Skip to content

Phase 1: Implement Eq. 23 DMGD with MLP-parameterized momentum #4

@georgepullen

Description

@georgepullen

Purpose

Implement DMGD with MLP-parameterized momentum per Eq. 23 intent (not tanh-on-EMA heuristic).

Mandatory Reading (blocking)

First comment must summarize:

  • reports/NL_IMPLEMENTATION_ORACLE.md section 6.1.1
  • reports/paper/NL-print.extracted.clean.txt Eq. (23)
  • src/nested_learning/optim/deep.py current dmgd behavior

Required Code Anchors

  • src/nested_learning/optim/deep.py
  • src/nested_learning/optim/factory.py
  • src/nested_learning/optim/manager.py

Scope

  • Add dmgd_mlp variant with small momentum network.
  • Add explicit inner-objective update on momentum-network parameters.
  • Preserve legacy dmgd behavior under legacy name.

Test Requirements

  • Verify momentum-network params update each step.
  • Verify deterministic behavior under fixed seed.
  • Keep existing tests green.

Deliverables

  • Implementation + docs + ablation config.

Acceptance Criteria

  • dmgd_mlp tested with non-zero parameter update evidence.
  • 5k pilot run stable.
  • First issue comment contains mandatory reading summary.

Metadata

Metadata

Assignees

No one assigned

    Labels

    enhancementNew feature or requestexecution-boardExecution board ticket set for paper alignmentphase-1Phase 1: optimizer equation fidelity (Eq. 21-24)quality-gateHas explicit acceptance criteria and test gates

    Projects

    No projects

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions