@@ -574,7 +574,7 @@ reproduce the calculated PDFs.
574574
575575Note that there are also support for morphing a nanoparticle PDF into bulk. For more information
576576see @ref {PDFmorph options }. When applying these inverse morphs it is recommended to set
577- @code {--rmax=psize } wher @code {psize } is the longest diameter of the nanoparticle as data
577+ @code {--rmax=psize } where @code {psize } is the longest diameter of the nanoparticle as data
578578beyond @code {psize } is noise.
579579
580580@node Spherical shape , Spheroidal shape , Nanoparticle shape effect , Nanoparticle shape effect
@@ -646,23 +646,213 @@ pdfmorph Ni_bulk.gr Ni_nano_spheroid.cgr --radius=12 --pradius=6 -a
646646@end menu
647647
648648In this section, we detail the available morphs and the theory behind when they can
649- (and should) be applied.
649+ (and should) be applied. For specifics on how to use these options in @code {PDFmorph },
650+ check out @ref {PDFmorph options } and the @ref {Tutorials }.
650651
651652@node Temperature-related morphs , Shape-related morphs , Available morphs , Available morphs
652653@section Temperature-related morphs
653654@cindex temperature-related morphs
654655
655- In this section, we describe the following morphs:
656+ Comparing two PDFs of the same material measured at different temperatures can produce large
657+ @math {R_W }s and signals in the difference curves. Though this can be due to a structural phase
658+ transition across the measurements, structure-preserving changes such as isotropic expansion/compression
659+ and thermal peak broadening/thinning can produce just as large @math {R_W } values.
660+
661+ The following morph options are related to our discussion:
656662@itemize
657- @item @code {--stretch=STRETCH } -
658- @item @code {--scale=SCALE } - scale the ordinate by
659- @item @code {--smear=SMEAR } - convolute the
663+ @item @code {--stretch=STRETCH } - Stretch the abscissa by a factor @math {1+ @code {STRETCH }}.
664+ @item @code {--scale=SCALE } - Scale the plotted function by a factor @code {SCALE }.
665+ @item @code {--smear=SMEAR } - Broaden the PDF peaks with a Gaussian smear of width (standard deviation)
666+ @code {SMEAR }.
660667@end itemize
661668
669+ @node Isotropic expansion , Thermal broadening , Temperature-related morphs , Temperature-related morphs
670+ @subsection Isotropic expansion
671+ @cindex isotropic expansion
672+
673+ The effects of isotropic expansion/compression can be accounted for by scaling and stretching the PDF.
674+ To prove this, we will make use of the (total) radial distribution function (RDF), denoted @math {R(r) }.
675+ This function is related to the PDF through
676+ @displaymath
677+ G(r) = {R(r) \over r} - 4 \pi r \rho_0 \gamma_0(r)
678+ @end displaymath
679+ where @math {\rho_0 } is atomic number density the and @math {\gamma_0(r) } is the nanoparticle form factor
680+ (see @ref {Shape-related morphs }). A partial RDF @math {R_i(r) } is defined such that @math {R_i(r)dr } gives
681+ the number of atoms in the spherical shell bounded by @math {r } and @math {r + dr } centered at atom @math {i }.
682+ The total RDF for an atomic system is the average of the partial RDFs of each atom in the system
683+ @footnote {Farrow , C.L. and Billinge , S.J.L. (2009) , Relationship between the atomic pair distribution
684+ function and small-angle scattering: implications for modeling of nanoparticles. Acta Cryst. A , 65: 232-239.
685+ @url {https://doi.org/10.1107/S0108767309009714 }}.
686+ @displaymath
687+ R(r) = {1 \over @#\;atoms}\sum^{atoms}_{i} R_i(r).
688+ @end displaymath
689+ Therefore, the integral of the RDF from @math {a } to @math {b } gives the number of atomic pairs per atom with
690+ a separation distance between @math {a } and @math {b }.
691+
692+ When a material expands isotropically by a factor @math {\alpha }, all distances between pairs of atoms
693+ increase by a factor of @math {\alpha } (expansion by a factor of @math {0 < \alpha < 1 } is considered compression).
694+ Therefore, the number of atomic pairs with separation distance between @math {a } and @math {b } before the expansion
695+ should equal the number of atomic pairs with separation distance between @math {\alpha a } and @math {\alpha b } after.
