rRsr9GlC+DMDBVZkLljsr+/P/wNrEKXkZGBmJgYDBgwAOvXr4fWSjfO/BV0UJuT0uGk1aCygZXEGmcXOHm2a9axnbQabNyXjrFhkUhOrk4K10wI9+olewfbXEK4IW3bSrnpu+6SFUZ9+gDr18uMMFNxcQFWrpTp2Lt2yYi5BeTlAUuWyP9VZKRpj332rCy8/uknyX0vXmzZJASZFju+RObRqpX0Gb/9VlYVBwZa5ryKAiQkyBilpSY1W7y0tKEctQR1Xp7UGo+Otk6tcWoRxmUi2+XpKZfeH3+UvvSNN9rGItKiIukSazRSbtrd3dotUpGiouqVwjk5Mjji6io3duHhkhi26UERagxjMhHVy99fZoNPmCAzszdulFIcduzSJeDcOama1rkzJ5OR5aklJmdkZGDo0KHo2LEjVq1ahYsXL1Y9FhQUZJ6TNoBJYgeVmJrTYIK4pSp1CtbvzMHSdyOrEsI2uUK4OSZMkN78I48AsbFAfLwkdk3VO777btmvYvZsqT1mgZnFr7wiewUvWmS6YyqKzCqPjwfatZP7ob/+1XTHJ+tQFOMCp2KeSxCRXbrxRkmcJiQAkydb5pwnT0oViYkTzR9uFAX47Td5f1YpLW0ofQnqf/0LmDvX/ktQ794tsxQsXWucTIJxmci2+ftXx/82bYAa25apUmWlbB908qRMAnb4HQoqKoCLF6sTw1euyPd9fYFu3SQp3K6dbWT/qcXUEpPPnj2LJUuWYM+ePcjKykJISAgmT56Ml156Ca6s9UpkHR4eUroxLg74298kZjxrWEVPW6Io8tYyM+UeJzSUIZCsQy0xOSEhAWlpaUhLS0OHDh2uO6dlO+dMEjugwtIKpOcWm/Uczu2Kkbi3Ajf9xdnxZg+3by/Lvd56C3jhBeC774DNm02zDEujkdrMUVHAhx8CDz/c8mM2Ij1dKlw//zwQEmKaY16+LGPpn30mK8TWrOHiJHuhlplYRPbIyQm47Tbgo49k356ICPOeT6eThG2nTjKOaU6qKS1tKCcn4PHHa5egfu89KUEdFWXt1plOZqZk7u+6i2U+bBTjMpHt69hRcotHj8rq4uvGj1RlzhzZeWn7dpkY7nAUBSgokBHwrCxZKqXTyYTxwEDZUykggJsuOii1xOTjx49Dp9Ph3XffRUREBH7//XfExcWhqKgIq1atMs9JiahpLi5SkTIkBHjuOemLrVxpN8tsFQU4f17mToWEyDwpJojJWtQSk6dMmdLk3sWWwiSxAzp3uQiWmIvgH14Ed3cHzf5ptcBTT8leEpMmSX3QRYskadzSlUaDB8uK5XnzgPvuM+uy7PnzJYE7e7ZpjrdzpyyyLikBPv5Y3gbZD7UEWSJ71b27bFOXkCBVCc3ZX/z5ZxnbvOce83XeSkqkksThwyorLW0oPz9ZUTx1qiSK9ZVEXnlFBoFtmaJI0Pb3B/r3t3ZrqJkYl4nsQ2QkUFgoK4rd3QEfH2u3qK733pO5zK+/LlsrOozSUikdrU8Ml5RIf9/fH+jbV5LDbdpwJJxUE5NjY2MRGxtb9e/w8HCkpqZi7dq1TBITWZtGAyxfLqU4nn4auHAB+OADm59cpNNJhbK8PJn85udn7RaRo1NLTFYT+5iOQkYpq7DMJ9tS51G1Xr2ApCTJss6bJzWVz5xp+XGXL5elV6+/3vJjNSAlRUpCL1wo/dqWuHpVcuaxsTKB+uhRJojtkT7IGvNFRIbTaGSVbU6OXKPNpbRU9gXu29c8pSIVBfj1Vym48csvUlr68cdtLEFck74E9dq1wBdfSDb/7bel7qatSk0Fzp6VD5w9ltF2EIzLRPZBowEGDpTJu/v2AcXmLQpmtN27genTgSeekD6fXdPpZBbd77/LG9++HTh4EMjNlZl8t94qW0TdcgvQtauURmGCmND8mFxQUFDrq7S01ORty8/Ph48aZ58QOaonnwS2bgU++USqOum3K7BBFRWyDUV+PtClCxPEpA7sJ9fFJLEDcnW2zH+7pc6jeq6uktT98UcgI0NG3devb1lB+4gI6YmvWCG1Oszg+eelxOijj7bsOD//LHtR/+tfwBtvSCXu9u1N00YiIkfTvj3Qp4+swC0rM8859u2TRPGwYaY/dlYWsGGD5FI7dZK96W++2Q7ykPoS1CdOSBnq+HgZ0T9wwNotM15lZfVy9a5drd0aIiKChJmbb5YqIj/9BJSXW7tF4vhxYPx4mfD1xht2mg8tLgZOnwb275ekcGKi7P3h7i6bRt95JzBqlNTYDgy0g5saUpPQ0FC0bdu26mvFihUmPX5aWhrWrFmDxx57zKTHJaIWuu8+GUA9eBCIiZGFQjamrEzmHl+9KuPL3t7WbhERNYRZPAfUydcDZu+7KcDi2R74v/+T1UgFBeY+oQ0YMkSWTt17L/D3v0tv+tKl5h9v/nzphS9ZYro2XrNzp4wPv/KKbIvRHJWVksMeNEi2MkxOlpnldrKdBtWDM7GILGPYMOlo7d9v+mMXFEhec/Bg0+4XX1ICfPMNsG6djLU++KCEQ1XvPdwc+hLUBw9KwIuOlpifk2PtlhkuORm4fFlWEdvlaL/jYFwmsi+tWkmXsqhIilW1ZM6xKVy6JKWl27cHPvoIcLaXzcwqKmRWW0qKDNB//bXExpISGeUeNkxWC0dFAZ07m3X7J7IfzY3J58+fR35+ftXXiy++WO/x58yZA41G0+jX8ePHa70mIyMDsbGxmDBhAuLi4sz9IyAiY8XEyIKjzEyZKXbqlLVbZLCrV2UimU4H9OgBeHpau0VE1dhPrstebuPJCB5uzgjzcce5XPPVqfJQ3PG/s8746ovqcljdusmKUv3XX/5ih4PDTfHyklXEd94JTJsmy8E++AAYPdr4Y/n5AS++KMniJ5802Wqfykqpjj1kiPR9m+PMGeChh2Q12gsvyHbMNr6FBhmAezoQWYa3t0zA2b9f4mlLtwSoac8euV4PGWKa4ykK8NtvMvGorExWGg0e7ACLbAYNkhH8996TWL1tG7B0qaw2VvOb128U3a+feWqNk0UxLhPZn7ZtJTf5008y//iGG6zTjtJSYNw42St5927TTiyzOEWRWXJZWbJS6+JFuSC2bg0EBcl+SQEB7NBSizQ3Jnt5ecHLgIGzmTNnYsqUKY0+J7zG3i6ZmZmIiYlBdHQ01q1bZ3jDiMiy+vWTjv+oUTIBeccOGQRQscJCKbjh6iqFMBk+SW3YT66LSWIHFdM9AJuSzqFS1/D044LkL6ErKUJlYS4A4GraIVRckZWvXgPugraVR72vc9JqMCEqAAtXyiTc48dl4q3+64svZEYR4MCJ4/HjpXf/978Dt98uGzi9+qqUrDLG00/Lvodz58peFSawaZPsGXzwoPELiBQF2LhRVgz7+AA//CDbMZFjYJAlspxbbpH9fPfsaf6EnutduCADzrffLhUgWiorS/qw588DkZGyMNUhYryekxPw2GMS8+fOlQld770ncTs62tqtq9/evVLDdPhwa7eETIBxmcg+BQVJcviXX2RlTkSEZc+vKLIl0eHDMq+oUyfLnt8kysokIaxPDF+9KhVAAgJkIndQkMzCY0UNMhFzx2R/f3/4+/sb9NyMjAzExMRgwIABWL9+PbQs90akbp06ySqcO+8Ehg4FPv8cuO02a7eqXnl5skODh4fsQWw3VUbIrrCfXBd/VR3UpEFh2HDgbKPPKUjahsqC6vKIxSf2AyektqVnZEyDSeJKnYLJg8MASDDo3Vu+Hn5YHjcmcXzjjUD//nY6qBwSIrU3335blu7u3g18+KG8aUO1bi0rk6ZMkfqgUVEtalJxMTBvHjBhgiyCMsalSzIW/vnn8n/95pt2+v9GDWKQJbKcVq2kf/jNN7IyNzCwZcdTFGDXLilS0dKJyfrFqIcPA76+Ulmic+eWHdOm+flJne1HHx9TgegAACKsSURBVAVmzJBSYVOmACtXymC0WuTlyQyxm29mALcTjMtE9isiQlbqpKRIojgoyHLnXrpUuq1bt7a4+2k5Oh2Qm1udGM6VifDw8gJCQ+UH6Oen7mofZNPUEpMzMjIwdOhQdOzYEatWrcLFixerHguy5IWEiIzj5yfjxvfdJ7O6N2wAJk2ydqtquXQJOHdOKp917sztBkm91BKT1YRJYgfVNbANbonww/7TlxtcTdzhiQ+MPq6TVoPocF9EBDRc+9KQxPGRI/Unjm+8Uf60m8SxRgPEx8uKncmTpZe9YAEwZ47h060mTwZWr5ZE8969LZrt/MYbsm3iihXGve6bb2RRdFkZ8OmnsmiKHA+DLJFlDRggFY137ZJQ0JLFLidPAmfPAg880PzOnKLISuTvvpN4MGKETDjieOs1N90kSdj33pOVxTVLUKthivXu3TL74Oabrd0SMhHGZSL71q+fJIoPHJBtci1R8nnrVuDll4HFi4H77zf/+VqkuFgSwllZ0sktLwdcXGRmXXi4/GlsJS+iZlJLTE5ISEBaWhrS0tLQoUOHWo8p1t7onIga5+Ehg+WPPSYDAFlZwMyZ1m4VFEWakpkJ+PvL3CsW4iA1U0tMVhMVjEiRtSwf1wcjVv/QaMlpYzlrNVg+ro/xr2tm4lifNLb5xHHPntK7X7RIksQ7dkjd5y5dmn6tk5OUqh45Un5A48Y1qwkXL0pyePp0w04LSL979mzgn/+U7TE++EAWSJNjUhTjAif7oEQt4+QkVaY++gg4dar55SZ1OtkzuFOn5m9vX7O0dO/e0i6bjcnmdH0J6qeeqi5Bbc3kbEaGbB59112mqTVOqsC4TGTfNBqZjJWYKHsUDx8uc33M5cABKYQxebJUn1Kdykrp1OoTw1euyPd9feUGJyhI9kTiyDVZgVpi8pQpU5rcu5iIVMzFBXj/fRl8nTVLMrOvvmq1ZbuKAqSnyyrikBAJtQyzpHZqiclqwiSxAwv1cceiMZGY8/lRkx1z8ZhIhPqYZjZuU4njI0fkz23b7CRx7OoKLFsmZUMefFA2mnr9dVmi21SEve02SRK/8ILsUeHiYvTpFy+W08yfb9jzk5Olssm5c8CaNVJBkzcCjo0zsYgsr3t3oGNHWU0cHt68vuHPP0un7p57jL+Os7R0M11fgnrIELnZWbmy5bXDjaWvNR4QIDdOZDcYl4nsn4uLhJDdu2W7wqFDzVPB48wZ4O67gYEDZW6TKvp9igIUFFSXkL54US5krVvLKHXv3hLbXF2t3VIixmQiMh2NRipSBQcDTz4pMXD9eovHO51O7g/y8mRMws/PoqcnajbG5LpYHd7BTRwYhlkju5nkWLNHdsf9A8NMcqyG6BPHDz8sicn9+6VfePSoxMORIyVAzZsnHWRvb6BHD0lmvvYa8MMP8nxVu/lmqdd5330yeHzPPdLhbco//gGkpQH/+pfRpzx5EnjnHVnU1FRQr6iQXPbgwVLp5OefpWK2KgYKyKr0QdaYL3PKzc3FpEmT4OXlBW9vb0ydOhWFhYUNPv/s2bPQaDT1fn3yySdVz6vv8a1bt5r3zRA1QKOReUIXLwK//GL860tLJcnbr5/0MQ2lKLIP4ltvyZ8jRkjVZCaIjaQvQf3uu8CXX0rWf80aCbaWkpoqtcZHjmRtcDujpri8bNkyREdHw93dHd7e3ga9ZsqUKXXibWxsrPkaSWSj3N2lC5mfL5O2TL3aIT9f5iG3aSMTtK1acKKsTMqWHD4MfP21THI6em3Se58+Ut7qjjtk5niHDkwQk2qoKSYTkZ2YMQP4+GPZ9++OO6oraFhARYWMJefnS0UzJojJljAm18WVxIT4mK7w83TDgu3HUKFTjCo/7aTVwFmrweIxkWZPEDek5opjfdUc/Ypj/WrjmiuONZrqPY5Vu+K4TRspH3LnnUBcnHR4P/hAVhk3pF8/WcK1cKHUAKvxhopKK3AmrwiuwTqcydOie6kHPNyqf/1ffFGSA0891XizTp+WRc4HD8q2yQsWsN9N1dQ2E2vSpEm4cOECEhISUF5ejkceeQTTpk3Dli1b6n1+aGgoLly4UOt769atw6uvvorRo0fX+v769etrDVQbOuBNZA7t20uYSEyUP2tel4tKK3A2rxxlwd3gmleOTqUVta7/P/0k460xMYafj6WlTczJCZg2rboE9dNPyz2AiUpQF5VW4OzFYpTpPOB6sRidfGt8Biorq5ehN7deOamWmuJyWVkZJkyYgKioKLz//vsGvy42Nhbr16+v+rcby6ET1cvHR+YdHTgAeHpKfG5IUWkFzmYXoaxIC9fsInRyb1Pr3qCmigqZu5yZKce2+CCwTgf8+Wd1CencXPm+l5dsehgYKBsgcpITqZyaYjIR2ZF775XgfPfdslpqxw6DK1MVlVbg7KWrKHPyhuulq+gUWNHg/UBNZWWSIC4vl/F1T88WvgciC2NMrotJYgIgK4pv7uKHuduOYm/aJThpNY0mi/WPR4f7Yvm4PiYrMW0qDSWO//ijOmncWOL4xhslcdymjVXfhuwvPHgwMHWqzAp7/HFg1SpZwlufpUtlc8pXX8XJ+OexOSkdiak5SM8thgIg+GFgZgIwKwEI83FHTPcARLYKw2eftcHGjVKZqz6KIiu1n35a+uA//mjdrRNJndQUZP/44w98++23OHz4MG688UYAwJo1a3D77bdj1apVCKln82wnJycEBQXV+t62bdtw3333wfO6u15vb+86zyWypmHDgP/+V0pNduh1pc71Hw+/BiRcgiZhZ9X1f0xkGA4ebIOoKKBt26bPUVIC7NkjE7D8/Fha2uR8fWVF8aOPAk880aIS1Cez6/kMIBLYmgoNUqs+A5Na56Frbq5kAFgSxO6oKS4vWrQIALBhwwajXufm5sZ4S2SgDh1kstjRo9KP7dix+rH640IrIPVXaPBrdVwYFIaugdIJVhSZRLxnD/Dtt1KhyyKKiyUhnJ0tX+XlUlc7MFAmNQUGyvJpIhuipphMRHZm6FBg715g9GggOhrYubPBCcD13g+0vRX4JA2aT9LqvR+o6epVSRBrNHJf0KqVWd8ZkVkwJtfFJDFVCfVxx6apg6oDxokcpF/WdyCFBkCYrztiugVg8uAwRARYO4tqOGdn6TT36WN84li/z7FVEsfBwVJKa+1aYNYs2XDqww9lqvj1OnTA+WfmYO4pF+x9/ccGk/0KgHO5xdiUdA6VurPoMtUPf729D4C6ne2LF2WB0xdfAI88Itskc8UYmVLBdTXg3dzcWrxS6MCBA/D29q5KEAPAiBEjoNVqkZSUhHHjxjV5jOTkZKSkpODtt9+u89iMGTPw6KOPIjw8HI8//jgeeeQRaJhgISvy9ga69CvGvN1HkbGr4cleNa//Gw6cRaiLH+7vVf/1v+o1iuyCkJAgcXPECGDQIC7aMZuBA6Vkx/vvS6mPL74AliwBpk+Xm5lGnM8tbnLCX9Vn4OA5bFAU3OI1AMtdvRBqnndDNsgccbm5vv/+ewQEBKBdu3YYNmwYli5dCl9fX6u0hcgWdO8u1SaPHJF5xVe1RsSFa/cGt0T4Yfm4Pvh8kzvWrpXdjIYPN2OjKyul06lfLawvl+nrC3TtKvsL+/hwMhMREVFD+vaVPRlHjZJE8Y4dMph9jVH9xOvuB/QLwwoLZZdDV1fJQbOyJJH9YJKY6uga2AYLx0RiISKl9MTlIpRV6ODqrEUnXw+DSk/YCkMTx59/Liuo9IljfdLYYoljjUZWFQ0fLqWko6OBl1+WspQ1Boy3Hk7HAuebUBFaDgBNlg7XP67zv4yRb/yARWMiMbFG2fAdO4C//11+Jp99JtsjEzWkuTOxQkNrpyYWLFiAhQsXtqgtWVlZCAgIqPU9Z2dn+Pj4ICsry6BjvP/+++jZsyeio6NrfX/x4sUYNmwY3N3dsWvXLjzxxBMoLCzEU03Vaycyo62H07Hw0DGUVcp13dDrf0bFZdzxdt3rv96FCxIL/vc/qc4xcqQKqmw4gvpKUL/3npSgHjKk3pdsPZxetXUIYMBn4NqmlfuvaDFidcOfAbJdaorLzREbG4t77rkHnTt3xqlTpzB37lyMHj0aBw4cgBNnqRDVS6ORPmpREbBqWzq2pRsRF649vv/0ZQz7vx+QvSMSs2aF4dFHTdxIRQEKCmSVcFaWJIh1OilrFRQEREbKamGOPpMd4aolIjK7jh2ltNidd8rq4s8+A0aNMr6fWON+QN9PjO0ahtOnZQJaRAQnjJNtY0yuy36yfWQWHm7OiAwxoAalHTEkcXzkiMRaiyeOu3eXmWGLFwOLFgHffANs2gREROCtxJNYteuEPE9rXLTWQUFphYI5nx/FpcJSPHJTV8yaBbzzDhAbK9shBweb4f2QXWlukD1//jy8aixPb2y10pw5c7By5cpGj/vHH38Y3ogGXL16FVu2bMH8+fPrPFbze/3790dRURFeffVVJonJampd/42kU2pf/+NjugKQihqJidWlpR9+GOjUyYSNJsPULEE9YwZwyy1S5/sf/6hVgroln4FKBais0NX5DJDtM3dcNjQm92hmjdqJEydW/b1Pnz7o27cvunTpgu+//x7Dzbqskci2abXAr+UnsfV0M+OCTkGFosAn9ihCR5QCMEFcKCurLh+dlSU3Glqt7GXUp48kh9u04WphslsckCYii/D1lQqU998P3Hkn3vrHf7Aqp4G9BZtQqVNQqZOxgl8jSxEX3RWdOkn4JrJljMl1MUlMZICmEsdHjsifNRPH3btXJ41Nmjh2cZGyk6NHAw8+CNxwA7YueherLnmb4ODAql0n8PoKN2T+FIa335bqluyrkyGaG2S9vLxqDUY3ZubMmZii/yVsQHh4OIKCgpCTk1Pr+xUVFcjNzTVob8NPP/0UxcXFeOihh5p87qBBg7BkyRKUlpZarRwnOa6th9ObnRy83qpdJ+Dn6YbuzmH47juJc7fdJrsbcKawldUsQT1nTnUJ6ieewNZfMk36GfD3dMP9XFFsF8wdlw2NyaYSHh4OPz8/pKWlMUlM1Iith9Oxek/L4oK+//fadycQ6NWMuKAoQG5udQnp3Fz5vpeXbJ4cFCQJYt5gkIPggDQRWYy7O7BtG7Y+vaLZCeLr/efYCfTr7obwcPYTyfYxJtfFJDFRM1k9cRwdDaSk4PyseVhwoTXgrNTJ5pZeOIGio7tRkn4UFfnZ0Lb2gltId3jf+iBcfNrXe1hFASpuOIYdy/wwdGDDe1QSXc8SQdbf3x/+/v5NPi8qKgp5eXlITk7GgAEDAAB79uyBTqfDoEGDmnz9+++/jzFjxhh0rpSUFLRr144JYrK487nFWLD9WIOP68quoiDpc5RmpqLswgnoSgrhe/sz8Ow7osHXzNt2DGNd/BDdzx233cbS0qqi1QJxcbL3w0svAc88g/NbPseC4bPrfXpz7gEA4OXtxxDdxa9q7ymyXeaOy4bGZFP53//+h8uXLyOY5W2IGmSOewOD40JxcfVK4exsoLxcJjgHBgLh4fKnO2MLOSYOSBORJZ0vKMMCnxuBikoALR8rBoAF24/hZvYTyQ4wJtfFAgFEJqRPHE+ZArz1FnDgAHDlCvDbb7L4Z/hw4NQp2V7wr38F2rYFevaUbYZXrwb27gUKC404YZs2mHvT31Dh4lrvct+Cg5+iOHU/WnXsh3YjpsGz3yiUnP8dF9Y/jbKLZ+s9pEYDOLkoeP+3o836GZDjUpTqQGvIl9L4Nigt0rNnT8TGxiIuLg6HDh3Cvn37EB8fj4kTJyIkJAQAkJGRgR49euDQoUO1XpuWloYff/wRj9azAduXX36J9957D7///jvS0tKwdu1aLF++HE8++aT53gxRA+ZuO1q1r1B9dMUFyN/3H5RfPg+XgM4GHbNSUXDW/yjuuYcJYtXy9ZX9IA4dwty+96CivKLepzXnHgAAKnQK5m7jPYA9UFNcTk9PR0pKCtLT01FZWYmUlBSkpKSgsMaNb48ePbBt2zYAQGFhIWbPno2DBw/i7Nmz2L17N+6++25ERERg1KhR5msokY0zx71Bg3GhslISwikpwM6dwNdfy0zp4mKga1dg2DBgzBggKgro3JkJYnJoaorJRGT/qu8HTDNWDLCfSPaDMbkuriQmMrOaK44feUS+V1EB/Pe/1XscN7TiWL/Pcf/+gKdn3WOfzL6CvWmXUF/QB4A2A8fBb8xsaJxcqr7n0fMWZL4fj4KDn8Lvrln1vq5Sp2Bv2iWk5VxBRACzBGQYnc640uTmnom1efNmxMfHY/jw4dBqtRg/fjzefPPNqsfLy8uRmpqK4uLiWq/74IMP0KFDB4wcObLOMV1cXPD222/j2WefhaIoiIiIwGuvvYa4uDjzvhmi61Rf/xvm5OmDDvGb4OTZDqUXTiJr47NNHleBgiMZvP7bgpOh3bHXN7vBx3kPQGqKyy+//DI2btxY9e/+/fsDABITEzF06FAAQGpqKvLz8wEATk5O+O2337Bx40bk5eUhJCQEI0eOxJIlS1i5g6gB5ro3qIoL2VcQ0VqpLiF98aJcOFq3lvLRvXrJamFXV1O9JSK7oaaYTET2ran7AfYTydExJtfFJDGRFTg7A337ypcxiWN90lifON6clA4nrQaVDcwWb9WhZ53vufi0h6tfGMovnW+0jU5aDT48mI6FYyJb/H7JMagtyPr4+GDLli0NPt6pUyco9UwHW758OZYvX17va2JjYxEbG2uyNhI1V1PXfwDQOLvAybOd0cfm9d828B6AmqKmuLxhwwZs2LCh0efUjMmtW7fGzp07zdcgIjtk1nsDDfDhRz9gYfBV2f7A319mQQcGyj7DxlxsiByQmmIyEdk39hOJGseYXBeTxEQqYWji+NNPqxPHHWfkQPE0ruaBoiioLM6Di19Yo8+r1ClIPJGDhWDgJ8MwyBJZTmJqTqODwC3B679taM5ngPcAjoVxmcixmPXeQAESrzhj4X23SILYycks5yGyV4zJRGQp7CcSNY4xuS4miYlUrLHE8f7DFXjlZHHjB6hH0bHvUXnlMryHTGryuemXi1FUWgEPN14qqGkMskSWUVhagfRc46//xuD1X92a+xngPYBjYVwmchwWuTcorERROz94MEFMZDTGZCKyBPYTiZrGmFwXf5uJbIw+cezkV4RX0ox7bfnl88hNWAu39j3g0Wd4k89XAJy9XITIkLbNayw5FAZZIss4d7kI5lknVE0B8O2+InT25vVfjc7kGf8Z4D2A42FcJnIclro3YFwgah7GZCKyhObcD7CfSI6GMbkuJomJbFRZhXFXqMrCP5HzySJo3TzgN/ZFaLSGzQA39jzkuBhkiSzDUtflv03WoeyCRU5FRnIN1iH4YcOfz3sAx8S4TOQ4LHW9Zlwgah7GZCKyBI4VEzWNMbkuJomJbJSrs9bg5+pKipD98QLoSooQOHklnNv4muU8RERkfpa6Lm/5UIvO3hY5FRnpTJ4WMxMMey7vAYiI7J+lrteMC0REROrFsWIiag4miYlsVCdfD2iAJsuIKBVlyPl0MSr+zEDgxKVw9Qsz+Byaa+chMgRnYhFZhqHX/5bQAIi92QMebmY8CTVb91IPzErgPQA1jnGZyHFY6t6AcYGoeRiTicgSOFZM1DTG5Lo47YPIRnm4OSPMx73R5yi6Slz8YiVKM4/Df+wcuLXvadQ5wnzd4eHGuSRkGJ3O+C8iMp4h1/+W4vVf3XgPQIZgXCZyHLw3IFI3xmQisgT2E4maxphcF3+jiWxYTPcAbEo6h0pd/XPE/tzzPq6mJaF1xE2ovFqIwt8Taz3u2TumwWM7aTWI6RZg0vaSfVMU4wKnYs6lDkR2rqnrv15B8pfQlRShsjAXAHA17RAqrlwCAHgNuAvaVnVnAPP6bxt4D0BNYVwmciy8NyBSL8ZkIrIU9hOJGseYXBeTxEQ2bNKgMGw4cLbBx8uyTwOQjv/VtEN1Hm8s8FfqFEwebHi5ESJjZ1Y5wkwsInNp6vqvV5C0DZUFOVX/Lj6xHzixHwDgGRlT70Awr/+2gfcA1BTGZSLHwnsDIvViTCYiS2E/kahxjMl1MUlMZMO6BrbBLRF+2H/6cr0zxIImvdKs4zppNYgO90VEQJuWNpEcCIMskeU0df3X6/DEB0Ydl9d/28F7AGoK4zKRY+G9AZF6MSYTkaWwn0jUOMbkurgnMZGNWz6uD5y1Ruy2bgBnrQbLx/Ux6THJ/nFPByLL4vWf+BmgxjAuEzkexgUidWJMJiJL4v0AUcMYk+tikpjIxoX6uGPRmEiTHnPxmEiE+rib9Jhk/xhkiSyL13/iZ4Aaw7hM5HgYF4jUiTGZiCyJ9wNEDWNMrotJYiI7MHFgGGaN7GaSY80e2R33D+T+EmQ8Blkiy+P1n/gZoIYwLhM5JsYFIvVhTCYiS+P9AFH9GJPr4p7ERHYiPqYr/DzdsGD7MVTolEb3obqek1YDZ60Gi8dEMuhTsxkbNB0hyBJZAq//xM8A1YdxmchxMS4QqQtjMhFZA+8HiOpiTK6LSWIiOzJxYBhu7uKHuduOYm/aJThpNY3eAOgfjw73xfJxfVg2hFqEQZbIenj9J34G6HqMy0SOjXGBSD0Yk4nIWng/QFQbY3JdTBIT2ZlQH3dsmjoIJ7OvYHNSOhJP5CD9cjFqhn8NgDBfd8R0C8DkwWGICGhjreaSHWGQJbIuXv+JnwGqiXGZiBgXiNSBMZmIrIn3A0TVGJPrYpKYyE51DWyDhWMisRCRKCqtwNnLRSir0MHVWYtOvh7wcOOvPxGRPeL1n/gZICKimhgXiIiIiPcDRFQf/uYTOQAPN2dEhrS1djPIzimKcbOrFMO3QiGiZuL1n/gZcFyMy0RUH8YFIstjTCYiteH9ADkqxuS6mCQmIiKT0OkAjcbw5ztCkCUiIrIWxmUiIiJ1YEwmIiJSB8bkupgkJiIik2CQJSIiUg/GZSIiInVgTCYiIlIHxuS6mCQmIiKTYJAlIiJSD8ZlIiIidWBMJiIiUgfG5LqYJCYiIpNgkCUiIlIPxmUiIiJ1YEwmIiJSB8bkupgkJiIik2CQJSIiUg/GZSIiInVgTCYiIlIHxuS6mCQmIiKTYJAlIiJSD8ZlIiIidWBMJiIiUgfG5Lq01m4AERHZB53O+C9zWrZsGaKjo+Hu7g5vb2+DXqMoCl5++WUEBwejdevWGDFiBE6ePFnrObm5uZg0aRK8vLzg7e2NqVOnorCw0AzvgIiIqPnUEpfPnj2LqVOnonPnzmjdujW6dOmCBQsWoKysrNHXlZSUYMaMGfD19YWnpyfGjx+P7Oxs8zSSiIjIjNQSkwFgzJgxCAsLQ6tWrRAcHIwHH3wQmZmZ5jshERGRijAm18UkMRERmYSagiwAlJWVYcKECZg+fbrBr/nHP/6BN998E++88w6SkpLg4eGBUaNGoaSkpOo5kyZNwrFjx5CQkICvvvoKP/74I6ZNm2aOt0BERNRsaonLx48fh06nw7vvvotjx45h9erVeOeddzB37txGX/fss8/iyy+/xCeffIIffvgBmZmZuOeee8zTSCIiIjNSS0wGgJiYGHz88cdITU3FZ599hlOnTuHee+813wmJiIhUhDG5Lo2iOMKCaVFQUIC2bdsiPz8fXl5e1m4OEZFJWPvapj8/kA/AmPMXADB/uzds2IBnnnkGeXl5jT5PURSEhIRg5syZmDVrFgAgPz8fgYGB2LBhAyZOnIg//vgDvXr1wuHDh3HjjTcCAL799lvcfvvt+N///oeQkBCzvQ97Y+3PLRGROajh2qb2uAwAr776KtauXYvTp0/X+3h+fj78/f2xZcuWqk7y8ePH0bNnTxw4cACDBw82a/scjRo+t0REpqaGa5stxOTt27dj7NixKC0thYuLi1nPRU1Tw+eWiMgcrH19Y0xumEPtSazPhxcUFFi5JUREpqO/pll/zo+x11Z5/vXXZDc3N7i5uZmoTYY7c+YMsrKyMGLEiKrvtW3bFoMGDcKBAwcwceJEHDhwAN7e3lUJYgAYMWIEtFotkpKSMG7cOIu321YxJhORPVJPTAbUHJfz8/Ph4+PT4OPJyckoLy+vFZN79OiBsLAwJonNgDGZiOwRY3LTcnNzsXnzZkRHRzNBrBKMyURkr9QTlxmTr+dQSeIrV64AAEJDQ63cEiIi07ty5cq1GVGW5erqiqCgIGRlGX9t9fT0rHNNXrBgARYuXGii1hkuKysLABAYGFjr+4GBgVWPZWVlISAgoNbjzs7O8PHxqXoOGYYxmYjsmbViMqD+uJyWloY1a9Zg1apVDT4nKysLrq6u8Pb2rvX9mjGZTIcxmYjsGWNyXS+88ALeeustFBcXY/Dgwfjqq69afEwyDcZkIrJ3HL+uTQ0x2aGSxCEhITh//jzatGkDjUZj7eYQEZmEoii4cuWK1Uodt2rVCmfOnEFZWZnRr1UUpc71uLFZWHPmzMHKlSsbPeYff/yBHj16GN0WsizGZCKyR9aOyYDl4nJzYnJGRgZiY2MxYcIExMXFGd0+Mg/GZCKyR4zJtdWMybNnz8bUqVNx7tw5LFq0CA899BC++uorxgAVYEwmIntl7bjMmNwwh0oSa7VadOjQwdrNICIyOWvNjNZr1aoVWrVqZfbzzJw5E1OmTGn0OeHh4c06dlBQEAAgOzsbwcHBVd/Pzs7GDTfcUPWcnJycWq+rqKhAbm5u1evJMIzJRGSvrB2TAcvEZWNjcmZmJmJiYhAdHY1169Y1+rqgoCCUlZUhLy+v1mri7OxsxlszYEwmInvFmFytZkz28/ODn58funXrhp49eyI0NBQHDx5EVFSUWdtJTWNMJiJ7Zu24zJhcP4dKEhMRkW3z9/eHv7+/WY7duXNnBAUFYffu3VVJ4YKCAiQlJWH69OkAgKioKOTl5SE5ORkDBgwAAOzZswc6nQ6DBg0yS7uIiIjUyJiYnJGRgZiYGAwYMADr16+HVqtt9PkDBgyAi4sLdu/ejfHjxwMAUlNTkZ6ezgFsIiKi67Skn6zT6QAApaWlpmwSERGRQ7LFmMwkMRER2aX09HTk5uYiPT0dlZWVSElJAQBERETA09MTANCjRw+sWLEC48aNg0ajwTPPPIOlS5eia9eu6Ny5M+bPn4+QkBCMHTsWANCzZ0/ExsYiLi4O77zzDsrLyxEfH4+JEydatYwZERGRWmVkZGDo0KHo2LEjVq1ahYsXL1Y9pl8VnJGRgeHDh+Pf//43brrpJrRt2xZTp07Fc889Bx8fH3h5eeHJJ59EVFQUBg8ebK23QkREZNOSkpJw+PBhDBkyBO3atcOpU6cwf/58dOnShZOwiIiILEhNMZlJYiIisksvv/wyNm7cWPXv/v37AwASExMxdOhQALIqKT8/v+o5zz//PIqKijBt2jTk5eVhyJAh+Pbbb2uVItm8eTPi4+MxfPhwaLVajB8/Hm+++aZl3hQREZGNSUhIQFpaGtLS0uqUT1QUBQBQXl6O1NRUFBcXVz22evXqqjhbWlqKUaNG4Z///KdF205ERGRP3N3d8fnnn2PBggUoKipCcHAwYmNjMW/evAb3ViQiIiLTU1NM1ij6njkREREREREREREREREREdm9xjeDIiIiIiIiIiIiIiIiIiIiu8IkMRERERERERERERERERGRA2GSmIiIiIiIiIiIiIiIiIjIgTBJTERERERERERERERERETkQJgkJiIiIiIiIiIiIiIiIiJyIEwSExERERERERERERERERE5ECaJiYiIiIiIiIiIiIiIiIgcCJPEREREREREREREREREREQOhEliIiIiIiIiIiIiIiIiIiIHwiQxEREREREREREREREREZEDYZKYiIiIiIiIiIiIiIiIiMiB/H/Um5JubanVKAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -686,9 +686,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "The solution found by RQAOA has energy = -9.0 and ground states = ['1100100', '0011010']\n", + "The solution found by RQAOA has energy = -9.0 and ground states = ['1000100', '0011011']\n", "\n", - "The exact energy is -5.0 and the solutions are ['1000', '0110', '1001', '0111']\n" + "The exact energy is -5.0 and the solutions are ['1000', '1100', '0011', '0111']\n" ] } ], diff --git a/samples/azure-quantum/qaoa/openqaoa.ipynb b/samples/azure-quantum/qaoa/openqaoa.ipynb index 82881131b20c..ff2ac76539f7 100644 --- a/samples/azure-quantum/qaoa/openqaoa.ipynb +++ b/samples/azure-quantum/qaoa/openqaoa.ipynb @@ -36,7 +36,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Being by importing the necessary modules" + "### Begin by importing the necessary modules" ] }, { @@ -44,6 +44,19 @@ "execution_count": 1, "metadata": {}, "outputs": [], + "source": [ + "try:\n", + " import openqaoa\n", + "except ImportError:\n", + " !pip -q install openqaoa-azure\n", + " import openqaoa" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], "source": [ "#some regular python libraries\n", "import networkx as nx\n", @@ -75,7 +88,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -101,7 +114,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -115,7 +128,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -173,7 +186,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -195,22 +208,22 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 6, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAGFCAYAAACCBut2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABmDUlEQVR4nO3dd3iM2d8G8HtmUkikSRAiURLB6CVEiwy7rF11tei9BmHVRbpYLEvUKIkoQZBYbVk1CUKiZPUoIZUgRXqbmfP+4SfvWi2JmXmmfD/X9bveXYnz3PbFc895zjkPjzHGQAghhBCNxuc6ACGEEEK4R4WAEEIIIVQICCGEEEKFgBBCCCGgQkAIIYQQUCEghBBCCKgQEEIIIQSAVlm+SSqV4sWLFzAwMACPx5N3JkIIIYTIAGMMOTk5qFWrFvj8L88BlKkQvHjxApaWljIJRwghhBDFSkpKQu3atb/4PWUqBAYGBqUDGhoafnsyQgghhMhddnY2LC0tS+/jX1KmQvD+MYGhoSEVAkIIIUTFlOVxPy0qJIQQQggVAkIIIYRQISCEEEIIqBAQQgghBFQICCGEEAIqBIQQQggBFQJCCCGEgAoBIYQQQkCFgBBCCCGgQkAIIYQQUCEghBBCCKgQEEIIIQRUCAghhBACKgSEEEIIARUCQgghhIAKASGEEEIAaHEdgBBCCFEVeUVixKfnoVgshY4WH3VN9aGvqx63UvX4VRBCCCFy8uRVDoKiEnEx9jUSM/LB/vU1HgCrqnoQNaqOEe2t0KCGAVcxvxmPMca+9k3Z2dkwMjJCVlYWDA0NFZGLEEII4VRSRj4Wh97FpadpEPB5kEg/f7t8//UuNmZY/nMzWFbVU2DSzyvP/ZvWEBBCCCH/cSA6Ed/9EY7IZ+kA8MUy8O+vRz5Lx3d/hONAdKLcM8oaPTIghBBC/mXjhSdYfeZxhX6uRMogkTIsCr2LtNwizOjWQMbp5IdmCAghhJD/ORCdWOEy8F+rzzxG8HXVmSmgQkAIIYTg3ZoB92P3ZTqm29H7SMrIl+mY8kKFgBBCCAGwOPQuxF9ZK1BeYinD4tC7Mh1TXqgQEEII0XhPXuXg0tO0ry4eLC+JlOHS0zQ8fZ0j03HlgQoBIYQQjRcUlQgBnyeXsQV8HvZeU/61BFQICCGEaLyLsa9lPjvwnkTKcPHRa7mMLUtUCAghhGi03CIxEuW88C8xPR95RWK5XuNbUSEghBCi0RLS8yCfuYH/xwDEp+fJ+Srfhg4mIoQQonEYY8jOzkZaWhpuPXqhkGsWi6UKuU5FUSEghBCi8iQSCdLT0/HmzRukpaXhzZs3pf/797+//+e0tDQUFxcDALSr10OtcRvknlFHS7kn5akQEEIIUToFBQWfvJF/7iafkZGB/76rTyAQwMzMDNWqVUO1atVgZmaGhg0bfvDv1apVQxVjUww9mCzXxwY8AHVN9eV4hW9HhYAQQohcMcaQlZVV5k/vb968QV7ex8/b9fT0PriR16tXD+3atfvopv/+n42NjcHjlW0rodW5DCTIcWGhlake9HWV+5ar3OkIIYQoHbFYXDo9X5abfFpaGkpKSj4ax8TE5IMbeYsWLT55Y3//z3p68nulsKhRdey5liCXrYcCPg+ihtVlPq6sUSEghBANl5+fX65P75mZmR+NoaWl9dGNvHHjxqX//N+vmZqaQktLeW5BI9pbITAyXi5jS6QMI+2t5DK2LCnP/zcIIYR8M6lUWjo9X9abfH7+x1Pl+vr6H9zIra2tYW9v/9lP70ZGRmWenldGDWoYoIuNGa7EpUGWkwQCPg8d65vCprqB7AaVEyoEhBCixEpKSkqn3cvy6T0tLQ0SieSjcapWrfrBp/XWrVt/9tO7mZkZKleuzMGvlluddBMRUaIFnkAbkFG50eLzsPznZjIZS96oEBBCiIIwxkqn58v66f3t27cfjaOtrf3BzbtGjRpo2rTpBzf1f9/kq1atqlTT88qmuLgYCxYsgK+vL7pNXIo4U3uZje3Vrwksq8pv7YMs0e8QopHyisSIT89DsVgKHS0+6prqK/0KYKJ8pFIpMjMzy/zp/c2bNygsLPxonCpVqnxwI7e1tUWnTp0++uT+/t8NDQ1VenpemSQnJ2PIkCG4ceMGNmzYAGdnZ4xcvgdXckzx7nzBiv93nt+zIYbaKf/agffob0CiMZ68ykFQVCIuxr5GYkb+B3uOeQCsqupB1Kg6RrS3QoMayv+8j8hecXHxBwfXfO4m//7f09PTP5qe5/F4MDU1/eBGXrdu3c9+ejczM0OlSpU4+hVrtvPnz2PYsGHQ1dVFREQE7O3tcebMGRxwG4f+c3/HPZ3GEEtZuXYeCPg8aPF58OrXRKXKAADw2H9PcviE7OxsGBkZISsrC4aGhorIRYjMJGXkY3HoXVx6mgYBn/fFP9zvv97FxgzLf26mMlN95GOMMeTm5pbr03t2dvZH4+jo6HzxWft/v1a1alUIBAIOfsWkrKRSKVasWAFXV1d069YN+/btQ7Vq1RAbGwt7e3t06tQJx44dw4usIpX/u6M8928qBEStHYhOhPux+xVu+Z59m8CpnWq1fHUllUqRkZFRphv7+38vKir6aBxDQ8PPflr/1E2+SpUqND2vRjIzMzF69GicOHECrq6ucHd3h0AgQEZGBtq3bw8dHR1cvXr1g3td6ezio9dITP/E7KKpHkQNq2OkvZXS7SagQkAIgI0XnmD1mcffPM68HraY0a2BDBKRfysqKirTtPz7f87IyIBU+uHLYfh8PkxNTcv86d3MzAy6uroc/YoJ127duoVBgwbh7du32LNnD3766ScA73Zy9OrVC//88w+io6NRv379z46hauuPynP/Vt5fBSHf4EB0okzKAACsPvMY1Qx0Ve55oCIxxpCTk1OuT+85OTkfjaOrq/vBTdzS0hKtWrX67E3exMQEfL5yvzCGKAd/f384OzujadOmuHDhAurWrVv6tTlz5iA8PBxnz579YhkAAH1dLTSpZSTntNygQkDUTlJGPtyP3ZfpmG5H76OjtZnSPBeUN4lE8sH0fFm2yL1/c9y/GRkZfXAjb9q06Rc/yevr69P0PJGpgoICODs7Y+fOnZg8eTJ8fX0/WMS5ZcsWbNq0CVu3boWjoyN3QZUAFQKidhaH3oVYxueRi6UMi0PvYs/E9jIdV1EKCwvL9en9c2+O++/0fIMGDT776d3U1BQ6Ojoc/YoJAeLi4jBo0CDExsYiMDAQY8aM+eDrFy5cwMyZMzFr1ixMnjyZo5TKgwoBUStPXuXg0tM0mY8rkTJcepqGp69zOF809P7NceV5NWxubu5H41SuXPmDG3ndunVhZ2f3xTfH0fQ8URVHjx7FmDFjUK1aNURFRaF58+YffP3p06cYNGgQunXrhjVr1nCUUrlQISBqJSgq8avbgypKwOdh77VEePRtItNx//3muLLc5D/35jhjY+MPbuTNmzf/4mI7fX3lfjc7IRUhFovh6uqKFStWoH///ggMDISR0YfP/LOystCnTx9Uq1YNwcHBdIrj/9B/BaJWLsa+lksZAN7NElx89Boe+HIhyM/PL9en94yMjI/G0NLSKl0V//5G3qhRoy++OU5bW1suv25CVMWrV68wbNgwREREYNWqVZg3b95Ha1IkEgmcnJyQmpqKqKgomJiYcJRW+VAhIGojt0iMxIyP39omSwnpedi8zR/ZGW8+e5P/1Jvj9PT0PriR169fH+3bt//sp3djY2NaXEdIOVy+fBlDhgyBVCrF+fPn0bVr109+3/z583H27FmcOnUKtra2Ck6p3KgQELWRkJ4H+cwN/BsPs119YCDO+uBG3rJlyy8edKOnpxm7EwhRNMYY1q1bh/nz56Njx44IDg5GzZo1P/m9/v7+WLt2LTZs2IDvv/9ewUmVHxUCojaKxdKvf5MMRF6LRtt6Zgq5FiHk87KzszFhwgQcPnwY8+bNw/Llyz/76OzSpUuYNm0apk6dCmdnZwUnVQ1UCIja0NFSzAr4yrr0rJ4Qrt27dw8DBw7Ey5cvERISgp9//vmz3/v8+XP8/PPP6NSpE9avX0+P4z6D9hARtVHXVP8bXlRaNrz/XYcQwp2goKDS9w7cuHHji2UgJycHffv2haGhIQ4fPkyLb7+ACgFRG/q6WrCS80mCVqZ6Sn1uOSHqrKioCM7Ozhg5ciQGDhyIa9eufXFhoEQiwYgRI5CYmIjjx4/D1NRUgWlVDxUColZEjapDwJfTPIFUAoOcRLx48UI+4xNCPisxMREODg7YsWMH/Pz8sGvXrq+epbFkyRKcPHkSBw4cgFAoVFBS1UWFgKiVEe2t5HYOAfgChO3whqWlJXr37o3Q0NBPnt9PCJGtM2fOoHXr1khNTcXly5cxZcqUr64D2LNnD1auXInff/8dvXr1UlBS1UaFgKiVBjUM0MXGTOazBAI+D11szJD84AY2b96MN2/eYODAgbCwsMAvv/yCe/fuyfR6hBBAKpXCy8sLP/zwA+zs7HDr1i3Y2dl99eddu3YNEydOxLhx4zBnzhwFJFUPPPbfN5h8Qnnep0wI15Iy8vHdH+EokuE2RF0tPs790vWDtx3eu3cPO3fuxJ49e/DmzRvY2dlh/PjxcHJygrGxscyuTYgmSk9Px8iRI/H333/Dw8MDS5cuLdO7NBITE9GuXTs0aNAA586dg66urgLSKq/y3L9phoCoHcuqevCU8fsGvPo1+ejVx02bNsWaNWuQnJyM0NBQ1KhRA87OzqhZsyZGjhyJCxcuQCpVzNkIhKiT69evo3Xr1rh+/TpOnToFNze3MpWBvLw89OvXD5UqVUJISIjGl4HyokJA1JJTOyvM7fFu9XEZJsG+aH7PhhhqZ/XZr+vo6GDAgAE4fvw4kpKS4OHhgevXr6N79+6wtraGl5cXEhISvikDIZqAMQY/Pz907twZ5ubmuHXrFnr27FmmnyuVSjFmzBg8efIEx44dQ/Xq1eWcVv1QISBqS+95BNJPrYc2H+VeUyDg86CrxcfKgc3gLLIp88+rVasWFi5ciNjYWFy5cgXdu3fH77//jnr16qFHjx7Yv38/CgsLy/tLIUTt5efnY8yYMZg2bRomTZqEiIgIWFl9voj/l4eHB0JDQ7Fv376PXnVMyoYKAVFLDx8+xKxZszCsfR1cnN8NHeu/23/8tWLApBIAQMf6pjj3S9cvzgx8CY/HQ8eOHbFjxw68fPkSAQEBKCwsxPDhw1GzZk04Ozvj5s2b3zx7QYg6ePz4Mdq3b4+QkBAEBQVh48aN5ZruDw4Ohre3N5YvX46+ffvKMal6o0WFRO0UFhbC3t4excXFuHHjRumLhZ68ykFQVCIuPnqNxPT8D16ExMO7Q4dyHl2DOPYibl/6Wy7Hmz5+/BiBgYHYtWsXXrx4gebNm2P8+PEYMWIEzMzo/QhE84SGhmLs2LGoWbMmQkND0aRJ+db/3LhxA126dMGgQYOwe/duOpb4P8p1/2ZlkJWVxQCwrKyssnw7IZyaOXMm09XVZbdv3/7s9+QWlrB7KW/ZrYQMdi/lLcstLGGMMXbmzBkGgIWFhck1Y0lJCTt58iQbOHAg09bWZtra2mzQoEHsr7/+YmKxWK7XJkQZFBcXs7lz5zIAbNCgQRW6vyQnJ7NatWqx9u3bs4KCAjmkVH3luX9TISBq5dixYwwA27hxY4V+vlQqZUKhkA0YMEDGyT7v9evXbO3ataxZs2YMALOwsGCLFy9mT548UVgGQhTpxYsXrEuXLkxLS4utXbuWSaXSco+Rn5/P2rZty2rXrs1evnwph5TqgQoB0UjJycnM1NSU9e3bt0J/wbzn5+fH+Hw+e/78uezClYFUKmXXr19n06ZNY0ZGRgwAc3BwYIGBgSw3N1ehWQiRl7CwMFajRg1Ws2ZNdunSpQqNIZVKmZOTE6tcuTK7efOmjBOql/Lcv2lRIVELEokEo0aNQqVKlRAQEPBNzxFHjRoFIyMjbNy4UYYJv47H46Ft27bYvHkzXr58iX379kFHRwdjx46Fubk5Jk2ahMjISFqISFQSYwy///47unfvDqFQiJiYGHTu3LlCY/n4+ODAgQPYvXs3WrduLeOkGkzWDYMQLixbtozxeDx28eJFmYy3cOFCZmRkxHJycmQy3rd4/vw58/DwYHXq1GEAWMOGDdnKlStpmpSojLdv37L+/fszAGzRokWspKSkwmOFhIQwAMzT01OGCdUXPTIgGuXKlStMIBAwV1dXmY2ZmJjIBAJBhdciyINEImHnzp1jw4cPZ7q6ukwgELA+ffqwI0eOsOLiYq7jEfJJt2/fZjY2NszIyIgdPXr0m8aKiYlhenp6bMiQId/0WFCTlOf+TdsOiUp7+/YtWrZsCQsLC4SHh0NLS0tmYw8ZMgS3b9/Gw4cPy3RsqiJlZmbiwIEDCAgIwI0bN1C9enWMGjUK48aNK/e2LULkZdeuXZg2bRpsbW0REhICa2vrCo+VmpqKdu3aoXr16oiIiCjdTky+jN5lQDQCYwyTJ0/G27dvsW/fPpmWAQBwcXHB48eP8ffff8t0XFkwMTHBtGnTcP36ddy+fRvDhw9HYGAgmjZtCnt7e2zbtg1ZWVlcxyQaqrCwEFOmTMHYsWMxbNgwXL169ZvKQGFhIQYMGACxWIyjR49SGZAXWU85EKIo27dvZwDYoUOH5DK+VCplbdu2ZT169JDL+LJWVFTEDh8+zH788UfG5/NZ5cqV2ahRo9jFixeZRCLhOh7REM+ePWOtW7dmurq6bMeOHd88nlQqZaNHj2a6urosKipKBgk1C60hIGrvwYMHrHLlymzy5Mlyvc6ePXsYAPbgwQO5XkfWkpOT2W+//cYaNGjAALD69eszLy8vlpCQwHU0osZOnjzJTExMWL169WS2HXDlypUMAAsKCpLJeJqGCgFRawUFBax58+ascePGLC8vT67XKioqYubm5mzq1KlyvY68SKVSdunSJTZu3Dimr6/PeDwe69GjBztw4ACd7EZkRiwWM1dXVwaA9e7dm2VkZMhk3GPHjjEej8eWLFkik/E0ERUCotbKcjSxLHl6erLKlSuz9PR0hVxPXrKzs5m/vz/r1KkTA8BMTEzYjBkz2K1bt7iORlTY69ev2ffff8/4fD7z8fGR2eOpu3fvsipVqrD+/fvTI69vQIWAqK2jR49+09HEFfHq1Sumo6PDVq5cqbBryltsbCxbuHAhMzc3ZwBYy5Yt2fr161laWhrX0YgKuXr1KqtduzarVq0aO3funMzGff36Natbty5r0aKFUpwFospo2yFRSykpKWjevDm6dOmCI0eOKPStZuPGjcP58+fx7Nkzme9m4JJYLMbp06cREBCA48ePg8/no3///hg/fjy+++47CAQCriMSJcQYw6ZNm/DLL7+gbdu2OHToECwsLGQydnFxMb7//nvExsYiOjoaderUkcm4moredkjUjlgsZo6OjszCwoKTT7ExMTFy3dGgDF69esXWrFnDmjRpwgCw2rVrs6VLl7KnT59yHY0okZycHObk5MQAMBcXF1ZUVCSzsaVSKZswYQLT0dFhV65ckdm4moweGRC18/5oYnm/lvhLHBwcWKdOnTi7vqJIpVIWHR3Npk6dygwNDRkA5ujoyHbt2kUvWdJwDx48YI0bN2ZVqlRhwcHBMh9/3bp1DAALDAyU+diaigoBUSvyOJq4IkJDQxkAduPGDU5zKFJeXh7bu3cv69atGwPADAwM2KRJk9jVq1fp6FgNExwczPT19Vnjxo3lsg331KlTjM/ns/nz58t8bE1GawiI2nj79i1atGgBS0tLhIWFcfr8XiKRwMbGBl26dMHu3bs5y8GV58+fIzAwEDt37kRSUhIaN26M8ePHY9SoUahRowbX8YicFBcXY8GCBfD19cWwYcOwbds2VKlSRabXiI2NRfv27dGlSxccPXqU1q7IEK0hIGpBKpWywYMHM2NjYxYfH891HMYYY6tXr2ba2toa/aZBsVjMzpw5w5ycnJiuri7T0tJi/fr1Y0ePHqWXLKmZ5ORk1rFjR6atrc02bNggl1mh9PR0ZmNjw5o0aUL3GDkoz/2b3mVAlJa/vz8OHTqE7du3K81K4wkTJkBHRwdbtmzhOgpnBAIBvv/+e+zfvx8vXrzAunXrkJSUhH79+sHS0hILFizAw4cPuY5JvtH58+fRqlUrJCYmIiIiAjNmzJD5zp6SkhIMHjwYmZmZOHbsGM1Ac03WDYMQWbh//75CjiauCGdnZ1a9enVWWFjIdRSlEhMTw2bNmsWqVq3KALAOHTqw7du3098bKkYikTAfHx/G5/PZd999x16/fi23a02fPp1paWlxulhY3dGiQqLSCgoKWLNmzZhQKJT70cQVERsbSyuhv6CwsJAdOnSI9erVi/H5fKanp8fGjBnDwsLCaCGiksvIyGC9e/dmAJirqysTi8Vyu9amTZsYALZt2za5XYNQISAqbsaMGUxXV5fduXOH6yif1atXL9aqVSu6wX1FUlIS8/HxYdbW1gwAs7a2ZsuWLWNJSUlcRyP/cevWLVavXj1mYmLCTpw4IddrnTt3jgkEAubi4iLX6xAqBESFvT+aeNOmTVxH+aLTp08zACw8PJzrKCpBKpWy8PBwNmbMGKanp8f4fD774Ycf2MGDB+nRixLYsWMH09XVZW3atGHPnz+X67UeP37MTExMWI8ePVhJSYlcr0Vo2yFRUcnJyWjRogUcHBwQGhqq0KOJy4sxhiZNmqBx48YICQnhOo5Kyc7OxsGDBxEQEICrV6+iatWqGDlyJMaPH48WLVpwHU+jFBQUwNnZGTt37sTkyZPh6+uLSpUqye16b9++hb29PRhjiIqKgrGxsdyuRd4pz/2bdhkQpSCRSDBy5Ejo6enB399fqcsAAPB4PMyaNQt//vkn4uPjuY6jUgwNDTFx4kRERkbiwYMHmDBhAoKDg9GyZUu0adMGmzZtQkZGBtcx1V5cXBw6duyI/fv3IzAwEFu3bpVrGRCLxXBycsKrV69w/PhxKgNKiAoBUQq//fYbLl26hL1796Jq1apcxymTUaNGwdDQEJs2beI6ispq3LgxVq1ahaSkJBw9ehSWlpZwcXFBrVq1MGzYMJw9exYSiYTrmGrn2LFjaNOmDXJzcxEVFYUxY8bI/Zrz58/HuXPncOjQIdja2sr9eqQCZP0MgpDyunz5MhMIBMzNzY3rKOU2f/58ZmRkRK9olaHU1FS2evVq1rhxYwaAWVlZMTc3N/bs2TOuo6m8kpIStmjRIgaA9e/fn719+1Yh192+fbvCX1tO3qFFhURlZGRkMCsrK9a5c2eVXGCUkJDABAKB0i+CVEVSqZRdu3aNTZ48mRkYGDAATCQSsT179ijldlRll5qaykQiERMIBGzVqlUK2yETHh7OtLW12dSpU2lXDgdoUSFRCYwxDB48GOfPn8ft27dhZWXFdaQKGTx4MO7evYsHDx6Az6encPKQl5eH0NBQBAQEICwsDIaGhhg2bBjGjx8POzs7pV9zwrUrV65g8ODBkEqlCA4ORteuXRVy3efPn8POzg7NmzfH33//DW1tbYVcl/w/WlRIVMKOHTsQEhKCHTt2qGwZAAAXFxc8evQIZ86c4TqK2tLX18eoUaNw8eJFPH36FLNmzcLJkyfRvn17NGvWDH/88Qdev37NdUylwxjD2rVr4ejoCBsbG8TExCisDGRnZ6NPnz4wNjbGoUOHqAyoAllPORBSFu+PJp4yZQrXUb6ZVCplrVu3Zj179uQ6ikYRi8Xs9OnTbMiQIUxHR4dpaWmxAQMGsOPHj6vk4ydZy8rKYoMGDWIA2Lx58xT64imxWMx69+7NDA0N5fKqZFJ2tIaAKLX8/HzWrFkz1qRJE7V5Frxr1y4GgD18+JDrKBopLS2NrV+/nrVs2ZIBYObm5mzhwoUsNjaW62icuHfvHmvYsCEzMDBgISEhCr/+ggULGJ/PZ3/99ZfCr00+RIWAKDVnZ2dWqVIldvfuXa6jyExhYSGrUaMGmzZtGtdRNN6tW7fYzJkzmYmJCQPAOnXqxPz9/Vl2djbX0RRi7969TE9PjzVt2pQ9evRI4dd/X47/+OMPhV+bfIwKAVFaf/75JwPANm/ezHUUmfPw8GB6enosIyOD6yiEvXtJVnBwMOvZsyfj8XhMX1+fjR07lkVERKjlavfCwkI2ffp0BoCNGjWK5ebmKjzDlStXmI6ODhs/frxa/jdWRVQIiFJKSkpiVatWZf3791fLvyxSU1OZjo4OW7VqFddRyH8kJiYyb29vVr9+fQaANWjQgC1fvpwlJydzHU0mEhISWLt27ZiOjg7z8/Pj5M9XQkICq169OuvSpQsrKipS+PXJp9G2Q6J0JBIJunfvjri4ONy+fVtlTiMsrzFjxiAsLAxxcXHQ0tLiOg75D6lUioiICAQEBODw4cMoKirCDz/8gPHjx6NPnz7Q0dHhOmK5nTlzBsOHD4e+vj4OHz4MOzs7hWfIzc1F586d8fbtW1y/fh3VqlVTeAbyabTtkCid5cuX49KlSwgKClLbMgC824KYmJiIo0ePch2FfAKfz4ejoyN2796Nly9fYsuWLUhPT8egQYNgYWGBOXPm4O7du1zHLBOpVAovLy/88MMPsLOzw61btzgpA1KpFKNHj0ZcXByOHz9OZUCVyXrKgZD/unz5MuPz+czd3Z3rKArRpUsX1qVLF65jkHK4d+8emzt3LqtWrRoDwNq2bcs2b97MMjMzuY72SWlpaaxXr16Mx+MxT09PJpFIOMuydOlSxuPx2NGjRznLQD6P1hAQpaHqRxNXxOHDhxkAdvPmTa6jkHIqLi5mf/75J+vbty8TCASsUqVKbPjw4ezcuXOc3nT/LTo6mllZWTFTU1N2+vRpTrPs27ePAWArVqzgNAf5PCoERClIpVI2cOBAZmxszBISEriOozAlJSXMysqKjR49muso5Bu8fPmSrVq1ijVq1IgBYHXq1GHu7u7s+fPnnOSRSqXMz8+P6ejosHbt2nH+ZyoqKopVqlSJjRo1Si0XCasLKgREKWzdupUB4ORgFK79/vvvTEdHh6WmpnIdhXwjqVTKIiMj2cSJE1mVKlUYANa9e3cWFBTE8vPzFZIhLy+PjRo1igFgzs7OrLCwUCHX/Zzk5GRWs2ZNZm9vzwoKCjjNQr6sPPdvWlRI5OL+/ftwcXHB1KlT8fPPP3MdR+EmTJgALS0t+Pn5cR2FfCMej4cOHTpg+/btSE1NRWBgIEpKSjBixAjUrFkT06dPx40bN8C+vmGrQh4/foz27dsjJCQEQUFB2LhxI3R1deVyrbLIz89H//79IRAIcOTIEVSqVImzLES2aNshkbmCggK0b98eUqkU169fR+XKlbmOxInp06cjJCQEiYmJnP4FTuTjyZMnCAwMRGBgIF68eIFmzZph/PjxGDFihMxW2oeGhmLs2LGoVasWQkJC0KRJE5mMW1GMMQwbNgzHjx/H5cuX0apVK07zkK8r1/1b1lMOhEyfPl3tjiauiIcPHzIAbNeuXVxHIXIkFovZX3/9xQYNGsS0tbWZtrY2GzhwIDt58mSFF9IWFxezuXPnMgBs0KBBSnPsspeXFwPADh8+zHUUUka0hoBw5siRI2p7NHFF/PDDD6x169a06EpDvHnzhvn6+rLmzZszAKxWrVrs119/ZY8fPy7zGC9evGBdunRhWlpabO3atUrze+f97hkvLy+uo5ByoEJAOJGYmMhMTEzYgAEDlOYvMa6dOnWKAWCXLl3iOgpRIKlUym7evMmcnZ2ZsbExA8A6d+7MAgICWE5Ozmd/XlhYGKtRowarWbOmUv2euXXrFtPT02NDhw6lP9sqho4uJgonkUjQrVs3PHv2TK2PJi4vqVQKoVCIpk2b4vDhw1zHIRwoLCzEn3/+iYCAAJw7dw56enoYOnQoxo8fj44dO4LH44ExhtWrV+PXX3+Fg4MD9u/fjxo1anAdHQCQmpoKOzs7mJubIzw8HHp6elxHIuVQnvs3FQIiE97e3vDw8MDFixfh4ODAdRylsnnzZsycORPPnj1DnTp1uI5DOJSQkIBdu3Zh586diI+Ph62tLYYPH45r167h9OnTWLRoEby9veX+HgxpXh6KExPBiovB09GBjpUV+Pr6H31fYWEhRCIREhIScP36dVhYWMg1F5E9KgREoS5fvoyuXbvC1dUVHh4eXMdROrm5ubC0tMSkSZOwatUqruMQJSCVShEWFoY1a9bg1KlTYIzBzs4Ov/76K3766Se5vGSp6OlTZB4IRm5EOEqSkoF//9XP40HbsjaqOHSFidNQ6NrYgDGG0aNH4/DhwwgPD0e7du1knonIHxUCojCZmZlo0aIF6tatiwsXLtAb/j5j/vz52LFjB5KTk6H/iU9iRPPs2rUL06ZNg7W1NYYMGYLjx4+Xvilw1KhRGDduHJo2bfrN1ylOTkaqmzvyIiMBgQCQSD7/zf/7un7HjjhaqyZm+fhg3759GDZs2DfnINygtx0ShWCMYdKkScjNzcXevXupDHzBjBkzkJ2djd27d3MdhXCssLAQU6ZMwdixYzFs2DBER0fD1dUV0dHRuHv3LkaNGoXdu3ejWbNmaN++PbZu3YqsrKwKXSvz0CE8+6k38qKi3v3Al8rAv76ee+0aOh88hJ3DR1AZ0CBUCEiFbd++HSEhIdixYwesrKy4jqPU6tSpg/79+2P9+vWQSqVcxyEciY+PR+fOnbFr1y7s2LED/v7+Hxzc1bRpU6xZswYpKSkIDQ1F9erVMX36dJibm2PkyJG4cOFCmX//pPn5IdXVDayo6OtF4D94Uil0+Xy0v3kTaXTapsagQkAqRNOPJq6I2bNnIzY2FmfPnuU6CuHAX3/9hdatWyMjIwORkZGYMGHCZ79XR0cHAwYMwPHjx5GUlAQPDw9cv34d3bt3h7W1Nby8vJCQkPDZn5956BDerPP9pry8//3fN+t88ZZ2yGgEWkNAyq2goADt2rUDY0yjjyYuL8YY2rRpA3Nzc/z1119cxyEKIpFI4OnpCW9vb/Tp0we7du2CiYlJucdhjCEyMhIBAQEIDg5Gfn4+vvvuO4wfPx79+/cvfadAcXIynv3U+93MgIzwdHVR/+QJ6NSuLbMxiWLQGgIiV/PmzcPTp09x4MABKgPlwOPx4OLiglOnTiE2NpbrOEQB3rx5g169esHHxwfLly/Hn3/+WaEyALz7/dOpUyf4+/sjNTUV/v7+KCgowLBhw1CzZk3MmDEDt27dwks3dzCxWKa/DiYWI9XNXaZjEuVDMwSkXP78808MGDAAW7ZswdSpU7mOo3KKiopgZWWFQYMGYdOmTVzHIXJ07do1DB48GEVFRdi/fz+6d+8ul+s8fvwYO3fuxK5du6CXno7j9erL5ToAUP/kCehaW8ttfCJ7NENA5CIpKQnjx4/HgAEDMGXKFK7jqCRdXV1MmzYNu3btwtu3b7mOQ+SAMYaNGzfCwcEBlpaWiImJkVsZAABbW1v89ttvSExMxN5Ro1G+5YPlIBAgc/8BeY1OlAAVAlImEokEI0aMQJUqVbBjxw7weLyv/yTySVOnTkVxcTH8/f25jkJkLDc3F8OHD8fMmTMxffp0hIWFKex0Py0tLZglJkAgrwtIJMiNiJDX6EQJUCEgZeLj44MrV64gKCiI3lPwjczNzeHk5IQNGzZALONnvYQ7sbGxaNeuHU6cOIHg4GCsW7dOLicOfo4kN+/dCYRyVJKUBGlenlyvQbhDhYB81eXLl+Hp6Qk3Nzd06dKF6zhqwcXFBQkJCTh27BjXUYgMHDx4EHZ2dgCA6OhoDBkyROEZSpISPzyOWB4YQ3FionyvQThDhYB8UUZGBoYPH45OnTphyZIlXMdRG23atEHnzp3h6/tte8UJt4qLizF79mwMHToUffr0QXR0NBo3bsxJFlZcrFbXIYpHhYB81r+PJg4KCqKjiWXMxcUFERERiImJ4ToKqYCUlBSIRCJs3rwZGzZsQFBQEKpUqcJZHp6CHk8o6jpE8agQkM/atm0bQkND4e/vD0tLS67jqJ3+/fvDysqKZglU0Pnz59GqVSskJiYiIiICM2bM4HyhrY6VFSDvDDzeu+sQtUSFgHzS/fv3MXv2bEybNg0DBgzgOo5a0tLSgrOzM/bv349Xr15xHYeUgVQqxW+//YYePXqgRYsWuHXrFuzt7bmOBQDg6+tD21K+JwlqW1qCT2/rVFtUCMhHCgoKMHToUNjY2GDNmjVcx1FrEydOhJaWFrZu3cp1FPIVmZmZ6NevHxYvXowlS5bg9OnTqFatGtexPlDFoeu7VxjLg0CAKg4O8hmbKAUqBOQjc+fORVxcHB1NrABVq1bF6NGjsWXLFhTJ8Ox5IlsxMTFo06YNrly5gpMnT8LLywsCed14v4GJ09Byv9mwzCQSmAxzks/YRClQISAfOHLkCLZs2YJ169ahSZMmXMfRCLNmzUJqaioOHjzIdRTyCf7+/ujQoQOqVq2KW7du4ccff+Q60mfp2thAv2NH2c8SCATQ79iRji1Wc/QuA1IqKSkJLVq0gEgkwuHDhzlfJKVJevbsifT0dFy/fp3+uyuJgoICzJgxAwEBAZg8eTJ8fX1L3yiozOhth+Tf6F0GpNzEYnHp0cTbt2+nm5KCzZ49Gzdv3kRkZCTXUQiAuLg4dOzYEfv27UNgYCC2bt2qEmUAAHRq10aNpbI9M8TcdSmVAQ1AhYAA+P+jifft20dHE3OgZ8+esLW1pS2ISuDYsWNo06YNcnNzERUVhTFjxnAdqdxMBg9GtdkuMhmr2uzZMB40SCZjEeVGhYDg0qVL8PLygru7Ozp37sx1HI3E5/Mxa9YshIaGIpGOhuWEWCzGr7/+in79+kEkEuHGjRto3rw517EqzGzqVJh7e0GipQVxeY80FgjA09VFzWXeMJtKbzbVFFQINFxGRgZGjBiBzp0709HEHBszZgyqVKmCTZs2cR1F47x69Qo9evTA77//jlWrViE0NBRGRkZcx/pmen37YnxuDhIMDN79wNcWG/7v6/rt26P+yRM0M6Bh6CxaDcYYw8SJE5Gbm4u9e/cq5TYqTVKlShVMnDgR27dvh5ubG/TpABiFuHLlCoYMGQKJRILz58+ja9euXEeSGX9/f9xMSoL1qVOor62NzAPByI2IQElS0ocvQuLxoG1piSoODjAZ5kS7CTQU7TLQYH5+fpg2bRqOHDmC/v37cx2HAIiPj4e1tTU2bdqEqVOnch1HrTHGsG7dOixYsAAdOnRAcHAwatasyXUsmSkoKICNjQ26deuGPXv2fPA1aV4eihMTwYqLwdPRgY6VFZ1AqKbKc/+mQqCh7t27Bzs7O4wfP56mqJXMzz//jNjYWNy/f592e8hJTk4Oxo8fj8OHD2PevHlYvnw5tLW1uY4lU+vWrcO8efMQGxsLGxsbruMQjlAhIF9UUFAAOzs78Hg8REdH02mESiY8PByOjo74+++/0aNHD67jqJ379+9j4MCBePHiBQIDA/Hzzz9zHUnm8vLyUL9+ffTu3Rv+/v5cxyEconMIyBf98ssvePbsGR1NrKQcHBzQsmVL2oIoB0FBQWjXrh20tbVx48YNtSwDALBp0yZkZmbC1dWV6yhEhVAh0DChoaHw8/Ojo4mVGI/Hg4uLC/766y88evSI6zhqoaioCDNmzMDIkSMxcOBAXLt2Dba2tlzHkoucnBysWrUKEyZMQN26dbmOQ1QIFQINkpiYiAkTJmDgwIGYNGkS13HIFzg5OaFatWrYsGED11FUXmJiIhwcHLB9+3b4+flh165dar2Dw9fXF7m5ubSNmJQbFQINIRaLMXLkSBgYGNDRxCqgUqVKmDp1KgIDA/H27Vuu46isM2fOoHXr1khNTcXly5cxZcoUtf69//btW6xZswZTpkxBbTpqmJQTFQINsWzZstKjiU1MTLiOQ8pg2rRpKC4uRkBAANdRVI5UKoWXlxd++OEH2NnZ4datW7Czs+M6ltz98ccfKCoqwq+//sp1FKKCqBBogIiICHh7e8PDw4OOJlYhNWvWxNChQ7FhwwZI5PWOezWUnp6O3r17w8PDAx4eHjh58iRMTU25jiV3aWlpWLduHZydnWFubs51HKKCqBCouX8fTbx48WKu45BycnFxQXx8PI4dO8Z1FJVw/fp1tG7dGtHR0Th16hTc3NzA52vGX3O///47GGNYsGAB11GIitKMPyka6v3RxPn5+QgKCqKjiVVQ27Zt0bFjR9qC+BWMMWzduhWdO3eGubk5bt26hZ49e3IdS2FevXqFjRs3wsXFBdWqVeM6DlFRVAjUmJ+fH44cOQJ/f39aYKTCZs+ejfDwcPzzzz9cR1FK+fn5GDNmDKZOnYpJkyYhIiICVlZWXMdSqBUrVkBbWxtz587lOgpRYVQI1NTdu3cxZ84cTJ8+nd5ToOIGDBgAS0tLmiX4hCdPnsDe3h4hISEICgrCxo0boaury3UshUpJScGWLVvwyy+/0IJh8k2oEKih/Px8DBs2DLa2tli9ejXXccg30tLSgrOzM/bt24fXr19zHUdphIaGom3btiguLkZ0dDSGDx/OdSROLF++HPr6+pg9ezbXUYiKo0KghubOnUtHE6uZSZMmQSAQYOvWrVxH4VxJSQnmzZuHgQMHokePHrh+/brGnrqZkJCA7du3Y/78+fSeGfLNqBComZCQkNKjiYVCIddxiIxUrVoVo0ePxubNm1FcXMx1HM68fPkS3bt3h6+vL9auXYuDBw/CwMCA61icWbZsGYyNjTFjxgyuoxA1QIVAjSQmJmLixIl0NLGamjVrFlJTU3Hw4EGuo3AiPDwcrVq1QlxcHMLCwjB79my1PnXwa+Li4rBz504sWrQIVapU4ToOUQNUCNSEWCzGiBEjYGhoSEcTqymhUIjvv/8evr6+KMNby9UGYwy///47unfvDqFQiFu3bqFTp05cx+Kcl5cXqlevjmnTpnEdhagJKgRqYtmyZYiMjKSjidWci4sLbty4gatXr3IdRSGysrIwcOBALFiwAPPnz8eZM2dQo0YNrmNxLjY2Fnv37sXixYtpnRCRGR4rw0eN7OxsGBkZISsrixauKKHw8HB069YNHh4e9P5zNSeVStGoUSO0atUKwcHBXMeRqzt37mDgwIF48+YNdu/ejb59+3IdSWkMGzYMV65cwZMnTzRumyUpn/Lcv2mGQMWlp6dj5MiR6NKlCx1NrAH4fD5mzZqFkJAQJCUlcR1Hbnbv3g17e3vo6+vj5s2bVAb+5d69ewgODsbSpUupDBCZokKgwv59NPHevXvpaGINMWbMGOjr62PTpk1cR5G5wsJCTJkyBWPGjMGwYcNw9epVWFtbcx1Lqbi7u6Nu3boYN24c11GImqFCoML8/Pzw559/IiAggI4m1iAGBgaYMGECtm3bhvz8fK7jyEx8fDw6d+6MXbt2YceOHfD396fn4/8RExOD0NBQuLm5QVtbm+s4RM1QIVBR748mdnZ2Rr9+/biOQxRs5syZyMrKwt69e7mOIhN//fUXWrdujYyMDERGRmLChAlcR1JKbm5usLW1xciRI7mOQtQQFQIVlJ+fDycnJ9ja2uL333/nOg7hQL169dC3b1+V34IokUjg5uaGn376CZ07d8bNmzfRunVrrmMppaioKJw4cQLu7u7Q0tLiOg5RQ1QIVNAvv/yC58+f09HEGs7FxQUPHjzAuXPnuI5SIWlpaejVqxd8fHywfPly/Pnnn7Rl9gvc3NwgFAoxdOhQrqMQNUU1U8WEhIRg69at2LZtGx1NrOG6du2K5s2bw9fXF99//z3Xccrl2rVrGDx4MIqKinDmzBl0796d60hK7fLlyzhz5gwOHTpEi4eJ3NAMgQp5fzTxoEGDMHHiRK7jEI7xeDzMnj0bJ0+exJMnT7iOUyaMMWzcuBEODg6wsrJCTEwMlYGvYIxh6dKlaNGiBX7++Weu4xA1RoVARYjFYgwfPhyGhobYtm0bHU1MALw7oKZatWpYv34911G+Kjc3FyNGjMDMmTPh7OyMsLAwWFhYcB1L6V24cAHh4eHw8vICn09/ZRP5od9dKsLb2xvXrl3D/v376TkrKVWpUiVMmTIFgYGByMrK4jrOZ8XGxqJ9+/Y4fvw4goODsXbtWto2VwaMMbi6usLOzg59+vThOg5Rc1QIVEB4eDiWLVsGDw8PdOzYkes4RMlMmzYNhYWFCAgI4DrKJx08eBB2dnZgjCE6OhpDhgzhOpLKOH36NK5evQpvb2+aFSRyR+8yUHLp6elo2bIlrK2tcf78eVpQRD5p5MiRiIyMxJMnT5Tm90hxcTEWLFgAX19fDBs2DNu2baPX9JYDYwzt2rWDrq4uLl26RIWAVAi9y0BNMMYwYcIEOpqYfJWLiwueP3+O48ePcx0FAJCSkgKRSITNmzdjw4YNCAoKojJQTseOHcONGzdodoAoDM0QKLHNmzfD2dkZR48epZe7kK/q2LEjdHV1cfHiRU5znD9/HsOGDYOuri4OHToEe3t7TvOoIqlUilatWsHU1BQXLlzgOg5RYTRDoAbu3r2LX375BTNmzKAyQMrExcUFYWFhuHPnDifXl0ql+O2339CjRw+0aNECt27dojJQQSEhIbhz5w68vb25jkI0CM0QKKH8/HzY2dlBIBAgOjoalSpV4joSUQElJSWoV68eevbsCX9/f4VeOzMzE6NHj8aJEyfg6uoKd3d3esRVQRKJBM2aNYOVlRVOnz7NdRyi4miGQMXNmTMHz58/R3BwMJUBUmba2tqYMWMGgoKC8ObNG4VdNyYmBm3atMGVK1dw8uRJeHl5URn4BgcOHMDDhw/h5eXFdRSiYagQKJnDhw9j27ZtWL9+PRo3bsx1HKJiJk2aBD6fj61btyrkev7+/ujQoQOqVq2KW7du4ccff1TIddWVWCyGp6cn+vTpg3bt2nEdh2gYKgRKJCEhAZMmTcLgwYPp9a+kQkxNTTFy5Ehs3rwZxcXFcrtOQUEBJkyYgIkTJ2Ls2LG4fPky6tatK7fraYo9e/bgyZMnNDtAOEFrCJSEWCyGo6MjkpOT8c8//8DY2JjrSERF3bt3D82aNUNQUBCGDx8u8/Hj4uIwaNAgxMbGws/PD2PGjJH5NTRRcXExGjZsiDZt2uDw4cNcxyFqgtYQqCAvLy9cu3YN+/btozJAvknTpk3x3XffYd26dShD3y+XY8eOoU2bNsjNzUVUVBSVARnauXMnEhIS4OnpyXUUoqGoECiBsLAwLFu2DJ6ennQ0MZEJFxcXXL9+HdeuXSv9MWleHgofPkTB7dsofPgQ0ry8Mo8nFovx66+/ol+/fhCJRLhx4waaN28uj+gaqbCwEMuWLYOTkxOaNGnCdRyioeiRAcfS09PRokULNGjQAOfOnaPV2UQmpFIpGjZsiJ5NmmBpWzvkRoSjJCkZ+Pcfdx4P2pa1UcWhK0ychkLXxuaTY7169QrDhg1DREQEfvvtN8ybN49OzpOxDRs2YPbs2Xjw4AEaNmzIdRyiRspz/6ZCwCHGGAYMGIBLly7hzp079CpYIjPFycmIGjsOZsnJAJ8PSKWf/2aBAJBIoN+xI8y9PKFTu3bpl65cuYIhQ4ZAIpEgODgYXbt2VUB6zZKfnw9ra2v07NkTgYGBXMchaobWEKiIzZs34+jRo9i5cyeVASIzmYcO4dlPvWH28uW7H/hSGQAAiQQAkBcVhWc/9UbmoUNgjGHdunVwdHSEtbU1YmJiqAzIyZYtW5CWlgY3NzeuoxANRzMEHLlz5w7atWuHyZMnY/369VzHIWoizc8Pb9b5fvM452vUwMyIcMybNw/Lly+Htra2DNKR/8rNzUW9evUwYMAAbNu2jes4RA3RIwMll5+fj7Zt20JbWxtRUVF0GiGRicxDh5DqKrtPmS9+HoDuy5fLbDzyseXLl8PT0xNPnjyBlZUV13GIGqJHBkpuzpw5iI+Px4EDB6gMEJkoTk7Gq2U+Mh3T4uRfKE5OlumY5P9lZWVh9erVmDRpEpUBohSoECjYoUOH6GhiInOpbu5gYrFMx2RiMVLd3GU6Jvl/a9euRUFBARYvXsx1FEIAUCFQqPdHEw8ZMoSOJiYyU/T0KfIiI0sXB8qMRIK8yEgUxcXJdlyCjIwMrF27FtOnT0etWrW4jkMIACoECiMWizF8+HAYGxtj69attI+byEzmgeB3WwflQSBA5v4D8hlbg61evRoSiQQLFy7kOgohpagQKIiXlxeioqLoaGIic7kR4bKfHXhPIkFuRIR8xtZQb968wfr16zFz5kxUr16d6ziElKJCoAB0NDGRF0lu3rsTCOWoJCmpXMccky9buXIl+Hw+5s2bx3UUQj5AhUDO0tLSMGLECDg6OmLRokVcxyFqpiQp8cPjiOWBMRQnJsr3Ghri5cuX2LRpE+bMmQNTU1Ou4xDyASoEcsQYw4QJE1BUVIQ9e/bQewqIzLHiYrW6jrr77bffUKlSJcyZM4frKIR8RIvrAOps8+bNOHbsGI4dO0ZHExP5UNAJgjwdHYVcR50lJSVh69atcHNzo3VERClRIZCT27dvY+7cuZg5cyb69OnDdRyiJhhjiIuLw8WLF3Hx4kVcCwvDcQND8OW5a4XHgw4dnPPNfHx8YGBggFmzZnEdhZBPokIgB3l5eXByckKjRo2watUqruMQFcYYw/Pnz3Hx4kWEhYXh4sWLSElJAZ/PR5s2bTB41ChILl8BPz1dbhm0LS3B19eX2/ia4Pnz5/D398fy5cthYGDAdRxCPokKgRzMmTMHiYmJuHnzJh1NTMotISGhdAYgLCwMiYmJ4PF4aNWqFZycnCASidClS5fSc8lTl/kgc/9++Ww9FAhQxcFB9uNqGG9vb5iamsLZ2ZnrKIR8FhUCGTt06BC2b9+OHTt2oFGjRlzHISogKSmp9NP/xYsXER8fDx6PhxYtWmDgwIFwdHSEg4PDZ587mzgNRebevfIJJ5HAZJiTfMbWEE+ePMHu3buxZs0a6OnpcR2HkM+iQiBD8fHxpUcTjx8/nus4REm9ePHig0cAcf87GrhZs2bo27cvRCIRHBwcULVq1TKNp2tjA/2OHZEXFSXbWQKBAPrt20PX2lp2Y2ogT09PmJubY8qUKVxHIeSLqBDICB1NTD4nNTW19OYfFhaGx48fAwCaNGmCH374ASKRCF27doWZmVmFr2Hu5YlnP/UGk2Eh4GlpwdzLU2bjaaIHDx5g37592LRpEz0+JEqPCoGMeHp6Ijo6GpcuXaItRRru9evXCAsLKy0BsbGxAIBGjRqhe/fu8Pb2hqOjo0yPrdWpXRs1li5BqqubzMY0d10Kndq1ZTaeJvLw8ICVlRW9zIyoBCoEMhAWFgYfHx8sW7YMHTp04DoOUbC0tDSEh4eXzgDcv38fAGBrawtHR0e4u7uja9euqFmzplxzmAweDEl6Ot6s8/3msarNng3jQYNkkEpz3b59G4cOHcKOHTugQ+c4EBXAY+zr555mZ2fDyMgIWVlZpSubyTtpaWlo0aIFGjZsiLNnz9JphBogIyMDERERpYsA7969CwCwtraGSCSCo6MjHB0dOTuMKvPQIbxa5gMmFpdvTYFA8O4xgetSKgMy0L9/f9y7dw8PHz6EtoIOkCLkv8pz/6YZgm/AGMP48ePpaGI19/btW0RERJQ+Arh9+zYYY6hXrx4cHR0xf/58ODo6wtLSkuuoAN7NFOh36IBUN3fkRUa+ezXyl4rB/76u3749zL086TGBDFy/fh1Hjx7F7t27qQwQlUEzBN9g48aNmDlzJo4fP47evXtzHYfISFZWFi5fvlw6AxATEwPGGKysrD6YAahbty7XUb+q6OlTZB4IRm5EBEqSkj54ERIDoGNlhSoODjAZ5kS7CWSoV69eiI+Px7179+iDAuFUee7fVAgq6Pbt22jfvj2mTJkCX99vf2ZLuJOTk4PLly+XzgDcvHkTUqkUFhYWEIlEpSWgXr16Kr17RJqXh+LERLDiYixYsgRPc3NxKiyM61hqJzIyEp06dcKBAwcwdOhQruMQDUeFQM7y8vLQtm1b6Orq4tq1a7SdSMXk5eXhypUrpYsAr1+/DolEAnNz89ICIBKJYG1trdIF4Evc3d2xdetWpKamch1F7XTv3h1v3rzBP//8Az6fXihLuEVrCORs9uzZdDSxCsnPz8fVq1dLHwFER0dDLBajevXqEIlEGDNmDEQiEWxtbdW2APyXUCjEq1evkJ6eDlNTU67jqI2wsDBcuHABoaGhVAaIyqFCUE4HDx7Ejh074O/vT0cTK6nCwsLSAhAWFoaoqCgUFxfDzMwMjo6O8PX1hUgkQqNGjTSmAPyXUCgEADx8+BCdO3fmOI16YIzB1dUVrVu3Rv/+/bmOQ0i5USEoh/j4eEyePBlDhw7FuHHjuI5D/qeoqAhRUVH//0rga9dQVFSEqlWrwtHREatXr4ZIJIJQKKRPbf9ja2sLgUCABw8eUCGQkbNnz+Ly5cs4efKkxhZNotqoEJTR+6OJTUxM4OfnR3/gOVRcXIzo6OjSRYCRkZEoLCyEsbExunbtipUrV8LR0RHNmjWjAvAZurq6sLGxwYMHD7iOohbezw7Y29ujV69eXMchpEKoEJSRh4cHHU3MkZKSEty4caP0EcCVK1eQn58PQ0NDODg4wMfHByKRCM2bN6ctXuUgFAqpEMjIyZMnER0djbNnz9KHBaKyqBCUwcWLF7F8+XL4+PjQ0cQKIBaLcfPmzdIZgMuXLyMvLw8GBgbo0qULPD094ejoiFatWlEB+AZCoRCBgYFcx1B5jDG4ubnBwcEB3bt35zoOIRVGheAr0tLSMHLkSIhEIixYsIDrOGpJIpEgJiamdAbg0qVLyMnJgb6+Pjp37gxXV1eIRCK0bt0aWlr0W1ZWhEIhUlJSkJWVBSMjI67jqKwjR44gJiYG4eHhNDtAVBr97foFdDSxfEgkEty5c6d0EWBERASys7NRuXJldO7cGYsWLYJIJELbtm3p2Fc5+vdOA3t7e47TqCapVAp3d3d89913cHBw4DoOId+ECsEXbNy4EcePH8fx48dRq1YtruOoLKlUirt375Y+AoiIiEBmZiYqVaqEjh07lr4LoF27dvRWOAVq2LAheDweHjx4QIWggg4ePIh79+5h+/btXEch5JtRIfiM27dvY968eXBxcaH3FJSTVCrFgwcPSmcAwsPDkZGRAV1dXXTo0AEuLi4QiURo3749dHV1uY6rsSpXroz69evTwsIKEovF8PDwwI8//kiFiqgFKgSfkJeXBycnJwiFQqxcuZLrOEqPMYaHDx+WzgCEhYUhLS0N2trasLe3x4wZM+Do6Ah7e3tUrlyZ67jkX2inQcXt27cPjx49QlBQENdRCJEJKgSf8O+jiekT7McYY3j8+HHpzT8sLAyvXr2ClpYW2rVrhylTpkAkEqFDhw7Q09PjOi75AqFQiAMHDnAdQ+WUlJTA09MT/fv3R5s2bbiOQ4hMUCH4j+DgYDqa+D8YY4iLiyt9BBAWFoaXL19CIBDAzs4O48aNg0gkQqdOnaCvr891XFIOQqEQCQkJyM3NRZUqVbiOozJ27dqFZ8+e4ciRI1xHIURmqBD8y/PnzzF58mQ4OTlp9NHEjDE8f/689OZ/8eJFpKSkgM/no02bNhg1ahQcHR3RuXNnGBgYcB2XfIN/7zSws7PjOI1qKCoqgre3N4YMGYLmzZtzHYcQmaFC8D8lJSUYPnw4qlatqpFHEyckJHwwA5CYmAgej4fWrVvDyckJIpEIXbp0oddfq5n3s2APHjygQlBGO3bsQHJyMjw8PLiOQohMUSH4H09PT1y/fh2XL1/WiENakpKSSj/9X7x4EfHx8eDxeGjRogUGDhwIR0dHODg40DHNaq5KlSqoU6cOLSwso4KCAvj4+GD48OFo3Lgx13EIkSkqBAAuXLhQejSxum4fevHixQczAHFxcQCAZs2aoW/fvhCJRHBwcEDVqlU5TkoUjXYalJ2fnx9ev34Nd3d3rqMQInMaXwjeH03crVs3LFy4kOs4MpOamvrBNsDHjx8DAJo0aYIffvgBIpEIXbt2hZmZGcdJCdeEQiEtjiuDvLw8rFixAmPGjIGNjQ3XcQiROY0uBIwxjBs3DiUlJdi9e7dKvyr39evXpVsAL168iNjYWADvnhF3794dy5YtQ9euXVG9enWOkxJlIxQK8ccffyA/P5+2iX7Bxo0bkZmZCVdXV66jECIXGl0INm7ciBMnTuDEiRMqdzRxWloawsPDS2cA7t+/DwCwtbWFo6Mj3N3d4ejoCHNzc46TEmXXpEkTMMbw6NEjtGrVius4Sik7OxurVq3ChAkTULduXa7jECIXGlsI/vnnn9KjiX/66Seu43xVRkYGIiIiStcB3L17FwBgbW0NkUiEX3/9FY6OjrCwsOA4KVE17xfHPXjwgArBZ/j6+iIvLw9LlizhOgohcqORhUAVjiZ++/YtIiIiSh8B3L59G4wx1KtXD46OjqUvBLK0tOQ6KlFxhoaGqF27Ni0s/IzMzEysWbMGU6dORe3atbmOQ4jcqFUhkObloTgxEay4GDwdHehYWYH/iZPzXFxckJSUhFu3binN0cRZWVm4fPly6QxATEwMGGOwsrKCSCSCi4sLHB0dabqSyAXtNPi8P/74A8XFxVi0aBHXUQiRK5UvBEVPnyLzQDByI8JRkpQMMPb/X+TxoG1ZG1UcusLEaSh0bWwQHBwMf39/BAQEoGHDhpzlzsnJweXLl0tnAG7evAmpVAoLCwuIRCI4OzvD0dER9erV07hDkojiCYVC/PXXX1zHUDppaWlYt24dZsyYQetxiNrjMfbvO+inZWdnw8jICFlZWUpzUl1xcjJS3dyRFxkJCASARPL5b/7f13mtWqH/36fRqmdP7Nu3T6E32ry8PFy5cqV0BuDGjRuQSCQwNzeHSCQq/Z+1tTUVAKJw27dvx9SpU5Gfn680s2bKYOHChdi8eTOeP39OW3SJSirP/VslZwgyDx3Cq2U+YGLxux/4Uhn419fFMTE4UK06qvfqJfebbn5+PiIjI0tnAKKjoyEWi1G9enWIRCKMHTsWIpEItra2VAAI54RCIaRSKR4/foxmzZpxHUcpvHr1Chs3bsScOXOoDBCNoHKFIM3PD2/W+Vbo5woA8Hk8ZC3/DTr5+TCbOlVmuQoLC3H16tXSbYBRUVEoLi6GmZkZHB0d4evrC5FIhEaNGlEBIErn3zsNqBC8s2LFCmhra2Pu3LlcRyFEIVSqEGQeOlThMvDe+1vxm3W+0DIzg/GgQRUap6ioCFFRUaWPAK5du4aioiJUrVoVjo6OWL16NUQiEYRCoUofeEQ0Q9WqVWFubk4LC/8nJSUFW7ZsweLFi2FiYsJ1HEIUQmUKQXFyMl4t85HpmKney6Bnbw+dMmwlKi4uRnR0dOkMQGRkJAoLC2FsbIyuXbti5cqVcHR0RLNmzagAEJVEOw3+3/Lly6Gvr4/Zs2dzHYUQhVGZQpDq5v7/awZkhInFSHVzh1WA/0dfKykpwY0bN0pnAK5cuYKCggIYGhrCwcEBPj4+EIlEaN68OQQCgUxzEcIFoVCI8+fPcx2DcwkJCdi+fTu8vLyUZhE1IYqgEoWg6OnTd7sJZE0iQV5kJIri4iCoUwc3b94sXQR4+fJl5OXlwcDAAF26dIGXlxccHR3RqlUrKgBELQmFQvj5+aG4uBg6Ojpcx+HMsmXLYGxsjBkzZnAdhRCFUolCkHkg+OtbCytIyuNh1/DhmPfwIXJycqCvr4/OnTvD1dUVIpEIrVu3hpaWSvxnIuSbCIVCiMViPH36FEKhkOs4nIiLi8POnTuxatUqVKlShes4hCiUStzpciPC5VIGAIDPGBrl5WPRokUQiURo27YttLW15XItQpTZ+xLw4MEDjS0EXl5eqF69OqZNm8Z1FEIUTukLgSQ3790JhHJUTSLBIheXTx5zTIimqFatGszMzDR2YWFsbCz27t0LX19fVK5cmes4hCic0i+HL0lK/PA4YnlgDMWJifK9BiEqQJN3Gnh4eMDCwgKTJk3iOgohnFD6GQJWXKxW1yFEmQmFQly5coXrGAp39+5dBAcHY+vWrXR0M9FYSj9DwFPQamdFXYcQZdakSRM8evQIYhlv8VV27u7uqFevHsaNG8d1FEI4o/SFQMfKCpD3Ub883rvrEKLhhEIhiouL8ezZM66jKMytW7dw5MgRuLm50YJiotGUvhDw9fWhbfn1kwS/hbalJS0oJAQf7jTQFG5ubrC1tcXIkSO5jkIIp5S+EABAFYeu784hkAMJgGfGxsjOzpbL+ISokho1asDExERjCsG1a9dw8uRJuLu703kjROOpRCEwcRoqt3MIBACcjx9DrVq1MG3aNNy9e1cu1yFEFfB4PI3aaeDm5gahUIihQ4dyHYUQzqlEIdC1sYF+x46ynyUQCKDfsSPCnj7FvHnzcPToUTRv3hwODg44cOAAimnnAdFAmlIILl26hLNnz8LLy4uOIycEKlIIAMDcyxM8GU/p8bS0YO7lCQsLC3h4eCAhIQEHDx6EQCDAsGHDYGVlBVdXVyQlJcn0uoQoM6FQiIcPH0Iip1k5ZcAYg6urK1q2bIkBAwZwHYcQpaAyhUCndm3UWLpEpmOauy794NXH2traGDx4MC5evIh79+5h0KBB8PX1Rd26dfHzzz/j3LlzYPI+JIkQjgmFQhQWFiIhIYHrKHJz4cIFhIeHw8vLi15XTsj/qNSfBJPBg1FttotMxqo2ezaMBw367NebNGmCjRs3IiUlBRs3bsTjx4/x/fffo1GjRvD19cXbt29lkoMQZaPuOw3ezw60a9cOvXv35joOIUpDpQoBAJhNnQpzby/wdHXLv6ZAIABPVxc1l3nDbOqUMv0UAwOD0sWG4eHhaNWqFebNmwcLCwtMnjwZ//zzT/l/EYQoMQsLCxgYGKhtITh9+jSuXr0KLy8v8OR9xgkhKkTlCgHwbqag/skT0G/f/t0PfK0Y/O/r+u3bo/7JE1+cGfgcHo9XutgwKSkJixYtwl9//YVWrVqhY8eOCAoKQlFRUbnHJUTZvN9pcP/+fa6jyBxjDG5ubujUqRN69OjBdRxClIpKFgLg3ZoCqwB/1D9xHCbDhkH7Uyca8njQtrKCybBhqH/yBKwC/D9YM1BR5ubmcHV1RXx8PEJCQqCnp4eRI0fC0tISv/76q1o/eyWaQV13Ghw7dgw3btyAt7c3zQ4Q8h88VoZVctnZ2TAyMkJWVhYMDQ0VkatCpHl5KE5MBCsuBk9HBzpWVgo7gTA2NhZ+fn4IDAxETk4OfvrpJzg7O+P777+nRUtE5axevRoeHh7Izs5Wm9+/UqkUrVq1gqmpKS5cuMB1HEIUojz3b/X4k/4/fH19VGrcGJVbtEClxo0Vehxxo0aNsG7dOqSkpMDPzw+JiYn44YcfYGtrizVr1iAjI0NhWQj5VkKhEHl5eWq15TYkJAR37tyBt7c311EIUUpqVQiUgb6+PiZNmoSYmBhcuXIF9vb2WLx4MSwsLDB+/HjcvHmT64iEfJW67TSQSCRwd3dHz5490alTJ67jEKKUqBDICY/HQ8eOHbF3714kJSXBzc0N58+fR9u2bdG+fXvs2rULBQUFXMck5JOsrKygp6enNoVg//79ePjwIby8vLiOQojSokKgANWrV8evv/6KZ8+e4ejRozAxMcHYsWNRu3ZtLFiwQKNeNUtUA5/PR+PGjdWiEIjFYnh6eqJPnz5o164d13EIUVpUCBRIIBCgb9++OH36NB4/foyxY8di+/btsLGxwU8//YSTJ0+q9XGxRLU0adJELQrB7t278fTpU5odIOQrqBBwpEGDBlizZg1SUlKwY8cOpKamonfv3mjQoAFWrVqFtLQ0riMSDfd+66EqH9ddXFwMLy8vDBw4EC1btuQ6DiFKjQoBx/T09DB+/HjcuHED165dQ5cuXeDm5obatWtj9OjRiIqKUum/kInqEgqFyM7OxosXL7iOUmEBAQFITEyEp6cn11EIUXpUCJQEj8crXWyYnJwMLy8vXLp0Cfb29mjbti0CAgKQn5/PdUyiQVR9p0FhYSGWLVsGJycnNGnShOs4hCg9KgRKyMzMDAsWLMDTp09x4sQJmJubY+LEibCwsMAvv/yCJ0+ecB2RaIC6deuiUqVKKlsItm3bhpcvX8Ld3Z3rKISoBCoESkwgEJQuNnz69CkmTZqEXbt2wdbWFj179sSxY8doESKRG4FAgEaNGqlkIcjPz8fy5csxatQoNGzYkOs4hKgEKgQqon79+li1ahWSk5Oxa9cuvH37Fv369UP9+vWxfPlyvH79muuIRA2p6jsNNm/ejPT0dLi5uXEdhRCVQYVAxVSuXLl0seH169fRvXt3eHt7o3bt2hgxYgQiIyNpESKRmfdvPVSl31M5OTlYuXIlxo0bh/r163MdhxCVQYVAhb1fbJiSkoIVK1YgKioKnTp1QqtWrbBt2zbk5uZyHZGoOKFQiMzMTJWagdqwYQOys7OxdOlSrqMQolKoEKiBqlWr4pdffsHjx49x+vRp1KlTB9OmTYOFhQVcXFwQGxvLdUSiolRtp0FWVhZWr16NyZMnw8rKius4hKgUKgRqhM/no2fPnjh69CiePXsGZ2dn7N+/H40bN0b37t0RGhoKsVjMdUyiQqytraGtrY379+9zHaVM1q5di4KCAixevJjrKISoHCoEaqpOnTpYvnw5kpKSsHfvXhQWFmLgwIGoW7cuvL298fLlS64jEhWgpaWFhg0bqsQMQUZGBtauXYvp06ejZs2aXMchROVQIVBzurq6GDFiBK5cuYKYmBj8+OOPWLFiBaysrDB06FBERESo1IIxoniqstNg9erVkEgkWLhwIddRCFFJVAg0SMuWLbFt2zakpKRg9erV+Oeff9C1a1c0b94cW7ZsQU5ODtcRiRJShULw5s0brF+/HjNnzkT16tW5jkOISqJCoIGMjY1LFxueO3cODRo0wIwZM1CrVi04OzurzPNiohhCoRBv3rzBmzdvuI7yWStXrgSfz8e8efO4jkKIyqJCoMF4PF7pYsP4+HjMnj0bISEhaNq0KRwdHXHo0CGUlJRwHZNw7P1Og4cPH3Kc5NNevnyJTZs2Yc6cOTA1NeU6DiEqiwoBAQBYWlrC29sbiYmJOHDgAKRSKYYMGYI6derA3d0dKSkpXEckHGnQoAEEAoHSPjb47bffUKlSJcyZM4frKISoNCoE5AM6Ojqliw3v3LmDfv36Yc2aNahTpw4GDRqECxcu0CJEDaOjo4MGDRooZSFITEzE1q1bMW/ePBgbG3MdhxCVRoWAfFazZs2wZcsWvHjxAr6+vnjw4AG6d+8OoVCIDRs2ICsri+uIREGaNGmilIXAx8cHBgYGmDVrFtdRCFF5VAjIVxkaGpYuNrx48SKaNm2KOXPmwMLCAlOnTsWdO3e4jkjkTBl3Gjx79gwBAQFYuHAhDAwMuI5DiMqjQkDKjMfjlS42TExMxPz583Hs2DG0aNECnTt3xv79+1FcXMx1TCIHQqEQL1++RGZmJtdRSnl7e8PU1BTOzs5cRyFELVAhIBVSq1YtuLu7IyEhAYcOHYKOjg6GDx8OS0tLLF26FImJiVxHJDKkbDsNHj9+jN27d+PXX3+Fnp4e13EIUQtUCMg30dbWLl1seP/+fQwZMgTr169HvXr10L9/f5w9exZSqZTrmOQb2drags/nK81jA09PT9SsWRNTpkzhOgohaoMKAZGZ94sNU1JSsGnTJjx79gw9evRAo0aNsG7dOqWabiblU6lSJVhbWytFIbh//z7279+PJUuWoFKlSlzHIURtUCEgMmdgYICpU6fi9u3buHTpEtq0aYMFCxbAwsICEydORExMDNcRSQUoy8JCDw8PWFlZYcKECVxHIUStUCEgcsPj8UoXGyYmJmLx4sX4+++/0bp1a3To0AF79uxBYWEh1zFJGSlDIfjnn39w+PBhuLq6QkdHh9MshKgbKgREIczNzbF06VI8f/4cR44cQZUqVTB69GhYWlpi0aJFiI+P5zoi+QqhUIikpCRkZ2dzlsHd3R3W1tYYPXo0ZxkIUVdUCIhCaWlplS42jI2NxciRI+Hn54f69eujT58+OHXqFC1CVFLvdxrExsZycv3r16/j2LFjcHd3h7a2NicZCFFnVAgIZxo2bIi1a9ciJSUF27ZtQ3JyMn788Uc0aNAAq1evRnp6OtcRyb80atQIPB6Ps7dhurm5oVGjRhg+fDgn1ydE3VEhIJzT19fHxIkTcevWLURGRqJjx45YsmQJateujXHjxuH69etcRyQA9PT0ULduXU7WEURGRuL06dPw9PSEQCBQ+PUJ0QQ8VoY31WRnZ8PIyAhZWVkwNDRURC6i4V6/fo2AgAD4+fkhISEBbdu2hbOzM4YOHYrKlStzHU9j9e7dG4wxnDx5UqHX7d69O9LS0hATEwM+nz7HEFJW5bl/058sopSqV6+ORYsWIS4uDseOHYOZmRnGjRuH2rVrY/78+YiLi+M6okbiYqdBWFgYLly4AE9PTyoDhMgR/ekiSk0gEJQuNnzy5AnGjRsHf39/2NjYoFevXjhx4gQkEgnXMTWGUChEfHw88vLyFHI9xhhcXV3Rpk0b9OvXTyHXJERTUSEgKsPGxgarV69GcnIyAgIC8ObNG/Tp0wfW1tZYsWIF3rx5w3VEtafonQZnz57F5cuX4eXlBR6Pp5BrEqKpqBAQlaOnp4dx48bhxo0biIqKgqOjIzw8PFC7dm2MGjUK165dQxmWxpAKaNy4MQAo5LHB+9kBe3t79OrVS+7XI0TTUSEgKq1du3YIDAxEcnIyli1bhitXrqBDhw5o06YNduzYgfz8fK4jqhUDAwNYWVkppBCcOHEC0dHR8Pb2ptkBQhSACgFRC2ZmZpg/fz6ePn2KkydPolatWpg8eTIsLCwwZ84cPH78mOuIakMRCwulUinc3Nzg4OCA7t27y/VahJB3qBAQtcLn8/Hjjz/ixIkTiIuLw+TJk7Fnzx40bNgQPXr0wJ9//gmxWMx1TJWmiEJw5MgR/PPPPzQ7QIgCUSEgaqtevXpYuXIlkpOTsXv3bmRnZ2PAgAGoX78+fHx88OrVK64jqiShUIhnz56hoKBALuNLJBK4u7vju+++g4ODg1yuQQj5GBUCovYqVapUutjwxo0b6NGjB3x8fGBpaYnhw4fj8uXLtAixHIRCIaRSqdwewxw8eBD379+Ht7e3XMYnhHwaFQKiUd4vNkxJScHKlStx/fp1dOnSBS1btsTWrVuRm5vLdUSlJ8+dBmKxGB4eHvjxxx9hb28v8/EJIZ9HhYBoJBMTE8yZMwePHj3C33//jXr16mH69OmoVasWZs6ciYcPH3IdUWkZGxujVq1acikEQUFBePz4Mby8vGQ+NiHky6gQEI3G5/NLFxs+e/YMM2fORHBwMIRCIbp164aQkBCUlJRwHVPpyGNhYUlJCby8vNC/f3+0adNGpmMTQr6OCgEh/1OnTh34+PggKSkJQUFBKC4uxqBBg1C3bl14enri5cuXXEdUGvIoBIGBgXj27Bk8PT1lOi4hpGyoEBDyH7q6uqWLDWNiYtC7d2+sWrUKVlZWGDJkCMLDwzV+EaJQKMSTJ09QXFwsk/GKiorg7e2NIUOGoHnz5jIZkxBSPlQICPmC94sNX7x4gTVr1uDOnTtwdHRE06ZNsWnTJmRnZ3MdkRNCoRASiURmOw3eL/T08PCQyXiEkPKjQkBIGRgZGWHWrFl4+PAhzp07h0aNGsHFxQUWFhaYPn067t27x3VEhXr/kiNZPDYoKCiAj48Phg8fXrqDgRCieFQICCkHHo+H7t27IyQkBPHx8ZgzZw5CQ0PRrFkzdO3aFcHBwTKbRldmpqamqF69ukwKgZ+fH16/fg13d3cZJCOEVBQVAkIqqHbt2vDy8kJiYiIOHDgAAHByckKdOnXg5uaG5ORkjhPKlywWFubl5WHFihUYM2YMbGxsZJSMEFIRVAgI+UY6OjoYOnQowsPDcffuXQwYMABr165F3bp1MXDgQJw/f14tFyHKohBs3LgRmZmZcHV1lVEqQkhFUSEgRIaaNm2KzZs3IyUlBb6+voiNjcV3332Hxo0bY/369Xj79i3XEWVGKBTi8ePHFT6nITs7G6tWrcLEiRNRt25d2YYjhJQbFQJC5MDQ0BDOzs64d+8ewsLC0KJFC8ydOxcWFhaYPHkybt++zXXEbyYUClFSUoK4uLgK/XxfX1/k5eVhyZIlMk5GCKkIKgSEyBGPxytdbJiQkICFCxfi5MmTaNmyJTp16oR9+/ahqKiI65gV0qRJEwAV22mQmZmJNWvWYOrUqbCwsJB1NEJIBVAhIERBatWqBTc3N8THx+Pw4cOoVKkSRowYAUtLSyxevBiJiYlcRyyXatWqwdTUtEKFYM2aNSguLsaiRYvkkIwQUhFUCAhRMG1t7dLFhg8ePICTkxM2bdqEevXqoV+/fvj7778hlUq5jvlVPB6vQgsL09LS4OvrixkzZsDc3FxO6Qgh5UWFgBAOvV9smJKSgs2bN+P58+f44Ycf0LBhQ/zxxx/IzMzkOuIXVaQQrFq1CgCwYMECeUQihFQQFQJClECVKlUwZcoU3L59G5cuXYKdnR0WLVoECwsLTJgwATdv3uQ64icJhULExsZCIpGU6ftTU1OxceNGuLi4wMzMTM7pCCHlQYWAECXC4/HQuXNn7Nu3D0lJSViyZAnOnj2Ltm3bwt7eHrt370ZhYSHXMUsJhUIUFRXh+fPnZfr+FStWQEdHB3PnzpVzMkJIeVEhIERJ1ahRA0uWLMGzZ8/w559/wtDQEGPGjEHt2rWxcOHCMt+E5ak87zRITk6Gn58ffvnlF5iYmMg7GiGknKgQEKLktLS00K9fP5w5cwaPHj3CqFGjsHXrVlhbW6N3797466+/OFuEWLNmTRgZGZWpECxfvhz6+vqYPXu2/IMRQsqNCgEhKsTW1hZr165FSkoKtm/fjhcvXuCnn36CjY0Nfv/9d6SlpSk0T1l3GiQkJGDHjh2YP38+DA0NFZSOEFIeVAgIUUH6+vqliw2vXr2KTp06YenSpahduzbGjBmD6Ohohb0/oSyFwNvbG8bGxpgxY4ZCMhFCyo8KASEqjMfjwd7eHnv27EFycjI8PT0RHh6O9u3bw87ODgEBAcjPz5drBqFQiIdPn+Fe8lvEJGbi/oss5BWJS7/+9OlTBAYGYtGiRahSpYpcsxBCKo7HyvAxIjs7G0ZGRsjKyqLpPkKUnEQiwalTp7Bp0yacPn0aJiYmGDduHKZNmybTVww/eZWDoKhEnLwVj9cFDDwer/RrPABWVfUgalQdd//cgqunQxEXF4fKlSvL7PqEkK8rz/2bCgEhaiwuLg5+fn4ICAhARkYGevbsienTp+Onn36CQCCo0JhJGflYHHoXl56mQcDnQSL9/F8hfB4gZUAd3XzsdfkJllX1KvpLIYRUQHnu3/TIgBA1Zm1tjd9//x3JycnYuXMnMjIy0K9fP9SvXx+//fYbXr9+Xa7xDkQn4rs/whH5LB0AvlgGgHdlAACSS/Tx3R/hOBCtWu9rIESTUCEgRANUrlwZY8eORXR0NKKjo9GtWzd4eXnB0tISI0eORGRk5FcXIW688ASLQu+iSCz9ahH4L4mUoUgsxaLQu9h44cm3/FIIIXJChYAQDWNnZ4edO3ciOTkZPj4+pbsUWrduje3btyMvL++jn3MgOhGrzzyWyfVXn3mM4Os0U0CIsqFCQIiGMjU1xbx58/DkyROcOnUKtWvXxpQpU2BhYYHZs2fj0aNHAN6tGXA/dl+m13Y7eh9JGfLd/UAIKR9aVEgIKRUfHw8/Pz/4+/sjLS0N3333HXiiWYjLFZT7McGXCPg8dKxvij0T28tsTELIx2hRISGkQurWrYsVK1YgKSkJe/bsQaa0Eh5n82VaBoB3awouPU3D09c5Mh2XEFJxVAgIIR+pVKkSRo4cid4uK8Dnff37K0LA52HvNVpLQIiyoEJACPmsi7GvIePJgVISKcPFR+Xb9kgIkR8qBISQT8otEiNRzgv/EtPzPzjmmBDCHSoEhJBPSkjPg7xfj8QAxKd/vM2REKJ4VAgIIZ9ULJaq1XUIIV9GhYAQ8kk6Wor560FR1yGEfBn9SSSEfFJdU33IaYNBKd7/rkMI4R4VAkLIJ+nrasFKzm8ntDLVg76ullyvQQgpGyoEhJDPEjWqDoGcDiIQ8HkQNawul7EJIeVHhYAQ8lkj2lvJ/JTC9yRShpH2VnIZmxBSflQICCGf1aCGAbrYmMl8lkDA56GLjRlsqhvIdFxCSMVRISCEfNHyn5tBS8aFQIvPw/Kfm8l0TELIt6FCQAj5IsuqevDs20SmY3r1awJLOS9YJISUDxUCQshXObWzwrwetjIZa37PhhhqR2sHCFE2tN+HEFImM7o1gFkVXbgfuw+xlJVrsaGAz4MWnwevfk2oDBCipGiGgBBSZk7trHDul67oWN8UAL662PD91zvWN8W5X7pSGSBEidEMASGkXCyr6mHPxPZ48ioHQVGJuPjoNRLT8z94ERIP7w4dEjWsjpH2VrSbgBAVwGOMfXXeLzs7G0ZGRsjKyoKhoaEichFCVEhekRjx6XkoFkuho8VHXVN9OoGQECVQnvs3/YklhHwzfV0tNKllxHUMQsg3oDUEhBBCCKFCQAghhBAqBIQQQggBFQJCCCGEgAoBIYQQQkCFgBBCCCGgQkAIIYQQUCEghBBCCKgQEEIIIQRUCAghhBACKgSEEEIIARUCQgghhIAKASGEEEJAhYAQQgghoEJACCGEEFAhIIQQQggArbJ8E2MMAJCdnS3XMIQQQgiRnff37ff38S8pUyHIyckBAFhaWn5DLEIIIYRwIScnB0ZGRl/8Hh4rQ22QSqV48eIFDAwMwOPxZBaQEEIIIfLDGENOTg5q1aoFPv/LqwTKVAgIIYQQot5oUSEhhBBCqBAQQgghhAoBIYQQQkCFgBBCCCGgQkAIIYQQUCEghBBCCKgQEEIIIQTA/wENfnebb+tPEQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABdWUlEQVR4nO3dd1QU1/sG8GcBwYaKKMYC0WgssAgKuxQLSmyxYEOxYu/Gbuy9G40aY4k1ltiwxl6xIh2ERWMsUbA3FFiVtvP7wy/8NBoL7DK7O8/nHM/JEbzzEpF55t4775UJgiCAiIiIJMtE7AKIiIhIXAwDREREEscwQEREJHEMA0RERBLHMEBERCRxDANEREQSxzBAREQkcWaf80kajQb37t2DpaUlZDKZrmsiIiIiLRAEAcnJyShTpgxMTP77+f+zwsC9e/dga2urteKIiIgo7yQkJKBcuXL/+fHPCgOWlpbZgxUpUkQ7lREREZFOJSUlwdbWNvs+/l8+KwxkLQ0UKVKEYYCIiMjAfGqJnxsIiYiIJI5hgIiISOIYBoiIiCSOYYCIiEjiGAaIiIgkjmGAiIhI4hgGiIiIJI5hgIiISOIYBoiIiCSOYYCIiEjiGAaIiIgkjmGAiIhI4hgGiIiIJI5hgIiISOIYBoiIiCSOYYCIiEjizMQugIj0g0atRlp8PIS0NMjMzWFuZweTQoXELouI8gDDAJGEpV6/jsRt25Fy9gzSE+4AgvD/H5TJkM+2HArX9YJVBz9YVKokXqFEpFMyQXj7X/+HJSUloWjRonjx4gWKFCmSF3URkQ6l3bmDB5OnQB0UBJiaApmZ//3J//t4IU9PfDV9GszLlcu7QokoVz73/s09A0QSkxgQgJvNmkMdEvLmNz4WBN76uDokBDebNUdiQICOKySivMZlAiIJebJyJR4vXpKzP5yZCSEzEw8mTUbm06co0b+/dosjItFwZoBIIhIDAnIeBP7l8eIleL5zp1bGIiLxMQwQSUDanTt4OHOWVsd8MGMm0u7c0eqYRCQOhgEiCXgweQqEjAytjilkZODB5ClaHZOIxMEwQGTkUq9ff/PWwKc2Cn6pzEyog4KQeuOGdsclojzHMEBk5BK3bX/zeqAumJoices23YxNRHmGYYDIyKWcPaP9WYEsmZlIOXtWN2MTUZ5hGCAyYpkp6jedBXUoPSEBGrVap9cgIt1iGCAyYukJ8e+2GNYFQUBafLxur0FEOsUwQGTEhLQ0o7oOEekGwwCREZOZmxvVdYhINxgGiIyYuZ0dIJPp9iIy2ZvrEJHBYhggMmImhQohn61uTxnMZ2sLk0KFdHoNItIthgEiI1e4rpdO+wwUrltXN2MTUZ5hGCAyclYd/HTaZ8CqYwfdjE1EeYZhgMjIWVSqBDg7Q9txIEMQ8KhMachsbbU8MhHlNYYBIiOm0Wjwyy+/oMXBg8gQBGi144CpKfyDguDs7IzTp09rc2QiymMMA0RG6p9//oG3tzeGDh2Kpj26o/SkSdDmewW206fhz5AQFCtWDPXr10fXrl3x8OFDLV6BiPIKwwCRkREEAStXroSjoyNu376NU6dO4ZdffkGpLp1RcthQrVyj5LBhKObrCycnJ5w/fx5r1qzBoUOHUKVKFSxfvhyZutqjQEQ6wTBAZEQSEhLQuHFjDBgwAJ07d0ZMTAzq16+f/fES/fvjqxnTIbOw+PI3DExNIbOwQOmZM1Cif7/s3zYxMUGvXr1w9epV+Pr6YtCgQXB3d0d4eLi2viwi0jGGASIjIAgC1q9fD7lcjsuXL+PIkSP47bffYGlp+d7nWrVrh28OHkAhN7c3v/GpUPC/jxdyc8M3Bw+gmK/vBz+tRIkSWLNmDS5cuIC0tDQolUoMGjQIz58/z82XRkR5QCYInz7FJCkpCUWLFsWLFy9QpEiRvKiLiD7T/fv30bdvXxw4cADdu3fHokWLUKxYsc/6s6nXryNx23aknD2L9ISEdw81ksmQz9YWhevWhVXHDrCoWPGza8rIyMDSpUsxefJkFCxYEAsXLkTnzp0h03U3RCJ6x+fevxkGiAyUIAjYunUrBg8eDAsLC6xatQotWrTI8XgatRpp8fE4euAAxk6ahJD4eBSxsclVjXfv3sXw4cMREBCAevXqYfny5ahWrVquxiSiz/e5928uExAZoEePHsHX1xedO3dGkyZNoFKpchUEgDeti/NXq4ZCNWrgr9RUPFWrc11n2bJlsWPHDhw5cgR37tyBk5MTxo0bh5cvX+Z6bCLSHoYBIgOza9cuODg44OzZs9i5cye2bNkCa2trrY1v87/ZgEePHmltzMaNGyM2NhYTJkzAokWLYG9vjz///FNr4xNR7jAMEBmIp0+folOnTvD19UXdunURFxeHtm3bav06uggDAJA/f35MmTIFKpUKVatWRcuWLdGyZUvcunVLq9choi/HMEBkAPbv3w+5XI4jR47gjz/+wM6dO7Nv2tqWNcvw+PFjnYxfqVIlHD58GAEBAQgPD4e9vT3mzp2LtLQ0nVyPiD6NYYBIjz1//hzdu3eHj48PXFxcoFKp0KlTJ53uys+XLx+KFy+u9ZmBt8lkMvj6+uKvv/7CgAEDMHHiRLY1JhIRwwCRnjp69CgcHR2xZ88erFu3Dvv370eZMmXy5NolS5bU2czA2ywtLbFw4UJERESwrTGRiBgGiPRMcnIy+vbtiyZNmqBatWpQqVTo0aNHnr6jb2Njo9OZgX9jW2MicTEMEOmRwMBAODo6YsuWLVi5ciWOHj0KWxGOCM7rMACwrTGRmBgGiPSAWq3GDz/8AG9vb5QvXx6xsbHo16+faB378mqZ4EPY1pgo7zEMEInswoULcHZ2xtq1a7FkyRKcOnUKFSpUELUmMWYG/s3T0xMRERFYuHAhNm7ciCpVqmDz5s34jKapRPSFGAaIRPLq1SuMGjUKderUQcmSJREdHY0hQ4bAxET8f5ZZYUDsG6+ZmRmGDx+Ov/76C15eXujatSu8vb1x5coVUesiMjbi/9QhkqDQ0FDUrFkTv/76K+bNm4dz586hcuXKYpeVrWTJkkhPT0dSUpLYpQBgW2MiXWMYIMpDqampmDBhAjw8PFC4cGFERkZi9OjRMP3UMcJ5TFddCHOLbY2JdINhgCiPREVFQaFQ4KeffsK0adNw8eJF2Nvbi13WB5UsWRKA7roQ5gbbGhNpH8MAkY6lp6dj2rRpUCqVMDExQVhYGCZOnAgzMzOxS/tP+joz8La32xpHRESwrTFRLjAMEOmQSqWCu7s7ZsyYgXHjxiE0NBROTk5il/VJxYsXh4mJiV6HAeD/2xpfuXKFbY2JcoFhgEgHMjIyMHfuXLi4uOD169cIDg7G9OnTYW5uLnZpn8XU1BTW1tZ6uUzwIVltjSMjI2FlZcW2xkRfiGGASMuuXr2K2rVrY8KECRg+fDgiIiLg6uoqdllfTB96DXyp6tWr49y5c1i7di0OHz7MtsZEn4lhgEhLNBoNFi1aBGdnZyQmJuL8+fOYO3cu8ufPL3ZpOVKyZEmDCwPAm7bGPXv2xNWrV9GuXTu2NSb6DAwDRFpw48YN1KtXDyNHjkT//v0RFRUFDw8PscvKFRsbG4NZJvgQa2trrF69mm2NiT4DwwBRLmg0GixfvhzVq1fHnTt3cPr0aSxatAgFCxYUu7RcM8Rlgg9hW2OiT2MYIMqh27dvo1GjRhg0aBC6deuGmJgY1K1bV+yytEbMw4q0jW2NiT6OYYDoCwmCgDVr1sDR0RF///03jh8/juXLl6Nw4cJil6ZVWcsEGo1G7FK0hm2NiT6MYYDoC9y9exfNmjVDnz590K5dO8TGxqJBgwZil6UTNjY2yMzMRGJiotilaB3bGhO9i2GA6DMIgoBNmzZBLpcjOjoaBw4cwNq1a1G0aFGxS9MZfW5JrA1sa0z0/xgGiD7h4cOHaN26Nfz9/dG8eXOoVCo0a9ZM7LJ0zhBaEmsD2xoTMQwQfdSOHTvg4OCAixcvYvfu3di0aROKFy8udll5ImtmwNjDAMC2xkQMA0Qf8OTJE/j5+cHPzw/e3t5QqVRo3bq12GXlqWLFisHMzMxolwk+hG2NSaoYBoj+Zd++fXBwcMCJEyewbds27NixI/spWUpMTEwMtgthbrGtMUkNwwDR/yQmJsLf3x+tWrWCu7s74uLi4OfnJ3ZZojKmXgNfim2NSUoYBogAHD58GHK5HH/++Sc2bNiAvXv34quvvhK7LNEZSxfC3MhqaxwUFIT09HS2NSajxDBAkpaUlITevXujadOmcHR0hEqlgr+/P2Qymdil6QWGgf/n4eGB8PBw/Pzzz2xrTEaHYYAk6+TJk3B0dMT27duxatUqHD58GOXKlRO7LL0i5WWCDzEzM8OwYcPY1piMDsMASU5KSgoGDRqEBg0aoGLFioiNjUWfPn04G/ABnBn4MLY1JmPDMECScu7cOTg5OeH333/Hr7/+ihMnTqB8+fJil6W3SpYsiadPn3IX/X9gW2MyFgwDJAmvXr3CiBEj4OXlhTJlyuDSpUsYNGgQTEz4T+BjbGxsIAgCnj59KnYpeottjckY8CchGb2QkBDUqFEDy5cvx4IFC3D69GlUqlRJ7LIMglRaEmsD2xqTIWMYIKOVmpqKcePGwdPTE0WLFkV0dDRGjBgBU1NTsUszGMZ+WJG2sa0xGSqGATJKERERcHFxwcKFCzFz5kxcuHABVatWFbssg8OZgZxhW2MyNAwDZFTS0tIwZcoUuLm5wdzcHBERERg3bhzMzMzELs0gWVpawtzcnGEgh9jWmAwFwwAZjdjYWLi5uWH27NmYOHEiQkJC4OjoKHZZBk0mk8HGxobLBLnAtsZkCBgGyOBlZGRg9uzZcHFxQUZGBkJCQjB16lTky5dP7NKMAnsNaAfbGpM+Yxggg3blyhXUqlULkyZNwqhRoxAeHo6aNWuKXZZRkerJhbrCtsakjxgGyCBlZmZi4cKFqFGjBl68eIGgoCDMnj0bFhYWYpdmdLhMoH1vtzWuV68e2xqT6BgGyOBcu3YNXl5eGD16NAYNGoSoqCi4ubmJXZbR4jKB7pQtWxbbt2/H0aNH2daYRMUwQAZDo9Fg6dKlcHJywoMHD3DmzBksXLgQBQoUELs0o8bDinSvUaNGiI2NxcSJE9nWmETBMEAG4datW2jQoAGGDBmCnj174tKlS6hTp47YZUmCjY0NEhMT2UlPx/Lnz4/JkyezrTGJgmGA9JogCFi1ahUcHR1x48YNnDhxAr/++isKFSokdmmSkdWF8MmTJyJXIg1sa0xiYBggvXXnzh18//336NevHzp06IDY2Fh89913YpclOVldCLlUkHfY1pjyGsMA6R1BEPD7779DLpcjNjYWhw4dwurVq1GkSBGxS5MktiQWD9saU15hGCC9cv/+fbRs2RI9evRAy5YtoVKp8P3334tdlqRlLRMwDIiHbY1J1xgGSC8IgoCtW7dCLpcjNDQUe/fuxYYNG2BlZSV2aZJXqFAhFCxYkMsEImNbY9IlhgES3ePHj9GuXTt06tQJDRs2hEqlQsuWLcUui97CXgP6g22NSRcYBkhUu3fvhoODA06fPo0dO3Zg27ZtKFGihNhl0b+w14D+YVtj0iaGARLFs2fP0LlzZ7Rt2xa1atVCXFwc2rVrJ3ZZ9B84M6Cf2NaYtIVhgPLcwYMHIZfLcejQIWzevBm7d+9GqVKlxC6LPoKHFek3tjWm3GIYoDzz4sUL9OzZE82bN0eNGjUQFxeHzp07QyaTiV0afQIPKzIMbGtMOcUwQHni2LFjkMvl2LlzJ9auXYsDBw6gTJkyYpdFn4nLBIaDbY0pJxgGSKeSk5PRv39/NG7cGFWrVoVKpULPnj05G2BgSpYsieTkZLx+/VrsUugzZbU13rlzJ9sa0ycxDJDOnD59GtWrV8fmzZuxfPlyHDt2DHZ2dmKXRTnAlsSGSSaToW3btrhy5QoGDhzItsb0nxgGSOtevnyJoUOHon79+rCzs0NMTAwGDBjA2QADxpbEhs3S0hILFixgW2P6TwwDpFVBQUFwdnbGqlWrsHjxYgQGBuKbb74RuyzKpayWxJwZMGxsa0z/hWGAtOL169f48ccfUadOHVhbW+PSpUsYOnQoTEz4LWYMeD6B8WBbY/oQ/qSmXAsPD4eLiwuWLFmCOXPm4Pz586hcubLYZZEW5c+fH5aWlgwDRoRtjeltDAOUY2lpaZg0aRLc3d1RoEABREZG4scff4SpqanYpZEOsNeAcWJbYwIYBiiHLl26BKVSiblz52LKlCm4ePEiHBwcxC6LdIi9BowX2xoTwwB9kfT0dMyYMQOurq4QBAFhYWGYNGkS8uXLJ3ZppGNsSWz82NZYuhgG6LPFxcXBw8MD06ZNw5gxYxAWFgZnZ2exy6I8wmUC6WBbY+lhGKBPyszMxPz581GzZk28fPkSFy9exMyZM2Fubi52aZSHODMgLWxrLC0MA/RRf//9N+rUqYOxY8di6NChiIyMhEKhELssEgH3DEgT2xpLA8MAfZBGo8GSJUvg7OyMx48f4/z585g/fz7y588vdmkkEhsbG7x69QpqtVrsUiiPsa2x8WMYoPfcvHkT3t7eGDZsGPr06YNLly7B09NT7LJIZGw8RGxrbLwYBiibIAhYuXIlqlevjtu3byMwMBBLlixBwYIFxS6N9AAPK6IsWW2N161bx7bGRoJhgAAACQkJaNy4MQYMGIAuXbogJiYG9erVE7ss0iM8rIjeZmJigh49euDq1ato37492xobOIYBiRMEAevWrYNcLseVK1dw9OhRrFy5EpaWlmKXRnqmRIkSABgG6F3W1tZYtWoV2xobOIYBCbt37x5atGiBXr16oU2bNoiNjUWjRo3ELov0VL58+WBlZcVlAvogtjU2bAwDEiQIAv744w/I5XJERERg//79WL9+PYoVKyZ2aaTn2GuAPoZtjQ0Xw4DEPHr0CG3btkWXLl3w/fffQ6VSoXnz5mKXRQaCvQboc7CtseFhGJCQnTt3wsHBAefPn8fOnTvxxx9/wNraWuyyyICwJTF9CbY1NhwMAxLw9OlTdOzYEe3atYOXlxdUKhXatm0rdllkgLhMQF+KbY0NA8OAkdu/fz/kcjmOHj2KLVu2ICAgIPsVMaIvxZkByim2NdZvDANG6vnz5+jevTt8fHzg6uqKuLg4dOzYETKZTOzSyIBl7RngDnHKCbY11l8MA0boyJEjkMvl2LNnD9avX48///wTpUuXFrssMgIlS5ZEWloakpKSxC6FDBjbGusfhgEjkpycjL59++L777+Hg4MDVCoVunfvztkA0hq2JCZtYltj/cEwYCROnToFR0dHbNmyBStXrsSRI0dga2srdllkZHhYEWkb2xrrB4YBA6dWqzF48GB89913qFChAmJjY9GvXz/OBpBO8HwC0hW2NRYXw4ABO3/+PJycnLBu3Tr88ssvOHnyJCpUqCB2WWTErK2tIZPJuExAOsO2xuJgGDBAr169wsiRI1G3bl2UKlUKly5dwg8//AATE/51km6ZmprC2tqaMwOkU2+3Nc7aXMi2xrrFu4eBCQkJQc2aNbFs2TLMnz8fZ8+exbfffit2WSQh7DVAeaVs2bLYtm0b2xrnAYYBA5Gamorx48fD09MTlpaWiIyMxKhRo2Bqaip2aSQx7EJIeY1tjXWPYcAAREVFQaFQYMGCBZg+fTqCgoJgb28vdlkkUTysiMTAtsa6xTCgx9LT0zFt2jQolUqYmJggLCwMEyZMgJmZmdilkYRxmYDExLbGusEwoKdUKhXc3d0xY8YMjBs3DqGhoXBychK7LCIuE5Do2NZY+xgG9ExGRgbmzJkDFxcXpKamIiQkBNOnT4e5ubnYpREB+P+ZAY1GI3YpJHFsa6w9DAN65K+//kLt2rUxceJEDB8+HBEREXBxcRG7LKJ32NjYIDMzk81gSG+wrXHuMQzogczMTPz888+oUaMGEhMTceHCBcydOxcWFhZil0b0HrYkJn3Etsa5wzAgshs3bqBevXoYNWoUBgwYgKioKLi7u4tdFtF/4mFFpM/Y1jhnGAZEotFosGzZMlSvXh337t3D6dOn8fPPP6NgwYJil0b0UZwZIEOgq7bG6tQMxN17gaj4RMTdewF1aoaWKhYX31ETwe3bt9GzZ0+cOnUKAwcOxLx581C4cGGxyyL6LFZWVjA1NWUYIL2X1da4Xbt2GDlyJLp27Yq1a9di+fLlqFat2mePc+1hMv4IiUfgX48Q/+wl3o4TMgB2xQuiflUbdHazw7elLLX+deQFzgzkIUEQsGbNGjg6OuL69es4fvw4li1bxiBABsXExAQlS5bkMgEZjJy2NU549hJd14Sg4aKz2BR8G7f/FQQAQABw+9lLbAq+jYaLzqLrmhAkPDO8dskMA3nk7t27aNasGfr06YP27dsjNjYWDRo0ELssohxhrwEyRF/S1nhbaDwa/HwGQTefAgAyNR9fXsj6eNDNp2jw8xlsC43XbvE6xjCgY4IgYNOmTZDL5bh06RIOHjyINWvWoEiRImKXRpRjbElMhiqrrXFcXByqVav2wbbGv566hrG7Y5GaoflkCPi3TI2A1AwNxu6Oxa+nrmm5et1hGNChBw8eoHXr1vD390fz5s2hUqnQtGlTscsiyjW2JCZDV7FiRRw6dOi9tsabL97EgmN/a+UaC479je1hhjFDwDCgI9u3b4dcLsfFixexZ88ebNq0CVZWVmKXRaQVXCYgY/DvtsZTfvoFE3fHaPUak/fFGcQeAoYBLXvy5Anat2+PDh06wNvbG3FxcWjVqpXYZRFpFWcGyJhktTX+ftJGQKbd22KGRsD43bFaHVMXGAa0aO/evXBwcMCpU6ewfft27NixAyVKlBC7LCKtK1myJJ48ecJ2r2Q0rj1MRvSDVMDEVKvjZmoEnLv+BNcfJWt1XG1jGNCCxMREdO3aFa1bt4aHhwdUKhXat28vdllEOmNjYwNBEPD06VOxSyHSij9C4mFqItPJ2KYmMmwO1u+9AwwDuXT48GHI5XLs378fGzduxJ49e/DVV1+JXRaRTrElMRmbwL8effGbA58rUyMg8Kp+77FhGMihpKQk9O7dG02bNkX16tURFxeHrl27QibTTbIk0idsSUzGJCU1A/E63uQX//SlXrcuZhjIgZMnT8LR0RE7duzA6tWrcejQIZQtW1bssojyTNbMAMMAGYPbT9XvdRbUNgHAradqHV8l5xgGvkBKSgoGDhyIBg0aoFKlSoiNjUXv3r05G0CSU6RIEeTLl4/LBGQU0jI0RnWdnOBBRZ/p7Nmz6NGjBx48eIBff/0VAwYMgIkJsxRJk0wmYxdCMngajQZ//fUXjp6LBKD7PjDmZvp7z2AY+IRXr15h/PjxWLJkCWrVqoWjR4+iUqVKYpdFJDr2GiBDIggCEhISEBoairCwMISGhiIiIgLJycmQ5csPu+EBgA5neWUAylsX0tn4ucUw8BHBwcHo1q0b4uPjsXDhQgwZMgSmptp9B5XIULELIemzp0+fIiwsLPvGHxYWhocPHwIAypUrB6VSifHjx0OpVMLFxQU+v0Xitg43EdpZF0QhC/295epvZTmgTs3AradqpGVoYG5mgvLWhXL0Pz81NRVTpkzBTz/9BIVCgX379qFq1ao6qJjIcNnY2LxzuAuRWNRqNaKiot556r958yYAwMrKCgqFAn369IFCoYBCoUDp0qXfG6N+VRtsCr6tk9cLTU1kqF/FRuvjapPBh4FrD5PxR0g8Av96hPh/nTUtA2BXvCDqV7VBZzc7fFvK8pPjRUREoFu3brh27RpmzZqFUaNGwczM4P83EWmdjY0NwsLCxC6DJCY9PR1xcXHv3PhVKhU0Gg3y58+PmjVrwsfHB0qlEgqFAhUrVvysTd6d3ezwe9AtndScqRHQxd1OJ2Nri8He5RKevcT43bE4d/0JTE1kH0xzAoDbz15iU/Bt/B50C3UqlcDsNo6wLV7wvc9NS0vDrFmzMGvWLFSvXh0RERGQy+V58JUQGSYuE5CuCYKAGzduIDQ0NPvmHxkZidevX8PU1BRyuRxKpRKDBw+GQqGAg4MD8uXLl6NrfVvKErUrlcCF648hQHt7B0xNZPD8xhqVbD79MComgwwD20LjMeXPOGT8LwB8alon6+NBN5+iwc9nMM3HAR2U/5/SYmJi0K1bN6hUKkyaNAnjx4/P8TcUkVTY2NggMTER6enp/PdCWnH//v131vjDwsKQmJgI4M2Rw0qlEr6+vlAqlahRowYKFnz/wS6n0tLSgPCtyCxUFyZm5lrbTGhmIsPsNo5aGUuXDC4M/HrqWo7Pms7UCMjUCBi7OxZPUlLRv24FzJs3D9OmTUOVKlUQEhKCmjVrarliIuOU1YXwyZMnH1yDJfqYFy9eIDw8/J2b/507dwAApUqVglKpxPDhw6FUKuHq6gpra2ud1fLo0SO0bdsWoaGh6DvXDfsfWmht7OktHT44G61vDCoMbAuNz3EQ+LcFx/7Gb0sW4PKBNRgzZgymTJkCCwvtfQMQGbu3uxAyDNDHvH79GpcuXcq+8YeGhuLq1asA3hwf7Orqik6dOkGpVEKpVKJcuXJ51swtOjoaLVu2RGpqKk6fPg0PDw9UycVD59tGN64CP4V+7xXIYjBhIOHZS0z5M05r4wmCgOTK32Pv8W5o4e2ptXGJpIKHFdGHZGZm4q+//npng19MTAzS09Nhbm4OJycnNGjQAOPGjYNSqUSVKlVEa+AWEBCA7t27o1q1ati7dy/KlSsHABjs/S1KFLbIXo7+kjcMTE1kMDORYXpLB4MJAoABhYHxu2Oz9whog0wmg2m+fNhx0xQtvLU2LJFk8LAiEgQB8fHx72zwi4iIQEpKCmQyGapVqwaFQoGePXtCoVCgevXqejEDq9FoMHXqVMyYMQMdOnTA2rVr39t/0EFph1qVSnxyo3qWrI97fmP9nxvV9ZlBhIFrD5Nx7voTrY+bqQHOXX+C64+S9X6nJ5G+KVSoEAoUKMAwICFPnjx5Z40/NDQ0e2bIzs4OCoUCkyZNgkKhgIuLC4oUKSJyxe9LSUlB165dsW/fPsyZMwdjxoz5zyUJ2+IFsam32/+/wn71EeKffuAVduuCqF/FBl3c7Qz2XmIQYeCPkPhPprKcMjWRYXNwPKb6OGh9bCJjlnU+AZcJjJNarUZkZOQ7N/5//vkHAFC8eHEolUr0798/+33+UqVKiVzxp/3zzz9o2bIlbt26hT///BPNmzf/rD/3bSlLTPVxwFQ4aK25nb4xiK8g8K9HOgkCwJs3DAKvPsJUMAwQfSn2GjAO6enpiI2NfeepPy4uDhqNBgUKFICLiwtatWqVvcGvQoUKBndaa2BgINq1a4dixYohODgY9vb2ORqnkIUZHMoU1XJ14tP7MJCSmoF4HfaLBoD4py+hTs0winRHlJd4cqHh0Wg0uH79+js7+6Ojo7Mb+Tg6OsLDwwNDhgyBUqmEvb29wXdhXb58OYYMGYJ69ephx44dKF68uNgl6R29/xu+/VQN3cwJ/D8BwK2naqNMe0S6VLJkSfz9t3Ze9yXduHfv3jtT/eHh4Xj+/DkAoFKlSlAqlfDz84NSqYSzs7NWG/mILS0tDUOGDMFvv/2GIUOGYOHChQYfbHRF7/+vpGVojOo6RMbExsYG58+fF7sM+p/nz58jPDz8nZv/vXv3AABfffUVlEolRo0aBYVCAVdXV6N+Qn78+DHatm2L4OBgrF27Fj179hS7JL2m92HA3Cxv3j/Nq+sQGRNuIBTP69evER0d/c6NP2uWpkiRInB1dYW/vz8UCgWUSiXKli1rcOv8OXXp0iW0bNkSr169QmBgIGrVqiV2SXpP78NAeetCkAE6XSqQ/e86RPRlSpYsiaSkJLx+/Rr58+cXuxyjlZmZiStXrrzzPn9MTAwyMjJgbm6OGjVqoFGjRpg4cSIUCgUqV64sWiMfse3atQv+/v6oUqUK9u7dCzs7w2n8Iya9DwOFLMxgV7wgbutwE6GddUFuHiTKgbe7ENra2opcjXEQBAG3bt16Z2d/REQE1Go1ZDIZ7O3toVQq0bt3byiVSjg6OsLc3FzsskWn0Wgwffp0TJs2DX5+fli3bp1R7X/QNYO4A9avaoNNwbd11megfhUbrY9LJAUMA7n36NGj7BP6sm7+T568abL29ddfQ6lUYsqUKVAqlahZsyYsLQ2zqY0upaSkoFu3bti9ezdmzZqFcePGSWZJRFsMIgx0drPD70G3dDJ2pkZAF3dOIxHlBFsSf5mUlBRERES8c+O/desWAMDa2hpKpRIDBw7MbuSTFbbov926dQstW7bEzZs3sW/fPvj4+IhdkkEyiDDwbSlL1KlUAkE3n2p1dkDQZKJacVODbR9JJDaGgf+WlpaG2NjYdzb4XblyBRqNBgULFoSLiwvatm2bvcGvfPnyfJr9QmfOnIGvry+KFCmC4OBgODiweVxOGUQYAIDZbRzR4OczWg0DJhBwcm4vdI1riEWLFqFEiRJaG5tICgoUKIDChQtL/o0CjUaDa9euvbPBLzo6GqmpqTAzM4OjoyNq166NESNGQKFQoFq1anzfPZdWrlyJH374AXXr1sWOHTtgbW0tdkkGzWC+G22LF8Q0HweM3R2rtTHn+NZAqsM8DB8+HEePHsWvv/6Kdu3aMZ0TfQEpdiG8e/fuOzf+sLAwJCUlAQAqV64MhUKBTp06QaFQwNnZGQUKFBC5YuORnp6OoUOHYsWKFfjhhx+wcOFC5MuXT+yyDJ7BhAHgzZGST1JSseBY7juejW5cBR2UdoCyGxo3bowffvgBfn5+2LJlC5YvX44yZcpooWIi41fiq7K4mZiGqPhEozq4JUtiYuJ7jXzu378PAChTpgyUSiXGjBkDpVIJFxcXWFlZiVyx8Xr8+DHatWuHoKAgrF69Gr179xa7JKMhEwThk/PuSUlJKFq0KF68eKEXR1JuC43HlD/jkKERvmjZwNREBjMTGaa3dICf4v1Ng7t378agQYPw6tUrLFiwAL169eIsAdEHZB/p+tcj3H6qBt76dyIDYFe8IOpXtUFnNzt8W8pw9uS8evUKUVFR72zwu3btGgCgaNGiUCgU2Wv8CoUCZcuWFbli6YiJiUHLli2hVquxe/du1K5dW+ySDMLn3r8NMgwAQMKzlxi/Oxbnrj/55PHGWR+vU6kEZrdxhG3x/373NDExESNHjsT69evh7e2N1atX45tvvtHFl0BkcHT1704MGRkZuHz58jsH9qhUKmRkZMDCwgI1atTIvvErlUpUqlRJso18xLZ79274+/vj22+/xb59+9hI6AsYfRjIkv2EcvUR4p++fKdToQxvGgrVr2KDLu52X/TWwPHjx9G3b188fPgQs2bNwpAhQ2Bqaqr1+okMRW5n5Kb5OLxZmhOBIAj4559/3pnqj4yMxMuXL2FiYpLdyCfr5i+Xy9nIRw9oNBrMmDEDU6dORbt27bB+/XoUKsRusV9CMmHgberUDNx6qsbEyVNxJ/4WTu8PyNXaZUpKCiZMmIClS5dCqVRi7dq1fHWFJOnXU9e0sldnVKPKGOz9rRYq+riHDx++M9UfFhaGp0+fAgAqVKjwzlR/zZo1UbhwYZ3XRF9GrVajW7du2LVrF2bOnInx48dz2TYHPvf+bTy7fPCmdbFDmaL4pqgJrsRfyfUmpsKFC2PJkiXw8/NDr169UKNGDUycOBFjx47lUwNJxrbQeK0EAQBYcOxvlLS0+OCenZxKTk5GRETEO0/98fHxAN70QVAoFPjhhx+y1/uzeiOQ/rp9+zZatmyJGzduYM+ePWjVqpXYJRk9owoDWUqUKJHdzlMbPD09ER0djZkzZ2LGjBkICAjAunXroFAotHYNIn2U8OwlpvwZp9UxJ++Lg2fFEjnaQ5CWloaYmJj3GvkIgoBChQrB1dUV7du3z37q//rrr/k0aWDOnTuHNm3awNLSEhcvXoRcLhe7JEkwyjBgbW2NZ8+eITMzU2vr/BYWFpgxYwZ8fX3Rq1cvuLu7Y/jw4Zg+fToPwyCjNX53LDK0fCZIhkbA+N2x2NTb7aOfp9FocPXq1Xem+6Ojo5GWlgYzMzM4OTmhbt26GDVqFJRKJapWrcp9PQZu1apVGDRoEOrUqYOAgAA2EspDRhkGSpQoAUEQ8Pz5c61/Mzk5OSE4OBg///wzpkyZgr1792LNmjWoV6+eVq9DJLZrD5Nx7rr2ZtiyZGoEnLv+BNcfJWdv6hUEAXfu3HnniT8iIiK7kU+VKlWgVCrRpUsXKJVKODk58chkI5Keno5hw4Zh+fLlGDRoEBYtWsRGQnnMaMMAADx58kQnydLMzAw//vgjWrVqhT59+qB+/fro27cv5s+fj6JFi2r9ekRi+CMk/pOvD+aUqQyYtf0cKr6IzA4ADx48AACULVsWSqUSY8eOzW7kU6xYMa3XQPrhyZMnaNeuHc6fP4/ffvsNffv2FbskSTL6MFClShWdXady5coIDAzEqlWr8OOPP+LAgQNYuXIlWrRoobNrEuWVwL8e6SQIAECmAByLvYuXAQuhUCjQq1ev7A1+7P4pHbGxsWjZsiWSk5Nx6tQp1KlTR+ySJMsow0DWbIA2NxH+FxMTE/Tv3x/NmjVDv3794OPjg44dO2LJkiXctUwGKyU1A/HPXur0GvmKl0HC/UconJ/TwVK0d+9edOnSBZUqVUJgYCC+/vprsUuSNKNsp1W8eHEAyH6vOC/Y2tri4MGD2Lx5M44dO4Zq1aphy5Yt+Iw2DkR65/ZTNfLiO/e2jgMH6R9BEDBz5ky0bt0a33//PS5cuMAgoAeMMgzky5cPxYoVy5OZgbfJZDJ07twZly9fRsOGDdG5c2f4+Pjgzp07eVoHUW6lZWiM6jqkH9RqNfz8/DBp0iRMnz4dO3bsYEdBPWGUYQB4s1SQ12Egi42NDbZu3Yp9+/YhMjIS9vb2+O2336DR8AcfGQZzs7z50ZBX1yHx3b59G7Vr18ahQ4ewe/duTJo0iT0g9IjR/kssUaJEni4TfIiPjw/i4uLQoUMH9O/fH97e3tknoBHps/LWhaDrH9Oy/12HjN/58+ehUCjw/PlzXLx4Ea1btxa7JPoXow4DYs0MvK1YsWJYtWoVTp48iYSEBFSvXh0LFixARkaG2KUR/adCFmaw0/Epg3bWBXPdMpz03+rVq+Ht7Q17e3uEhYXB0dFR7JLoA4w2DIi5TPAh3t7eiImJwcCBAzFmzBh4eHggJiZG7LKI/lP9qjYwNdHN/ICpiQz1q9joZGzSD+np6fjhhx/Qt29f9OnTB8ePH89+7Zv0j9GGAX1YJvi3QoUKYeHChQgKCsKrV6/g4uKCyZMnIzU1VezSiN7T2c1Od30GNAK6uPNMemP19OlTNGnSBCtXrsSKFSuwbNkydhTUc0YdBvRpZuBtbm5uiIyMxIQJEzB37lzUrFkTwcHBYpdF9I6SFpko9vo+hEztLmmZmshQp1KJ7FbEZFxUKhWUSiViYmJw4sQJ9O/fX+yS6DMYdRjIOqxIH5mbm2Pq1KmIiIhAoUKF4OnpieHDh0OtVotdGhGOHTsGuVyO2zvnIp+Zdg//MTORYXYbrhsbo3379sHDwwOFCxdGWFgYvLy8xC6JPpPRhgFra2sIgoDExESxS/koR0dHXLx4EQsWLMBvv/0GR0dHnDhxQuyySKJSUlIwcOBANG7cGFWrVsWloFOY2bq6Vq8xvaVDjo4vJv0lCAJmzZqFVq1aoVGjRrhw4QLKly8vdln0BYw2DGRtVNG3fQMfYmpqihEjRiA2Nhbly5dHw4YN0atXLzx//lzs0khCzp8/D2dnZ/z+++/49ddfcezYMdjZ2aGD0g6jGlXWyjVGN64CPwX3ChiTly9fomPHjpg4cSKmTp2KgIAAFC5cWOyy6AsZfRjQ130DH1KxYkWcPHkSq1atws6dO2Fvb4+9e/eKXRYZudevX+PHH39E3bp1YWNjg0uXLmHQoEEwMfn/Hw+Dvb/F3DaOsDAz+eI3DExNZLAwM8G8to4YVL+StssnEcXHx6N27drYv38/du7ciSlTprzzfUOGw2j/1vLysCJtkslk6NOnDy5fvgxXV1e0bt0a7du3x8OHD8UujYxQZGQkXF1dsWTJEsyZMwfnzp3Dt99++8HP7aC0w4kRXvD85s2/rU+FgqyPe35jjRMjvDgjYGQuXLgAhUKBZ8+eISgoCG3bthW7JMoFow0DYhxWpE1ly5bFvn37sHXrVgQGBsLe3h6bNm3iwUekFRkZGZgxYwbc3NxgZmaG8PBwjBkzBqamH98saFu8IDb1dsPx4XXR1f1rfG39/tq/DMDX1gXR1f1rnBhRF5t6u3GPgJFZu3Yt6tevj6pVqyIsLAxOTk5il0S5JXyGFy9eCACEFy9efM6n641ixYoJ8+bNE7uMXHv8+LHQuXNnAYDQpEkT4fbt22KXRAbs8uXLgkKhEExMTIQJEyYIqampuRovYM+fQj6bCsLxyOuC6u5zIeV1upYqJX2Tnp4u/PDDDwIAoX///rn+3iHd+9z7t9HODAD63WvgS5QoUQKbN2/GgQMHoFKp4ODggGXLlvHgI/oiGo0GixYtQs2aNZGUlISgoCDMnDkT5ubmuRo347Ua6Y/+gVslGziUKcoWw0bq2bNnaNKkCVasWIHly5djxYoVuf7eIf1h1GHA2traYJcJPqRZs2aIi4tDly5dMHjwYHh5eeHq1atil0UG4J9//oG3tzdGjBiBfv36ITIyEm5ubloZO6s3RsGCXAowVnFxcVAqlYiOjsbx48cxYMAAsUsiLTPqMGAsMwNvK1KkCFasWIHTp0/jwYMHcHJywty5c5Geni52aaSHBEHA6tWrUb16ddy6dQunTp3C4sWLtXrjVqvVyJ8//yf3G5Bh2r9/P9zd3VGwYEGEhYWhXr16YpdEOsAwYKC8vLwQExODoUOHYsKECXBzc0NUVJTYZZEeuXfvHpo3b46+ffvCz88PMTExqF+/vtavo1arUagQjyI2NoIgYM6cOWjZsiUaNmyIoKAgVKhQQeyySEeMOgzo28mF2lagQAHMmzcPISEhyMjIgEKhwIQJE/D69WuxSyORbdu2DXK5HJGRkdi/fz/WrFmDIkWK6ORaarWaTWaMzMuXL9GpUyeMHz8ekyZNws6dO/l3bOSMOgzo48mFuuDq6orw8HBMnToVCxYsgLOzMy5cuCB2WSSCJ0+ewM/PDx07dkTDhg2hUqnQvHlznV6TMwPGJSEhAXXq1MGff/6JgIAATJs2jY2EJMCo/4b1/bAibTI3N8fEiRMRFRUFKysr1KlTB0OGDEFKSorYpVEeOXDgAORyOU6cOIFt27Zh+/bt2c23dIlhwHgEBQVBoVDgyZMnuHDhAnx9fcUuifKIUYcBQzmsSJvs7e1x/vx5LFq0CGvXroWDgwOOHj0qdlmkQ0lJSejVqxdatGgBFxcXqFQq+Pn55dn1GQaMw7p161C/fn1UrlwZYWFhcHZ2FrskykNGHQYM6bAibTI1NcXQoUOhUqlQuXJlNGnSBN27d8ezZ8/ELo20LDAwEI6OjtixYwdWr16NAwcOoHTp0nlaA8OAYcvIyMDw4cPRq1cvdO/eHSdOnICNjY3YZVEek0QYMOZNhB9ToUIFHDt2DGvXrsXevXthb2+PXbt2iV0WacHLly8xdOhQeHt7o0KFCoiNjUXv3r0hk33ZIULakJKSwjBgoJ49e4amTZti6dKlWLZsGVauXMlGQhLFMGDkZDIZevbsicuXL8PDwwO+vr5o27Yt7t+/L3ZplEMhISGoUaMGVq1ahUWLFuHUqVOinh3PmQHDdOXKFbi5uSEiIgLHjh3DwIEDRQmTpB+MOgwY+mFF2lSmTBns3r0bAQEBOH/+POzt7bF+/XoefGRA0tLSMGHCBHh6eqJo0aKIiorCsGHDRN/pzTBgeA4cOAA3Nzfkz58fYWFh8Pb2FrskEplRhwEzMzMUK1ZM0jMDb5PJZPD19cXly5fh4+ODnj17onHjxrh165bYpdEnxMTEQKlUYv78+Zg6dSqCgoJQtWpVscsCwDBgSARBwLx58+Dj4wNvb28EBQXhm2++Ebss0gNGHQYA4+5CmFPW1tbYsGEDDh8+jKtXr0Iul+OXX36RxCuYhiYjIwNz586Fq6srMjIyEBISgkmTJsHMTH8OA2IYMAyvXr1Cly5dMHbsWEyYMAG7d++GpaWl2GWRnjD6MGDsXQhzo0mTJlCpVOjRoweGDh2KOnXq4MqVK2KXRf9z7do11K1bF+PHj8fw4cMRERGBmjVril3We9iBUP/duXMHderUwZ49e7Bjxw7MmDFD9OUl0i9G/90glS6EOWVpaYmlS5fi3LlzePbsGZydnTFr1iwefCQijUaDZcuWwdnZGY8ePcK5c+cwb948WFhYiF3aewRB4MyAngsODoZCocCjR49w4cIFtGvXTuySSA9JIgxwZuDTateujejoaIwcORJTpkyBq6srIiIixC5LchISEtC4cWMMHjwY3bt3R3R0NGrVqiV2Wf/p9evXEASBYUBP/f777/Dy8kLFihURFhaGGjVqiF0S6SmGAcqWP39+zJ49G6GhoTAxMYGbmxvGjh2LV69eiV2a0RMEARs2bIBcLseVK1dw9OhRLFu2TO+n39VqNQAwDOiZjIwMjBgxAj169IC/vz9OnTqFUqVKiV0W6TGjDwPW1tZcJvhCNWvWRGhoKGbMmIHFixfDyckJZ8+eFbsso/Xw4UO0bt0a3bt3R8uWLaFSqdCoUSOxy/osDAP6JzExEc2aNcMvv/yCpUuXYtWqVWwkRJ9k9GFASocVaVO+fPkwbtw4REdHw8bGBl5eXhg4cCCSkpLELs2o7Nq1C3K5HEFBQdi9ezc2btyIYsWKiV3WZ8s6CIthQD9kNRIKDw/H0aNHMXjwYDYSos8iiTAgtcOKtKlq1ao4e/Ysli5dio0bN0Iul+PQoUNil2XwEhMT0aVLF/j6+qJOnTpQqVRo3bq12GV9Mc4M6I9Dhw7B3d0d+fLlQ2hoKL777juxSyIDYvRhIOsIVy4V5JyJiQkGDx6MuLg42Nvbo1mzZujatSv3YuTQ0aNHIZfLceDAAWzcuBG7du0y2INhGAbEJwgC5s+fj+bNm8PLywsXL15ExYoVxS6LDIzRhwGeT6A9X3/9NQ4fPowNGzbg4MGDsLe3x/bt29nS+DOlpKSgf//+aNKkCRwcHKBSqdC1a1eDnsZlGBDXq1ev0LVrV4wZMwbjx4/H3r17UaRIEbHLIgPEMEBfRCaTwd/fH1euXIGXlxc6dOiAVq1a4d69e2KXptfOnTsHJycnbNq0CcuXL8fRo0dRrlw5scvKNYYB8dy9exd169bF7t27sW3bNsycOZONhCjHjP47J+uwIoYB7SpVqhQCAgKwa9cuhIaGwt7eHmvWrOEswb+8fv0ao0ePhpeXF0qXLo1Lly5hwIABBj0b8DaGAXGEhIRAoVDgwYMHOH/+PPz8/MQuiQyc0YeBrMOKuGdAN9q0aYPLly+jTZs26NOnDxo0aICbN2+KXZZeiIiIgIuLC3755RfMmzcPZ86cQaVKlcQuS6vUajXy588PU1NTsUuRjI0bN8LLywsVKlRAeHi4XraoJsNj9GEAYOMhXbOyssK6detw7Ngx3Lx5E3K5HIsWLZLs65zp6emYNm0a3N3dYWFhgYiICIwePdoob5hsRZx3MjMzMWrUKHTr1g2dO3dmIyHSKoYB0pqGDRsiNjYWffv2xciRI1GrVi2oVCqxy8pTly9fhoeHB2bMmIFx48YhODgYcrlc7LJ0hmEgbzx//hzNmzfH4sWLsWTJEqxZs0Yvz6ogwyWJMMAuhHmncOHCWLx4MS5cuICkpCTUrFkT06ZNQ1pamtil6VRmZiYWLlyImjVrQq1W4+LFi5g+fbrRd35jGNC9q1evws3NDSEhIThy5AiGDBliNHtOSH9IIgxwZiDveXh4ICoqCmPGjMHMmTPh4uKCsLAwscvSiZs3b6J+/foYPXo0Bg4ciMjISCgUCrHLyhMpKSkMAzp0+PBhuLm5wdTUFKGhoWjQoIHYJZGRYhggnbGwsMCMGTMQHh4OCwsLuLu7Y9SoUXj58qXYpWmFIAhYtWoVqlevjoSEBAQGBuLnn39GgQIFxC4tz3BmQDcEQcCCBQvQvHlz1KlTB8HBwUa3+ZT0iyTCAJcJxOXk5ITg4GDMnTsXy5YtQ/Xq1REYGCh2Wbly7949NGvWDP369UOnTp0QExMDLy8vscvKcwwD2vf69Wv4+/tj9OjRGDNmDBsJUZ6QRBjgYUXiMzMzw+jRo3Hp0iWULVsW3t7e6NevH168eCF2aV9EEARs2bIFcrkc0dHROHjwIFatWgVLS0uxSxMFw4B23bt3D15eXti5cye2bNmC2bNnG+VbKKR/JBMGeFiRfqhcuTICAwOxYsUKbN26Ffb29ti/f7/YZX2WJ0+eoH379ujcuTMaN26M2NhYNG3aVOyyRMUwoD2hoaFwdXXF3bt3ce7cOXTs2FHskkhCJBMGAHYh1BcmJibo378/4uLi4OzsDB8fH3Tq1AmPHz8Wu7T/tH//fsjlcpw6dQrbt2/H1q1bsw/BkjK1Wo3ChQuLXYbB27RpE+rWrYvy5csjPDwcrq6uYpdEEiOJMMCTC/WTra0tDhw4gM2bN+PYsWOoVq0atmzZolctjV+8eIEePXrAx8cHrq6uUKlUaN++vdhl6Q3ODOROZmYmfvzxR/j7+6Njx44IDAzEV199JXZZJEGSCAOcGdBfMpkMnTt3xuXLl9GwYUN07twZLVq0QEJCgtil4dSpU6hevTp27dqFtWvXYv/+/ShdurTYZekVhoGce/78OVq0aIGFCxdi0aJFWLduHRsJkWgkEQZ4WJH+s7GxwdatW7Fv3z5ERUXBwcEBv/32GzQaTZ7X8vLlSwwZMgTfffcdvvnmG8TExKBnz55s9PIBDAM58/fff8Pd3R0XL17E4cOHMWzYMH5/kagkEQZ4WJHh8PHxQVxcHDp06ID+/fvD29sb165dy7PrBwcHw9nZGatXr8aSJUtw8uRJlC9fPs+ub0gEQWDToRw4evQolEolZDIZQkND0ahRI7FLIpJGGADYeMiQFCtWDKtWrcLJkyeRkJCA6tWr46effkJGRobOrpmamorx48ejVq1asLKyQnR0NIYMGcLz4T/i9evXEASBYeAzCYKAn3/+GU2bNkXt2rURHByMb7/9VuyyiAAwDJAe8/b2RmxsLAYOHIixY8fCw8MDMTExWr/OpUuXoFQqsWDBAkyfPh0XLlxAlSpVtH4dY6NWqwGAYeAzvH79Gj169MDIkSMxevRo7Nu3D0WLFhW7LKJskgkD7EJomAoWLIiFCxciKCgIr169gouLCyZPnozU1NRcj52RkYHZs2dDoVBAEASEhoZiwoQJMDMz00Llxo9h4PPcv38f9erVw/bt2/HHH39g7ty5bCREekcyYYAzA4bNzc0NkZGRmDhxIubOnYuaNWsiODg4x+P9/fffqFOnDiZNmoSRI0ciLCwMzs7O2itYAhgGPi0sLAyurq5ISEjA2bNn0alTJ7FLIvoghgEyGObm5pgyZQoiIyNRuHBheHp6Yvjw4dk3pc+h0WiwdOlSODs748mTJzh37hzmzJnDV7pygGHg4/744w/UqVMHdnZ2CA8Pl8xJlmSYGAbI4MjlcgQFBWHBggX47bffIJfLceLEiU/+udu3b6Nhw4YYMmQIevXqhejoaHh6euZBxcYpKwywA+G7MjMzMWbMGHTp0gUdOnRAYGAg+1OQ3pNMGLC2tkZiYiIPKzISpqamGDFiBGJjY1GhQgU0bNgQvXr1wvPnz9/7XEEQsH79ejg6OuLatWs4fvw4li5dyifaXOLMwPtevHgBHx8fLFiwAD///DPWr1+P/Pnzi10W0SdJJgzwsCLjVLFiRZw8eRKrVq3Czp07YW9vj71792Z//MGDB2jVqhV69uyJNm3aIDY2Fg0aNBCvYCPCMPCua9euwd3dHRcuXMChQ4cwfPhwNhIigyGpMACwC6Exkslk6NOnDy5fvgxXV1e0bt0a7du3x5o1ayCXyxEcHIy9e/fi999/5+tcWsQw8P+OHTsGpVKZ/VZK48aNxS6J6ItIJgzwsCLjV7ZsWezbtw9r1qzBn3/+iT59+qBChQqIjY1Fy5YtxS7P6KSkpMDCwkLSr8kJgoBFixbh+++/h4eHB0JCQlC5cmWxyyL6YpIJA5wZkIYjR45g8uTJyJ8/Pzw9PREeHo5u3bohPj5e7NKMjtTPJUhNTUXPnj0xYsQIjBo1Cvv37+fMExksyYQBHlZk3JKTk9GvXz80bdoUjo6OiIuLw4ULF3DgwAGoVCo4ODhg2bJlohx8ZKykHAYePHiA+vXrY+vWrdi0aRPmzZsn6RkSMnySCQNmZmawsrLiMoEROnv2LJycnPDHH39g5cqVOHz4MMqWLQsAaNasGeLi4tC1a1cMHjwYXl5euHr1qsgVGwephoHw8HC4urri9u3bOHv2LLp06SJ2SUS5JpkwALzZN8CZAePx+vVrjBw5EvXq1UPZsmVx6dIl9OvX770d3EWKFMHy5ctx+vRpPHjwAE5OTpg7dy7S09NFqtw4SDEMbN26FXXq1EHZsmURFhYGpVIpdklEWiGpMMDGQ8YjPDwcNWvWxLJly/DTTz/h9OnTqFix4kf/jJeXF2JiYjB06FBMmDABbm5uiIqKyqOKjY+UwkBmZibGjRuHTp06oV27djhz5gzKlCkjdllEWsMwQAYlPT0dU6ZMgbu7OwoUKICIiAiMHDnys9drCxQogHnz5iEkJAQZGRlQKBSYMGECXr9+rePKjY9arZZE98GkpCS0bNkS8+fPx4IFC7BhwwY2EiKjI6kwwJMLDVtcXBzc3d0xa9YsTJw4EcHBwXBwcMjRWK6urggPD8fUqVOxYMECODs748KFC1qu2LhJYWbg+vXrcHd3x/nz53Hw4EGMHDmSjYTIKEkqDHBmwDBlZmZiwYIFcHFxwatXrxAcHIypU6ciX758uRrX3NwcEydORFRUFKysrFCnTh388MMPSE5O1lLlxs3Yw8CJEyegVCqRmZmJkJAQNGnSROySiHSGYYD02o0bN1CvXj38+OOPGDRoECIiIuDq6qrVa9jb2+P8+fNYtGgR1q1bB7lcjqNHj2r1GsbIWMOAIAhYsmQJGjduDDc3N4SEhKBKlSpil0WkU5IKAzysyHAIgoCVK1fCyckJd+/exenTp7Fw4UIUKFBAJ9czNTXF0KFDoVKpULlyZTRp0gTdu3fHs2fPdHI9Y5CSkmJ0YSA1NRW9e/fGsGHDMGLECBw4cADFihUTuywinZNUGOBhRYbh7t27+P777zFgwAB07twZly5dQt26dfPk2hUqVMCxY8ewbt067Nu3D/b29ti1a1eeXNvQGNvMwIMHD+Dt7Y0//vgDGzZswE8//cRGQiQZkgsDALsQ6itBELB582bI5XLExMTg0KFD+O2332BpaZmndchkMvTo0QOXL1+Gp6cnfH190bZtW9y/fz9P69B3xhQGIiIioFAo8M8//+DMmTPw9/cXuySiPCXJMMA3CvTP48eP4evri65du6Jp06ZQqVT4/vvvRa2pdOnS2LVrFwICAnD+/HnY29tj/fr1EARB1Lr0gSAIRhMGtm3bhtq1a6N06dIICwuDm5ub2CUR5TlJhYGskws5M6Bf9u3bB7lcjjNnziAgIAB//PFH9lkSYpPJZPD19cXly5fh4+ODnj17onHjxrh165bYpYkqNTUVGo3GoMOARqPBhAkT0LFjR/j6+uLMmTPZbayJpEZSYYCHFemXFy9eoHv37mjVqhXc3NygUqng6+srdlkfZG1tjQ0bNuDw4cO4evUq5HI5fvnlF8luRlWr1QBgsGEgKSkJrVq1wpw5czB//nxs3LhRZ5tTiQyBpMJA1mFFDAPiO3nyJBwdHbFnzx6sX