diff --git a/18_sagemaker_training_recipes/nova/nova-lite-dpo-peft.ipynb b/18_sagemaker_training_recipes/nova/nova-lite-dpo-peft.ipynb index b1adaa4..77bf93b 100644 --- a/18_sagemaker_training_recipes/nova/nova-lite-dpo-peft.ipynb +++ b/18_sagemaker_training_recipes/nova/nova-lite-dpo-peft.ipynb @@ -1825,7 +1825,7 @@ " if custom_model_arn is not None\n", " else \"\"\n", " ),\n", - " \"us.amazon.nova-micro-v1:0\",\n", + " \"us.amazon.nova-lite-v1:0\",\n", "]\n", "\n", "# Change model ID to run LLM as a judge evaluation on the fine-tuned model or base model\n", @@ -1985,7 +1985,7 @@ "source": [ "recipe_content = f\"\"\"\n", "run:\n", - " name: nova-micro-llm-judge-eval-job\n", + " name: nova-lite-llm-judge-eval-job\n", " model_type: amazon.nova-micro-v1:0:128k\n", " model_name_or_path: \"nova-micro/prod\"\n", " replicas: 1 # unmodifiable\n", @@ -2127,6 +2127,19 @@ "estimator.fit(inputs={\"train\": eval_input}, wait=False)" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "d3fbf582", + "metadata": {}, + "outputs": [], + "source": [ + "model_s3_uri = estimator.model_data\n", + "print(model_s3_uri)\n", + "\n", + "output_s3_uri = \"/\".join(model_s3_uri.split(\"/\")[:-1]) + \"/output.tar.gz\"" + ] + }, { "cell_type": "markdown", "id": "2e9af4f5", diff --git a/18_sagemaker_training_recipes/nova/nova-lite-dpo.ipynb b/18_sagemaker_training_recipes/nova/nova-lite-dpo.ipynb index b30cec7..e75b4d7 100644 --- a/18_sagemaker_training_recipes/nova/nova-lite-dpo.ipynb +++ b/18_sagemaker_training_recipes/nova/nova-lite-dpo.ipynb @@ -1825,7 +1825,7 @@ " if custom_model_arn is not None\n", " else \"\"\n", " ),\n", - " \"us.amazon.nova-micro-v1:0\",\n", + " \"us.amazon.nova-lite-v1:0\",\n", "]\n", "\n", "# Change model ID to run LLM as a judge evaluation on the fine-tuned model or base model\n", @@ -1985,7 +1985,7 @@ "source": [ "recipe_content = f\"\"\"\n", "run:\n", - " name: nova-micro-llm-judge-eval-job\n", + " name: nova-lite-llm-judge-eval-job\n", " model_type: amazon.nova-micro-v1:0:128k\n", " model_name_or_path: \"nova-micro/prod\"\n", " replicas: 1 # unmodifiable\n", @@ -2127,6 +2127,19 @@ "estimator.fit(inputs={\"train\": eval_input}, wait=False)" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "3d1d12be", + "metadata": {}, + "outputs": [], + "source": [ + "model_s3_uri = estimator.model_data\n", + "print(model_s3_uri)\n", + "\n", + "output_s3_uri = \"/\".join(model_s3_uri.split(\"/\")[:-1]) + \"/output.tar.gz\"" + ] + }, { "cell_type": "markdown", "id": "3d41dcf4", diff --git a/18_sagemaker_training_recipes/nova/nova-lite-sft-peft.ipynb b/18_sagemaker_training_recipes/nova/nova-lite-sft-peft.ipynb index 067bd40..32e2ad5 100644 --- a/18_sagemaker_training_recipes/nova/nova-lite-sft-peft.ipynb +++ b/18_sagemaker_training_recipes/nova/nova-lite-sft-peft.ipynb @@ -1856,7 +1856,7 @@ { "cell_type": "code", "execution_count": null, - "id": "0dedce87", + "id": "f04231c2", "metadata": {}, "outputs": [], "source": [ @@ -1866,7 +1866,7 @@ " if custom_model_arn is not None\n", " else \"\"\n", " ),\n", - " \"us.amazon.nova-micro-v1:0\",\n", + " \"us.amazon.nova-lite-v1:0\",\n", "]\n", "\n", "# Change model ID to run LLM as a judge evaluation on the fine-tuned model or base model\n", @@ -1890,9 +1890,7 @@ " )\n", "\n", " question = (\n", - " el[\"system\"] + \"\\n\\n\" + el[\"query\"]\n", - " if el[\"system\"] != \"\"\n", - " else