You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: sphinx/build/html/tutorial8/reactive-molecular-dynamics.html
+19-14Lines changed: 19 additions & 14 deletions
Original file line number
Diff line number
Diff line change
@@ -322,10 +322,9 @@ <h2>Creating the system<a class="headerlink" href="#creating-the-system" title="
322
322
</div>
323
323
<p>The <codeclass="docutils literal notranslate"><spanclass="pre">class2</span></code> styles compute a 6/9 Lennard-Jones potential <spanid="id3">[<aclass="reference internal" href="../non-tutorials/bibliography.html#id59" title="Huai Sun. Compass: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. The Journal of Physical Chemistry B, 102(38):7338–7364, 1998.">59</a>]</span>.
324
324
The <codeclass="docutils literal notranslate"><spanclass="pre">class2</span></code> bond, angle, dihedral, and improper styles are used as
325
-
well, see the documentation for a description of their respective potentials.
325
+
well, see the documentation for a description the respective potential form they, each, prescribe.
326
326
The <codeclass="docutils literal notranslate"><spanclass="pre">tail</span><spanclass="pre">yes</span></code> option adds long-range van der Waals tail corrections to the
327
-
energy and pressure.
328
-
The <codeclass="docutils literal notranslate"><spanclass="pre">mix</span><spanclass="pre">sixthpower</span></code> imposes the following mixing rule for the calculation
327
+
energy and pressure. The <codeclass="docutils literal notranslate"><spanclass="pre">mix</span><spanclass="pre">sixthpower</span></code> imposes the following mixing rule for the calculation
329
328
of the cross coefficients:</p>
330
329
<divclass="math-wrapper docutils container">
331
330
<divclass="math notranslate nohighlight">
@@ -354,8 +353,9 @@ <h2>Creating the system<a class="headerlink" href="#creating-the-system" title="
@@ -372,7 +372,8 @@ <h2>Creating the system<a class="headerlink" href="#creating-the-system" title="
372
372
</pre></div>
373
373
</div>
374
374
<p>The <codeclass="docutils literal notranslate"><spanclass="pre">fix</span><spanclass="pre">halt</span></code> command is used to stop the box shrinkage once the
375
-
target density is reached.</p>
375
+
target density is reached, and the other commands
376
+
should be familiar from previous tutorials.</p>
376
377
<p>For the next stage of the simulation, we will use <codeclass="docutils literal notranslate"><spanclass="pre">dump</span><spanclass="pre">image</span></code> to
<p>For visualization purposes, the atoms from the CNT <codeclass="docutils literal notranslate"><spanclass="pre">group</span></code>is moved
400
+
<p>For visualization purposes, the atoms of the CNT <codeclass="docutils literal notranslate"><spanclass="pre">group</span></code>are moved
400
401
to the center of the box using <codeclass="docutils literal notranslate"><spanclass="pre">fix</span><spanclass="pre">recenter</span></code>.
401
402
As the time progresses, the system density,
402
403
<spanclass="math notranslate nohighlight">\(\rho\)</span>, gradually converges toward the target value
@@ -514,7 +515,10 @@ <h3>Simulating the reaction<a class="headerlink" href="#simulating-the-reaction"
514
515
</div>
515
516
<p>With the <codeclass="docutils literal notranslate"><spanclass="pre">stabilization</span></code> keyword, the <codeclass="docutils literal notranslate"><spanclass="pre">bond/react</span></code> command will
516
517
stabilize the atoms involved in the reaction using the <codeclass="docutils literal notranslate"><spanclass="pre">nve/limit</span></code>
517
-
command with a maximum displacement of <spanclass="math notranslate nohighlight">\(0.03\,\text{Å}\)</span>. By default,
518
+
command with a maximum displacement of <spanclass="math notranslate nohighlight">\(0.03\,\text{Å}\)</span>.
519
+
The <codeclass="docutils literal notranslate"><spanclass="pre">fix</span><spanclass="pre">nve/limit</span></code> command functions similar to
520
+
<codeclass="docutils literal notranslate"><spanclass="pre">fix</span><spanclass="pre">nve</span></code>, but restricts how far atoms can move in a single
521
+
time step, even with very large forces. By default,
518
522
each reaction is stabilized for 60 time steps. Each <codeclass="docutils literal notranslate"><spanclass="pre">react</span></code> keyword
519
523
corresponds to a reaction, e.g., a transformation of <codeclass="docutils literal notranslate"><spanclass="pre">mol1</span></code> into <codeclass="docutils literal notranslate"><spanclass="pre">mol2</span></code>
520
524
based on the atom map <strong>M-M.rxnmap</strong>. Implementation details about each reaction,
@@ -546,8 +550,9 @@ <h3>Simulating the reaction<a class="headerlink" href="#simulating-the-reaction"
546
550
the group <codeclass="docutils literal notranslate"><spanclass="pre">all</span></code>. Instead, the group of atoms not currently
547
551
undergoing stabilization is named by appending <codeclass="docutils literal notranslate"><spanclass="pre">_REACT</span></code> to the user-provided prefix.</p>
548
552
</div>
549
-
<p>Add the following commands to <strong>polymerize.lmp</strong> to operate in the NVT ensemble
550
-
while ensuring that the CNT remains centered in the simulation box:</p>
553
+
<p>Add the following commands to <strong>polymerize.lmp</strong> to carry out the dynamics
554
+
using a Nosé-Hoover thermostat while ensuring that the CNT remains centered in
@@ -559,11 +564,11 @@ <h3>Simulating the reaction<a class="headerlink" href="#simulating-the-reaction"
559
564
</pre></div>
560
565
</div>
561
566
<p>Here, the <codeclass="docutils literal notranslate"><spanclass="pre">thermo</span><spanclass="pre">custom</span></code> command is used
562
-
to print the cumulative reaction counts from <codeclass="docutils literal notranslate"><spanclass="pre">fix</span><spanclass="pre">rxn</span></code>.
563
-
Run the simulation using LAMMPS. As the simulation progresses, polymer chains are
564
-
observed forming. During this reaction process, the
565
-
temperature of the system remains well-controlled,
566
-
while the number of reactions, <spanclass="math notranslate nohighlight">\(N_r\)</span>, increases with time.</p>
567
+
to print the cumulative reaction counts which are calculated by <codeclass="docutils literal notranslate"><spanclass="pre">fix</span><spanclass="pre">rxn</span></code>
568
+
and thus can be extracted from it. Run the simulation using LAMMPS. As the
569
+
simulation progresses, polymer chains are observed forming. During this reaction
570
+
process, the temperature of the system remains well-controlled, while the number
571
+
of reactions, <spanclass="math notranslate nohighlight">\(N_r\)</span>, increases with time.</p>
567
572
<figureclass="align-default">
568
573
<imgalt="Evolution of reacting species" class="only-dark" src="../_images/REACT-reacting-dm.png" />
0 commit comments