78e+/btw1dffSV2WZ/UpEkTqFQq9OjRA0OHDkWdOnVw5coVscvKc1lhwBA7EN64cQMeHh44c+YMDhw4gNGjR7OREEmepMIAwC6EYlOr1Rg8eDAaNGiAb7/9FrGxsejevbtB/TC2tLTE0qVLce7cOTx79gzOzs6YNWuWpA4+MtSZgZMnT0KhUCA9PR0hISFo2rSp2CUR6QXJhQE2HhLPxYsX4ezsjHXr1mHp0qU4fvw47OzsxC4rx2rXro3o6GiMHDkSU6ZMgaurKyIiIsQuK08YWhgQBAFLly5F48aNoVQqERISgqpVq4pdFpHeYBggnUtNTcW4ceNQu3ZtlChRAtHR0Rg8eDBMTAz/2y9//vyYPXs2wsLCYGJiAjc3N4wZMwavXr0SuzSdMqQwkJaWhr59+2LIkCEYOnQoDhw4ACsrK7HLItIrhv/T+AuVKFGCywR5KDo6GgqFAgsXLsTMmTNx7tw5VK5cWeyytK5GjRoIDQ3FjBkzsGTJEjg5OeHs2bNil6UzKSkpAPQ/DDx8+BDe3t7YuHEjfv/9dyxcuBBmZmZil0WkdyQXBqytrTkzkAcyMjIwa9YsKJVKyGQyhIeHY9y4cUb9gzhfvnwYN24coqOjYWNjAy8vLwwcOBBJSUlil6Z1hjAzEBUVBYVCgRs3buDMmTPo1q2b2CUR6S3JhQEuE+je1atXUatWLUyePBmjR49GWFgYqlevLnZZeaZq1ao4e/Ysli5dio0bN0Iul+PQoUNil6VV+h4GduzYgVq1aqFUqVIIDw+Hu7u72CUR6TVJhgEeVqQbGo0GS5YsgbOzM54/f44LFy5g1qxZMDc3F7u0PGdiYoLBgwcjLi4O9vb2aNasGbp27Wo0QVStVsPc3FzvZno0Gg0mTpwIPz8/tG7dGmfPnmUjIaLPILkwYG1tzcOKdOD27dto0KABhg0bhr59+yIqKopPYwC+/vprHD58GBs2bMDBgwdhb2+P7du3G3xLY31sRZycnIw2bdpg9uzZmDdvHjZv3sxGQkSfSXJhgIcVaZcgCFi7di0cHR1x48YNnDx5EkuWLEHBggXFLk1vyGQy+Pv748qVK/Dy8kKHDh3QqlUr3Lt3T+zSckzfwsDNmzfh4eGBU6dOYf/+/fjxxx8NqncFkdgYBijH7t+/Dx8fH/Tu3Ru+vr6IiYmBt7e32GXprVKlSiEgIAC7du1CaGgo7O3tsWbNGoOcJVCr1XrTffDUqVNQKBRITU1FSEgImjVrJnZJRAZHcmEg67Aivl6YOzt27IBcLkdYWBj+/PNPrFu3DkWLFhW7LIPQpk0bXL58GW3btkWfPn3QoEED3LhxQ+yyvog+zAwIgoBly5ahUaNGcHFxQWhoKKpVqyZqTUSGSnJhgIcV5c6zZ8/QsWNH+Pn5wdvbGyqVCi1atBC7LINjZWWFtWvX4vjx47h58yYcHR3x888/G8zGVrHDQFpaGvr164fBgwfjhx9+wKFDh9hIiCgXJBcGeFhRzh06dAhyuRxHjx7Fli1bsGPHjuxlF8qZBg0aIDY2Fn379sWoUaPg6ekJlUoldlmfJGYYePToEb777jts2LAB69atw6JFi/TurQYiQyO5MACwC+GXSk5ORt++fdGsWTM4OTlBpVKhY8eO3KClJYULF8bixYtx4cIFJCcno2bNmpg2bRrS0tLELu0/paSkiBIGsjpaXrt2DYGBgejRo0ee10BkjCQZBtiF8POdOXMG1atXx5YtW/Dbb7/h0KFDKFOmjNhlGSUPDw9ERUVh7NixmDlzZvY6uD4SY2YgICAAtWrVQsmSJREWFgZPT888vT6RMZNkGGAXwk979eoVRowYgfr168POzg4xMTHo27cvZwN0zMLCAtOnT0d4eDgsLCzg4eGBUaNG4eXLl2KX9o68DAMajQaTJ09G+/bt4ePjg7Nnz8LW1jZPrk0kFZINA1wm+G9hYWGoWbMmli9fjgULFiAwMBDffPON2GVJipOTE4KDgzF37lwsW7YMjo6OCAwMFLusbHkVBlJSUtC2bVvMnDkTc+bMwZYtW9jDgkgHJBkGuEzwYWlpaZg8eTI8PDxQqFAhREZGYsSIEUZx1LAhMjMzw+jRo3Hp0iWUK1cO3t7e6NevH168eCF2aXkSBv755x94enri5MmT2LdvH8aOHcuZKSIdkeRPeS4TvE+lUsHd3R1z5szB5MmTcfHiRdjb24tdFgGoXLkyAgMDsWLFCmzduhX29vbYv3+/qDXpuulQYGAgFAoFXr58ieDgYL6+SqRjkg0DPKzojczMTMyfPx8uLi5ITU1FcHAwJk+ejHz58oldGr3FxMQE/fv3R1xcHJydneHj44OOHTvi8ePHeV6LIAg6nRlYvnw5GjZsCGdn5+xOjUSkW5INAzysCLh+/Tq8vLwwduxYDB06FBEREXBxcRG7LPoIW1tbHDhwAJs3b8bx48dRrVo1bNmyJU9bGqelpSEzM1PrYSAtLQ39+/fHoEGDMGjQIBw5ciS7SRgR6ZYkw0BWS2KpLhUIgoAVK1bAyckJ9+/fx9mzZzF//nzkz59f7NLoM8hkMnTu3BmXL19Gw4YN0blzZ7Ro0QIJCQl5cn21Wg0AWg0Djx8/RoMGDbBu3TqsXbsWS5YsYSMhojwkyTAg5cOK7ty5g8aNG2PgwIHw9/fHpUuXULt2bbHLohywsbHB1q1bsW/fPkRFRcHBwQErV66ERqPR6XW1HQYuXboEhUKBq1evIjAwED179tTKuET0+SQdBqT0eqEgCNi0aRPkcjkuX76MI0eOYMWKFXpz8hzlnI+PDy5fvowOHTpgwIAB8Pb2xrVr13R2vZSUFADaCQO7du2Cp6cnihcvjrCwMNSqVSvXYxLRl5NkGMg60EQqMwOPHj1C27Zt4e/vjxYtWiA2NhaNGzcWuyzSoqJFi2LVqlU4efIkEhISUL16dfz000/IyMjQ+rW0MTOg0WgwdepU+Pr6okWLFjh//jzs7Oy0VSIRfSFJhgEpHVa0Z88eyOVynDt3Drt27cKmTZt4upsR8/b2RmxsLAYOHIixY8fCw8MDMTExWr1GbsNASkoK2rVrh2nTpmHWrFnYunUrGwkRiUySYQAw/i6Ez58/h7+/P9q0aZN9El6bNm3ELovyQMGCBbFw4UIEBQXh1atXcHFxweTJk5GamqqV8XMTBm7duoVatWrh2LFj2LdvH8aPH89GQkR6QLJhwJi7EB4/fhyOjo7Yt28fNmzYgD179qBUqVJil0V5zM3NDZGRkZg4cSLmzp2LGjVq4OLFi7kaU6NWI/P6dVTPnx/md+9C879g8DnOnDkDhUKBlJQUBAcHw8fHJ1e1EJH2SDYMGGMXQrVajUGDBqFRo0aoWrUqVCoV/P39+eQlYebm5pgyZQoiIyNhaWmJWrVqYdiwYdlP958j9fp1PJg5C9cbNcJVVwUqLV+BbV+XxxP/brjqqsD1Ro3wYOYspF6//p9jrFy5Eg0aNED16tURGhoKBwcHbXx5RKQlkg4DxrRMEBQUBGdnZ/z+++9YtmwZjh49ypPdKJtcLkdQUBAWLFiAVatWQS6X48SJEx/9M2l37iC+Zy/cbN4CiVu3Ij0+Afh3cyNBQHp8AhK3bsXN5i0Q37MX0u7cyf5weno6Bg4ciAEDBmDAgAE4cuRIdp8PItIfkg4DxjAzkJqaijFjxqBOnTqwsbFBdHQ0Bg4cyMOF6D2mpqYYMWIEYmNjUaFCBTRs2BC9evX6YCfOxIAA3GzWHOqQkDe/8anW3f/7uDokBDebNUdiQACePHmChg0bYs2aNVi9ejV++eUXtrkm0lOSvWMYw56BqKgouLq6YvHixZg9ezbOnj2Lb7/9VuyySM9VrFgRJ0+exOrVq7Fz507Y29tjz5492R9/snIlHkyaDCE19dMh4N8yMyGkpuLBpMlY4O6Oy5cv49SpU+jdu7eWvwoi0ibJhgFDPqwoIyMDM2fOhFKphKmpKcLDwzFmzBiYmpqKXRoZCJlMht69e+Py5ctQKBRo06YN2rdvj9tr1+Lx4iVauUY3s3y4OGMmO1wSGQBJhwFDPKzor7/+gqenJ6ZMmYIxY8YgNDQUjo6OYpdFBqps2bLYt28ftm3bhr/OnkXi/J+gzSOP0pcvf2cPARHpJ8mGAUM7rEij0WDx4sWoUaMGkpKSEBQUhJkzZ8Lc3Fzs0sjAyWQy+Pn5YXfDRjCTyaDNd0+EjAw8mDxFiyMSkS5INgwY0mFFt27dgre3N4YPH45+/fohMjISbm5uYpdFRiT1+nWkh4VB6wtNmZlQBwUh9cYNbY9MRFok+TCgz68XCoKANWvWwNHREbdu3cKpU6ewePFitm4lrUvcth3Q1Z4TU1Mkbt2mm7GJSCskGwasrKwgk8n0dmbg/v37aNGiBfr06QM/Pz/ExMSgfv36YpdFRirl7Jkvf3Pgc2VmIuXsWd2MTURaYSZ2AWIxMzNDsWLF9DIMbNu2DQMHDoSFhQX279+P5s2bi10SGbHMFDXSE3S7yS89IQEatRomWjj2mIi0T7IzA4D+dSF8+vQp/Pz80LFjRzRs2BAqlYpBgHQuPSH+/c6C2iYISIuP1+01iCjHJDszAOhXF8KDBw+id+/eSEtLw7Zt2+Dn5yd2SWTEXr9+jYSEBMTHx+NZcDDkeXBNIS0tD65CRDkh6TCgD10Ik5KSMHz4cKxbtw5NmzbFmjVrULp0aVFrIsMmCAKePHmC+Ph4xMfH4/bt29n/nfXr4cOH2Z9f1cICu8tX0HldMr4GS6S3JB0GSpQogatXr4p2/dOnT6N79+54+vQpVq9ejV69evGEQfqk1NTU7Kf6t3+9fdN//fp19ucXKFAAdnZ2sLOzQ/Xq1dG8eXPY2dnh66+/hp2dHcoUL45bnrV0u1Qgk8Hczk534xNRrkg+DAQFBeX5dV+9eoVx48ZhyZIl8PLywunTp1G+fPk8r4P0jyAIePr06Uef6h88ePDOnylVqlT2zT7rRv/2rxIlSnwyZOazLffmVEIdyWdry82DRHpM0mFAjGWC0NBQ+Pv74/bt21i0aBGGDBnCEwYlJC0t7ZNP9a9evcr+/Pz582ff1OVyOZo2bfrOU325cuWQP3/+XNdVuK4XErdu1c3rhaamKFy3rvbHJSKtkXQYePuwIl0f8pOWloYZM2Zgzpw5qFmzJqKiolC1alWdXpPyliAIePbs2Sef6oW3puNtbGyyb+5ZN/q3f5UsWTJPlo6sOvghcfNm3QyemQmrjh10MzYRaYXkw0DWYUVZHQl1ITY2Fv7+/lCpVJg6dSrGjh0LMzNJ/683SGlpabhz585Hn+pfvnyZ/fkWFhbZN3V7e3s0adLkvaf6AgUKiPgV/T+LSpVQyNMT6pAQ7c4OmJqikJsbLCpW1N6YRKR1kr4jvX0+gS7CQGZmJhYsWIDJkyejcuXKCA0NRY0aNbR+Hcq9rFD4saf6+/fvv/NUX7Jkyeybe9aN/u1fNjY2BrUh9Kvp03CzWXMIWgwDMjMzfDV9mtbGIyLdkHQY0OXJhdevX0e3bt0QHByM0aNHY9q0abCwsND6dejzpKenf/KpXq1WZ3++ubl59k29atWqaNSo0TtP9ba2tnrzVK8t5uXKodTECXgwabLWxvxq0kSYlyuntfGISDckHQZ0cViRRqPBihUr8OOPP6J06dI4d+4cPD09tTY+vU8QBDx//vyjT/X37t1756m+RIkS2Tf3rBv9v5/qpbix06pdO2Q+fYrHi5fkeqySw4ahmK+vFqoiIl2TdBjQ9mFFCQkJ6NmzJ06cOIGBAwdi/vz5KMTXqXItPT0dd+/e/ehTfUpKSvbnm5ubw9bWFnZ2dqhcuTIaNGjw3lM9T378byX694eptTUezpwFISPjy/YQmJq+WRqYNJFBgMiASDoMmJmZobSVFdKuXsWrS5cgMzeHuZ3dF78PLQgCNm3ahCFDhsDS0hLHjh1Dw4YNdVS1cREEAS9evPjkU71Go8n+M9bW1tk396wb/du/SpUqJcmnem2yatcOhTw88GDyFKiDgt4cb/yxUPC/jxdyc8NX06dxaYDIwMgE4dNtx5KSklC0aFG8ePECRYoUyYu6dCr1+nUkbtuOlLNnkHY7/t1NXjIZ8tmWQ+G6XrDq4AeLSpU+OtajR4/Qr18/7N27F/7+/liyZAmKFSum2y/AgGRkZHzyqT45OTn78/Ply5f9VJ/1K+uJPuupnrMteev//72cRXpCwrudCmUy5LO1ReG6dWHVsQPfGiDSM597/5ZUGEi7c+fLn3Q8Pf/zSWf37t3o168fZDIZVq1ahVatWumueD2V9VT/oSf6+Ph43L17952n+uLFi793g3/711dffcWnej2mUauRFh8PIS0txzNpRJR3GAb+JTEgIFdroKUmToBVu3ZvxkpMxJAhQ7B582a0bt0aK1euhI2NjY4qF09GRgbu3bv30af6pKSk7M83MzN776n+32v1hQsXFvErIiKSls+9f0tiz8CTlStzvjs6MxNCZiYeTJqMzKdPEVGhAnr16oWUlBRs3LgRXbp0Mah3yd+WlJT00bX6u3fvIvOt4GRlZZV9c69Xr94Hn+p13cmRiIi0z+jDQGJAgFZekwKAx4uXYNWD+7BXKrFu3TqU0+NNUhkZGbh///5Hn+pfvHiR/flmZmYoV64c7OzsUL58edStW/e9tXpLS0sRvyIiItIVo14mSLtz501HtdRUrYwnCAI0Zmb49shhWNjaamXMnEpOTv7oWv2dO3feeaovVqzYR9fqS5cuzad6IiIjw2UCAA8mT3mzR0BLZDIZTAE8nDIVduvWam3cf8vMzHzvqf7fN/3nz59nf76pqWn2U72dnR1q16793lq9IYU4IiLKW0YbBlKvX3/z1oC2ZWZCHRSE1Bs3cvwaVUpKyief6jPeCjFFixbNvrln3ejf/lWmTBk+1RMRUY4ZbRhI3Lb9068P5pSpKRK3bsNXEye896HMzEw8ePDgo0/1iYmJbw1lirJly2bf2D09Pd9bqy9atKj2vwYiIqL/MdowkHL2jG6CAABkZuLRkSP406bkB5/q09PTsz/V0tISX3/9Nb7++mt4enqiQ4cO7z3V8zhjIiISk1HehTJT1EhPuKPTa5g+fowRAweieJky2Td2d3f39zbo8ameiIj0nVGGgfSE+HdbpuqAiUyGh9HRKCSX6/Q6REREumaUfV+FtLQ8uY6JrpYhiIiI8pBRhgGZublRXYeIiEiXjDIMmNvZAbpuESyTvbkOERGRgTPKMGBSqBDy2eq2VXA+W1ue1kZEREbBKMMAABSu6/Wmz4AumJqicN26uhmbiIgojxltGLDq4KfTPgNWHTvoZmwiIqI8ZrRhwKJSJRTy9NT+7ICpKQp5eua4FTEREZG+MdowAABfTZ8GmZa7+8nMzPDV9GlaHZOIiEhMRh0GzMuVQ6kPnB+QG19NmgjzcrrdnEhERJSXjDoMAIBVu3YoOWyoVsYqOWwYivn6amUsIiIifWGU7Yj/rUT//jC1tsbDmbMgZGR82cZCU9M3SwOTJjIIEBGRUTL6mYEsVu3a4ZuDB1DIze3Nb3xqY+H/Pl7IzQ3fHDzAIEBEREZLEjMDWczLlYPdurVIvX4didu2I+XsWaQnJLx7qJFMhny2tihcty6sOnbgWwNERGT0ZILw6eP9kpKSULRoUbx48QJFihTJi7ryjEatRlp8PIS0NMjMzWFuZ8fOgkREZBQ+9/4tqZmBDzEpVAj5q1UTuwwiIiLRSGbPABEREX0YwwAREZHEMQwQERFJHMMAERGRxDEMEBERSRzDABERkcQxDBAREUkcwwAREZHEMQwQERFJHMMAERGRxDEMEBERSRzDABERkcQxDBAREUkcwwAREZHEMQwQERFJHMMAERGRxJl9zicJggAASEpK0mkxREREpD1Z9+2s+/h/+awwkJycDACwtbXNZVlERESU15KTk1G0aNH//LhM+FRcAKDRaHDv3j1YWlpCJpNptUAiIiLSDUEQkJycjDJlysDE5L93BnxWGCAiIiLjxQ2EREREEscwQEREJHEMA0RERBLHMEBERCRxDANEREQSxzBAREQkcQwDREREEvd/FqpWbVl8izkAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -251,7 +264,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -261,7 +274,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -294,7 +307,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -303,7 +316,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -319,7 +332,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -328,12 +341,12 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0wAAAK9CAYAAAAXJOy/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACCkElEQVR4nO3dd3hUZd7G8XsS0ggpICUBQu+9K0UBRaqIvaGIBRtgQ1ZwVcCG7XVVFt1ddYG1lxW7KFIVkCpVQEB6b2mUkHLeP549mZkkA6lTMt/Pdc115pQ580wGMTe/pzgsy7IEAAAAAMgnxNcNAAAAAAB/RWACAAAAAA8ITAAAAADgAYEJAAAAADwgMAEAAACABwQmAAAAAPCAwAQAAAAAHhCYAAAAAMADAhMAAAAAeEBgAgCUW9OnT5fD4dCKFSvOeW2vXr3Uq1evsm8UACCgEJgAAMW2bds23X333WrQoIEiIyMVGxur7t2767XXXtOpU6dK/f1OnjypiRMnav78+aV+7+JYvHixJk6cqOTkZF83BQBQRir4ugEAgMD07bff6tprr1VERISGDRumVq1a6cyZM/rll180duxYbdiwQf/6179K9T1PnjypSZMmSVKpV4N+/PHHIr9m8eLFmjRpkoYPH674+PhSbQ8AwD8QmAAARbZ9+3bdcMMNqlu3rubOnavExMTccyNHjtTWrVv17bff+rCFRRceHu7rJkiSLMvS6dOnFRUV5eumAABElzwAQDG8+OKLSk9P1zvvvOMWlmyNGjXSAw88kLuflZWlp59+Wg0bNlRERITq1aunxx57TBkZGW6vW7Fihfr166eqVasqKipK9evX1+233y5J2rFjh6pVqyZJmjRpkhwOhxwOhyZOnHjO9mZkZOjhhx9WtWrVFB0drSuvvFKHDx92u6agMUxTpkxRy5YtVbFiRVWuXFmdOnXSBx98IEmaOHGixo4dK0mqX79+bnt27NhRpM9cr149XXbZZfrhhx/UqVMnRUVF6Z///Kd69uyptm3bFvh5mjZtqn79+p3zcwMASo4KEwCgyL7++ms1aNBA3bp1K9T1d955p2bMmKFrrrlGY8aM0dKlSzV58mRt3LhRM2fOlCQdOnRIffv2VbVq1TRu3DjFx8drx44d+vzzzyVJ1apV05tvvql7771XV155pa666ipJUps2bc75/qNHj1blypU1YcIE7dixQ6+++qpGjRqljz/+2ONr3nrrLd1///265ppr9MADD+j06dNau3atli5dqptuuklXXXWV/vjjD3344Yf629/+pqpVq+a2s7Cf2bZ582bdeOONuvvuuzVixAg1bdpUlSpV0ogRI7R+/Xq1atUq99rly5frjz/+0OOPP16onz0AoIQsAACKICUlxZJkDRkypFDXr1692pJk3XnnnW7HH3nkEUuSNXfuXMuyLGvmzJmWJGv58uUe73X48GFLkjVhwoRCvfe0adMsSVafPn2snJyc3OMPPfSQFRoaaiUnJ+ce69mzp9WzZ8/c/SFDhlgtW7Y86/1feuklS5K1fft2t+OF/cyWZVl169a1JFmzZs1yuzY5OdmKjIy0Hn30Ubfj999/vxUdHW2lp6eftW0AgNJBlzwAQJGkpqZKkmJiYgp1/XfffSdJevjhh92OjxkzRpJyxzrZkyZ88803yszMLI2m5rrrrrvkcDhy9y+88EJlZ2dr586dHl8THx+vPXv2aPny5UV+v8J+Zlv9+vXzdbGLi4vTkCFD9OGHH8qyLElSdna2Pv74Y11xxRWKjo4ucrsAAEVHYAIAFElsbKwkKS0trVDX79y5UyEhIWrUqJHb8YSEBMXHx+eGlp49e+rqq6/WpEmTVLVqVQ0ZMkTTpk3LN+anOOrUqeO2X7lyZUnS8ePHPb7m0UcfVaVKldSlSxc1btxYI0eO1KJFiwr1foX9zLb69esXeJ9hw4Zp165d+vnnnyVJP/30kw4ePKhbbrmlUO0AAJQcgQkAUCSxsbGqWbOm1q9fX6TXuVZ4PJ3/7LPPtGTJEo0aNUp79+7V7bffro4dOyo9Pb0kTVZoaGiBx+3KTUGaN2+uzZs366OPPlKPHj303//+Vz169NCECRMK/b7n+sw2TzPi9evXTzVq1NB7770nSXrvvfeUkJCgPn36FLoNAICSITABAIrssssu07Zt27RkyZJzXlu3bl3l5ORoy5YtbscPHjyo5ORk1a1b1+34BRdcoGeffVYrVqzQ+++/rw0bNuijjz6SVPgAUlqio6N1/fXXa9q0adq1a5cGDRqkZ599VqdPnz5re4r6mT0JDQ3VTTfdpM8++0zHjx/XF198oRtvvNFjAAQAlD4CEwCgyP7yl78oOjpad955pw4ePJjv/LZt2/Taa69JkgYOHChJevXVV92ueeWVVyRJgwYNkmS6x+Wt+LRr106ScrvlVaxYUZKUnJxcKp/jbI4ePeq2Hx4erhYtWsiyrNwxVvY4orztKexnLoxbbrlFx48f191336309HTdfPPNRfkYAIASYlpxAECRNWzYUB988IGuv/56NW/eXMOGDVOrVq105swZLV68WJ9++qmGDx8uSWrbtq1uvfVW/etf/1JycrJ69uypZcuWacaMGbriiivUu3dvSdKMGTP0xhtv6Morr1TDhg2Vlpamt956S7GxsbkBJCoqSi1atNDHH3+sJk2aqEqVKmrVqpXbtNulpW/fvkpISFD37t1Vo0YNbdy4UX//+981aNCg3AkvOnbsKEn661//qhtuuEFhYWEaPHhwoT9zYbRv316tWrXSp59+qubNm6tDhw6l/lkBAGfh20n6AACB7I8//rBGjBhh1atXzwoPD7diYmKs7t27W1OmTLFOnz6de11mZqY1adIkq379+lZYWJiVlJRkjR8/3u2aVatWWTfeeKNVp04dKyIiwqpevbp12WWXWStWrHB7z8WLF1sdO3a0wsPDzznFuD2teN6pyufNm2dJsubNm5d7LO+04v/85z+tiy66yDrvvPOsiIgIq2HDhtbYsWOtlJQUt3s9/fTTVq1atayQkBC3KcYL85kty0wrPmjQoLP9mK0XX3zRkmQ999xzZ70OAFD6HJZ1lhGvAADA51577TU99NBD2rFjR74Z/wAAZYvABACAH7MsS23bttV5552nefPm+bo5ABB0GMMEAIAfOnHihL766ivNmzdP69at05dffunrJgFAUKLCBACAH9qxY4fq16+v+Ph43XfffXr22Wd93SQACEoEJgAAAADwgHWYAAAAAMADAhMAAAAAeBBUkz7k5ORo3759iomJkcPh8HVzAAAAAPiIZVlKS0tTzZo1FRLiuY4UVIFp3759SkpK8nUzAAAAAPiJ3bt3q3bt2h7PB1VgiomJkWR+KLGxsT5uDQAAAABfSU1NVVJSUm5G8CSoApPdDS82NpbABAAAAOCcQ3WY9AEAAAAAPCAwAQAAAIAHBCYAAAAA8CCoxjABAAAAgcayLGVlZSk7O9vXTQkooaGhqlChQomXEyIwAQAAAH7qzJkz2r9/v06ePOnrpgSkihUrKjExUeHh4cW+B4EJAAAA8EM5OTnavn27QkNDVbNmTYWHh5e4WhIsLMvSmTNndPjwYW3fvl2NGzc+6+K0Z0NgAgAAAPzQmTNnlJOTo6SkJFWsWNHXzQk4UVFRCgsL086dO3XmzBlFRkYW6z5M+gAAAAD4seJWRlA6Pzt++gAAAADgAYEJAAAAADwgMAEAAACABwQmAAAAAKXuwIEDGj16tBo0aKCIiAglJSVp8ODBmjNnTonvPX36dMXHx5e8kYXALHkAAAAAStWOHTvUvXt3xcfH66WXXlLr1q2VmZmpH374QSNHjtSmTZt83cRCo8IEAAAABJgTJzw/Tp8u/LWnTp372uK477775HA4tGzZMl199dVq0qSJWrZsqYcffli//vqrJGnXrl0aMmSIKlWqpNjYWF133XU6ePBg7j3WrFmj3r17KyYmRrGxserYsaNWrFih+fPn67bbblNKSoocDoccDocmTpxYvIYWAoEJAAAACDCVKnl+XH21+7XVq3u+dsAA92vr1ct/TVEdO3ZMs2bN0siRIxUdHZ3vfHx8vHJycjRkyBAdO3ZMCxYs0OzZs/Xnn3/q+uuvz71u6NChql27tpYvX66VK1dq3LhxCgsLU7du3fTqq68qNjZW+/fv1/79+/XII48UvaGFRJc8AAAAAKVm69atsixLzZo183jNnDlztG7dOm3fvl1JSUmSpP/85z9q2bKlli9frs6dO2vXrl0aO3Zs7n0aN26c+/q4uDg5HA4lJCSU7YcRgQkAAAAIOOnpns+FhrrvHzrk+dq867ru2FHsJuWyLOuc12zcuFFJSUm5YUmSWrRoofj4eG3cuFGdO3fWww8/rDvvvFPvvvuu+vTpo2uvvVYNGzYseQOLiC55AAAAQICJjvb8iIws/LVRUee+tqgaN24sh8NR4okdJk6cqA0bNmjQoEGaO3euWrRooZkzZ5bonsVBYAIAAABQaqpUqaJ+/fpp6tSpOlHArBHJyclq3ry5du/erd27d+ce//3335WcnKwWLVrkHmvSpIkeeugh/fjjj7rqqqs0bdo0SVJ4eLiys7PL/sOIwAQAAACglE2dOlXZ2dnq0qWL/vvf/2rLli3auHGjXn/9dXXt2lV9+vRR69atNXToUK1atUrLli3TsGHD1LNnT3Xq1EmnTp3SqFGjNH/+fO3cuVOLFi3S8uXL1bx5c0lSvXr1lJ6erjlz5ujIkSM6efJkmX0WAhMAAACAUtWgQQOtWrVKvXv31pgxY9SqVStdeumlmjNnjt588005HA59+eWXqly5si666CL16dNHDRo00McffyxJCg0N1dGjRzVs2DA1adJE1113nQYMGKBJkyZJkrp166Z77rlH119/vapVq6YXX3yxzD6LwyrMqKxyIjU1VXFxcUpJSVFsbKyvmwMAAAB4dPr0aW3fvl3169dXZN6BSSiUs/0MC5sNqDABAAAAgAcEJj939Ki0bp2vWwEAAAAEJwKTn6tRQ2rTRlq71tctAQAAAIIPgcnP2bMlrlrl23YAAAAAwYjA5OeaNTPbBg182w4AAAD4RhDN0VbqSuNnR2Dyc6GhZpuV5dt2AAAAwLvCwsIkqUzXGCrv7J+d/bMsjgql1RgUz8qV0vPPS+PGSR075j8f8r9I66WFjAEAAOAnQkNDFR8fr0OHDkmSKlasKIfD4eNWBQbLsnTy5EkdOnRI8fHxCrWrEMVAYPKhVaukPn2k5GQpMlJ6993819gz5P32m3TppV5tHgAAAHwsISFBknJDE4omPj4+92dYXAQmH1mzxgSg5GSzv2nT2a+n6yoAAEDwcTgcSkxMVPXq1ZWZmenr5gSUsLCwElWWbAQmH1mzRjp+XGrUSNq61QQmy5I8VVntyR8AAAAQfEJDQ0vll38UHZM++MiwYdLMmdLixWZih/R0ad++/NdVrmy2BCYAAADA+6gw+dCQIWY7fbpUq5ZUpUr+a3JyzDaEaAsAAAB4HYHJD9x8s+dzKSlma491AgAAAOA9AVW3WLhwoQYPHqyaNWvK4XDoiy++8HWTvOa773zdAgAAACD4BFRgOnHihNq2baupU6f6uiml6uBB0y3v7bc9XxMe7rXmAAAAAPifgOqSN2DAAA0YMMDXzSh127ZJt90mJSVJd97pfm7IEOnLL6WqVX3TNgAAACCYBVRgKqqMjAxlZGTk7qempvqwNZ41bWq2u3eb2fIqVXKes2ePzMryfrsAAACAYBdQXfKKavLkyYqLi8t9JCUl+bpJBTrvPKlaNfP8jz/cz1X4X6TNzvZumwAAAACU88A0fvx4paSk5D52797t6yZ5ZK+ztGmT85hlSZ98Yp7v3+/9NgEAAADBrlx3yYuIiFBERISvm1EozZpJP/+cPzDZ7PWYAAAAAHhPua4wBZKCKkyuIemCC7zbHgAAAAABVmFKT0/X1q1bc/e3b9+u1atXq0qVKqpTp44PW1Zy5wpMPXt6tz0AAAAAAiwwrVixQr17987df/jhhyVJt956q6ZPn+6jVpWOrl2lH36Qmjd3HnMNTCHUAgEAAACvC6jA1KtXL1muA3vKkcqVpb593Y+5BqZjx6TYWO+2CQAAAAh21C38mGtgev1137UDAAAACFYBVWEq7159VTp5Urr7brM2k8PhPFdOC2sAAACAX6PC5Eeeflr661+lQ4fMfnS09Mgj5nloqO/aBQAAAAQrApMfsSd2cO2KV+F/NcCsLO+3BwAAAAh2BCY/UlBgsitL2dnebw8AAAAQ7AhMfsQOR3ZgOnxYevZZ85wKEwAAAOB9BCY/YleY7GqSa0iiwgQAAAB4H4HJj+TtkufaNe/ii73fHgAAACDYEZj8SN4uefY2IkK64QbftAkAAAAIZqzD5Ec+/lg6c0Zq3tzs24EphFgLAAAA+ASByY906eK+b49bOnVKOnrULGYLAAAAwHuoXfgx1zFM99zju3YAAAAAwYoKkx/54AMzlfhVV0lJSVJ4uPMcs+QBAAAA3keFyY8895z04IPSli1mv04d6a23zHPWYQIAAAC8j8DkR/LOkidJFf5XA6TCBAAAAHgfgcmP5F24VnKGKCpMAAAAgPcRmPxI3oVrN26Uhg0zz6kwAQAAAN5HYPIjeQNTRobzHBUmAAAAwPsITH4kb5c817FMgwZ5vz0AAABAsCMw+ZG8kz7YwalOHWnsWN+0CQAAAAhmrMPkR/7v/6TUVKl9e7NvByc7SAEAAADwLgKTH+na1X3fDkxpaVJKihQX5/02AQAAAMGMLnl+zA5MR45IF17o27YAAAAAwYgKkx+ZNUvavVvq3Vtq1EiKinKeY1pxAAAAwPuoMPmR//s/6a67pKVLzX6HDtLCheY504oDAAAA3kdg8iN5Z8mTpAr/qwFSYQIAAAC8j8DkR/IuXCs5QxQVJgAAAMD7CEx+JO/CtYsWSeef734MAAAAgPcQmPxI3i55aWnOc1SYAAAAAO8jMPmRvF3yXLvmXXml99sDAAAABDsCkx/J2yXPDkxdukhvvOGbNgEAAADBjHWY/MjYsdLNN0tt25p9OzCFEGsBAAAAnyAw+ZELLnDfd+2ad/q0FBnp/TYBAAAAwYzahR+zu+YtWybFxfm2LQAAAEAwosLkR379Vdq+XWrXTmreXKpYUQoPl86cYVpxAAAAwBeoMPmRN96QbrpJ+vZbsz9ggLRrl3menS1Zlu/aBgAAAAQjApMfsddhcq0mVXCpAbpOMw4AAACg7BGY/EjedZgkZ4iSWLwWAAAA8DYCkx/JG5i+/dZ95jzGMQEAAADeRWDyI3Y1yQ5MR45Imzc7z1NhAgAAALyLwORH7AqTXUlyrShdeSUL2AIAAADexrTifiRvlzx7O3iw9PnnvmkTAAAAEMwITH5k2DAzZql1a7NvByYqSwAAAIBvEJj8SJcu5mEjMAEAAAC+xa/ifswewzRzppkQYudO37YHAAAACDYEJj/y++/Sl19K69aZ/chIqXp18zwnh2nFAQAAAG8jMPmR//xHuuIKado0s3/HHdLBg1JcnNknMAEAAADeRWDyI3lnybPZ6zOxDhMAAADgXQQmP5J34Vpbhf9NzUGFCQAAAPAuApMfybtw7YcfSj17SocOmX0qTAAAAIB3EZj8SN4uebt2SQsXOs9TYQIAAAC8i8DkR/IGJteueX37SpUqeb9NAAAAQDBj4Vo/krdLnh2YRoyQ/vUv37QJAAAACGYEJj8yYIBUtarUrJnZtwNTCHVAAAAAwCcITH6kQwfzsBGYAAAAAN/iV3E/ZnfNe/NNKTZWmjPHt+0BAAAAgg2ByY/s3i399JO0bp3ZDwuToqPN87Q06cwZ37UNAAAACEYEJj/y+efSpZdKkyeb/SeekNLTpS5dzD7TigMAAADeRWDyI3lnybOFhpotC9cCAAAA3kVg8iN2MHJdf0mSKvxvag4qTAAAAIB3EZj8SN6Fa996y0w1/vPPZp8KEwAAAOBdBCY/krdL3saN0qxZzvNUmAAAAADvIjD5kbxd8ly75nXvLp13nvfbBAAAAAQzFq71I3m75NkVpccfl55+2jdtAgAAAIIZgcmPdOki/d//SQ0amH07OIVQBwQAAAB8gsDkR1q2NA8bgQkAAADwLX4V92N2YJo4UUpMlN55x6fNAQAAAIIOFSY/cvSo9McfUkyM1KqVZFnOcwcOSGlpvmsbAAAAEIyoMPmROXOkbt2kUaPM/r/+ZULTzTebfaYVBwAAALyLwORH8s6SZ6vwvzogC9cCAAAA3kVg8iP2Okx5K0l2YKLCBAAAAHgXY5j8SN4K06uvSr/8Ii1davapMAEAAADeRWDyI3kD07Jl0n//6zxPhQkAAADwLgKTH7G75NmByd7WqiVVqybVqOGbdgEAAADBisDkR/JWmOzt+PHSyJG+aRMAAAAQzAhMfqRxY+mpp8witZIzMIUwNQcAAADgEwQmP9KwofTEE859AhMAAADgW/wq7sfswPT661KjRtLEiT5tDgAAABB0qDD5kRMnpG3bpLAwqXlzZ2BKTZX27JEOHfJt+wAAAIBgQ4XJj/z2m9S2rXTFFWb/s89MiLr9drPPtOIAAACAd1Fh8iP2WCU7GIWHm0dkpNln4VoAAADAu6gw+ZG86zDlPU5gAgAAALyLCpMfybsO0wsvSL//Lp08afbpkgcAAAB4FxUmP5K3S96PP0r/+Y+Z8EGiwgQAAAB4G4HJj+Ttkmdvq1Uzi9omJPimXQAAAECwokueH8nbJc+uNA0bJl1zjW/aBAAAAAQzApMfqV5dGjdOiokx+3ZwCqEOCAAAAPgEgcmPJCRIkyc79+3AZHfVAwAAAOBd1C78mB2Yvv/eLGh7112+bQ8AAAAQbKgw+ZHMTGnnTvO8USNnYEpPl9auNZM/AAAAAPAeKkx+ZNcuMxtehw5mf/Zs6dAhqV8/s8+04gAAAIB3UWHyI3nXYYqLM9voaPfjAAAAALyDCpMfyTutuM2e9IEKEwAAAOBdVJj8SN6Fa59+Wtq/34xnkqgwAQAAAN5GhcmP5O2S99FH0ptvmnFMEhUmAAAAwNsITH4kb5c8e1upklSzJrPkAQAAAN5GYPIjdpc8yzIPOzD16iXt3Sv98IPPmgYAAAAEJcYw+ZGKFaXRo02lybKcXfNCiLUAAACATxCY/Eh0tPT66859u8JEYAIAAAB8g1/F/ZgdmDZvlrp1k664wqfNAQAAAIJOwAWmqVOnql69eoqMjNT555+vZcuW+bpJpcayzDTie/easGQHpowMackSaeVK37YPAAAACDYBFZg+/vhjPfzww5owYYJWrVqltm3bql+/fjpkz7sd4E6fNrPh1a4tnTxpQtKOHVL79uY804oDAAAA3hVQgemVV17RiBEjdNttt6lFixb6xz/+oYoVK+rf//63r5tWKlzHKuXkSLVqSXXrmskgJBauBQAAALwtYALTmTNntHLlSvXp0yf3WEhIiPr06aMlS5YU+JqMjAylpqa6PfyZa2ByDUf2dONUmAAAAADvCpjAdOTIEWVnZ6tGjRpux2vUqKEDBw4U+JrJkycrLi4u95GUlOSNphZb3grTk09KY8dKR46YY1SYAAAAAO8KmMBUHOPHj1dKSkruY/fu3b5u0lnlDUxTp0ovvyzZhTEqTAAAAIB3Bcw6TFWrVlVoaKgOHjzodvzgwYNKSEgo8DURERGKiIjwRvNKhcNhHvaitfYseRERUlyccywTAAAAAO8ImApTeHi4OnbsqDlz5uQey8nJ0Zw5c9S1a1cftqx02VUm12nF69SRkpOlfft81iwAAAAgKAVMhUmSHn74Yd16663q1KmTunTpoldffVUnTpzQbbfd5uumlZrbbzcVpqgoZ2AKCZhYCwAAAJQvARWYrr/+eh0+fFhPPvmkDhw4oHbt2mnWrFn5JoIIZP/6l/O5HZjsWfIAAAAAeJfDsizL143wltTUVMXFxSklJUWxsbG+bs45RUWZxWx//10aPdqMa/rhByk83NctAwAAAAJbYbNBQFWYgkFamglGMTHOCpPDIdlDt7KyCEwAAACAtxCY/ExSkpSSIv3xh7RmjQlNNWs6zzO1OAAAAOA9BCY/4zpLXrNm5nlmpvM8i9cCAAAA3sP8a37GDkyuwch10gcqTAAAAID3UGHyM3Y4ysqSnnjCBKhHH3Vf0BYAAACAdxCY/IxdYcrKkp55xjx/8EETpLKyqDABAAAA3kRg8jN2YHIdtxQSIkVGmrBkz5wHAAAAoOwRmPyMa5c8W0iImW4cAAAAgHcRmPzMkCHSsWNSXJzzWAhTcwAAAAA+QWDyM1OmmK1rRYnABAAAAPgGv4r7KdexSqGh0vDh0mWXSTt2+KpFAAAAQPAhMPmZ7GzpzJn8Y5h+/FH69lspOdlnTQMAAACCDoHJz7RqJUVESKtXSytWSMuWmQpThf91nmQdJgAAAMB7GMPkZ+zxSiEhUseOzuMFzZ4HAAAAoGxRYfIzdmDKu94SFSYAAADA+whMfsauJKWkSM8/L738svtxKkwAAACA99Alz8/YFabjx6Xx46WwMOmRR6gwAQAAAL5AhcnP2IEpM9Ns7coSFSYAAADA+6gw+Zm8wcgOUCtWmHMsYgsAAAB4D4HJz1x0kZSYKFWtavbtgBQW5rs2AQAAAMGKwORnXnrJbLduNVsqSgAAAIDv8Ou4n7KnFbcD09NPS9dfL/36q+/aBAAAAAQbApOfyhuY5s6VPvlE2rnTd20CAAAAgg2Byc/072/GKy1ZIi1YIH31lTnOtOIAAACA9zGGyc9kZ5sZ8iIizAQQNqYVBwAAALyPCpOfsbvg2V3ybFSYAAAAAO8jMPkZOzAdOCBNmSJNn272qTABAAAA3keXPD9jB6YdO6SpU6XataXhw6kwAQAAAL5AhcnP2IEpM9Ns7coSFSYAAADA+6gw+Rk7GNmByQ5Q06ZJ77wjRUb6pl0AAABAMCIw+Zm2baUTJ6SEBLNvB6boaN+1CQAAAAhWdMnzM5MmSbNnSwMHmv0QviEAAADAZ/h13E/Z04rbgek//5Fuv925kC0AAACAskdg8lN2YLLHNC1aZMYxrV7tsyYBAAAAQYfA5GfuvluKj5d+/ln67jvpjTfMcaYVBwAAALyPSR/8zKlTUkqKVLGiNGCA8zjTigMAAADeR4XJz9hjluwueTYqTAAAAID3EZj8jB2Ydu406y59/bXZp8IEAAAAeB+Byc/Ywei336Q775SeesrsU2ECAAAAvI/A5GfsCpNdSbL3qTABAAAA3sekD37GDkiZme77f/mLNGqUFB3tm3YBAAAAwYgKk59p2FDq2lVKTDT7dmCKjZUSEqSYGN+1DQAAAAg2BCY/88gj0uLF0u23m327Kx4AAAAA7yMw+Sl7cge7wjR3rjR6tPSf//iuTQAAAECwITD5KXsdJjswrV4t/f3v0o8/+qxJAAAAQNBh0gc/88wz0ptvSoMGSZ99JlWtao7bXfOYVhwAAADwHgKTn0lLk/btM5M7XH2187i9DhPTigMAAADeQ5c8P2N3wbO75NmoMAEAAADeR2DyM3Zg2rpV+ugj6eefzT4VJgAAAMD7CEx+xq4kzZ0r3Xij9MIL7sepMAEAAADeQ2DyM3aFKTPTfZ8KEwAAAOB9TPrgZ+yAZAcju7I0ZIjpphcd7Zt2AQAAAMGIwORnEhOltm2lw4fNbHl2gIqNNQ8AAAAA3kOXPD8zYoRZpPaxx8x+CN8QAAAA4DNUmPyUPa24HZi2bZPeeUeqUkV65BHftQsAAAAIJtQv/FTewLRnjzR5sglNAAAAALyDCpOfmT5deu45qVEjacYMqV49c7xiRbM9edJXLQMAAACCD4HJzyQnS1u2SJ06ScOGOY8TmAAAAADvo0uen7GnEbe75Nmiosz21CnvtgcAAAAIZgQmP2OPWdq8Wfr6a2nNGrPvWmGyLN+0DQAAAAg2BCY/Ywem1aulyy+Xpkwx+3ZgsiwpI8MnTQMAAACCDoHJz+Rdd8net7vkSYxjAgAAALyFSR/8TN7AZI9pCguTVq0ylaa4OO+3CwAAAAhGBCY/Ex8vNWxoFqqV3ANU+/Y+aRIAAAAQtOiS52euvVbaulV64gmzn7fiBAAAAMB7+HXcT9nTirsGpjfflB5/XNqxwydNAgAAAIIOXfL8VHa22boGpjfekNavl3r3lurV80mzAAAAgKBCYPIzs2ZJ48aZCtMbb0ht2jjPsXgtAAAA4F0EJj+TkmIWq+3VS7r3XvdzrovXAgAAACh7jGHyM/Y04vYYJld2YKLCBAAAAHgHgcnP2GOWNm2S5s6V/vzTeY4KEwAAAOBdBCY/YwemQ4ekSy6R/v1v5zl7DBOBCQAAAPAOApOfsbvk2VxnyaNLHgAAAOBdTPrgZ/IuVOu6/+ij0l13SbVre7dNAAAAQLAiMPmZqCgpMVHav9/suwamBg180yYAAAAgWNElz89cfLG0b5+pJEn5K04AAAAAvIcKk5/KzjZb18D022/Sjz9KjRtLV13lm3YBAAAAwYT6hZ+y12FyDUy//iqNGye9/75v2gQAAAAEGwKTn/ntN6l7d+nLL6WXXzZd9GyswwQAAAB4F13y/ExamrR4sdS0qTRmjPs5AhMAAADgXVSY/Iy9DpM9hskVgQkAAADwLgKTn7HHLG3dKi1dKh044DwXFWW2LFwLAAAAeAeByc+4TvJwwQXSp58696kwAQAAAN5FYPIzdpc8m2uAIjABAAAA3sWkD34m70K1rvsNG0rz5kmVKnm3TQAAAECwIjD5mbAwKTZWSk01+64Vp+hoqVcvnzQLAAAACEp0yfMzrVtLKSnS5Zeb/bwVJwAAAADeQ4XJT+XkmK1rYMrJkf7xDzOGaeRI56x5AAAAAMoGgclPFRSYHA5p1CjJsqSbbyYwAQAAAGWNDl9+Zs8eqW9f6bvvpEmTpHbtnOccDmbKAwAAALyJCpOfOX1amj1biomRnnwy//mKFaUTJwhMAAAAgDdQYfIzdhc8u0teXnY3vFOnvNMeAAAAIJgRmPyMHZhOnJDWrTMz5rmiSx4AAADgPQQmP+O67lKbNtKPP7qfJzABAAAA3kNg8jN5113Ku293ySMwAQAAAGWPSR/8zLkC00svmbDUpo332gQAAAAEKwKTnwkJkSpUkLKynPuuunb1fpsAAACAYEWXPD9To4aUmSl16WL28wYmAAAAAN5DhclP2dOK5w1MS5ZIa9dK7ds7QxUAAACAskH9wk95Ckwffijdc4/01VfebxMAAAAQbAImMD377LPq1q2bKlasqPj4eF83p8ycOiVdeaW0apX04INSgwbu51m4FgAAAPCegAlMZ86c0bXXXqt7773X100pUzk50hdfmOfPPis1bep+nnWYAAAAAO8JmDFMkyZNkiRNnz7dtw0pY65d8LKz858nMAEAAADeEzCBqTgyMjKUkZGRu5+amurD1hROaKjz+datUvPmUmSk85gdmOiSBwAAAJS9gOmSVxyTJ09WXFxc7iMpKcnXTTon1wpThw7S8uXu5+0xTFSYAAAAgLLn08A0btw4ORyOsz42bdpU7PuPHz9eKSkpuY/du3eXYuvLRt5Z8fLuU2ECAAAAvMenXfLGjBmj4cOHn/WaBnmniSuCiIgIRUREFPv1vnCuwNSjhzRzppSY6L02AQAAAMHKp4GpWrVqqlatmi+b4JdCQjyvw1S7tnkAAAAAKHsBM+nDrl27dOzYMe3atUvZ2dlavXq1JKlRo0aqVKmSbxtXyk6elBo2lPbuzR+YAAAAAHhPwASmJ598UjNmzMjdb9++vSRp3rx56tWrl49aVTYiIpxBKW9gSkmRvv3WPL/pJu+2CwAAAAg2DsuyLF83wltSU1MVFxenlJQUxcbG+ro5Z1W7tqkwrVol/S8bSpI2bTJTjVeuLB075rv2AQAAAIGssNmADl9+6I47TFi65hop7xAvFq4FAAAAvIfA5Ic+/dRsJ0/OP8GDHZgyMqTsbO+2CwAAAAg2BCY/ZI9bsmfKc2UHJom1mAAAAICyRmDyQ6GhZrtvn5SV5X4uMtL5nMAEAAAAlC0Ckx+yK0y9e0t//pn/nB2aGMcEAAAAlC0Ckx9ynUq8oHWYmPgBAAAA8I6AWYcpmNhd8qSCA9M//yk5HFLNmt5rEwAAABCMCEx+6FwVpmuu8V5bAAAAgGBGlzw/tH6987lrtQkAAACAdxGY/FB8vBQWZp4XVGFauFD6+GNp926vNgsAAAAIOgQmP2WvwVRQYHriCemGG6Rff/VumwAAAIBgQ2DyQ088IWVnSz16uC9Ua4uIMNuMDO+2CwAAAAg2BCY/9OmnZvvcc1JcXP7z4eFme+aM99oEAAAABCMCkx+yu+FlZxd8ngoTAAAA4B0EJj/kcJhtSopkWfnPU2ECAAAAvIPA5Ieyssz2iiuktLT856kwAQAAAN5BYPJDdoVJKniWPCpMAAAAgHdU8HUDcHYFBaZbb5W6dZM6dPB+ewAAAIBgQmDycwUFpu7dzQMAAABA2aJLnh/66ivn84ICEwAAAADvoMLkh6pWdT4vKDBt2yZt3CjVqiW1b++9dgEAAADBhvqFH8rJcT4vKDB98ok0eLD09797r00AAABAMCIw+aF//ctsGzVynzHPZk8rzix5AAAAQNkiMPmh2bPN9tlnCw5M9rTirMMEAAAAlK1iBaannnpKJ0+ezHf81KlTeuqpp0rcqGBnd8PLzi74POswAQAAAN5RrMA0adIkpaen5zt+8uRJTZo0qcSNCnbnCkx0yQMAAAC8o1iBybIsOQroK7ZmzRpVqVKlxI0Kdnv2mO0ttxR8ni55AAAAgHcUaVrxypUry+FwyOFwqEmTJm6hKTs7W+np6brnnntKvZFwR5c8AAAAwDuKFJheffVVWZal22+/XZMmTVJcXFzuufDwcNWrV09du3Yt9UbCXfv20pQpUu3avm4JAAAAUL4VKTDdeuutkqT69eure/fuqlCBdW/LQkEz47lq0EAaNco7bQEAAACCWbHGMMXExGjjxo25+19++aWuuOIKPfbYYzpDP7ESsxekLWjRWgAAAADeU6xfye+++2798ccfkqQ///xT119/vSpWrKhPP/1Uf/nLX0q1gcEoMdFsK1cu+HxamjR/vvTzz15rEgAAABCUihWY/vjjD7Vr106S9Omnn6pnz5764IMPNH36dP33v/8tzfYFpZwcs/VUYdqyRerdW7rxRu+1CQAAAAhGxZ5WPOd/v9X/9NNPGjhwoCQpKSlJR44cKb3WBalvvzXbSpUKPs8seQAAAIB3FCswderUSc8884zeffddLViwQIMGDZIkbd++XTVq1CjVBgaj1avN9v77Cz5vL1zLOkwAAABA2SpWYHr11Ve1atUqjRo1Sn/961/VqFEjSdJnn32mbt26lWoDg5HdFc/umpcXFSYAAADAO4o1L3ibNm20bt26fMdfeuklhYaGlrhRwe5cgcm1wmRZ556GHAAAAEDxlGghpZUrV+ZOL96iRQt16NChVBoV7FatMtuxY6VHHsl/3q4wWZaUnS2xHBYAAABQNor1q/ahQ4d0/fXXa8GCBYqPj5ckJScnq3fv3vroo49UrVq10mxj0LGss5+3K0ySqTIRmAAAAICyUawxTKNHj1Z6ero2bNigY8eO6dixY1q/fr1SU1N1v6eZClBqIiOlF16Q/vY3whIAAABQlhyWda56Rn5xcXH66aef1LlzZ7fjy5YtU9++fZWcnFxa7StVqampiouLU0pKimJjY33dHI9atZI2bDDPi/7tAAAAADiXwmaDYlWYcnJyFBYWlu94WFhY7vpMKL7x4822cmXftgMAAAAIdsUKTBdffLEeeOAB7du3L/fY3r179dBDD+mSSy4ptcYFq5o1zTYx0fM1v/0mLVoknTzpnTYBAAAAwahYgenvf/+7UlNTVa9ePTVs2FANGzZU/fr1lZqaqilTppR2G4OOXaQLOcu307ev1KOHtH27d9oEAAAABKNiTRmQlJSkVatW6aefftKmTZskSc2bN1efPn1KtXHBauVKs01P93wNi9cCAAAAZa9IFaa5c+eqRYsWSk1NlcPh0KWXXqrRo0dr9OjR6ty5s1q2bKmff/65rNoaNA4dMtvrrvN8jevitQAAAADKRpEC06uvvqoRI0YUOItEXFyc7r77br3yyiul1rhgZXfFO9v8GVSYAAAAgLJXpMC0Zs0a9e/f3+P5vn37aqXdnwzFZgem7GzP11BhAgAAAMpekQLTwYMHC5xO3FahQgUdPny4xI0Kdj/+aLZ/+5vna6gwAQAAAGWvSIGpVq1aWr9+vcfza9euVeLZ5sJGoWRmnvsau8JEYAIAAADKTpEC08CBA/XEE0/o9OnT+c6dOnVKEyZM0GWXXVZqjYNnd9whPf201KyZr1sCAAAAlF8Oy7Kswl588OBBdejQQaGhoRo1apSaNm0qSdq0aZOmTp2q7OxsrVq1SjVq1CizBpdEamqq4uLilJKSUuDEFf6idWvJLuQV/tsBAAAAUFiFzQZFWoepRo0aWrx4se69916NHz9edtZyOBzq16+fpk6d6rdhKZDceqs0dqxUp46vWwIAAAAEtyIvXFu3bl199913On78uLZu3SrLstS4cWNVrly5LNoXlGrXNttGjTxfs2ePdPSolJAgkVEBAACAslGkMUyuKleurM6dO6tLly6EpVJmr78UcpZv59FHpXbtpPff90qTAAAAgKBU7MCEsrNjh9nu3On5GtZhAgAAAMoegckP2WssXXDBua9hWnEAAACg7BCY/FBoqNnaXfMKwjpMAAAAQNkjMPkhe+zS2QKTXWGiSx4AAABQdghMfuijj8z2ww89X0OFCQAAACh7BCY/dPLkua9hDBMAAABQ9ghMfmj8eLO97jrP1/ToIY0bJ/Xv7502AQAAAMHIYVmW5etGeEtqaqri4uKUkpKi2NhYXzfnrHbskOrUOftaTAAAAACKp7DZoIIX24QiqFfP1y0AAAAAQGAKUOnp0sGDZixTUpKvWwMAAACUT3T4ClAzZ0qNGkl33unrlgAAAADlF4EpQNnTirMOEwAAAFB2CEwBimnFAQAAgLJHYApQdmCiwgQAAACUHQJTgLK75FFhAgAAAMoOgSlAUWECAAAAyh6BKUAxhgkAAAAoe6zDFKBq1pRGjZKqVvV1SwAAAIDyi8AUoJKSpClTfN0KAAAAoHyjSx4AAAAAeEBgClA5OdKBA9KuXaV7X8uSTp8u3XsCAAAAgYrAFKCOHJESE6W6dU3IKS0DB0pxceb+AAAAQLAjMAUoe5Y8ScrMLL37zpplZt774ovSuycAAAAQqAhMAcpeuFYqm7WYHI7SvycAAAAQaAhMAcq1wlQWazGFhpb+PQEAAIBAQ2AKUKGhzlBTmhWmDh3MNiGh9O4JAAAABCrWYQpg4eHSqVOlW2Hq319q3pzABAAAAEgEpoAWEWECU2lWmJ59tvTuBQAAAAQ6AlMAGzbMhKWYmNK53/Hj0mWXmSA2Zw4TPwAAAAAEpgD22mule78TJ6TFi83z7GypAn86AAAAEOSY9AG5Tp92Pn/nHd+1AwAAAPAXBKYAdvKkdPRo6U364DoWqiymKgcAAAACDYEpgHXvLlWtKs2bVzr3IzABAAAA7ghMAcxevLa0wo1rlzwCEwAAAEBgCmgREWZbWtOKU2ECAAAA3BGYAlhpV5hycpzPCUwAAAAAgSmglXaF6ZJLpEceMc8JTAAAAACBKaCVdoVJklq3lq64QmrZsvTuCQAAAAQqliYNYHaFqTQD07Bh5gEAAACAClNA69FDGjpUaty4dO739ddSv37Sc8+Vzv0AAACAQEeFKYCNGmUepWX7dunHH6XKlSXLkhyO0rs3AAAAEIioMAWZkyelzz6T0tLyn7PXYfr4Y+n6673bLgAAAMAfEZgCWE6OmSGvKLPkjRwpXXutNHx4/nOswwQAAAC4IzAFsL/+VYqMlMaPL/xrpk83288/z3/OrjBJUmZmiZoGAAAAlAsEpgBmTyteWuswUWECAAAA3AVEYNqxY4fuuOMO1a9fX1FRUWrYsKEmTJigM0H+W31pr8PkWmEK8h8tAAAAIClAZsnbtGmTcnJy9M9//lONGjXS+vXrNWLECJ04cUIvv/yyr5vnM/Y6TEWpMD3xhPTKK9Kjj+Y/l5PjfE5gAgAAAAIkMPXv31/9+/fP3W/QoIE2b96sN998M6gDU3EqTE89ZR4FeeMNafBgaeBAAhMAAAAgBUhgKkhKSoqqVKly1msyMjKU4VJ+SU1NLetmeVVpj2GSpBo1pD59Sm8xXAAAACCQBWRg2rp1q6ZMmXLO6tLkyZM1adIkL7XK++wueUWpBs2ZI+3eLTVqJPXokf98hw7S7Nml0z4AAAAg0Pl00odx48bJ4XCc9bFp0ya31+zdu1f9+/fXtddeqxEjRpz1/uPHj1dKSkruY/fu3WX5cbyuXj3piiukrl0Ld31mpqke3Xab1Lt3/vNPPCFdfbX0yy+l2UoAAAAgcDksy7J89eaHDx/W0aNHz3pNgwYNFP6/vmf79u1Tr169dMEFF2j69OkKCSla3ktNTVVcXJxSUlIUGxtb7HYHqiNHpGrVzPOICPdZ8SSpZ09p4ULpk0/M4rYAAABAeVXYbODTLnnVqlVTNfs3+HPYu3evevfurY4dO2ratGlFDkuQkpOdzzMyzKx4rj9GeyzUdddJSUnSrl1ebR4AAADgdwJiDNPevXvVq1cv1a1bVy+//LIOHz6cey4hIcGHLfMPliU5HOe+zjUwSdKpU1J0tHPfteKU91oAAAAgGAVEYJo9e7a2bt2qrVu3qnbt2m7nfNij0OcWLpQuuURq0kTasOHc1+cNQSdOuAcm19n2mFYcAAAA8PGkD4U1fPhwWZZV4COYhYVJWVn5xyJ5UlBgcuV6nzNnTOUKAAAACGYBEZhQsMhIsy2twORaYbIsKTu72E0DAAAAyoWA6JKHghU1MLVvL02cKH31lZkFr2pV9/N573PmjFSBPyEAAAAIYvw6HMDswHTqVOGu79jRPCZMKPj84cOm6hQXZ/bPnJEqVix5OwEAAIBARWAKYFFRZnv6dOFnyjub0FApJsYshPu/pa8AAACAoEZgCmB2hcmyTDUoIuLs1//xh5SZaZ6fPm3WWqpe3f0ah0NavLj02woAAAAEIiZ9CGBRUVKfPtJllxVugoaHHpJatTKPTp3MWCbbqVNmwdphw5hSHAAAALBRYQpgERHS7NmFv/74cbMNDzehyHWWvJMnpU8/Nc///e/SayMAAAAQyKgwBRF7WnF77V/XwGTPkBcaKnXpYrrqrV/v1eYBAAAAfofAFETswFSrltm6BiZ7DabISOnoUTNjXmGnKwcAAADKKwJTgGvRwoxl+u23c197tsBkh6OICOcMeYxlAgAAQLAjMAW4jAwTds5VDcrIcK7XdK4KE4EJAAAAMAhMAc6eWvxcgSklxWwdDikx0TwvKDC5VpjsYwAAAECwYpa8AGcvXmtXjzwJD5cmTjTXdesmPfaY1L6987wduKgwAQAAAE4EpgBX2ApTfLw0YYJzv2tX9/MXXmiqUNnZ0uWXm2MEJgAAAAQ7AlOAK2xgOpfQUCk21jxv1sxUomJiSnZPAAAAINARmAJcYbvkHT0qHTwoVatmgtCuXVJOjglHeb31Vum3EwAAAAhETPoQ4Fq3lnr2NAvNns1//yu1bCmNGGGmIG/aVBo40Hn+l1+kO+6Qpk4t2/YCAAAAgYQKU4B77rnCXWevwRQfL0VHm+eus+Rt3Cj9+9/SkSPSyJGl2UIAAAAgcFFhChLnCkyus+SNHSvVr0/XPAAAAIDAFCQKCkwnT0qWZZ67rsN09Ki0Y4d07JiXGwkAAAD4GQJTgHvuOTORw1//evbrjh832/h4qVIl89yynJNFsA4TAAAAkB+BKcBlZJhxR3YFyRPXClPFis7j6enO+0imwkRgAgAAAAwCU4Ar7DpMdmCqXFkKCXFOR26PY6LCBAAAAOTHLHkBrrDrMN1yi3TBBWY6cUl64AGztbvn2RWmyEgpO9s8JzABAAAg2BGYAlxhK0z33ee+P3my+/5zz0njx5sA9uqr5pgdogAAAIBgRWAKcIWtMJ1LpUrOalONGlKzZudeDBcAAAAo7whMAa4wFabsbGnzZjPhQ2Ki5HA4J4qoXl2KjXW//t57zQMAAAAIdkz6EOCqV5c6dpSaNPF8zYEDUsuWUp06znWXrrtOatxY+u47s//GG9L990tLl5Z9mwEAAIBAQYUpwPXuLa1YcfZrDh402+rVzQx5knPxWnta8a++kn74QerUSTr//LJpKwAAABBoqDAFgUOHzNZ1TJIdmPJOKx4RIX35pdS6tXT33d5rIwAAAOCPqDAFATsw1ajhPJY3MLlOK56WJq1fb8Y7AQAAAMGMClOA27JFql/fVIQ8ce2SZztbhYmFawEAAACDClOAczikHTukmBjP1xSmS55dYYqIMA+JwAQAAABQYQpwhZlWvKAuefaaS3krTJGRVJgAAAAAGxWmAGcHpsxMs95SaGj+awYOlKpUcZ/9rnNn6b77pO7dzb5rhYnABAAAABgOy7JX5in/UlNTFRcXp5SUFMXmXa01QJ044awWpac7u9oV1Z490qlTUlKStHy5dNFFUtOm0qZNpddWAAAAwF8UNhtQYQpwdoVJMt3qihuYatd2Po+ONvuuXfgAAACAYERgCnChoVJYmOmSd+pU/vOWJa1bZyZ8qFHDTBIhmeuPHTPd+GrWdH9Nhw7S7t1l33YAAADA3zHpQznQpo3Urp0JR3klJ0tt25o1lexxSpK0YIGUkCD162dC05gx0mOPSSdPeqvVAAAAgP+jwlQOrFjh+Zw9Q15cnHv3PddpxU+fll55xew/9ljZtBEAAAAIRFSYyrmCFq2V3AOTa+UpIkI6cEC64AKpa1fvtBEAAADwV1SYyrmC1mCS3NdhsgNTSIhUoYLp2rd0qdkHAAAAghm/EpcD114rNW4sLVyY/5wdmDxVmE6edE4WERFhJoWw12HKyTHjmwAAAIBgRWAqB3bvlrZuNRM85HWuLnmW5XydPcbJDkySWbz22DFp2bLSbDEAAAAQGAhM5UBUlNkWNK24py55FSs6nx85YrYREWabNzB16SKdf740f36pNBcAAAAIGIxhKgfsytDp0/nPXXqpOd+9u/vxkBBz7qKLzFpOrvfJG5i2bTPP16yRevUq1aYDAAAAfo3AVA6crcJ01VXmUZAff3S+7vffnes4ORzOxXAzMkyQOn1auvzy0m87AAAA4M8ITOXA2SpMhREVJTVv7n6sRg0TmFJSnPfNOw4KAAAAKO8Yw1QOnK3CtHattH+/mfGuICdOSJ98Iq1e7X58926zHpM9rik62tl1DwAAAAgWBKZyIDFRathQio11P376tNS2rVSzpqkUFeSRR6Trr5fat5feey//eXuWvRMnpMsuK912AwAAAP6OwFQOPPOMmVZ85Ej344cPm21YmBQfX/BrXcc3TZuW/7wdmCRTcQIAAACCCYGpHHNdtNbhKPga11nvli51Ph82zMygFx4uPfywOUZgAgAAQLAhMJVjnhatdRUWJsXEmOdZWc7jK1ZIP/9szj32mDl29KiZZhwAAAAIFgSmcuCDD8wYpEcfdT/uadHavJYvNwvTfvaZ85i9FtOZM1LlyiZYud4TAAAACAZMK14OHD9uZrlr1Mj9eGEqTJLUtKn066/ux+zANHu2WZ8p5H/R+sABqXbtEjcZAAAACAhUmMoBT+sw2WOOirN+kh2YXnpJ6tfPLGDrek8AAAAgGFBhKgc8rcN0551SerrUunXR72kHJluXLlKtWqZ7HgAAABAsCEzlgKcKU8uW0ltvFe+eeQPTjBlSs2bFuxcAAAAQqOiSVw54qjCVRKVKUgWXOH2uiSMAAACA8ojAVA7krTDt2CHddpu0cmXx7/nZZ9K2beZ5eLhZ+NaySjeUAQAAAP6OwFQOxMSYCtB555n9N9+Upk+Xxo0r2X1dZ9n7/ntTybr00pLdEwAAAAgkjGEqBzp1cs5ed/q09Pbb5vno0SW7rx2YatSQ4uLMTHnMkgcAAIBgQmAqZ1atko4dM1WhQYOKf5833jCPSy6R7r5bSkgwxwlMAAAACCZ0yStn1q0z2w4dpNDQ4t9n40ZpwwapWzfp2mudkz6cOGGmKgcAAACCAYGpHEhOli68UOrcWVq71hwrztpLruxpxc+cMdtKlcxDosoEAACA4EFgKgdCQqRffpFWrDAPqfQC01dfOccyuXbLmzHDjJ3au7dk7wMAAAD4MwJTOWBPKy5Je/aYbUkDU1iY2W7cKP30k3luB6Zt26Thw8205UuXlux9AAAAAH/GpA/lQFiYqTLl5JgKU1iYWTepJOwKk+Qcv9Szp1StmvTtt2a/USNpyJCSvQ8AAADgzwhM5YDDYapMJ0+aacUTE0t+T9fAVL262T7zjAllzZqZ/QceKNnEEgB858gR8w8eUVHOKjIAAMiPwFROuAam0hDi0lnTrjBJprq0ZYupYA0bZn7pqlq1aPc+eFD65hspM1O6555SaS6AIkpPlxYvdu/SCwAA8mMMUzkRFWW2vXtLc+aU/H5Dh5ptSIh7IHrlFbM9/3zpvPOktm2Lfu8dO6Q775Seftp5zLKk/fulX38tdpMBFEFGhtmePi1lZ/u2LQAA+DMCUzlx3nlme/CgWSuppA4dMtuqVZ3d7r7+Wpo/3zx/9lkpK8uEHHvqcZtlSX/5izR5csH3fvlls923z7mm065dUs2a0kUXmfsCKFuu/90ePeq7dgAA4O8ITOXEihXOcUclnSFPcgYme/ySJPXqJfXoYcYydeggRUSYcJR3avE1a6SXXpIee0xKS3M/d/So9Nlnzv0//jDb228328xM6c8/S95+AGdnV5ik/P/oAQAAnAhM5cSWLeaXnkqVpLp1S36/ihXN2IZGjZzHYmKkn3+W/vpXM9FEnTrm+K5d7q9t1875fPt293MbNrjvb95sJpJYssR5bOPGEjcfwDkQmAAAKBwCUzmxbp3ZtmrlPmFDcXXtKn3+ufSPf3i+xg5mO3fmP9e5s9nmrRYVFJh27pROnXIe27Sp6O0FUDSuIck1PAEAAHcEpnLihhvMdt++0rlfSIg0YID7DHl5eaowSVKDBmbrKTA5HGa7eXP+ihKBCSh7luV8ToUJAADPCEzlhL1Q7SWXeO89CwpM774r9e0rrVxp9j11ybvySrN1DUx2iKJLHlD2Lr7Y+d8wgQkAAM8ITOXEggVmkoXXX/fee3buLF1/vZli3DZzpjR7trOLT94K0++/m+3dd5vpz7/5xnnsqqvMdtMm93/9BlA27IliCEwAAHjGwrXlRJs25uFNAweahy0jQ/rxR/N89GgT4FynCE9Olo4fN8+7d5eio81zu6J0+eVmXFTz5mZdmAr86QTK1NVXS4cPF33xaQAAggm/kqLULFxo1oBKTJQefFB66CH30BMfb87v2OEMS5JUu7aUlCS1by8NG+blRgNB6rvvpFWrzFIBTZv6ujUAAPgvAhNKJDtbOnBAqlZN+uorc2zQICksrODrw8Kkxo3N87lzpZ9+ku64Q/rkE++0F4Cxc6fpPhsT4+uWAADg3xjDhBKpV89UiH77TfroI3PMHot0Lt99J02ebLa2lBSz1tPixaXeVAAu7HGGZ84whgkAgLMhMKFEatY023/+UzpyREpIkC691BybPFm64ALp00/N/r33Srfe6pwpz+4G9Mcfzvt9/rl00UXShAkmhDH5A1A27JD0zTfSf//r27YAAODPCEwoEXta4tRUE5RuvdU5bmnHDmnpUmn9ehN8PvtM+s9/nP+ybQemWbNM4JKkZs3M9tdfzex7114rnT5d/PZt2+a+KC4Aw3WxWipMAAB4RmBCidiBqV49M0Pe5MnOc66L1y5fbipQFStKLVqY464Dze01mJo3N9v0dCkz0xyPiJCOHcv/3j/8YNad2rrVeSw72/l8wACpUSMzTsN22WVSw4bO2fqAYEVgAgCgcAhMKJG8i9fawUdyD0wffmieDxkiRUaa59WrO69t1Mhs4+NNtz7JVJsmTzZd9Bo2dK8UWZaZunzuXOmFF5zHOnaUBg82C+ba9/z2W7PdsME8//NPZzdBIFi5hiQCEwAAnhGYUCJ2YFqyJP85OzBt2SJ9/LF5fuONzvMOhxk78dRTUu/ezuN33CE1aWLGMzVoYMJYcrL0xRfOa+bNM/eVzD0yMkzXvzVrTEXpvPPMbH2SCUmW5T4Tn2slCghGOTnO5wQmAAA8IzChRJKSzHbPHiktzf2cHZgOH5b27zfVo7593a+56irpiSfcK1PPPCNt3my654WESLfdZo7/+9/Oa/7xD+fz48dN9zw7EPXvL8XGSr16mS6Ae/eaIGWHthkzzAQUQDB7+WXnf1uu3fMAAIA7AhNKpGNH6cknzWQOeddzqVzZhCTb1Veb8UhFNXy42f70k/T77+b5ww+bRW7tGfm+/trZze7aa802MlLq08c8f+45E8IiIqQrrih6G4DyKDzcbKkwAQDgGQvXokQcDmnSJM/nmzSRli0zz2+4oXjvUa+e1K+fqSL17Cl9+aXUrZuZsnzrVtNlr0oV6e23TSAaPNj52kGDzIK6dpgaONBUn3JynFUsIFh16mQqtPx3AACAZ1SYUKZ+/dWMH8rJMTPaFde0aVKHDmamvYsvdoawRo3Mvr2OzIABJhDZBg50Ph89Wrr7btM9sFYtqX17ZzfCrCyzHk1prfuUleW+v2dP6dwXKC3PP28Wjb7jDmdVFgAA5EeFCWXKHpvkOkapOBITpYULpaFDzXiLDh2c51wndMj7i1/t2qbLYPv2ZmxTZKS5vlIl6cABaexY0y3pyy9NpWruXOcEFAcOmIknvv/eBKx77jHHMjOdVazvvzez+dWvb/YPH5bGjTMz+n3wgQmK48aZMVe//CK1aVOyn0Nx5OSYzxwa6v33hv9avNh0ZXX9RwUAAJAfgQkBIzraVJJOn3YujiuZGe86dZIOHXLvjmfL22XQ4ZCuucb8C7u9YK4kVasmHTxontsVMXvMlGSuDQkx771okXT0qJkmPSHBvG9IiPT++6aLU2io9H//Z2brW77cVLIGDTLBqXZtU4FaudKMw7KnWZ8/X/roI6l7d3NNhQqmradPmwDWvbvpeiiZ7oTr10thYVLduibQnTjhXK+qWTMpKsp8jhYtzCLCw4aZsV9165rPeeKEuV9iYsE/b8sy7czONqEyJE89+tgxKS6OIBao7IkeKlQw33MF/m8AAECBHJZVWp2Q/F9qaqri4uKUkpKiWNd+Wwh48+aZqlHnzoW7ft8+M0NYZKQZZ9WunZmxLyrKnJ8xw0w20aWLmSRizRoT1rKyTBXrvfdMYOrVS/rjD/d7t2snTZ1qxllJJkB16yZt2pS/HUuXmveQpL/8RXrpJc9tXr1aatvWPB83zrn+VEGWLzchUpJGjpTeeKPg63r3NlU1W8OGJkydOWMqaa4uvNBU+WxJSebnGBtrQlOFCs5tp07ObpKS+Tnt329+fpmZZpuVZQJdq1YmLNoGDzbVvrAwcy/XbVKS9M47zmtHj5Z27jRhumJF5yM62oTBUaOc137yiWlDeLgZ6xYbawKt/ahVy/PPszzq1UtasMA8v+MOMwYQAIBgUthswL8polxwXcepMGrWNJNIeHLLLeYXd7uiI5lwsH69qTyFhprKzKJF0rvvmlCUkWEGz998s/u/1leuLM2aZQLRpk3ml3bLMsHKdS2cyy4z+7/+au5nB4qoKPOoVs15bdOmpuJ0+rQJDEeOmBBQubKpSrkuCvzcc6ai9vrrpuuhZZnQEBMjVa3q/rl3784flGyun8myTPfDnByzRlZeecPHli3m51eQlBT3/U2bzGQeBWnc2H1/wQJp3bqCr61Z0z0w/d//Oce+5RUdLaWnO/dHjjSLH9eta4L4iRMmRDZqZL63Sy8N/MoaC9cCAFA4VJiAcqCwXaqOHzdd62Jj848rsyxTLQsLM4/wcLMNDXX+Qu0a2rKyTDfItDTTbc/uvpeVZao8LVs6r/31V3MPu1pkV4xCQsz7NGrkvHbJEhNeMjOd1Sj7eXS0qQTavv7a2b3w5EnzsJ/HxLhX7J580ny+zEwTNFNSTJXw6FFz7bZtzmu7djVtLkilSua1dhfFBQtMhapFi/zdFv1Zx47SqlXm+fXXm+6gAAAEk8JmAwITgKBnWe4BctEiaeNGU707fdoEtZAQcyw01HTJtDVrZsaU1awpvfaaqeZJJvRVquTdz1EUrVpJGzaY51deaSY4AQAgmNAlDwAKKW+1rXt38ziXM2dM98Pdu02Xw2uvNROB5OSYcVm7d5uJMfwRXfIAACicAOpAAgD+JTxcmjPHzBj4+OOmq+GXX5qugmlp0k8/Oa/NuzaXr23c6JzogcAEAIBnBCYAKKGICOnpp83shFddZSb4+P136eqrzfnt282YoSNHfNtOV6GhzkWeCUwAAHgWMIHp8ssvV506dRQZGanExETdcsst2udp2i0A8IF27cx06i+8YGZMtI0dK61da9bCcp0Z0ddq1TLrg11wga9bAgCA/wqYwNS7d2998skn2rx5s/773/9q27ZtusYeXQ0AfuzJJ82aX99/L734ovfeNyfHzGRYkGHDzELK06ebRZwBAEDBAnaWvK+++kpXXHGFMjIyFBYWVqjXMEseAF955x3pzjtNV7ixY6WHH3afpr0s3H67NG2aNHu21KeP+7kKFcw08Hv3mhn+AAAINoXNBgFTYXJ17Ngxvf/+++rWrdtZw1JGRoZSU1PdHgDgC7ffLt1xhwkpzz8v1asnTZ1atu85bZrZTpzofjw72zwkM3EFAADwLKAC06OPPqro6Gidd9552rVrl7788suzXj958mTFxcXlPpKSkrzUUgBw53BIb71lZtFr394srvvee87gUlbvKUm1a7sfd53koVo194WDAQCAO58GpnHjxsnhcJz1sWnTptzrx44dq99++00//vijQkNDNWzYMJ2tR+H48eOVkpKS+9i9e7c3PhYAFMjhkC6/XFq5Utq6VVqyxHTRKysPPmi2deu6H887K96pU2XXBgAAAp1PF64dM2aMhg8fftZrGjRokPu8atWqqlq1qpo0aaLmzZsrKSlJv/76q7p27VrgayMiIhQREVGaTQaAEnM4pIYNy/597EVzU1Lcj2dkuO8zrTgAAJ75NDBVq1ZN1Yo56jnnf3PzZuT9Pz8ABJDUVDODXlmMJbJnyMs7Ux6BCQCAwguIMUxLly7V3//+d61evVo7d+7U3LlzdeONN6phw4Yeq0sA4O/uusuMIZo1q2zu/8YbZpu3N3LegERgAgDAs4AITBUrVtTnn3+uSy65RE2bNtUdd9yhNm3aaMGCBXS5AxCwoqJMWPnii7K5/3nnme2MGe7H69c3la31680+gQkAAM8Cdh2m4mAdJgD+ZP58qXdvE2wOHDBrI5WmSpWkEyekP/80ISmvY8ecoSorq2wnoAAAwN8UNhv4dAwTAASzHj1MYDl6VLrsMjOWqUcP6ZFHSuf+p0+bbWRkwecjI6WePc34KQITAAAFIzABgI9UqCBdeaX09tvSDz+YY5s2SSNGOGe4K66sLOcaTz16SNu2Oc9t2iS9+KKZbnz+/JK9DwAA5R2BCQB86MUXpU6dTMBJSZHGjZNCSmF0qV1dkkyXvMxMKSzM7O/eLU2bJrVuLU2YUPL3AgCgPCMwAYAPVa4s3X136d/XNTBJJoxVrWqe25M8MGcOAADnFhCz5AFAMDl1Svr555LdIzzcfSxUcrLzub0OU0SEVK+e6f63Y0fJ3g8AgPKKwAQAfmTPHhNi+vaVDh8u/n1iY6WXXpJq1TL7KSnOc3ZgCg8304unpuZfzBYAABgEJgDwI7VqmckYTp82k0GUlD15hKcKU3i4+zEAAOCOwAQAfsThkG6+2Txftqz49zl92nSzy8w0+64VJnsMU3i4MzCxeC0AAAVj0gcA8DMtW5rt778X/x7Ll0sXXWSeJyZKrkuUF1RhIjABAFAwAhMA+JkWLcx261YTboozm509S16bNtKaNe7n7rxTuuYaM824HaoITAAAFIwueQDgZxISpPh4KSdH+uOP4t3DDkyRkfnPRUWZqlPVqs4wRmACAKBgBCYA8DMOh9S8uXle3G55ZwtMrtq2lbp1kypVKt77AABQ3tElDwD80MiR0tChUqdOxXu9HZgWLpR69JAuvlh66ilz7IsvpLlzpT59pOnTS6O1AACUXwQmAPBDQ4eW7PV2YJKkRYuk6tWd+wsXSlOmSBUrSpdfXrL3AQCgvKNLHgCUQ66BSfK8DhMAADg7AhMA+KGcHDM1+H/+41xLqShatZLuvVe68kqz72kdphEjpJo1pffeK3mbAQAoj+iSBwB+yOEw447S06UuXaRmzYr2+t69zWPxYmnmTM8VpuRkaf9+KTW1tFoOAED5QoUJAPxQacyUJ0lxcWbrWmFi4VoAAAqPwAQAfspewLY4gSklRTpyxDmteHKyZFnmuWuXPAITAABnR2ACAD9VksD02GNStWrSG2+Y2fCqV3dOBEGFCQCAwmMMEwD4qZJ0ybPDUdWq0okT7uemTTNjlqpXl1auNMfsEAUAANwRmADAT9kVps2bpexsKTS08K89dcps7S55rmrUMA+JChMAAOdClzwA8FP16pnudKdPS+vWFe21doWpoMDkqnZtqW1bZ4ACAADuqDABgJ8KDZVef11q1Misq1QUdmCKipIeeMB0vXv+ealHD+mVV8yEEHfcIT30kHkAAICCEZgAwI/dcUfxXudaYVq3Tlq0SNqzxxx76y1p0yapXz+pYcPSaScAAOUVXfIAoBxyDUx512KyJ3iwxy8BAADPCEwA4OeWLZNGj5Y++aTwrxkwQLr5ZqluXWdgSk42W3uCh4gI6b33pCZNpPvvL9UmAwBQbtAlDwD83Jw50t//Lm3fLl13XeFe88QTzufx8Wabt8IUESGlp0tbtkitW5dacwEAKFeoMAGAnxs82GznzMm/plJh5K0wuXbJY1pxAADOjsAEAH6uZUupfn0zLumnnwr3mpQUc71lnb3CRGACAODsCEwA4OccDmeV6fvvC/eaBg3MlOKbN5sKU1SUuY9luY9hIjABAHB2jGECgADQvr3Z7thRuOtdZ8m77Tbp9tvNvmVJv/9uqkznnUdgAgDgXAhMABAAqlUz28OHz32tZbkHJofDec7hkJo3d+4TmAAAODu65AFAALADkx2EziYrS8rJMc8jI89+bWysWby2Vq2StQ8AgPKKChMABICOHU1Yiog497WuoSoyUkpNNd3y9uyRZs2S/vY3qWJFadw4qUcPaevWsms3AACBzmFZluXrRnhLamqq4uLilJKSotjYWF83BwDKxOHDUvXq5nlOjpSdbSZ9yMqSfv5ZuvBCE5iKM0U5AADlRWGzAV3yAKCcsStMERFmzFKFClLt2ubYH3+YrT12CQAAnB2BCQACxMMPS/37Sxs2nP268HDphhukq65yHqtb12y3bDFbu2vftm1mBr4LLyz99gIAUB4QmAAgQCxYIP3ww7mnFq9RQ/rwQ+mDD5zH6tUz27wVpuxsafVqad26Um4sAADlBIEJAAJEUaYWz8uuMNmBya4wuU4rvnev6cLncJgFbwEAAIEJAAJGYQNTdraZ4MFV3gqTHZjs7Zkz7iGpsAvkAgBQ3hGYACBA2DPfnSswzZkjhYVJHTo4j9Wta6YYt4OUXVly7Zq3d6/z+uPHS6fNAAAEOtZhAoAAUdgKkz1LnutMeL16SSdPmjWZ/vgjf2CSpJ07nc+PHStxcwEAKBcITAAQIIoamCIjncdC/tefIC5O6tzZedw1MO3a5XxOhQkAAIPABAABwg5MJ0+e/bqCApMnYWFmVr2ICGnPHudxKkwAABiMYQKAADFggJSRIc2de/brPAWmxx+XQkPNmktffWWOhYRIBw6Y7nj26yQCEwAANipMABAgwsIKd50dfKKi3I9v3y7l5Ei//GImkLj8cvfzBw44n9MlDwAAg8AEAOWMpwqTPbW45JxO3NX335sJIRo2lOrUKbPmAQAQUOiSBwAB5I47pH79pP37PV9Tv7502WVSu3bux+3FayX3wDRkiHT++VJmpnTppVKDBlIF/jkNAABJVJgAIKDMmiXt22ceiYkFX3PtteaRl2uFyXV2vFWrzIQPqakF3+/1180177xjxkBJphr100/S888XvqsgAACBiMAEAAGkWjUTls41tXhBXCtMroHJfj5mjHTlldKmTVJ6uvSf/5jjDzxgtldfLQ0ebJ4PHGi2zZpJI0YUvS0AAAQKAhMABJDCrsVUENdxSSdOOJ/bgWn+fOngQWnjRrP/r39J2dnO644cMVvLKvg+AACUR4xhAoAAUpjAdPvtZsKHv/3N/bjrrHkFBSZJatLEucjt8ePuY6UuucRsXaccv+eewrcdAIBARIUJAAJIYQLTqVNmvaaQAv5JbOtWadcuKSnJecw1MNWsKcXHm1B0/LjzfZo0cVaodu92tqUwi+MCABDICEwAEEAKE5g8TSsumSnDGzZ0P+Y6Y15iolSliglMx46Z8VKSCVI2OzAx9TgAIBjQJQ8AAogdmM42duhsgakgcXHO54mJUuXK5vnx41J0tNSihVnU9osvzPFdu8x25Uqpd+9CNx0AgIBEYAKAADJ8uHTmjPThh56vKWpg+vZbqUMH8zwhwT0wXX65NGOGmTnvvvvM8c6dpWuuMc9/+63IHwEAgIBCYAKAABIRce51j4oamCRTQZKcXfIk5+QO9ninAwdMWOvSRfr3v82xlBQpLa3w7wMAQKAhMAFAOVOcwLR4sbRkidS8uVmo9vBhadQoM4V4tWpmYgjLco5piolxduXbu7d02w8AgD8hMAFAADl1Srr5ZqlfPzMTXkG6dJF69XKOdzqXF16QbrvNTOZQsaJ5XdWqUoUKUsuWUv36prIkmWsWLzaz7SUkmGN79pT4YwEA4LeYJQ8AAkhEhPTRR2ZB2c8+k2rXls4/372a9M9/Fu2eGzdK8+ZJAwa4H7csaccOE9Lq1DGTPezcacJVVpYJUxKBCQBQvlFhAoAAEhIiVa9unt98s6kk3Xlnye65ebPZzphhtqtWmQkeHnvMhCXJhDJJWr7chKXQUDP5g+QMTKdOSX/+WbK2AADgbwhMABBgnn1W6tFDat3a7P/4o6kGFdfatWa7YYPZ7tolvfmm9MYbZr9KFalxY/N80SKzrVnTLGbbuLHpxidJDz8s3Xijc5wTAADlgcOySvK/2cCSmpqquLg4paSkKDY21tfNAYASOX3aTL6QlWW6ztWta45Xq2YC1OrVpsveuTgczueWJS1YYCpXtlatpOnTpfXrzdilZ56RuneXfvnFeU1Ojhn3dPy4tGyZs/oEAIC/Kmw2oMIEAAEqMtJUdV56SYqKMscsSzpyRDp61MxsVxhPPWW2Y8earT2tuK1mTaljR+nWW6X4eHPMnmrctmmTCUtRUVK7dsX5NAAA+CcmfQCAAPbCC+779mx2UuGnFf/rX6UrrzRTikvOhWttNWs6n+/ebbZ5A5NdbbrgAlNtAgCgvKDCBADliL0Gk1T4wBQSYrrdhYaafdcKU+vW5mFZ0g8/SK+9Zo7XqWMmeejUySx2O3u2OT5vnlSpknTwYMk/CwAA/oDABAABzLLMuKIPPzRTjduByeGQwsKKd8+oKGd3vm++Md3+JOmaa8z2uuukbt1MINu0STpwwExxbsvKkn77rXjvDQCAvyEwAUAAy8kxY4ZuusmEFzswRUa6T+ZQFA6Hs8p07JjzmN0Nb8QIqUMHc8x1UomQEGnQIPOcwAQAKC8ITAAQwEJDTbc4ycxOZ6+bVNjueJ78+qt0+LDUpo3zmB2Y7HFMkntgattW6tnTPC9qYNq0ybx2/vxiNRcAgDJDYAKAANeli9kuW2a64fXo4VxotriSksw05fXqmeAkOWfIW7jQeV2tWmZ7+eXSiy9K7dub/VWrivZ+N99s7tu7d0laDQBA6SMwAUCAcw1MDRtKP/8sff99ye55+LB08qS0Z49z1rwjR8x2+nTndXaFKSlJ6tPHGZi2bZNSUgr3Xjk50sqVzv309BI1HQCAUkVgAoAAZwemVaukdetK556vv262liVV+N8CFD165L/ODkx79pjteeeZGfQkac2awr2Xa/e9rVvNLHsAAPgLAhMABLikJKlqVfP8oYdK554ff5z/2Lhx0sSJ0urVzmPVq5utZTmPXXGFdOONUnR0wfc+dsxMT56cbPa//db5uoYNS9RsAABKHQvXAkCAczikRx6RZsyQ+vUrnXtmZOQ/FhUlTZjgfuyyy6TRo93f116ryZMxY0y3vvnzpZkzzdTl9r0AAPA3Dsty/XfB8i01NVVxcXFKSUlRbGysr5sDAH7rxx+lAQOk55+Xxo4tvfumpUkJCWZ8lGQWw926Vfr6a+nf/zbhaeZMM4FEq1al974AAORV2GxAhQkAkE/fvmbShpKMJ5o1Szp0SBo2zHls7VrnmChJuv9+c+y++8z+F1+YCSt69jQL4j73nHTvvdK11xa/HQAAlARjmAAABSpJWPrpJ1Ohuu8+accO5/Hu3U0QWrLEjH/avNm9C9+AAWb70kvSpZdK8+ZJy5fnv/+ePdLIkVL//gV3HwQAoLQQmAAApe7ii6ULL5ROnJDuvtt9UoioKOmCC0x3v3r13IPZwIFme/So8z6TJjnPnz5txkA1amS68D3+uBQRUeYfBwAQxAhMAIBSFxIivf22CTM//mgmdPjiC/fgdOutZu2m5cudxxs0kHr1MovkfvyxNGeOCViSlJpqKlCvvGKqSp07O88Vx7Fj7u0BAKAgBCYAQJlo0kR69VUTnr77TrryStMNb+tWcz4kRHrrLVMpcjicr5szx3Tbu+4657F586S4ODOzXkyMmSRiwQKpY0dzfu1a6fLLzaQShfH662bNqBdfLI1PCgAozwhMAIAyc8890qZNZuKHkBBTObIXtvUkJMS9m92ePaZrniRVqWJC02WXOUNWVpZ09dUmRF155bnHNK1caaZhl6TJk83kFgAAeEJgAgCUqcaNzRpRBw6Y7nfh4UV7fe3aZrzTxRdLixdLHTq4n69QQfrgA7NQ7pw50g03SJ9/Ln31lenW59rtLj3dLKqbmWn2U1Kk998v2ecDAJRvrMMEACgXfvpJGjRIOnPG/Xh6uglTkpl576efpFq1pJdflipWNNWqkBBp/XozY9/tt0tdu3q//QAA72IdJgBAUOnTR/rySzMpxMmTpqteZKTpomcHpgMHTFe+994zk0tIpgL15pvSww+bWfi+/dZMdx4Tc/b327rVzNYnmZCWlWUC2NmkpkoF/T/Zsszrw8KK9JEBAF5AhQkAEBRycqRPPpGqVZMuucR5/JdfzBTokunel5UlPfqo6QboavFi09UvMdFMe/7SS9J//iO1aiXdcoupSr35prl261bT7a95c+nnn6V335X+/nepZUtz/UsvSTNnSnfdZbooDh4sZWebLoUhdJYHAK+gwgQAgIuQEDO+Ka8ePcwCu40aSQ0bSkOGmCrV7bebmf4kE26uv9459sn2xx9SQoK0Zo15nH++1KyZWXtq2zYzA+Dtt5v1qHbtMkEqLU266SYznistzVSzFi2S/vlP97C0YYO0bp2ZyCLvWlOpqWYGwnr1TFhznWUQAFC6qDABAPA/lmXGQX3/vZnW/OOPpc8+M0ErO9t0+6taVdqxQ+rfX3rySRNWRo82FSRX1atLv/1mJrx47DHn8b//XapRQ7r2WvNayzJd8WbPlnr2NOtDPfmkqVbl5Ej160vPPWeCU3i4ec2aNWZK9exsaehQE7aio6WDB81rEhKc916wwFzXpcu5uxnmlZlpwlmVKoQyAOVPYbMBgQkAABd//CH97W/S00+bcLR0qZks4oorTMWoQgF9M06cMBWojRtNYKlcWZoyRere3YyhatnSVJwaNDDXVKggdepkApUkvfOOqURZltlOn26Ox8W5T3u+a5eUlGSeDx1qZgeUpLp1TbjZt08KDTVjuMLDzf1q1ZL27zfHW7Y01x04YMZdnX++6QZoGzTIvDY62rzXpk3m+qpVTTfGjz5yXjt6tDkXHW0+j8Nh2pqcbKaOf+EF57VPPmm6MZ46ZcaJhYSYkBgWZq59/HHntVOmSMePm3OWZcJedrbpKlmlihlrZvvHP8xnCQkxn891GxNjKn22L76QDh0y5x0O044TJ8z3ExUljRnjfu3u3c5rLctsw8NNtW/oUGeAXLXKtCEnx7QzJ8e0PSLCXN+jh7mPZN4/I8N5Li1NOnLEbCtWlNq1c/75st8TQNkhMBWAwAQAKI5Nm8z06PYvvkX1yy/SAw+YENGnjzm2YIFZbPfBB6VJk8yxFSukbt3Me73+unTBBSa8vfSSqfTs32+qR7affzaVsAMHzL7DITVtakKZbdQos0bVrl3529Wjh7mHrW7dgq+TpL59pR9+cO5XrmzCUUG6djVjvmy1apkwV5A2bUzFzNa4sXNx47waNZK2bHHut2vn/lpXNWtKe/c697t1k5YsKfja+HgT0mx9+rgHSVcVKrh3zRw8WPrmm4KvlUxAsqfSdw25BUlONiFZkkaMMGPkoqMLfrz3nll8WTLf78qV7ucrVjTbmBgTzqOiPL8vEKwYwwQAQClp1qxkr+/Rw/xC66pnz/yL5nbqJB0+bH7JtcczPf64NG6cqYbk7VJ34YXS2rWmO1+dOiZA5P3F+O9/N489e0w1pFIl0yUwPNxUQ1z9+9/m/dPTzeQWLVuaSTI2bcp/7VNPmarR6dOm+pOdbX7Zj483Y6tcPfCAuWdUlJm50LJM6MjMNPd3ddNNJgBmZpoAGBpqQkpoqOnm6Oq660w4y8lxf2Rnm3a4uugi83r7mshIEygiIvL/zHr1MmEkO9t5zLJMVS5v1adxY9M90q5shYSYtmdkmOtdZz4MCTE/d3vq+woVzOePiXFW9mzp6ea6M2fcw5zNtR3ffCP961/5r7Ft3+78Tl57zVQw09JMCE9MNGGya1cTXlu2dLb511/N+Tp1il/tys4u/j80AP6CChMAAIAX2YExLMxzEElJMY8TJ5yPkyedz4cOdXbf+/BDUyl0vdZ+pKVJy5Y5A+Rttzm7fBZk926zWLQkDRggzZplwmOjRibQVapkgnmPHiZY2uEqK8u04cAB848BiYmmXRMnSvPnm4of4G/oklcAAhMAAAhmGzeaSUtiY01la+tW031y2TJThdy2zRniJk2SnnnGhKG8wsJMoIuKMkGufn0zRstWu7a5n2S6nf7tb+b5Aw+YcYFNmpjxguvXm26mN99sHvbaZp7k5JhxX/Hxzq6Okql0RkS4B9CjR83niYszXVWBvAhMBSAwAQAAFF5Ghpnefu9eE4yOHjVd9TIypE8/dV530UXS77+b7nurV5sqWkSE6VI6dqxzavy2bU030oL06iXNm+fcHzjQBCSHw3RNPHzYBLxTp0w3yBUrzHWnTpkxW1WqSB06mElKli83YUmS7rnHuUZaTo5ZRiA93exXq2YCW2qq+ZwjRphxaZIZU/bII2Zs38aNJlimppqxheefL915pxmfJ5l2/fe/5nOmpTknE4mKMm279FKzbIFklhKYNcuEvMxMU7WLjzddF9PSzLWNG5trd+6U5s41n79CBRMSQ0OdXVq7dzfrvUlmjOPcuc6uoXa3Xvs3/XbtnEslHD4s/fST85xkfs72o00b532Tkwse02eH06ZNTVdOybR/9uyCv1/J/AzatvV83tsYwwQAAIASiYgwY+s6dXIeGzUq/3UffWTGiFWoYCpNS5eaX7rr1nW/7osvzOQb27aZX95btjQBasYM9+pQdrb5hT7v2me2+vWdz6OiTLfBo0fNa1zVqmUCi23FCjMNvyctWjgD0++/mxks8/r+e/No3tyMo5PMWmrjxnm+7yefOAPTqlWm6ubJe+85A9PKlWbmTE/+9S9nsFm3zlTpPHn1VWdg2rzZjBf05Nlnnffdvl265hrP1z72mLleMqHt6qs9X/vAA6YdgYbABAAAgBJxHaNUvbozdORVv7572JGkVq3ML++u1Q7LMqFk1y4TpCIizMyMjRqZKlbeILV1q/TnnyaMHD5sKk3nn59/8o/QUOn5502wsyxz7f79JnS1bm0qZbaEBGnCBBMYGjUyk2PExTm7MLpOwpKU5PwMMTGmvadPm6rcyZOmza4/gxtuMBOPVKhgql3Jyab6FRPj/rOsVctU2sLDTYjMyDBbe1p+1wlWqlQxMzy6TnFvV4zse9ni481SAa4/b3trWe5BNzrajFnzxPXaqKizX9uggedz/owueQAAAACCTmGzQYgX2wQAAAAAAYXABAAAAAAeEJgAAAAAwAMCEwAAAAB4EHCBKSMjQ+3atZPD4dDq1at93RwAAAAA5VjABaa//OUvquk63yIAAAAAlJGACkzff/+9fvzxR7388suFuj4jI0OpqaluDwAAAAAorIAJTAcPHtSIESP07rvvqqLrks1nMXnyZMXFxeU+kpKSyriVAAAAAMqTgAhMlmVp+PDhuueee9SpU6dCv278+PFKSUnJfezevbsMWwkAAACgvPFpYBo3bpwcDsdZH5s2bdKUKVOUlpam8ePHF+n+ERERio2NdXsAAAAAQGE5LMuyfPXmhw8f1tGjR896TYMGDXTdddfp66+/lsPhyD2enZ2t0NBQDR06VDNmzCjU+6WmpiouLk4pKSmEJwAAACCIFTYb+DQwFdauXbvcJmzYt2+f+vXrp88++0znn3++ateuXaj7EJgAAAAASIXPBhW82KZiq1Onjtt+pUqVJEkNGzYsdFgCAAAAgKIKiEkfAAAAAMAXAqLClFe9evUUAD0JAQAAAAQ4KkwAAAAA4AGBCQAAAAA8IDABAAAAgAcEJgAAAADwgMAEAAAAAB4QmAAAAADAAwITAAAAAHhAYAIAAAAADwhMAAAAAOABgQkAAAAAPKjg6wZ4k2VZkqTU1FQftwQAAACAL9mZwM4IngRVYEpLS5MkJSUl+bglAAAAAPxBWlqa4uLiPJ53WOeKVOVITk6O9u3bp5iYGDkcDq+/f2pqqpKSkrR7927FxsZ6/f3hW3z/wYvvPnjx3QcvvvvgxXcfOCzLUlpammrWrKmQEM8jlYKqwhQSEqLatWv7uhmKjY3lP6AgxvcfvPjugxffffDiuw9efPeB4WyVJRuTPgAAAACABwQmAAAAAPCAwORFERERmjBhgiIiInzdFPgA33/w4rsPXnz3wYvvPnjx3Zc/QTXpAwAAAAAUBRUmAAAAAPCAwAQAAAAAHhCYAAAAAMADAhMAAAAAeEBg8qKpU6eqXr16ioyM1Pnnn69ly5b5ukkoZRMnTpTD4XB7NGvWLPf86dOnNXLkSJ133nmqVKmSrr76ah08eNCHLUZxLVy4UIMHD1bNmjXlcDj0xRdfuJ23LEtPPvmkEhMTFRUVpT59+mjLli1u1xw7dkxDhw5VbGys4uPjdccddyg9Pd2LnwLFca7vfvjw4fn+Hujfv7/bNXz3gWny5Mnq3LmzYmJiVL16dV1xxRXavHmz2zWF+Xt+165dGjRokCpWrKjq1atr7NixysrK8uZHQREV5rvv1atXvv/277nnHrdr+O4DE4HJSz7++GM9/PDDmjBhglatWqW2bduqX79+OnTokK+bhlLWsmVL7d+/P/fxyy+/5J576KGH9PXXX+vTTz/VggULtG/fPl111VU+bC2K68SJE2rbtq2mTp1a4PkXX3xRr7/+uv7xj39o6dKlio6OVr9+/XT69Onca4YOHaoNGzZo9uzZ+uabb7Rw4ULddddd3voIKKZzffeS1L9/f7e/Bz788EO383z3gWnBggUaOXKkfv31V82ePVuZmZnq27evTpw4kXvNuf6ez87O1qBBg3TmzBktXrxYM2bM0PTp0/Xkk0/64iOhkArz3UvSiBEj3P7bf/HFF3PP8d0HMAte0aVLF2vkyJG5+9nZ2VbNmjWtyZMn+7BVKG0TJkyw2rZtW+C55ORkKywszPr0009zj23cuNGSZC1ZssRLLURZkGTNnDkzdz8nJ8dKSEiwXnrppdxjycnJVkREhPXhhx9almVZv//+uyXJWr58ee4133//veVwOKy9e/d6re0ombzfvWVZ1q233moNGTLE42v47suPQ4cOWZKsBQsWWJZVuL/nv/vuOyskJMQ6cOBA7jVvvvmmFRsba2VkZHj3A6DY8n73lmVZPXv2tB544AGPr+G7D1xUmLzgzJkzWrlypfr06ZN7LCQkRH369NGSJUt82DKUhS1btqhmzZpq0KCBhg4dql27dkmSVq5cqczMTLc/B82aNVOdOnX4c1DObN++XQcOHHD7ruPi4nT++efnftdLlixRfHy8OnXqlHtNnz59FBISoqVLl3q9zShd8+fPV/Xq1dW0aVPde++9Onr0aO45vvvyIyUlRZJUpUoVSYX7e37JkiVq3bq1atSokXtNv379lJqaqg0bNnix9SiJvN+97f3331fVqlXVqlUrjR8/XidPnsw9x3cfuCr4ugHB4MiRI8rOznb7D0SSatSooU2bNvmoVSgL559/vqZPn66mTZtq//79mjRpki688EKtX79eBw4cUHh4uOLj491eU6NGDR04cMA3DUaZsL/Pgv6bt88dOHBA1atXdztfoUIFValShT8PAa5///666qqrVL9+fW3btk2PPfaYBgwYoCVLlig0NJTvvpzIycnRgw8+qO7du6tVq1aSVKi/5w8cOFDg3w32Ofi/gr57SbrppptUt25d1axZU2vXrtWjjz6qzZs36/PPP5fEdx/ICExAKRowYEDu8zZt2uj8889X3bp19cknnygqKsqHLQPgLTfccEPu89atW6tNmzZq2LCh5s+fr0suucSHLUNpGjlypNavX+82ThXBwdN37zoOsXXr1kpMTNQll1yibdu2qWHDht5uJkoRXfK8oGrVqgoNDc03S87BgweVkJDgo1bBG+Lj49WkSRNt3bpVCQkJOnPmjJKTk92u4c9B+WN/n2f7bz4hISHfpC9ZWVk6duwYfx7KmQYNGqhq1araunWrJL778mDUqFH65ptvNG/ePNWuXTv3eGH+nk9ISCjw7wb7HPybp+++IOeff74kuf23z3cfmAhMXhAeHq6OHTtqzpw5ucdycnI0Z84cde3a1YctQ1lLT0/Xtm3blJiYqI4dOyosLMztz8HmzZu1a9cu/hyUM/Xr11dCQoLbd52amqqlS5fmftddu3ZVcnKyVq5cmXvN3LlzlZOTk/s/WZQPe/bs0dGjR5WYmCiJ7z6QWZalUaNGaebMmZo7d67q16/vdr4wf8937dpV69atcwvNs2fPVmxsrFq0aOGdD4IiO9d3X5DVq1dLktt/+3z3AcrXs04Ei48++siKiIiwpk+fbv3+++/WXXfdZcXHx7vNlILAN2bMGGv+/PnW9u3brUWLFll9+vSxqlatah06dMiyLMu65557rDp16lhz5861VqxYYXXt2tXq2rWrj1uN4khLS7N+++0367fffrMkWa+88or122+/WTt37rQsy7Kef/55Kz4+3vryyy+ttWvXWkOGDLHq169vnTp1Kvce/fv3t9q3b28tXbrU+uWXX6zGjRtbN954o68+EgrpbN99Wlqa9cgjj1hLliyxtm/fbv30009Whw4drMaNG1unT5/OvQfffWC69957rbi4OGv+/PnW/v37cx8nT57MveZcf89nZWVZrVq1svr27WutXr3amjVrllWtWjVr/PjxvvhIKKRzffdbt261nnrqKWvFihXW9u3brS+//NJq0KCBddFFF+Xeg+8+cBGYvGjKlClWnTp1rPDwcKtLly7Wr7/+6usmoZRdf/31VmJiohUeHm7VqlXLuv76662tW7fmnj916pR13333WZUrV7YqVqxoXXnlldb+/ft92GIU17x58yxJ+R633nqrZVlmavEnnnjCqlGjhhUREWFdcskl1ubNm93ucfToUevGG2+0KlWqZMXGxlq33XablZaW5oNPg6I423d/8uRJq2/fvla1atWssLAwq27dutaIESPy/eMY331gKuh7l2RNmzYt95rC/D2/Y8cOa8CAAVZUVJRVtWpVa8yYMVZmZqaXPw2K4lzf/a5du6yLLrrIqlKlihUREWE1atTIGjt2rJWSkuJ2H777wOSwLMvyXj0LAAAAAAIHY5gAAAAAwAMCEwAAAAB4QGACAAAAAA8ITAAAAADgAYEJAAAAADwgMAEAAACABwQmAAAAAPCAwAQAAAAAHhCYAKAc2LFjhxwOh1avXu3rpuTatGmTLrjgAkVGRqpdu3YFXmNZlu666y5VqVLF5+33x59hcc2fP18Oh0PJycll/l4TJ070+P0CQHlAYAKAUjB8+HA5HA49//zzbse/+OILORwOH7XKtyZMmKDo6Ght3rxZc+bMKfCaWbNmafr06frmm2+0f/9+tWrVyittGz58uK644gq3Y0lJSV5tQyByOBz64osv3I498sgjHr9fACgPCEwAUEoiIyP1wgsv6Pjx475uSqk5c+ZMsV+7bds29ejRQ3Xr1tV5553n8ZrExER169ZNCQkJqlChQrHfr6RCQ0N93oZAVKlSJY/fLwCUBwQmACglffr0UUJCgiZPnuzxmoK6L7366quqV69e7r5d/XjuuedUo0YNxcfH66mnnlJWVpbGjh2rKlWqqHbt2po2bVq++2/atEndunVTZGSkWrVqpQULFridX79+vQYMGKBKlSqpRo0auuWWW3TkyJHc87169dKoUaP04IMPqmrVqurXr1+BnyMnJ0dPPfWUateurYiICLVr106zZs3KPe9wOLRy5Uo99dRTcjgcmjhxYr57DB8+XKNHj9auXbvkcDhyfwb16tXTq6++6nZtu3bt3O7hcDj09ttv68orr1TFihXVuHFjffXVV26v2bBhgy677DLFxsYqJiZGF154obZt26aJEydqxowZ+vLLL+VwOORwODR//vwCu+QtWLBAXbp0UUREhBITEzVu3DhlZWW5/bzuv/9+/eUvf1GVKlWUkJBQ4GfN6+2331bz5s0VGRmpZs2a6Y033sg9161bNz366KNu1x8+fFhhYWFauHChJOndd99Vp06dFBMTo4SEBN100006dOiQx/crzJ+75cuX69JLL1XVqlUVFxennj17atWqVbnn7WuvvPJKt+8r773P9WfD/jl//vnn6t27typWrKi2bdtqyZIludfs3LlTgwcPVuXKlRUdHa2WLVvqu+++O+vPFADKCoEJAEpJaGionnvuOU2ZMkV79uwp0b3mzp2rffv2aeHChXrllVc0YcIEXXbZZapcubKWLl2qe+65R3fffXe+9xk7dqzGjBmj3377TV27dtXgwYN19OhRSVJycrIuvvhitW/fXitWrNCsWbN08OBBXXfddW73mDFjhsLDw7Vo0SL94x//KLB9r732mv7v//5PL7/8stauXat+/frp8ssv15YtWyRJ+/fvV8uWLTVmzBjt379fjzzySIH3sH+x3r9/v5YvX16kn9GkSZN03XXXae3atRo4cKCGDh2qY8eOSZL27t2riy66SBEREZo7d65Wrlyp22+/XVlZWXrkkUd03XXXqX///tq/f7/279+vbt265bv/3r17NXDgQHXu3Flr1qzRm2++qXfeeUfPPPNMvp9XdHS0li5dqhdffFFPPfWUZs+e7bHd77//vp588kk9++yz2rhxo5577jk98cQTmjFjhiRp6NCh+uijj2RZVu5rPv74Y9WsWVMXXnihJCkzM1NPP/201qxZoy+++EI7duzQ8OHDi/TzyystLU233nqrfvnlF/36669q3LixBg4cqLS0NEnK/X6mTZt21u/rXH82bH/961/1yCOPaPXq1WrSpIluvPHG3DA6cuRIZWRkaOHChVq3bp1eeOEFVapUqUSfDwCKzQIAlNitt95qDRkyxLIsy7rgggus22+/3bIsy5o5c6bl+lfthAkTrLZt27q99m9/+5tVt25dt3vVrVvXys7Ozj3WtGlT68ILL8zdz8rKsqKjo60PP/zQsizL2r59uyXJev7553OvyczMtGrXrm298MILlmVZ1tNPP2317dvX7b13795tSbI2b95sWZZl9ezZ02rfvv05P2/NmjWtZ5991u1Y586drfvuuy93v23bttaECRPOep+8n92yLKtu3brW3/72N7djee8lyXr88cdz99PT0y1J1vfff29ZlmWNHz/eql+/vnXmzJkC39f1+7LZP8PffvvNsizLeuyxx6ymTZtaOTk5uddMnTrVqlSpUu5307NnT6tHjx5u9+ncubP16KOPevzMDRs2tD744AO3Y08//bTVtWtXy7Is69ChQ1aFChWshQsX5p7v2rXrWe+5fPlyS5KVlpZmWZZlzZs3z5JkHT9+3LKswv25yys7O9uKiYmxvv7669xjkqyZM2e6XZf33uf6s2H/nN9+++3c8xs2bLAkWRs3brQsy7Jat25tTZw40WPbAMCbqDABQCl74YUXNGPGDG3cuLHY92jZsqVCQpx/RdeoUUOtW7fO3Q8NDdV5552XrxtW165dc59XqFBBnTp1ym3HmjVrNG/ePFWqVCn30axZM0lmLJGtY8eOZ21bamqq9u3bp+7du7sd7969e4k+c1G1adMm93l0dLRiY2Nzfx6rV6/WhRdeqLCwsGLff+PGjeratavbpB3du3dXenq6W2XPtR2SlJiY6LF73IkTJ7Rt2zbdcccdbt/DM888k/sdVKtWTX379tX7778vSdq+fbuWLFmioUOH5t5n5cqVGjx4sOrUqaOYmBj17NlTkrRr165if96DBw9qxIgRaty4seLi4hQbG6v09PQi3bMofzZcf26JiYmSlPtzu//++/XMM8+oe/fumjBhgtauXVvcjwUAJUZgAoBSdtFFF6lfv34aP358vnMhISFuXa0k070qr7y/6DscjgKP5eTkFLpd6enpGjx4sFavXu322LJliy666KLc66Kjowt9z7JQkp+R/fOIiooquwYWoR15paenS5Leeustt+9g/fr1+vXXX3OvGzp0qD777DNlZmbqgw8+UOvWrXMD84kTJ9SvXz/Fxsbq/fff1/LlyzVz5kxJnifpKMzP9NZbb9Xq1av12muvafHixVq9erXOO++8Ek38cTauPzc7lNo/tzvvvFN//vmnbrnlFq1bt06dOnXSlClTyqQdAHAuBCYAKAPPP/+8vv76a7eB7JKpHhw4cMDtl9fSXPfH9ZfurKwsrVy5Us2bN5ckdejQQRs2bFC9evXUqFEjt0dRQlJsbKxq1qypRYsWuR1ftGiRWrRoUeLPUK1aNe3fvz93PzU1Vdu3by/SPdq0aaOff/65wKAlSeHh4crOzj7rPZo3b64lS5a4fVeLFi1STEyMateuXaT22GrUqKGaNWvqzz//zPcd1K9fP/e6IUOG6PTp05o1a5Y++OADt+rSpk2bdPToUT3//PO68MIL1axZs7NO+CAV7s/dokWLdP/992vgwIFq2bKlIiIi3CYEkUzIOdvPrTT/bCQlJemee+7R559/rjFjxuitt94q0usBoLQQmACgDLRu3VpDhw7V66+/7na8V69eOnz4sF588UVt27ZNU6dO1ffff19q7zt16lTNnDlTmzZt0siRI3X8+HHdfvvtksxA+mPHjunGG2/U8uXLtW3bNv3www+67bbbzhke8ho7dqxeeOEFffzxx9q8ebPGjRun1atX64EHHijxZ7j44ov17rvv6ueff9a6det06623KjQ0tEj3GDVqlFJTU3XDDTdoxYoV2rJli959911t3rxZkpnxbe3atdq8ebOOHDlSYLC67777tHv3bo0ePVqbNm3Sl19+qQkTJujhhx926y5ZVJMmTdLkyZP1+uuv648//tC6des0bdo0vfLKK7nXREdH64orrtATTzyhjRs36sYbb8w9V6dOHYWHh2vKlCn6888/9dVXX+npp58+63sW5s9d48aN9e6772rjxo1aunSphg4dmq9SV69ePc2ZM0cHDhzwOH1+afzZePDBB/XDDz9o+/btWrVqlebNm5cb/AHA2whMAFBGnnrqqXxds5o3b6433nhDU6dOVdu2bbVs2bICZ5Arrueff17PP/+82rZtq19++UVfffWVqlatKkm5//KfnZ2tvn37qnXr1nrwwQcVHx9f5ABw//336+GHH9aYMWPUunVrzZo1S1999ZUaN25c4s8wfvx49ezZU5dddpkGDRqkK664Qg0bNizSPc477zzNnTtX6enp6tmzpzp27Ki33nortxvYiBEj1LRpU3Xq1EnVqlXLVxGRpFq1aum7777TsmXL1LZtW91zzz2644479Pjjj5fo89155516++23NW3aNLVu3Vo9e/bU9OnT3SpMkumWt2bNGl144YWqU6dO7vFq1app+vTp+vTTT9WiRQs9//zzevnll8/6noX5c/fOO+/o+PHj6tChg2655Rbdf//9ql69uts1//d//6fZs2crKSlJ7du3L/C9SuPPRnZ2tkaOHKnmzZurf//+atKkidvU6wDgTQ4rb6dmAAAAAIAkKkwAAAAA4BGBCQAAAAA8IDABAAAAgAcEJgAAAADwgMAEAAAAAB4QmAAAAADAAwITAAAAAHhAYAIAAAAADwhMAAAAAOABgQkAAAAAPCAwAQAAAIAH/w8+7iLHsZy99AAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAK9CAYAAADWo6YTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACm00lEQVR4nOzdd3hUZdrH8d8khECAJJRIKJHeu6hIWQFhAQUFRcWKBbGjq1iwi66yur6KvQtYUFds2FAERFeUoiKCdOkl9IROSOb9497DzCQzSSaZZGaS7+e65jpnzpyZecbV9+XH/Tz343K73W4BAAAAAEIiJtwDAAAAAICyhJAFAAAAACFEyAIAAACAECJkAQAAAEAIEbIAAAAAIIQIWQAAAAAQQoQsAAAAAAghQhYAAAAAhBAhCwAAAABCiJAFAICXiRMnyuVyacGCBQXe26tXL/Xq1avkBwUAiCqELABAqVq9erWuueYaNW7cWJUqVVJiYqK6d++up59+WgcPHgz59x04cEAPPvigvvvuu5B/dlHMmTNHDz74oPbs2RPuoQAASkiFcA8AAFB+fPHFFzrvvPMUHx+v4cOHq23btjpy5Ij++9//6vbbb9eSJUv0yiuvhPQ7Dxw4oLFjx0pSyKtO33zzTdDvmTNnjsaOHavLL79cycnJIR0PACAyELIAAKVizZo1uuCCC9SgQQPNnDlTderUOfbaDTfcoFWrVumLL74I4wiDV7FixXAPQZLkdrt16NAhVa5cOdxDAQCI6YIAgFLy+OOPa9++fXr99dd9ApajadOmuvnmm489P3r0qB5++GE1adJE8fHxatiwoe6++24dPnzY530LFixQ//79VatWLVWuXFmNGjXSlVdeKUlau3atUlJSJEljx46Vy+WSy+XSgw8+WOB4Dx8+rFtvvVUpKSmqUqWKzj77bG3fvt3nHn9rsp599lm1adNGCQkJql69uk488URNnjxZkvTggw/q9ttvlyQ1atTo2HjWrl0b1G9u2LChBg0apK+//lonnniiKleurJdfflk9e/ZUhw4d/P6eFi1aqH///gX+bgBA8VHJAgCUis8++0yNGzdWt27dCnX/VVddpUmTJuncc8/V6NGjNXfuXI0bN05Lly7Vxx9/LEnatm2b+vXrp5SUFI0ZM0bJyclau3atPvroI0lSSkqKXnzxRV133XU6++yzdc4550iS2rdvX+D3jxo1StWrV9cDDzygtWvXavz48brxxhv1/vvvB3zPq6++qptuuknnnnuubr75Zh06dEiLFi3S3LlzddFFF+mcc87RihUr9O677+qpp55SrVq1jo2zsL/ZsXz5cl144YW65pprNHLkSLVo0UJVq1bVyJEjtXjxYrVt2/bYvfPnz9eKFSt07733FuqfPQCgmNwAAJSwjIwMtyT34MGDC3X/woUL3ZLcV111lc/12267zS3JPXPmTLfb7XZ//PHHbknu+fPnB/ys7du3uyW5H3jggUJ994QJE9yS3H379nXn5OQcu37LLbe4Y2Nj3Xv27Dl2rWfPnu6ePXseez548GB3mzZt8v38f//7325J7jVr1vhcL+xvdrvd7gYNGrgluadNm+Zz7549e9yVKlVy33nnnT7Xb7rpJneVKlXc+/bty3dsAIDQYLogAKDEZWZmSpKqVatWqPu//PJLSdKtt97qc3306NGSdGztltM44vPPP1dWVlYohnrM1VdfLZfLdez53/72N2VnZ2vdunUB35OcnKyNGzdq/vz5QX9fYX+zo1GjRnmm/yUlJWnw4MF699135Xa7JUnZ2dl6//33NWTIEFWpUiXocQEAgkfIAgCUuMTEREnS3r17C3X/unXrFBMTo6ZNm/pcT01NVXJy8rGg07NnTw0dOlRjx45VrVq1NHjwYE2YMCHPGqaiOP74432eV69eXZK0e/fugO+58847VbVqVZ188slq1qyZbrjhBv3444+F+r7C/mZHo0aN/H7O8OHDtX79ev3www+SpG+//Vbp6em69NJLCzUOAEDxEbIAACUuMTFRdevW1eLFi4N6n3clKdDrU6ZM0U8//aQbb7xRmzZt0pVXXqnOnTtr3759xRmyYmNj/V53KkT+tGrVSsuXL9d7772nHj166MMPP1SPHj30wAMPFPp7C/rNjkCdBPv376/atWvr7bffliS9/fbbSk1NVd++fQs9BgBA8RCyAAClYtCgQVq9erV++umnAu9t0KCBcnJytHLlSp/r6enp2rNnjxo0aOBz/ZRTTtEjjzyiBQsW6J133tGSJUv03nvvSSp8aAmVKlWqaNiwYZowYYLWr1+vgQMH6pFHHtGhQ4fyHU+wvzmQ2NhYXXTRRZoyZYp2796tTz75RBdeeGHA0AgACD1CFgCgVNxxxx2qUqWKrrrqKqWnp+d5ffXq1Xr66aclSWeccYYkafz48T73PPnkk5KkgQMHSrKpe7krSx07dpSkY1MGExISJEl79uwJye/Iz86dO32eV6xYUa1bt5bb7T62ZsxZF5V7PIX9zYVx6aWXavfu3brmmmu0b98+XXLJJcH8DABAMdHCHQBQKpo0aaLJkydr2LBhatWqlYYPH662bdvqyJEjmjNnjj744ANdfvnlkqQOHTrosssu0yuvvKI9e/aoZ8+emjdvniZNmqQhQ4aod+/ekqRJkybphRde0Nlnn60mTZpo7969evXVV5WYmHgstFSuXFmtW7fW+++/r+bNm6tGjRpq27atT4vzUOnXr59SU1PVvXt31a5dW0uXLtVzzz2ngQMHHmv60blzZ0nSPffcowsuuEBxcXE688wzC/2bC6NTp05q27atPvjgA7Vq1UonnHBCyH8rACAf4W1uCAAob1asWOEeOXKku2HDhu6KFSu6q1Wr5u7evbv72WefdR86dOjYfVlZWe6xY8e6GzVq5I6Li3OnpaW577rrLp97fv31V/eFF17oPv74493x8fHu4447zj1o0CD3ggULfL5zzpw57s6dO7srVqxYYDt3p4V77rbws2bNcktyz5o169i13C3cX375Zfepp57qrlmzpjs+Pt7dpEkT9+233+7OyMjw+ayHH37YXa9ePXdMTIxPO/fC/Ga321q4Dxw4ML9/zO7HH3/cLcn96KOP5nsfACD0XG53Pit4AQBAVHr66ad1yy23aO3atXk6JQIAShYhCwCAMsbtdqtDhw6qWbOmZs2aFe7hAEC5w5osAADKiP3792vq1KmaNWuW/vjjD3366afhHhIAlEtUsgAAKCPWrl2rRo0aKTk5Wddff70eeeSRcA8JAMolQhYAAAAAhBD7ZAEAAABACBGyAAAAACCEaHxRgJycHG3evFnVqlWTy+UK93AAAAAAhInb7dbevXtVt25dxcQErlcRsgqwefNmpaWlhXsYAAAAACLEhg0bVL9+/YCvE7IKUK1aNUn2DzIxMTHMowEAAAAQLpmZmUpLSzuWEQIhZBXAmSKYmJhIyAIAAABQ4DIiGl8AAAAAQAgRsgAAAAAghAhZAAAAABBCrMkCAAAAyhi3262jR48qOzs73EOJKrGxsapQoUKxt24iZAEAAABlyJEjR7RlyxYdOHAg3EOJSgkJCapTp44qVqxY5M8gZAEAAABlRE5OjtasWaPY2FjVrVtXFStWLHZVprxwu906cuSItm/frjVr1qhZs2b5bjicH0IWAAAAUEYcOXJEOTk5SktLU0JCQriHE3UqV66suLg4rVu3TkeOHFGlSpWK9Dk0vgAAAADKmKJWYBCaf3b80wcAAACAECJkAQAAAEAIEbIAAAAAIIQIWQAAAAAiwtatWzVq1Cg1btxY8fHxSktL05lnnqkZM2YU+7MnTpyo5OTk4g+yEOguCAAAACDs1q5dq+7duys5OVn//ve/1a5dO2VlZenrr7/WDTfcoGXLloV7iIVGJQsAAAAoB/bvD/w4dKjw9x48WPC9RXH99dfL5XJp3rx5Gjp0qJo3b642bdro1ltv1c8//yxJWr9+vQYPHqyqVasqMTFR559/vtLT0499xu+//67evXurWrVqSkxMVOfOnbVgwQJ99913uuKKK5SRkSGXyyWXy6UHH3ywaAMtBEIWAAAAUA5UrRr4MXSo773HHRf43tNP9723YcO89wRr165dmjZtmm644QZVqVIlz+vJycnKycnR4MGDtWvXLs2ePVvTp0/XX3/9pWHDhh277+KLL1b9+vU1f/58/fLLLxozZozi4uLUrVs3jR8/XomJidqyZYu2bNmi2267LfiBFhLTBQEAAACE1apVq+R2u9WyZcuA98yYMUN//PGH1qxZo7S0NEnSm2++qTZt2mj+/Pk66aSTtH79et1+++3HPqdZs2bH3p+UlCSXy6XU1NSS/TEiZAEAAADlwr59gV+LjfV9vm1b4Htz79W7dm2Rh3SM2+0u8J6lS5cqLS3tWMCSpNatWys5OVlLly7VSSedpFtvvVVXXXWV3nrrLfXt21fnnXeemjRpUvwBBonpggAAAEA5UKVK4EelSoW/t3Llgu8NVrNmzeRyuYrd3OLBBx/UkiVLNHDgQM2cOVOtW7fWxx9/XKzPLApCFgAAAICwqlGjhvr376/nn39e+/10ztizZ49atWqlDRs2aMOGDceu//nnn9qzZ49at2597Frz5s11yy236JtvvtE555yjCRMmSJIqVqyo7Ozskv8xImQBAAAAiADPP/+8srOzdfLJJ+vDDz/UypUrtXTpUj3zzDPq2rWr+vbtq3bt2uniiy/Wr7/+qnnz5mn48OHq2bOnTjzxRB08eFA33nijvvvuO61bt04//vij5s+fr1atWkmSGjZsqH379mnGjBnasWOHDhw4UGK/hZAFAAAAIOwaN26sX3/9Vb1799bo0aPVtm1b/f3vf9eMGTP04osvyuVy6dNPP1X16tV16qmnqm/fvmrcuLHef/99SVJsbKx27typ4cOHq3nz5jr//PN1+umna+zYsZKkbt266dprr9WwYcOUkpKixx9/vMR+i8tdmFVm5VhmZqaSkpKUkZGhxMTEcA8HAAAACOjQoUNas2aNGjVqpEq5F1qhUPL7Z1jYbEAlCwAAAABCiJCFqLJpk7RiRbhHAQAAAATGPlmIKvXr23HHDqlmzfCOBQAAAPCHShai0l9/hXsEAAAAgH+ELESNnBzPuVPRAgAAQF70tiu6UPyzI2QhamRlec4TEsI3DgAAgEgVFxcnSSW6B1RZ5/yzc/5ZFgVrshA1jh71nFfg31wAAIA8YmNjlZycrG3btkmSEhIS5HK5wjyq6OB2u3XgwAFt27ZNycnJio2NLfJn8UdVRA3vkLV9u1SlSvjGAgAAEKlSU1Ml6VjQQnCSk5OP/TMsKkJWGZOTI40YIXXqJN10U7hHE1reIWvbNqlhw7ANBQAAIGK5XC7VqVNHxx13nLK811ugQHFxccWqYDkIWWXMV19JEyfao6yFrJo1LVitXSuxlhMAACB/sbGxIQkMCB6NL8oYZ31erVrhHUdJcdZieVe1AAAAgEhCyCpjnEYyzZqFdxwlhZAFAACASEfIKmP27LFjUlJYh1EiNm2Sli2zc0IWAAAAIhUhq4zJyLDjtGnSjh3hHUuoZWZ6zglZAAAAiFSErDLGqWRJUnp62IZRIryDFSELAAAAkYqQVcZ4h6x9+8I2jBLhHay6dw/fOAAAAID8ELLKmMcfl5y90/buDe9YQs3Z5qFBAyk5OaxDAQAAAAIiZJUxcXFSo0Z2XlYrWU6begAAACASEbLKoKpV7VhWQ9aqVdKSJeEdCwAAABAIIauMueceafp0Oy9r0wW912QtWBC+cQAAAAD5IWSVMe+95zkva5Ws006TzjjDzukuCAAAgEhVIdwDQGg5+2RNnSr16hXWoZSIihXtSMgCAABApKKSVYa43Z4W7p07S9WqhXU4JaLC//5agJAFAACASEXIKkP275eys+08KSm8YykJP/8sTZli54QsAAAARCpCVhniTBWUpIcfliZMCN9YSsLatZ5zQhYAAAAiFSGrDHGmCkrSY49JH34YtqGUCO9gRcgCAABApCJklSHelSyp7HUXdIJVpUrSBReEdywAAABAIFEXsp5//nk1bNhQlSpVUpcuXTRv3rx87//ggw/UsmVLVapUSe3atdOXX35ZSiMtfV26SNu2SS+9ZM/L2j5ZWVl27NdPatAgvGMBAAAAAomqkPX+++/r1ltv1QMPPKBff/1VHTp0UP/+/bVt2za/98+ZM0cXXnihRowYod9++01DhgzRkCFDtHjx4lIeeemIjZVSUqTWre15Wa1kVWDjAQAAAEQwl9vtdod7EIXVpUsXnXTSSXruueckSTk5OUpLS9OoUaM0ZsyYPPcPGzZM+/fv1+eff37s2imnnKKOHTvqJafcU4DMzEwlJSUpIyNDiYmJofkhJey336QTTpDq1pU2bQr3aELn2Welm26y8x9/lLp1C+94AAAAUL4UNhtETSXryJEj+uWXX9S3b99j12JiYtS3b1/99NNPft/z008/+dwvSf379w94vyQdPnxYmZmZPo9o8dln0g03SNOn2/OyNl3Qu9nFxx+HbxwAAABAfqImZO3YsUPZ2dmqXbu2z/XatWtr69atft+zdevWoO6XpHHjxikpKenYIy0trfiDLyU//ii98IK0cKE937fPNiguK2680R4S3QUBAAAQuaImZJWWu+66SxkZGcceGzZsCPeQCs1p4d60qfTrr9KKFWEdTsjFxUnVq9s5IQsAAACRKmpaCNSqVUuxsbFKT0/3uZ6enq7U1FS/70lNTQ3qfkmKj49XfHx88QccBk7IqllT6tQprEMpMU7TC0IWAAAAIlXUVLIqVqyozp07a8aMGceu5eTkaMaMGeratavf93Tt2tXnfkmaPn16wPujnbNPVnJyWIdRYj78UHrgATsnZAEAACBSRU0lS5JuvfVWXXbZZTrxxBN18skna/z48dq/f7+uuOIKSdLw4cNVr149jRs3TpJ08803q2fPnvq///s/DRw4UO+9954WLFigV155JZw/o8Q4laykJOm556QtW6TrrpPq1w/rsEJmwQLPOSELAAAAkSqqQtawYcO0fft23X///dq6das6duyoadOmHWtusX79esXEeIpz3bp10+TJk3Xvvffq7rvvVrNmzfTJJ5+obdu24foJJcq7knXHHdLKldKAAWUnZDmbEUuELAAAAESuqApZknTjjTfqRqfFXC7fffddnmvnnXeezjvvvBIeVWRwKlnJyVK1anZeljYkdoJV27bS6NHhHQsAAAAQSNSFLAS2aJEFrbQ0qWpVu1aW9spyQtbZZ0sdO4Z1KAAAAEBAhKwypFYte0hls5LlTBeswL+1AAAAiGBR010QwSnLlazJk6Xp08M7FgAAACAQQlYZsXWrdMMN0j//ac+dkFWWKllOyFq+XPq//wvvWAAAAIBACFllxMaN0gsvSE53eme6oHcl67ffpCVLpIMHS398ofDss9KTT9o53QUBAAAQqQhZZYT3HlmSdPPN0i+/SLfc4rnniiusM9/s2aU+vJBITPS0oydkAQAAIFLRQqCM8G7fLkkNG9rD24YNdly9unTGVBKcpheELAAAAEQqKlllhPdGxP4cPSrt2mXnAbYZi3gvvuipzBGyAAAAEKmoZJURuacLLl8uffKJVLu2dPnl0rZtvvdnZHjujRaffSatW2fnhCwAAABEKipZZUTu6YJ//imNGSO9+qo937LF9/6VK0trZKHj7JMlEbIAAAAQuQhZZUTuSlbufbK2bvW9PxpDlhOshgyRHn88rEMBAAAAAmK6YBnxz39KN93kad3uHJ19snJXslasKL2xhYoTsi69VOrXL7xjAQAAAAKhklVGJCVJzZpJqan2PHclq3Nn6eGHpfbt7Xk0V7Iq8FcDAAAAiGD8cbWMyl3J6tTJHm3aSOecE52VLGdN1qefSi6XdOaZ4R0PAAAA4A8hq4wYN84C1ciRtj+WU8k6dMgqQE71p3NnaexYqV27sA21yJxK1htvSNOmEbIAAAAQmVxut9sd7kFEsszMTCUlJSkjI0OJiYnhHk5ADRtae/Off5a6dJGOHJHi4+213bttemDlylLTplKlSmEdapFt3izNmyedfbZ03HFSenq4RwQAAIDypLDZgDVZZUTuFu4VK0ozZ0rz50tVqkjDhln16tdfwzXC4qtbV2rRws5p4Q4AAIBIxXTBMiAnR8rMtHMnZElS7952dLs93QVTU6WNG6U//pCOP97WaEUTZ9ojIQsAAACRikpWGbB3rwUpybNPlrfMTFubJVnI+te/pDPOkN5+u/TGGAqPPCLdd5+dE7IAAAAQqahklQHOVMH4eN/1Vu+/b+u02ra154mJUkKCtXqXoq/D4Asv2LosiZAFAACAyEXIKgMyMuyYu4r11FPS3LnSLbfY8zp17Ni8uR2jba8s72BFyAIAAECkImSVAbmbXjicvbKcMOVsVOwdsnJypJgomTTq7JN1++22lszttv2yAAAAgEhCyCoDTj7Zpv45IcTh7JXlhCynktWggRQXZ+u0Nm60BhjRwKleXXON1KRJeMcCAAAABELIKgMqVfKss/LmhKyOHaXhw6WWLe15hQpS48bS8uUWwKItZFXg31oAAABEsCiZKIaicKYLtmwp3X23dM45ntecKYPR1PzCqdR9+630+ed5K3cAAABAJKAmUAa89Za0bJk0eLBNHXQ4lax9+/K+5/rrpfPPl3r0KJ0xFpfb7alkXXWVHXfulGrUCN+YAAAAAH8IWWXABx9In30m1a/vP2R9/bV02WVWvYqPt2sDBpT+OItryRKrXnXsaM/pMAgAAIBIxHTBMmDNGjs2bux7/eKLpRkzpMWLpfbto69luzeXS2rdWurQQYqNtWuELAAAAEQiKllRzu2W/vrLzhs18n2tSRMpLc3z3GnhLllnwZkzpfR06YorSn6coVShgpSdTcgCAABAZCJkRbnt26UDB6zS06BB3tfT0+0YFyfVrOm5fvCgNHCgnQ8bJiUklPxYi+PgQelf/7KA5eyNRcgCAABAJCJkRTlnqmDdup71Vo5Nm6QHHrDz1FTfjXuTk6UqVaT9+22vLKfbYKTat0966CE7r1bNKnGELAAAAEQi1mRFuUDrsSRp1SppwgQ7954qKFngcvbH2rCh5MYXKk6giomRKlb0vQYAAABEEipZUS7QeizJs0+WJNWpk/f1tDRp6dLoCFnOnlgVKkjjxtnz2rXDOyYAAADAH0JWlLvjDumii/y/5rRwl/JWsiRPJWv9+tCPK9ScqlWFCtLIkeEdCwAAAJAfQlaUq1BBatjQ/2velazBg/O+7nQejIZKlhOy4uLCOw4AAACgIISsMsy7ktW7d97XozFkVaggLVgg7d0rdepkDTwAAACASELjiyiWnS1dcol0773W4jy3KlU85/v25X29Vy/prbekf/6zxIYYMt5rsi65RDrtNGnRovCOCQAAAPCHSlYU27hReucd67bntDf3FuMVoXftklJSfF9v1Mh/w4xI1KyZNG+e/abLLrNrdBcEAABAJCJkRTGnfXuDBr6ByttZZ0m//SbVq1d64yoJCQnSSSfZeYX//VtLyAIAAEAkImRFMSdk5VeN+uQTm1ZYIcD/0jNnSitXWhjz1+Y9EhGyAAAAEMkIWVEsvz2yHC5X4IAlSaNHSwsXSvXrSwMHhnR4IbVunfT++7Y3ltNhkJAFAACASETIimKFqWQVJC3NQlakdxhcuVK6806pXTspKcmuEbIAAAAQieguGMVCEbKcDYkjPWR575PlVOacjoMAAABAJKGSFcXWr7dj48ZF/wxnryznsyKV9z5ZV18tnXGG1L59eMcEAAAA+EPIijIffmjholkzW5O1caNUt27RPy9aNiT23ifrwgvDOxYAAAAgP0wXjCJPPSWde6508cUWOuLibKpgfHzRPzPapgvm18QDAAAAiASErChy7rlS9erS/PnSgw+G5jO9K1k5OaH5zJLgvSZr9WrbmDg9PbxjAgAAAPwhZEWRtDTplVfs/NFH7fm77xbvM+vVk956S/r2W8ntLv4YS4p3JWvMGKlLF5s6CQAAAEQaQlaUOfdc6cor7XzjRmn27OJ9XoUK0iWXSKeeKsXGFn98JaVfP2nWLGncODYjBgAAQGQjZEWhp5/2nHfuHL5xlKbataVevaROnQhZAAAAiGy0EYhCVatK69ZJn34qXXpp8T/vt99sjVO7dlK3bsX/vJJGyAIAAEAko5IVpY4/Xho1SqpUqfif9c470rXXSh99VPzPKikLF0rPPy/NmMFmxAAAAIhshCxExYbEM2ZIN94oTZxIJQsAAACRjZCFqNiQ2Lu7ICELAAAAkYw1WVCDBnZcscKCSyRu+Ou9T9bpp0s1a1pHRAAAACDSROAfp1Ha2re30LJzp7VJ//vfwz2ivLwrWWecYQ8AAAAgEjFdEIqLk847z84nTw7vWAJxmlxEYpUNAAAA8EbIgiTpwgvt+MMPUk5OeMfij/d0wR07pCVLpE2bwjsmAAAAwB9CFiRJPXpIX38tLV0qxUTgvxXe0wVfeEFq21b65z/DOyYAAADAHyZfQZIFq379wj2KwEaMkHr3lho1kj75xK7RXRAAAACRiJCFPHJy7BFJ659atbKHJH3+uR0JWQAAAIhEETgxDOH09NNWLXrvvXCPJDD2yQIAAEAkI2TBx+7d0vr10rvvhnskvr7/Xpo4UVq8mJAFAACAyEbIgg+ny+DXX0vbtoV3LN5ef1264gpp2jRCFgAAACIbIQs+WrSQTj5Zys6W3ngj3KPx8N4ni5AFAACASBY1IWvXrl26+OKLlZiYqOTkZI0YMUL79u3L9z29evWSy+XyeVx77bWlNOLodd11dnz5ZQtbkcB7n6wOHaTbbpOGDAnrkAAAAAC/oiZkXXzxxVqyZImmT5+uzz//XN9//72uvvrqAt83cuRIbdmy5djj8ccfL4XRRrdhw6Tq1aW1a216XiTw3ierSxfp3/+WLrssvGPat8/a3r/4YnjHAQAAgMgSFSFr6dKlmjZtml577TV16dJFPXr00LPPPqv33ntPmzdvzve9CQkJSk1NPfZITEwspVFHr8qVbf2TZBv/RgLv6YKR4rnnpOnTpeuvD/dIAAAAEEmiImT99NNPSk5O1oknnnjsWt++fRUTE6O5c+fm+9533nlHtWrVUtu2bXXXXXfpwIED+d5/+PBhZWZm+jzKo2uvla66Snr44XCPxHhXsg4csCrbpk1hHZLK6b8aAAAAKEBUhKytW7fquOOO87lWoUIF1ahRQ1u3bg34vosuukhvv/22Zs2apbvuuktvvfWWLrnkkny/a9y4cUpKSjr2SEtLC8lviDbNmkmvviqdcEK4R2K812RNm2Z7eQ0bFt4xnX66HevVC+84AAAAEFnCGrLGjBmTpzFF7seyZcuK/PlXX321+vfvr3bt2uniiy/Wm2++qY8//lirV68O+J677rpLGRkZxx4bNmwo8vcjdO67T3r/fal798jpLhgXZ8eKFcM7DgAAAESWsK5wGT16tC6//PJ872ncuLFSU1O1LdemTUePHtWuXbuUmppa6O/r0qWLJGnVqlVq0qSJ33vi4+MVHx9f6M8s6xYulJ59Vho4UDrnnPCN49RTPedLltgx3CHLCXuR0oERAAAAkSGsISslJUUpKSkF3te1a1ft2bNHv/zyizp37ixJmjlzpnJyco4Fp8JYuHChJKlOnTpFGm959MEHtl/W3r3hDVneIqWS9euvdly/PrzjAAAAQGSJijVZrVq10oABAzRy5EjNmzdPP/74o2688UZdcMEFqlu3riRp06ZNatmypebNmydJWr16tR5++GH98ssvWrt2raZOnarhw4fr1FNPVfv27cP5c6LK4MF2/Oor6fDh8I1j2jQLfOnpnml64Q5ZTqPK7t3DOw4AAABElqgIWZJ1CWzZsqX69OmjM844Qz169NArr7xy7PWsrCwtX778WPfAihUr6ttvv1W/fv3UsmVLjR49WkOHDtVnn30Wrp8QlU48UapTx/aEmjUrfOO4807p/POlP/6InEqW221HZpcCAADAWwTtOpS/GjVqaPLkyQFfb9iwodzOn3olpaWlafbs2aUxtDItJkY680zplVekqVOlAQPCMw7vfbIiJWQ5a7FiY8M7DgAAAESWqKlkIXycKYNTp3qqN6XNe5+sOnWk666TCujGX+Kc3QOmTw/vOAAAABBZoqaShfA57TSpShXb/PeXX2wKYWnz3ierYUPphRdKfwy57dsX7hEAAAAgElHJQoEqVbJpgo0bS9u3h2cM3pWsSOFyhXsEAAAAiEQR9EdWRLKJE62aFa5g4b0mKztb2rVLysmRatcOz3gkQhYAAAD8o5KFQqlaNbyhwnu64F9/SccdJ7VoEb7xSNKVV3rOc3LCNw4AAABEFipZCEpWlu1VVb9+6X7vc89JBw5IdetKu3fbtXB3F6xSxXOenW2dGAEAAABCFgrtq6+kCy+U2rSRfvyxdL972DDP+d69dgx3yPJeH5ad7dkkGQAAAOUbf/eOQuvY0QLOnDnS6tXhG4cTbpx1WuHivTlzuAMfAAAAIgchC4VWp47Ut6+dv/NO6X73Z59ZJe3wYU/IyskJ71qoZcvsOHiw79RBAAAAlG+ELATF2QD47bdLb2Nit1s66yzpjDOkzMy80/TCxQl4NWrQaRAAAAAehCwE5eyzpYQEaeVKad680vlO7yBVoYJvyArnND1nXLGx4RsDAAAAIg8hC0GpWtWClmTVrNLgvfaqQgWpYkVp+HBroR7OCpITsl57zdPxEAAAACBkIWiXXmrH994rnUqS93fExUnx8dKkSdLrr0uVKpX89wfivR7M6XgIAAAAELIQtD59pIcekr7/3nfqXknxDlml8X2F5T2NMZxrwwAAABBZIuiPrIgWFSpI991Xet/nPV3QWf904ICFr6pVw7cJsHewooU7AAAAHFSyEPGcABMb61mDVaOGlJQkbdoUvnHdcYfnnJAFAAAAB5UsFNlrr1mHwfvvl+rXL7nvSUyUXnzRdw1UhQq2Z1Y4w01yspSSIm3fznRBAAAAeBCyUGQvvCD99pvtX1WSIatqVenaa32vOWuzwl1BipRxAAAAIHIwXRBF1rGjHRcuLP3vjoRw8/HH0pYt4R8HAAAAIguVLBRZhw52LOmQtW+fNHeubYLctatdi4SQNWOGHUeMkNq3D984AAAAEFkIWSiy0qpkrV4t9e0r1akjbd5s1yIhZDnrsNLSbINkAAAAQGK6IIrBqWStWyft3l1y3+MEKe89siIpZDlt5QEAAACJkIViSE6WGja080WLSu57/IWsgQOlYcNsDOHihKz77pNWrAjfOAAAABBZCFkoFmfK4MqVJfcdzmbE3iHr+eel996TmjUrue8tiHdL+XXrwjcOAAAARBbWZKFYnnlGmjjRNgYuKU4lKy6u5L6jKLz3xmKfLAAAADgIWSiWtLSS/w5/0wXdbqskuVxSTJjqsd7BihbuAAAAcDBdEBHP33TBk0+259OmhWdMkvTvf3sqeFSyAAAA4CBkodjuv1/q3VtavLhkPr9FC+mJJ6Sbb/Zcczr6hbOCVLeuZ38sKlkAAABwMF0Qxfb999Ls2dIvv0ht24b+8xs3lkaP9r0WCS3cpcgIewAAAIgsVLJQbKW1KbE3pwlGOMPNO+9I331n50wXBAAAgINKForNCVm//14yn799u7R6tVSjhtS8uV2LhErWe+/Z8c47pTPPDN84AAAAEFmoZKHYvCtZbnfoP//LL6WuXaWbbvJci4SQ5VSvWraUqlUL3zgAAAAQWQhZKLbWrW363u7d0oYNof98f/tkRVLIctZlAQAAABIhCyFQsaLUrJmd//ln6D/f3z5ZJ50kDRok1a8f+u8rrJwcO953n/Tzz+EbBwAAACILa7IQEq1aSTt2SBkZof9sf/tk3X9/6L8nWE4la906acEC6ZRTwjseAAAARAZCFkLinXek+PiS+Wx/laxI4N1RkBbuAAAAcDBdECFRUgFL8r8mKxJ4hyxauAMAAMBByELE81fJuuYaqVIl6YknwjMmSXr9dalNGzunkgUAAAAHIQshkZNjjSgaNpTS00P72T16SGPHSoMHe65lZ0uHD0tHjoT2u4LRooVnHRaVLAAAADgibJULolVMjLR0qTWBWLpUql07dJ/do4c9vDlTB8NdQYqEVvIAAACILFSyEDKtWtmxJNq45+aEG6fzYDi88Yb08st2TiULAAAADkIWQsYJWUuXhvZzN2+W/vjDdxpiJFSQnnrKjv/+t3TddeEbBwAAACILIQsh07q1HUMdsp54Qmrf3hNqpMgIWc5mxJ07S6mp4RsHAAAAIgshCyFTUtMF/XUXjISQ5UwRjOG/IgAAAHjhj4cIGSdkbdkiZWSE7nP97ZPVtKnUu7fUpEnovidYTsh67DHp66/DNw4AAABEFroLImSSkmzKYFKStHOnHUPBXyVrxAh7hJMzXfCrryzs9e8f3vEAAAAgMhCyEFJLloT+M50OghUi7N9W746CtHAHAACAg+mCiHj+pgtGAu+QRQt3AAAAOAhZKBGhDB3+pgu++KJUs6Z0zTWh+55gTZkiDRhg51SyAAAA4CBkIaQWL5aaN/c0wQiFs86S7rjDWqU7jhyRdu2SMjND9z3B6tJF6tPHzqlkAQAAwBFhq1wQ7Y47Tlq5UnK5pAMHpISE4n/mhRfaw1sktHCXpNjYyBgHAAAAIgeVLIRUSopUo4bkdkvLl5fc90RCyHr5Zemll+ycShYAAAAchCyElMvlmSq4bFloPnPTJmnNGmn/fs+1SAhZt98urVghTZwoPfRQ+MYBAACAyELIQsjVr2/H9PTQfN5ll0mNG0tTp3quRULIcvbJ+tvfbB0aAAAAIBGyUAJq1bLjzp2Ff88//2lNJLyDlMPfPlmRELKcKYLOuiwAAABAImShBNSsacdgQtaSJdLMmTYtMDd/+2SlpEgnnyy1aFH0cRaXE7Kee0766KPwjQMAAACRhe6CCLlmzaSuXaWGDQv/nh9/tOOWLXlf87dPVr9+9ggnJ2Q98YT0979L55wT3vEAAAAgMhCyEHKXXGKPYGzYYMeFC/O+5m+6YLi53Z41WRIt3AEAAODBdEFElBg//0b6q2SVtD/+kObPD/y6d8CSaOEOAAAAD0IWIorLlfeavzVZP/wgHX+8TdMLtZwcqX17W/O1a1fgcU6bJl11le8YAQAAgAiagIWyYvNmqUsX6cCBwjW/KCigXHyxfWa9ep5rWVk2xTApqXhj9ceZnihJ27bZ5sq5xcRI/ftLhw9Lr71GyAIAAIAHIQshV62atHGjnR84ICUk5H+/9ybDVarkff2ee/JeK8kW7t4hq6D27M44mC4IAAAAByELIVe1qk3ty8qySlZhQ1ZMjPT++4X7jpIMWd6Byd/0RUk6ckR66y3p229LbhwAAACIToQshJzLZXtlbd1qISstLf/7nZBVpYr/ULNliwWwmjU94aokQ1ZSko1l//7AIevAAc96rM8/9+wNBgAAABCyUCK8Q1ZBatWSXn7Z2qL7066dfc6SJVLr1natJEOWZJsix8YGXvPlXe0aMKDgaYUAAAAoP6Kmu+Ajjzyibt26KSEhQcnJyYV6j9vt1v333686deqocuXK6tu3r1auXFmyA4UkT2Vnx46C761eXerRQ/rqK091yJu/fbJKOmSlpFjDi0DhyTtk+Ws7DwAAgPIrav54eOTIEZ133nm67rrrCv2exx9/XM8884xeeuklzZ07V1WqVFH//v116NChEhwpJE/IKkwlS5L27ZM+/dSzxsmbv32yEhKkNm2kli2LN05/1q6VunaVBg0KfI93yHrtNemdd0I/DgAAAESnqJkuOHbsWEnSxIkTC3W/2+3W+PHjde+992rw4MGSpDfffFO1a9fWJ598ogsuuKCkhgrZFL/0dP/tz3PbvFmaM8fOvTsNOvztk9W0qbR4cfHH6U9mpvTzz3a+bp3UoEHee7xD1tVX27qziy8umfEAAAAgukRNJStYa9as0datW9W3b99j15KSktSlSxf99NNPAd93+PBhZWZm+jwQvLFjpR9/lAqTZWfMkG65xc4PHMj7ur9KVknKvU+WP7lbttPCHQAAAI4yG7K2bt0qSapdu7bP9dq1ax97zZ9x48YpKSnp2COtoNZ4KDbv6tWBA74NMHJy7CGVXsg6csRzHig85b5OC3cAAAA4whqyxowZI5fLle9j2bJlpTqmu+66SxkZGcceGzZsKNXvL49yTxH0XjLnHV68pwtu3y61alUya7K8Q1ag8HTccdKUKdI//2nPqWQBAADAEdY1WaNHj9bll1+e7z2NGzcu0menpqZKktLT01WnTp1j19PT09WxY8eA74uPj1d8fHyRvhMe331na5SaNJG+/z7/e3OHrP37pcqVPc+vusrCTu7/WZz87XYH3s+qKLynCwYKWVWrSkOHSitWSPfeSyULAAAAHmENWSkpKUpJSSmRz27UqJFSU1M1Y8aMY6EqMzNTc+fODapDIYqmYkVraFGpUsH37tvnOY+JkQ4e9P2cV1/N+x7vqYPZ2aGdSliY6YK5x0ElCwAAAI6oWZO1fv16LVy4UOvXr1d2drYWLlyohQsXap/Xn9Bbtmypjz/+WJLkcrn0j3/8Q//85z81depU/fHHHxo+fLjq1q2rIUOGhOlXlB/B7JPlVLLuvNMqQoVZBucdqkJdRfLe9yrQZ+/ZI737rvTFFyUzBgAAAESvqGnhfv/992vSpEnHnnfq1EmSNGvWLPXq1UuStHz5cmVkZBy754477tD+/ft19dVXa8+ePerRo4emTZumSoUpr6BYnJCVmWnT77zXU+XmhKzq1fNO+8vJsc+oUMGm6DlKMmQNGCB17iz98kvgCtW6ddJFF0lJSdJHH+X/+wAAAFC+uNxu715uyC0zM1NJSUnKyMhQYmJiuIcTNbKzLXi43dLWrVKuJo8+pk+XFi2S/vY36eSTfV/btEmqX98+y3saX1aWTSWUpN27peTk0I5/82YLbykpvuvDHL/+akGsXj1p48bQfjcAAAAiU2GzQdRMF0R0iY21ypQk7dyZ/71//7s0erQ0dap0zjlWQXIE2iMrNjbvPaFUt650/PH+A5bkqXB5jwMAAACQCFkoQcGsy5KkWbOkjz+W1q/3XHM6/eUOWTExUuPGUtOmvvtqhcLnn0t9+0oPPRT4Hidk5eRIkydLb75J8wsAAACYqFmThehz4om2n5QzrS+Q+fMtoDgh5cABz2uBKlmStHp1aMaZ27p10owZ9hg40KYF5uaM9ehRa1UvSeedF7jyBQAAgPKDkIUSM3ly4e679FJp+XLP9ELvfbOckFWajSW898n688/8Q5Z3gKSSBQAAAInpgogATqhytkwrbCWrpBRmn6ycHDt6hyzauAMAAEAiZCEC5BeyAq3JkqQ+faSOHUM/bdA7ZAUKTi1b2jqsxx/3XKOSBQAAAImQhRL06qvW4vy66/K/L7+QVb26dOGF0lln5X3f4sXS77/73h8KhalkpabaNMezz/Zco5IFAAAAiTVZKEE5Obbf1ObNge/JyvKEmuOOs6P3mqymTQOv7XKqW6EON95rsgrz2RUq2H1UsgAAACARslCCatWyY377ZHkHqscek8aPlypVKtznl1TI8hbos7dulebNk2rUsL2yjh6lkgUAAABDyEKJKcw+WU7IqlBBSkqSXC7f1w8dsmvx8XnfW1Iha9w4acMG6Z13Alen5s6VhgyRunSRJkywMTq/FwAAAOUbIQslxgkd+VWyqlSx5hFZWXkDliQ9/bQ0Zow0YoT02mu+r5VkJetf/5LuvdczhTE3J3zFxtqaMQAAAMBByEKJcULWrl22PivGT5uV5GTp9tvtfO5c6YUXpGbNLOBI0p49dqxWLe97nb2zSiJk1a+f/+veIQsAAADwRndBlBgnZOXkSBkZBd+/caO1Rf/6a881J2QlJ+e9/7jjpDp1Qh90nnhCGjxY+uyzwPc4+2TFxkrTpkkffli43wgAAICyj0oWSkx8vNS5szWyOHTI/z27dtk+VzVrSgkJds27JXt+IWvmzFCO1mP+fGnqVGn2bGnKFKlv37z3eFeyrrxS2rJF+u0327cLAAAA5RuVLJSoBQuk//7XKk7+zJolnXyyNHx48CGrpDgt3DMypO++83+Pd8hy1obRwh0AAAASIQth5nQXrFIlckKW92bEgdZ7OdMFY2I80xVp4Q4AAACJkIUw27fPjlWrWtCSfPfOyi9k3Xyz1L27NGNG3tc+/1xatapoYypMyDrlFOnFF6Ubbiid/boAAAAQPQhZKFFjxkj16knPPuv/9YIqWf36SYMGSXXr5n3v4sXSnDlSerrv9blzpTPPtC6FReFMF5QCTwFs0UK69lobm1PJYrogAAAAJBpfoITt3y9t3ixt3Rr4dck3ZB086Gn5/vTTgT+7alU7OtUwh9Mq/vjjizbmwlSyvFHJAgAAgDdCFkpUrVp23LHD/+veIatWLatKJST435g4t6QkO+ZunV65sh0PHgx+vFLhQtaGDdKKFVJqKpUsAAAA+GK6IEqUU00KtD7KO2TFxNjeV1WrWsjKyZEOHw782c46LWfdlqO4IWvePOn+++08UHD6+GNr7f7QQ3bva69JrVoV7fsAAABQtlDJQolq186OixZJbnfeCtXAgbZHVs+eed+7cqXUsqVUu7b/6YaBKllvv23Hffv8f2dBXC7pmmuks86SUlL83+Pdwn3o0OA+HwAAAGUbIQslqnVrq1Dt2GFTAVNTfV8fONAejjFjpG3brELkVKgqVfL/2U7Iyl3J2rLFc56VJVWsGPy469b132zD4R2yAAAAAG9MF0SJSkjwdPlbtKjg+995R5owwQJZQXtkVa8uVavmaTzh8J5iWJQpg9dfL110kbRmTeB7vEPWL79IX3/tG+4AAABQflHJQonr3VtKS5Pi4vK+tny5Tek7/ngLZE6Hwf37Cw5ZI0bYI7dDhzznBw96Kl6F9cknFpjcbun886Wzz857j3fIuu026bvvpPfek4YNC+67AAAAUPYQslDiXnwx8GsXXij99pv01VfSgAGeDYkPHCg4ZAXirNF6/fW80xMLw+ku+N57Nt3QX8jKybFjTIynkkZ3QQAAAEhMF0SYeXcXlHw3JC5uyAr2fQ7vzYgDtXD3rmQ567LYJwsAAAASIQulaPfuvNWe4oSsLVus+vX3v/teL27IKsw+Wf36SU88YZ0FqWQBAADAGyELpaJdO6lGDWnpUt/r+/bZ0QlZznH/fqlFC2nQIKl9e/+f6XJZw4kZMzzT9yRrhiFJV18t/fln8GP1DlmBglPXrtLo0RbwnJBFJQsAAAASIQulxGk+kbvDoFPJqlrVjt6VrMsvlz77TLryyvw/0+32hDVJ+uknC3WrV0ubNgU3zuxs38BWmODEdEEAAAB4I2ShVDjVKO+QdeSIJ5g4Fazx46XNm6Xrriv4MytV8nQszL0hceXKdgy2hbv3eiwpcCVr7VoLc+vXM10QAAAAvghZKBVOyPrjD8817+qTE7JSUqQ6dSxAFVQZcrk8665yb0hc1JAVH2/jevVVex5oDM8+K3XrJj3/vHTZZdLTT0t/+1tw3wUAAICyiRbuKBXt2tnRu5IVFyfdfbcFIX97aLVrZxWjGTMs0PiTlCRt3+6pZG3cKJ17rjR3rj0PNmS5XBb4Bg+WmjcP3DzDu7vgGWcE9x0AAAAo2whZKBVt29px40Zp1y5rglGtmvTII773zZplmwF37mzVqUOHPFUuf5x1WU7I2rHDE7Ck4EOWIyXFHoF4hywAAADAG9MFUSqSkqSGDe3ce8pgbgsXSs88Y10DC7NPVvXqFtYOH7bnuddmBRuyduywhhs33JD/fU7IiomxBhs//CCtWxfcdwEAAKBsopKFUnPBBRaCatSw5/v2WZOLpCSpdm275nQX3LXLqlhS/iHrm29sip+juCFrzx5p0iQ7b9nSQtwll+S9z+lAGBsr/fvf0ssvS2PHSvffH9z3AQAAoOwhZKHUjBvn+/yHH2w90wknSL/8YteckLV5sx1dLs++V/54ByzJU/3q1k2aNs3zeYXlvUfWTTdJbdr4D1ne0wXZJwsAAADeCFkIm9wbEXufOyErKcmm5BWWU8mqVy//cBZI7hbugYKT93RBZ10WLdwBAAAgsSYLpezQIenHH20NlbMRsXfIcipPO3bYMb+pgpI0ZYo0YID0+OP23AlZTkOMYHlXsqTAwenss2164N/+RiULAAAAvqhkoVS1aGEb+P73v/mHLEkaNEiqVSv/z9u40ZpkVK/uuZaYaNMPr7xSOvlk6dprCz++wlayzjzTHpI0daodqWQBAABAopKFUta5sx0LCln160uffSZNmJD/5zkVK2ct1r33WjXriivsvbNmBTe+3JWswlSnqGQBAADAGyELpap7dzv++KP/kNW2rbR8ue9eV/lxphPm7ipYubIdDxwIbnyFnS64dq1trLxzpydkUckCAACAxHRBlLIePew4Z47UrJmdV63qeb1SJal5c0+L9ILk3ozY4YSsYFu49+olpafbXl59+wauTt12m/Thh9Lzz9t9lSt7qnQAAAAo3whZKFWdOlmQ2rlTSkmRRo3yBC9v99wjPf20hZmHHgr8eblD1lVXSRs2eAJPsCGrYkXpuONsLdeXX9pY/fFu4X7qqfYAAAAAJEIWSlnFihZgvv/emlqMGeP7+tGj0oMPSv/6lz132qMHknu64H//a9MNO3Wy58GGLEe1atLppwd+3TtkAQAAAN5Yk4VS570uK7eYGOmRRzzPC2rh7lSyYmIs+DhhKzXVjsGGrJ9/lm68UXr55fzvc6YzxsZK27dLv/4q/fVXcN8FAACAsolKFkrdOedINWtKbdpIW7dKNWpYhUuysFS5siccFRSyata06pdTUSpuyPrzT1tn1auXFBcnud3SiBF57/PejPidd6RbbpEuusjOAQAAUL4RslDqTjzRHj16WDXrww8teDkSEgofslwuT8DKyvK8r1cvadMm3323CsPZJ+vAAQtXsbH5h6zYWM/308IdAAAAEiELYeSvhbtkwWjnTjsvKGR58+4wWKuWp7V6MJwW7k53wuxsq2a5XL73eYcsWrgDAADAGyELYbF1q7RwoZ17t3CXfENXYULWbbdJS5ZIV17p+byiBCzJE7K8K2A5OXkbXFx4oVXjWrf27OlFJQsAAAASIQthMn2659xfJctRq1bBn/Xf/1rQ6d7dugImJ9u0wTvvtOOLLxY+dDnTBZ1KluS75stx1VWe819+sSOVLAAAAEiELISJ02FQ8jS9cDgha8oUqV69gj/LqXYdf7yUmWmVp8OHpWeftetPPmnhqzByTxeUCg5PrMkCAACAN0IWwqJRI+mEE6QtW+zc2xtvWGBJSyvcZ+XekDgmxncT4YMHCx+ynEqWdzXNX3jasMECWZ06rMkCAACAL0IWwsLlkubNs6DiXTWSpKZN8zaayI8Tsvbs8f38SpWkQ4eCa+M+erR0xRX23ldftWv+QtY550gLFkiffy61bSvdc4+NGwAAACBkIWxiY/MGLMnWV512mtSunaepRH6ckPXqq7Y+64wzpJtvts8ONmQlJ9vD7ZY++MDGmHvNmOTbXbBDB3sAAAAAEiELEej99y0YzZtXuPudkLVhgz2c6YeVK0u7dwe/IbFklbBzzw38ek6OHXM3xAAAAABiwj0AILf33gvu/txt3p3Q5VTJDhwo/Gf95z/WlfC77/K/z6lkxcTYfl/Ll0tr1hT+ewAAAFB2EbIQcZwOf4V19dXWsOKKK+x57pAVTCXryy+lxx+3KtqUKdI770h79+a9z3u64OzZUsuW0nnnBTduAAAAlE1MF0TE6dJF+uor/2uh/HFawDvdBZ3K1hdf2LS/444r/Hc73QUrVrTQtm+ftHJl3u6E3iHL6S5IC3cAAABIVLIQgV5/XRo1qvBrshxOyHIqWccfb23g4+ML/xlOFS0uLv/W7N4hy1mXRQt3AAAASFSyEIHq1JGeeabw92/aJN12mzRjhj13QlZReFey8qtQDR8ubdtmY12/PvB9AAAAKH8IWYh6WVm+zTKc6YLvvGN7WZ19tnTqqYX7LO9KllOh8hee7r/fc75pU+D7AAAAUP4QshD1vCtXBw9aQJJsTda779q0wWBDlnclq6BpgIW9DwAAAOUDa7IQ9RITPed793oqUEXpLuhMFyyokrV1qz2OHqXxBQAAAHxRyULUi4217n9790p79kgpKXa9KCHrzTelzExrmJFfeGrXTtqxQ/rjDyk1VfrHP6QaNYrzKwAAAFBWRE0l65FHHlG3bt2UkJCg5Ny7zwZw+eWXy+Vy+TwGDBhQsgNFWDhBaOBAye2286KErAYNLEAlJ0tPPCG9/bbUrFne+3Jy7BgbK9WvLz31lHTffUUePgAAAMqQqKlkHTlyROedd566du2q119/vdDvGzBggCZMmHDseXww/bwRNZyQtXKl7Y0lSQkJdgwmZHk7++zArznrr2Ki5q8pAAAAUFqiJmSNHTtWkjRx4sSg3hcfH6/U1NQSGBEiXVEqWc88Y1MOr7jCpgwG4r1P1tGjtj7L7c7/PQAAACgfyvzfw3/33Xc67rjj1KJFC1133XXauXNnvvcfPnxYmZmZPg9Evv/8x47t2nmuFSVkPf209MAD1pb9hx+kTz6xAJWb93TBdessXLVuXaShAwAAoIwp0yFrwIABevPNNzVjxgw99thjmj17tk4//XRl59Nre9y4cUpKSjr2SKM0ERWc6YLe7dwvvlj6809p/PjCf473Plm33mpTBhcsyHufdyWL7oIAAADwFtaQNWbMmDyNKXI/li1bVuTPv+CCC3TWWWepXbt2GjJkiD7//HPNnz9f3333XcD33HXXXcrIyDj22LBhQ5G/H6UnI8OO3j1RatWSWrWSatcu/OcUdp8sfyGLfbIAAAAghXlN1ujRo3X55Zfne0/jxo1D9n2NGzdWrVq1