696+ Defining @math {R(r) } to be the RDF pre-expansion and @math {R'(r) } to be that post-expansion,
697+ @displaymath
698+ \int_a^b R(r)dr = \int_{\alpha a}^{\alpha b} R'(r)dr.
699+ @end displaymath
700+ A change of variables tells us
701+ @displaymath
702+ \int_a^b R(r)dr = \int_{\alpha a}^{\alpha b} {R(r/\alpha) \over \alpha}dr,
703+ @end displaymath
704+ and since these relations hold for all choices of @math {a \leq b },
705+ @displaymath
706+ R'(r) = {R(r/\alpha) \over \alpha}.
707+ @end displaymath
708+
709+ The corresponding PDFs are
710+ @displaymath
711+ G(r) = {R(r) \over r} - 4\pi r\rho_0\gamma_0(r)
712+ @end displaymath
713+ pre-expansion, and
714+ @displaymath
715+ G'(r) = {R'(r) \over r} - 4\pi r \rho'_0\gamma'_0(r) = {{R(r/\alpha)} \over {\alpha r}} - 4\pi r \rho'_0\gamma'_0(r)
716+ @end displaymath
717+ post-expansion. Due to the expansion, the volume of the material has increased by @math {\alpha^3 }, while the total number
718+ of atoms remains the same, meaning
719+ @displaymath
720+ \rho'_0 = {1 \over \alpha^3}\rho_0,
721+ @end displaymath
722+ and the nanoparticle form function is scaled
723+ @displaymath
724+ \gamma_0'(r) = \gamma_0(r/\alpha)
725+ @end displaymath
726+ (see the bottom of @ref {Shape-related morphs }).
727+
728+ Finally, we can conclude that the PDF after expansion follows
729+ @displaymath
730+ G'(r) = {{R(r/\alpha)} \over {\alpha r}} - 4\pi r {{\rho_0} \over {\alpha^3}} \gamma_0(r / \alpha)
731+ = {{G(\alpha r)} \over \alpha^2},
732+ @end displaymath
733+ which is the original PDF scaled by a factor @math {1/\alpha^2 } and stretched by @math {\alpha }.
734+
735+ @node Thermal broadening , , Isotropic expansion , Temperature-related morphs
736+ @subsection Thermal broadening
737+ @cindex thermal broadening
738+
739+ Peaks in the radial distribution functions (see @ref {Isotropic expansion }) obtained from measured PDFs have
740+ approximately Gaussian shapes due to Debye-Waller effects. The variance of each peak is the mean square
741+ atomic displacement factor (ADP), denoted @math {@= {u^2 }} which can depend on dynamic (temperature-dependent)
742+ and static factors. Models, such as the Debye model, generally separate the two: @math {@= {u^2 } =
743+ A(T) + A_{static}}, where @math {A(T) } increases with temperature.
744+
745+ When a material consists of atoms with similar masses, the @math {A(T) } at each peak is approximately the
746+ same at a fixed temperature (motivated below). Therefore, an increase in temperature only serves to increase
747+ the ADP (and thus the variance of each Gaussian peak) by some fixed constant @math {\zeta^2 }.
748+ @code {PDFmorph } simulates this effect by converting the morphed PDF into an RDF,
749+ convolving the RDF with a Gaussian of variance @math {\zeta^2 } centered at @math {r=0 },
750+ and converting back to a PDF. The convolution step increases the variance of each peak by @math {\zeta^2 } exactly
751+ @footnote {Bromiley , P. (2003). Products and Convolutions of Gaussian Distributions. }.
752+
753+ Using the Debye model @footnote {Dinnebier , R.E. and Billinge , S.J.L. (2018). Overview and principles of
754+ powder diffraction. In International Tables for Crystallography (eds C.P. Brock , T. Hahn , H. Wondratschek ,
755+ U. Müller , U. Shmueli , E. Prince , A. Authier , V. Kopský , D.B. Litvin , E. Arnold , D.M. Himmel , M.G. Rossmann ,
756+ S.R. Hall , B. McMahon , M.I. Aroyo , C.J. Gilmore , J.A. Kaduk , H. Schenk , C.J. Gilmore , J.A. Kaduk and H. Schenk).
