Skip to content

Commit ae3c67e

Browse files
committed
UNPICK
1 parent a1ba264 commit ae3c67e

File tree

10 files changed

+56
-511
lines changed

10 files changed

+56
-511
lines changed

docs/source/user-guide/dataframe/index.rst

Lines changed: 1 addition & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -145,39 +145,10 @@ To materialize the results of your DataFrame operations:
145145
146146
# Display results
147147
df.show() # Print tabular format to console
148-
148+
149149
# Count rows
150150
count = df.count()
151151
152-
PyArrow Streaming
153-
-----------------
154-
155-
DataFusion DataFrames implement the ``__arrow_c_stream__`` protocol, enabling
156-
zero-copy streaming into libraries like `PyArrow <https://arrow.apache.org/>`_.
157-
Earlier versions eagerly converted the entire DataFrame when exporting to
158-
PyArrow, which could exhaust memory on large datasets. With streaming, batches
159-
are produced lazily so you can process arbitrarily large results without
160-
out-of-memory errors.
161-
162-
.. code-block:: python
163-
164-
import pyarrow as pa
165-
166-
# Create a PyArrow RecordBatchReader without materializing all batches
167-
reader = pa.RecordBatchReader._import_from_c_capsule(df.__arrow_c_stream__())
168-
for batch in reader:
169-
... # process each batch as it is produced
170-
171-
DataFrames are also iterable, yielding :class:`pyarrow.RecordBatch` objects
172-
lazily so you can loop over results directly:
173-
174-
.. code-block:: python
175-
176-
for batch in df:
177-
... # process each batch as it is produced
178-
179-
See :doc:`../io/arrow` for additional details on the Arrow interface.
180-
181152
HTML Rendering
182153
--------------
183154

python/datafusion/_testing.py

Lines changed: 0 additions & 46 deletions
This file was deleted.

python/datafusion/dataframe.py

Lines changed: 6 additions & 28 deletions
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,6 @@
2626
TYPE_CHECKING,
2727
Any,
2828
Iterable,
29-
Iterator,
3029
Literal,
3130
Optional,
3231
Union,
@@ -290,9 +289,6 @@ def __init__(
290289
class DataFrame:
291290
"""Two dimensional table representation of data.
292291
293-
DataFrame objects are iterable; iterating over a DataFrame yields
294-
:class:`pyarrow.RecordBatch` instances lazily.
295-
296292
See :ref:`user_guide_concepts` in the online documentation for more information.
297293
"""
298294

@@ -1102,39 +1098,21 @@ def unnest_columns(self, *columns: str, preserve_nulls: bool = True) -> DataFram
11021098
return DataFrame(self.df.unnest_columns(columns, preserve_nulls=preserve_nulls))
11031099

11041100
def __arrow_c_stream__(self, requested_schema: object | None = None) -> object:
1105-
"""Export the DataFrame as an Arrow C Stream.
1101+
"""Export an Arrow PyCapsule Stream.
11061102
1107-
The DataFrame is executed using DataFusion's streaming APIs and exposed via
1108-
Arrow's C Stream interface. Record batches are produced incrementally, so the
1109-
full result set is never materialized in memory. When ``requested_schema`` is
1110-
provided, only straightforward projections such as column selection or
1111-
reordering are applied.
1103+
This will execute and collect the DataFrame. We will attempt to respect the
1104+
requested schema, but only trivial transformations will be applied such as only
1105+
returning the fields listed in the requested schema if their data types match
1106+
those in the DataFrame.
11121107
11131108
Args:
11141109
requested_schema: Attempt to provide the DataFrame using this schema.
11151110
11161111
Returns:
1117-
Arrow PyCapsule object representing an ``ArrowArrayStream``.
1112+
Arrow PyCapsule object.
11181113
"""
1119-
# ``DataFrame.__arrow_c_stream__`` in the Rust extension leverages
1120-
# ``execute_stream_partitioned`` under the hood to stream batches while
1121-
# preserving the original partition order.
11221114
return self.df.__arrow_c_stream__(requested_schema)
11231115

1124-
def __iter__(self) -> Iterator[pa.RecordBatch]:
1125-
"""Yield record batches from the DataFrame without materializing results.
1126-
1127-
This implementation streams record batches via the Arrow C Stream
1128-
interface, allowing callers such as :func:`pyarrow.Table.from_batches` to
1129-
consume results lazily. The DataFrame is executed using DataFusion's
1130-
partitioned streaming APIs so ``collect`` is never invoked and batch
1131-
order across partitions is preserved.
1132-
"""
1133-
import pyarrow as pa
1134-
1135-
reader = pa.RecordBatchReader._import_from_c_capsule(self.__arrow_c_stream__())
1136-
yield from reader
1137-
11381116
def transform(self, func: Callable[..., DataFrame], *args: Any) -> DataFrame:
11391117
"""Apply a function to the current DataFrame which returns another DataFrame.
11401118

python/tests/conftest.py

Lines changed: 1 addition & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@
1717

1818
import pyarrow as pa
1919
import pytest
20-
from datafusion import DataFrame, SessionContext
20+
from datafusion import SessionContext
2121
from pyarrow.csv import write_csv
2222