tGrVKvXp08fvPfHx8TTHiELOUr3PPy/e5xR2n6wrr7R7q1SRDh0KfB8AAADKn7CGrJSUFKU4mxqVgo0bN2rnzp2qU6dOqX0nSscll0j//a90552ea6tXS5MmSTVrSjffXLjP8VfJ8heeXn7Zc75jhx3dblurRcdBAACA8i1q/ji4fv16LVy4UOvXr1d2drYWLlyohQsXat++fcfuadmypT7++GNJ0r59+3T77bfr559/1tq1azVjxgwNHjxYTZs2Vf/+/cP1M1BCrrlGWrtWGjfOc23dOunhh6VXXin85ziVrIKmC3qr4PVXFUwZBAAAQNS0cL///vs1adKkY887deokSZo1a5Z69eolSVq+fLky/rc4JzY2VosWLdKkSZO0Z88e1a1bV/369dPDDz/MdMAyqkED3+fBdhd0u30bXwSaLuh22xqwmBipWjXPfc69cXHBjx0AAABlR9SErIkTJxa4R5bb7T52XrlyZX399dclPCpEsqK0cF+wwKpZNWoErmQdPChVr27ne/dK8fHSyJEWtpgqCAAAgKgJWUCwgg1ZLpfUubPn+Q03SIMHS926+d7n7JElWaiqWDG4KYkAAAAo2whZKLOKUsnydsYZ/q97V7a8pwoCAAAAEiELZZgTso4csWBUUCDav1969lnPRsQul//7/IWsPXtsPVb16gQvAACA8o4VJCiznJAlefayys+ePdJdd0ljxljAWrJEmj7duhZ68xeyatWSUlKkrVuLO2oAAABEuyKFrIceekgHDhzIc/3gwYN66KGHij0oIBQSEqR586Q//pAqVSr4fu/OgpL0r39J/fpJU6b43ucdspxqV2HbvQMAAKDsK1LIGjt2rM/+VI4DBw5o7NixxR4UEAoxMdJJJ0lt2xZuCp/3HllS4ODkPPf+zPw2LgYAAED5UqQ1WW63Wy4/C1Z+//131ahRo9iDAsLBqWQ5ISvQPlmVKkkXXOC7Zsu5l0oWAAAAggpZ1atXl8vlksvlUvPmzX2CVnZ2tvbt26drr7025IMEiurFF6Vt22wfq7p187+3sJWsmjWld9/1vUYlCwAAAI6gQtb48ePldrt15ZVXauzYsUpKSjr2WsWKFdWwYUN17do15IMEiuqJJ6S//rK1VQWFrNxrsoIJTlSyAAAA4AgqZF122WWSpEaNGql79+6qUIEO8IhsweyVVdjpgm63XYuNtXVfEpUsAAAAeBSp8UW1atW0dOnSY88//fRTDRkyRHfffbeOOH9SBSJAMCGrfXtp9mxp4kR7Hmi64PLlFsRq1fJcO/dcafhwKTm5uCMGAABAtCtSyLrmmmu0YsUKSdJff/2lYcOGKSEhQR988IHuuOOOkA4QKI5gQlZSknTqqZIz4/Wss6Qnn5QGDfK9z193wWeekSZNkho2LPaQAQAAEOWKFLJWrFihjh07SpI++OAD9ezZU5MnT9bEiRP14YcfhnJ8QLE4IcvPtm4F6tlTuuUW6W9/873uL2QBAAAAjiK3cM/JyZEkffvttxr0v7/qT0tL044dO0I3OqCYgqlkrVwpTZsmHX+8NHhw4Pv8haysLHvExxO+AAAAyrsiVbJOPPFE/fOf/9Rbb72l2bNna+DAgZKkNWvWqHbt2iEdIFAc+YWsn3+W2rSxYCVJCxZIN90kPf20Pd+0SfrpJ2nVKt/3+QtZnTpJVarYmi4AAACUb0UKWePHj9evv/6qG2+8Uffcc4+aNm0qSZoyZYq6desW0gECxXH//dKcOdKFF+Z9beBA6c8/pdNPt+e5uwtOnCh16yY99pjv+/yFrEBNMgAAAFD+FGm6YPv27fXHH3/kuf7vf/9bscyVQgRp1Srwa06YcgTajDh3W3Z/IStQu3cAAACUP8Xa6OqXX3451sq9devWOuGEE0IyKKA0vPiidPbZUpcu9ryw+2RVr26dB1NTPdeoZAEAAMBRpJC1bds2DRs2TLNnz1by/zYG2rNnj3r37q333ntPKSkpoRwjUGTz5kn//a+tverf3/c1519Tp1eLU8mKi7NjoODUqpX06ae+16hkAQAAwFGkNVmjRo3Svn37tGTJEu3atUu7du3S4sWLlZmZqZtuuinUYwSK7NtvpdGjpf/8J+9rzmbC27fbsbCVLH+oZAEAAMBRpErWtGnT9O2336qV14KX1q1b6/nnn1e/fv1CNjiguAJ1F5wzR+rd284zMy1gFXZNlj9UsgAAAOAoUsjKyclRnDOnyktcXNyx/bOASBAoZK1aZcGqdWtp4UKbInjBBdaKvW5duydQdeqbb6wzYefO1gZekk49VapRQ6pXr8R+CgAAAKJEkULWaaedpptvvlnvvvuu6v7vT6SbNm3SLbfcoj59+oR0gEBxJCTYMXfI+usvO3br5lmD1bixPRwnnig9/LDUvLnve48e9TwcY8eGdtwAAACIXkUKWc8995zOOussNWzYUGlpaZKkDRs2qG3btnr77bdDOkCgOAJVslavtmOTJoHf26mTPXLz18IdAAAAcBQpZKWlpenXX3/Vt99+q2XLlkmSWrVqpb59+4Z0cEBxBQpZTiXrq6+kxYulq6+26YHLl1uw6tgx8GfmF7LcbsnlKvawAQAAEMWC6i44c+ZMtW7dWpmZmXK5XPr73/+uUaNGadSoUTrppJPUpk0b/fDDDyU1ViBoBVWy1q2T3nnHgtbbb0tXXil98om9lpEh/f67tGKF73v9hazzz7dw9dJLIf8JAAAAiDJBhazx48dr5MiRSkxMzPNaUlKSrrnmGj355JMhGxxQXJ06WaOKCRM81/bvl9LT7dzZiHj79rzdBb/91ipaI0b4fmZ+lSxauAMAACCokPX7779rwIABAV/v16+ffvnll2IPCgiVGjWkv//dmlg4MjKsfXu7dlKzZnZtxw7PPllOI4xAbdmdBpreISuYdu8AAAAo24IKWenp6X5btzsqVKig7c7OrkCEqltXmjlTWrTId0Pi3JsRB2rhftxxUp8+vk0xnMBFJQsAAABBNb6oV6+eFi9erKZNm/p9fdGiRapTp05IBgaEwv79tubqyBHpxhvzvp6SYscdO6SkJDt3/h4hUHXqtNPs4Y1KFgAAABxBVbLOOOMM3XfffTp06FCe1w4ePKgHHnhAgwYNCtnggOLav1+65hpp1CjPND/v/bKdStaOHXnXZAWaLuhPMPcCAACgbAuqknXvvffqo48+UvPmzXXjjTeqRYsWkqRly5bp+eefV3Z2tu65554SGShQFE53QUk6dMg2Jz7rLOm336QXX5Tq1bPXtm+XUlPtvKDpgv4Ecy8AAADKtqBCVu3atTVnzhxdd911uuuuu+R2uyVJLpdL/fv31/PPP6/atWuXyECBovAOWfv2WchatUravFmqWtWaX2zZItWsKc2bZ50ETzrJ7g80BXDCBOnWW6Uzz5TefNOutW0rDRggNW5c8r8JAAAAkS3ozYgbNGigL7/8Urt379aqVavkdrvVrFkzVa9evSTGBxRLhQoWfP76S3rrLemWW6Q1a+y1xo2tauVUsLp3931vWpo0Zoxn3Zbj4EFpzx6biui48Ub/a74AAABQ/gQdshzVq1fXSc5f+QMR7J57rEI1bpx0+unWBKNCBal+/fzf17ChvSe3/PbJAgAAAIocsoBoMXy49Nhj0ooVnmpTw4ae6YAPPSQtXy517mzBq2dPKb9Zr/72yQIAAAAcQXUXBKJRhQrSww9L8fEWtCTftVOffipNniyNHi0NGyYtWWLXjxyx9VurVvl+nr9K1kMP2Rqv228vud8BAACA6EDIQrlw7rnS6tXS5Zfbc++QlXvNlbNP1sqVUrNmUteuvq/7C1lHj9oarYMHQzpsAAAARCFCFsqFmBhr156WJp16qtSpk+c1Z68sR0H7ZDnTBWO8/utx7qWFOwAAAFiThXLlmmvs4S1QyAq091XdutIpp0hNm3quBWr3DgAAgPKHkIVyL3fIcqYLBgpOl15qD29UsgAAAOBguiDKvdxrsgqaLugPlSwAAAA4CFko9wqqZBWmOhXMvQAAACjbCFko9wYMkLZuld56S5owwVPZcipZOTmS2+25f9w4a6Lx4IOea/XrS3/7m9SiRakNGwAAABGKNVko96pUsccll+S9PmqUhS23W3K57PqePdLmzVJmpufec8+1BwAAAEDIAgKoUkV65pm81/3tkwUAAAA4mC6Ics/tlm64QUpIsCmDBa2rCjZkzZplmx9Pm1a8cQIAACA6ELJQ7rlc0osvSgcPSsOHe9Zfud3Sli3Sxo2eDYglz7l3yPrgA6l2bWnYsLyf/8470po10j33lNxvAAAAQOQgZAGSkpI85957XtWtK6WlSbt3e153KlkxXv/1HDkibdsm7dqV97NPPNGO9euHdswAAACITIQsQL4hy2lw4V2p8t7/yt90wfxauNeubcdt24o/TgAAAEQ+QhYg35DlcLl8q1qOunWldu2k1FTPtUAbF7vd0m+/2fmWLaEbLwAAACIX3QUBSYmJ/q/HxlrA8g5P991nD2+BKlm7dkkPP2znGzeGZqwAAACIbFSyAPmvZEn5TwP0FqiStXat5zw7W9q/3/f1W26Rbryx0MMEAABAFCBkASo4ZOUOT4Huyx3G1q3zfe69LmvXLmn8eOn555lKCAAAUJYQsgBJY8fatL433vC97q9CdeutUvPm0qRJnmvJydIJJ0gtW/q+37uS9Z//SDVrep57B64dO4ozegAAAEQS1mQBkpo2le69N+/14cNt/yzvStfmzdLKlVJGhuda167SL7/kfb9TybrzTum883xfa9lSatVKWrpUSk+3ZhoAAACIfoQsIB/jx+e95q+FeyBOJatBA/+v16njCVkAAAAoG5guCATJ32bEgTiVrCNHpA8/zFvtcvbQImQBAACUHYQsIB/79km7d0tZWZ5rOTl29K5kLVwoNW4s9ejh+/5775X++U/bK+vcc33Xcf3739K779o5IQsAAKDsIGQB+ejYUapRQ5o3z3PN33TBo0elNWuk9et933/uudI990idOtlz7zA1e7Ydx42zBwAAAMoGQhaQD3+t2f1NF3QCV6D9tPxNC3Q2J+7QoXBTDwEAABAdaHwB5MPfPll16khNmvh2HPR335o10rJlUosWnpDl3bZ90yY71qsX+nEDAAAgfPj7cyAf/vbJev11adUq6ZxzPNf8haypU6UzzpDuuEM67ji75lSyDh/27I31r39JI0eWzPgBAABQ+ghZQD78TRf0x990QaezYMOGnkrWrl3WRGPzZs99774rTZjgaagBAACA6EbIAvLhr5Llj79KlhOyGjSw5hnOZ23f7pkqWL++HbOzLYA57r5buvpq6fffizd+AAAAlL6oCFlr167ViBEj1KhRI1WuXFlNmjTRAw88oCNHjuT7vkOHDumGG25QzZo1VbVqVQ0dOlTp9MpGEPyFp8svt26BM2d6rsXH29qr5s0915yNiBs2tMYWr7wiffCBlJhogapCBalRI6l6dbvP+1/NceOkV1+17oYAAACILlHR+GLZsmXKycnRyy+/rKZNm2rx4sUaOXKk9u/fryeeeCLg+2655RZ98cUX+uCDD5SUlKQbb7xR55xzjn788cdSHD2iWb9+FoS8m1MsX277Yu3d67lWr541ufDmXcmSpCuv9Lx21lm2LmvfPqlLF9uLKz1datNGcrtL5KcAAACglERFyBowYIAGDBhw7Hnjxo21fPlyvfjiiwFDVkZGhl5//XVNnjxZp512miRpwoQJatWqlX7++WedcsoppTJ2RLcHH8x7zd8+Wbnt2yft3GnnTsjKLSbGqlqpqRbQnEpW7mLroUNSpUpBDRsAAABhFBXTBf3JyMhQjRo1Ar7+yy+/KCsrS3379j12rWXLljr++OP1008/BXzf4cOHlZmZ6fMAvDkNKvLb28qpYiUne1q9L1smTZki/fab771OU4ytW+3oTDN0eDfJAAAAQOSLypC1atUqPfvss7rmmmsC3rN161ZVrFhRycnJPtdr166trc6fZv0YN26ckpKSjj3S0tJCNWxEoexsm9bnvSbLXyUrM1Nq105q1cq6B9apI735prVnd7z2mnTeedLkydJ119n5woV5NyrOHbKcTYsBAAAQHcIassaMGSOXy5XvY1muhS6bNm3SgAEDdN5552lkCWwudNdddykjI+PYY8OGDSH/DkSPwYNtqt6kSZ5r/kKWyyUtXmzVqqNHrZvgpZdK3n8P4L1X1rRpVtU6cEC6/37rOPjoo/Z67pDldCIEAABAdAjrmqzRo0fr8ssvz/eexo0bHzvfvHmzevfurW7duumVV17J932pqak6cuSI9uzZ41PNSk9PV2pqasD3xcfHKz4+vlDjR9nnb58sfyGrgtd/SVlZUuXKeT/Le1qgMwWwXj2pZk3f+7Zt831OJQsAACC6hDVkpaSkKCUlpVD3btq0Sb1791bnzp01YcIExeS3IEZS586dFRcXpxkzZmjo0KGSpOXLl2v9+vXq2rVrsceO8sHfPlm1allg8m5G4R2y6taV9u+3FuxDhtj9kidk/fmn5Ow+UKdO3u988knpoYekxx6Tvv/e8z4AAABEh6joLrhp0yb16tVLDRo00BNPPKHt27cfe82pSm3atEl9+vTRm2++qZNPPllJSUkaMWKEbr31VtWoUUOJiYkaNWqUunbtSmdBFJq/fbJmz857X1ycNGqUNGGCdRaUpJEjbbNhpzGmM13Qmf5Xu7ZUsaK0ZYv0z39aBcwp0FatKj38cOh/DwAAAEpeVISs6dOna9WqVVq1apXq16/v85r7f5sKZWVlafny5Tpw4MCx15566inFxMRo6NChOnz4sPr3768XXnihVMeO6OZvumAgzzwjPfWU7aM1f74Fs/79Pa/nrkg5e28dPSq98IIFtZdftvVdAAAAiF4ut5utT/OTmZmppKQkZWRkKDExMdzDQSkbPlx66y3p8cel228v3mcdOSJ5L/c780xp6lTrXuhMPVy+3CpijRtb8HK5LODltycXAAAASkdhs0FUtnAHSou/StaQIVKPHhaIglGxoq3TcpYEOpWs+HjbT0uS5syRvvlG+vxzaccOuychoXCVNAAAAESGqJguCITLCSdIu3dLTZt6rs2bZ+uoDh4M/vOuusoeOTlWwXLUri3t2SPNnWvPGza0NvDp6Rawtm3z3yQDAAAAkYdKFpCPG2+UPv5YOvdcz7WcHDsWZwpfTIxvm3dnvZZ3yIqNlZzdBmjjDgAAED0IWUCQnKl7Bewi4Neff0r/+Y/0++++150w9dtvdmzY0I5Onxc2JAYAAIgeTBcEguRvM+LCevFF6bnn7HzrVk8FK3fnQSdkOeu2qGQBAABEDypZQD7GjLHmF3fc4blWnJBVtarn3Hsz4wcesEYXLVrYcypZAAAA0YtKFlCA7GzfzYiLE7K8uwR6d/2sWVNyuyVnmzcqWQAAANGLkAXkwwlS3iErMdHWY1Uown891at7znNvOuxySevXS3v3SlWq2LXWraWePaWWLYP/LgAAAIQHIQvIh799sjZvLvrn3XCDNH26dN55vtc3b5YeecTC3Msve64PGmQPAAAARA9CFpAPJ2R5V7KKIzFRmjkz7/WsLOmFF2zD4pdeylvlAgAAQPSg8QWQD3/TBUuC013wyBFp/Pi8rx896tmfCwAAAJGNkAXkI/d0wZwcqW9fqV8/KTMzdN/j3Wlwzhzf19q1k+LjbY8tAAAARD6mCwL5aNRI+vvfpTZt7Hl2tjRjhue8JFSu7Pvc5bJwt3Gj1LZtyXwnAAAAQodKFpCP886TvvlGuv12e+4drGJC/F/PWWfZ8eabfa+zVxYAAEB0oZIFBME7ZBVln6z8TJkipad7QpWDvbIAAACiC5UsIAjezSdCHbLi4vIGLIlKFgAAQLQhZAH5eOstKSlJOv98e16SlaxAqGQBAABEF0IWkI+jR62L4L599jwcISstzY4bNpTO9wEAAKB4WJMF5CP3ZsQ5OXYtOzv0jS8CadpU6tGDzoIAAADRgpAF5CP3PlkpKVJWVumOoUkT6YcfSvc7AQAAUHRMFwTy4UwJdCpZAAAAQEEIWUA+cleywunIEenAgXCPAgAAAAUhZAH5yL0mKz1dGjxYuuii0h3HzTdLlStLzzxTut8LAACA4LEmC8hHzZpSt25S69b2fO9eaepUqVq10h1HUpI13Vizxvf6li3SsmVSr16Sy1W6YwIAAIB/hCwgH927Sz/+6HnuTBssrfbtjkaN7Jg7ZLVvL+3YIc2cKfXuXbpjAgAAgH9MFwSCEEkhKzvbApYkzZhRuuMBAABAYIQsIAjhDlnr1nnGsHq15/UuXUp3PAAAAAiMkAXkY/58qV49qWtXe+4EnNLaiNhRv7414cjKkjZvtmu//27Hk06SzjyzdMcDAACAwAhZQD6OHrVQk55uz8NVyYqNlY4/3s6dKYOLFtmxQ4fSHQsAAADyR+MLIB+598nKybFjaYcsSTrrLFuDlZhoz51KVocOkttNd0EAAIBIQcgC8pF7n6wTT7RNgZ2wVZqeesr3+aRJ0hNPSKNGSe+/L/3wQ+mPCQAAAHkxXRDIh1OxckKWyyXFxUnx8eEbk6N6dal/fzt3pjMCAAAg/AhZQD5yTxcMN+/GF5KUkmLH7dvDMx4AAADkRcgC8pF7uuCff0oXXijdeWfpj+W336RKlaSTT5Y+/VS69VZp8WJ7bc8eC2AAAAAIP0IWkI/Kla2xRLt29nzLFum996Qvvyz9sdSvb2vBNm+WPvzQ1mgtXOhpJ+9sTAwAAIDwovEFkI+0NAsyjnC1cJekWrWkKlWk/fulzz6za506STVr2nTB7dulOnVKf1wAAADwRSULCEI4Q5bLJTVqZOd79tixfXsLXxLrsgAAACIFIQsIQjhDluQJWZKUkCA1aSJ16yb16WNTGwEAABB+TBcE8rF7tzWaOHpUWrUqskJW27Y2jtdeC89YAAAA4B8hCyjAqlV2zM72bEIcCSGrQ4fwjAEAAAD5Y7ogkI8KXn8NkZ3tqWTFhOm/nBNP9Jy3b+/7mttdumMBAACAf4QsIB/eFaujR6XBg20K4eefh2c8PXpYNW3TJumii+zaW29Zh8Fhw8IzJgAAAPhiuiCQD+9K1tGjUlyclJwctuFIsi6Ddet6nsfFSbt2Sdu2hW9MAAAA8KCSBeQj93TBSJSSYkdauAMAAEQGQhaQD++1V0ePSj/+KI0cKT37bPjGlBshCwAAILIQsoACtGwptWhh0/SWL7eW6V9/He5ReTgha+dOT/dDAAAAhA9rsoACLF3qOQ/3Pln+1Kplx5wcW5vlPAcAAEB4UMkCghCJIcu7GQdTBgEAAMKPShYQhEgMWZLUs6d04IBNaQQAAEB4EbKAAvTqJe3YIX3ySeSGrE8+CfcIAAAA4CBkAQVYutT2oDpwwNNYIoaJtgAAAAiAPyoCBXD2ysrOjtxKlsPtDvcIAAAAQMgCCuAEqqNHpWuukTZulMaPD+uQ8njySalGDemWW8I9EgAAADBdECiAdyWralV7RBqXS9q9W0pPD/dIAAAAQCULKIATso4eDe848uNsSEwLdwAAgPAjZAEF8J4u+NVX0s03S1OmhHdMuRGyAAAAIgchCyhAnTpSWppt+jt7tvTMM9KsWeEela9atexIyAIAAAg/QhZQgJkzpfXrpaQk6fnn7Vrz5uEdU25OJWvHDv8dBr/4Qvryy9IdEwAAQHlF4wugEHbulAYPlvbtk3r3lq6/Ptwj8uWErKwsKTPTAqFj61Zp0CA7P3RIio8v/fEBAACUJ4QsoABHj0rDhkl//SU1aiR98IFNHYwklStLXbta58NDh3xD1oIFnvMdO6R69Up/fAAAAOUJIQsoQPfu0rx5dv7pp1LNmuEdTyBz5vi/7oxdsoocIQsAAKBksSYLKMApp9gUuylTpHbtwj2a4M2d6zl3OiUCAACg5BCygAKMH29d+4YODfdICid344vYWAuJCxZIbdqE/vt27JByckL/uQAAANGKkAUUwOWSqlUL9ygKduedUvXq0uOP+17/8ktrhtGxY+i/c8ECa7px+eWh/2wAAIBoRcgCyoiKFaU9e6SFC/2/Fhvrv717cTz6qB3feiu0nwsAABDNoiJkrV27ViNGjFCjRo1UuXJlNWnSRA888ICOHDmS7/t69eoll8vl87j22mtLadRA6TrzTDtOnSrt32/n2dl2fOwxKTlZGj06tN+ZlRXazwMAACgLoqK74LJly5STk6OXX35ZTZs21eLFizVy5Ejt379fTzzxRL7vHTlypB566KFjzxMSEkp6uEBYnHSS1KSJtHq1Ba0LL5S6dbOW7i1bShkZtn4qlLxDltttUysBAADKu6ioZA0YMEATJkxQv3791LhxY5111lm67bbb9NFHHxX43oSEBKWmph57JCYmlsKIgdLnckkXXWTnkydLBw9Kv/4qLVpkIUuyFu6h5HRbrFPH9hMDAABAlIQsfzIyMlSjRo0C73vnnXdUq1YttW3bVnfddZcOHDiQ7/2HDx9WZmamzwOIFhdeaMdp06QZMyz41K4tdepk10Mdsv79b6tgbd4ceRs0AwAAhEtUTBfMbdWqVXr22WcLnCp40UUXqUGDBqpbt64WLVqkO++8U8uXL8+3AjZu3DiNHTs21EMGSkWrVtZFcOFC6Y477FqXLlKtWnYe6umCAAAAyMvldoe631jhjRkzRo899li+9yxdulQtnblOkjZt2qSePXuqV69eeu2114L6vpkzZ6pPnz5atWqVmjRp4veew4cP6/Dhw8eeZ2ZmKi0tTRkZGUw1RFR4+22rLE2dKv34o/TII9LZZ0utW1vzi927Q/t9hw7ZPmJJSRL/iQAAgLIsMzNTSUlJBWaDsIas7du3a2cB85caN26sihUrSpI2b96sXr166ZRTTtHEiRMVExPcbMf9+/eratWqmjZtmvr371+o9xT2HyQQaRo1ktaulb791tZO1a5t17OypAohqGFv2GDTEJ3/hN94Q7riiuJ/LgAAQKQqbDYI63TBlJQUpaSkFOreTZs2qXfv3urcubMmTJgQdMCSpIX/20CoTp06Qb8XiCbbtlnAcrms62BCgtS5s00bPHgwNJsrb97su8Zr+/bifyYAAEBZEBVrsjZt2qRevXqpQYMGeuKJJ7Td609zqampx+7p06eP3nzzTZ188slavXq1Jk+erDPOOEM1a9bUokWLdMstt+jUU09V+/btw/VTgFKxf780YICFLecvWRYsCO13bN7s+5yQBQAAYKIiZE2fPl2rVq3SqlWrVL9+fZ/XnNmOWVlZWr58+bHugRUrVtS3336r8ePHa//+/UpLS9PQoUN17733lvr4gdJWt650wglSIWfFFknukEVTDQAAABPWNVnRgDVZKGtCtWnwPfdIjz4qVapkzS8GDpQ+/7z4nwsAABCpCpsNonafLADBGTHCOgBOmBCaz3MqWR062JHpggAAAIaQBZQTWVlSZmbopvURsgAAAPyLijVZAIqvZk07FrBrQqE1aiS1aSP17CkdPiwdf3xoPhcAACDaEbKAcqJWLTsWNWSlp0vx8bahsSS99JLntYsuyv+9mZnSjBnS6afbGi4AAICyjOmCQDnhVLKKMl3w4oul1FTpvfeK9t2XXy6dc450111Fez8AAEA0IWQB5URxpgs2bGjHQHttHTworV8v/W8HhTw+/tiOb70V/HcDAABEG0IWUE4UJ2SdeKIdnZD144/2eQMH2vMuXaQGDaT//tf/+zt1suPrrwf/3QAAANGGNVlAOVG3rnTSSVLTpsG9b/p0adgwO1+82KpVmzdLu3ZJe/fadWe9V6AOg1u32rFeveDHDQAAEG0IWUA50bKlNG9e8O9btcrav0tSdrb0++/Spk32vG5dO6ak2NFfyDp61JpmSIQsAABQPjBdEEC+1q71fT5/vmePrNwhy19TjfR0KSfHzs89V3K7S2SYAAAAEYOQBSBfTsiqXt2OCxYEDln+Klk7d0qxsXY+Z45niiEAAEBZRcgCypFTT5USE4ObNrhmjR2vukq64QZp6NDgQlb79jZl0AlazvosAACAsoqQBZQj+/dbJSmYvbKcStZFF0nPPScNHhxcyHI0bmxHQhYAACjraHwBlCPBtnHfv98TnJy9siSpTRspLk5KS7PnLVrYhsNt2wb+rNRUaeVKQhYAACj7CFlAORJsyMrIkLp2tXbtycnWvv2336S775Y6d/bc1769NGGC/8944AHpl1+sK6EkbdlS5OEDAABEBaYLAuWIs59VYacL1q1rzSqWLbPnzzwj9eghPf544b/zxx+lL75gTRYAACg/CFlAORJsJSu3E0+04/z5eV87eFBav96zp5bD2VPrhBOkhARrggEAAFCWEbKAcsQJWYWtZOXe08oJWWvWWAMMb/XqSQ0aSCtW+F53QtYzz9gar3//O7gxAwAARBtCFlCONGoknXSS1KRJ4e6/+GLrCjhlij1PTva8NmeO773+NiTeu9ezL5bTJAMAAKCso/EFUI4MGmSPwlq50qpWcXGea3FxNiWweXPfe1NSrIrl3cbdqWJVq2YPAACA8oBKFoCAnI2IGzXyXPvpJ5sq+Nprvvf62yvLCVn16llF66yzpC5dpOzskhszAABAuFHJAuDX3r2eBhkNGniud+4sffJJ3vsDTResVs1CVkKCdRnMybEglppaYkMHAAAIKypZQDly8KBVpRITrQlFftats2P16lJSUsGf7a+SNWSIlJkpffmltXB37qGNOwAAKMsIWUA5UqmStHmzb5UqkLVr7eg9VTA/zh5c3iHLUbGiHZ3qVaCQlZ4uLVxYuO8DAACIVIQsoBxxuQrfxt1Zj9WwYeE+u1Mn6YorpD59At9Tp44dt2zx//rJJ9vn/PFH4b4TAAAgEhGygHLGmbK3YUP+9yUnS6ecInXsWLjP7dVLeuMN6aqrPNeGD5cGDpR++82e51fJ2rrVNjOWpK++Ktx3AgAARCJCFlDOdO1qx2nT8r/v0kutk+B99xX9u2bNsvVYWVn2PL+Q5T1NcPPmwn/H119Ljz6ad+NkAACAcCFkAeXM4MF2nDrVOv2FUna29Pnn0qFDdu5MC6xXz46pqVLVqv6/d8AA6f/+z84XLy78d55+unTPPdKHHxZv7AAAAKFCyALKmdNOs6CzebP0yy+B7yvKXlannSadeab0wQfStm32GTExUu3a9vqoUdZ049ln/b+/Rw87BhOyzjvPjitWBD9eAACAkkDIAsqZ+HhbK3X11baHlT/p6daJsEkTq0oVVr9+dnz+ec+Uv9RUqcL/duSLKeD/4rRubQGwQQNrN+/4809bIzZ2bN73dO5sR7oSAgCASEHIAsqh55+XXn5ZatnS/+sffSQdPWp7ZFWqVPjPveoqKS5OmjvXpiNKnqmC+fngA6tivfOO7as1d65UubLn9TFjpIwM6cEHfd939KgnZOVXlQMAAChNhCwAefznP3YcNiy499Wu7Zm+99BDdqxb1/P64cM2nfCkk3w3Q/7mG+nHH6WVK63NfG7eLd+dDoSSNHSodP75dv7XX9Lu3cGNF4B/U6dKaWnWvAYAEDxCFlBOZWdLc+ZYuPG2ZYs0e7adOwEmGDfc4Pvcu5JVsaI0Y4a0YIFNSXQ4f5Dr3dtzzbtb4D33eM69x7tggbRrl+f5r78GP14AeX3wgf2lxdKl4R4JAEQnQhZQTr3wgtS9u3T//b7Xp0yxgHPKKbY2Klhdu0odOtj5E09Izzzjec3lytvGfcMGafVqW6/1t79JP/wgtWnju6nxkCHSLbfY+X//63n/5s32mQMG2DWmDAKhsWOHVZsTEsI9EgCIToQsoJw64ww7zp7tO82uqFMFHS6Xp5o1Z44UG+v7ep06dnSmAH73nR07d5YSE+3x55+2gbF3NatHD/vsHTvsuVO1atFCuvZa6V//kvr3L9qYAfhy/hLE6QwKAAgOIQsop5o0sYpRdrb0/vt2beNGT6Xo3HOL/tkXXWQBa8qUvK/lrmTlnirYooUFsz17rFL1/vvS999be/jduz1jdUJW586299edd3oqaJJVx046SXr99fzHuny5dNttnvAGwNOt8+mnwzoMAIhahCygHLvwQjuOGmUVrBo1pHffle6+W6pfv+ifW6WKTRv018Qid8j6/ns7OiGrUiWpWTM7X7RIuu46qWdPa4qRlOT5HCdknXCC/zE88oit2brtNtubK5DHH7dNkK+6qnC/DSjrvPfI+/rr8I0DAKIZIQsox+64w6pOR49a4HrvPemCCyyglBTvkJWTY2vC4uM9GxFLUtu2dnz/fateVakiderked3t9qy/clq4r11rQXHlSmn7dmnyZLu+Z4/0xhuBx3PddXb89FNp1ari/jog+uWu6h49Gp5xAEA0I2QB5VhcnPTmm7YxcU6O7UO1b1/JfmedOrbhsGTNLi68UPrkE881yROyJk2yY9eutqHx/PkWxv7+d1t/dcIJUseOds9tt9k6sk8+kT7/3NrFx8fba+PHB/6D4oknetanlWS4BKKFU2V2MJUWAIJHyALKudhY6aWXpLFjbb8q77BTEq680qbvvfqqPY+L83QHdDghy/G3v9kxMdFauP/4o/Tcc1bNcqYQem9KfMUVNlXw88+lWrWsyuVMS3Ts2eNpvvHAA3Z86y1byxWI9zQqoKyKj/dtfOO93QIAoHAIWQDkctm0vZYtS/67Ygrxf3XatbOHwwlZzZtbaDp0KO+eWN4hy3net6+FuYULrXGGtxdftBb1Y8dKJ58snX66hSh/1axDhywINmzIvkEo+1q2tKnDzl92ELIAIHiELAARp3lzWyMlWaWrSxc7d7k8a7dmzvR9jxOyVq2SMjI814cM8e06KNnUwRdflLKyLDhJnmrWm29Kf/3ludftlq65xhoAbNxoGzQHU9HybkMPRBOnfTshCwCCR8gCEJGcVvKdO/tuiNq9ux3vuUeaO9dzvWZNz3nXrv7DzRdfWLgaP942Qa5VyzMtqksXq1b16mWVK8dTT1nwio2VWrWyToS59/4KZNIk69L4zTeea1OmSDNmeJ7TbAORZv9++4sEQhYAFF2FcA8AAPy54AKbtnTwoO91p6olWcXLW7t20h9/WMXLu318To5tWDxpknTkiOf6NddYy3jHhx/6Brq335ZGj7bzJ5+UbryxcNMdHYMGSS+8YOHtgQds2uPFF1sA/O9/pSVLrOnI009L119f+M8FStLIkdap8667rHqbkhLuEQFA9CFkAYhIcXG2mXBu3bpZUElNlapX933tzTetSvXww77XY2Kkyy+3v5mfP1+aN8/C1A03+N7nHbAk6dFH7XjllbaXmHdwW7HCvu+SSzxr2bKypO++s2pbQoK1nu/Y0b7vwQft/W63NHSoVei+/damLo4aZb/l/PMDV8mWLJGmTpXS0iysNWgQ8B8dUCxbt1olq1UrqV69cI8GAKKTy+1mxUB+MjMzlZSUpIyMDCUmJoZ7OABCwPm/ev42S3bs2GEbJDdqJH3wgacdvGTTFPv1kzIz7XmnTlYhW7HCgtY559h7nKrXm29aJe3gQQtI33xjFTS32wLcxIl233HHSWefbU06unXzbAg9apR1U/R2/PHW2OOss6xS5j2+0rBunfTzz/b9lSuX7nejZLVpI/35p01rzd0wBgDKu8JmA0JWAQhZAHI7etSmFr71ljRtmm8jjGrVpPPOk55/3ncq4p9/2r0jRnjazksWzm6/3T5r927P9XfftSmTkr12xRUW7HbutA6KznfGxkrbtkk1atjz0aNtQ+ajRy3wud1WWRs2TGrdOu9vyciwFv6LFtn3DRqUf/g8dEh6/HFp3Dg7HzFCeu214P75IbLVrCnt2mVbIMyaZQGePeQAwBCyQoSQBSA/6elWmapZ01pep6XlH1ICycqyP9BOmWJTAx99VOrZ0147dMjClTN1a98+ac4ca+Sxa5eFMEfnznnb23u/NneuBbOsLOlf/7JGHt7dGE85xaY29u/vubZmjQW3lSutEYj3XmIrVkjNmnnG6R0s8/uts2dLP/1kwa9vX9/gifA5fNjzv+H06bbxd2qqZ085ACjvCFkhQsgCEE0+/dQqW3FxUoUKNkVx6lRrQX/66Z7W+JKnYtGqlQW6SZPs/pgYq4Q5YfG00ywAOurWtUYg557ru4bsvPOkzZttrVvDhtYKf/Vqq9B16iRddpnd98MP0qmnet5XoYJV27p3t6lq3bt71pytWmUVwM2b7Q/6O3ZY2GzRwh4nneRpzJCTk7fpidttvyn3ervccnJsk+zyHvY2bLCpqHFxFq7r17f/jY8cCa7pCwCUVYSsECFkASgLdu+2R+PG9nz/fmngQOmmm2wvsZgYa3gwbpyFrT17PO8dNcpCVqNGFmpuucWmRXrLyJDq1MnbDdJx/vnS++/beXa27V3Wpo30++/S8uW+9/7f/0m33mrnU6ZYeAvk7betEYpkQXLIEAuBSUnS9u0WOI8ckZo2tcrd0KG+78/MtDVxzzxjgfC446T27aXPPitcVa6smT/fNueuX99CcsWKdn3bNroMAoBU+GxAd0EAKAeqV/ftxlilinVC9Jaaau3kx4/3vf7sswV/flKShZRXX7WQlpUlNWlij5QUCy6O2FhPq33J/jD/9dfSwoU2VbJTJ8+9LVpYI5G6de1Ro4a0fr0FsxUrfPdH27TJpix6bybtWLXKfrPj44+lhx6yMe/d67m+bZuNwTtgPfWUhY0ePWxKaGH3SSsJOTn2+xs0KNq01IIkJNj6vaQkq2bVrGlTVdPTCVkAEAwqWQWgkgUA0eHwYQtamzdbhSolxdr2JyRYG/2ePT1B6/77Pa3+W7Wyit7QoTZFbudOm1op2bTJ447zNCVJTLRqXrt2Frg6d7aqXEkEHn+ef972a3viCc8ebiXJ6TT47bdSnz4l/30AEOmYLhgihCwAKHs2bZIWLJCSk219WKCQtH+/VbJ++MGajezb5/t6y5ZW+XLWK61aZVWy6dOtvf2NN4Z23L16WdOQ6tWtjX7uaZuh5qzHe+cd6aKLSva7ACAaMF0QAIAA6tUr3Ea7VapI995r50ePWqv7hQulxYttyuMll3gC1mOPSWPGeN47fbpUq5anFX9xHTpke5NJVll76SVr/x9K+/bZvmfOlMjate2Ynh7a7wGAso5KVgGoZAEACuPHH63S1KuXrWn68ENb2zV7tjWTKK7ly6UzzvCsOatd26Y3hnIz6HPPtUrcyy9LV11lFT/JpkzGxYXuewAgWhU2G9CQFQCAEOja1RpnTJ9unRQHDbLq05AhnrASyKFD0nPPWUDLyvJ/T4sW1qgjPd3arCcmSmvXhvY3bN1qzTWSk+25U/EjYAFAcAhZAACEQEyMp4NjbKytY2rTxjosOq3QA3G5pEcesarXlCn533vccdLMmdLSpda0I5S2brVjampoPxcAyhtCFgAAJSAx0apa334buP35m2/a+q74eOn66+3aU0/ZJsresrPt4WjSpGRayecOWX/9ZV0MnXVpAIDCIWQBAFBC6tSxAOVYuNCOR45YG/YrrpC6d7cwc801du/8+Z4GF44ffrA9wkaM8L1+9KjtI/bpp8Uf67591k1R8oSsXbukJ5+0DZsBAIVHyAIAoIS53dJtt9lGy3ffbdMIb7/d1j+dd57UqJFNA7z4Yrs/94bQ331ne38dPOh7/aWXrFHF2WdLjz+etwIWDKeKVaWKVLWqnTvdBbdtK95nA0B5Q8gCAKCEee/DNW6c7adVu7b02mvSK694Xr/5Zjt++KG0fr3nPd99Z8devXw/99prbZqh2y3dead03XVFD0P+1mMdd5wds7I8GzIDAApGyAIAoBQ89phVrSpVsv20Vqyw6X8xXv+fuH172wA4O1t6/nm75r0/Vu6QVaGC3ffss/Y5L78sTZ1atPFVq2Z7ep1+uudafLyn0yB7ZQFA4bEZMQAApSA21lq7Z2dbOArk1lttn62zzrLnP/8sHT5s67uaNfP/nhtvlLZskR59VPrHP6R+/YLfP6tDB+ndd/Ner11b2rPHQlaouxkCQFlFJQsAgFLicuUfsCRp4EDpo4+sIYYkffGFHXv18p12mNvdd0v169veWY8/HorRGmddFpUsACg8QhYAABFsxgw75p4qmFuVKtYJsHVrqWfP4L9n717fNvEOQhYABC9qQtZZZ52l448/XpUqVVKdOnV06aWXavPmzfm+59ChQ7rhhhtUs2ZNVa1aVUOHDlU6/18CABBFevWS/vY3aejQgu8991xrE19QIPPnooukuDjbu8vbU09JmzZZUw0AQOFETcjq3bu3/vOf/2j58uX68MMPtXr1ap177rn5vueWW27RZ599pg8++ECzZ8/W5s2bdc4555TSiAEAKL4nn5S+/16qWbPge10uC0qSdRkcMMC6Dv7+e8Hv3bzZ3uM0unDUqyfVrev5XABAwVxud3TufDF16lQNGTJEhw8fVpyf/8ufkZGhlJQUTZ48+VgYW7ZsmVq1aqWffvpJp5xySqG+JzMzU0lJScrIyFBiYmJIfwMAACXl99+ljh09z5991hpk+LN3r212fPSobYzcqFHee9zu/NeEhcLcuVLLltb4AwAiUWGzQdRUsrzt2rVL77zzjrp16+Y3YEnSL7/8oqysLPXt2/fYtZYtW+r444/XTz/9FPCzDx8+rMzMTJ8HAADRpnlzacoUadAge3777bY/lz/ffWcBq0mTvAErK0t64glb67VnT8mN96uvpFNOkS69tOS+AwBKS1SFrDvvvFNVqlRRzZo1tX79en366acB7926dasqVqyo5FzzHmrXrq2tzo6LfowbN05JSUnHHmlpaaEaPgAApaZyZVvHNXWq1KeP7bd11VVSTk7ee6dPt+Pf/573tQoVpEmTpGXLpJde8n3tk0+kW24JzUbFjz1mx88+K/qGygAQKcIassaMGSOXy5XvY9myZcfuv/322/Xbb7/pm2++UWxsrIYPH65Qz3a86667lJGRceyxYcOGkH4+AAClyeWSXnlFSkiQZs+WXnst7z35hSyXy6pgkvT00xbWJGnRIun886Xx46VTT7U1XcXhvP/TT0t+WiIAlLSwrsnavn27du7cme89jRs3VsWKFfNc37hxo9LS0jRnzhx17do1z+szZ85Unz59tHv3bp9qVoMGDfSPf/xDt9xyS6HGyJosAEBZMH68VZ2aNpWWLvXs17Vxo5SWJsXESDt35m18IUlHjthUwo0bpVdftYpYv36ecCZJDRtK33wTeMPk/GzaZHt85TcGAIgEUbEmKyUlRS1btsz34S9gSVLO/+Y7HD582O/rnTt3VlxcnGY4G4xIWr58udavX+83lAEAUJaNGiWNHSv9/LPvhsiVK1sA+8c/AoebihUtoEm2PisnR3rrLemyy6Q5cyy4rV0r9eghrViR/zhuu01q00bynrk/a5YdTzhBSky0BhhZWUX7nQAQCaKiu+DcuXM1f/589ejRQ9WrV9fq1at13333KT09XUuWLFF8fLw2bdqkPn366M0339TJJ58sSbruuuv05ZdfauLEiUpMTNSoUaMkSXPmzCn0d1PJAgDAOhCmpUkZGbYWa/Bgz2vp6bbua8kS6Zpr8q7dchw96mkFP3asdP/9dj5ihPTGGzYtcdo06Y8/LHgVZb8vAChJUVHJKqyEhAR99NFH6tOnj1q0aKERI0aoffv2mj17tuLj4yVJWVlZWr58uQ4cOHDsfU899ZQGDRqkoUOH6tRTT1Vqaqo++uijcP0MAAAigtst/fBDcA0mqlWTrr/eKl///a/va7VrS5MnSx99JP3f/wX+jKVLPef33OM5X7DAjr17S50723k+va0AIOJFRSUrnKhkAQDKErdbOvNM6YsvLBAlJVnDi+OPL/i9W7dKLVpIw4fbvlvBeuMNq1r17Glt4x1Hj0q//iq1bSt9/bV0zjnWSn71appgAIgshc0GFQK+AgAAyhyXS+rQwULW6NF2beBA6fPPC35vaqr055++a7qCMX++HU86yY4HD1plrEIF6X8z/dWvnxQfL61ZY9MP27Yt2ncBQDhFxXRBAAAQOnfcIdWs6Xnur3V7IPXq2fRAf3butHVWZ5/t/3VnWmCbNtIFF0h16uTdY6tKFalvXzufOrXw4wKASELIAgCgnElKku67z/M8mJCVn7g46V//ssYYXttcSpIOH5Z+/93OTz3VXs/IkGrUkEaOlLZt89zrNNVgXRaAaEXIAgCgHLr2Wql/f+m886RWrULzmYmJ0mmn2XnugJSTI738srWKb9TI1mY53nzTGms4Bg2y47x5Vh0DgGhD44sC0PgCAIDCe/FF60LYtavtoRXIrl2eKYtVq1qLeG9PPy117Ch16+Zp+w4A4VamWrgDAIDocNZZdvz5Z98Nh3OrUcOaXEi2QXFuN99sXQgJWACiESELAACETL161inQ7ZY++8xz/e23LXhlZXmu/ec/0oQJ0pgxpT9OAChJhCwAABBSTuOK11+3tVj790uXXWZTCHfs8NyXlCRdfrm1bPfn00+lm26S0tNLfMgAEFKELAAAEFLDh0vJyVKfPlJ2tm00nJNjVa46dQr/OQ88YJsee29cDADRgJAFAABCqn59ae1a6ZFHbE1V7k2IC6t3bzvOnBnS4QFAiSNkAQCAkEtK8pz//LMdgw1ZTjv4WbMKd/+jj9pUxY0bg/seAAg1QhYAACgxixZJH3xg58GGrFNPlWJipJUrpU2b/N+zbZvtvXXwoDXSmDpVWrCgWEMGgGIjZAEAgBLzxRee886dg3tvUpJ0wgl27q+adfCgtYx/+mnpqqs89/76a9HGCgChQsgCAAAl5vbbbXPihx+2vbGCld+UwYkTpblz7XPvv5+QBSByVAj3AAAAQNlVoYL0/PNFf3/v3tLjj9uUwdw+/NCOY8ZILVpIO3fac0IWgHAjZAEAgIjVs6e0erXUqJHv9Z07Pa3dzznHjh06SC6XtGWLPYJpFw8AocR0QQAAELEqV5YaN7bw5G3qVNuDq0MHqUkTu1alitSypZ3/9lvpjhMAvBGyAABAVNi5Uzp0yM6dqYJDh/rec8IJFsy2bCndsQGAN0IWAACIePfdZ5scv/ee5HZLDRpINWt6pgo6nntO2rtXGjEiPOMEAImQBQAAokDVqlbFeuYZe/7889LWrVLr1r73JSdLsbGlPjwA8EHIAgAAEe+qq6RKlWyt1Zw5dq1ChbxrtQojOzu0YwOA3AhZAAAg4tWsKV18sZ1fcolNGQxkzBipTRtp5sy8r/34o1XF7r+/ZMYJABIhCwAARIlRo+y4dq2no6A/f/0l/fmntGBB3tfOP9+mHT78sHT0aNHG8eWXtuZr9uyivR9A2UfIAgAAUaFDB8/eVz16BL6vc2c75t6U+Ndfpc2b7fyzz4q2duv336WBA6U33pA++ST49wMoHwhZAAAganz3nXTzzdKTTwa+54QT7Jg7ZD3xhB0vukgaNKho67mcDZAl6euvg38/gPKBkAUAAKJG8+bS+PFSrVqB7+nUyY4rV0q7d9v5unXSf/5j57fdVvTvT0/3nC9dKm3YUPTPAlB2EbIAAECZUquW1KyZnffrJ23caMEsO1vq08dC2NSp1khj0aLgPts7ZElUswD4R8gCAABlzhtvWEfCBQukr76SOnaUmjb1VLEmTpQmT5Y+/DC4z3VCVv36dvzmm1CNGEBZQsgCAABlTo8e0vz50iOP2B5bl10mLVsm9e9vrw8ZYsfczSvc7vz30dq61Y7Dh9vx22/ZdwtAXoQsAABQJjVqJN19t6fBRWys53zQIHu+aJG1fJesRXxKSv7VLaeSNWiQVL26dTt0OhYCgIOQBQAAyp0aNaSePe38jDOsgnX4sLRzp7Vp98ftlrZts/O6daXVq6UlS6S0tNIZM4DoQcgCAADlkjNlcPly6dFHbR8uSVq40P/9brf0ww/WNKNOHatkAYA/FcI9AAAAgHA45xzpzjulSpWkM8+U9u6164EqWTEx0skn571+6JBNQ4yPL7mxAoguVLIAAEC5VK+ercn680+pfXt7SNKmTTZtsDBuvtmmHk6aVHLjBBB9CFkAAKDcatpUSk2182rVpMaN7dxfNWvRIunJJ62joKNBA+ngQen110t+rACiByELAADgfzp2tKO/kDV7tjR6tPTyy55rl1wiVaggzZsnLV5cKkMEEAUIWQAAAP/zt79Jffp4qlvenPbttWt7rh13nK3nkqQJE0p+fACiAyELAADgf/7xD5sOeOGFeV/zF7Ik6cor7fjWW9KRIyU6PABRgpAFAABQCFu32jF3yBowwCpf27dLX3xR+uMCEHkIWQAAALns2SPt2+d7LVAlq0IF6bLL7PyNN0p8aACiACELAADAy/nn20bDH33kez1QyJKkq66SHntMeuWVkh8fgMjHZsQAAABenKYX3h0G3e78Q1bTptIdd5T82ABEB0IWAACAl0Bt3L//3oJWvXqlPiQAUYbpggAAAF46dLDjwoVWwZIkl0s6+WRr116xYuD3Tp0qnXaa9PXXJT7MPI4elSZPlh55hC6HQLhRyQIAAPDSpo0UGyvt3Clt3hxc5WrGDGnWLCkpSerfv+TG6E9srK0NO3hQGjbMpjACCA8qWQAAAF4qVZJatLBzZ8rgH39ITz4pTZ+e/3uvucaOn31mAa003XqrBSxJWrOmdL8bgC9CFgAAQC6dOtlxzhw7fv+9NHq09NJL+b+vdWupRw8pO1t6/fXQjysnR9qxQ5o50ypm3v7803P+11+h/24AhUfIAgAAyOWcc6Qrr5T69LHn+XUWzM2pZr32moWtUFq8WEpJsXHdf7/va6tXe86pZAHhRcgCAADI5ZxzrBLVu7c937rVjoUJWeeeK9WoIa1fH/oGGD//7DlfvtxznpUlrV3reU4lCwgvQhYAAEABgqlkVaokXXaZnU+YENpxzJ3rOd++3ZpzSBbovKtmVLKA8KK7IAAAgB85OdKCBdLKlcGFLEm6+GJp2TLp9NNDOybvSpZk1axu3aRVq3yvU8kCwouQBQAA4MfixVKXLlLlylJiol0rbMjq3Fn68svQjicjQ1q61M47dLDOh8uWWchy1mP16yeNGiU1amR7fLlcoR0DgMJhuiAAAIAf7dpJaWnWFj3YSlZJmD/fglPDhtKpp9o1Z11WtWrSiSdKp5wiDRpke30RsIDwIWQBAAD44XJZYJEswHz2mVS/fnCfsWGD9J//hGY8znqsLl2kli3tfNkyO156qYWwsWND810AiofpggAAAAEMGiS9+KJVsgYODK46tHu31KCBVZ+6d5fq1SveWJo1szH07Sv17Gkt4jt2zHvfnDnS7Nk2ZbFfv+J9J4CioZIFAAAQQO/etiZrwwbpjz+Ce2/16tLJJ9v5tGn+75kxQzr7bGnduoI/7/zzpc8/l666ygLXiBEWpNxu386Cn38u3X23NHVqcOMFEDqELAAAgAAqV/asw7rppuDf73QX/Oor/69PmiR98ol00UVFGp4kafNmKSHB1pDl5EiNG9t1OgwC4UPIAgAAyMf119uxZs3g3+uErOnTbcPg3EaPtuOcOZ7Ogf5s3Ghhyttvv0mvvip9/LF05Ig16IiJsc6CEntlAeFEyAIAAMjHbbdJX38tvfJK8O898USpVi0pM9OCVG4dOkhDhtj5o496ru/ebdMIhw6V3ntPeughW9N1992ee558Urr6aunpp+1506Z2dCpZa9ZYZQtA6SNkAQAA5MPlsgYSRalkxcRI/fvbufeUwZwc6ZdfbD3VvffatcmTbePjrCwLXp98In30kXThhVaxkqw1u8PpMOhsRNykiR3T0qTYWOnwYWnr1uDHDKD4CFkAAAAlyJky6GwYLEk//WRVrpNOkk44wboG5uRYNatCBXtPUpJ0662e8BQf79kfS/KELIdTyapQQTr+eDtnXRYQHoQsAACAEnTGGdJdd0nvvOO55py3bWuVsvvus+dvvSWtXSuNGWNVrf/7PzsuXGiVr7Q0z2fkDllOGJP8TxnculW6+GL7HAAli32yAAAASlD16r7rrbKyPBsUX3yxHbt0sT256tSRKla0aykpdnS5bO1Wbk2b2nREJ0Q5lSzJwllsrAWvwYNtDJs3W8v45cttY+PsbM93zZwpff+99OCDIfvZQLnmcrvd7nAPIpJlZmYqKSlJGRkZSkxMDPdwAABAFMvKknr0kObNs9bwGzfa9D7JwlJMkHOM0tLsMyTpwAFrOe9t4UKpUyf73B9+sKpaRoY0dqwFvauvtqmKzZvb93/+uT0H4F9hswHTBQEAAErJ9ddbwJKkCy7wBCwp+IAlSR072vGFF/IGLEl6/HE7nn++1K2b9Nhj9vyBB6QlS6QnnrDuhzffbNevvFLatq3w379wYfBjBsqDqAlZZ511lo4//nhVqlRJderU0aWXXqrNuTeMyKVXr15yuVw+j2uvvbaURgwAAOBr9GgpLs7OL7mk+J9399021W/YMN/ru3ZJ11wjvfuuPb/jDjuOHCl17WrnCQnS1KnWYOPRR2192LZt0vDh0o4dvp+3erX08MPWIdGZnvjaa1Yle+QRe75tmzRxYvC/YeZMC33p6XlfW7xY2rkz+M8Ewi1qQlbv3r31n//8R8uXL9eHH36o1atX69xzzy3wfSNHjtSWLVuOPR53/koHAACglLVsKf38s03LO/HE4n9e165S795SjRq+17OzPft69expYUiyatmkSdKZZ1p7eKcSVqmSNeOoWNH2BGvY0PYHc6paR45YEDrjDJtaeMMNNtVQskCXmWnTIK+4wqpqGzdaZ8Nvv7UAeOiQZ2wTJ0qLFknbt0uXXir16WP7gHXrJh09avf8+aetUWvXzsby8MPS/v15fz+LXhCponZN1tSpUzVkyBAdPnxYcc5fCeXSq1cvdezYUePHjy/y97AmCwAARBu32zP98LPPLLAUxowZVvX69Vd7/7JlUrNm9tr119teXhkZnvuvu056/nlrznH33dK4cf4/95lnpFGjpN9/t7b1klS1qm267HJJjRrZ+0eMsEDXsKG0ZYvvZ9SpY4HxhReskYdk+4c9/bR08sn2ORkZFviqVpXq1rWujvXq2b1z5ljA3bBBWr/ePv/oUU9QmzDBqnmS9N130vz5Nr5Dh6TkZHtUq2bXrr/egqlk7fgXL7YW+wcP2tq4o0dt+mZCgm0q7Yx31iz7Z5CQYK/Hxdn3O2M4/XTPvX/8If32m+d/T++HZGvnate286VLpQUL7H8zl8tzdPTsKaWm2vlff+XfYbJbN88/s/Xr7Z9DICed5NkuYPNm++cbSKdO9r+zZFXLH38MfG/79p5GLjt3WofNU04JfH9pKnQ2cEehnTt3us8//3x39+7d872vZ8+e7lq1arlr1qzpbtOmjXvMmDHu/fv35/ueQ4cOuTMyMo49NmzY4JbkzsjICOVPAAAAKFHffed2v/tu8O/LyXG7v/zS7X744byv7dvndr/yitvdo4fbfeutbnd2tu/7brvN7a5Y0R5Vq7rdx/1/e3ceFcWZrgH8aVRQgQaVPSwug4AKuCsaJBMZwC1qco4J4TgYjY4R4xjRUWeiqBgFk2iiIeZezRHjVeM4V9yOkmtEICIioogaYBRxB3fCYpTtvX8wFLSsaksjPr9z+pzuqre++qrqtZvXr/prC5Hp00WuXKmIyc0VeeutqnLB3V0kKUmkpKRi+0oRESLjx4tkZIj8+KNIly5V2+zeXRU3ceKT5YfmIzu7KvaTT+qPvX69KnbmzMa3Gxxcf2xGRlXsggX1x6amVsWGhtYfm5BQFbtmTf2x//d/VbH/9V/1x1Y/v//zP/XHbt1aFRsVVX/sf/93VexPP9Ufu2ZNVezRoyJvvy3Nxm+//dao2uClmsJ9/vz5+Oabb/Dw4UMMHjwY+/fvrzf+/fffh4ODA2xsbJCWlob58+cjMzMTu3btqnOblStXYunSpdruOhEREVGT8vJ6tu1UqooRlcofUa7O0LDie11Tp9a+3eefV0y2UX0UpTpLS2D3buB//xfIywMCA6u+o1bdRx9VjBYBgJMTMG4c8MMPFaMlTk5VcV9+Cbz9dsUEHPr6Fd8vU6uBgoKKWGvrqlg3t4rJRmxtK0ZfXnutYhuVquJP++qxgwdXjIp16FAxYpWXVzGCVVhYMaJVfZISF5eK2y+Li6tGqFq3rhrVMjXVbPf99yuWFxVV3R6pUlU8jIyqYrt1A3x9NddXf169XXv7itjy8opHWZnm+awcHQOqRgTr0qlT1XMLC8DTs+7Yyp8ZACpuWR06tO7YylE3oKLv9cXa2FQ9Nzau+ZtwLwOd3i64YMEChFdOc1OH9PR0OP/nzN69exf379/HlStXsHTpUpiYmGD//v1Q1fUv+QkxMTEYPnw4Ll68iG7Vf7GvmsePH+Px48fK6/z8fNjZ2fF2QSIiIiKiV1xjbxfUaZF1584d3GtgypiuXbtCv/KX8qq5fv067OzscOzYMXhUTpPTgKKiIhgZGSE6Ohq+lf810AB+J4uIiIiIiIDG1wY6vV3Q3Nwc5tXHGZ9C+X/mD60+6tSQ1P/8mIN19fFgIiIiIiIiLXoppnBPSkrCN998g9TUVFy5cgUxMTHw9/dHt27dlFGsGzduwNnZGSf+8wt/WVlZCA0NRUpKCi5fvoy9e/fiz3/+M4YNGwY3NzddHg4REREREbVgL0WR1b59e+zatQvDhw+Hk5MTpkyZAjc3N8TFxcHAwAAAUFJSgszMTDx8+BAAoK+vj59//hk+Pj5wdnZGcHAw3nnnHezbt0+Xh0JERERERC3cS/s7WU2F38kiIiIiIiKg8bXBSzGSRURERERE9LJgkUVERERERKRFLLKIiIiIiIi0iEUWERERERGRFrHIIiIiIiIi0iIWWURERERERFrEIouIiIiIiEiLWGQRERERERFpEYssIiIiIiIiLWKRRUREREREpEUssoiIiIiIiLSIRRYREREREZEWscgiIiIiIiLSIhZZREREREREWsQii4iIiIiISItYZBEREREREWkRiywiIiIiIiItYpFFRERERESkRSyyiIiIiIiItIhFFhERERERkRa11nUHmjsRAQDk5+fruCdERERERKRLlTVBZY1QFxZZDSgoKAAA2NnZ6bgnRERERETUHBQUFMDExKTO9SppqAx7xZWXl+PmzZswNjaGSqVq8v3n5+fDzs4O165dg1qtbvL9EwHMQ2o+mIvUHDAPqTlgHuqGiKCgoAA2NjbQ06v7m1ccyWqAnp4ebG1tdd0NqNVq/gMinWMeUnPBXKTmgHlIzQHzsOnVN4JViRNfEBERERERaRGLLCIiIiIiIi1ikdXMGRgYICQkBAYGBrruCr3CmIfUXDAXqTlgHlJzwDxs3jjxBRERERERkRZxJIuIiIiIiEiLWGQRERERERFpEYssIiIiIiIiLWKRRUREREREpEUsspqxiIgIdO7cGW3btsWgQYNw4sQJXXeJWrglS5ZApVJpPJydnZX1jx49QlBQEDp16gQjIyO88847uHXrlg57TC1BfHw8xowZAxsbG6hUKuzevVtjvYhg8eLFsLa2Rrt27eDt7Y0LFy5oxNy/fx8BAQFQq9UwNTXFlClTUFhY2IRHQS+7hvJw0qRJNd4f/fz8NGKYh/S8Vq5ciQEDBsDY2BgWFhYYN24cMjMzNWIa81l89epVjBo1Cu3bt4eFhQXmzZuH0tLSpjyUVx6LrGZqx44dmDNnDkJCQnDq1Cm4u7vD19cXt2/f1nXXqIXr2bMncnJylMfRo0eVdZ988gn27duHnTt3Ii4uDjdv3sTbb7+tw95SS1BUVAR3d3dERETUun7VqlVYu3YtvvvuOyQlJcHQ0BC+vr549OiREhMQEIDz58/j0KFD2L9/P+Lj4zFt2rSmOgRqARrKQwDw8/PTeH/cvn27xnrmIT2vuLg4BAUF4fjx4zh06BBKSkrg4+ODoqIiJaahz+KysjKMGjUKxcXFOHbsGDZv3ozIyEgsXrxYF4f06hJqlgYOHChBQUHK67KyMrGxsZGVK1fqsFfU0oWEhIi7u3ut6/Ly8qRNmzayc+dOZVl6eroAkMTExCbqIbV0ACQqKkp5XV5eLlZWVvL5558ry/Ly8sTAwEC2b98uIiK//vqrAJDk5GQl5uDBg6JSqeTGjRtN1ndqOZ7MQxGRwMBAGTt2bJ3bMA/pRbh9+7YAkLi4OBFp3GfxgQMHRE9PT3Jzc5WY9evXi1qtlsePHzftAbzCOJLVDBUXFyMlJQXe3t7KMj09PXh7eyMxMVGHPaNXwYULF2BjY4OuXbsiICAAV69eBQCkpKSgpKREIy+dnZ1hb2/PvKQXJjs7G7m5uRp5Z2JigkGDBil5l5iYCFNTU/Tv31+J8fb2hp6eHpKSkpq8z9RyxcbGwsLCAk5OTvjoo49w7949ZR3zkF6E3377DQDQsWNHAI37LE5MTISrqyssLS2VGF9fX+Tn5+P8+fNN2PtXG4usZuju3bsoKyvT+McBAJaWlsjNzdVRr+hVMGjQIERGRiI6Ohrr169HdnY2PD09UVBQgNzcXOjr68PU1FRjG+YlvUiVuVXf+2Fubi4sLCw01rdu3RodO3ZkbpLW+Pn54YcffsDhw4cRHh6OuLg4jBgxAmVlZQCYh6R95eXlmD17NoYOHYpevXoBQKM+i3Nzc2t9z6xcR02jta47QETNx4gRI5Tnbm5uGDRoEBwcHPDPf/4T7dq102HPiIh067333lOeu7q6ws3NDd26dUNsbCyGDx+uw55RSxUUFIRz585pfDeaXh4cyWqGzMzM0KpVqxozxdy6dQtWVlY66hW9ikxNTdG9e3dcvHgRVlZWKC4uRl5enkYM85JepMrcqu/90MrKqsakQKWlpbh//z5zk16Yrl27wszMDBcvXgTAPCTtmjlzJvbv348jR47A1tZWWd6Yz2IrK6ta3zMr11HTYJHVDOnr66Nfv344fPiwsqy8vByHDx+Gh4eHDntGr5rCwkJkZWXB2toa/fr1Q5s2bTTyMjMzE1evXmVe0gvTpUsXWFlZaeRdfn4+kpKSlLzz8PBAXl4eUlJSlJiYmBiUl5dj0KBBTd5nejVcv34d9+7dg7W1NQDmIWmHiGDmzJmIiopCTEwMunTporG+MZ/FHh4eOHv2rEbRf+jQIajVavTo0aNpDoQ4u2Bz9eOPP4qBgYFERkbKr7/+KtOmTRNTU1ONmWKItC04OFhiY2MlOztbEhISxNvbW8zMzOT27dsiIjJ9+nSxt7eXmJgYOXnypHh4eIiHh4eOe00vu4KCAjl9+rScPn1aAMjq1avl9OnTcuXKFRERCQsLE1NTU9mzZ4+kpaXJ2LFjpUuXLvL7778rbfj5+UmfPn0kKSlJjh49Ko6OjuLv76+rQ6KXUH15WFBQIHPnzpXExETJzs6Wn3/+Wfr27SuOjo7y6NEjpQ3mIT2vjz76SExMTCQ2NlZycnKUx8OHD5WYhj6LS0tLpVevXuLj4yOpqakSHR0t5ubmsnDhQl0c0iuLRVYztm7dOrG3txd9fX0ZOHCgHD9+XNddohbu3XffFWtra9HX15fXXntN3n33Xbl48aKy/vfff5cZM2ZIhw4dpH379jJ+/HjJycnRYY+pJThy5IgAqPEIDAwUkYpp3BctWiSWlpZiYGAgw4cPl8zMTI027t27J/7+/mJkZCRqtVo++OADKSgo0MHR0Muqvjx8+PCh+Pj4iLm5ubRp00YcHBxk6tSpNf7jk3lIz6u2HAQgmzZtUmIa81l8+fJlGTFihLRr107MzMwkODhYSkpKmvhoXm0qEZGmHj0jIiIiIiJqqfidLCIiIiIiIi1ikUVERERERKRFLLKIiIiIiIi0iEUWERERERGRFrHIIiIiIiIi0iIWWURERERERFrEIouIiIiIiEiLWGQRERERERFpEYssIqJX1OXLl6FSqZCamqrrrigyMjIwePBgtG3bFr179641RkQwbdo0dOzYUef9b47n8FnFxsZCpVIhLy/vhe9ryZIldV5fIqKWgEUWEZGOTJo0CSqVCmFhYRrLd+/eDZVKpaNe6VZISAgMDQ2RmZmJw4cP1xoTHR2NyMhI7N+/Hzk5OejVq1eT9G3SpEkYN26cxjI7O7sm7cPLSKVSYffu3RrL5s6dW+f1JSJqCVhkERHpUNu2bREeHo4HDx7ouitaU1xc/MzbZmVl4fXXX4eDgwM6depUZ4y1tTWGDBkCKysrtG7d+pn397xatWql8z68jIyMjOq8vkRELQGLLCIiHfL29oaVlRVWrlxZZ0xtt1Z99dVX6Ny5s/K6cpRlxYoVsLS0hKmpKZYtW4bS0lLMmzcPHTt2hK2tLTZt2lSj/YyMDAwZMgRt27ZFr169EBcXp7H+3LlzGDFiBIyMjGBpaYmJEyfi7t27yvo33ngDM2fOxOzZs2FmZgZfX99aj6O8vBzLli2Dra0tDAwM0Lt3b0RHRyvrVSoVUlJSsGzZMqhUKixZsqRGG5MmTcLHH3+Mq1evQqVSKeegc+fO+OqrrzRie/furdGGSqXCxo0bMX78eLRv3x6Ojo7Yu3evxjbnz5/H6NGjoVarYWxsDE9PT2RlZWHJkiXYvHkz9uzZA5VKBZVKhdjY2FpvF4yLi8PAgQNhYGAAa2trLFiwAKWlpRrna9asWfjb3/6Gjh07wsrKqtZjfdLGjRvh4uKCtm3bwtnZGd9++62ybsiQIZg/f75G/J07d9CmTRvEx8cDALZs2YL+/fvD2NgYVlZWeP/993H79u0699eYvEtOTsaf/vQnmJmZwcTEBF5eXjh16pSyvjJ2/PjxGtfrybYbyo3K87xr1y788Y9/RPv27eHu7o7ExEQl5sqVKxgzZgw6dOgAQ0ND9OzZEwcOHKj3nBIRvSgssoiIdKhVq1ZYsWIF1q1bh+vXrz9XWzExMbh58ybi4+OxevVqhISEYPTo0ejQoQOSkpIwffp0/OUvf6mxn3nz5iE4OBinT5+Gh4cHxowZg3v37gEA8vLy8Oabb6JPnz44efIkoqOjcevWLUyYMEGjjc2bN0NfXx8JCQn47rvvau3f119/jS+//BJffPEF0tLS4Ovri7feegsXLlwAAOTk5KBnz54IDg5GTk4O5s6dW2sblX+M5+TkIDk5+anO0dKlSzFhwgSkpaVh5MiRCAgIwP379wEAN27cwLBhw2BgYICYmBikpKRg8uTJKC0txdy5czFhwgT4+fkhJycHOTk5GDJkSI32b9y4gZEjR2LAgAE4c+YM1q9fj++//x7Lly+vcb4MDQ2RlJSEVatWYdmyZTh06FCd/d66dSsWL16Mzz77DOnp6VixYgUWLVqEzZs3AwACAgLw448/QkSUbXbs2AEbGxt4enoCAEpKShAaGoozZ85g9+7duHz5MiZNmvRU5+9JBQUFCAwMxNGjR3H8+HE4Ojpi5MiRKCgoAADl+mzatKne69VQblT6xz/+gblz5yI1NRXdu3eHv7+/UsAGBQXh8ePHiI+Px9mzZxEeHg4jI6PnOj4iomcmRESkE4GBgTJ27FgRERk8eLBMnjxZRESioqKk+ttzSEiIuLu7a2y7Zs0acXBw0GjLwcFBysrKlGVOTk7i6empvC4tLRVDQ0PZvn27iIhkZ2cLAAkLC1NiSkpKxNbWVsLDw0VEJDQ0VHx8fDT2fe3aNQEgmZmZIiLi5eUlffr0afB4bWxs5LPPPtNYNmDAAJkxY4by2t3dXUJCQupt58ljFxFxcHCQNWvWaCx7si0A8umnnyqvCwsLBYAcPHhQREQWLlwoXbp0keLi4lr3W/16Vao8h6dPnxYRkb///e/i5OQk5eXlSkxERIQYGRkp18bLy0tef/11jXYGDBgg8+fPr/OYu3XrJtu2bdNYFhoaKh4eHiIicvv2bWndurXEx8cr6z08POptMzk5WQBIQUGBiIgcOXJEAMiDBw9EpHF596SysjIxNjaWffv2KcsASFRUlEbck203lBuV53njxo3K+vPnzwsASU9PFxERV1dXWbJkSZ19IyJqShzJIiJqBsLDw7F582akp6c/cxs9e/aEnl7V27qlpSVcXV2V161atUKnTp1q3CLm4eGhPG/dujX69++v9OPMmTM4cuQIjIyMlIezszOAiu9GVerXr1+9fcvPz8fNmzcxdOhQjeVDhw59rmN+Wm5ubspzQ0NDqNVq5XykpqbC09MTbdq0eeb209PT4eHhoTFxydChQ1FYWKgxgli9HwBgbW1d5617RUVFyMrKwpQpUzSuw/Lly5VrYG5uDh8fH2zduhUAkJ2djcTERAQEBCjtpKSkYMyYMbC3t4exsTG8vLwAAFevXn3m47116xamTp0KR0dHmJiYQK1Wo7Cw8KnafJrcqH7erK2tAUA5b7NmzcLy5csxdOhQhISEIC0t7VkPi4joubHIIiJqBoYNGwZfX18sXLiwxjo9PT2N28CAilu/nvRkcaBSqWpdVl5e3uh+FRYWYsyYMUhNTdV4XLhwAcOGDVPiDA0NG93mi/A856jyfLRr1+7FdfAp+vGkwsJCAMCGDRs0rsG5c+dw/PhxJS4gIAD/+te/UFJSgm3btsHV1VUpsouKiuDr6wu1Wo2tW7ciOTkZUVFRAOqeqKQx5zQwMBCpqan4+uuvcezYMaSmpqJTp07PNflJfaqft8pCtvK8ffjhh7h06RImTpyIs2fPon///li3bt0L6QcRUUNYZBERNRNhYWHYt2+fxpf5gYpRitzcXI0/eLX5u0zV/1AvLS1FSkoKXFxcAAB9+/bF+fPn0blzZ/zhD3/QeDxNYaVWq2FjY4OEhASN5QkJCejRo8dzH4O5uTlycnKU1/n5+cjOzn6qNtzc3PDLL7/UWpwBgL6+PsrKyuptw8XFBYmJiRrXKiEhAcbGxrC1tX2q/lSytLSEjY0NLl26VOMadOnSRYkbO3YsHj16hOjoaGzbtk1jFCsjIwP37t1DWFgYPD094ezsXO+kF0Dj8i4hIQGzZs3CyJEj0bNnTxgYGGhMigJUFEb1nTdt5oadnR2mT5+OXbt2ITg4GBs2bHiq7YmItIVFFhFRM+Hq6oqAgACsXbtWY/kbb7yBO3fuYNWqVcjKykJERAQOHjyotf1GREQgKioKGRkZCAoKwoMHDzB58mQAFZMJ3L9/H/7+/khOTkZWVhZ++uknfPDBBw0WHE+aN28ewsPDsWPHDmRmZmLBggVITU3FX//61+c+hjfffBNbtmzBL7/8grNnzyIwMBCtWrV6qjZmzpyJ/Px8vPfeezh58iQuXLiALVu2IDMzE0DFTHlpaWnIzMzE3bt3ay3GZsyYgWvXruHjjz9GRkYG9uzZg5CQEMyZM0fjVs6ntXTpUqxcuRJr167Fv//9b5w9exabNm3C6tWrlRhDQ0OMGzcOixYtQnp6Ovz9/ZV19vb20NfXx7p163Dp0iXs3bsXoaGh9e6zMXnn6OiILVu2ID09HUlJSQgICKgxIti5c2ccPnwYubm5df5UgTZyY/bs2fjpp5+QnZ2NU6dO4ciRI8p/FhARNTUWWUREzciyZctq3Dbm4uKCb7/9FhEREXB3d8eJEydqnXnvWYWFhSEsLAzu7u44evQo9u7dCzMzMwBQRhjKysrg4+MDV1dXzJ49G6ampk9dNMyaNQtz5sxBcHAwXF1dER0djb1798LR0fG5j2HhwoXw8vLC6NGjMWrUKIwbNw7dunV7qjY6deqEmJgYFBYWwsvLC/369cOGDRuUW9SmTp0KJycn9O/fH+bm5jVGXgDgtddew4EDB3DixAm4u7tj+vTpmDJlCj799NPnOr4PP/wQGzduxKZNm+Dq6govLy9ERkZqjGQBFbcMnjlzBp6enrC3t1eWm5ubIzIyEjt37kSPHj0QFhaGL774ot59Nibvvv/+ezx48AB9+/bFxIkTMWvWLFhYWGjEfPnllzh06BDs7OzQp0+fWveljdwoKytDUFAQXFxc4Ofnh+7du2tMc09E1JRU8uQN10RERERERPTMOJJFRERERESkRSyyiIiIiIiItIhFFhERERERkRaxyCIiIiIiItIiFllERERERERaxCKLiIiIiIhIi1hkERERERERaRGLLCIiIiIiIi1ikUVERERERKRFLLKIiIiIiIi0iEUWERERERGRFv0/FS7wFT9cQOoAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -349,7 +362,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -359,49 +372,49 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "{'angles': [2.039379879135, 1.85430010043, 3.371558779473, 0.423487308243],\n", - " 'cost': -3.912605308686,\n", - " 'eval_number': 278,\n", - " 'job_id': '88acbfa4-4744-4525-9a0f-9af523aadb4e',\n", - " 'measurement_outcomes': array([ 0.01037872-0.03266485j, 0.02854275+0.04242491j,\n", - " 0.01992801+0.01011676j, 0.03301772-0.08366764j,\n", - " 0.01071382-0.02383742j, 0.00147702-0.05082654j,\n", - " -0.05344384-0.05764238j, -0.07464572-0.09532213j,\n", - " 0.02854275+0.04242491j, -0.03881939-0.03826365j,\n", - " 0.0062557 -0.00820243j, 0.01005339-0.01667559j,\n", - " 0.12574488-0.19773101j, -0.02571951-0.07330586j,\n", - " 0.01340228-0.05614634j, -0.05344384-0.05764238j,\n", - " 0.01992801+0.01011676j, 0.0062557 -0.00820243j,\n", - " 0.02594698-0.15520767j, 0.06817419-0.23743515j,\n", - " 0.00632935+0.0285614j , 0.04198336-0.02289478j,\n", - " -0.02571951-0.07330586j, 0.00147702-0.05082654j,\n", - " 0.03301772-0.08366764j, 0.01005339-0.01667559j,\n", - " 0.06817419-0.23743515j, -0.01645811-0.0988744j ,\n", - " 0.29998929-0.25070275j, 0.00632935+0.0285614j ,\n", - " 0.12574488-0.19773101j, 0.01071382-0.02383742j,\n", - " 0.01071382-0.02383742j, 0.12574488-0.19773101j,\n", - " 0.00632935+0.0285614j , 0.29998929-0.25070275j,\n", - " -0.01645811-0.0988744j , 0.06817419-0.23743515j,\n", - " 0.01005339-0.01667559j, 0.03301772-0.08366764j,\n", - " 0.00147702-0.05082654j, -0.02571951-0.07330586j,\n", - " 0.04198336-0.02289478j, 0.00632935+0.0285614j ,\n", - " 0.06817419-0.23743515j, 0.02594698-0.15520767j,\n", - " 0.0062557 -0.00820243j, 0.01992801+0.01011676j,\n", - " -0.05344384-0.05764238j, 0.01340228-0.05614634j,\n", - " -0.02571951-0.07330586j, 0.12574488-0.19773101j,\n", - " 0.01005339-0.01667559j, 0.0062557 -0.00820243j,\n", - " -0.03881939-0.03826365j, 0.02854275+0.04242491j,\n", - " -0.07464572-0.09532213j, -0.05344384-0.05764238j,\n", - " 0.00147702-0.05082654j, 0.01071382-0.02383742j,\n", - " 0.03301772-0.08366764j, 0.01992801+0.01011676j,\n", - " 0.02854275+0.04242491j, 0.01037872-0.03266485j])}\n" + "{'angles': [1.371862971017, 0.24355747989, 2.86536573413, 0.661691875155],\n", + " 'cost': -3.496186888171,\n", + " 'eval_number': 218,\n", + " 'job_id': '823f02c1-7456-4124-87df-687ae7fc22f3',\n", + " 'measurement_outcomes': array([ 0.04284966-0.01192738j, 0.02800091+0.01358129j,\n", + " -0.0026117 -0.01908847j, -0.00571515-0.07672026j,\n", + " 0.02733285-0.04142144j, -0.01202691-0.03518815j,\n", + " -0.04667931-0.05467577j, -0.17412036-0.07159958j,\n", + " 0.02800091+0.01358129j, -0.01956968-0.05470718j,\n", + " 0.0157576 -0.01605353j, -0.07280377+0.03181501j,\n", + " 0.02743899-0.1955927j , -0.13156733-0.06487829j,\n", + " -0.09411886-0.05501011j, -0.04667931-0.05467577j,\n", + " -0.0026117 -0.01908847j, 0.0157576 -0.01605353j,\n", + " 0.0010716 -0.13096442j, -0.06048263-0.2437939j ,\n", + " -0.02407981+0.02858514j, -0.00648214+0.04093336j,\n", + " -0.13156733-0.06487829j, -0.01202691-0.03518815j,\n", + " -0.00571515-0.07672026j, -0.07280377+0.03181501j,\n", + " -0.06048263-0.2437939j , -0.06967893-0.08488075j,\n", + " 0.14964257-0.31268748j, -0.02407981+0.02858514j,\n", + " 0.02743899-0.1955927j , 0.02733285-0.04142144j,\n", + " 0.02733285-0.04142144j, 0.02743899-0.1955927j ,\n", + " -0.02407981+0.02858514j, 0.14964257-0.31268748j,\n", + " -0.06967893-0.08488075j, -0.06048263-0.2437939j ,\n", + " -0.07280377+0.03181501j, -0.00571515-0.07672026j,\n", + " -0.01202691-0.03518815j, -0.13156733-0.06487829j,\n", + " -0.00648214+0.04093336j, -0.02407981+0.02858514j,\n", + " -0.06048263-0.2437939j , 0.0010716 -0.13096442j,\n", + " 0.0157576 -0.01605353j, -0.0026117 -0.01908847j,\n", + " -0.04667931-0.05467577j, -0.09411886-0.05501011j,\n", + " -0.13156733-0.06487829j, 0.02743899-0.1955927j ,\n", + " -0.07280377+0.03181501j, 0.0157576 -0.01605353j,\n", + " -0.01956968-0.05470718j, 0.02800091+0.01358129j,\n", + " -0.17412036-0.07159958j, -0.04667931-0.05467577j,\n", + " -0.01202691-0.03518815j, 0.02733285-0.04142144j,\n", + " -0.00571515-0.07672026j, -0.0026117 -0.01908847j,\n", + " 0.02800091+0.01358129j, 0.04284966-0.01192738j])}\n" ] } ], @@ -411,7 +424,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -420,21 +433,21 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