757+ @url {https://doi.org/10.1107/97809553602060000935 }}, we can motivate the statement that @math {A(T) } is
758+ similar for a material composed of similar-mass atoms. The model shows
759+ @displaymath
760+ A(T) = {{3h^2T^2} \over {4\pi^2Mk_B\theta_D^3}}\int_0^{\theta_D/T} {{x} \over {e^x - 1}} dx
761+ + {{3h^2} \over {16\pi^2Mk_B\theta_D}},
762+ @end displaymath
763+ where @math {M } is the mass of the oscillating atom,
764+ @math {\theta_D } is the Debye temperature of the (crystal) material, and @math {h } and @math {k_B } are Planck's
765+ constant and Boltzmann's constant respectively. Thus, when the @math {M } for each atom is similar,
766+ @math {A(T) } is also similar. Note also that @math {A(T) } is monotonically increasing
767+ as a function of temperature.
768+
662769@node Shape-related morphs , , Temperature-related morphs , Available morphs
663770@section Shape-related morphs
664771@cindex shape-related morphs
665772
773+ The shape and size of a nanoparticle can affect its electronic and optical properties
774+ @footnote {Singh , M. , Goyal , M. , & Devlal , K. (2018). Size and shape effects on the band gap of semiconductor
775+ compound nanomaterials. Journal of Taibah University for Science , 12(4) , 470–475.
776+ @url {https://doi.org/10.1080/16583655.2018.1473946 }}.
777+ @code {PDFmorph } contains tools to help a researcher identify the shape and size of a nanoparticle PDF given a PDF of a
778+ bulk sample. The researcher should select a shape-related morph (listed below) associated with a particular shape and
779+ provide the bulk sample PDF as the morphed PDF and nanoparticle PDF as the target. @code {PDFmorph } will then multiply the
780+ nanoparticle form factor @math {\gamma(r) } for that particular shape to the bulk PDF and refine the parameters
781+ (e.g. the radius for a spherical shape) to best match the target. Significant difference curve signals or @math {R_W }s
782+ indicate large deviations from the desired shape, while small signals allow the user to extract size parameters
783+ (e.g. the radius of the sphere) from the fit.
784+
785+ This approach has been used to estimate diameters of spherical CdSe nanoparticles consistent
786+ with those obtained from transmission electron microscopy, ultraviolet-visible spectroscopy, and photoluminescense
787+ measurements @footnote {Masadeh , A. S. , Božin , E. S. , Farrow , C. L. , Paglia , G. , Juhas , P. , Billinge , S. J. L. , Karkamkar ,
788+ A. , & Kanatzidis , M. G. (2007). Quantitative size-dependent structure and strain determination of CdSe nanoparticles
789+ using atomic pair distribution function analysis. Phys. Rev. B , 76(11) , 115413.
790+ @url {https://doi.org/10.1103/PhysRevB.76.115413 }}.
791+
792+ The available shape morphs are listed below:
793+ @itemize
794+ @item @code {--radius=RADIUS } - Multiply the PDF by the nanoparticle form factor for a sphere of radius @code {RADIUS }.
795+ If used with @code {--pradius }, multiply the PDF by the nanoparticle form factor for a spheroid of equitorial radius
796+ @code {RADIUS } and polar radius @code {PRADIUS }.
797+ @itemize
798+ @item The sphere form factor was computed by Kodama et al. @footnote {Kodama , K. , Iikubo , S. , Taguchi , T. , &
799+ Shamoto , S. (2006). Finite size effects of nanoparticles on the atomic pair distribution functions.
800+ Acta Crystallographica Section A , 62(6) , 444–453. @url {https://doi.org/10.1107/S0108767306034635 }}.
801+ @end itemize
802+ @item @code {--pradius=PRADIUS } - Multiply the PDF by the nanoparticle form factor for a spheroid of equitorial radius
803+ @code {RADIUS } and polar radius @code {PRADIUS }.
804+ @itemize
805+ @item The spheroid form factor was computed by Lei et al. @footnote {Lei , M. , de Graff , A. M. R. , Thorpe , M. F. , Wells ,
806+ S. A. , & Sartbaeva , A. (2009). Uncovering the intrinsic geometry from the atomic pair distribution function of
807+ nanomaterials. Phys. Rev. B , 80(2) , 024118. @url {https://doi.org/10.1103/PhysRevB.80.024118 }}.