2323

@@ -49,12 +49,3 @@ def database(ctx, tmp_path):
4949
delimiter=",",
5050
schema_infer_max_records=10,
5151
)
52-
53-
54-
@pytest.fixture
55-
def fail_collect(monkeypatch):
56-
def _fail_collect(self, *args, **kwargs): # pragma: no cover - failure path
57-
msg = "collect should not be called"
58-
raise AssertionError(msg)
59-
60-
monkeypatch.setattr(DataFrame, "collect", _fail_collect)

python/tests/test_dataframe.py

Lines changed: 0 additions & 159 deletions
Original file line numberDiff line numberDiff line change
@@ -1582,61 +1582,6 @@ def test_empty_to_arrow_table(df):
15821582
assert set(pyarrow_table.column_names) == {"a", "b", "c"}
15831583

15841584

1585-
def test_iter_batches_dataframe(fail_collect):
1586-
ctx = SessionContext()
1587-
1588-
batch1 = pa.record_batch([pa.array([1])], names=["a"])
1589-
batch2 = pa.record_batch([pa.array([2])], names=["a"])
1590-
df = ctx.create_dataframe([[batch1], [batch2]])
1591-
1592-
expected = [batch1, batch2]
1593-
for got, exp in zip(df, expected):
1594-
assert got.equals(exp)
1595-
1596-
1597-
def test_arrow_c_stream_to_table(fail_collect):
1598-
ctx = SessionContext()
1599-
1600-
# Create a DataFrame with two separate record batches
1601-
batch1 = pa.record_batch([pa.array([1])], names=["a"])
1602-
batch2 = pa.record_batch([pa.array([2])], names=["a"])
1603-
df = ctx.create_dataframe([[batch1], [batch2]])
1604-
1605-
table = pa.Table.from_batches(df)
1606-
batches = table.to_batches()
1607-
1608-
assert len(batches) == 2
1609-
assert batches[0].equals(batch1)
1610-
assert batches[1].equals(batch2)
1611-
assert table.schema == df.schema()
1612-
assert table.column("a").num_chunks == 2
1613-
1614-
1615-
def test_arrow_c_stream_order():
1616-
ctx = SessionContext()
1617-
1618-
batch1 = pa.record_batch([pa.array([1])], names=["a"])
1619-
batch2 = pa.record_batch([pa.array([2])], names=["a"])
1620-
1621-
df = ctx.create_dataframe([[batch1, batch2]])
1622-
1623-
table = pa.Table.from_batches(df)
1624-
expected = pa.Table.from_batches([batch1, batch2])
1625-
1626-
assert table.equals(expected)
1627-
col = table.column("a")
1628-
assert col.chunk(0)[0].as_py() == 1
1629-
assert col.chunk(1)[0].as_py() == 2
1630-
1631-
1632-
def test_arrow_c_stream_reader(df):
1633-
reader = pa.RecordBatchReader._import_from_c_capsule(df.__arrow_c_stream__())
1634-
assert isinstance(reader, pa.RecordBatchReader)
1635-
table = pa.Table.from_batches(reader)
1636-
expected = pa.Table.from_batches(df.collect())
1637-
assert table.equals(expected)
1638-
1639-
16401585
def test_to_pylist(df):
16411586
# Convert datafusion dataframe to Python list
16421587
pylist = df.to_pylist()
@@ -2721,110 +2666,6 @@ def trigger_interrupt():
27212666
interrupt_thread.join(timeout=1.0)
27222667

27232668

2724-
def test_arrow_c_stream_interrupted():
2725-
"""__arrow_c_stream__ responds to ``KeyboardInterrupt`` signals.
2726-
2727-
Similar to ``test_collect_interrupted`` this test issues a long running
2728-
query, but consumes the results via ``__arrow_c_stream__``. It then raises
2729-
``KeyboardInterrupt`` in the main thread and verifies that the stream
2730-
iteration stops promptly with the appropriate exception.
2731-
"""
2732-
2733-
ctx = SessionContext()
2734-
2735-
batches = []
2736-
for i in range(10):
2737-
batch = pa.RecordBatch.from_arrays(
2738-
[
2739-
pa.array(list(range(i * 1000, (i + 1) * 1000))),
2740-
pa.array([f"value_{j}" for j in range(i * 1000, (i + 1) * 1000)]),
2741-
],
2742-
names=["a", "b"],
2743-
)
2744-
batches.append(batch)
2745-
2746-
ctx.register_record_batches("t1", [batches])
2747-
ctx.register_record_batches("t2", [batches])
2748-
2749-
df = ctx.sql(
2750-
"""
2751-
WITH t1_expanded AS (
2752-
SELECT
2753-
a,
2754-
b,
2755-
CAST(a AS DOUBLE) / 1.5 AS c,
2756-
CAST(a AS DOUBLE) * CAST(a AS DOUBLE) AS d
2757-
FROM t1
2758-
CROSS JOIN (SELECT 1 AS dummy FROM t1 LIMIT 5)
2759-
),
2760-
t2_expanded AS (
2761-
SELECT
2762-
a,
2763-
b,
2764-
CAST(a AS DOUBLE) * 2.5 AS e,
2765-
CAST(a AS DOUBLE) * CAST(a AS DOUBLE) * CAST(a AS DOUBLE) AS f
2766-
FROM t2
2767-
CROSS JOIN (SELECT 1 AS dummy FROM t2 LIMIT 5)
2768-
)
2769-
SELECT
2770-
t1.a, t1.b, t1.c, t1.d,
2771-
t2.a AS a2, t2.b AS b2, t2.e, t2.f
2772-
FROM t1_expanded t1
2773-
JOIN t2_expanded t2 ON t1.a % 100 = t2.a % 100
2774-
WHERE t1.a > 100 AND t2.a > 100
2775-
"""
2776-
)
2777-
2778-
reader = pa.RecordBatchReader._import_from_c_capsule(df.__arrow_c_stream__())
2779-
2780-
interrupted = False
2781-
interrupt_error = None
2782-
query_started = threading.Event()
2783-
max_wait_time = 5.0
2784-
2785-
def trigger_interrupt():
2786-
start_time = time.time()
2787-
while not query_started.is_set():
2788-
time.sleep(0.1)
2789-
if time.time() - start_time > max_wait_time:
2790-
msg = f"Query did not start within {max_wait_time} seconds"
2791-
raise RuntimeError(msg)
2792-
2793-
thread_id = threading.main_thread().ident
2794-
if thread_id is None:
2795-
msg = "Cannot get main thread ID"
2796-
raise RuntimeError(msg)
2797-
2798-
exception = ctypes.py_object(KeyboardInterrupt)
2799-
res = ctypes.pythonapi.PyThreadState_SetAsyncExc(
2800-
ctypes.c_long(thread_id), exception
2801-
)
2802-
if res != 1:
2803-
ctypes.pythonapi.PyThreadState_SetAsyncExc(
2804-
ctypes.c_long(thread_id), ctypes.py_object(0)
2805-
)
2806-
msg = "Failed to raise KeyboardInterrupt in main thread"
2807-
raise RuntimeError(msg)
2808-
2809-
interrupt_thread = threading.Thread(target=trigger_interrupt)
2810-
interrupt_thread.daemon = True
2811-
interrupt_thread.start()
2812-
2813-
try:
2814-
query_started.set()
2815-
# consume the reader which should block and be interrupted
2816-
reader.read_all()
2817-
except KeyboardInterrupt:
2818-
interrupted = True
2819-
except Exception as e: # pragma: no cover - unexpected errors
2820-
interrupt_error = e
2821-
2822-
if not interrupted:
2823-
pytest.fail(f"Stream was not interrupted; got error: {interrupt_error}")
2824-
2825-
interrupt_thread.join(timeout=1.0)
2826-
2827-
28282669
def test_show_select_where_no_rows(capsys) -> None:
28292670
ctx = SessionContext()
28302671
df = ctx.sql("SELECT 1 WHERE 1=0")

python/tests/test_io.py

Lines changed: 0 additions & 37 deletions
Original file line numberDiff line numberDiff line change
@@ -17,9 +17,7 @@
1717
from pathlib import Path
1818

1919
import pyarrow as pa
20-
import pytest
2120
from datafusion import column
22-
from datafusion._testing import range_table
2321
from datafusion.io import read_avro, read_csv, read_json, read_parquet
2422

2523

@@ -94,38 +92,3 @@ def test_read_avro():
9492
path = Path.cwd() / "testing/data/avro/alltypes_plain.avro"
9593
avro_df = read_avro(path=path)
9694
assert avro_df is not None
97-
98-
99-
def test_arrow_c_stream_large_dataset(ctx):
100-
"""DataFrame.__arrow_c_stream__ yields batches incrementally.
101-
102-
This test constructs a DataFrame that would be far larger than available
103-
memory if materialized. The ``__arrow_c_stream__`` method should expose a
104-
stream of record batches without collecting the full dataset, so reading a
105-
handful of batches should not exhaust process memory.
106-
"""
107-
# Create a very large DataFrame using range; this would be terabytes if collected
108-
df = range_table(ctx, 0, 1 << 40)
109-
110-
reader = pa.RecordBatchReader._import_from_c_capsule(df.__arrow_c_stream__())
111-
112-
# Track RSS before consuming batches
113-
psutil = pytest.importorskip("psutil")
114-
process = psutil.Process()
115-
start_rss = process.memory_info().rss
116-
117-
for _ in range(5):
118-
batch = reader.read_next_batch()
119-
assert batch is not None
120-
assert len(batch) > 0
121-
current_rss = process.memory_info().rss
122-
# Ensure memory usage hasn't grown substantially (>50MB)
123-
assert current_rss - start_rss < 50 * 1024 * 1024
124-
125-
126-
def test_table_from_batches_stream(ctx, fail_collect):
127-
df = range_table(ctx, 0, 10)
128-
129-
table = pa.Table.from_batches(df)
130-
assert table.shape == (10, 1)
131-
assert table.column_names == ["value"]

0 commit comments

Comments
 (0)