      ┌───┐                                                    ┌─────────────┐»\n",
-       "q0_0: ┤ H ├─■────────────■─────────────────────────■───────────┤ Rx(-4.0788) ├»\n",
+       "q0_0: ┤ H ├─■────────────■─────────────────────────■───────────┤ Rx(-2.7437) ├»\n",
        "      ├───┤ │            │                         │           └─────────────┘»\n",
        "q0_1: ┤ H ├─┼────────────┼────────────■────────────┼─────────────■────────────»\n",
-       "      ├───┤ │ZZ(6.7431)  │            │ZZ(6.7431)  │             │            »\n",
+       "      ├───┤ │ZZ(5.7307)  │            │ZZ(5.7307)  │             │            »\n",
        "q0_2: ┤ H ├─■────────────┼────────────■────────────┼─────────────┼────────────»\n",
-       "      ├───┤              │ZZ(6.7431)               │             │ZZ(6.7431)  »\n",
+       "      ├───┤              │ZZ(5.7307)               │             │ZZ(5.7307)  »\n",
        "q0_3: ┤ H ├──────────────■─────────────────────────┼─────────────■────────────»\n",
-       "      ├───┤                                        │ZZ(6.7431)                »\n",
+       "      ├───┤                                        │ZZ(5.7307)                »\n",
        "q0_4: ┤ H ├────────────────────────────────────────■──────────────────────────»\n",
        "      ├───┤                                                                   »\n",
        "q0_5: ┤ H ├───────────────────────────────────────────────────────────────────»\n",
@@ -442,66 +455,66 @@
        "«                                                                             »\n",
        "«q0_0: ──────────────────────────────────────────────────────────■────────────»\n",
        "«                   ┌─────────────┐                              │            »\n",
-       "«q0_1: ─■───────────┤ Rx(-4.0788) ├──────────────────────────────┼────────────»\n",
-       "«       │           └─────────────┘             ┌─────────────┐  │ZZ(0.84697) »\n",
-       "«q0_2: ─┼─────────────■─────────────■───────────┤ Rx(-4.0788) ├──■────────────»\n",
+       "«q0_1: ─■───────────┤ Rx(-2.7437) ├──────────────────────────────┼────────────»\n",
+       "«       │           └─────────────┘             ┌─────────────┐  │ZZ(1.3234)  »\n",
+       "«q0_2: ─┼─────────────■─────────────■───────────┤ Rx(-2.7437) ├──■────────────»\n",
        "«       │             │             │           └─────────────┘┌─────────────┐»\n",
-       "«q0_3: ─┼─────────────┼─────────────┼─────────────■────────────┤ Rx(-4.0788) ├»\n",
-       "«       │             │ZZ(6.7431)   │             │            └─────────────┘»\n",
+       "«q0_3: ─┼─────────────┼─────────────┼─────────────■────────────┤ Rx(-2.7437) ├»\n",
+       "«       │             │ZZ(5.7307)   │             │            └─────────────┘»\n",
        "«q0_4: ─┼─────────────■─────────────┼─────────────┼──────────────■────────────»\n",
-       "«       │ZZ(6.7431)                 │ZZ(6.7431)   │ZZ(6.7431)    │ZZ(6.7431)  »\n",
+       "«       │ZZ(5.7307)                 │ZZ(5.7307)   │ZZ(5.7307)    │ZZ(5.7307)  »\n",
        "«q0_5: ─■───────────────────────────■─────────────■──────────────■────────────»\n",
        "«                                                                             »\n",
-       "«                                                 ┌─────────────┐              »\n",
-       "«q0_0: ──■───────────────────────────■────────────┤ Rx(-3.7086) ├──────────────»\n",
-       "«        │                           │            └─────────────┘              »\n",
-       "«q0_1: ──┼─────────────■─────────────┼──────────────■─────────────■────────────»\n",
-       "«        │             │ZZ(0.84697)  │              │             │            »\n",
-       "«q0_2: ──┼─────────────■─────────────┼──────────────┼─────────────┼────────────»\n",
-       "«        │ZZ(0.84697)                │              │ZZ(0.84697)  │            »\n",
-       "«q0_3: ──■───────────────────────────┼──────────────■─────────────┼────────────»\n",
-       "«      ┌─────────────┐               │ZZ(0.84697)                 │            »\n",
-       "«q0_4: ┤ Rx(-4.0788) ├───────────────■────────────────────────────┼────────────»\n",
-       "«      ├─────────────┤                                            │ZZ(0.84697) »\n",
-       "«q0_5: ┤ Rx(-4.0788) ├────────────────────────────────────────────■────────────»\n",
-       "«      └─────────────┘                                                         »\n",
-       "«                                                                 »\n",
-       "«q0_0: ───────────────────────────────────────────────────────────»\n",
-       "«      ┌─────────────┐                                            »\n",
-       "«q0_1: ┤ Rx(-3.7086) ├────────────────────────────────────────────»\n",
-       "«      └─────────────┘              ┌─────────────┐               »\n",
-       "«q0_2: ──■─────────────■────────────┤ Rx(-3.7086) ├───────────────»\n",
-       "«        │             │            └─────────────┘┌─────────────┐»\n",
-       "«q0_3: ──┼─────────────┼──────────────■────────────┤ Rx(-3.7086) ├»\n",
-       "«        │ZZ(0.84697)  │              │            └─────────────┘»\n",
-       "«q0_4: ──■─────────────┼──────────────┼──────────────■────────────»\n",
-       "«                      │ZZ(0.84697)   │ZZ(0.84697)   │ZZ(0.84697) »\n",
-       "«q0_5: ────────────────■──────────────■──────────────■────────────»\n",
-       "«                                                                 »\n",
-       "«                     \n",
-       "«q0_0: ───────────────\n",
-       "«                     \n",
-       "«q0_1: ───────────────\n",
-       "«                     \n",
-       "«q0_2: ───────────────\n",
-       "«                     \n",
-       "«q0_3: ───────────────\n",
-       "«      ┌─────────────┐\n",
-       "«q0_4: ┤ Rx(-3.7086) ├\n",
-       "«      ├─────────────┤\n",
-       "«q0_5: ┤ Rx(-3.7086) ├\n",
-       "«      └─────────────┘
" + "« ┌──────────────┐ »\n", + "«q0_0: ──■──────────────────────────■───────────┤ Rx(-0.48711) ├─────────────»\n", + "« │ │ └──────────────┘ »\n", + "«q0_1: ──┼─────────────■────────────┼─────────────■──────────────■───────────»\n", + "« │ │ZZ(1.3234) │ │ │ »\n", + "«q0_2: ──┼─────────────■────────────┼─────────────┼──────────────┼───────────»\n", + "« │ZZ(1.3234) │ │ZZ(1.3234) │ »\n", + "«q0_3: ──■──────────────────────────┼─────────────■──────────────┼───────────»\n", + "« ┌─────────────┐ │ZZ(1.3234) │ »\n", + "«q0_4: ┤ Rx(-2.7437) ├──────────────■────────────────────────────┼───────────»\n", + "« ├─────────────┤ │ZZ(1.3234) »\n", + "«q0_5: ┤ Rx(-2.7437) ├───────────────────────────────────────────■───────────»\n", + "« └─────────────┘ »\n", + "« »\n", + "«q0_0: ─────────────────────────────────────────────────────────────»\n", + "« ┌──────────────┐ »\n", + "«q0_1: ┤ Rx(-0.48711) ├─────────────────────────────────────────────»\n", + "« └──────────────┘ ┌──────────────┐ »\n", + "«q0_2: ──■──────────────■───────────┤ Rx(-0.48711) ├────────────────»\n", + "« │ │ └──────────────┘┌──────────────┐»\n", + "«q0_3: ──┼──────────────┼─────────────■─────────────┤ Rx(-0.48711) ├»\n", + "« │ZZ(1.3234) │ │ └──────────────┘»\n", + "«q0_4: ──■──────────────┼─────────────┼───────────────■─────────────»\n", + "« │ZZ(1.3234) │ZZ(1.3234) │ZZ(1.3234) »\n", + "«q0_5: ─────────────────■─────────────■───────────────■─────────────»\n", + "« »\n", + "« \n", + "«q0_0: ────────────────\n", + "« \n", + "«q0_1: ────────────────\n", + "« \n", + "«q0_2: ────────────────\n", + "« \n", + "«q0_3: ────────────────\n", + "« ┌──────────────┐\n", + "«q0_4: ┤ Rx(-0.48711) ├\n", + "« ├──────────────┤\n", + "«q0_5: ┤ Rx(-0.48711) ├\n", + "« └──────────────┘" ], "text/plain": [ " ┌───┐ ┌─────────────┐»\n", - "q0_0: ┤ H ├─■────────────■─────────────────────────■───────────┤ Rx(-4.0788) ├»\n", + "q0_0: ┤ H ├─■────────────■─────────────────────────■───────────┤ Rx(-2.7437) ├»\n", " ├───┤ │ │ │ └─────────────┘»\n", "q0_1: ┤ H ├─┼────────────┼────────────■────────────┼─────────────■────────────»\n", - " ├───┤ │ZZ(6.7431) │ │ZZ(6.7431) │ │ »\n", + " ├───┤ │ZZ(5.7307) │ │ZZ(5.7307) │ │ »\n", "q0_2: ┤ H ├─■────────────┼────────────■────────────┼─────────────┼────────────»\n", - " ├───┤ │ZZ(6.7431) │ │ZZ(6.7431) »\n", + " ├───┤ │ZZ(5.7307) │ │ZZ(5.7307) »\n", "q0_3: ┤ H ├──────────────■─────────────────────────┼─────────────■────────────»\n", - " ├───┤ │ZZ(6.7431) »\n", + " ├───┤ │ZZ(5.7307) »\n", "q0_4: ┤ H ├────────────────────────────────────────■──────────────────────────»\n", " ├───┤ »\n", "q0_5: ┤ H ├───────────────────────────────────────────────────────────────────»\n", @@ -509,58 +522,58 @@ "« »\n", "«q0_0: ──────────────────────────────────────────────────────────■────────────»\n", "« ┌─────────────┐ │ »\n", - "«q0_1: ─■───────────┤ Rx(-4.0788) ├──────────────────────────────┼────────────»\n", - "« │ └─────────────┘ ┌─────────────┐ │ZZ(0.84697) »\n", - "«q0_2: ─┼─────────────■─────────────■───────────┤ Rx(-4.0788) ├──■────────────»\n", + "«q0_1: ─■───────────┤ Rx(-2.7437) ├──────────────────────────────┼────────────»\n", + "« │ └─────────────┘ ┌─────────────┐ │ZZ(1.3234) »\n", + "«q0_2: ─┼─────────────■─────────────■───────────┤ Rx(-2.7437) ├──■────────────»\n", "« │ │ │ └─────────────┘┌─────────────┐»\n", - "«q0_3: ─┼─────────────┼─────────────┼─────────────■────────────┤ Rx(-4.0788) ├»\n", - "« │ │ZZ(6.7431) │ │ └─────────────┘»\n", + "«q0_3: ─┼─────────────┼─────────────┼─────────────■────────────┤ Rx(-2.7437) ├»\n", + "« │ │ZZ(5.7307) │ │ └─────────────┘»\n", "«q0_4: ─┼─────────────■─────────────┼─────────────┼──────────────■────────────»\n", - "« │ZZ(6.7431) │ZZ(6.7431) │ZZ(6.7431) │ZZ(6.7431) »\n", + "« │ZZ(5.7307) │ZZ(5.7307) │ZZ(5.7307) │ZZ(5.7307) »\n", "«q0_5: ─■───────────────────────────■─────────────■──────────────■────────────»\n", "« »\n", - "« ┌─────────────┐ »\n", - "«q0_0: ──■───────────────────────────■────────────┤ Rx(-3.7086) ├──────────────»\n", - "« │ │ └─────────────┘ »\n", - "«q0_1: ──┼─────────────■─────────────┼──────────────■─────────────■────────────»\n", - "« │ │ZZ(0.84697) │ │ │ »\n", - "«q0_2: ──┼─────────────■─────────────┼──────────────┼─────────────┼────────────»\n", - "« │ZZ(0.84697) │ │ZZ(0.84697) │ »\n", - "«q0_3: ──■───────────────────────────┼──────────────■─────────────┼────────────»\n", - "« ┌─────────────┐ │ZZ(0.84697) │ »\n", - "«q0_4: ┤ Rx(-4.0788) ├───────────────■────────────────────────────┼────────────»\n", - "« ├─────────────┤ │ZZ(0.84697) »\n", - "«q0_5: ┤ Rx(-4.0788) ├────────────────────────────────────────────■────────────»\n", - "« └─────────────┘ »\n", - "« »\n", - "«q0_0: ───────────────────────────────────────────────────────────»\n", - "« ┌─────────────┐ »\n", - "«q0_1: ┤ Rx(-3.7086) ├────────────────────────────────────────────»\n", - "« └─────────────┘ ┌─────────────┐ »\n", - "«q0_2: ──■─────────────■────────────┤ Rx(-3.7086) ├───────────────»\n", - "« │ │ └─────────────┘┌─────────────┐»\n", - "«q0_3: ──┼─────────────┼──────────────■────────────┤ Rx(-3.7086) ├»\n", - "« │ZZ(0.84697) │ │ └─────────────┘»\n", - "«q0_4: ──■─────────────┼──────────────┼──────────────■────────────»\n", - "« │ZZ(0.84697) │ZZ(0.84697) │ZZ(0.84697) »\n", - "«q0_5: ────────────────■──────────────■──────────────■────────────»\n", - "« »\n", - "« \n", - "«q0_0: ───────────────\n", - "« \n", - "«q0_1: ───────────────\n", - "« \n", - "«q0_2: ───────────────\n", - "« \n", - "«q0_3: ───────────────\n", - "« ┌─────────────┐\n", - "«q0_4: ┤ Rx(-3.7086) ├\n", - "« ├─────────────┤\n", - "«q0_5: ┤ Rx(-3.7086) ├\n", - "« └─────────────┘" + "« ┌──────────────┐ »\n", + "«q0_0: ──■──────────────────────────■───────────┤ Rx(-0.48711) ├─────────────»\n", + "« │ │ └──────────────┘ »\n", + "«q0_1: ──┼─────────────■────────────┼─────────────■──────────────■───────────»\n", + "« │ │ZZ(1.3234) │ │ │ »\n", + "«q0_2: ──┼─────────────■────────────┼─────────────┼──────────────┼───────────»\n", + "« │ZZ(1.3234) │ │ZZ(1.3234) │ »\n", + "«q0_3: ──■──────────────────────────┼─────────────■──────────────┼───────────»\n", + "« ┌─────────────┐ │ZZ(1.3234) │ »\n", + "«q0_4: ┤ Rx(-2.7437) ├──────────────■────────────────────────────┼───────────»\n", + "« ├─────────────┤ │ZZ(1.3234) »\n", + "«q0_5: ┤ Rx(-2.7437) ├───────────────────────────────────────────■───────────»\n", + "« └─────────────┘ »\n", + "« »\n", + "«q0_0: ─────────────────────────────────────────────────────────────»\n", + "« ┌──────────────┐ »\n", + "«q0_1: ┤ Rx(-0.48711) ├─────────────────────────────────────────────»\n", + "« └──────────────┘ ┌──────────────┐ »\n", + "«q0_2: ──■──────────────■───────────┤ Rx(-0.48711) ├────────────────»\n", + "« │ │ └──────────────┘┌──────────────┐»\n", + "«q0_3: ──┼──────────────┼─────────────■─────────────┤ Rx(-0.48711) ├»\n", + "« │ZZ(1.3234) │ │ └──────────────┘»\n", + "«q0_4: ──■──────────────┼─────────────┼───────────────■─────────────»\n", + "« │ZZ(1.3234) │ZZ(1.3234) │ZZ(1.3234) »\n", + "«q0_5: ─────────────────■─────────────■───────────────■─────────────»\n", + "« »\n", + "« \n", + "«q0_0: ────────────────\n", + "« \n", + "«q0_1: ────────────────\n", + "« \n", + "«q0_2: ────────────────\n", + "« \n", + "«q0_3: ────────────────\n", + "« ┌──────────────┐\n", + "«q0_4: ┤ Rx(-0.48711) ├\n", + "« ├──────────────┤\n", + "«q0_5: ┤ Rx(-0.48711) ├\n", + "« └──────────────┘" ] }, - "execution_count": 16, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -586,7 +599,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -604,7 +617,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -615,12 +628,12 @@ "\n", "# Set the backend you want to use here.\n", "# WARNING: Quantinuum simulator usage is not unlimited. Running this sample against it could consume a significant amount of your eHQC quota.\n", - "backend_to_use = ionq_sim" + "backend_to_use = rigetti_sim" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -634,7 +647,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -643,7 +656,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -662,14 +675,14 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "........................................................................................................." + "..............................................................................................................................." ] } ], @@ -684,7 +697,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -693,12 +706,12 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 25, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0wAAAK9CAYAAAAXJOy/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACGJUlEQVR4nO3dd3hU1drG4WdISIBAEjoEQu8dAT3SgopiAbE37F1RLOixHUWwYG+I3YMe+9EjdlGkqahIb9Kl95qhJiTZ3x/r2wmBJKTMzJo987uva67ZmezseTOJMk/WWu/yOY7jCAAAAABwhHK2CwAAAACAcEVgAgAAAIBCEJgAAAAAoBAEJgAAAAAoBIEJAAAAAApBYAIAAACAQhCYAAAAAKAQBCYAAAAAKASBCQAAAAAKQWACAESsd955Rz6fTzNmzDjquX369FGfPn2CXxQAwFMITACAUluxYoVuuOEGNWnSRBUqVFBiYqJ69OihF198Ufv37w/48+3bt08PP/ywJk+eHPBrl8Zvv/2mhx9+WLt27bJdCgAgSGJtFwAA8KZvv/1W559/vuLj43X55ZerXbt2yszM1K+//qq7775bCxcu1BtvvBHQ59y3b5+GDx8uSQEfDfrxxx9L/DW//fabhg8friuvvFLJyckBrQcAEB4ITACAElu5cqUuuugiNWzYUBMnTlTdunVzPzd48GAtX75c3377rcUKSy4uLs52CZIkx3F04MABVaxY0XYpAAAxJQ8AUApPPfWU9uzZo7fffjtfWHI1a9ZMt912W+7HWVlZeuSRR9S0aVPFx8erUaNGuv/++5WRkZHv62bMmKF+/fqpRo0aqlixoho3bqyrr75akrRq1SrVrFlTkjR8+HD5fD75fD49/PDDR603IyNDd955p2rWrKmEhASdffbZ2rp1a75zClrDNGrUKLVt21aVKlVS1apV1bVrV3344YeSpIcfflh33323JKlx48a59axatapE33OjRo3Uv39//fDDD+ratasqVqyo119/XWlpaerYsWOB30/Lli3Vr1+/o37fAICyY4QJAFBiX3/9tZo0aaLu3bsX6/xrr71W7777rs477zwNHTpU06ZN08iRI7Vo0SKNHTtWkrRlyxadcsopqlmzpu69914lJydr1apV+vzzzyVJNWvW1KuvvqqbbrpJZ599ts455xxJUocOHY76/LfeequqVq2qYcOGadWqVXrhhRd0yy236JNPPin0a958800NGTJE5513nm677TYdOHBA8+bN07Rp03TJJZfonHPO0dKlS/XRRx/p+eefV40aNXLrLO737FqyZIkuvvhi3XDDDbruuuvUsmVLVa5cWdddd50WLFigdu3a5Z47ffp0LV26VP/617+K9doDAMrIAQCgBNLT0x1JzsCBA4t1/pw5cxxJzrXXXpvv8bvuusuR5EycONFxHMcZO3asI8mZPn16odfaunWrI8kZNmxYsZ57zJgxjiSnb9++Tk5OTu7jd9xxhxMTE+Ps2rUr97G0tDQnLS0t9+OBAwc6bdu2LfL6Tz/9tCPJWblyZb7Hi/s9O47jNGzY0JHkjBs3Lt+5u3btcipUqODcc889+R4fMmSIk5CQ4OzZs6fI2gAAgcGUPABAifj9fklSlSpVinX+d999J0m688478z0+dOhQScpd6+Q2Tfjmm2908ODBQJSa6/rrr5fP58v9uFevXsrOztbq1asL/Zrk5GStW7dO06dPL/HzFfd7djVu3PiIKXZJSUkaOHCgPvroIzmOI0nKzs7WJ598orPOOksJCQklrgsAUHIEJgBAiSQmJkqSdu/eXazzV69erXLlyqlZs2b5Hq9Tp46Sk5NzQ0taWprOPfdcDR8+XDVq1NDAgQM1ZsyYI9b8lEaDBg3yfVy1alVJ0s6dOwv9mnvuuUeVK1fWscceq+bNm2vw4MGaOnVqsZ6vuN+zq3HjxgVe5/LLL9eaNWv0yy+/SJJ++uknbd68WZdddlmx6gAAlB2BCQBQIomJiUpJSdGCBQtK9HWHjvAU9vnPPvtMv//+u2655RatX79eV199tbp06aI9e/aUpWTFxMQU+Lg7clOQ1q1ba8mSJfr444/Vs2dP/e9//1PPnj01bNiwYj/v0b5nV2Ed8fr166fatWvr/ffflyS9//77qlOnjvr27VvsGgAAZUNgAgCUWP/+/bVixQr9/vvvRz23YcOGysnJ0bJly/I9vnnzZu3atUsNGzbM9/g//vEPPfbYY5oxY4Y++OADLVy4UB9//LGk4geQQElISNCFF16oMWPGaM2aNTrjjDP02GOP6cCBA0XWU9LvuTAxMTG65JJL9Nlnn2nnzp364osvdPHFFxcaAAEAgUdgAgCU2D//+U8lJCTo2muv1ebNm4/4/IoVK/Tiiy9Kkk4//XRJ0gsvvJDvnOeee06SdMYZZ0gy0+MOH/Hp1KmTJOVOy6tUqZIkadeuXQH5Poqyffv2fB/HxcWpTZs2chwnd42Vu47o8HqK+z0Xx2WXXaadO3fqhhtu0J49e3TppZeW5NsAAJQRbcUBACXWtGlTffjhh7rwwgvVunVrXX755WrXrp0yMzP122+/6dNPP9WVV14pSerYsaOuuOIKvfHGG9q1a5fS0tL0559/6t1339VZZ52lE044QZL07rvv6pVXXtHZZ5+tpk2bavfu3XrzzTeVmJiYG0AqVqyoNm3a6JNPPlGLFi1UrVo1tWvXLl/b7UA55ZRTVKdOHfXo0UO1a9fWokWL9PLLL+uMM87IbXjRpUsXSdIDDzygiy66SOXLl9eAAQOK/T0XR+fOndWuXTt9+umnat26tY455piAf68AgCLYbdIHAPCypUuXOtddd53TqFEjJy4uzqlSpYrTo0cPZ9SoUc6BAwdyzzt48KAzfPhwp3Hjxk758uWd1NRU57777st3zqxZs5yLL77YadCggRMfH+/UqlXL6d+/vzNjxox8z/nbb785Xbp0ceLi4o7aYtxtK354q/JJkyY5kpxJkyblPnZ4W/HXX3/d6d27t1O9enUnPj7eadq0qXP33Xc76enp+a71yCOPOPXq1XPKlSuXr8V4cb5nxzFtxc8444yiXmbnqaeeciQ5jz/+eJHnAQACz+c4Rax4BQAA1r344ou64447tGrVqiM6/gEAgovABABAGHMcRx07dlT16tU1adIk2+UAQNRhDRMAAGFo7969+uqrrzRp0iTNnz9fX375pe2SACAqMcIEAEAYWrVqlRo3bqzk5GTdfPPNeuyxx2yXBABRicAEAAAAAIVgHyYAAAAAKASBCQAAAAAKEVVNH3JycrRhwwZVqVJFPp/PdjkAAAAALHEcR7t371ZKSorKlSt8HCmqAtOGDRuUmppquwwAAAAAYWLt2rWqX79+oZ+PqsBUpUoVSeZFSUxMtFwNAAAAAFv8fr9SU1NzM0JhoiowudPwEhMTCUwAAAAAjrpUh6YPAAAAAFAIAhMAAAAAFILABAAAAACFiKo1TAAAAIDXOI6jrKwsZWdn2y7FU2JiYhQbG1vm7YQITAAAAECYyszM1MaNG7Vv3z7bpXhSpUqVVLduXcXFxZX6GgQmAAAAIAzl5ORo5cqViomJUUpKiuLi4so8WhItHMdRZmamtm7dqpUrV6p58+ZFbk5bFAITAAAAEIYyMzOVk5Oj1NRUVapUyXY5nlOxYkWVL19eq1evVmZmpipUqFCq69D0AQAAAAhjpR0ZQWBeO159AAAAACgEgQkAAAAACkFgAgAAAIBCEJgAAAAABNymTZt06623qkmTJoqPj1dqaqoGDBigCRMmlPna77zzjpKTk8teZDHQJQ8AAABAQK1atUo9evRQcnKynn76abVv314HDx7UDz/8oMGDB2vx4sW2Syw2RpgAAAAAj9m7t/DbgQPFP3f//qOfWxo333yzfD6f/vzzT5177rlq0aKF2rZtqzvvvFN//PGHJGnNmjUaOHCgKleurMTERF1wwQXavHlz7jXmzp2rE044QVWqVFFiYqK6dOmiGTNmaPLkybrqqquUnp4un88nn8+nhx9+uHSFFgOBCQAAAPCYypULv517bv5za9Uq/NzTTst/bqNGR55TUjt27NC4ceM0ePBgJSQkHPH55ORk5eTkaODAgdqxY4emTJmi8ePH6++//9aFF16Ye96gQYNUv359TZ8+XTNnztS9996r8uXLq3v37nrhhReUmJiojRs3auPGjbrrrrtKXmgxMSUPAAAAQMAsX75cjuOoVatWhZ4zYcIEzZ8/XytXrlRqaqok6T//+Y/atm2r6dOnq1u3blqzZo3uvvvu3Os0b9489+uTkpLk8/lUp06d4H4zIjABAAAAnrNnT+Gfi4nJ//GWLYWfe/i+rqtWlbqkXI7jHPWcRYsWKTU1NTcsSVKbNm2UnJysRYsWqVu3brrzzjt17bXX6r333lPfvn11/vnnq2nTpmUvsISYkgcAAAB4TEJC4bcKFYp/bsWKRz+3pJo3by6fz1fmxg4PP/ywFi5cqDPOOEMTJ05UmzZtNHbs2DJdszQITAAAAAACplq1aurXr59Gjx6tvQV0jdi1a5dat26ttWvXau3atbmP//XXX9q1a5fatGmT+1iLFi10xx136Mcff9Q555yjMWPGSJLi4uKUnZ0d/G9GBCYAAAAAATZ69GhlZ2fr2GOP1f/+9z8tW7ZMixYt0ksvvaTjjz9effv2Vfv27TVo0CDNmjVLf/75py6//HKlpaWpa9eu2r9/v2655RZNnjxZq1ev1tSpUzV9+nS1bt1aktSoUSPt2bNHEyZM0LZt27Rv376gfS8EJgAAAAAB1aRJE82aNUsnnHCChg4dqnbt2unkk0/WhAkT9Oqrr8rn8+nLL79U1apV1bt3b/Xt21dNmjTRJ598IkmKiYnR9u3bdfnll6tFixa64IILdNppp2n48OGSpO7du+vGG2/UhRdeqJo1a+qpp54K2vfic4qzKitC+P1+JSUlKT09XYmJibbLAQAAAAp14MABrVy5Uo0bN1aFwxcmoViKeg2Lmw0YYQIAAACAQhCYUGLLlwem5SQAAAAQ7tiHCSWyd6/k7hl28KAUy28QAAAAIhgjTCiR9evzjjdutFcHAAAAEAoEJpTI1q15x6tX26sDAAAgWkRRj7aAC8RrR2BCiWzZkne8Zo29OgAAACJd+fLlJSmoewxFOve1c1/L0mAFCkqkXTupRg1p2zapbl3b1QAAAESumJgYJScna8v//8W6UqVK8vl8lqvyBsdxtG/fPm3ZskXJycmKiYkp9bUITCiR5s3zT8sDAABA8NSpU0eSckMTSiY5OTn3NSwtAhMAAAAQpnw+n+rWratatWrp4MGDtsvxlPLly5dpZMlFYEKJzJghZWdLzZqZtuJlDOwAAAAohpiYmIC8+UfJEZhQInfcIf36qzmuXFny+yWm0gIAACBSeaZL3quvvqoOHTooMTFRiYmJOv744/X999/bLivqbN6cd7xnj7Rrl7VSAAAAgKDzTGCqX7++nnjiCc2cOVMzZszQiSeeqIEDB2rhwoW2S4sqh683pLU4AAAAIplnAtOAAQN0+umnq3nz5mrRooUee+wxVa5cWX/88Yft0qLGgQNSero5btLE3BOYAAAAEMk8uYYpOztbn376qfbu3avjjz++0PMyMjKUkZGR+7Hf7w9FeRHLbSdevrzUoYP099/S6tV2awIAAACCyTMjTJI0f/58Va5cWfHx8brxxhs1duxYtWnTptDzR44cqaSkpNxbampqCKuNPO76pVq1pEaNzDEjTAAAAIhkngpMLVu21Jw5czRt2jTddNNNuuKKK/TXX38Vev59992n9PT03NvatWtDWG3kcdcv1a4tNWhgjglMAAAAiGSempIXFxenZs2aSZK6dOmi6dOn68UXX9Trr79e4Pnx8fGKj48PZYkRrVUr6YUXpMREs4bpoouk3r1tVwUAAAAEj6cC0+FycnLyrVFCcDVpIt12W97HaWn2agEAAABCwTOB6b777tNpp52mBg0aaPfu3frwww81efJk/fDDD7ZLAwAAABChPBOYtmzZossvv1wbN25UUlKSOnTooB9++EEnn3yy7dKixsyZUmammZpXtaqUlSVt3CjVqCFVrGi7OgAAACDwfI7jOLaLCBW/36+kpCSlp6crMTHRdjmec/LJ0k8/Se+9J116qdSmjbRokTRxonTCCbarAwAAAIqvuNnAU13yYNehbcUlqV49c0+nPAAAAEQqAhOKzQ1MtWub+4YNzT2b1wIAACBSEZhQLNnZ0rZt5tgNTOzFBAAAgEhHYEKxbN8u5eRIPp9p8iDljTARmAAAABCpCEwoFnc6XvXqUuz/91Z0R5iYkgcAAIBIRWBCsWzZYu7d6XhS/il50dNrEQAAANHEM/swwa5mzaQXXpASEvIeS02VLrrITM3LzJTi462VBwAAAAQF+zABAAAAiDrswwQAAAAAZcSUPBTL7NnSgQNSy5ZStWp5j2dlSRs3mkYQdevaqw8AAAAIBkaYUCwPPih17y6NHZv/8fvvN80fnnzSTl0AAABAMBGYUCxuW/FatfI/zua1AAAAiGQEJhSLG5gObSsusXktAAAAIhuBCUflOHn7MBU2wsTmtQAAAIhEBCYcld8vZWSY48MDkzvCtG2btG9faOsCAAAAgo3AhKNyp+NVrixVqpT/c0lJUpUq5njt2tDWBQAAAAQbgQlH5U7HO3z9kiT5fKxjAgAAQORiHyYcVaNG0osvSnFxBX/+0kulHTukevVCWhYAAAAQdD7HcRzbRYSK3+9XUlKS0tPTlZiYaLscAAAAAJYUNxswJQ8AAAAACkFgwlHNnSv99pu0fXvBn8/ONg0f5s8PbV0AAABAsBGYcFQjRkg9ekiffFLw53//3ezHNHBgaOsCAAAAgo3AhKNy24ofvgeTy928dt06M9oEAAAARAoCE46qqLbikpSSIsXESAcPSps2ha4uAAAAINgITDiqo40wxcbmtRRnLyYAAABEEgITinTggOT3m+PCRpikvM1rV68Ofk0AAABAqBCYUCR3Ol5cnJSUVPh57jomRpgAAAAQSQhMKJIbmGrVkny+ws9zR5gITAAAAIgksbYLQHirV08aNUoqd5RofeKJUlaWlJYWmroAAACAUPA5juPYLiJU/H6/kpKSlJ6ersTERNvlAAAAALCkuNmAKXkAAAAAUAgCE4o0b57066/S1q1HP3ftWmnqVNNZDwAAAIgEBCYU6YknpF69pPfeO/q5nTpJPXtKy5cHvSwAAAAgJAhMKNLRNq09FK3FAQAAEGkITCiS21a8qE1rXWxeCwAAgEhDYEKR3BGm4gQmRpgAAAAQaQhMKFR2trRtmzkuzpQ8RpgAAAAQaQhMKNS2bZLjSD6fVKPG0c9nhAkAAACRhsCEQrnrl2rUkGJjj34+I0wAAACINMV4G4xoVbu2NGqUlJNTvPObNZPuuUdq1CioZQEAAAAh43Mcx7FdRKj4/X4lJSUpPT1diYmJtssBAAAAYElxswFT8gAAAACgEEzJQ6EWLJB27ZKaNy9eW3HJtCFfvlxKSZEaNw5qeQAAAEDQMcKEQj37rNSrl/Tvfxf/a+69V+rZU/rww+DVBQAAAIQKgQmFcrvkFWcPJhed8gAAABBJCEwo1ObN5r640/Ek9mICAABAZCEwoVDuCBOBCQAAANGKwIQCOU7eCFNpp+RFT8N6AAAARCoCEwqUni5lZprjkowwpaaa+337pB07Al8XAAAAEEoEJhTInY6XmChVqFD8r6tQIS9g0fgBAAAAXsc+TChQtWrSyy/njTKVxAMPSDExZi8mAAAAwMt8jhM9K038fr+SkpKUnp6uxMRE2+UAAAAAsKS42YApeQAAAABQCKbkoUB//SVt3y41by7VqVOyr/X7pfnzTZe8nj2DUx8AAAAQCowwoUAvvST17i299lrJv3biRBOUhg4NfF0AAABAKBGYUCC3S15J9mByuZvX0iUPAAAAXkdgQoHcTWtLsgeTy928dvNm6cCBwNUEAAAAhBqBCQVyA1NpRpiqVZMqVTLH69YFriYAAAAg1AhMKJA7Ja80I0w+H9PyAAAAEBkITDjC/v3S7t3muDQjTFLetLw1awJTEwAAAGADgQlHcKfjxcVJSUmluwYjTAAAAIgE7MOEIyQlSaNHS/v2mel1pXHRRVKnTlL37gEtDQAAAAgpn+M4ju0iQsXv9yspKUnp6elKTEy0XQ4AAAAAS4qbDZiSBwAAAACFIDDhCIsXSz//LG3YUPprZGVJv/0mffSRlJMTuNoAAACAUCIw4QivvSalpUmjRpX+Go4j9eolXXJJXotyAAAAwGsITDhCWTatdZUvL6WkmGNaiwMAAMCrCEw4Qlk2rT0UrcUBAADgdQQmHCEQI0wSm9cCAADA+whMOIIbmAI1wkRgAgAAgFcRmJBPVpa0fbs5LusIE1PyAAAA4HUEJuSzbZvpcOfzSTVqlO1aTMkDAACA18XaLgDhpVIl6ZVXJL9fiokp27U6d5ZGj5aaNw9MbQAAAECo+RzHcWwXESp+v19JSUlKT09XYmKi7XIAAAAAWFLcbMCUPAAAAAAoBIEJ+SxdKk2ZIq1fH5jrzZ0rffSRtGJFYK4HAAAAhBKBCfm8/bbUp4/0zDOBud6//iVdcok0YUJgrgcAAACEEoEJ+QRq01qX2ymP1uIAAADwIgIT8tmyxdyXddNaF5vXAgAAwMsITMjHHWEKdGBihAkAAABeRGBCPsGakscIEwAAALyIwIRcjhO8KXnr1klZWYG5JgAAABAqBCbk2rVLOnjQHAdqhKlOHSk2VsrOljZuDMw1AQAAgFCJtV0Awkf58tKrr0o7dkgVKgTmmjEx0ltvSdWrS9WqBeaaAAAAQKj4HMdxbBcRKn6/X0lJSUpPT1diYqLtcgAAAABYUtxs4JkpeSNHjlS3bt1UpUoV1apVS2eddZaWLFliuywAAAAAEcwzgWnKlCkaPHiw/vjjD40fP14HDx7UKaecor1799ouLWIsXy5NniytXRvY665eLX38sfTjj4G9LgAAABBsnlnDNG7cuHwfv/POO6pVq5Zmzpyp3r17W6oqsvznP9Ijj0g33SS98krgrvvjj9L110unny6dckrgrgsAAAAEm2cC0+HS09MlSdWK6CSQkZGhjIyM3I/9fn/Q6/Iyt6V4oDrkudiLCQAAAF7lmSl5h8rJydHtt9+uHj16qF27doWeN3LkSCUlJeXeUlNTQ1il97ib1gZqDyaXuxfT6tVmrycAAADAKzwZmAYPHqwFCxbo448/LvK8++67T+np6bm3tYFenBNhgh2Ydu+W/n9gEAAAAPAEz03Ju+WWW/TNN9/o559/Vv369Ys8Nz4+XvHx8SGqzPuCNSWvUiWpRg1p2zYzLS85ObDXBwAAAILFMyNMjuPolltu0dixYzVx4kQ1btzYdkkRJ1gjTFLeOqbVqwN/bQAAACBYPBOYBg8erPfff18ffvihqlSpok2bNmnTpk3av3+/7dIiwr590p495jgYgcmdlkfjBwAAAHiJz3G8sQzf5/MV+PiYMWN05ZVXFusaxd3NNxrt32/aim/dKj3wgFTIy11qv/4q7dolde4s1asX2GsDAAAAJVXcbOCZNUweyXWeVbGidMMNwbt+z57BuzYAAAAQLJ6ZkgcAAAAAoUZggiTp77+lSZOC15Rhzx7po4+kUaOCc30AAAAgGAhMkGTCzIknSiNGBOf6+/ZJl1wi3XablJkZnOcAAAAAAo3ABEnB24PJVbOmFB8vOY60bl1wngMAAAAINAITJAV3DybJdN2jtTgAAAC8hsAESXmBKVgjTBKb1wIAAMB7CEyQlDclL1gjTBIjTAAAAPAeAhMkMcKE4MjKksaPN80+/vtf29UAAACUnGc2rkXwHDwobd9ujhlhQlnl5Ei//CJ98on02WfS1q3m8bffls49V4qJsVsfAABASRCYoJwc6fXXzShT9erBe56+faWvv5aaNQvecyA8XHppXjfEGjWk9HRp715p2TKpVSu7tQEAAJQEgQmKj5euvz74z1O/vrkhMjiONGeOGUmaOFH67TcpNlYqV0667jpp1SrpoovM/l69ekl//CHNnUtgAgAA3uJzHMexXUSo+P1+JSUlKT09XYmJibbLATzpr79MSPr4Y2np0rzHf/hBOuWUgr9m3jwpOVlKTTUt5gEAAGwrbjZghAlatUr6+2+pSROpUaPgPtdXX0mLFkkXXhj850JgTZpkmjfMn5/3WIUKUv/+5ufZs2fhX9uhQ/DrAwAACAYCE/TZZ9Ldd0uDBknvvx/c5xo50kzNatGCwBTu1qwxDUGaNjUfV61qwlL58tKpp5rpdgMGSFWq2K0TAAAgmGgrjtw9mILZUtzldsqjtXh42rRJGjVK6tHDtIEfPjzvcx07Sh99ZJqDfPWVdMklxQ9LjiM99ph0zjnmOQAAALyCESbk7sEUzJbiLncvJlqLh49t26TPPzdrkiZPNuFGMmuNdu3KO8/nM6NKpeHzmdHLxYtNg5FTTy1r1QAAAKFBYAIjTFHupJNMUwbXP/5h1iSdf75Ur17gnqdzZxOY5swhMAEAAO8gMCGkI0xsXmvPnj1mH6zPP5fefVeqVMk87m4me9FF0gUXBG9tWadOZkrfnDnBuT4AAEAwEJgQ0hEmd0oeI0yhsX+/9P33ZrrdN9+YjyUzgnTeeeb4gQekhx4Kfi2dOpl7AhMAAPASAlOUc5y8wBTKEaatW82b94oVg/+c0WjpUumRR6Qvv5R27857vGlTM5LUuXPeYzExoampY8e82vbulRISQvO8AAAAZUFginLZ2dLo0WZaXihGmJKTzUhHaqoUFxf854sWWVnSzp1SzZrm45iYvBbxqalmROmii6RjjrG3cWzt2lLdutLGjaY9+T/+YacOAACAkiAwRbnYWOm660L3fD6fdMYZoXu+SJaTI02daqbbffaZ1L27NHas+VzTptITT0i9eplgUi5MNhDo1MkEu7VrCUwAAMAbfI7jNhGOfH6/X0lJSUpPT1diYqLtcoAScxxp+nQTkv77X2n9+rzP1asnrVxpNpYNV9u2mVHGWP5UAwAALCtuNuBtS5Rbs0Zatkxq3Fhq0iQ0zzl9ujRxotS2rdS/f2ieM1Kcf770v//lfZyYaDaDvfBC0x48nMOSJNWoYbsCAACAkgmTiTqw5csvpb59pX/+M3TP+dNP0r33Sp9+GrrnjBS9eplmCRdfbH52W7ZIY8aYfY3CPSwBAAB4EYEpyoWyQ56LvZhK75przM/sww+lM8+U4uNtV1RyN90kdeggLVliuxIAAICjIzBFOXfT2lB0yHOxF1PJZWeb+8qV8zac9aq5c02XvNmzbVcCAABwdASmKGdzhGndurwggKINHGg6340bZ7uSsmMDWwAA4CUEpihnY4QpJcXsE3TwYN7zo2izZ0t//22aPHgdgQkAAHgJgSnK2Rhhio01LbAlpuUVx7Zt0oYN5rh9e7u1BAKBCQAAeAmBKcq5IzyhDEwSjR9KYu5cc9+0qVSlit1aAqFdO7OR7ubN0qZNtqsBAAAoGvswRTHHkZ5/3owy1a0b2ud+6SUzLa9p09A+rxe5galjR7t1BEqlSlLLltKiRWaU6dRTbVcEAABQOAJTFPP5pOuus/PcnTvbeV4virTAJEldupjfv4wM25UAAAAUjcAEhLlIDEz/+Y8JTAAAAOGOwBTF1q0zm4c2bCg1axba59640bxpzsqSHnggtM/tNd27m0YZbrOESEBYAgAAXuFzHMexXUSo+P1+JSUlKT09XYmR0J+5jN58U7r+eql/f+nrr0P73H/9JbVtKyUnSzt3hva5ET5ycsxaupgY25UAAIBoU9xsQJe8KGajpbgrNdXc79ol+f2hf37Yd/bZZl+pP/+0XQkAAEDhCExRzMamta4qVaSqVc0xrcULt2mTlJlpu4rgyMiQ9u5lPyYAABDeCExRzNYeTK6GDc09galwl14qVa4sffaZ7UoCjw1sAQCAFxCYopjNKXkSm9cejeOYDnkHD+aFy0hCYAIAAF5AYIpiNqfkSXmBafVqO88f7jZulLZtk8qVk9q1s11N4LmBad480y0RAAAgHBGYohhT8sKbu/9Sy5ZSxYp2awmGpk2lhATpwAFp2TLb1QAAABSMfZii2NNPm6YCbse6ULvkEunkk6VGjew8f7iLxA1rDxUTI3XoIP3+u5mW17q17YoAAACORGCKYldfbff5U1LMDQWL9MAkmcBco4ZUvbrtSgAAAApGYALCVDQEpuHDbVcAAABQNNYwRakNG6Tx46WlS+3W8fzz0uDBZmog8rvqKunCC6XOnW1XAgAAEL0YYYpSP/0kXXGFmRL144/26hg9WlqxwgSDOnXs1RGO7r7bdgWh4TimI2ByslSpku1qAAAA8mOEKUq5ezDZainuYi8m9O4t1asnTZliuxIAAIAjEZiilO2W4i5aixds7lzTajsnx3YlweeGZjawBQAA4YjAFKXCJTAxwlSwIUOkFi2kDz6wXUnwuRvYEpgAAEA4IjBFqXCZkueOMK1ebbeOcOI4eR3yOnSwW0soEJgAAEA4IzBFKUaYwteaNVJ6ulS+fHRs5uq2TV+2TNqzx24tAAAAhyMwRSk3MNkeYTo0MDmO3VrChTu61Lq1FBdnt5ZQqFXLbGDsONK8ebarAQAAyI+24lFq5EizF1PjxnbraNzYTMVyp+YhOjasPVynTub3cc4cqXt329UAAADkITBFqSuusF2BUb58dAWD4ojGwHTuuVLLlmzSCwAAwg+BCQgz0RiYrr7adgUAAAAFIzBFoU2bzFqRBg2kVq1sVyN9+aX044/SaadJ/fvbrsa+J56QZs9mtAUAACAc0PQhCk2ZIvXrJ91wg+1KjJ9/ll55RZo82XYl4eHcc6VHH5WqV7ddSWilp5vfha1bbVcCAACQh8AUhcJlDyYXrcUhSaefLqWlST/9ZLsSAACAPASmKBQuezC53MDE5rXSDz9I338v7dhhu5LQYwNbAAAQjghMUcgdYQqXwOS2FGeESRo+3Iy0/PCD7UpCj8AEAADCEYEpCoXLprUud4Rp0ybpwAG7tdiUk5O3cWs0dchzuYFp9mw2MQYAAOGDwBSFwm2EqXp1qWJFc7xund1abPr7b2nvXik+XmrRwnY1odeunVSunGn6sGmT7WoAAAAMAlMUCrcRJp+PaXlS3v5L7dpJsVHY8L9ixbw297Nn260FAADAFYVvyzBihBnJadbMdiV5vv1WqlpVSk62XYk90bhh7eE6dZL++susYzr9dNvVAAAAEJii0qWX2q7gSE2a2K7APgKTdPnlUo8e0gkn2K4EAADAIDABYYLAZDZUBgAACCcEpiizdatZH1K/vtSmje1q8ixcKL3yipmW9+ijtqux44svTGjq3Nl2JQAAAHDR9CHKTJ1q/op/1VW2K8lv2zYTmD75xHYl9nTqJF1xhZSYaLsSu+bPl95+W1qxwnYlAAAABKaoE24txV3uXkxr15r9iBC97r1XuvZa6ccfbVcCAABAYIo64dZS3FW/vmkvnpFhpg1Gm3fflUaNklautF2JfYduYAsAAGAba5iiTLiOMJUvL6WkSOvXS6tXh199wTZqlDRzplS3rtS4se1q7HID05w5NqsAAAAwGGGKMu4IUzgGkmjdvDYrS1qwwBxHc4c8lxuY5s83rw0AAIBNBKYo444whduUPClvHVO0BaalS81UxIQEqWlT29XY17SpeS0OHDCvDQAAgE0EpijjhRGmDRvs1hFq8+aZ+/btpXL8F6ly5fJG2piWBwAAbOPtWZQZNkx64gmpVSvblRzp7rulHTukp5+2XUlouRvWulPRwDomAAAQPmj6EGUuush2BYWrXt12BXa4gYn1S3muv1466yw28QUAAPYRmADL3Cl5BKY8vBYAACBcMCUvimzfLo0bl9eRLdxkZUmDB0sDBkh799quJnT++kv69Vem5AEAAIQjRpiiyPTp0mmnmb/eh+PakNhY6f33Jb/fdMpr3dp2RaGRmCj16GG7ivDz44/S5Mlmat6xx9quBgAARCtGmKJIOHfIc0XrXkw40n/+I40cKf30k+1KAABANCMwRZFw3oPJ5e7FtHq13TpC5cknpdtuC88RP9vcKYqzZ1stAwAARDkCUxTxwghTtG1e+9FH0ksvRU9ALAlaiwMAgHBAYIoi7ghTOAcmd0peNASIzEzT8EGiK1xB3Ndk+XJp9267tQAAgOjlqcD0888/a8CAAUpJSZHP59MXX3xhuyRPcUeYvDAlLxpGmBYtkg4elJKS8oIi8tSsKdWrZ47d1usAAACh5qnAtHfvXnXs2FGjR4+2XYoneWFKnhsctm2zW0couBvWdugg+Xx2awlXTMsDAAC2eaqt+GmnnabTTjvNdhme9cAD0sqVUtu2tispXNeu0o4dUnKy7UqCzw1MTMcrXMeO0rffSgsX2q4EAABEK08FppLKyMhQRkZG7sd+v99iNfadf77tCo4uLs7cogGB6ehuvlm69lqpUSPblQAAgGjlqSl5JTVy5EglJSXl3lJTU22XBORyp0gSmApXr57UuDFTFgEAgD0RHZjuu+8+paen597Wrl1ruyRrdu6Uvv/eG4vnX3pJGjBAGjfOdiXBNX++tGlT3jodAAAAhJ+IDkzx8fFKTEzMd4tWc+ZIp58uXXih7UqObsYM6Ztv8qasRbLataXy5W1XEd7ef1+64ALzOwEAABBqER2YkMcLHfJcbqe8aGgtjqP74w/p00+lKVNsVwIAAKKRpwLTnj17NGfOHM35/x7DK1eu1Jw5c7SGd9ZH5W5aG857MLncvZgiefPa226TzjiDEFActBYHAAA2eSowzZgxQ507d1bnzp0lSXfeeac6d+6shx56yHJl4c9LI0zRsHnt+PHSd99J+/bZriT8HRqYHMdmJQAAIBp5qq14nz595PCOqVS8NMLkTsmL1BGm/fulJUvMMR3yjq5tWykmxmxmvGGD6ZwHAAAQKp4aYULpeWmEye3+7vdL6el2awmGhQulnBypRg2pbl3b1YS/ihWlVq3MMdPyAABAqBGYooQbmLwwwpSQYMJE5cqm7XakOXTDWvYXKh7WMQEAAFs8NSUPpXfPPdKKFd6ZAvb33yYwRWKgODQwoXg6dTKd8nbtsl0JAACINgSmKHHOObYrKJkqVWxXEDwEppK76SZpyBApLs52JQAAINoQmIAQq1LF3AhMxZeQYLsCAAAQrVjDFAXS06Xvv/fW+o+JE6UBA6R777VdSeB9842ZWta+ve1KAAAAcDQEpiiwcKF0+unS2WfbrqT4duwwweLnn21XEhzlypkbiu/FF6XOnaU33rBdCQAAiCa8ZYsC7h5MXmgp7orUvZhycmxX4F1bt5pR0unTbVcCAACiCYEpCnippbirQQNzv3GjlJlpt5ZAuugiqWVL6euvbVfiPbQWBwAANhCYooAXR5hq1ZLi4yXHkdavt11N4MyeLS1dajZjRcm4gWn+fCkry2opAAAgihCYooA7wuSlwOTz5Y0yRcq0vD17zF5YEh3ySqNJE7M3V0aGtGSJ7WoAAEC0IDBFAXeEyUtT8qS8wLRmjd06AmX+fDNiVreuVLOm7Wq8p1y5vKDJtDwAABAqBKYo4MURJsk0fqhcWdq713YlgcGGtWXHOiYAABBqbFwbBYYONXsadeliu5KSefVV6a23zPS8SEBgKrtjjpFatJCSk21XAgAAogWBKQqceabtCkonLs52BYFFYCq7q682NwAAgFAhMAEhcswx0v79ZvNVAAAAeAOBKcLt2SP9/LNUp455w+4l27dLV15p1mBNm+b9qXkvv2y7gsiRk2P256pQwXYlAAAg0tH0IcItWSKdcYbUv7/tSkqucmXpm2+k6dNNeAIkacQIs4bpmWdsVwIAAKIBgSnCeXHTWld8vGnBLXl/L6Zt26SDB21XERkqVZJ276ZTHgAACA0CU4RzW4p7bQ8mV6TsxXTNNWbE7IMPbFfifbQWBwAAoURginBeHmGS8gKT10eY5s41a27q17ddife5XQZXrDAjTQAAAMFEYIpwXt201hUJI0y7duUFvg4drJYSEWrWlOrVM8fz5tmtBQAARD4CU4RzR5i8OiWvYUNz7+XA5L6pb9BAqlrVbi2Rwm3NzrQ8AAAQbASmCBcJI0yVK0uxHm6Az4a1gcc6JgAAECoefhuK4rjtNqlfP+m442xXUjoDBkh+v7f3YCIwBV6PHtLpp0tdutiuBAAARDoCU4Q74wxz86pyETAGSmAKvFNPNTcAAIBgIzABQXbBBVKjRoyGAAAAeFEE/P0ehdm3T/r2W2nGDNuVlM2tt5rRmSlTbFdSOnffLX36qdS4se1KIs/mzdLGjbarAAAAkYzAFMFWrpT69zdrmLxs+XLTaW75ctuVIJzce69Up4707LO2KwEAAJGMwBTBvN4hz+Xl1uJ//WWCq+PYriTyNG9u7umUBwAAgonAFMG8vgeTy9281t381UuGDpWaNJHefNN2JZHn0NbiBFIAABAsBKYIxgiTfW6HvPbt7dYRidq2lWJipO3bpfXrbVcDAAAiFYEpgkVKYHJHmLwWmLZuNQ0JfD4CUzBUqCC1bm2OmZYHAACChcAUwSJlSp47wrR2rZSTY7eWknBHl5o2lSpXtltLpDp0Wh4AAEAwEJgiWKSMMKWkSMnJZpF/errtaoqPDWuDj8AEAACCjY1rI9jgwVKfPlL37rYrKZvYWGnnTttVlByBKfj69JGGDJHS0mxXAgAAIhWBKYKdeqq5wQ4CU/B16WJuAAAAwUJgAoLkwQelmTOlbt1sVwIAAIDSYg1ThMrIkL75Rpo+PTL2qPnPf8xIzX332a6k+M47Txo5Uqpb13YlkW33bmnqVGnePNuVAACASERgilBr10oDBkgnnGDaWnvdvn3mDfFff9muBOHmqaeknj2ll16yXQkAAIhETMmLUJHSIc/lthZfvdpuHcU1ebKUmWmm41WtaruayEanPAAAEEyMMEWoSNmDyeW1zWsffVTq10/6/HPblUS+zp3N/YIF0sGDdmsBAACRh8AUoSJthMkNTDt3mjUr4cxx6JAXSo0aSYmJZt3ekiW2qwEAAJGGwBSh3MAUKSNMVarkTW0L91GmjRulbdukcuWktm1tVxP5ypXLC6ZMywMAAIFGYIpQ7pS8SBlhkvJGmcJ9HZM7utSypVSxot1aogXrmAAAQLDQ9CFCRdoIkyS1aSNlZYV/m3Sm44UegQkAAAQLgSlC3XCD1L271Lu37UoC58MPbVdQPASm0DvhBNNW/NhjbVcCAAAiDYEpQp18srkh9AhMode4sXTrrbarAAAAkYjABATY++9Ls2cz2gEAABAJCEwR6OBBadw40/Cha1fTRSwSLF0qXXCBlJMjzZtnu5rCHXOMuSG0Vq2SpkyR6taVTjnFdjUAACBSEJgi0KZN0plnSrGxZm+aSFGlipnuVq6caf4Qy28vDvH559LQodK55xKYAABA4ETI2AMO5bYUr1UrckaXJDNiVr68GWFav952NQX75BPplVekv/+2XUn0oVMeAAAIhgh6Ow1XJLYUl0z4S001x+G6ee3o0dLgwdKvv9quJPq4TTZWrJD8fru1AACAyEFgikCRuGmtq2FDcx+Ogclx8tZW0SEv9KpXzwvU4bzGDQAAeAuBKQK5I0yRGJgaNDD34RiYVq+W0tPNtMHWrW1XE52YlgcAAAKNwBSBDl3DFGncEabVq+3WURB3/6U2baS4OLu1RCsCEwAACDQCUwSK5BGmFi2ktm3DMwyyYa19BCYAABBopQpMI0aM0L59+454fP/+/RoxYkSZi0LZXHON9Pzz0okn2q4k8AYNkhYskMLx14z1S/b17i1995309de2KwEAAJHC5ziOU9IviomJ0caNG1XrsD/zb9++XbVq1VJ2dnbACgwkv9+vpKQkpaenKzEx0XY5iDDNm0vLl0s//SSddJLtagAAAFCU4maDUm396TiOfD7fEY/PnTtX1apVK80lgRJzHKmAX0Nr/vzTjDIdc4ztSgAAABAoJQpMVatWlc/nk8/nU4sWLfKFpuzsbO3Zs0c33nhjwItE8eXkSN98Y9b4dOsmxcTYrijw+vaVZs6UJk3KW7MSDqpWldLSbFeBOXOk//1PatxYuvpq29UAAACvK1FgeuGFF+Q4jq6++moNHz5cSUlJuZ+Li4tTo0aNdPzxxwe8SBTf9u3SwIHmODMzMgNTerq0a5fplBdOgQnhYdYs6dFHzRo+AhMAACirEgWmK664QpLUuHFj9ejRQ7GxpZrRhyByO+RVr272A4pEDRpIM2aE115ML71kAtygQUzJs+3QTnnhNm0TAAB4T6m65FWpUkWLFi3K/fjLL7/UWWedpfvvv1+ZmZkBKw4l5+7BFIktxV3huHntxx9Lzz0nLV1quxK0aSPFxko7dkjr1tmuBgAAeF2pAtMNN9ygpf//zvDvv//WhRdeqEqVKunTTz/VP//5z4AWiJJxR5jCcZ+iQAm3zWtzcmgpHk4qVJBatzbH7McEAADKqlSBaenSper0//NePv30U6WlpenDDz/UO++8o//973+BrA8lFMmb1rrCbYRpxQpp717zRr15c9vVQGIDWwAAEDilCkyO4ygnJ0eS9NNPP+n000+XJKWmpmrbtm2Bqw4lFg1T8sJthGnuXHPftq2ZCgb7CEwAACBQSvX2rmvXrnr00UfVt29fTZkyRa+++qokaeXKlaodye/UPSBapuS1aSM1amSmw5UrVewPHDcwMR0vfLiBadkyq2UAAIAIUKrA9MILL2jQoEH64osv9MADD6hZs2aSpM8++0zdu3cPaIEomcsvl9q3l3r0sF1J8NSoIS1caLuKPASm8HP88aYBR9OmtisBAABe53McxwnUxQ4cOKCYmBiVD9N+1n6/X0lJSUpPT1diYqLtchAhjjlGmj1bmjyZjWsBAAC8orjZoEwrLmbOnJnbXrxNmzY6hg1oEGLhMCVv5kxp40az9xUAAAAiS6neam7ZskUnnHCCunXrpiFDhmjIkCHq2rWrTjrpJG3dujXQNaKYHEf66ivpjz+krCzb1QTX8OFS1arSo4/arsRsjJqSIsXH264Eh/r1V+nii6WHHrJdCQAA8LJSBaZbb71Ve/bs0cKFC7Vjxw7t2LFDCxYskN/v15AhQwJdI4pp925p4ECzfiPS9w+OiZF27QqfTnkIP1u3mg2Fv/3WdiUAAMDLShWYxo0bp1deeUWt3d0hZabkjR49Wt9//33AikPJuB3yKleWKlWyW0uwhcteTPffL515pjRhgt06cCS3U96CBdLBg1ZLAQAAHlaqwJSTk1NgY4fy5cvn7s+E0IuGPZhc7l5MtgPTjz9KX38t7dxptw4cqVEjKTHRjLYuXmy7GgAA4FWlCkwnnniibrvtNm3YsCH3sfXr1+uOO+7QSSedFLDiUDLRsAeT69ARpsD1eSyZrCwzeiHRUjwc+XxsYAsAAMquVIHp5Zdflt/vV6NGjdS0aVM1bdpUjRs3lt/v16hRowJdI4rJDUzRMMJUr555Q3zggFmrYsPSpVJGhpSQwH4/4YrABAAAyqpUbcVTU1M1a9Ys/fTTT1r8/3NdWrdurb59+wa0OJRMNE3Ji4sznenWrzeNH2yMqrkb1nboYL+1OQpGYAIAAGVVord5EydOVJs2beT3++Xz+XTyySfr1ltv1a233qpu3bqpbdu2+uWXX4JVK44imqbkSVKfPtJpp5mOeTa4gYnpeOGrUycpNlbKzrZdCQAA8KoSjTC98MILuu666wrcCTcpKUk33HCDnnvuOfXq1StgBaL4LrlEatlSOu4425WExvvv231+AlP469BB2rOHPbIAAEDplWiEae7cuTr11FML/fwpp5yimTNnlrkolE7PntJtt0n/+IftSqJDfLxp305gCl8xMYQlAABQNiUaYdq8eXOB7cRzLxYbq622VuAjamVk2HlT/MUXTPUCAACIdCUaYapXr54WuH2UCzBv3jzVrVu3zEWhdL75Rvr9d7PvTDSYPFmqWlXq3t1eDTEx9tZQoXjGj5e6dZMGDbJdCQAA8KISBabTTz9dDz74oA4cOHDE5/bv369hw4apf//+ASsOxXfggDRggAkPe/fariY0qlWTdu0yXfJCzdbeTyi52Fhpxgzpjz9sVwIAALzI5zjFf+u3efNmHXPMMYqJidEtt9yili1bSpIWL16s0aNHKzs7W7NmzVLtMO1r7ff7lZSUpPT09AIbV3jZmjVSw4ZS+fJmiprPZ7ui4Nu1y4wwSWZhf0JC6J776quladOkRx6RzjkndM+LktuxQ6pe3Rzv2iUlJVktBwAAhIniZoMSjTDVrl1bv/32m9q1a6f77rtPZ599ts4++2zdf//9ateunX799degh6XRo0erUaNGqlChgo477jj9+eefQX0+r3D3YKpVKzrCkiQlJ0vu7/aaNaF97pkzpb/+MqMXCG/VqkkNGpjjefPs1gIAALynxNttNmzYUN999522bdumadOm6Y8//tC2bdv03XffqXHjxsGoMdcnn3yiO++8U8OGDdOsWbPUsWNH9evXT1vctBDF3D2YwnRwL2jcN8KhDEyZmdKiReaYDnnewAa2AACgtEocmFxVq1ZVt27ddOyxx6qqOy8qyJ577jldd911uuqqq9SmTRu99tprqlSpkv7973+H5PnDWbRtWutq2NDchzIwLVokHTxoRrjcwIbw5gam2bOtlgEAADyo1IEp1DIzMzVz5kz17ds397Fy5cqpb9+++v333wv8moyMDPn9/ny3SOUOskXrCFMoGz+4G9Z26BA90x+9jhEmAABQWp4JTNu2bVN2dvYRa6Rq166tTZs2Ffg1I0eOVFJSUu4tNTU1FKVaEa0jTF27SqeeKjVtGrrndAMT0/G8o1MnqUkTqVUrOhwCAICSiegl6/fdd5/uvPPO3I/9fn/EhqYLLjBvCDt3tl1JaF19tbmFEoHJexo3llassF0FAADwIs8Epho1aigmJkab3aGU/7d582bVqVOnwK+Jj49XfHx8KMqz7vjjzQ3B16aNmQIZbeEUAAAgGnlmSl5cXJy6dOmiCRMm5D6Wk5OjCRMm6HiSQtTbvVvKyQnNc730kmlPfcwxoXk+BI7jSOnptqsAAABe4pnAJEl33nmn3nzzTb377rtatGiRbrrpJu3du1dXXXWV7dKs++YbaepUs2ltNMnJMeu2EhOljRttV4Nw9t13Zk8mNhoGAAAl4ZkpeZJ04YUXauvWrXrooYe0adMmderUSePGjQv6ZrnhLjtbGjjQhIcNG6S6dW1XFDrlykkJCdLWraZTXr16wX2+XbukKlWkmJjgPg8Cr25d8/ObPduMNNHhEAAAFIenRpgk6ZZbbtHq1auVkZGhadOm6bjjjrNdknXbt5uw5PNJNWvarib0Qrl57U03SZUrS2PGBP+5EFht2kixsdLOndLatbarAQAAXuG5wIQjuX0wqlc3bwijTSj3Ypo7VzpwQCqkzwjCWHy8CU0S+zEBAIDiIzBFgGjdg8nVsKG5D/YI0/790pIl5piW4t7EBrYAAKCkCEwRYMsWcx+tS7lCNcK0cKGZ+lijRnStE4skBCYAAFBSBKYI4I4wRXtgCvYI06Eb1tIwwJsITAAAoKSicMVL5HFHmKJ1Sl7z5tKpp+atTwmWQwMTvKljR6lfPxOccnJMl0UAAICiEJgiwDnnSCkpUocOtiuxo2lT6fvvg/887qgEgcm7qlWTxo2zXQUAAPASAlME6NbN3BBcZ55p1i/xWgMAAEQPAhMixu7dZm1R5crBuf5ddwXnugi9bdvMZsetW9uuBAAAhDtm8EeA77+Xpk41ba+j1aBBUmKi9J//2K4E4e7bb80Gz4MG2a4EAAB4AYHJ4xxHOvtsqWfPvG550ahGDXMfrNbiy5aZLnyOE5zrI3Tc5iALFkiZmXZrAQAA4Y/A5HF+v5SRYY6jta24FPzW4vfeazbIHTUqONdH6DRqZEYjDx6UFi2yXQ0AAAh3BCaPc1uKV6kiVaxotxabGjY098EaYXJbirdtG5zrI3R8PvZjAgAAxUdg8jh3Gl607sHkCuYI0+7d0ooV5piW4pGBwAQAAIqLwORxbmCK5ul4Ut4I04YNgV+XMn++uU9JyVsrBW8jMAEAgOIiMHmcOyUv2gNTzZpSfLxpyrB+fWCv7U7HY3QpchwamGjkAQAAisI+TB7HlDyjXDnTJjo2VoqJCey1CUyRp00bafBgE5yysqTy5W1XBAAAwhWByeMGDDDTxNxWydHs7beDc10CU+SJj5deftl2FQAAwAsITB7XpYu5IXiGDpX+/FP6xz9sVwIAAIBQIzAhouzeLe3ZI9WtG7hrnneeuSGyHDhgRg937ZL69bNdDQAACFc0ffC4H36Qfv1V2rfPdiX2vfee2ZD0yittVwIv+OMPM2p44422KwEAAOGMwORxF1wg9eolrV1ruxL76tUz94Hci+m336SJE80oBCKLuyZt1Sp+vgAAoHAEJg87cEDy+81xtLcVl/JvXhuoVtFPPCGddJIZvUJkqVo1b/8ut7EHAADA4QhMHubuwRQXJyUl2a0lHKSmmvt9+6Tt2wNzTTrkRTY2sAUAAEdDYPKwQ/dg8vns1hIO4uOlOnXMcSCm5e3cmXedDh3Kfj2EHwITAAA4GgKTh7mBiel4edxpeatXl/1a8+aZ+4YNpeTksl8P4YfABAAAjobA5GHulDwCU55D1zGVFdPxIp8bmBYulDIzrZYCAADCFPswedihU/Jg9OsnVasmtW1b9msRmCJfw4bSiy9K7dtL5fjzEQAAKACBycNOO83sO9Sihe1Kwse115pbIBCYIp/PJw0ZYrsKAAAQzghMHtapU96UIgTea69Js2ZJPXrYrgQAAAC2EJgQcXbvltatk1q3Ltt1unY1N0S27dul7783e5rdfLPtagAAQLghMHnYjz9KFStKxxwjJSTYriY87NghVa9ujvftM68PUJS1a6XLLjOdEG+6iRb9AAAgP5Y5e9ill0q9e0srVtiuJHxUrZoXHteuLf11vvxSeuMNXtto0KaNVL68tGtXYLorAgCAyEJg8qisLGnbNnNMW/E8Pp