808+ @end itemize
809+ @item @code {--iradius=IRADIUS } - Divide the PDF by the nanoparticle form factor for a sphere of radius @code {IRADIUS }.
810+ If used with @code {--ipradius }, divide the PDF by the nanoparticle form factor for a spheroid of equitorial radius
811+ @code {IRADIUS } and polar radius @code {IPRADIUS }.
812+ @item @code {--ipradius=IPRADIUS } - Divide the PDF by the nanoparticle form factor for a spheroid of equitorial radius
813+ @code {IRADIUS } and polar radius @code {IPRADIUS }.
814+ @end itemize
815+
816+ In the rest of this section, we will detail how the nanoparticle form factor is computed.
817+ We first need to define the shape function @math {s\vec {r }}, which is @math {1 } within the nanoparticle and
818+ @math {0 } outside. The unaveraged particle form factor @math {\gamma_0(\vec {r })} is the autocorrelation
819+ of this shape function averaged over the nanoparticle volume @math {V }.
820+ @displaymath
821+ \gamma_0(\vec{r}) = {1 \over V} \int \int \int s(\vec{r}')s(\vec{r}'+\vec{r})d\vec{r}'.
822+ @end displaymath
823+ In this manual, we refer to the angle-averaged version, denoted @math {\gamma_0(r) }, as the nanoparticle form factor.
824+ @displaymath
825+ \gamma_0(r) = {{\int d\phi \int d\theta \sin(\theta)r^2\gamma_0(\vec{r})} \over {\int d\phi \int d\theta r^2\sin(\theta)}}.
826+ @end displaymath
827+ This form factor is particularly useful as one can approximate the nanoparticle PDF @math {G_ {nano }(r)}
828+ by multiplying the proper nanoparticle form factor with the bulk PDF @math {G_ {bulk }(r)}
829+ @footnote {Farrow , C.L. and Billinge , S.J.L. (2009) , Relationship between the atomic pair distribution function and
830+ small-angle scattering: implications for modeling of nanoparticles. Acta Cryst. A , 65: 232-239.
831+ @url {https://doi.org/10.1107/S0108767309009714 }}
832+ as follows
833+ @displaymath
834+ G_{nano}(r) = \gamma(r)G_{bulk}(r).
835+ @end displaymath
836+
837+ Finally, an important property of the nanoparticle form factor @math {\gamma_0(r) } that we use in @ref {Isotropic expansion }
838+ is that, after undergoing isotropic expansion by a factor @math {\alpha }, the new form factor @math {\gamma'(r) } is a stretched
839+ version of the original form factor: @math {\gamma'_0(r) = \gamma_0(r / \alpha) }. To show this, consider the new shape function
840+ @math {s'(\alpha \vec {r }) = s(\vec{r})} as each point @math {\vec {r }} pre-expansion is mapped to a point @math {\alpha\vec {r }}
841+ post-expansion. The volume of the nanoparticle also increases by a factor @math {\alpha^3 }, so
842+ @displaymath
843+ \gamma'_0(\vec{r}) = {1 \over {\alpha^3 V}} \int \int \int s'(\vec{r}')s'(\vec{r}'+\vec{r})d\vec{r}'.
844+ @end displaymath
845+ Aplying a change of variables @math {\vec {r }' \rightarrow \vec{r}' / \alpha} gives
846+ @displaymath
847+ \gamma'_0(\vec{r}) = {1 \over {\alpha^3 V}} \int \int \int s'(\alpha \vec{r}')s'(\alpha \vec{r}'+\vec{r})\alpha^3d\vec{r}',
848+ @end displaymath
849+ and substituting @math {s'(\alpha \vec {r }) = s(\vec{r})} gives
850+ @displaymath
851+ \gamma'_0(\vec{r}) = {1 \over V} \int \int \int s(\vec{r}')s(\vec{r}'+\vec{r}/\alpha)d\vec{r}'
852+ = \gamma_0(\vec{r} / \alpha).
853+ @end displaymath
854+ Taking the angle-averaged integrals gives the desired relation @math {\gamma'_0(r) = \gamma'_0(r/\alpha) }.