el[\"query\"]\n", + " el[\"system\"] + \"\\n\\n\" + el[\"query\"] if el[\"system\"] != \"\" else el[\"query\"]\n", " )\n", "\n", " llm_val_dataset.append(\n", @@ -2026,7 +2024,7 @@ "source": [ "recipe_content = f\"\"\"\n", "run:\n", - " name: nova-micro-llm-judge-eval-job\n", + " name: nova-lite-llm-judge-eval-job\n", " model_type: amazon.nova-micro-v1:0:128k\n", " model_name_or_path: \"nova-micro/prod\"\n", " replicas: 1 # unmodifiable\n", @@ -2168,6 +2166,19 @@ "estimator.fit(inputs={\"train\": eval_input}, wait=False)" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "1144eb14", + "metadata": {}, + "outputs": [], + "source": [ + "model_s3_uri = estimator.model_data\n", + "print(model_s3_uri)\n", + "\n", + "output_s3_uri = \"/\".join(model_s3_uri.split(\"/\")[:-1]) + \"/output.tar.gz\"" + ] + }, { "cell_type": "markdown", "id": "95d358b3", diff --git a/18_sagemaker_training_recipes/nova/nova-lite-sft.ipynb b/18_sagemaker_training_recipes/nova/nova-lite-sft.ipynb index 15031b0..ebf0a0b 100644 --- a/18_sagemaker_training_recipes/nova/nova-lite-sft.ipynb +++ b/18_sagemaker_training_recipes/nova/nova-lite-sft.ipynb @@ -1866,7 +1866,7 @@ " if custom_model_arn is not None\n", " else \"\"\n", " ),\n", - " \"us.amazon.nova-micro-v1:0\",\n", + " \"us.amazon.nova-lite-v1:0\",\n", "]\n", "\n", "# Change model ID to run LLM as a judge evaluation on the fine-tuned model or base model\n", @@ -2026,7 +2026,7 @@ "source": [ "recipe_content = f\"\"\"\n", "run:\n", - " name: nova-micro-llm-judge-eval-job\n", + " name: nova-lite-llm-judge-eval-job\n", " model_type: amazon.nova-micro-v1:0:128k\n", " model_name_or_path: \"nova-micro/prod\"\n", " replicas: 1 # unmodifiable\n", @@ -2168,6 +2168,19 @@ "estimator.fit(inputs={\"train\": eval_input}, wait=False)" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "1ac460dd", + "metadata": {}, + "outputs": [], + "source": [ + "model_s3_uri = estimator.model_data\n", + "print(model_s3_uri)\n", + "\n", + "output_s3_uri = \"/\".join(model_s3_uri.split(\"/\")[:-1]) + \"/output.tar.gz\"" + ] + }, { "cell_type": "markdown", "id": "01c8e7ad", diff --git a/18_sagemaker_training_recipes/nova/nova-micro-dpo.ipynb b/18_sagemaker_training_recipes/nova/nova-micro-dpo.ipynb index 2da690d..ba8d5da 100644 --- a/18_sagemaker_training_recipes/nova/nova-micro-dpo.ipynb +++ b/18_sagemaker_training_recipes/nova/nova-micro-dpo.ipynb @@ -2128,6 +2128,19 @@ "estimator.fit(inputs={\"train\": eval_input}, wait=False)" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "e37c4a5d", + "metadata": {}, + "outputs": [], + "source": [ + "model_s3_uri = estimator.model_data\n", + "print(model_s3_uri)\n", + "\n", + "output_s3_uri = \"/\".join(model_s3_uri.split(\"/\")[:-1]) + \"/output.tar.gz\"" + ] + }, { "cell_type": "markdown", "id": "c53f4555", diff --git a/18_sagemaker_training_recipes/nova/nova-micro-sft-peft.ipynb b/18_sagemaker_training_recipes/nova/nova-micro-sft-peft.ipynb index e408d7e..9efacb3 100644 --- a/18_sagemaker_training_recipes/nova/nova-micro-sft-peft.ipynb +++ b/18_sagemaker_training_recipes/nova/nova-micro-sft-peft.ipynb @@ -2173,6 +2173,19 @@ "estimator.fit(inputs={\"train\": eval_input}, wait=False)" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "f5b7cc15", + "metadata": {}, + "outputs": [], + "source": [ + "model_s3_uri = estimator.model_data\n", + "print(model_s3_uri)\n", + "\n", + "output_s3_uri = \"/\".join(model_s3_uri.split(\"/\")[:-1]) + \"/output.tar.gz\"" + ] + }, { "cell_type": "markdown", "id": "1951cdc2", diff --git a/18_sagemaker_training_recipes/nova/nova-micro-sft.ipynb b/18_sagemaker_training_recipes/nova/nova-micro-sft.ipynb index fe405f2..0d86747 100644 --- a/18_sagemaker_training_recipes/nova/nova-micro-sft.ipynb +++ b/18_sagemaker_training_recipes/nova/nova-micro-sft.ipynb @@ -2171,6 +2171,19 @@ "estimator.fit(inputs={\"train\": eval_input}, wait=False)" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "e5b0e722", + "metadata": {}, + "outputs": [], + "source": [ + "model_s3_uri = estimator.model_data\n", + "print(model_s3_uri)\n", + "\n", + "output_s3_uri = \"/\".join(model_s3_uri.split(\"/\")[:-1]) + \"/output.tar.gz\"" + ] + }, { "cell_type": "markdown", "id": "d7f6f0bb", diff --git a/18_sagemaker_training_recipes/nova/nova-pro-dpo-peft.ipynb b/18_sagemaker_training_recipes/nova/nova-pro-dpo-peft.ipynb index 3367814..87fa4d5 100644 --- a/18_sagemaker_training_recipes/nova/nova-pro-dpo-peft.ipynb +++ b/18_sagemaker_training_recipes/nova/nova-pro-dpo-peft.ipynb @@ -1827,7 +1827,7 @@ " if custom_model_arn is not None\n", " else \"\"\n", " ),\n", - " \"us.amazon.nova-micro-v1:0\",\n", + " \"us.amazon.nova-pro-v1:0\",\n", "]\n", "\n", "# Change model ID to run LLM as a judge evaluation on the fine-tuned model or base model\n", @@ -1987,7 +1987,7 @@ "source": [ "recipe_content = f\"\"\"\n", "run:\n", - " name: nova-micro-llm-judge-eval-job\n", + " name: nova-pro-llm-judge-eval-job\n", " model_type: amazon.nova-micro-v1:0:128k\n", " model_name_or_path: \"nova-micro/prod\"\n", " replicas: 1 # unmodifiable\n", @@ -2129,6 +2129,19 @@ "estimator.fit(inputs={\"train\": eval_input}, wait=False)" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "836c0e19", + "metadata": {}, + "outputs": [], + "source": [ + "model_s3_uri = estimator.model_data\n", + "print(model_s3_uri)\n", + "\n", + "output_s3_uri = \"/\".join(model_s3_uri.split(\"/\")[:-1]) + \"/output.tar.gz\"" + ] + }, { "cell_type": "markdown", "id": "2bb15296", diff --git a/18_sagemaker_training_recipes/nova/nova-pro-sft-peft.ipynb b/18_sagemaker_training_recipes/nova/nova-pro-sft-peft.ipynb index 7691261..b845aec 100644 --- a/18_sagemaker_training_recipes/nova/nova-pro-sft-peft.ipynb +++ b/18_sagemaker_training_recipes/nova/nova-pro-sft-peft.ipynb @@ -1847,7 +1847,7 @@ " if custom_model_arn is not None\n", " else \"\"\n", " ),\n", - " \"us.amazon.nova-micro-v1:0\",\n", + " \"us.amazon.nova-pro-v1:0\",\n", "]\n", "\n", "# Change model ID to run LLM as a judge evaluation on the fine-tuned model or base model\n", @@ -2007,7 +2007,7 @@ "source": [ "recipe_content = f\"\"\"\n", "run:\n", - " name: nova-micro-llm-judge-eval-job\n", + " name: nova-pro-llm-judge-eval-job\n", " model_type: amazon.nova-micro-v1:0:128k\n", " model_name_or_path: \"nova-micro/prod\"\n", " replicas: 1 # unmodifiable\n", @@ -2149,6 +2149,19 @@ "estimator.fit(inputs={\"train\": eval_input}, wait=False)" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "833af432", + "metadata": {}, + "outputs": [], + "source": [ + "model_s3_uri = estimator.model_data\n", + "print(model_s3_uri)\n", + "\n", + "output_s3_uri = \"/\".join(model_s3_uri.split(\"/\")[:-1]) + \"/output.tar.gz\"" + ] + }, { "cell_type": "markdown", "id": "12501609",