/pfCaV7c3va69JN9wgjR8fmLoQvuLiTGiS2I8JAAAcicDkUdu3S45jAoI7BQ1GIPZiokNedGEDWwAAUBgCk0e5ezDVqCHFshItHzcwrV5duq/fulXauNGE0fbtA1cXwheBCQAAFIbA5FFsWlu4sk7Jc0eXmjaVKlcOTE0IbwQmAABQGAKTR23ZYu5Zv3Sksk7JYzpe9HF/1qtWSTt3Wi0FAACEGSZzeZQ7wkRgOlLHjtL115t266VBYIo+VatKP/xgmj8kJ9uuBgAAhBMCk0edfLI0erTUuLHtSsJP+/bS66+X/usJTNHplFNsVwAAAMIRgcmj2renIUGwTJggzZsnde5suxIAAADYRmBCRNq926xhSkkx061KokYN6cQTg1MXwtfGjWaz4l27pOeft10NAAAIFzR98KiffpJ+/tkEAxzptNOkdu3YeBbFl5EhPfywmeqamWm7GgAAEC4ITB511VVSWpq0aJHtSsJTaTvlvfmm9M9/SjNmBL4mhLeGDaWkJOngQf67AgAAeQhMHuQ4tBU/GncvppJuXvvxx9LTT5s1TIguPh/7MQEAgCMRmDwoPT1vyhAb1xasNCNMjkOHvGhHYAIAAIcjMHmQuwdTlSpSxYp2awlXpQlMGzZI27dL5cpJbdsGpy6ENwITAAA4HIHJg5iOd3SlmZLnji61bClVqBD4mhD+Dg1MjmOzEgAAEC4ITB7kjjARmArnjjDt3Fn8ToJMx0ObNlL58qZjnvvfGQAAiG7sw+RB7ggT65cKl5go3XqrCZXFHSkgMCEuTlq82IxQxsTYrgYAAIQDApMH9ekjvfKKlJpqu5Lw9tJLJTt/5UpzT2CKbk2a2K4AAACEEwKTB7VpY24IrD/+kNaulWrUsF0JAAAAwgVrmBCx9u2TFi6Uli4t3vk+n1n7VKlScOtCeFu/Xrr0UumUU2xXAgAAwgGByYMmTpSmTJH8ftuVhLfRo6V27aQRI2xXAi9JSJA++EAaP940DQEAANGNwORBN9xg1jG5TQpQsJLsxfToo9I550g//hjcmhD+kpOlRo3MMf+NAQAAApMH0Va8eEqyF9OPP0pjx0qbNgW3JngDG9gCAAAXgclj9u/P21eIwFQ0d4Rp/XopK6vw8xxHmjfPHNMhDxKBCQAA5CEweYy7B1NcnNlrCIWrU8dsQpqdLW3cWPh5q1dL6enm3NatQ1cfwheBCQAAuAhMHnPodDyfz24t4a5cuby9qoqalueuU2nTxgRRwA1Mf/0lZWZaLQUAAFhGYPIYd4SJ6XjFU5zGD25gYjoeXA0amP24WrRgXRsAANGOjWs9xh1hqlXLbh1eccUVUt++UocOhZ9DYMLhfD5pwwYzTRMAAEQ3ApPH9OghvfKKlJJiuxJvuPLKo5/j80kVKhCYkB9hCQAASAQmz2nVytwQOJ99VnQXPUQ3x2G9IAAA0YzAhIiWmSktWyZt3y717l34ebH8l4DDbNggnXuutHatuYVzaMrOlrZtM1N23Vt2tpmSCgAAyoa3iR4zebK579RJSk62WIhHrFwptWsnVa4s+f3h/aYX4aVGDWnmTOngQdNlsVGj0D7/wYOmycvhIeiaa/LOOeccaepUE5ZycvJ/fa1aBCYAAAKBwOQxt9wiLVwojR9vmhmgaG5b8T17pF27pKpV839+yBATQv/1L+mCC0JdHcJZXJzUtq3Zi2nOnMAEpoyM/AHIDUHXX593zllnSb/8Iu3YceTX16yZPzDt2pXXOdPnMyGvdm0TllJSmE4IAEAgEJg85tB9mHB0lSqZN5lbt5pRgsMD0/Tp0vz5R/51HpDMSK4bmM46q+Bz9u7NH4C2bDEh6Kab8s4580zp55/NBsmHq1Ejf2DavTsvLMXEmN/f2rXN7fAQ9MIL5uPatc11Dp9amp0tzZtnGli0a1eqlwAAgKhHYPKQrCyzFkciMJVEgwYmMK1Zk7chqWRC0vz55pgOeSiI+/vy1VdS9erSrbfmfe6MM6QpU0xgOlz16vkD0759eWGpfPm8UaDataW6dfOHoJdeygtB1aubDZgLU1S7fEl67DFp2DBp0CDp/feP+u0CAIACEJg8ZNs280aqXDnzRgrF07ChWYuyenX+x1esMG92K1SQmje3UxvCmxuYZs82vz+HBqbMzLywVKFC3ihQQSHo5ZfNfe3aZu1hUdPk2rYNXP09epj7KVOYngcAQGkRmDzEnY5Xo4aZqoPiadDA3K9Zk/9xd8Padu3okoeC9expQtK6dSbsHBo6Ro82f7yoXds0FSkqjNjaCuD4482I1rp1pgFKkyZ26gAAwMt4m+ghrF8qnYYNzX1hgYnpeChMTIyZIleQFi1CW0tpVKokHXus6aQ3ZQqBCQCA0ihidjzCjdsNq1Ytu3V4TVqaWctx1VX5HycwIRqkpZn7KVPs1gEAgFcxwuQhxx0nvfaa6ZqF4uvc2dwO17Sp1Lp1wZ8DIkVamvT443l7uAEAgJLxOY7j2C4iVPx+v5KSkpSenq7ExETb5QBA0O3ZYxpNZGdLq1blTVEFACDaFTcbMMKEqLB4sVn0fvzx5s0jEC0qVzYNKpo3l+rUsV0NAADeQ2DykClTzN5BnToduQErinbWWdKSJdLEidIJJ5jNQRMSit7jBogUN9xguwIAALyLt4secued0oknSr/9ZrsS7zm8tfjtt0uJidLrr1srCQAAAB5AYPIQ2oqXnrtuw928du5cs+lojRr2agJC6euvpTvukDZssF0JAADeQmDyCMfJaytOYCq5Q0eYsrKkBQvMx7QUR7QYMUJ64QVp0iTblQAA4C0EJo/YtUs6eNAc01a85NzAtHq1tHSplJFhFsOzkSeihbsfE+3FAQAoGQKTR7jT8ZKSpAoV7NbiRe6UvDVr8jasbd+epg+IHmxgCwBA6fB20SPcwFSrlt06vOrQKXmzZ5tjpuMhmvTqJfl80rJl0saNtqsBAMA7CEwewfqlsqlfX3rsMenNNwlMiE7JyWZLAolRJgAASoJ9mDyiSxfTApv9l0onLk66/35zvGWLVLGidOyxdmsCQi0tzfzBYMoU6aKLbFcDAIA3+BzHcWwXESp+v19JSUlKT09XYmKi7XIAIKS++EI6+2ypTx+65QEAUNxswAgTosbataadeL16UocOtqsBQu/kk6Xly+kOCQBASXhmDdNjjz2m7t27q1KlSkpOTrZdTsj98os0caK0fbvtSrxr1Cjp9NOlRx4x+1oB0SYhQWra1DR/AAAAxeOZwJSZmanzzz9fN910k+1SrLjnHumkk9hDpSzcTnmffSY99ZTdWgAAAOANnpmSN3z4cEnSO++8Y7cQS9y24nTJKz13LyZJat3aXh2ATStWSHffLe3cyTomAACKwzOBqTQyMjKUkZGR+7Hf77dYTdnQVrzs6tbNO3bbKwPRJilJGjvWHG/bJtWoYbceAADCnWem5JXGyJEjlZSUlHtLTU21XVKp7Nsn7dljjtm4tvTatjWBs3VryaO/CkCZ1ahh/luQzNpIAABQNKuB6d5775XP5yvytnjx4lJf/7777lN6enrube3atQGsPnTc0aX4eIlu6KVXsaK0bJk0axaL3hHd0tLMPRvYAgBwdFan5A0dOlRXXnllkec0KUP/2/j4eMXHx5f668PFoeuXeKNfNlWq2K4AsC8tTXrlFZrIAABQHFYDU82aNVWzZk2bJXiCO8LEdDwAgeCOMM2bZ5o/VK1qtx4AAMKZZ5o+rFmzRjt27NCaNWuUnZ2tOXPmSJKaNWumypUr2y0uyDp0kF5/nel4AAKjdm2pVStp8WKzjunMM21XBABA+PJMYHrooYf07rvv5n7cuXNnSdKkSZPUp08fS1WFRsOG0vXX264CQCQ5+WSpWjUp1jP/CgAAYIfPcRzHdhGh4vf7lZSUpPT0dCUyXAMgijkOayIBANGtuNmAvy16wG+/SQcOSO3bSyz5AhAIhCUAAIonovdhihT/+pd00knS+PG2KwEQadLT8xrLAACAIxGYPODQtuIAECgjRph1TE8/bbsSAADCF4HJAwhMAIKhcWMpJ4cNbAEAKAqBKcxlZUnbt5tj9mECEEjufkyzZkm7d9utBQCAcEVgCnNbt5r7cuWk6tXt1gIgsjRoYEaZsrOlqVNtVwMAQHgiMIU5dzpezZpSTIzdWgBEHneUiWl5AAAUjMAU5tzuVUzHAxAMbmCaPNlqGQAAhC32YQpzbdpIb74pVaxouxIAkahPH3M/Y4a0d6+UkGC1HAAAwg6BKczVry9de63tKgBEqkaNpMGDzcbYjmO7GgAAwg+BCQCi3Msv264AAIDwRWAKc7//bqbJdOjAOiYAAAAg1Gj6EOZGjJBOPln67jvblQCIVI4jLVwovfKKtG+f7WoAAAgvjDCFObetOKNLAIKpXz9p/XqpVSvpxBNtVwMAQPhghCnMuYGpdm27dQCIXD4f7cUBACgMgSmMOU7ePkwEJgDBxAa2AAAUjMAUxnbulLKyzHHNmnZrARDZ3P2Ypk2TDhywWgoAAGGFwBTG3Ol4yclSfLzVUgBEuObNpTp1pIwME5oAAIBBYApjTMcDECqHrmNiWh4AAHnokhfGmjeX3npLiouzXQmAaJCWJn3yCYEJAIBDEZjCWEqKdM01tqsAEC0GDpQaN5Z69LBdCQAA4YPABACQZP5Ik5JiuwoAAMILgSmMTZsm+f1S+/ZmMTYAAACA0KLpQxgbOVI65RTpyy9tVwIgWqxaJd1zj3T77bYrAQAgPBCYwpjbVrxWLbt1AIgeu3dLTz1lGs4cPGi7GgAA7CMwhTE3MNFWHECotG0rVasm7d0rzZxpuxoAAOwjMIUxdx8mRpgAhEq5clLv3uaY9uIAABCYwtbeveYmMcIEILTcDWwnT7ZaBgAAYYHAFKbc6XgVKkiVK9utBUB0cQPTr79KWVl2awEAwDYCU5hyp+PVri35fHZrARBdOnSQkpOlPXuk2bNtVwMAgF3swxSmGjUyXarKEWkBhFhMjNSrl/THH9KGDbarAQDALp/jOI7tIkLF7/crKSlJ6enpSkxMtF0OAISt9HQpMZERbgBA5CpuNmCECQBwhKQk2xUAABAeCExhasYMaedOsydKSortagBEK8cxjR/Kl7ddCQAAdrBCJkw9/bR0yinSp5/argRAtHr6aalePenll21XAgCAPQSmMOW2FWfTWgC2OI60cSP7MQEAohuBKUwd2lYcAGzo08fc//KLlJNjtRQAAKwhMIUpd4SJwATAlmOOMRtn79wpzZ9vuxoAAOwgMIWhgwelHTvMMVPyANgSGyv16GGOp0yxWwsAALYQmMLQ1q3mPiZGql7dbi0AoltamrlnHRMAIFoRmMKQu36pZk2pHD8hABa5gennn1nHBACITuzDFIbq1ZP+/W/enACwr2tXqWdP6bjjpP37pYQE2xUBABBaPsdxHNtFhIrf71dSUpLS09OVmJhouxwAAAAAlhQ3GzDhCwAAAAAKQWAKQ7NmST/+KK1bZ7sSADD27pUmTDCb2QIAEE0ITGHoxRelfv2kDz+0XQkASFlZUt26Ut++0pIltqsBACC0CExhyN20lj2YAISD2FipSxdzzH5MAIBoQ2AKQ25gql3bbh0A4GI/JgBAtCIwhSF3HyYCE4Bw0aePuZ8yhXVMAIDoQmAKMzk5eYGJKXkAwsVxx0lxcdLGjdLy5barAQAgdAhMYWbnTrPAWiIwAQgfFSua0CSxjgkAEF0ITGHGHV2qWtX8NRcAwoW7jonABACIJrG2C0B+tWtLY8ZImZm2KwGA/M47z4x8n3SS7UoAAAgdn+NEz/Jdv9+vpKQkpaenKzEx0XY5AAAAACwpbjZgSh4AAAAAFIIpeWFmzhxp0yapTRupQQPb1QBAfps3S19/bTp6Xn+97WoAAAg+RpjCzCuvSKedJr37ru1KAOBIc+dK110nPf647UoAAAgNAlOY2bzZ3NNSHEA46t5diomRVq82NwAAIh2BKcy4gal2bbt1AEBBKleWunY1x7QXBwBEAwJTmHH3YSIwAQhX7n5MkydbLQMAgJAgMIUZpuQBCHdsYAsAiCYEpjCyZ4+0b585ZoQJQLjq2VMqV076+29p3Trb1QAAEFwEpjDiTserVMmsEwCAcJSYKB1zjOTzSbNn264GAIDgYh+mMFKtmjRmjLR/v+1KAKBo774r1a0rVa1quxIAAIKLwBRGkpOlK6+0XQUAHF2bNrYrAAAgNJiSBwAAAACFIDCFkXnzpHHj2AwSgDe88YbUu7f0v//ZrgQAgOAhMIWRN9+UTjvN3ANAuFu0SPrlF+mnn2xXAgBA8BCYwgh7MAHwkj59zD37MQEAIhmBKYy4gYk9mAB4Qa9eprX4okV52yIAABBpCExhxH3DwQgTAC+oVk1q394c//yz3VoAAAgWAlMYYYQJgNekpZn7yZOtlhE29u2T7rxT+uor25UAAAKFwBQmMjOlnTvNMSNMALzCDUysYzKefFJ6/nnp/POl6dNtVwMACAQCU5jYutXcx8SYaS4A4AW9e5v/ZzVrJmVl2a7Grg0bpGeeMceZmdJ550nbt9utCQBQdrG2C4BRpYr0zjvS7t1SOWIsAI+oWdP8wYf/b0nDhpkped26mRkDy5dLN98sffKJ7coAAGVBYAoTiYnSFVfYrgIASo6wJDmOVKOGFB8vvfCClJAgXX+9NGKE7coAAGXlcxzHsV1EqPj9fiUlJSk9PV2JiYm2ywGAiLJhg5SSYrsKu7ZuNaNukglRPp/degAAhStuNuDvgmFiwQLp+++llSttVwIAJbN3r9SokVS/fl7zmmjlhiUpf1iaPFlavz7k5QAAAoDAFCbeeUc6/XRp9GjblQBAySQkSBUqmBGVX36xXU1o5eRIN94o/fln4ee884500knShRdKBw+GrDQAQIAQmMKEuwcTLcUBeFG07sf00UfS669Lp5wi7dlT8Dk9e0qVK0tTp0r33Rfa+gAAZUdgChNbtph7Nq0F4EV9+pj7aNqP6cAB6f77zfE995hQVJBmzcwokyQ9+6z0+echKQ8AECAEpjDhjjARmAB4kTvCNGeOlJ5utZSQGTVKWrPGrN26/faizz37bGnoUHN81VWm5TgAwBsITGHCHWFiSh4AL0pJMSMpOTnSr7/arib4tm+XHnvMHD/6qFSx4tG/ZuRIMz3P7zeb2u7fH9waAQCBQWAKAzk5TMkD4H3uKFM0TMt79FEzktahg3TppcX7mvLlzSa2tWpJc+dKH3wQ3BoBAIHBxrVhYMcOKTvbHB/akhYAvOScc6RKlaTTTrNdSXCtXJnX0fTpp6WYmOJ/bUqKaRSxdKl0zTXBqQ8AEFie2Lh21apVeuSRRzRx4kRt2rRJKSkpuvTSS/XAAw8oLi6u2NcJ141r9+41i4B37pSGDLFdDQCgKFlZponDL79I775ruxoAQGkVNxt4YoRp8eLFysnJ0euvv65mzZppwYIFuu6667R3714988wztssrs4QE6bLLbFcBACiO2Fjp2mvNrax27ZIeeMCsh0pOLvv1AACB54kRpoI8/fTTevXVV/X3338Xek5GRoYyMjJyP/b7/UpNTQ27ESYAiBQHDkjTpplpxieeaLuawHIcKTNTio8P3DVPOkmaOFE66ywz08DnC9y1AQBFK+4Ik2ebPqSnp6tatWpFnjNy5EglJSXl3lJTU0NUXcn89Zf07bfSihW2KwGAsvn4Y7Mn07/+ZbuSwPvyS6llS+m//w3cNZ98UoqLk774QnruucBdFwAQOJ4MTMuXL9eoUaN0ww03FHnefffdp/T09Nzb2rVrQ1RhyXzwgdS/v/TCC7YrAYCycTewnT7drM+MFAcPms1pV682e00FSteuef/vv+cesy4KABBerAame++9Vz6fr8jb4sWL833N+vXrdeqpp+r888/XddddV+T14+PjlZiYmO8WjtiDCUCkaNRIatDANEb4/Xfb1QTOW2+ZznY1aphgE0g33igNGmSmMV54Yd5G5gCA8GC16cPQoUN15ZVXFnlOkyZNco83bNigE044Qd27d9cbb7wR5OpCx/3HkT2YAESCtDTpvffMfkx9+9qupux275YeftgcDxsmJSUF9vo+n/Taa9Ls2WaK9sUXS+PHl6xdOQAgeKwGppo1a6pmMTceWr9+vU444QR16dJFY8aMUblynpxNWCACE4BI4gamyZNtVxIYTz1lZgI0by4dZSZ4qVWuLH32mdStm7R8ubR2rRmtAwDY54m24uvXr1efPn3UsGFDPfPMM9q6dWvu5+rUqWOxssBgSh6ASJKWZu7//FPav1+qWNFuPWWxfr307LPm+IknpPLlg/dcrVtLX38tdeggVa8evOcBAJSMJwLT+PHjtXz5ci1fvlz169fP9zmPdkXP5TiMMAGILE2bSvXqmbDxxx/SCSfYrqj0xo41oa9HD+nss4P/fIe/Vo5Dq3EAsM2z+zCVRnF7rYfS7t2SW8qePWYTWwDwum+/NX8E6tTJbPTqZVOmmP9Pd+4c2ucdM0Z65x3pxx8Du/cTAMAobjbw+D9j3hcbK/3nP9K2bYQlAJHjjDNsVxA47hTDUNq+XbrrLmnHDumOO6RXXgl9DQAAI3I6J3hUxYrSZZeZfxABAOFhwQJp40Z7z1+9utmjz+eTXn3VHAMA7CAwAQCCYuxY6ZprTPMHL8nJkS6/XGrWTPr+e3t1nHqq9OCD5vj6603LcQBA6BGYLFuyxMz1X7bMdiUAEFgffyz9+9/SuHG2KymZDz4weyLFxpo23zY99JDZy2rfPuncc826VwBAaBGYLPvkE6l/f+npp21XAgCB5a79mTLFbh0lsX+/9MAD5vi++6QaNezWExMjffih6Tq4eLEZaYqeVk0AEB4ITJaxBxOASNWnj7n//XcpM9NqKcU2apTZNLZ+fem222xXY9SsKf33v1JcnNSiBYEJAEKNLnmWsQcTgEjVurV5s791qzR9utnLKJxt3y49/rg5fvTR8Npwt3t3acUKE+QAAKHFCJNlBCYAkcrnk3r3NsdemJb3yCNSerrUsaN06aW2qznSoWHpwAFp1y5rpQBAVCEwWcaUPACRzF3HNHmy1TKKpVIlM+3t6afN2qFw9fffZsTp4otNRz8AQHARmCxjhAlAJHMD065d4b/25vHHpVWrpJNPtl1J0fbuNQ0gxo3Lm0IIAAgeApNFGRl5UyoITAAiUbt20qZNZi8mn892NUdXt67tCo6ufXuzma1k2o7/9JPdegAg0hGYLHvvPemZZ6TkZNuVAEDglSsX3n8Qchzp9tu9t7nuFVdI115r6r/4YmndOtsVAUDk8jlOuE+SCBy/36+kpCSlp6crMTHRdjkAEFVyckyACidjx0rnnGPWL61bJ1Wtarui4jtwwKxlmj3b3E+eLJUvb7sqAPCO4maDMPunCwAQabZulfr2lVJSpKws29XkOXhQuvdec3zHHd4KS5JUoYL06adSUpL022/SsGG2KwKAyERgsmjZMumbb6QlS2xXAgDBU62aNHOmaXIze7btavK8+aa0dKnZK+qf/7RdTek0bSq9+6507LHSDTfYrgYAIhOByaLPP5cGDKDLEYDIFhMj9epljsOlvbjfLz38sDl++GHJy7O0Bw6Ufv9datjQdiUAEJkITBaxBxOAaOG2Fw+XDWyfespMFWzRQrruOtvVlN2ha8MmTJD27bNXCwBEGgKTRezBBCBa9Olj7n/5RcrOtlqKNmyQnnvOHD/xRGQ1Snj6abNe7Oabw3/fKwDwCgKTRW5gYoQJQKTr1MlMe/P7pblz7dZSq5b04ovSeedJZ51lt5ZA69bNjDa9+67073/brgYAIgOBySJ3Sh4jTAAiXUyM1LOnObY9LS821kzD+/RTb2ymWxJ9+kiPPWaOBw8OryYbAOBVBCaLGGECEE1OP1069VS7zQkyM+09d6j8859S//5SRoYZRdu1y3ZFAOBtBCZLsrPNgmOJESYA0WHwYOn7781GsTaMH2+aPHzyiZ3nD5Vy5aT//Edq1Ej6+2/pyitZzwQAZUFgssRxzD9ozz1n9gABAARPTo4ZeVm92mzyGumqVpU++0yKi5O+/FL68UfbFQGAd8XaLiBaxcZKgwbZrgIAQm/DBmnPHjPaEyrvvy/NmWMaTzz4YOie16YuXaRXXzVdAPv1s11N8DiOtHat1KCB7UoARCpGmAAAITN6tFSvnnTffaF7zv37pX/9yxzff79Uo0bontu2q6+WLrvMdhWBt2uXGUG7/noz9bBZM2n37rzPH3oMAGVFYLJkxQrp66+lv/6yXQkAhE7nzub+559Dt67mxRfNCERqqjRkSGieMxxt2WKCalaW7UpKZ9EiafhwqXt3qXp16fzzpTfflNasMeu25s/PO/ess0xXxm+/Zf0WgLIjMFnyzTfSmWea//kDQLTo2lWqWFHati00fzDatk0aOdIcP/aYee5olJ0tpaWZjXofesh2NcWzbl3+Dn8//SQ9/LD0++9mTVqrVtJtt0nffSft2GGClGQC1NSp5ta/v9kD7KOPvBsUAdhHYLKEluIAolFcXN4b21Dsx/T552az3M6do3vdaExM3h/oRo40MxzCzf790g8/SHfeKbVta0YE//vfvM+fdpp07rnSG2+Y5h2LFkkvvGAer1Qp77wGDUx3wLvukipXlubNky65RGrZUnr9denAgZB/awA8jsBkiRuYaCkOINqkpZn7yZOD/1zXXy9NmiS98oqZthXNLrggb0ri5ZdLK1farUcyI0jPPiudcorp7HfqqdLzz5vRx3Ll8tfYrJlZt3TddUdv8JCSIj39tBltGjHCTOH7+2/pxhvNhsUAUBJR/s+HPVu2mHsCE4Bo06ePuZ8yJTTrS/r0kf7xj+A/jxc8/bR03HEmqJx3XuhHW7Zvzz8V03FMu/fx481Gu6mp0rXXmlBz6HTK0qpa1XRFXL3arGXr0UO68MK8z0+blrcnIgAUhsBkCVPyAESrY4+VKlQwfzhasiQ4z7FkibRxY3Cu7WVxcWaaW/Xq0qxZ0h13BPf5srKkX381oeXYY82+g9dem/f5qlWl22/PG1Vavdo0cjjvPPO5QElIMKNrv/5qXgO3tosukho2NGuh1qwJ3PMBiCwEJksYYQIQreLjTQOGDz+U6tYN/PUdx7TTbtZM+uqrwF/f6xo0kD74QPL5pAkTpPT0wD/H++9L55xjglmvXtKjj0rTp5ufzf790sGDeec++6wJTa1bm5pCZeNG02J+/37ppZekpk2lq66SFi8OXQ0AvIHAZIHjsIYJQHS7807p4oulpKTAX3vsWOm338z/a7t0Cfz1I0G/ftInn5gQU9afwd69ZkrdodMrx441N79fqlbNTIP7979N57vZs81muralpkp//mlqP/FEM+L0zjtSmzamuQTbfgBwxdouIBo5jvT22yY01aljuxoAiBwHD0r33muOhw41m+SiYOefn/9jxyneCI/jmM5zP/xgbr/+KmVmSkuXSs2bm3OuvNK08+7Xz4TWmJhAVx8YPp/Ut6+5TZtm2q5/8YXprjh0qO3qAIQLn+NEz5Zufr9fSUlJSk9PV2Jiou1yACCq/fmnNHGiGWlq2DAw13z5ZenWW8360OXLpSpVAnPdSOY45nX780/pP/8pPDRNn27O+/FHadOm/J9r2FAaM0Y64YTg1xtsf/1lQtP99+c9NmqUGZE680y6LQKRpLjZgBEmAIAVd90l/fKLWedy3XVlv156et5eQw8/TFgqrqVLzRTJrCypWzfTHCEz02wQW7++WdsjmZD0n/+Y40qVTDjq18/cmjcP7fqjYGrTxtxcW7dK99xj1jq1aWOOL744PKYVAggN/k4CALDC3Y8pUBvYPvmkaUXdsmX+TmwoWsuWpvGCZKah9e9vQmyfPmbUyNWnj2kBPmGCtGOH9M03ZjSvRYvICUsFiY01TSkSE83o0xVXmID48ssmRAGIfAQmAIAVgd6PKSbGtIx+8kn++l9St95q1jRlZUnffivt2WM6yB269qhKFfPannii6XQYLapWlR5/3LQdHznSTPdcvdq8Zg0bmgAJILKxhgkAYMW+fVJysmnUsGKF1KRJ2a+5bp1p9BDJIx7Bsnu3NGKECQj9+kmdO7NepyD795uRt6efljZskFaulFJSzOeK2zgDQHgobjYgMAEArOnRw7QA//e/zR44gFdkZUkzZkj/+EfeY2efbbrf3n13YP4AACC4ipsN+NsRAMCaQKxjuv9+88YVCKXY2PxhadEi013vtdfMuq5Bg6T5862VByCACEwAAGvcwPTnn6X7+h9/NOtKevQw3cwAW1q1kiZNkk45RcrOlj78UOrQwbQi//1329UBKAsCEwDAml69pKlTpTlzSv612dlm6pMk3XyzVLNmQEsDSsTnM41MfvjBjHief7557Ouvpe7dzegTAG8iMAEArKlUybyZjIsr+de+/740b56UlCT961+Brw0orS5dpP/+10zTu/pq003vtNPyPr9qlQn8ALyBwAQA8Jz9+/NC0gMPmH2DgHDTsqX09tvSkiV5rdizs6WTT5Zatzafy8y0WyOAoyMwAQCs2rRJuumm/H+BP5oXXjAtxBs0MPvhAOHs0H2rFi+Wtm+Xli0zGyw3aSI9/7xZx7dokdkDC0B4oa04AMAqv9/s/ZOTk7ePUlG2bpWaNjX7Br33nnTppaGpEwiU3bulN96QnnvO7OV0qM8/N+3JJenTT836vMqVzcbB7r17fNNN0nHHmXNXrjRNJwo6r0oVs+dZaaa+hjvHMTd3z7CMDDPlcf9+6cCBI+9btjRTJiXz/55Rowq/dufO0umnm+N9+0ywLUy7dtLAgeY4K8ts8lyYli2l887L+/jxxwvfvLtJE+nii/M+fvppMypZrpzUuLF53hYtIvNnGwrsw1QAAhMAhKeuXaWZM6UPPpAuuaToc7OyzFSmr74yC+rZXBVelZFhQv+bb0qbN5sg9emn0oknms+/8YZ0ww2Ff/3//iedc445/uQT6aKLCj/30L3OJk82YevwIOben3deXsv0LVukP/4o+LzKlaWYmLznOHhQSk/PCyfuzf24RQupUSNz7vr15ns99NxDw83555sOg5L011/S5ZcXHIAOHJAeekh6+OG8c9u2Lfx1GDpUeuYZc7x2rRmlLswNN5g28ZIZFaxRo/BzL73U/CwlU1PFioWfe8455mfniokxfzAqSL9+0rhxeR9XqXLkKGRsrAlhp56a971JbKRcHMXNBrEhrAkAgAKlpZnANHny0QNTbKx5I1PUG0nAC+LjzbS8a68t+PMXXmha5u/ebW579uS/b98+79yaNc1oSEHn7d1rwo1ryxYzNbAwbdrkBaZZs/JGTgry4ovSkCHmeOJE86a9MM8/L91+uzletUq6447Cz23ZMi8wZWWZ/z8U5sCBvOOKFc1oWsWKUoUKR943a5Z3bkKCdN11hV+3Z8+84/j4os91R/okE4CKOrdz5/wfX3tt4SNMh4e/K680QTszU1q6VFqwwPyMFy40r5nLcaS6dc2Ifbt25jrt2plbaipBqqQITAAA69LSzPSko21gm5VlAhMQDZKSzK04Tjwxb2TqcDk5+d+Qn3ii+eOEG6gOD1kdO+adW6mSCQOHn5eVlfd5lzuqEhdnwsmhQaVCBTP11lWnjplqdujnDw03PXrkndu4sfTttwUHoAoVpEMHBho3lnbuLN5rVq2aGcUrjsqVi39u+fLFP1eSXn+9+OcePoXQccxI2cKFZvTJtXatGbXcvNmE3kNVqWIC3bPP5j22ZYsJ3QSpgjElDwBg3c6dptOd45g1HXXrHnnO1KnSZZeZjWovvDD0NQIwHMeMcOzebYJLQoJ53A1mh07Tgx3Z2WZd24IF+W9Llpiw+89/5q2z2rJFql3bTDk8fDSqbdv8QTfSsIapAAQmAAhfnTubDWw//vjIQOQ45i/Ov/9upq+8+aaVEgHA0zIzTYfGhIS89WRTp5pNxAtLBA88ID36qDnev98ErzZt8oKyl7GGCQDgKWlp5i/WBw8e+bnPPzdhqVIlacSI0NcGAJEgLu7IdVE9epiplosX541ELVxo7tesMRsvu2bPNuf7fHld+g4dkWrZMn8b/UjBCBMAICwcPGjm/h8uM9P8g7x8uemGNXx46GsDgGjk95tOpG7TkG++MaP8mzcXfP6oUdItt5jj9evNH7ratTPNNsJx/SkjTAAATykoLElmQfTy5WaO/d13h7YmAIhmh2eI/v3NZuPbtuWNQh16O3T0asIE6YorzHFcnNS6tQlP/fsX3QI/HBGYAABhJSvLtEFOSjJ7urgjSsOH52+NDACwo0YNM406LS3vMXcTYVeFClK3biZY7dsnzZ1rbtWrey8wsd0fACBsvPqqafX7wAPm47FjzYaRrVpJ11xjtzYAQOF8vvwbiV9wgfTnn2Zt6ooVZrPxxx8vel+vcMUIEwAgbNSqZf5xdfdjuvJKs+C4XLnwnP8OAChauXJSkybmNmCA7WpKh39+AABho3dvc79ggZkjX6OGdMIJdmsCAEQ3puQBAMJGzZpmfw9J+vRTu7UAACARmAAAYcZdRHzzzWb/JQAAbCIwAQDCSs+eecedOlkrAwAASaxhAgCEmXPPlSZONOuZmjSxXQ0AINoRmAAAYSU+XnrrLdtVAABgMCUPAAAAAApBYAIAAACAQhCYAAAAAKAQBCYAAAAAKASBCQAAAAAKQWACAAAAgEIQmAAAAACgEAQmAAAAACgEgQkAAAAACkFgAgAAAIBCEJgAAAAAoBAEJgAAAAAoBIEJAAAAAApBYAIAAACAQhCYAAAAAKAQBCYAAAAAKASBCQAAAAAKQWACAAAAgEIQmAAAAACgEAQmAAAAACiEZwLTmWeeqQYNGqhChQqqW7euLrvsMm3YsMF2WQAAAAAimGcC0wknnKD//ve/WrJkif73v/9pxYoVOu+882yXBQAAACCC+RzHcWwXURpfffWVzjrrLGVkZKh8+fLF+hq/36+kpCSlp6crMTExyBUCAAAACFfFzQaxIawpYHbs2KEPPvhA3bt3LzIsZWRkKCMjI/djv98fivIAAAAARAjPTMmTpHvuuUcJCQmqXr261qxZoy+//LLI80eOHKmkpKTcW2pqaogqBQAAABAJrE7Ju/fee/Xkk08Wec6iRYvUqlUrSdK2bdu0Y8cOrV69WsOHD1dSUpK++eYb+Xy+Ar/28BGm9PR0NWjQQGvXrmVKHgAAABDF/H6/UlNTtWvXLiUlJRV6ntXAtHXrVm3fvr3Ic5o0aaK4uLgjHl+3bp1SU1P122+/6fjjjy/W87lfAwAAAACStHbtWtWvX7/Qz1tdw1SzZk3VrFmzVF+bk5MjSflGkI4mJSVFa9euVZUqVQodlcLRuWmckbrQ4nW3g9fdDl53O3jd7eB1t4PX3Y5wet0dx9Hu3buVkpJS5HmeaPowbdo0TZ8+XT179lTVqlW1YsUKPfjgg2ratGmxR5ckqVy5ckWmR5RMYmKi9V/0aMTrbgevux287nbwutvB624Hr7sd4fK6FzUVz+WJpg+VKlXS559/rpNOOkktW7bUNddcow4dOmjKlCmKj4+3XR4AAACACOWJEab27dtr4sSJtssAAAAAEGU8McKE8BIfH69hw4YxuhdivO528LrbwetuB6+7HbzudvC62+HF191qlzwAAAAACGeMMAEAAABAIQhMAAAAAFAIAhMAAAAAFILABAAAAACFIDCh2EaOHKlu3bqpSpUqqlWrls466ywtWbLEdllR5YknnpDP59Ptt99uu5SIt379el166aWqXr26KlasqPbt22vGjBm2y4po2dnZevDBB9W4cWNVrFhRTZs21SOPPCJ6EwXWzz//rAEDBiglJUU+n09ffPFFvs87jqOHHnpIdevWVcWKFdW3b18tW7bMTrERpKjX/eDBg7rnnnvUvn17JSQkKCUlRZdffrk2bNhgr+AIcbTf90PdeOON8vl8euGFF0JWX6Qqzuu+aNEinXnmmUpKSlJCQoK6deumNWvWhL7YYiAwodimTJmiwYMH648//tD48eN18OBBnXLKKdq7d6/t0qLC9OnT9frrr6tDhw62S4l4O3fuVI8ePVS+fHl9//33+uuvv/Tss8+qatWqtkuLaE8++aReffVVvfzyy1q0aJGefPJJPfXUUxo1apTt0iLK3r171bFjR40ePbrAzz/11FN66aWX9Nprr2natGlKSEhQv379dODAgRBXGlmKet337dunWbNm6cEHH9SsWbP0+eefa8mSJTrzzDMtVBpZjvb77ho7dqz++OMPpaSkhKiyyHa0133FihXq2bOnWrVqpcmTJ2vevHl68MEHVaFChRBXWkwOUEpbtmxxJDlTpkyxXUrE2717t9O8eXNn/PjxTlpamnPbbbfZLimi3XPPPU7Pnj1tlxF1zjjjDOfqq6/O99g555zjDBo0yFJFkU+SM3bs2NyPc3JynDp16jhPP/107mO7du1y4uPjnY8++shChZHp8Ne9IH/++acjyVm9enVoiooChb3u69atc+rVq+csWLDAadiwofP888+HvLZIVtDrfuGFFzqXXnqpnYJKgREmlFp6erokqVq1apYriXyDBw/WGWecob59+9ouJSp89dVX6tq1q84//3zVqlVLnTt31ptvvmm7rIjXvXt3TZgwQUuXLpUkzZ07V7/++qtOO+00y5VFj5UrV2rTpk35/l+TlJSk4447Tr///rvFyqJPenq6fD6fkpOTbZcS0XJycnTZZZfp7rvvVtu2bW2XExVycnL07bffqkWLFurXr59q1aql4447rsjpkrYRmFAqOTk5uv3229WjRw+1a9fOdjkR7eOPP9asWbM0cuRI26VEjb///luvvvqqmjdvrh9++EE33XSThgwZonfffdd2aRHt3nvv1UUXXaRWrVqpfPny6ty5s26//XYNGjTIdmlRY9OmTZKk2rVr53u8du3auZ9D8B04cED33HOPLr74YiUmJtouJ6I9+eSTio2N1ZAhQ2yXEjW2bNmiPXv26IknntCpp56qH3/8UWeffbbOOeccTZkyxXZ5BYq1XQC8afDgwVqwYIF+/fVX26VEtLVr1+q2227T+PHjw3debwTKyclR165d9fjjj0uSOnfurAULFui1117TFVdcYbm6yPXf//5XH3zwgT788EO1bdtWc+bM0e23366UlBRed0SNgwcP6oILLpDjOHr11VdtlxPRZs6cqRdffFGzZs2Sz+ezXU7UyMnJkSQNHDhQd9xxhySpU6dO+u233/Taa68pLS3NZnkFYoQJJXbLLbfom2++0aRJk1S/fn3b5US0mTNnasuWLTrmmGMUGxur2NhYTZkyRS+99JJiY2OVnZ1tu8SIVLduXbVp0ybfY61btw7b7j2R4u67784dZWrfvr0uu+wy3XHHHYyuhlCdOnUkSZs3b873+ObNm3M/h+Bxw9Lq1as1fvx4RpeC7JdfftGWLVvUoEGD3H9jV69eraFDh6pRo0a2y4tYNWrUUGxsrKf+nWWECcXmOI5uvfVWjR07VpMnT1bjxo1tlxTxTjrpJM2fPz/fY1dddZVatWqle+65RzExMZYqi2w9evQ4omX+0qVL1bBhQ0sVRYd9+/apXLn8f8eLiYnJ/Wskgq9x48aqU6eOJkyYoE6dOkmS/H6/pk2bpptuuslucRHODUvLli3TpEmTVL16ddslRbzLLrvsiLXB/fr102WXXaarrrrKUlWRLy4uTt26dfPUv7MEJhTb4MGD9eGHH+rLL79UlSpVcuezJyUlqWLFipari0xVqlQ5Yo1YQkKCqlevztqxILrjjjvUvXt3Pf7447rgggv0559/6o033tAbb7xhu7SINmDAAD322GNq0KCB2rZtq9mzZ+u5557T1Vdfbbu0iLJnzx4tX7489+OVK1dqzpw5qlatmho0aKDbb79djz76qJo3b67GjRvrwQcfVEpKis466yx7RUeAol73unXr6rzzztOsWbP0zTffKDs7O/ff2GrVqikuLs5W2Z53tN/3w4Np+fLlVadOHbVs2TLUpUaUo73ud999ty688EL17t1bJ5xwgsaNG6evv/5akydPtld0UWy36YN3SCrwNmbMGNulRRXaiofG119/7bRr186Jj493WrVq5bzxxhu2S4p4fr/fue2225wGDRo4FSpUcJo0aeI88MADTkZGhu3SIsqkSZMK/H/5FVdc4TiOaS3+4IMPOrVr13bi4+Odk046yVmyZIndoiNAUa/7ypUrC/03dtKkSbZL97Sj/b4fjrbigVGc1/3tt992mjVr5lSoUMHp2LGj88UXX9gr+Ch8jsMW6gAAAABQEJo+AAAAAEAhCEwAAAAAUAgCEwAAAAAUgsAEAAAAAIUgMAEAAABAIQhMAAAAAFAIAhMAAAAAFILABAAAAACFIDABQARYtWqVfD6f5syZY7uUXIsXL9Y//vEPVahQQZ06dSrwHMdxdP3116tatWrW6w/H17C0Jk+eLJ/Pp127dgX9uR5++OFCf74AEAkITAAQAFdeeaV8Pp+eeOKJfI9/8cUX8vl8lqqya9iwYUpISNCSJUs0YcKEAs8ZN26c3nnnHX3zzTfauHGj2rVrF5LarrzySp111ln5HktNTQ1pDV7k8/n0xRdf5HvsrrvuKvTnCwCRgMAEAAFSoUIFPfnkk9q5c6ftUgImMzOz1F+7YsUK9ezZUw0bNlT16tULPadu3brq3r276tSpo9jY2FI/X1nFxMRYr8GLKleuXOjPFwAiAYEJAAKkb9++qlOnjkaOHFnoOQVNX3rhhRfUqFGj3I/d0Y/HH39ctWvXVnJyskaMGKGsrCzdfffdqlatmurXr68xY8Yccf3Fixere/fuqlChgtq1a6cpU6bk+/yCBQt02mmnqXLlyqpdu7Yuu+wybdu2Lffzffr00S233KLbb79dNWrUUL9+/Qr8PnJycjRixAjVr19f8fHx6tSpk8aNG5f7eZ/Pp5kzZ2rEiBHy+Xx6+OGHj7jGlVdeqVtvvVVr1qyRz+fLfQ0aNWqkF154Id+5nTp1yncNn8+nt956S2effbYqVaqk5s2b66uvvsr3NQsXLlT//v2VmJioKlWqqFevXlqxYoUefvhhvfvuu/ryyy/l8/nk8/k0efLkAqfkTZkyRccee6zi4+NVt25d3XvvvcrKysr3eg0ZMkT//Oc/Va1aNdWpU6fA7/Vwb731llq3bq0KFSqoVatWeuWVV3I/1717d91zzz35zt+6davKly+vn3/+WZL03nvvqWvXrqpSpYrq1KmjSy65RFu2bCn0+Yrzezd9+nSdfPLJqlGjhpKSkpSWlqZZs2blft499+yzz8738zr82kf73XBf588//1wnnHCCKlWqpI4dO+r333/PPWf16tUaMGCAqlatqoSEBLVt21bfffddka8pAAQLgQkAAiQmJkaPP/64Ro0apXXr1pXpWhMnTtSGDRv0888/67nnntOwYcPUv39/Va1aVdOmTdONN96oG2644YjnufvuuzV06FDNnj1bxx9/vAYMGKDt27dLknbt2qUTTzxRnTt31owZMzRu3Dht3rxZF1xwQb5rvPvuu4qLi9PUqVP12muvFVjfiy++qGeffVbPPPOM5s2bp379+unMM8/UsmXLJEkbN25U27ZtNXToUG3cuFF33XVXgddw31hv3LhR06dPL9FrNHz4cF1wwQWaN2+eTj/9dA0aNEg7duyQJK1fv169e/dWfHy8Jk6cqJkzZ+rqq69WVlaW7rrrLl1wwQU69dRTtXHjRm3cuFHdu3c/4vrr16/X6aefrm7dumnu3Ll69dVX9fbbb+vRRx894vVKSEjQtGnT9NRTT2nEiBEaP358oXV/8MEHeuihh/TYY49p0aJFevzxx/Xggw/q3XfflSQNGjRIH3/8sRzHyf2aTz75RCkpKerVq5ck6eDBg3rkkUc0d+5cffHFF1q1apWuvPLKEr1+h9u9e7euuOIK/frrr/rjjz/UvHlznX766dq9e7ck5f58xowZU+TP62i/G64HHnhAd911l+bMmaMWLVro4osvzg2jgwcPVkZGhn7++WfNnz9fTz75pCpXrlym7w8ASs0BAJTZFVdc4QwcONBxHMf5xz/+4Vx99dWO4zjO2LFjnUP/Vzts2DCnY8eO+b72+eefdxo2bJjvWg0bNnSys7NzH2vZsqXTq1ev3I+zsrKchIQE56OPPnIcx3FWrlzpSHKeeOKJ3HMOHjzo1K9f33nyyScdx3GcRx55xDnllFPyPffatWsdSc6SJUscx3GctLQ0p3Pnzkf9flNSUpzHHnss32PdunVzbr755tyPO3bs6AwbNqzI6xz+vTuO4zRs2NB5/vnn8z12+LUkOf/6179yP96zZ48jyfn+++8dx3Gc++67z2ncuLGTmZlZ4PMe+vNyua/h7NmzHcdxnPvvv99p2bKlk5OTk3vO6NGjncqVK+f+bNLS0pyePXvmu063bt2ce+65p9DvuWnTps6HH36Y77FHHnnEOf744x3HcZwtW7Y4sbGxzs8//5z7+eOPP77Ia06fPt2R5OzevdtxHMeZNGmSI8nZuXOn4zjF+707XHZ2tlOlShXn66+/zn1MkjN27Nh85x1+7aP9briv81tvvZX7+YULFzqSnEWLFjmO4zjt27d3Hn744UJrA4BQYoQJAALsySef1LvvvqtFixaV+hpt27ZVuXJ5/4uuXbu22rdvn/txTEyMqlevfsQ0rOOPPz73ODY2Vl27ds2tY+7cuZo0aZIqV66ce2vVqpUks5bI1aVLlyJr8/v92rBhg3r06JHv8R49epTpey6pDh065B4nJCQoMTEx9/WYM2eOevXqpfLly5f6+osWLdLxxx+fr2lHjx49tGfPnnwje4fWIUl169YtdHrc3r17tWLFCl1zzTX5fg6PPvpo7s+gZs2aOuWUU/TBBx9IklauXKnff/9dgwYNyr3OzJkzNWDAADVo0EBVqlRRWlqaJGnNmjWl/n43b96s6667Ts2bN1dSUpISExO1Z8+eEl2zJL8bh75udevWlaTc123IkCF69NFH1aNHDw0bNkzz5s0r7bcFAGVGYAKAAOvdu7f69eun++6774jPlStXLt9UK8lMrzrc4W/0fT5fgY/l5OQUu649e/ZowIABmjNnTr7bsmXL1Lt379zzEhISin3NYCjLa+S+HhUrVgxegSWo43B79uyRJL355pv5fgYLFizQH3/8kXveoEGD9Nlnn+ngwYP68MMP1b59+9zAvHfvXvXr10+JiYn64IMPNH36dI0dO1ZS4U06ivOaXnHFFZozZ45efPFF/fbbb5ozZ46qV69epsYfRTn0dXNDqfu6XXvttfr777912WWXaf78+eratatGjRoVlDoA4GgITAAQBE888YS+/vrrfAvZJTN6sGnTpnxvXgO578+hb7qzsrI0c+ZMtW7dWpJ0zDHHaOHChWrUqJGaNWuW71aSkJSYmKiUlBRNnTo13+NTp05VmzZtyvw91KxZUxs3bsz92O/3a+XKlSW6RocOHfTLL78UGLQkKS4uTtnZ2UVeo3Xr1vr999/z/aymTp2qKlWqqH79+iWqx1W7dm2lpKTo77//PuJn0Lhx49zzBg4cqAMHDmjcuHH68MMP840uLV68WNu3b9cTTzyhXr16qVWrVkU2fJCK93s3depUDRkyRKeffrratm2r+Pj4fA1BJBNyinrdAvm7kZqaqhtvvFGff/65hg4dqjfffLNEXw8AgUJgAoAgaN++vQYNGqSXXnop3+N9+vTR1q1b9dRTT2nFihUaPXq0vv/++4A97+jRozV27FgtXrxYgwcP1s6dO3X11VdLMgvpd+zYoYsvvljTp0/XihUr9MMPP+iqq646ang43N13360nn3xSn3zyiZYsWaJ7771Xc+bM0W233Vbm7+HEE0/Ue++9p19++UXz58/XFVdcoZiYmBJd45ZbbpHf79dFF12kGTNmaNmyZXrvvfe0ZMkSSabj27x587RkyRJt27atwGB18803a+3atbr11lu1ePFiffnllxo2bJjuvPPOfNMlS2r48OEaOXKkXnrpJS1dulTz58/XmDFj9Nxzz+Wek5CQoLPOOksPPvigFi1apIsvvjj3cw0aNFBcXJxGjRqlv//+W1999ZUeeeSRIp+zOL93zZs313vvvadFixZp2rRpGjRo0BEjdY0aNdKECRO0adOmQtvnB+J34/bbb9cPP/yglStXatasWZo0aVJu8AeAUCMwAUCQjBgx4oipWa1bt9Yrr7yi0aNHq2PHjvrzzz8L7CBXWk888YSeeOIJdezYUb/++qu++uor1ahRQ5Jy//KfnZ2tU045Re3bt9ftt9+u5OTkEgeAIUOG6M4779TQoUPVvn17jRs3Tl999ZWaN29e5u/hvvvuU1pamvr3768zzjhDZ511lpo2bVqia1SvXl0TJ07Unj17lJaWpi5duujNN9/MnQZ23XXXqWXLluratatq1qx5xIiIJNWrV0/fffed/vzzT3Xs2FE33nijrrnmGv3rX/8q0/d37bXX6q233tKYMWPUvn17paWl6Z133sk3wiSZaXlz585Vr1691KBBg9zHa9asqXfeeUeffvqp2rRpoyeeeELPPPNMkc9ZnN+7t99+Wzt37tQxxxyjyy67TEOGDFGtWrXynfPss89q/PjxSk1NVefOnQt8rkD8bmRnZ2vw4MFq3bq1Tj31VLVo0SJf63UACCWfc/ikZgAAAACAJEaYAAAAAKBQBCYAAAAAKASBCQAAAAAKQWACAAAAgEIQmAAAAACgEAQmAAAAACgEgQkAAAAACkFgAgAAAIBCEJgAAAAAoBAEJgAAAAAoBIEJAAAAAArxfxTItND1isxTAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0wAAAK9CAYAAAAXJOy/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACPfUlEQVR4nOzdd3hU1drG4WcIaYQUmhQJvROagApIUxQRsXek2I4KioiiYgNUwHaOWLEcj6IHu6JHLFhoioIUQUB6752EUEJI9vfH+iYhQELKzKzZM7/7uubaO5PJnicTyrxZa73L4ziOIwAAAADACUrZDgAAAAAAwYqCCQAAAADyQcEEAAAAAPmgYAIAAACAfFAwAQAAAEA+KJgAAAAAIB8UTAAAAACQDwomAAAAAMgHBRMAAAAA5IOCCQAQst599115PB7NnTv3lI/t0qWLunTp4v9QAABXoWACABTb6tWrdfvtt6tOnTqKiYlRQkKCOnTooBdffFGHDh3y+fMdPHhQI0aM0LRp03x+7eL47bffNGLECO3bt892FACAn5S2HQAA4E7ffPONrr76akVHR6tv375KSUnRkSNH9Ouvv2ro0KFasmSJ3nzzTZ8+58GDBzVy5EhJ8vlo0A8//FDkr/ntt980cuRI9e/fX0lJST7NAwAIDhRMAIAiW7t2ra677jrVrFlTU6ZMUdWqVXM+N3DgQK1atUrffPONxYRFFxUVZTuCJMlxHB0+fFixsbG2owAAxJQ8AEAxPPvss0pPT9fbb7+dp1jyqlevnu65556cj48ePaonn3xSdevWVXR0tGrVqqWHH35YGRkZeb5u7ty56t69uypWrKjY2FjVrl1bN998syRp3bp1qlSpkiRp5MiR8ng88ng8GjFixCnzZmRkaMiQIapUqZLi4uJ0+eWXa+fOnXkec7I1TC+//LKaNm2qMmXKqFy5cmrTpo0++OADSdKIESM0dOhQSVLt2rVz8qxbt65I33OtWrV08cUXa/LkyWrTpo1iY2P1xhtvqHPnzmrRosVJv5+GDRuqe/fup/y+AQAlxwgTAKDIvv76a9WpU0ft27cv1ONvvfVWjR8/XldddZXuu+8+zZ49W2PGjNHSpUs1ceJESdKOHTt0wQUXqFKlSnrooYeUlJSkdevW6YsvvpAkVapUSePGjdOdd96pyy+/XFdccYUkqXnz5qd8/rvvvlvlypXT8OHDtW7dOo0dO1Z33XWXPv7443y/5q233tKgQYN01VVX6Z577tHhw4f1119/afbs2brhhht0xRVXaMWKFfrwww/1wgsvqGLFijk5C/s9ey1fvlzXX3+9br/9dt12221q2LChypYtq9tuu02LFy9WSkpKzmPnzJmjFStW6NFHHy3Uaw8AKCEHAIAiSE1NdSQ5l156aaEev2DBAkeSc+utt+a5//7773ckOVOmTHEcx3EmTpzoSHLmzJmT77V27tzpSHKGDx9eqOd+5513HElOt27dnOzs7Jz77733XiciIsLZt29fzn2dO3d2OnfunPPxpZde6jRt2rTA6z/33HOOJGft2rV57i/s9+w4jlOzZk1HkvP999/neey+ffucmJgY58EHH8xz/6BBg5y4uDgnPT29wGwAAN9gSh4AoEjS0tIkSfHx8YV6/LfffitJGjJkSJ7777vvPknKWevkbZowadIkZWZm+iJqjn/84x/yeDw5H3fs2FFZWVlav359vl+TlJSkTZs2ac6cOUV+vsJ+z161a9c+YYpdYmKiLr30Un344YdyHEeSlJWVpY8//liXXXaZ4uLiipwLAFB0FEwAgCJJSEiQJO3fv79Qj1+/fr1KlSqlevXq5bm/SpUqSkpKyilaOnfurCuvvFIjR45UxYoVdemll+qdd945Yc1PcdSoUSPPx+XKlZMk7d27N9+vefDBB1W2bFmdeeaZql+/vgYOHKiZM2cW6vkK+z171a5d+6TX6du3rzZs2KBffvlFkvTTTz9p+/bt6tOnT6FyAABKjoIJAFAkCQkJqlatmhYvXlykrzt2hCe/z3/22Wf6/fffddddd2nz5s26+eab1bp1a6Wnp5cksiIiIk56v3fk5mQaN26s5cuX66OPPtI555yjzz//XOecc46GDx9e6Oc91ffslV9HvO7du6ty5cr673//K0n673//qypVqqhbt26FzgAAKBkKJgBAkV188cVavXq1fv/991M+tmbNmsrOztbKlSvz3L99+3bt27dPNWvWzHP/2WefrVGjRmnu3LmaMGGClixZoo8++khS4QsQX4mLi9O1116rd955Rxs2bFDPnj01atQoHT58uMA8Rf2e8xMREaEbbrhBn332mfbu3asvv/xS119/fb4FIADA9yiYAABF9sADDyguLk633nqrtm/ffsLnV69erRdffFGSdNFFF0mSxo4dm+cx//rXvyRJPXv2lGSmxx0/4tOyZUtJypmWV6ZMGUnSvn37fPJ9FGT37t15Po6KilKTJk3kOE7OGivvOqLj8xT2ey6MPn36aO/evbr99tuVnp6uG2+8sSjfBgCghGgrDgAosrp16+qDDz7Qtddeq8aNG6tv375KSUnRkSNH9Ntvv+nTTz9V//79JUktWrRQv3799Oabb2rfvn3q3Lmz/vjjD40fP16XXXaZunbtKkkaP368XnvtNV1++eWqW7eu9u/fr7feeksJCQk5BUhsbKyaNGmijz/+WA0aNFD58uWVkpKSp+22r1xwwQWqUqWKOnTooMqVK2vp0qV65ZVX1LNnz5yGF61bt5YkPfLII7ruuusUGRmpXr16Ffp7LoxWrVopJSVFn376qRo3bqwzzjjD598rAKAAdpv0AQDcbMWKFc5tt93m1KpVy4mKinLi4+OdDh06OC+//LJz+PDhnMdlZmY6I0eOdGrXru1ERkY6ycnJzrBhw/I8Zv78+c7111/v1KhRw4mOjnZOO+005+KLL3bmzp2b5zl/++03p3Xr1k5UVNQpW4x724of36p86tSpjiRn6tSpOfcd31b8jTfecDp16uRUqFDBiY6OdurWresMHTrUSU1NzXOtJ5980jn99NOdUqVK5WkxXpjv2XFMW/GePXsW9DI7zz77rCPJGT16dIGPAwD4nsdxCljxCgAArHvxxRd17733at26dSd0/AMA+BcFEwAAQcxxHLVo0UIVKlTQ1KlTbccBgLDDGiYAAILQgQMH9L///U9Tp07VokWL9NVXX9mOBABhiREmAACC0Lp161S7dm0lJSVpwIABGjVqlO1IABCWKJgAAAAAIB/swwQAAAAA+aBgAgAAAIB8hFXTh+zsbG3ZskXx8fHyeDy24wAAAACwxHEc7d+/X9WqVVOpUvmPI4VVwbRlyxYlJyfbjgEAAAAgSGzcuFHVq1fP9/NhVTDFx8dLMi9KQkKC5TQAAAAAbElLS1NycnJOjZCfsCqYvNPwEhISKJgAAAAAnHKpDk0fAAAAACAfFEwAAAAAkA8KJgAAAADIR1itYQIAAADcxnEcHT16VFlZWbajuEpERIRKly5d4u2EKJgAAACAIHXkyBFt3bpVBw8etB3FlcqUKaOqVasqKiqq2NegYAIAAACCUHZ2ttauXauIiAhVq1ZNUVFRJR4tCReO4+jIkSPauXOn1q5dq/r16xe4OW1BKJgAAACAIHTkyBFlZ2crOTlZZcqUsR3HdWJjYxUZGan169fryJEjiomJKdZ1aPoAAAAABLHijozAN68drz4AAAAA5IOCCQAAAADyQcEEAAAAAPmgYAIAAADgc9u2bdPdd9+tOnXqKDo6WsnJyerVq5d+/vnnEl/73XffVVJSUslDFgJd8gAAAAD41Lp169ShQwclJSXpueeeU7NmzZSZmanJkydr4MCBWrZsme2IhcYIEwAAAOAyBw7kfzt8uPCPPXTo1I8tjgEDBsjj8eiPP/7QlVdeqQYNGqhp06YaMmSIZs2aJUnasGGDLr30UpUtW1YJCQm65pprtH379pxrLFy4UF27dlV8fLwSEhLUunVrzZ07V9OmTdNNN92k1NRUeTweeTwejRgxonhBC4GCCQAAAHCZsmXzv115Zd7HnnZa/o/t0SPvY2vVOvExRbVnzx59//33GjhwoOLi4k74fFJSkrKzs3XppZdqz549mj59un788UetWbNG1157bc7jevfurerVq2vOnDmaN2+eHnroIUVGRqp9+/YaO3asEhIStHXrVm3dulX3339/0YMWElPyAAAAAPjMqlWr5DiOGjVqlO9jfv75Zy1atEhr165VcnKyJOm9995T06ZNNWfOHLVt21YbNmzQ0KFDc65Tv379nK9PTEyUx+NRlSpV/PvNiIIJAAAAcJ309Pw/FxGR9+MdO/J/7PH7uq5bV+xIORzHOeVjli5dquTk5JxiSZKaNGmipKQkLV26VG3bttWQIUN066236v3331e3bt109dVXq27duiUPWERMyQMAAABcJi4u/1tMTOEfGxt76scWVf369eXxeErc2GHEiBFasmSJevbsqSlTpqhJkyaaOHFiia5ZHBRMAAAAAHymfPny6t69u1599VUdOEnXiH379qlx48bauHGjNm7cmHP/33//rX379qlJkyY59zVo0ED33nuvfvjhB11xxRV65513JElRUVHKysry/zcjFxVM48aNU/PmzZWQkKCEhAS1a9dO3333ne1YAAAAAI7z6quvKisrS2eeeaY+//xzrVy5UkuXLtVLL72kdu3aqVu3bmrWrJl69+6t+fPn648//lDfvn3VuXNntWnTRocOHdJdd92ladOmaf369Zo5c6bmzJmjxo0bS5Jq1aql9PR0/fzzz9q1a5cOHjzot+/FNQVT9erV9fTTT2vevHmaO3euzj33XF166aVasmSJ7WgAAAAAjlGnTh3Nnz9fXbt21X333aeUlBSdf/75+vnnnzVu3Dh5PB599dVXKleunDp16qRu3bqpTp06+vjjjyVJERER2r17t/r27asGDRrommuuUY8ePTRy5EhJUvv27XXHHXfo2muvVaVKlfTss8/67XvxOIVZlRWkypcvr+eee0633HJLoR6flpamxMREpaamKiEhwc/pAAAAgOI7fPiw1q5dq9q1ayvm+IVJKJSCXsPC1gau7JKXlZWlTz/9VAcOHFC7du3yfVxGRoYyMjJyPk5LSwtEPAAAAAAhwjVT8iRp0aJFKlu2rKKjo3XHHXdo4sSJeRaFHW/MmDFKTEzMuR3bthBFs369tHKl7RQAAABAYLmqYGrYsKEWLFig2bNn684771S/fv30999/5/v4YcOGKTU1Ned2bBcOFF52ttn1uUEDKTXVdhoAAAAgcFw1JS8qKkr16tWTJLVu3Vpz5szRiy++qDfeeOOkj4+OjlZ0dHQgI4akvXtzz1eulNq0sZcFAAAACCRXjTAdLzs7O88aJfjHsbtDb91qLwcAAEA4cnGPNut88dq5ZoRp2LBh6tGjh2rUqKH9+/frgw8+0LRp0zR58mTb0UJe1aq55xs22MsBAAAQTiIjIyVJBw8eVGxsrOU07uTdn8n7WhaHawqmHTt2qG/fvtq6dasSExPVvHlzTZ48Weeff77taCEvKUm65x7pxRdN8wcAAAD4X0REhJKSkrTj/6f7lClTRh6Px3Iqd3AcRwcPHtSOHTuUlJSkiIiIYl/LNQXT22+/bTtCWGvZUurcWapZ03YSAACA8FGlShVJyimaUDRJSUk5r2FxuaZggj3z5plRpn//W/r/nhsAAAAIAI/Ho6pVq+q0005TZmam7TiuEhkZWaKRJS8KJpzSf/4jvfaa9Nhj0hNP2E4DAAAQfiIiInzy5h9F5+oueQgM7whwpUpSZqbZlwkAAAAIBxRMOCVvwTRokBQdLa1bZzUOAAAAEDAUTDilnTtzzx2HTnkAAAAIHxRMOCXvCFO1auZIwQQAAIBwQcGEAh09Ku3ebc7btDFHNq8FAABAuKBgQoF27TJHj0c64wxzzggTAAAAwgVtxVGg+Hjpo4+k1FQpJsbcxwgTAAAAwgUFEwoUFydde605nz7dHBlhAgAAQLigYEKh1akjdeokNWhgOwkAAAAQGBRMKNDixdLKlVLjxlKjRrmjTAAAAEA4oOkDCvTRR9IVV0ivvGI7CQAAABB4FEwokHcPptNOy73vyBHp0CE7eQAAAIBAomBCgXbuNMdKlcxxwADTLe+11+xlAgAAAAKFggkFOn6EKSFBchxaiwMAACA8UDChQN4RJm/BVKOGOdJaHAAAAOGAggkFOn6EqWZNc2SECQAAAOGAggn5ysiQUlPNuXcNk7dgYoQJAAAA4YB9mJAvj0f65BMzypSUZO7zTsnbs0dKT5fKlrUWDwAAAPA7CibkKypKuvrqvPclJJjiad8+My2vSRMbyQAAAIDAoGBCkV1+uZSZKUVG2k4CAAAA+BcFE/K1YoW0eLFUv77UrFnu/f/5j71MAAAAQCDR9AH5mjRJuvJK6emnbScBAAAA7KBgQr6Obyl+rCNHpF27ApsHAAAACDQKJuTLu2mtt6W411dfSTEx0mWXBTwSAAAAEFAUTMhXfiNMlStLjsPmtQAAAAh9FEzIV34Fk3fz2s2bTbc8AAAAIFRRMCFfBY0wRUVJ2dnSli2BzwUAAAAECgUT8pXfGqZSpaTkZHO+fn1gMwEAAACBxD5MOCnHkd55x4wyVat24udr1JBWr6ZgAgAAQGijYMJJeTzS1Vfn/3nvOiYaPwAAACCUUTChWDp3lo4elVJSbCcBAAAA/MfjOI5jO0SgpKWlKTExUampqUpISLAdJ6itXy/NnSvVqSO1amU7DQAAAOBbha0NaPqAk5oyRbrqKumRR2wnAQAAAOyhYMJJeVuKH98h71iZmdLataZBBAAAABCKWMOEk/K2FD9+DyavjAwpLk7KyjKPrVgxcNkAAACAQGGECSeV36a1XtHRuUUSnfIAAAAQqiiYcFKFmZLnbS3OXkwAAAAIVRRMOKlTjTBJZvNaiREmAAAAhC4KJpyUdw0TI0wAAAAIZzR9wEm99JK0datUt27+j/GOMFEwAQAAIFRRMOGkLr/81I/xjjAxJQ8AAAChioIJxdakiXTjjVKzZraTAAAAAP5BwYQTbN0qzZxpptydeWb+j6tfX3r//cDlAgAAAAKNpg84wezZ0tVXS4MG2U4CAAAA2EXBhBN4O+QV1FLcKzNTWrtW2rvXv5kAAAAAGyiYcILCbFrrdemlUp060uef+zcTAAAAYAMFE05QmE1rvdi8FgAAAKGMggknKMqUPDavBQAAQCijYMIJijPCRMEEAACAUETBhBMUZQ0Tm9cCAAAglLEPE07w9NNmxKgwG9J6C6aNG6WsLCkiwr/ZAAAAgECiYMIJLrqo8I+tWtUUSUePStu2Saef7r9cAAAAQKBRMKFESpeWBg6UypaVIiNtpwEAAAB8i4IJeezZI/38sxkpat++cF/z4ov+zQQAAADYQsGEPBYvlq65RmrQQFq+3HYaAAAAwC4KJuRRlA55XpmZ0qZNpulDvXr+yQUAAADYQFtx5FGUTWu93n1XqlNHGjzYH4kAAAAAeyiYkEdxRpjYvBYAAAChioIJeXgLpqKMMLF5LQAAAEIVBRPyKE7B5B1hSkuT9u3zeSQAAADAGgom5OFdw1SUKXllykgVK5pzRpkAAAAQSiiYkMcjj0jjxklnnlm0r/NOy2MdEwAAAEIJbcWRx/nnm1tR1aghzZvHCBMAAABCCwUTfOLKK6XGjaXWrW0nAQAAAHyHggk50tOlb7+VKleWOncu2tf27u2fTAAAAIBNFEzIsXatdO21poGDt/kDAAAAEM5o+oAcxemQ55WVJa1bJ/32m08jAQAAAFYxwoQcxdmDyWvPHql2bcnjkQ4flqKifJsNAAAAsIERJuQoScFUsaIUGys5jrRxo29zAQAAALZQMCGHd0pecQomj8e0FpdoLQ4AAIDQQcGEHN4RpuKsYZLYvBYAAAChh4IJOUoywiQxwgQAAIDQQ9MH5Bg8WOreXerUqXhfzwgTAAAAQg0FE3J06lT8YknKHWGiYAIAAECooGCCz7RtKz38sNSihe0kAAAAgG9QMEGSlJkpTZxoGj507iyVKsbqtsaNpVGjfJ8NAAAAsIWCCZKk7dula6+VSpeWMjJspwEAAACCA13yICm3Q17FisUbXfLauFGaMSP3egAAAICbUTBBUu4eTMVtKe513XVmSt+0aSWOBAAAAFhHwQRJviuYaC0OAACAUELBBEkl37TWi81rAQAAEEoomCApd4SpUqWSXYcRJgAAAIQSCiZIYoQJRbNokfTtt7ZTAAAA+J9rCqYxY8aobdu2io+P12mnnabLLrtMy5cvtx0rZNx6q/TGG1KPHiW7DiNMoe/QIal5c6lnT2npUttpAAAA/Ms1BdP06dM1cOBAzZo1Sz/++KMyMzN1wQUX6MCBA7ajhYR27aR//ENq1apk1/GOMO3dK+3fX/JcCD4ffZR7Pn++vRwAAACB4JqNa7///vs8H7/77rs67bTTNG/ePHXq1MlSKhwvIUEaMUKqWrVk+zkheL32Wu75ypX2cgAAAASCawqm46WmpkqSypcvn+9jMjIylJGRkfNxWlqa33O51SefmE1rzzlHiooq2bWGD/dNJgSf7dulTZtyP162zF4WAACAQHBlwZSdna3BgwerQ4cOSklJyfdxY8aM0ciRIwOYzJ0OHpSuvdacp6WVvGBC6Kpc2TT0eOMNczznHNuJAAAA/MvjOI5jO0RR3Xnnnfruu+/066+/qnr16vk+7mQjTMnJyUpNTVVCQkIgorrC+vVSrVpSdLRZ0O/xlOx6O3dKf/9tpueVdE0UAAAA4A9paWlKTEw8ZW3gulUmd911lyZNmqSpU6cWWCxJUnR0tBISEvLccCLvHkynnVbyYkmS3n1X6tJFev75kl8LwWPtWikry3YKAACAwHJNweQ4ju666y5NnDhRU6ZMUe3atW1HChm+2rTWi9bioSc7W+rWTapTR1q40Ny3Y4c0bRo/ZwAAENpcUzANHDhQ//3vf/XBBx8oPj5e27Zt07Zt23To0CHb0Vzv2BEmX2Dz2tDzww/SmjVSaqpUr5657+67pa5dpc8/t5sNAADAn1xTMI0bN06pqanq0qWLqlatmnP7+OOPbUdzvZ07zdFXBZN3hGnzZikz0zfXhF3eVuL9+0txcea8USNzZPNaAAAQylzTJc+FvSlcw9dT8ipXNp32jhwxRVOtWr65LuxYt06aNMmc33ln7v3egonW4gAAIJS5pmCC/1x/vdSwoVRAh/YiKVVKSk6WVq820/IomNztzTclxzFrmBo2zL2fggkAAIQDCiaodWtz86WaNU3BREMAd8vIkP79b3M+YEDez3mLp127zK1ixcBmAwAACATXrGGCuwwYIL3+utSune0kKInJk80at9NPl3r1yvu5MmVy16sxygQAAEIVI0zQl1+aTWbPPtu8CfaFK6/0zXVgV69e0qxZ0vbtUumT/GvRqJEZRVy6VDrnnMDnAwAA8DePE0bdFAq7m284cRwpJsY0aFi3LnfEACiML780TUPOPTe33TgAAIAbFLY2YIQpzO3fb4olyXdd8iTp4EFpzhxp717psst8d10ETmamFBlZ8GP42QIAgFDHGqYw520pHhfnu+l4kmkn3qWL1Lu3GcWCu+zbJ1WvLt1xhyl+AQAAwhUFU5jz9aa1XsnJ5njwoLR7t2+vDf977z1TTP/6qxQbm//jHEf67Tfp7belw4cDlw8AACBQKJjCnHeEydcFU0yM2cBWorW42ziO9Npr5nzAAMnjKfjxF18s3XqrtHy5/7MBAAAEGgVTmPMWTL5cv+TlbSCxYYPvrw3/mTrVFD9ly0o33ljwYz0eqXFjc05rcQAAEIoomMKcv6bkSbkFEyNM7uIdXerb17SbP5VGjcxx6VL/ZQIAALCFLnlhrlcvUyzVrev7a9eoYY6MMLnH5s2mVbgk3Xln4b6GESYAABDKKJjCXLNm5uYPjDC5z1tvSVlZUqdOUkpK4b6GESYAABDKKJjgN+edJ73+utS8ue0kKKxbb5Wys6Uzzyz813gLphUrTLEVEeGfbAAAADZ4HCd8dskp7G6+4eTbb6WoKPMGmZcExZGVZfbwOnJEWrNGql3bdiIAAIBTK2xtwAhTmLvlFmnbNunPP6WWLW2ngRtFREj/+Y9UpUpuK3kAAIBQQZe8MJadLe3aZc790VZckn7/XXr//dxufAhOf/8t9eghffNN8b6+d28zBbNMGd/mAgAAsI2CKYzt2ycdPWrO/VUw3XabaU+9YIF/rg/fGDdO+v576e23bScBAAAILhRMYcy7aW1SklnH5A90ygt+6enS+PHmfMCA4l1j1y4zkvjGG77LBQAAEAxYwxTGvAWTPzat9aJgCn4TJkj790sNGkjnnlu8a2zcaEYSK1aUbr/dt/kAAABsYoQpjHnXFflrOp7E5rXBznGk114z53feKZUq5r8IDRqY465dueviAAAAQgEFUxhjhAm//Sb99ZcUGyv171/868TF5f6sly3zSTQAAICgQMEUxrp2ld56yzRm8BdGmILbq6+aY+/eZi1bSXg3sKVgAgAAoYQ1TGGsUaPcN7n+4h112LjRbHAaEeHf50PRXHihKXDuvLPk12rUSJo8WVq6tOTXAgAACBYUTPCrqlWl1183hZPj2E6D4/XtK/XpI3k8Jb9W48bmyAgTAAAIJRRMYeynn8yxdWupXDn/PEdEBF3Tgp0viiWJKXkAACA0sYYpjA0aJJ1/vvTnn7aTINCmTpVeeUVKS/PdNc84Q/ruO+nnn313TQAAANsYYQpj3rbi/uySJ5kRh7lzpbp1pXbt/PtcKJynn5Z++EHaskUaPdo314yPN2uiAAAAQgkjTGHq6FFp925z7u+C6b//Netk3n/fv8+Dwlm50hRLHo9/OyQCAACEAkaYwtTu3aYJg8cjVajg3+fydsqjtXhweP11c7zoIql2bd9ee/ZsMy2vWTPpyit9e20AAAAbGGEKU95NaytU8H+rbzavDR4HD0rvvGPOBwzw/fVnzJBGjpQ++8z31wYAALCBgilMedcvVark/+di89rg8fHH0t69ZmSpe3ffX9/bKY+9mAAAQKigYApT3hEmf69fknILprQ0ad8+/z8f8vfaa+Z4553+GVn07sW0fLmUne376wMAAAQaBVOYOvNM6e23pXvu8f9zlSkjVaxozhllsufAAal6dSkuTrrpJv88R61aUlSUdPgwUzABAEBooOlDmKpTx9wCpWZNadcu8ya6efPAPS9yxcVJEydKqalSYqJ/nqN0aalBA2nxYtNO3tdNJQAAAAKNESYExKhR0rffsg9TMPBXseTFOiYAABBKGGEKU9OnSxkZUqtWgWn84I8GAyi86dOl5OTAjCp61zEtW+b/5wIAAPA3RpjC1MMPmyJm+nTbSeBv2dnSzTdL9eqZPZL87fbbpRUrchtMAAAAuBkjTGHK21Y8EF3yJLN+6bvvpKNH/ddwACc3ebK0Zo2UlCR17uz/5zv9dP8/BwAAQKBQMIWpQLYVl0yzh759papVKZgCzTvSc9NNpmMhAAAACo8peWHoyBHTKU0KXMHk3Ytp61azdgqBsW6d9M035vyOOwL3vOPGSTfeKC1YELjnBAAA8AcKpjDknY4XEWGmaQVCxYpSbKw537QpMM8J6Y03JMeRzj/ftPsOlK++kiZMkObODdxzAgAA+AMFUxjyTserVEkqFaA/AR5P7igTm9cGRkaG9O9/m/MBAwL73N7W4nTKAwAAbkfBFIYC3fDBq2ZNc1y/PrDPG64WL5YyM6Xq1aWLLw7sc7MXEwAACBU0fQhDTZpIb7+dO0UuULwjTBRMgdG6tbR5s7RypVQ6wH/T2YsJAACECgqmMFS9utmXJ9C8I0xMyQucuDipZcvAP693hGntWunwYSkmJvAZAAAAfIGCCQFzzTVm1MP7Zhr+s3Kl2ajW47Hz/KedJpUrJ+3dazaxbd7cTg4AAICSYg1TGJo1S/rhB2nbtsA+b4MGUo8eUu3agX3ecLNvnxlVSkmRtm+3k8HjMYVxRAQjigAAwN0omMLQ6NFS9+7S11/bTgJ/eO896eBB0wEx0I09jvX559KBA4FvOAEAAOBLFExhyNtW3Mab6Q8/lEaNMlO14HuOI732mjkfMMDelDxJqlpVio629/wAAAC+wBqmMHTsPkyB9sADZuPabt2ks84K/POHuilTpOXLpbJlpRtvtJ0GAADA/RhhCkM2R5jYvNa/vKNLfftK8fF2s6SlmW6MnTtL2dl2swAAABQXBVOYOXjQrCuR7BRMbF7rP5s2SV99Zc7vvNNuFkkqU0aaMEGaMYOfNwAAcC8KpjCzc6c5RkXZGYFg81r/+egjKStL6tTJdMizrXRp0xlRYgNbAADgXqxhCjPHTsez0RCAzWv9Z8gQqUULKTbWdpJcjRpJixebgqlHD9tpAAAAio6CKczUrCm9847d55cYYfKHUqWk88+3nSIv7ybFS5fazQEAAFBcFExh5rTTpP797T0/TR/8IzNTioy0neJEjRubI1PyAACAW7GGCQFVr5707bfSL7+YPYNQckuWSNWqSQ8/HHyvqXeEiYIJAAC4FSNMYWb+fNP4oWlTqXr1wD9/TAxrWXxt3Dhp1y6z/5LNjWpPpmFDM1WwbFkpPd0cAQAA3IQRpjDz4ovShReads9wv/37pffeM+cDBtjNcjJxcaaN/Zo1FEsAAMCdGGEKMzY3rfWaNk367TfpnHNMC2wU33//a4qmhg2lc8+1nebkYmJsJwAAACg+RpjCTDAUTJ9/Lj3yiPTdd/YyhALHkV57zZzfeWfwTccDAAAIBRRMYca7ca3NgolOeb7x669mj6PYWKlfP9tp8jd9uhlJ7NvXdhIAAICiY0peGHGc3BGmSpXs5WAvJt/wji717i0lJVmNUiDHMV0RN2+2nQQAAKDoKJjCSHq6lJFhzimY3G/4cDNSeNNNtpMUzLsX09q10uHDrGkCAADuwpS8MOIdXYqLMzdbvFPytmwxG66ieBo1Ml0PW7a0naRgp51mRsAcR1qxwnYaAACAoqFgCiMVKkjvvCM9/7zdHJUrS1FRUnY207TCgceTO8rEBrYAAMBtKJjCSFKS1L+/dMcddnOUKiUlJ5tzGj8U3ddfS9ddJ/3+u+0khdeokTkuXWo3BwAAQFGxhglWfPCB2ci0bl3bSdzn5ZelH3+UatWS2rWznaZwvAUTI0wAAMBtKJjCyKJFZgpco0bmzbZNZ55p9/ndasUKUyx5PPZHCouicWPp9NODu5sfAADAyTAlL4y8/bbUo4f0+uu2k6C4vD+7nj3tF71FcfHF0qZN0rhxtpMAAAAUDSNMYcTbJc/mprVeq1dLH31kpuXdc4/tNO5w8KBp2iFJAwbYzVJUHo/tBAAAAMXDCFMYCaaCad066dFHGe0qig8/lPbtk2rXlrp3t52m+BzHdgIAAIDCo2AKIzt3mmMwFEzevZjWr+cNdGE4jvTqq+b8zjtNp0G3GTnSrGMaO9Z2EgAAgMJjSl4Y8Y4wVapkN4eU21b80CFp926pYkW7eYJddrZ0441mo9+bbrKdpniOHjWbFdMpDwAAuIkLf0+N4sjOlnbtMufBMMIUEyNVqWLO16+3m8UNIiKkIUNMp0O3FpfsxQQAANyIgilM7NtnfsMvBccIk5Q7LY/Na8ND48bmyAgTAABwE6bkhYnoaGn8eGnvXikqynYao2ZN6Y8/GGE6lQ8/NMXu1VebkTm3atjQHHfuNNMwK1SwmwcAAKAwKJjCRFyc1Lev7RR5McJ0allZ0iOPSGvXmvP+/W0nKr64OPMz37DBjDJ16GA7EQAAwKkxJQ/W3H23tHix9MQTtpMEr8mTTbFUrpx0zTW205Scdx0T0/IAAIBbMMIUJpYvl9askerXl+rVs53GqFnTdoLg99pr5njTTVKZMnaz+EK7dlJGhpSUZDsJAABA4VAwhYmPP5aGD5f+8Q/pjTdsp0FhrF0rffutOb/jDrtZfGXECNsJAAAAioYpeWHCuwdTMLQU98rKkkaNkm6/XTp40Haa4PP662bD2gsuMCODAAAACDwKpjARTJvWepUqJT3zjPTmm9LGjbbTBJfDh6W33zbnAwbYzeIPBw+aghkAACDYUTCFiWAcYfJ4ctcx0Vo8rx07pObNTVe5nj1tp/GtM84wHfP+/tt2EgAAgFNzVcE0Y8YM9erVS9WqVZPH49GXX35pO5Jr7NxpjsFUMEm0Fs9PjRrSlCnSX39JpUNspaF3Lyk65QEAADdwVcF04MABtWjRQq+++qrtKK4TjFPyJEaYTiUx0XYC3/O2Fl+61G4OAACAwnDV76579OihHj16FPrxGRkZysjIyPk4LS3NH7GC3tGj0u7d5pwRpuA3aZLUtq1UubLtJP7BXkwAAMBNXDXCVFRjxoxRYmJizi05Odl2JCscR3r3Xem556QKFWynyYsRprz27jUb1CYnm72zQlHjxubICBMAAHCDkC6Yhg0bptTU1JzbxjBtxRYZKfXtK91/f/Cth/GOMFEwGePHS4cOmVGYBg1sp/EP7wjT8uVSdrbdLAAAAKcSZG+ffSs6OlrR0dG2Y6AArVpJixebEZVwl50tvfaaOR8wwHQRDEW1a5si/tAhMxWzVi3biQAAAPIX0gUTjLVrzfSnOnVyf7sfLMqUkZo2tZ0iOEyZIq1cKcXHSzfeaDuN/5QuLV19tRQdbaaLAgAABDMKpjAwaZI0aJB01VXSp5/aToP8eEeX+vWTypa1m8XfJkywnQAAAKBwXFUwpaena9WqVTkfr127VgsWLFD58uVVw7sYBicIxk1rjzVhgjRjhnT99VKXLrbT2LFxo/TVV+b8zjvtZgEAAEAuVzV9mDt3rlq1aqVWrVpJkoYMGaJWrVrp8ccft5wsuAXrprVekydLb74pzZ5tO4k9c+ZIUVGmYGzSxHaawMjIMNNFAQAAgpmrRpi6dOkih0UPRRasm9Z60VpcuuIKadOm3OI21C1aJLVsadrce/98AgAABCNXFUwonmCfksfmtUaFCsG3T5a/1K5tugLu3Gk2VQ6X7xsAALiPq6bkoXiCfUpeuI8wZWXZThB4ZcvmtpIP1Q16AQBAaKBgCgNuGWFavz4820xfe610xhnSzz/bThJY3hb3S5fazQEAAFAQpuSFgZdeMkVT9eq2k5yct2Dav19KTZWSkqzGCajsbLP/0t69Ulyc7TSB1bix9OOP0rJltpMAAADkj4IpDPTpYztBwcqUkSpWlHbtMuuYwqlgWrjQFEvx8VKbNrbTBBYjTAAAwA0omBAUZs0yUwbj420nCawpU8yxUyepdJj9bWzc2BwZYQIAAMEszN6ihZ/Nm6UFC0xjhZQU22nyV7eu7QR2TJ1qjueeazeHDU2bSjfeaI6OI3k8thMBAACciIIpxE2bZt6Unnee9NNPttPgWEePSjNmmPOuXe1msaFSJen9922nAAAAKBhd8kJcsHfI8/rjD+mOO6QxY2wnCZx580yji3LlpBYtbKcBAADAyVAwhTi3FEybNklvvCF99ZXtJIETHS3dcINpK14qTP8mHj0qrVhhbgAAAMEoTN+mhQ/vprWVKtnNcSrhuHlty5bShAnSuHG2k9jzr39JDRtKI0bYTgIAAHByFEwhzi0jTN69mLZtkzIy7GZB4NBaHAAABDsKphDnloKpYkUpNtacb9xoN0sgbNwoLV5susOFM2/BtHy52cQXAAAg2FAwhTi3FEweT3hNy3v7balZM+m222wnsatOHSkyUjp0KDwKZQAA4D4UTCHu6aelf/5TqlfPdpJT807L27DBbo5A8O6/dNZZdnPYVrq0VL++OWcDWwAAEIzYhynEXXON7QSF5x1h2rrVbg5/O3hQ+v13cx6OG9Yer1Ej6e+/zTqm7t1tpwEAAMiLgglBY/RoMxoWH287iX/NnCllZkrJyWZKWrhr3NgcGWECAADBiIIphO3cKc2eLVWvblpYB7uKFW0nCAzvdLxzzzVrt8Jd9+5mal6nTraTAAAAnIiCKYTNmSP16iWdcYY0b57tNPCaMsUcmY5ndOxobgAAAMGIpg8hzC0d8rz275fuuEO6+OLQbTGdlibNnWvOu3a1mwUAAACnxghTCPMWTJUq2c1RWDEx0ltvmWJpxw6pShXbiXwvJkb69ltp/nyzhgmGd1+q5s2l00+3nQYAACAXI0whbOdOc3TLCFNkpFStmjkP1b2YoqKkCy6QHnrIdpLgcsst0kUXSZMn204CAACQFwVTCHPbCJOUuxdTqBZMOLlGjcxx6VK7OQAAAI5HwRTC3LaGScrdiykUN6/ds0caOlT67jvbSYKPt2CitTgAAAg2FEwhzM0FUyiOME2bJj3/vHT//baTBB/2YgIAAMGKpg8h7LHHpLVrpWbNbCcpPO+UvFAcYTp2/yXk5R1hWrNGOnzYNMcAAAAIBhRMIeyyy2wnKDrvCNOePXZz+AP7L+WvShUpMVFKTZVWrZJSUmwnAgAAMJiSh6By3nnmTfMvv9hO4lvbtkl//y15PFLnzrbTBB+Ph8YPAAAgODHCFKJSU6UZM6SqVaU2bWynKbzoaHMLNdOmmWPLllL58jaTBK+hQ6WDB6V27WwnAQAAyEXBFKL+/lu65BKpVi2zjgl2MR3v1K680nYCAACAEzElL0S5sUOe1+jRUo8eoTUt7++/zbFrV7s5AAAAUDQUTCFq505zdGPBNGuW9P330uLFtpP4zi+/mLU5FEz5O3pU+ukn6dVXpexs22kAAAAMpuSFKO8IU6VKdnMURyhuXntsUwPk76KLpMxM6eKLc/8cAAAA2MQIU4hy85S8UN68FvkrXVqqX9+cs4EtAAAIFhRMIcrNU/JCafNax5HatpWuu07assV2muDnHYWjYAIAAMGCgilEMcIUHFavlubOlb74QkpKsp0m+DVubI7sxQQAAIIFa5hC1JAhUs+e0pln2k5SdN4Rpi1bzHqWyEi7eUrC2068XTupTBm7WdyAESYAABBsKJhCVI8e5uZGlStLUVGmwNi5U6pWzXai4ps61RzZf6lwvCNMFEwAACBYUDAh6JQqJe3eLZUtaztJyThO7ggT7cQLp2FDc9y+Xdq7VypXzm4eAAAACqYQdOiQ2c/mtNOks86ynaZ43F4sSWaz2h07pNhY9/4cAq1sWWnCBKlWLSkuznYaAAAACqaQtGGDdMklUmKitG+f7TThyzu6dM45UnS03SxucsMNthMAAADkokteCHLzprVekyaZTUxHjrSdpPjKlTMtxc8/33YSAAAAFBcjTCHIzS3FvXbulL77TsrKsp2k+G680dwcx3YSd9m82RTMpUpJt91mOw0AAAh3jDCFIDdvWusVSpvXejy2E7jLihXSHXdIzz5rOwkAAAAFU0gKhSl5x25e68YRmvXrpfR02yncybsX05o1UkaG3SwAAAAUTCEoFKbkVa9ujocOmRbjbjNggFnDNGGC7STuU6WKaViSnS2tXGk7DQAACHcUTCEoFAqmmBjzxlkyozVukpkpzZghHT0qNWliO437eDy5o0xsYAsAAGyjYApBt98ujR0rde5sO0nJeNcxua1gmjfPTMcrV05q0cJ2GneiYAIAAMGCLnkh6LzzzM3tatY0U7IOHLCdpGi8+y917Wo6vaHoGjc2x6VL7eYAAACgYELQmjBBioy0naLoji2YUDyMMAEAgGBBwRRisrLMHjannSadeaYUEWE7UfG5sVjKyJBmzjTn555rN4ubdewoTZuWO9IEAABgCwVTiNm9W7rsMnOemWk1SliaNUs6fFiqXJk3+yVRvrz71+ABAIDQQMEUYrwd8ipUkEq7/Ke7ZYt0yy3S/v3Sr7/aTlM4DRpIr7wiHTnChrUAAAChwOVvqXG8nTvN0c2b1nqVKSN9/705P3jQfBzsqlaVBg60nSI0TJlifv4dO0q9etlOAwAAwhU9vEJMKOzB5JWYKMXHm/ONG+1mQeD9/LP03HPSt9/aTgIAAMIZBVOI8Y4whULB5PGY1uKSO/ZiWrhQevNNac0a20lCg7dTHq3FAQCATRRMISaURpik3M1rN2ywm6MwPvrIbBr8xBO2k4QGb9MMWosDAACbKJhCjLdgCoU1TJK7RpjYf8m3GjY0x+3bpb177WYBAADhi6YPIebGG6UmTaSzzrKdxDfcUjClpkpz55pzCibfiI+XqleXNm0yo0zt2tlOBAAAwhEFU4g55xxzCxU1akhJScG/ie0vv0jZ2VK9ernTCFFyjRqZgmnpUgomAABgB1PyENSuu85Mx3r7bdtJCsZ0PP/wrmNaudJuDgAAEL4omELMN99Iv/9uNk4NBW7Z/HXqVHM891y7OULNgw+aEabRo20nAQAA4YopeSHkyBHp4ovN+a5dUoUKdvOEi7Q0afFic96li9UoIef0020nAAAA4Y4RphCya5c5RkRI5crZzeJLt9wiNW0q/fGH7SQnl5Bg9r/64QepShXbaQAAAOBLFEwhxLtpbcWKUqkQ+smuXi39/bc5BqukJOn8822nCE1jxkhXXimtWGE7CQAACEch9LYaobZprZebNq+F7331lfTFF9Jff9lOAgAAwhEFUwgJ1YIpmPdi2rZN6tBBevxxyXFspwlNjRqZ47JldnMAAIDwRMEUQkK1YPKOMAVjwTR1qvTbb9KkSe7p6Oc23oJp6VK7OQAAQHiiYAoh3jVMlSrZzeFr3hGmYJySx/5L/ufdi4kRJgAAYANtxUPIZZdJVatKzZrZTuJbx07Jc5zgGslh/yX/O3ZKXnZ2aDU0AQAAwa9Ybz2eeOIJHTx48IT7Dx06pCeeeKLEoVA8Z54p3X136O0FlJxsutDVri0dOmQ7Ta71603nvogIqWNH22lCV506UunS0sGDZhNbAACAQCpWwTRy5Eilp6efcP/Bgwc1cuTIEocCjlWmjLR3r7RwoTkPFt7RpTZtzF5M8I/ISKl+fSkmRtq40XYaAAAQboo1Jc9xHHlOMi9q4cKFKl++fIlDoXgmT5bKlpXOOEOKjbWdJvQxHS9wpk+XKlRgOh4AAAi8IhVM5cqVk8fjkcfjUYMGDfIUTVlZWUpPT9cdd9zh85AonKuuktLTpZUrpXr1bKcJfWXLSuXK0fAhEEKtkQkAAHAPj+MUfveY8ePHy3Ec3XzzzRo7dqwSExNzPhcVFaVatWqpXbt2fgnqC2lpaUpMTFRqaqoSQmwO1aFDudPV9u2TjvnRhIQ335RefNEUhcE06zM72zSiiIiwnQQAAABFUdjaoEgjTP369ZMk1a5dWx06dFDp0jTZCxbeluJRUaG5nubgQenvv4NvLx6miAXG1q3SvfeaP+c//2w7DQAACCfFersXHx+vpce8c/3qq6902WWX6eGHH9aRI0d8Fg6Fd+ymtcHUdttXgm3z2p07zcgSAiMuTvr4Y7Pv1d69ttMAAIBwUqyC6fbbb9eKFSskSWvWrNG1116rMmXK6NNPP9UDDzzg04AoHG/BFKprPYJp81rHkVJSTKb//2sAP0tIkE4/3ZwvX243CwAACC/FKphWrFihli1bSpI+/fRTde7cWR988IHeffddff75577Mh0I6doQpFHkLpm3bpMOH7Wb5+2/zeu/alZsL/ufdwDbYpmUCAIDQVqyCyXEcZWdnS5J++uknXXTRRZKk5ORk7dq1y3fpUGjeNUyhOsJUoUJuq3Tbm5dOmWKO55wjRUfbzRJOGjc2x2XL7OYAAADhpVgFU5s2bfTUU0/p/fff1/Tp09WzZ09J0tq1a1W5cmWfBkThnH++9NJL0g032E7iHx5P7miO7XVM3v2XaCceWIwwAQAAG4rV5m7s2LHq3bu3vvzySz3yyCOq9/+b/nz22Wdq3769TwOicFq2NLdQlpJiugD+/+CmFVlZ0rRp5pwNawOLESYAAGBDkfZhOpXDhw8rIiJCkZGRvrqkT4XyPkwIjPnzpdatpfh4ac8eic76gbNli1Srlhlp+vNP9r4CAAAl45d9mI43b968nPbiTZo00RlnnFGSy6EEpk41oy8tWkhly9pOE7q80/E6d6ZYCrSqVc1+XLzuAAAgkIq1hmnHjh3q2rWr2rZtq0GDBmnQoEFq06aNzjvvPO30dh/wk1dffVW1atVSTEyMzjrrLP3xxx9+fT636NfPNCH4+2/bSUJbhw7SPfdI111nO0n48XgolgAAQOAVq2C6++67lZ6eriVLlmjPnj3as2ePFi9erLS0NA0aNMjXGXN8/PHHGjJkiIYPH6758+erRYsW6t69u3Z4e2qHKcfJ7ZIXqm3FJWnxYrOOyeZA5tlnS2PHSr1728sAAACAwCnWGqbExET99NNPatu2bZ77//jjD11wwQXat2+fr/LlcdZZZ6lt27Z65ZVXJEnZ2dlKTk7W3XffrYceeuiUXx+qa5j27zcbe0pSeroUF2c3j7+sWyfVrm2mHh46JJUqVrkPN/v6a2nkSLOO7I03bKcBAABu5tc1TNnZ2Sdt7BAZGZmzP5OvHTlyRPPmzdOwYcNy7itVqpS6deum33///aRfk5GRoYyMjJyP09LS/JLNNu8AW5kyoVssSdLpp5si6cgRaft2s6YlkGbMMF3y2rWTYmIC+9wwsrKkefPMqCoAAEAgFOt39Oeee67uuecebdmyJee+zZs3695779V5553ns3DH2rVrl7Kysk7Y56ly5cratm3bSb9mzJgxSkxMzLklJyf7JZtt4TAdT5IiI6Vq1cz5hg2Bf/4nnzStxP/978A/N4xjW4vbbC8PAADCR7EKpldeeUVpaWmqVauW6tatq7p166p27dpKS0vTyy+/7OuMxTZs2DClpqbm3DZu3Gg7kl94R5hCvWCS7G1em5Eh/fqrOWf/JXvq1DGNHw4elDZvtp3GfxyHghAAgGBRrCl5ycnJmj9/vn766Sct+/9dJBs3bqxu3br5NNyxKlasqIiICG3fvj3P/du3b1eVKlVO+jXR0dGKjo72W6Zg4S2YKlWymyMQatSQZs4M/AjTrFnS4cNS5cq5oxwIvMhIqX59aelScwvRQWP17i398IO0aFHgp54CAIC8ijTCNGXKFDVp0kRpaWnyeDw6//zzdffdd+vuu+9W27Zt1bRpU/3yyy9+CRoVFaXWrVvr559/zrkvOztbP//8s9q1a+eX53SLDh2kV16Rbr3VdhL/szXC5N1/qWtX094a9jRqZI7//7uakPPjj9KHH0q7d0tTpthOAwAAijTCNHbsWN12220n7SKRmJio22+/Xf/617/UsWNHnwU81pAhQ9SvXz+1adNGZ555psaOHasDBw7opptu8svzuUXjxuEz6tGokdS8uRnpCSTvG1em49kXygVTdrZ0bMPPRYvsZQEAAEaRCqaFCxfqmWeeyffzF1xwgZ5//vkSh8rPtddeq507d+rxxx/Xtm3b1LJlS33//fcnNIJA6OrXz9wC6eBBMyVPomAKBikpUr16UvnytpP43l9/mf3GvI49BwAAdhRpH6aYmBgtXrxY9erVO+nnV61apWbNmunQoUM+C+hLoboPk7cZQbNmUmKi3Syh6McfpQsuMOun1q1jSh78a9066bXXpOeek5o2pWgCAMBfClsbFGkN0+mnn67FBfzv/ddff6kqK5QD7q67pI4dc0dBwoHjBG4vnnPPlebPl15/nWIJ/lerlvTEE6axCVPyAACwr0gF00UXXaTHHntMhw8fPuFzhw4d0vDhw3XxxRf7LBwKJ5y65EmmOExIkJYsCczzRURIrVpJPXoE5vlQOI5jNrINBfv3S3Pn5n4cE2M6AFKgAwBgX5EKpkcffVR79uxRgwYN9Oyzz+qrr77SV199pWeeeUYNGzbUnj179Mgjj/grK07CccJn41qv/ful9HQ7m9ciONxzj1nD9P77tpP4xvPPS23bSg88YDsJAAA4XpGaPlSuXFm//fab7rzzTg0bNkze5U8ej0fdu3fXq6++SgOGANu3Tzp61JyHywhTzZrSwoWBaS0+dao0frx0xRXSJZf4//lQONnZ5s/+0qW2k5Tctm3SP/9pzs88M/f+yZOlN9+U2rSRhg2zkw0AABRj49qaNWvq22+/1d69e7Vq1So5jqP69eurXLly/siHU/BOx0tMlMJgj15JpvmCFJgRpkmTTMEUHU3BFExCqbX4k09KBw6YYunKK3Pv37JF+uILUxhSMAEAYE+RCyavcuXKqW3btr7MgmIIt/VLUmA3r2X/peDk3XfM7QXTypVmFEmSnnkm75qlZs3MkS55AADYVaQ1TAg+4bZ+SQrcCNPu3dKCBea8Sxf/PheKxjvCtHq1dOSI3Swl8eijZkrtRRed+GescWNTQO3YkfuLEQAAEHgUTC7XooX0yiumtXi4CNQI0/Tp5ti0qcTSvOBStaoUH2+65K1aZTtN8cyZI33yiSmKxow58fNxcVKdOuY8UB0hAQDAiSiYXK5uXWngQOn6620nCZxataTmzaXWrf27F5N3Ol7Xrv57DhSPx5M7yuTWxg87dkhVqkh9+pg/zyeTkmKOTMsDAMCeYq9hAmypXNl0yfM31i8Ft86dTWvx+HjbSYqnZ08zOnboUP6PadZM+uorCiYAAGyiYHK52bPNGo6mTc2bR/jGoUNS6dJSqVLmjTmCz3PP2U5QcnFx5paflBSzia2b12kBAOB2TMlzuYcekjp1kn74wXaSwHOc3D2ofC02VvrrL9NUg0IUvvT119IHH5i9pE7l8svNJs3vvOP/XAAA4OQomFwuHNuKS6a7WEKC9PTT/n0eiqXgt2ePf9ey+VJGhjRokNS7t/TWW6d+fFSUFBHh/1wAACB/FEwuF45txSUpMtL85t1frcUzMvxzXfhOdrZUvbpUoYK0aZPtNIXz+uvSunWmy1+fPrbTAACAwqBgcrGsLGnXLnMebiNM/mwtvmGDlJQkXXhh4aZNwY5SpXIbPrhhA9vUVOnJJ835yJFSmTKF+7pXXzXbB4wd67doAACgABRMLrZ7d+5UpIoV7WYJNH9uXjt1qnT4sHmDW4q/IUHNTa3Fn3/e/J1t2FC66abCf11qqllPN3++/7IBAID88XbQxbzrlypUMB3dwsmxI0y+Xr/C/kvu0bixOQb7CNPWrdK//mXOx4wp2t9X715Mixb5PhcAADg1CiYX865fCrfpeJJZuyKZ9t/eaYm+4Djsv+QmbhlhGjlSOnhQatdOuuyyon2tt2BautR/XSEBAED+wmxcIrTUq2fWN8TG2k4SeNHRZuH81q1mWp6visZVq0wDgagoqX1731wT/uOWEabrrjNT6p55RvJ4iva1tWqZ9U4HD0qrV5spfQAAIHAomFwsOVkaMMB2Cnu6dZP27vVt2+WpU83x7LMLvygf9niLh23bpH37TLOOYNSli9lkuqjFkmTW0TVtKs2ZIy1eTMEEAECgUTDBtd57z/fXZDqeuyQkSFdfbdrqB2MreMfJLZKKUyx5paSYgmnRIunKK32TDQAAFA4Fk4v9+ae0f79ZxxFu+zD5y7nnSmlp0gUX2E6CwvrkE9sJTs5xpF69pNatpfvvz22BXhwtW5rphwkJPosHAAAKyeM4vu4xFrzS0tKUmJio1NRUJYTAO48rrpAmTjTrmMJ1ap7jmBbg4biOC8Ht22+lnj3NeruVK80UWgAAEDwKWxvQJc/FwrlLnmTWGyUmSh072k4C2/bvNw07gkVWlvTQQ+Z80CCKJQAA3IyCycW8+zCF63S88uXNG2VfbV47bZrpkAd3mTHDTFXr2dN2klwTJpj1RklJuYWTL2RnS5mZvrseAAA4NQomFwv3gsm7ee3OnablcklkZ5spjsnJpv0z3KNuXXNcvVo6csRuFslMEX3sMXM+bJgp7H3hzjtNYfjxx765HgAAKBwKJpc6csS0UZbCt2BKTMxdSF/SUaaFC02L8vh4qXnzkmdD4FSrZn5uWVnBMS3vtdfMn8fq1aW77/bddUuVkg4cMK3FAQBA4FAwudSuXeYYESGVK2c3iy0eT+4oU0kLJm878U6dpNL0jnQVj8d0ipTsb2CbmSk9/7w5f+IJ3zYjSUkxx0WLfHdNAABwahRMLuVt+FCxovnNc7jyFkzr15fsOuy/5G7egmnpUrs5IiOlmTOlBx6Q+vb17bW9BRMjTAAABBa/S3epKlXM1J/waQp/cjVqmGNJRpgyM03jAImCya0aNzZH2yNMklS7tvTMM76/rrdg2rDB7BUWAjsjAADgChRMLlW5slkEHu7OPFPauFGqX7/415g3T0pPN4vzWb/kTsEwJW/jRv+2Dy9XTjr9dGnzZmnJEqldO/89FwAAyBXGk7kQCvr3l77+umTTn7zT8bp0Ce/pjW7WsqX0j39It9xi5/mXLpXq1JGuu86/bb+ZlgcAQOAxwuRSixdLu3dLDRpIVavaTuNut91mWlNXrmw7CYqrdm3pjTfsPf/DD0tHj0oZGWYdk7+ce64UFcXfeQAAAsnjOOGzCiYtLU2JiYlKTU1VgssXANx6q/T229KTT0qPPmo7jV2OI6WmmjUdjBAh0H77TerQwfzZW7w4dz0VAAAIboWtDXh76VLeLnnhugeTV3a2VKmSWd+xZYvtNLDp0CGzn9bKlYF7TseRHnzQnN98M8USAAChiILJpXbsMMdwL5hKlSrZ5rXvvy+NHi0tX+7bXAi8J54wa5nGjg3cc06aJP36qxQTI40YEZjndBxp61bp8OHAPB8AAOGOgsmlvAVTpUp2cwSDkuzF9Oab0iOP5LYVh3sFei+mrCzpoYfM+eDBpoNdIJx1llStmpkKCAAA/I+CyaUYYcpV3ILpwAFp9mxzzv5L7hfovZhWrTKNV8qVy52WFwjewoxOeQAABAYFkwsdOmT2DZIomKTib147c6ZpAZ2cbFpCw90aNjTHrVtNE5BAPN+qVdI330hJSf5/Pi9aiwMAEFgUTC7kbfgQGWk6w4W74o4wTZ1qjueeK3k8vs2EwEtMNFPVpMCNMpUtG/gNZCmYAAAILAomF0pIkMaNk8aM4Y2+VPwRJu+GtUzHCx2BWMe0d6/00UemQ6MNxxZM4bMpBAAA9lAwuVBSknTHHdJ999lOEhzq15cuvli66KLCf01qqjR3rjnv2tU/uRB4gVjHNGaMdP31Ur9+/nuOgjRoYEaX9+8vXmdIAABQNKVtBwBKqnZt6euvi/Y1y5ZJsbFS1apmDRNCw+WXmxHHzp39c/2NG6WXXjLn11/vn+c4lchIM5K2aJEZZfJOSQUAAP5BweRCy5ebhe316knVq9tO405nnWWmVm3aZDsJfOm888zNX4YPlzIyTEHWo4f/nudUbrjBdMqk2AcAwP88jhM+s+DT0tKUmJio1NRUJbi4W8LQodLzz0tDhkj//KftNMHBcaR9+6SICBphwD8WL5ZatDBrl2bNMkU3AABwr8LWBqxhciFvlzw2rc11441S+fLS+PGnfmz4/IogPC1fLn3xhbR9u2+v+/DDpli68kqKJQAAwgkFkwuxae2JvK9FYVqLf/GF2UNn9Gj/ZoIdffqYombmTN9d85dfzDq5iAhp1CjfXbck9u41uY4etZ0EAIDQxhomF/KOMFEw5fIufC9M17ApU6QVK8w6MISeRo2kOXN82ykvOlpq3Vpq0yZ3g1ybsrPN+qUDB0wLdW87dQAA4HsUTC7ECNOJirJ57bEb1iL0eFuL+3IvpjPPlP74Qzp82HfXLIlSpaQmTUxhuHgxBRMAAP7ElDyXcZzcgok1TLkKu3nt1q3mjbTH47/W07DLWzz4ei+mUqWkMmV8e82SaNbMHBcvtpsDAIBQR8HkMgcO5P6WmxGmXN4Rpm3bCh4FmDbNHFu2NE0iEHqOLZhK2uDj/felkSPNJrHBJiXFHCmYAADwL6bkuUypUtLrr0u7dklxcbbTBI8KFcxGtIcOmb2V6tU7+eOmTDFHpuOFrnr1pNKlpfR0afPm4u9VdvCg9NBD0pYt5s/XXXf5NmdJUTABABAYFEwuU6aMdPvttlMEH49H6tvXdDGLisr/cd6CqWvXwORC4EVGSnXrmvbiy5YVv2B66SVTLNWsKd12m28z+oK3YFq50oyqxsTYzQMAQKiiYELIeP31gj9/5IjUrZs0fbrUsWNgMsGOJ580o7EtWhTv63fvlp5+2pw/9ZTpkhdsqlQxI1+7d5vCsGVL24kAAAhNFEwus2aN6QRXu7ZUq5btNO4SFSW98YbtFAiEq68u2dePHi2lppqC64YbfJPJ1zwes5luTIwpngAAgH/Q9MFlPv7YrL954gnbSYKP45jNPDdtsp0EbrZ+vfTKK+b86afNSFWwGjJEGjCAggkAAH8K4rcCOBnvprW0FD/Rhx+aznf9+p34Occx++gcPRr4XAi8w4elr7+WXn656F87YoSZvtm1q9S9u8+jAQAAl2FKnsuwaW3+vIv7T7Z57apV0llnSRUrmoX8kZGBzYbAysiQLrnEnPftKyUmFv5rH3vMFEyDB5tpb8EsM1NasEBavVq67jrbaQAACE2MMLkMBVP+vJvXbtwoZWfn/Zy3O16TJhRL4SAxUapWzZwvX160r61TR5owQWrb1ve5fC09XTrzTOn666W0NNtpAAAITRRMLuMtmJiSd6LTTzfrTY4ckbZvz/u5qVPNkf2Xwod3A9ulSwv3+IwM/2Xxl3LlckdW2Y8JAAD/oGByGe8aJkaYThQZmTuqsGFD7v2Ok1swsf9S+PAWTMuWnfqxjiN16WI64m3Z4tdYPscGtgAA+BcFk4s4DlPyTqVmTXM8dh3T33+b1y021qxjQnho3NgcCzPC9MUX0qxZ0v/+F9xd8U6GggkAAP+i6YOLZGWZdsc7dzIlLz81akgzZ+YtmLzrl845Jzg3IIV/FHaEKTPT7GckSffd574W3RRMAAD4FwWTi5QuLd1+u+0Uwe3CC826jlatcu/zFkxMxwsv3oJp1Sqzri0q6uSP+89/pBUrzC8h7rsvcPl8xVswLVpkRqGDvbMfAABu43Ecx7EdIlDS0tKUmJio1NRUJSQk2I6DAJkzR5o8Wbr8cqlpU9tpECiOYzZ6btRIatZMiog48TEHDkj16knbtkkvvSTdfXfgc5bUwYNS2bLm+922Tapc2XYiAADcobC1ASNMLrJpk/lNeM2aUt26ttO4R9u27mgRDd/yeE69N9HYsabIqF3bvaO3ZcpIb7xh/l3g90AAAPiey5Y3h7dJk6TzznPntKFAcRxp3z4zPQkoSFaWNH68OR81Kv8pe25w223SBReYxiYAAMC3GGFyEVqKn1p6ulnDJEmpqdJ775kpSt2789v3cLRqlfT111JSknTTTXk/FxEhzZ9v/oxce62VeAAAwAUYYXIRWoqfWnx8bsG0Zo00bJh0zTXmHOHnr7+kIUOk1147+efLlpUGDHBfK/Hj7d0rffSRNG6c7SQAAIQel79NCC/egomW4gWrUcMcP//cjDiVLy81b243E+zw7sW0bJmZruk1a5aUnW0nkz9s3Spdf730wAN5v08AAFByFEwuwghT4Xg3r333XXPs0sX9Iwgonrp1zdS79HRp82Zz34IFUvv20tlnS4cPW43nM/XrS5GR5vvcsMF2GgAAQgtvI13Eu4aJEaaCeUeYNm0yx3PPtZcFdkVFmbbhUu4GtsOGmVGYunWlmBh72XwpMjJ33ykangAA4FsUTC7CCFPheEeYvCiYwpu3kFi61Gxi/P33psAYNcpuLl/zbmC7eLHdHAAAhBoKJhcZM0Z66qncERSc3LEFU5UquW+YEZ6OLZgefNCc33GHVKeOvUz+0KyZOVIwAQDgW7QVd5FbbrGdwB2ObfDQtavZwBThy9v4wdtBrmxZ6dFH7eXxF0aYAADwDwomhJyGDc0alY0bQ2dRP4rvooukmTOlK66Qtm+Xhg4NzWmt3oJp6VLp6FGpNP+6AwDgE/yX6hLbt0tLlkjVq0sNGthO4w7JybYTIBhUqmQK59NPN4X0kCG2E/lHzZrSV1+ZwikiwnYaAABCBwWTS0yfLl17rdSxozRjhu00gLskJ0tz5khr15opeaGoVCnpkktspwAAIPTQ9MEl6JAHlEypUqaVOAAAQFEwwuQSFEwATmXVKumjj6QyZUJ36iEAAIHGCJNLeDetpWACkJ9166THHpPeeMN2EgAAQgcFk0t4R5gqVbKbA0Dw8nbKW7VKOnTIbhYAAEIFBZNLMCUPwKlUrixVqCBlZ0vLltlOAwBAaKBgcgmm5AE4FY8nd5Rp0SK7WQAACBU0fXCJRx+VNmxgDyYABUtJMdsQLF5sOwkAAKHBNQXTqFGj9M0332jBggWKiorSvn37bEcKqBtvtJ0AgBt4R5gomAAA8A3XTMk7cuSIrr76at155522owBA0GrWzByXL7ebAwCAUOGaEaaRI0dKkt599127QSzYu1eaN0+qVk1q0sR2GgDB7IwzpCVLpPr1bScBACA0uKZgKo6MjAxlZGTkfJyWlmYxTfHNmyedf76ZasNCbgAFiY3lFysAAPiSa6bkFceYMWOUmJiYc0tOTrYdqVhoKQ4AAADYYbVgeuihh+TxeAq8LSvBZiLDhg1Tampqzm3jxo0+TB84FEwAimL6dKl/f+n5520nAQDA/axOybvvvvvUv3//Ah9Tp06dYl8/Ojpa0dHRxf76YEHBBKAo1q2Txo+XunSR7r/fdhoAANzNasFUqVIlVapUyWYEV/BuWstLBaAwjt281nHMhrYAAKB4XNP0YcOGDdqzZ482bNigrKwsLViwQJJUr149lS1b1m44P2OECUBRNGliiqTdu82/H5Ur204EAIB7uaZgevzxxzV+/Picj1u1aiVJmjp1qrp06WIpVWBQMAEoithYqV49aeVKs4EtBRMAAMXnmi557777rhzHOeEW6sWSJA0ZIo0eLTVvbjsJALfwTstbvNhuDgAA3M41I0zh7OqrbScA4DYpKdLEiRRMAACUlGtGmAAAhdesmVnHtG+f7SQAALgbI0xBLj1dmjVLqlIld4oNAJxKr17m348yZWwnAQDA3SiYgtzy5dL550unny5t2mQ7DQC3iImxnQAAgNDAlLwgR4c8AAAAwB4KpiDnLZjYtBZAUf3nP9I550gvv2w7CQAA7kXBFOQYYQJQXNu3SzNnSrNn204CAIB7UTAFuZ07zZGCCUBRNWtmjosW2c0BAICbUTAFOabkASgub2fNZcukzEy7WQAAcCsKpiDHlDwAxVWjhlS2rHTkiLRqle00AAC4EwVTkLvjDmnMGOmss2wnAeA2pUpJTZua88WL7WYBAMCtKJiC3CWXSA89lPumBwCKwjstj3VMAAAUDwUTAISwlBQpOVmKirKdBAAAd/I4juPYDhEoaWlpSkxMVGpqqhISEmzHOaWMDGnGDNPwoUULyeOxnQiA2zgO/3YAAHAyha0NSgcwE4po82bpgguk2Fjp4EHbaQC4EcUSAAAlw5S8IEaHPAC+lJ1tOwEAAO5DwRTEKJgA+ML990tVqkj//a/tJAAAuA8FUxDbudMc2bQWQElkZEjbt9NaHACA4qBgCmKMMAHwBVqLAwBQfBRMQcw7wkTBBKAkvAUTI0wAABQdBVMQY4QJgC94N77etEnat89qFAAAXIeCKYj16SONGSN16mQ7CQA3S0qSqlc350uWWI0CAIDrsA9TEOve3dwAoKRSUswI0+LFUocOttMAAOAeFEwAEAY6dJAOH5bKl7edBAAAd/E4juPYDhEoaWlpSkxMVGpqqhISEmzHKZDjSD/+aNYvNWsmRUTYTgQAAACEjsLWBowwBanU1NzpeIcOUTABAAAANtD0IUh5O+QlJEgxMXazAAgd+/ebjWwBAEDhUDAFKW/BVKmS3RwAQsd555lfwvzyi+0kAAC4BwVTkGIPJgC+lpRkjmxgCwBA4VEwBamdO82RggmAr6SkmCMFEwAAhUfBFKSYkgfA1yiYAAAoOgqmIMWUPAC+dmzBlJ1tNwsAAG5BW/EgdeWVUnKydPbZtpMACBX16klRUdKBA9L69VLt2rYTAQAQ/CiYglSXLuYGAL4SGSk1aiT99ZcZZaJgAgDg1CiYACCMXHmldNZZUpUqtpMAAOAOFExBasoU0wI4JcVMoQEAX3j8cdsJAABwFwqmIJSVJZ1/vlmUvWWLVLWq7UQAAABAeKJLXhDasye3g1XFinazAAg9hw9LCxZIR4/aTgIAQPCjYApC3k1ry5c3i7QBwFccx4xat2olrVhhOw0AAMGPgikIsWktAH/xeKSGDc05G9gCAHBqFExBiE1rAfjTsRvYAgCAglEwBSHvlDwKJgD+QMEEAEDhUTAFIUaYAPgTBRMAAIVHW/EgdOGFUlyc1KKF7SQAQlGzZua4apV06JAUG2s3DwAAwYyCKQi1a2duAOAPp51mtizYtUtaulQ64wzbiQAACF4UTAAQZjweafBgqXRpunECAHAqFExB6JdfzJS8Jk2kmBjbaQCEokcesZ0AAAB3oOlDELrsMql1a2nNGttJAAAAgPBGwRRkMjOlPXvMOV3yAPhLdra0fLn09de2kwAAENyYkhdkdu0yx1KlpPLl7WYBELr275caNTLne/dKSUlW4wAAELQYYQoy3k1rK1Y0RRMA+ENiopScbM6XLLGbBQCAYMZb8iDDprUAAsW7ge2iRXZzAAAQzCiYggwFE4BA8W5gu3ix3RwAAAQzCqYgQ8EEIFC8I0wUTAAA5I+mD0GmUyfp2WelBg1sJwEQ6o4tmBzHbGgLAADyomAKMmecYW4A4G+NGpnmMrt3S9u2SVWr2k4EAEDwoWACgDAVGyu98IJUvboUH287DQAAwYmCKcjMmiVFRprf/MbF2U4DINQNGmQ7AQAAwY2mD0HmxhulNm2kBQtsJwEAAABAwRRk6JIHIJD275cmTZLefdd2EgAAghNT8oLI4cPmzYskVapkNwuA8LB5s9Srl5kC3LevaQIBAABy8V9jENm50xwjI6XERLtZAISHevWkqCjpwAFp/XrbaQAACD4UTEHEOx2vUiX2QwEQGKVLS40bm/NFi+xmAQAgGFEwBRHWLwGw4dgNbAEAQF4UTEGEggmADRRMAADkj6YPQaRNG+m556TTT7edBEA4oWACACB/FExBpGlTcwOAQPIWTMuWSZmZpvEMAAAwKJgAIMzVqCH997+mcIqIsJ0GAIDgQsEURObMMd3xGjaU4uNtpwEQLkqVknr3tp0CAIDgRNOHIDJggNS2rTRtmu0kAAAAACRGmIIKXfIA2LJhgzRxolm/NGCA7TQAAAQPRpiChONIO3eacwomAIG2apU0eLD0wgu2kwAAEFwomILEgQPSoUPmvFIlu1kAhB9vp7zVq6WDB+1mAQAgmFAwBQnvdLzYWCkuzm4WAOHntNPML2scR1q61HYaAACCBwVTkDh2Op7HYzcLgPDEBrYAAJyIgilI0PABgG3egmnRIrs5AAAIJnTJCxKNG0vPPy+VL287CYBwxQgTAAAnomAKEvXqSffdZzsFgHBGwQQAwImYkgcAkCS1aiXNmkXTBwAAjkXBFCQWLpTmzJH27bOdBEC4io2VzjpLio+3ncR/srOl++83+04BAFAYFExB4oEHpDPPlP73P9tJACB0vfuu9M9/Su3aSYcP204DAHADCqYg4e2Sx6a1AGyaNUu66y7pxRdtJ/G91FRp2DBz/tBDUkyMue/cc6Xff7ebDQAQvCiYggRtxQEEg5UrpVdflb74wnYS33vySfNvbcOG0t13m/uGD5emTpW6dJH+8x+r8QAAQYqCKQg4Tt6NawHAlmM75TmO3Sy+tGxZ7qjZCy9IUVHm/KmnpCuukI4ckW65xRRSmZn2cgIAgg8FUxBITc39D5opeQBsatRIKlVK2rNH2rbNdhrfcBzp3nulo0elnj2lHj1yP1e2rPTpp9ITT5iPX3lFuuCC3F9iAQDgioJp3bp1uuWWW1S7dm3Fxsaqbt26Gj58uI4cOWI7mk94p+PFx5s59QBgS2ys2RdOCp39mCZPlr7/XoqMNKNLxytVSnrsMenLL00BNW2a1LattGRJoJMCAIKRKzauXbZsmbKzs/XGG2+oXr16Wrx4sW677TYdOHBAzz//vO14Jcb6JQDBJCVFWrHCFEznn287Tcl16WKm3h09KtWvn//jLr3UNL247DIpI0OqWDFQCQEAwcwVBdOFF16oCy+8MOfjOnXqaPny5Ro3blxIFEw1a5o2t9HRtpMAgNSsmWn6ECojTDEx0iOPFO6xTZtKf/whbd0qVa6ce7/jSB6Pf/IBAIKbKwqmk0lNTVX58uULfExGRoYyMjJyPk5LS/N3rGJJTpaGDLGdAgAMb+OHLVvs5iiptDSpTBmpdBH/pytXzty83ntP+vhjacIEKSnJpxEBAC7gijVMx1u1apVefvll3X777QU+bsyYMUpMTMy5JScnByghALhXjx6m6cF339lOUjJ33y21bi3NmVP8a6SlSYMHS99+K511lum2BwAIL1YLpoceekgej6fA27Lj/nfavHmzLrzwQl199dW67bbbCrz+sGHDlJqamnPbuHGjP7+dYluyxEwB2b3bdhIAkOLi3L9+Z/ZsMzL0118la4+ekCD99JOZCbBihSmaJk3yXU4AQPDzOI69nTZ27typ3aeoEurUqaOo/98wY8uWLerSpYvOPvtsvfvuuypVqmj1XlpamhITE5WamqqEhIRi5/a1664z0z3GjpXuucd2GgBwt+xs6eyzzcjSTTf5ZkPaHTukq66SfvnFrGV66ilp2DDWNQGAmxW2NrC6hqlSpUqqVMiNhzZv3qyuXbuqdevWeuedd4pcLAUzb5c89mACECw+/NCM0PTqJQ0YYDtN0Ywfb4ql+Hhp9GjfXPO008xI0+DB0rhxponEwoXmdQqh/44AACfhin/mN2/erC5duqhGjRp6/vnntXPnTm3btk3bQmRXRdqKAwg269ebvYt+/dV2kqJJSzMjP5L0+ONSlSq+u3ZUlPTaa9Kbb5o9nRo2pFgCgHDgii55P/74o1atWqVVq1apevXqeT5ncUahz3h3lKdgAhAsmjUzR7e1Fn/ySWn7dqlBA2nQIP88x223mSl/TZvm3peVJUVE+Of5AAB2ueJ3Y/3795fjOCe9uV1WlrRrlzlnSh6AYOFtLb5smZSZaTdLYWVlSfPmmfOxY82IkL80a5Y7unTokHTOOdJLL5WswQQAIDi5omAKZXv2mAXKkvu7UgEIHTVqSGXLmmJp5UrbaQonIkL6+Wdz69EjcM87YYI0a5Zp2nPzzdLhw4F7bgCA/1EwWeadjleunJkTDwDBwOPJHWVy07Q8j0c699zAPuctt0gvvGBGnN59V+rc2f2b/gIAclEwWVahgvTPf0oPP2w7CQDk5ZZ1TEeOSKNGmYYPNng8pnve5Mnml19//GE2zP39dzt5AAC+RcFkWeXK0pAh0v33204CAHmlpEhJSdLRo7aTFOzFF6VHHzUjOzbXEHXrZtqZN20qbdsmdekiffGFvTwAAN+wunFtoAXrxrUAEIwyM6XSpYN7c9atW01HvPR0Mx2uXz/biaT9+02OGTNMAVW7tu1EAICTccXGtZBWrJD27pXq1KFLHoDg4oZ1lcOGmWLpzDOlPn1spzHi46XPPpPWrs1bLGVkSNHR9nIBAIqHKXmWvfCC2c/jlVdsJwEAd5k9Wxo/3py//HJwbSJbqpRUt27ux998IzVuLC1YYC0SAKCYgui/l/C0Y4c5smktgGA0fLhUv7703nu2k+SVnZ27MW3//maEKVg5jjRihBlxat9e+vhj24kAAEVBwWSZt6040/EABKN9+6RVq6S//rKdJK/33zfd6OLjpTFjbKcpmMcj/fCD1L272eT2uutMZ9SsLNvJAACFQcFkGSNMAIJZsO7FdP75Ut++ZgSsShXbaU6tXDkzLW/oUPPxmDHSJZeYghQAENxo+mCZd4SJgglAMArWgqlaNbN+yU19XiMipGeflVq2NJvdfvutdNZZZi1WUpLtdACA/DDCZFFmprRnjzmnYAIQjJo2NcfNm01HT9sOH877cTC3PM/PDTdIM2dKycnSeee5s1g6elRatkz69FPp8celK64wa91+/DH3MUeOSKmp9jICgK8wwmTRrl3mWKqUVL683SwAcDIJCVKNGtKGDWaUqWNHu3muvNK05h471uRyqzPOkObNkxITc+87cEAqUya4ikDHMcWRt8X8L7+YZhtLl5o26cdbuNBMl5Ske++Vfv5Z+vJLqVGjgEUGAJ+jYLIoNta0FU9PD652uABwrJSU4CiYvv3W3CIjpWeesZfDV45t9nP0qHTZZWat0zvvSHFxgc+zZ4/5GS9aZG6LF5vbqFHSwIHmMWXK5LZGL1PG/NlISZGaNTPHVq3M53bvlv73P2nTJtPB8L//NWu2AMCNKJgsSkqSBg+2nQIACta2rWlQU7asvQxHjuT+ezl4sJn+FUrmzJGmTzdTtZcvN6Myx25660uHDpmbd2bD4sWmg9+WLSd//KJFuedNm5pszZpJtWrl/8u+ChWkuXOla66RZsyQLr3UNOh4/HF+QYjgt2KF9N130j332E6CYOFxHDctmS2ZtLQ0JSYmKjU1VQkJCbbjAAAK6bnnpAceMB3xli83UwVDzcyZZsrh9u2m4PjkE+ncc4t/vaNHpdWrc0eLvMdVq8y0uhdeMI/buze3eKpZ0xRD3hGjZs2khg2lqKjiZcjMlIYMyd2c/ZJLTEv4UPz5wd0yM83o9bZt5hcy6enSpElSz562k8GfClsbUDBZtGaN+a1trVruaIsLADZs2yY1aCDt3y+9+67Ur5/tRP6zaZN0+eVmdCYiQvrnP01xU9C6Jscxo0MHD+aOvO3ZYzoJnmydkWSm/02cmPvxnDmmMPLXf43vvivdcYfJc+aZ0qxZwbVWC+ErM9Psi/bnn9Lkyebv3eDB0osvShUrmj3oqla1nRL+QsF0EsFWMD3yiDR6tHT33dJLL9lOAwAFy8w0R28DgEC56SbzhvvMM6Xffw/9KV2HDkm3325GYiTzZm7UKHO+d2/u2qJjR4727ZMuvlj6+mvzOMcx3VcPHjTT6LyjRd6Ro8qVA1+wzJljRtBefVXq1Suwzw2czPr1ZiPpWbPMx999J114oSnszzrLNDHp1s0UUqH+7064KmxtwBomi7yb1h678BcAgtGll5o3E998k9sFLRD275emTTPnL70UHm9aYmPNHlOtWkkjRpg3dJIpgmrUMFOFjhcRYdZ5eXk85s1elSrB85q1bWumU8bG5t63erVZqxUsGRE+/vc/qX9/80uIpCTTbOXCC83noqOlDz+UWreWfvrJjPR6N51GeOKfKIvYtBaAW0RGmhGmYxsABEJ8vLRkiZk+dtZZgX1umzwe05Z77VozKuS9LyXFFE0XXSQ9+KDpPrdggWlJPnly3mtUqxZ8hcixxdK6deZnesUVUlqatUgIM0eOSPfdZ34JtHevGbn+808zTfVYjRubaXmSGeWdOzfgURFEGGGyyDvCRMEEINilpEiff26mgAVamTInvpkJF8fv0Td9evEbMASbhQvNaNlXX5nC6csvzToqwJ9uucX8okEyv5R4+un8/07deqv5RcTnn0v/+pf0wQeBy4ngEmS/ewovTMkD4BYpKeYYqIIpLU36z3+krKzAPJ9bhEqxJJnf8P/yi3T66dKyZeY3/ZMm2U6FUPfAA2b09csvTRFU0N8pj0d66y2z3nz8+IBFRBCiYLKIESYAbuGdFrZkiZSd7f/ne+op85vgG27w/3PBnrZtpXnzzIbIaWmm7fiTTwbmzxjCw5EjuesgJfNv2Zo1pmAvjHLlpGHDAt/sBsGFgsmSw4fNYmaJESYAwa9uXbMQ+uBBs/bEn1askMaONeeh3EIcRuXKZmH9wIGmscXjj5tOekBJrVtnivHzz8/thCeZf8uK48gR6dFHzdpChBcKJkscx2wa+PDDpjsLAASz0qXNImjJ/9Py7r3XNJi46CJzQ+iLijKb2779ttS+vVk7ApTEl1+aTpN//GGax6SmlvyagwebFv833JC7zQLCA/swAQAK5dFHTRvou+6SOnTwz3N8+63Us6eZ/rJ4sdmwFuElOzu3u192tnnDe/bZdjPBPY4cMeuUvB3uzj5b+ugjqWbNkl97/XqpRQtTfD3yiJk6DHcrbG3ACBMAoFCeesrsTeKvYunIETO6JJnf5FIshadjW6GPHGlGnJ56inVNOLU1a8y/T95i6f77pRkzfFMsSeY6b75pzkePzrs2CqGNgsmSjRvNjvWbN9tOAgDB4aWXzPqlypXNaBbCm+NIe/aY42OPSVddlbv2FziZSZPMfknly0tffy0995zvmzVcc410883mz+WNN0q7d/v2+ghOFEyWfPyx+a3Zgw/aTgIAhZedbablHT3q+2t36WKmzzz9tMSsaXg80ssvS//+t1nj5N28eMUK28kQrO6+2/yy5c8/pYsv9t/zvPSSGQHfvNmstwufxS3hi4LJkp07zZGW4gDcwnGk6tWlevXMvjm+1qaNNHOm1Lev768N97rlFrNhb7Vq0tKlZr+mb76xnQrBYM0a6frrc0cePR7Tlr5GDf8+b1ycmZ4cGWk6PK5c6d/ng30UTJawaS0At/F4pFq1zLkvO+UduzalVKm8a1gAyYw8zptnZmakpkpXXy1t3247FWz6/HPTBe+jj6ShQwP//GecIb33nhnNYr1l6OO/JUvYtBaAG6WkmKOvCqbsbDMV76GHWJ+CglWpIk2dKt1xh/Taa2atG8JPRoaZenfVVWaz4/btTcc6G667zoy4I/RRMFnClDwAbuTrgun996VffjEblaan++aaCF1RUdK4cVL//rn3LVzIlKhwsXq1KZBeecV8/MADplNdcrLVWJKkKVOkJ56wnQL+Utp2gHDFCBMAN/JlwbR/vxlZkqTHH5eqVi35NRFeduyQevUyIw0ffij16GE7Efxl6lTpssvMz7pCBTMdLlg2tl61Sjr/fDNifsYZ/m04ATsYYbKENUwA3MhbMK1ZIx04ULJrPfWUtG2bVL++dM89Jc+G8JOdbUYXUlPNhsejR9OxLFQ1aSKVKWP2Wfrzz+ApliQzLc/7b9hNN0lbt9rNA9+jYLIgO9u0zX3kETMnGwDc4rTTzM1xTMey4lqxQnrhBXP+wgtmqhVQVN51Tbffbv5MPvII+zWFkl27cs8rVzbdEqdODY4peMcbM8Y0odi1y3T6ZKPl0ELBZEGpUtKgQea3q2XK2E4DAEXzj3+YN6YVKhT/GkOGSJmZZgpVz56+y4bwExUlvf669Oabps3zF1+YrnqrVtlOhpL45BOpbl3TBc+rQQPfb0TrK9HRZlpomTKm1fjzz9tOBF/yOE74DF6npaUpMTFRqampSmBXRACwYt06qWlTUzAtWiQ1bGg7EULF779LV15ppkRdf730wQe2E6GoDh82v1AZN858fNFF0qRJZlsDN3j7bbOZbenS0m+/SW3b2k6EghS2NmCECQAQULVqScuXS+PHUyzBt9q1k+bOlXr3Nq3H4S4rV5qfobdYGjZM+uor9xRLknTzzWafsKNHpc8+s50GvsIIEwCgSBxH2rJFWrZMOu8822mAgjmO9MYb0o03SmXL2k6D/Hz0kXTbbWZ7gYoVzZYDF15oO1Xx7Nsnffed2afJTcVeOGKECQDgF/v3S9WrS926SXv2FP7rtm0ze6YAgfTaa9Kdd5qRi9WrbafByfz1l5lCmZ4udewoLVjg3mJJkpKSzPdDsRQ6KJgAAEWSkCDVqGHOlywp/NcNGyZ17SqNGOGXWMBJtWpluuktXiy1aSN9/73tRCW3aZP5flJTbSfxjebNpaFDTTOZKVOk00+3nch3du+W+vQxWzHAvdi4FgBQZM2aSRs2mDdtHTue+vF//CG9+645Z3NRBFL79tK8eaYZxKxZponA6NHSgw8G1wjA0qVmpGXrVjMae/xx4cLczZ3//W9p5EhzHh9v2mwfe7vtttzHOk5wfZ9en3xiuhl6f/nyzDPBmbOkBgww3+vKldIvvwRvlz8UjIIJAFBkKSnSN9+YgulUsrPNVgqS1K+fdNZZ/s0GHK9aNTMd9O67pbfeMqOd8+dL//mPf9c1rV1rCqGTFUBbt0q//pq3CPrXv/K/1tateYugcuWkvXvNFNm//zY3r+uuy33syJHSyy+fWFR5b23bBnaLk0OHpMGDTRv49u3NzyUyMjSLJUl67jlp8mRp9mwzuj5qlO1Edh0+bFqwu+3nTcEEACiylBRzLEzB9N//mjcLZcuazR0BG6KjzZv01q1N4fT559Jdd0mdOhXtOtu2mT2eTlYAbd1qFvt7i5VXX5X++c/8r7VlS+5jmzY1WapUMfcdf2zQIPfrRo40t/R0Mz1v48a8t+rVcx+7caNZa7hnjxmlOt6KFVL9+ub8rbdM/mMLqurVzbFaNdMquySWL5euucaMpHk80rnnuu+Nc1HVqGFe12uuMf/+detmpiaHo4ULTQfL2283fwfdhC55AIAiW7DArA0pX97sbJ/fm579+80bvW3bzJSbBx4IaEzgpGbONHuA3XGH+XjfPmn9+pOPBG3bZjq4eQuboUML3pR07lxTlEmmQHv99fyLoBYt/N+5Ly3NfG/HF1Xe219/SbGx5rE33yy9887Jr1OqlJlWVqeO+XjyZDN6dmxxVbmyedzJfPCBeaOcni5VqiRNmCCdf77vv99gdeutZo+matVM4VCxou1EgZOdbUZPH3lEOnLEbC2xbJn5JYZtha0NKJgAAEV2+LB5o5eVlfe35Md78EHp2WfNb7AXLQqO/yCB452qCJozxzSMkMyo0QsvnLwAqlLFTDNLTAxMbl/7/XczVfH4omrzZrPR9MGDBRdXkZGmYUNysvTpp6aAys6Whg+XnnrKPKZLF1MsVasW0G/NugMHTCG9fLl0ySXSl1+G/uiaZP789OsnTZ1qPr7kEjP9tFIlu7m8ClsbMCUPAFBkMTHmDVCVKgWvf2jTxryBeuEFiiUEr9NPN2/g8iuCatfOfezAgeYWitq1M7fjZWdLO3bkFkuSadiQnp5bVG3daoqqdevMzfves1QpU3B5PNJjj0mPPy5FRATiuwkucXHShx+a123BAjNymd8vmkLFJ5+YUcV9+8z/E2PHmpE2NxaKjDABAPzq8GFTYAEIXUePmtHmjRtNMXDllbmfGzlS6tDBrN8Jd99+a0Yhk5JsJ/GvQ4ekJk1M8dy2rVnLeuw6vGDBlLyToGACgMAI1lbGAIDA+PVXs9bt8ceDt516YWsDNq4FABTLoUPS9Olm2sWxjhwx6xT+8x8zlQcAkJfjmKYgodIIJzNTevRR6Y03cu875xzpySeDt1gqCtYwAQCKZcMGUxjFxkpXXZXbHevll6UZM0wXpKuuyl3LAAAw/vzTrO+RTGFxySV285TE8uXSjTeaDpGxseZ7CbX1WYwwAQCKpV4908jh0CGzQadk1i6MHGnOx4yhWAKAkznjDGnIEHN+882mMYbbOI4ZUTrjDFMslSsnvfde6BVLEgUTAKCYIiLMol4pdwPbhx82ey+1aSP1728tGgAEvdGjzX52u3dLffuabRrcYscO6dJLzV5mBw9K551nto646irbyfyDggkAUGwpKea4eLHZq8a7L8vLL+e/gSUAwIzQf/ihabk9ZUrBe4EFkwMHzKjS119LUVFmU9offjDt+UMV/50BAIrNWzD99Zc0aJA579vX7DUCAChYw4bmF0ySaZrwxx928xRGXJzZTyklxfyi7N57Q/8XZCH+7QEA/MlbMH3yiTRrllS2rPT003YzAYCb3HSTdM01pqtosBZM8+ebRj5ejz5qiqXmze1lCiQKJgBAsXkLptKlTWe8N94IzQW/AOAvHo/5t3P6dOmuu2ynySsry/wS7KyzpOuvlzIyzP2lS4fXhuS0FQcAFFtysvmPvkkTMw2vY0fbiQDAfZKSTHvxYLJ+vZliPWOG+bhOHenwYbP2KtwwwgQAKDaPR/rHP8x/9KX5FRwAlNjy5VLnztLq1fYyfPCB1KKFKZbKljUbkX/2mZSYaC+TTRRMAAAAQJC45x5TqNxwg5SZGdjnPnDAPG/v3lJqqpk5sGCBWWfl8QQ2SzChYAIAAACCxJtvmil6f/whDR8e2OeOjjZT8SIipBEjpF9+kerWDWyGYORxHMexHSJQ0tLSlJiYqNTUVCWw/TwAAACC0GefSVdfbUZ1fvpJOvdc/z3XkSOS4+SuTVq7Vtq+PTy2hyhsbcAIEwAAABBErrrK7HXkOFKfPtKuXf55nqVLTWH08MO599WuHR7FUlFQMAEAAABBZuxYqVEjacsW6ZZbTPHkK44jvfqqdMYZ0p9/Su+/L+3d67vrhxoKJgAAACDIxMVJH34oRUVJO3dKaWm+ue62bVLPnmbPp8OHpQsuMI0dypXzzfVDEQUTAAAAEIRatpSmTjVd83zR0vt//5OaNZO++86sWXrxRXNerVrJrx3K2DUDAAAACFLt2+f92HGK1+J7716zEW1qqtS8udlrqWlT32QMdRRMAAAAQJA7csQ0Zzh8WHrllaJ/fbly0muvSfPnS6NG5XbFw6nRVhwAAAAIcr/8InXqZM6//FK69NKCH5+VJT39tNSmjdS9u9/juRJtxQEAAIAQ0bGjdN995vzmm6XNm/N/7Nq1UufO0qOPSv37+65hRLiiYAIAAABcYPRo0wp8zx6zP1NWVt7PO4703ntSixbSzJlSfLz0zDPmiOKjYAIAAABcICrKtBqPizPd8559Nvdze/ZI110n9esn7d8vdeggLVxoGj0Up0kEclEwAQAAAC7RoEFu04fHHpNmzzb7NDVvLn3yiVS6tPTUU9K0aVLt2lajhgwKJgAAAMBF+vUzo0llykhbt0qVKkldu0r160u//SY98ogpnOAbdMkDAAAAXCY1Vdq9W6pTx3y8f79UqpSZrofCKWxtQO0JAAAAuExiorl50djBf5iSBwAAAAD5oGACAAAAgHxQMAEAAABAPiiYAAAAACAfFEwAAAAAkA8KJgAAAADIBwUTAAAAAOSDggkAAAAA8uGagumSSy5RjRo1FBMTo6pVq6pPnz7asmWL7VgAAAAAQphrCqauXbvqk08+0fLly/X5559r9erVuuqqq2zHAgAAABDCPI7jOLZDFMf//vc/XXbZZcrIyFBkZGShviYtLU2JiYlKTU1VQkKCnxMCAAAACFaFrQ1KBzCTz+zZs0cTJkxQ+/btCyyWMjIylJGRkfNxWlpaIOIBAAAACBGumZInSQ8++KDi4uJUoUIFbdiwQV999VWBjx8zZowSExNzbsnJyQFKCgAAACAUWC2YHnroIXk8ngJvy5Yty3n80KFD9eeff+qHH35QRESE+vbtq4JmFA4bNkypqak5t40bNwbi2wIAAAAQIqyuYdq5c6d2795d4GPq1KmjqKioE+7ftGmTkpOT9dtvv6ldu3aFej7WMAEAAACQXLKGqVKlSqpUqVKxvjY7O1uS8qxRAgAAAABfckXTh9mzZ2vOnDk655xzVK5cOa1evVqPPfaY6tatW+jRJQAAAAAoKlc0fShTpoy++OILnXfeeWrYsKFuueUWNW/eXNOnT1d0dLTteAAAAABClCtGmJo1a6YpU6bYjgEAAAAgzLhihAkAAAAAbKBgAgAAAIB8UDABAAAAQD4omAAAAAAgHxRMAAAAAJAPCiYAAAAAyAcFEwAAAADkwxX7MPmK4ziSpLS0NMtJAAAAANjkrQm8NUJ+wqpg2r9/vyQpOTnZchIAAAAAwWD//v1KTEzM9/Me51QlVQjJzs7Wli1bFB8fL4/HYzuOq6SlpSk5OVkbN25UQkKC7Tghh9fXv3h9/YvX1794ff2L19e/eH39j9e4+BzH0f79+1WtWjWVKpX/SqWwGmEqVaqUqlevbjuGqyUkJPCX0Y94ff2L19e/eH39i9fXv3h9/YvX1/94jYunoJElL5o+AAAAAEA+KJgAAAAAIB8UTCiU6OhoDR8+XNHR0bajhCReX//i9fUvXl//4vX1L15f/+L19T9eY/8Lq6YPAAAAAFAUjDABAAAAQD4omAAAAAAgHxRMAAAAAJAPCiYAAAAAyAcFEwo0ZswYtW3bVvHx8TrttNN02WWXafny5bZjhaSnn35aHo9HgwcPth0lpGzevFk33nijKlSooNjYWDVr1kxz5861HSskZGVl6bHHHlPt2rUVGxurunXr6sknnxS9hIpnxowZ6tWrl6pVqyaPx6Mvv/wyz+cdx9Hjjz+uqlWrKjY2Vt26ddPKlSvthHWhgl7fzMxMPfjgg2rWrJni4uJUrVo19e3bV1u2bLEX2GVO9ef3WHfccYc8Ho/Gjh0bsHxuV5jXd+nSpbrkkkuUmJiouLg4tW3bVhs2bAh82BBEwYQCTZ8+XQMHDtSsWbP0448/KjMzUxdccIEOHDhgO1pImTNnjt544w01b97cdpSQsnfvXnXo0EGRkZH67rvv9Pfff+uf//ynypUrZztaSHjmmWc0btw4vfLKK1q6dKmeeeYZPfvss3r55ZdtR3OlAwcOqEWLFnr11VdP+vlnn31WL730kl5//XXNnj1bcXFx6t69uw4fPhzgpO5U0Ot78OBBzZ8/X4899pjmz5+vL774QsuXL9cll1xiIak7nerPr9fEiRM1a9YsVatWLUDJQsOpXt/Vq1frnHPOUaNGjTRt2jT99ddfeuyxxxQTExPgpCHKAYpgx44djiRn+vTptqOEjP379zv169d3fvzxR6dz587OPffcYztSyHjwwQedc845x3aMkNWzZ0/n5ptvznPfFVdc4fTu3dtSotAhyZk4cWLOx9nZ2U6VKlWc5557Lue+ffv2OdHR0c6HH35oIaG7Hf/6nswff/zhSHLWr18fmFAhJL/Xd9OmTc7pp5/uLF682KlZs6bzwgsvBDxbKDjZ63vttdc6N954o51AYYARJhRJamqqJKl8+fKWk4SOgQMHqmfPnurWrZvtKCHnf//7n9q0aaOrr75ap512mlq1aqW33nrLdqyQ0b59e/38889asWKFJGnhwoX69ddf1aNHD8vJQs/atWu1bdu2PP9OJCYm6qyzztLvv/9uMVnoSk1NlcfjUVJSku0oISE7O1t9+vTR0KFD1bRpU9txQkp2dra++eYbNWjQQN27d9dpp52ms846q8BpkSgaCiYUWnZ2tgYPHqwOHTooJSXFdpyQ8NFHH2n+/PkaM2aM7Sghac2aNRo3bpzq16+vyZMn684779SgQYM0fvx429FCwkMPPaTrrrtOjRo1UmRkpFq1aqXBgwerd+/etqOFnG3btkmSKleunOf+ypUr53wOvnP48GE9+OCDuv7665WQkGA7Tkh45plnVLp0aQ0aNMh2lJCzY8cOpaen6+mnn9aFF16oH374QZdffrmuuOIKTZ8+3Xa8kFDadgC4x8CBA7V48WL9+uuvtqOEhI0bN+qee+7Rjz/+yBxjP8nOzlabNm00evRoSVKrVq20ePFivf766+rXr5/ldO73ySefaMKECfrggw/UtGlTLViwQIMHD1a1atV4feFamZmZuuaaa+Q4jsaNG2c7TkiYN2+eXnzxRc2fP18ej8d2nJCTnZ0tSbr00kt17733SpJatmyp3377Ta+//ro6d+5sM15IYIQJhXLXXXdp0qRJmjp1qqpXr247TkiYN2+eduzYoTPOOEOlS5dW6dKlNX36dL300ksqXbq0srKybEd0vapVq6pJkyZ57mvcuDFdg3xk6NChOaNMzZo1U58+fXTvvfcyYuoHVapUkSRt3749z/3bt2/P+RxKzlssrV+/Xj/++COjSz7yyy+/aMeOHapRo0bO/3fr16/Xfffdp1q1atmO53oVK1ZU6dKl+f/OjxhhQoEcx9Hdd9+tiRMnatq0aapdu7btSCHjvPPO06JFi/Lcd9NNN6lRo0Z68MEHFRERYSlZ6OjQocMJbfBXrFihmjVrWkoUWg4ePKhSpfL+3i0iIiLnt53wndq1a6tKlSr6+eef1bJlS0lSWlqaZs+erTvvvNNuuBDhLZZWrlypqVOnqkKFCrYjhYw+ffqcsE63e/fu6tOnj2666SZLqUJHVFSU2rZty/93fkTBhAINHDhQH3zwgb766ivFx8fnzJVPTExUbGys5XTuFh8ff8JasLi4OFWoUIE1Yj5y7733qn379ho9erSuueYa/fHHH3rzzTf15ptv2o4WEnr16qVRo0apRo0aatq0qf7880/961//0s0332w7miulp6dr1apVOR+vXbtWCxYsUPny5VWjRg0NHjxYTz31lOrXr6/atWvrscceU7Vq1XTZZZfZC+0iBb2+VatW1VVXXaX58+dr0qRJysrKyvn/rnz58oqKirIV2zVO9ef3+AI0MjJSVapUUcOGDQMd1ZVO9foOHTpU1157rTp16qSuXbvq+++/19dff61p06bZCx1KbLfpQ3CTdNLbO++8YztaSKKtuO99/fXXTkpKihMdHe00atTIefPNN21HChlpaWnOPffc49SoUcOJiYlx6tSp4zzyyCNORkaG7WiuNHXq1JP+e9uvXz/HcUxr8ccee8ypXLmyEx0d7Zx33nnO8uXL7YZ2kYJe37Vr1+b7/93UqVNtR3eFU/35PR5txYumMK/v22+/7dSrV8+JiYlxWrRo4Xz55Zf2AocYj+OwJTsAAAAAnAxNHwAAAAAgHxRMAAAAAJAPCiYAAAAAyAcFEwAAAADkg4IJAAAAAPJBwQQAAAAA+aBgAgAAAIB8UDABAAAAQD4omAAgBKxbt04ej0cLFiywHSXHsmXLdPbZZysmJkYtW7Y86WMcx9E//vEPlS9f3nr+YHwNi2vatGnyeDzat2+f359rxIgR+f58ASAUUDABgA/0799fHo9HTz/9dJ77v/zyS3k8Hkup7Bo+fLji4uK0fPly/fzzzyd9zPfff693331XkyZN0tatW5WSkhKQbP3799dll12W577k5OSAZnAjj8ejL7/8Ms99999/f74/XwAIBRRMAOAjMTExeuaZZ7R3717bUXzmyJEjxf7a1atX65xzzlHNmjVVoUKFfB9TtWpVtW/fXlWqVFHp0qWL/XwlFRERYT2DG5UtWzbfny8AhAIKJgDwkW7duqlKlSoaM2ZMvo852fSlsWPHqlatWjkfe0c/Ro8ercqVKyspKUlPPPGEjh49qqFDh6p8+fKqXr263nnnnROuv2zZMrVv314xMTFKSUnR9OnT83x+8eLF6tGjh8qWLavKlSurT58+2rVrV87nu3TporvuukuDBw9WxYoV1b1795N+H9nZ2XriiSdUvXp1RUdHq2XLlvr+++9zPu/xeDRv3jw98cQT8ng8GjFixAnX6N+/v+6++25t2LBBHo8n5zWoVauWxo4dm+exLVu2zHMNj8ejf//737r88stVpkwZ1a9fX//73//yfM2SJUt08cUXKyEhQfHx8erYsaNWr16tESNGaPz48frqq6/k8Xjk8Xg0bdq0k07Jmz59us4880xFR0eratWqeuihh3T06NE8r9egQYP0wAMPqHz58qpSpcpJv9fj/fvf/1bjxo0VExOjRo0a6bXXXsv5XPv27fXggw/mefzOnTsVGRmpGTNmSJLef/99tWnTRvHx8apSpYpuuOEG7dixI9/nK8yfuzlz5uj8889XxYoVlZiYqM6dO2v+/Pk5n/c+9vLLL8/z8zr+2qf6s+F9nb/44gt17dpVZcqUUYsWLfT777/nPGb9+vXq1auXypUrp7i4ODVt2lTffvttga8pAPgLBRMA+EhERIRGjx6tl19+WZs2bSrRtaZMmaItW7ZoxowZ+te//qXhw4fr4osvVrly5TR79mzdcccduv322094nqFDh+q+++7Tn3/+qXbt2qlXr17avXu3JGnfvn0699xz1apVK82dO1fff/+9tm/frmuuuSbPNcaPH6+oqCjNnDlTr7/++knzvfjii/rnP/+p559/Xn/99Ze6d++uSy65RCtXrpQkbd26VU2bNtV9992nrVu36v777z/pNbxvrLdu3ao5c+YU6TUaOXKkrrnmGv3111+66KKL1Lt3b+3Zs0eStHnzZnXq1EnR0dGaMmWK5s2bp5tvvllHjx7V/fffr2uuuUYXXnihtm7dqq1bt6p9+/YnXH/z5s266KKL1LZtWy1cuFDjxo3T22+/raeeeuqE1ysuLk6zZ8/Ws88+qyeeeEI//vhjvrknTJigxx9/XKNGjdLSpUs1evRoPfbYYxo/frwkqXfv3vroo4/kOE7O13z88ceqVq2aOnbsKEnKzMzUk08+qYULF+rLL7/UunXr1L9//yK9fsfbv3+/+vXrp19//VWzZs1S/fr1ddFFF2n//v2SlPPzeeeddwr8eZ3qz4bXI488ovvvv18LFixQgwYNdP311+cUowMHDlRGRoZmzJihRYsW6ZlnnlHZsmVL9P0BQLE5AIAS69evn3PppZc6juM4Z599tnPzzTc7juM4EydOdI79p3b48OFOixYt8nztCy+84NSsWTPPtWrWrOlkZWXl3NewYUOnY8eOOR8fPXrUiYuLcz788EPHcRxn7dq1jiTn6aefznlMZmamU716deeZZ55xHMdxnnzySeeCCy7I89wbN250JDnLly93HMdxOnfu7LRq1eqU32+1atWcUaNG5bmvbdu2zoABA3I+btGihTN8+PACr3P89+44jlOzZk3nhRdeyHPf8deS5Dz66KM5H6enpzuSnO+++85xHMcZNmyYU7t2befIkSMnfd5jf15e3tfwzz//dBzHcR5++GGnYcOGTnZ2ds5jXn31Vads2bI5P5vOnTs755xzTp7rtG3b1nnwwQfz/Z7r1q3rfPDBB3nue/LJJ5127do5juM4O3bscEqXLu3MmDEj5/Pt2rUr8Jpz5sxxJDn79+93HMdxpk6d6khy9u7d6zhO4f7cHS8rK8uJj493vv7665z7JDkTJ07M87jjr32qPxve1/nf//53zueXLFniSHKWLl3qOI7jNGvWzBkxYkS+2QAgkBhhAgAfe+aZZzR+/HgtXbq02Ndo2rSpSpXK/Se6cuXKatasWc7HERERqlChwgnTsNq1a5dzXrp0abVp0yYnx8KFCzV16lSVLVs259aoUSNJZi2RV+vWrQvMlpaWpi1btqhDhw557u/QoUOJvueiat68ec55XFycEhIScl6PBQsWqGPHjoqMjCz29ZcuXap27drladrRoUMHpaen5xnZOzaHJFWtWjXf6XEHDhzQ6tWrdcstt+T5OTz11FM5P4NKlSrpggsu0IQJEyRJa9eu1e+//67evXvnXGfevHnq1auXatSoofj4eHXu3FmStGHDhmJ/v9u3b9dtt92m+vXrKzExUQkJCUpPTy/SNYvyZ+PY161q1aqSlPO6DRo0SE899ZQ6dOig4cOH66+//irutwUAJUbBBAA+1qlTJ3Xv3l3Dhg074XOlSpXKM9VKMtOrjnf8G32Px3PS+7KzswudKz09Xb169dKCBQvy3FauXKlOnTrlPC4uLq7Q1/SHkrxG3tcjNjbWfwGLkON46enpkqS33norz89g8eLFmjVrVs7jevfurc8++0yZmZn64IMP1KxZs5yC+cCBA+revbsSEhI0YcIEzZkzRxMnTpSUf5OOwrym/fr104IFC/Tiiy/qt99+04IFC1ShQoUSNf4oyLGvm7co9b5ut956q9asWaM+ffpo0aJFatOmjV5++WW/5ACAU6FgAgA/ePrpp/X111/nWcgumdGDbdu25Xnz6st9f45903306FHNmzdPjRs3liSdccYZWrJkiWrVqqV69erluRWlSEpISFC1atU0c+bMPPfPnDlTTZo0KfH3UKlSJW3dujXn47S0NK1du7ZI12jevLl++eWXkxZakhQVFaWsrKwCr9G4cWP9/vvveX5WM2fOVHx8vKpXr16kPF6VK1dWtWrVtGbNmhN+BrVr18553KWXXqrDhw/r+++/1wcffJBndGnZsmXavXu3nn76aXXs2FGNGjUqsOGDVLg/dzNnztSgQYN00UUXqWnTpoqOjs7TEEQyRU5Br5sv/2wkJyfrjjvu0BdffKH77rtPb731VpG+HgB8hYIJAPygWbNm6t27t1566aU893fp0kU7d+7Us88+q9WrV+vVV1/Vd99957PnffXVVzVx4kQtW7ZMAwcO1N69e3XzzTdL+r927icUtjeO4/jnpmxsFGMjk9LQqOnkz1anLKRYzNIkSSj5M6aRokhYOAoLYoNmalayMguZhAUbQ8IsxhAWNhaiZDvdu1BTLufe6+f+7ur9Wp7z9Dw99d18zvM9z+uP9I+Pj/L5fDo6OtL19bVisZja2tp+Gx5+Njg4qOnpaa2trSmVSmloaEinp6fq7+//8h5qa2sViUS0v7+vRCKh1tZWZWVlfWqO3t5ePT8/q6mpScfHx7q6ulIkElEqlZL0euPb+fm5UqmUHh4ePgxW3d3duru7U19fny4uLrSxsaGxsTEFg8E37ZKfNT4+rqmpKc3Pz+vy8lKJREKhUEhzc3OZMTk5OfJ6vRodHVUymZTP58u8czqdys7O1sLCgm5ubhSNRjU5OfnLNf+k7lwulyKRiJLJpA4PD9Xc3PzupK64uFg7Ozu6v7+3vT7/b9RGIBBQLBbT7e2tTk5OtLe3lwn+APCvEZgA4H8yMTHxrjXL7XZraWlJi4uLMgxD8Xj8wxvk/ivLsmRZlgzD0MHBgaLRqPLz8yUp8+U/nU6rrq5OHo9HgUBAubm5nw4Afr9fwWBQAwMD8ng82traUjQalcvl+vIehoeHZZqmGhsb1dDQIK/Xq5KSkk/NkZeXp93dXb28vMg0TVVVVWl5eTnTBtbZ2amysjJVV1fL4XC8OxGRpMLCQm1ubioej8swDHV1dam9vV0jIyNf2l9HR4dWVlYUCoXk8XhkmqbC4fCbEybptS3v7OxMNTU1cjqdmecOh0PhcFjr6+sqLy+XZVmamZn55Zp/Unerq6t6enpSZWWlWlpa5Pf7VVBQ8GbM7Oystre3VVRUpIqKig/X+hu1kU6n1dPTI7fbrfr6epWWlr65eh0A/qVv339uagYAAAAASOKECQAAAABsEZgAAAAAwAaBCQAAAABsEJgAAAAAwAaBCQAAAABsEJgAAAAAwAaBCQAAAABsEJgAAAAAwAaBCQAAAABsEJgAAAAAwAaBCQAAAABs/AABrRpDPjeAawAAAABJRU5ErkJggg==", "text/plain": [ "
" ] From afe02acf07b697280f571aee07b4c2a204cd60ce Mon Sep 17 00:00:00 2001 From: KilianPoirier Date: Wed, 25 Oct 2023 09:49:24 +0000 Subject: [PATCH 10/10] Modified README.md to reflect EL contribution + changed Azure backend to azure quantum backend --- samples/azure-quantum/qaoa/README.md | 11 ++++++----- samples/azure-quantum/qaoa/openqaoa.ipynb | 6 +++--- 2 files changed, 9 insertions(+), 8 deletions(-) diff --git a/samples/azure-quantum/qaoa/README.md b/samples/azure-quantum/qaoa/README.md index 0486123dec19..005610d00bdd 100644 --- a/samples/azure-quantum/qaoa/README.md +++ b/samples/azure-quantum/qaoa/README.md @@ -1,7 +1,7 @@ --- page_type: sample -author: -description: Introduction to RQAOA using the OpenQAOA library. +author: KilianPoirier +description: Introduction to QAOA using the OpenQAOA library. ms.author: ms.date: languages: @@ -12,13 +12,14 @@ products: # Solving Quadratic Unconstrained Binary Optimization (QUBO) problems using QAOA on Azure Quantum -This sample shows how to solve quadratic unconstrained binary optimization problems using the Quantum Approximate Optimization Algorithm (QAOA) on the Azure Quantum service. It demonstrates how to operate the QAOA workflow for a specific problem instance (TO SPECIFY) as well as a general QUBO problem that can be taylored to more specific cases like graph coloring or minimum vertex cover. +This sample shows how to solve quadratic unconstrained binary optimization problems using the Quantum Approximate Optimization Algorithm (QAOA) on the Azure Quantum service. It demonstrates how to operate the QAOA workflow with a readily available problem instance (Maximum Cut) as well as a general QUBO problem that can be taylored to other combinatorial problems like graph coloring or minimum vertex cover. ## Manifest - [openqaoa.ipynb](./openqaoa.ipynb) Python notebook demonstrating how to run QAOA locally and on the Azure Quantum platform using the OpenQAOA package. -- [openqaoa-recursive.ipynb](./openqaoa.ipynb) Python notebook demonstrating how to run RQAOA locally and on the Azure Quantum platform using the OpenQAOA package. +- [openqaoa-recursive.ipynb](./openqaoa-recursive.ipynb) Python notebook demonstrating how to run RQAOA locally and on the Azure Quantum platform using the OpenQAOA package. ## See Also -To learn more about QAOA and how to solve QUBO problems using OpenQAOA, visit https://openqaoa.entropicalabs.com/ \ No newline at end of file +To learn more about QAOA and how to solve QUBO problems using OpenQAOA, visit https://openqaoa.entropicalabs.com/ +This sample code and notebooks were written by members of Entropica Labs team. \ No newline at end of file diff --git a/samples/azure-quantum/qaoa/openqaoa.ipynb b/samples/azure-quantum/qaoa/openqaoa.ipynb index ff2ac76539f7..4a6f22bfdecb 100644 --- a/samples/azure-quantum/qaoa/openqaoa.ipynb +++ b/samples/azure-quantum/qaoa/openqaoa.ipynb @@ -592,7 +592,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Step 5: Running on Azure devices\n", + "### Step 5: Running on Azure Quantum backend\n", "\n", "Now that we have demonstrated how to create a problem, configure the QAOA model, compile and access the opimization results, we will show how to execute the circuit using Azure Quantum backend." ] @@ -668,7 +668,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Job submission to the Azure backend is made internally in the optimization loop in OpenQAOA. You can submit Jobs one at a time using the optimization loop or group them with the help of the Azure Session feature.\n", + "Job submission to the Azure Quantum backend is made internally in the optimization loop in OpenQAOA. You can submit Jobs one at a time using the optimization loop or group them with the help of the Azure Quantum Session feature.\n", "\n", "This cell can take a few minutes to execute (note that executing on real QPUs can take longer run time)." ] @@ -687,7 +687,7 @@ } ], "source": [ - "# Job submission to Azure Quantum is done internally\n", + "# Job submission to Azure Quantum backend is done internally\n", "# q_qpu.optimize()\n", "\n", "# Jobs can also be grouped using Azure sessions\n",