855+
666856@page
667857@vskip 0pt plus 1filll
668858@node PDFmorph options , Index , Available morphs , Top
@@ -697,7 +887,7 @@ for each morph done. To specify names for each saved PDF file, use the
697887@noindent @code {-v , --verbose }
698888@* @indent Increase the amount of information saved to the file(s) generated
699889by @code {--save }. Without this option enabled, only the morphed PDF table will be
700- saved (the table of @math {r } and corresponding @math {g (r) } values). When enabled,
890+ saved (the table of @math {r } and corresponding @math {G (r) } values). When enabled,
701891information about the input and refined morph parameters (when applicable) and
702892the @math {R_W } and Pearson correlation coefficient will be saved as parameters
703893above the PDF table.
@@ -741,7 +931,7 @@ parameter @math{0.1} for smear. However, @code{--exclude=Scale} will not stop
741931
742932@noindent @code {--scale=SCALE }
743933@* @indent Apply a scale factor @code {SCALE } to the function being plotted. For instance,
744- scaling @math {g (r) } by @code {SCALE } will return @math {@code {SCALE }*g (r) }.
934+ scaling @math {G (r) } by @code {SCALE } will return @math {@code {SCALE }*G (r) }.
745935
746936@noindent @code {--smear=SMEAR }
747937@* @indent Smear the PDF peaks with a Gaussian of width (standard deviation) @math {abs( @code {SMEAR }) }.
@@ -753,7 +943,7 @@ refined if not provided by the user in the @code{--slope} option.
753943
754944@noindent @code {--stretch }
755945@* @indent Stretch the function being plotted along the abscissa by a factor of @math {1 + @code {STRETCH }}.
756- For example, if the original function is @math {g (r) }, the stretch returns @math {g(r/(1+ @code {STRETCH })) }.
946+ For example, if the original function is @math {G (r) }, the stretch returns @math {g(r/(1+ @code {STRETCH })) }.
757947The returned PDF will always only be defined between @code {RMIN } and @code {RMAX } (see @code {--rmin }
758948and @code {--rmax }). The @code {STRETCH } coefficient must be larger than @math {-1 } and values in the
759949range @math {(-1 , 0) } will compress the function and set the remaining portion of the function up to
@@ -796,7 +986,7 @@ difference curve shown below. The following changes occur when @code{--multiple}
796986another parameter is specified by @code {--plot-parameter }. (2) The plot will be a bar chart
797987where the abscissa names are the file names of the target PDFs unless otherwise specified by
798988@code {--sort-by }. If the parameter given to @code {--sort-by } has numerical value, the plot
799- will be a line chart; otherwise, a bar chart the parameter values as the absicssa names will
989+ will be a line chart; otherwise, a bar chart the parameter values as the abscissa names will
800990be plotted. By default, ASCII sort order is used for the bar chart abscissa names, but
801991@code {--reverse } can be used to reverse the order.
802992
@@ -818,7 +1008,7 @@ the target file name will be used as the label.
8181008@* @indent @indent The maximum @math {r }-value (abscissa) to plot. If not specified, @code {RMAX } will be used.
8191009
8201010@noindent @code {--maglim=MAGLIM }
821- @* @indent The function @math {g (r) } will be magnified by @code {MAG } for @math {r> @code {MAGLIM }}. This may
1011+ @* @indent The function @math {G (r) } will be magnified by @code {MAG } for @math {r> @code {MAGLIM }}. This may
8221012be useful as PDF amplitude can get very small for large @math {r }. No magnification will take place if
8231013@code {--maglim } is not specified.
8241014
@@ -846,7 +1036,7 @@ be sorted in ASCII sort order order unless a sorting parameter is specified by @
8461036@noindent @code {--sort-by=FIELD }
8471037@* @indent Used with @code {--multiple }. Sort the files in @code {TARGET_DIRECTORY } by some parameter
8481038named @code {FIELD }. Parameters can be specified within each target PDF file by lines of the form
849- @code {<PARAM_NAME> = <PARAM_VALUE> } in the header (anywhere above the @math {r } versus @math {g (r) }
1039+ @code {<PARAM_NAME> = <PARAM_VALUE> } in the header (anywhere above the @math {r } versus @math {G (r) }
8501040data table). @code {PDFmorph } will attempt to find a parameter named @code {FIELD } using a
8511041case-insensitive search. Numerical @code {PARAM_VALUE } will be sorted in ascending order and
8521042non-numerical ones will be sorted in ASCII sort order.
0 commit comments