|
| 1 | +# Licensed to the Apache Software Foundation (ASF) under one |
| 2 | +# or more contributor license agreements. See the NOTICE file |
| 3 | +# distributed with this work for additional information |
| 4 | +# regarding copyright ownership. The ASF licenses this file |
| 5 | +# to you under the Apache License, Version 2.0 (the |
| 6 | +# "License"); you may not use this file except in compliance |
| 7 | +# with the License. You may obtain a copy of the License at |
| 8 | +# |
| 9 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +# |
| 11 | +# Unless required by applicable law or agreed to in writing, |
| 12 | +# software distributed under the License is distributed on an |
| 13 | +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| 14 | +# KIND, either express or implied. See the License for the |
| 15 | +# specific language governing permissions and limitations |
| 16 | +# under the License. |
| 17 | +"""Benchmark script showing how to maximize CPU usage.""" |
| 18 | + |
| 19 | +from __future__ import annotations |
| 20 | + |
| 21 | +import argparse |
| 22 | +import multiprocessing |
| 23 | +import time |
| 24 | + |
| 25 | +import pyarrow as pa |
| 26 | +from datafusion import SessionConfig, SessionContext, col |
| 27 | +from datafusion import functions as f |
| 28 | + |
| 29 | + |
| 30 | +def main(num_rows: int, partitions: int) -> None: |
| 31 | + """Run a simple aggregation after repartitioning.""" |
| 32 | + # Create some example data |
| 33 | + array = pa.array(range(num_rows)) |
| 34 | + batch = pa.record_batch([array], names=["a"]) |
| 35 | + |
| 36 | + # Configure the session to use a higher target partition count and |
| 37 | + # enable automatic repartitioning. |
| 38 | + config = ( |
| 39 | + SessionConfig() |
| 40 | + .with_target_partitions(partitions) |
| 41 | + .with_repartition_joins(enabled=True) |
| 42 | + .with_repartition_aggregations(enabled=True) |
| 43 | + .with_repartition_windows(enabled=True) |
| 44 | + ) |
| 45 | + ctx = SessionContext(config) |
| 46 | + |
| 47 | + # Register the input data and repartition manually to ensure that all |
| 48 | + # partitions are used. |
| 49 | + df = ctx.create_dataframe([[batch]]).repartition(partitions) |
| 50 | + |
| 51 | + start = time.time() |
| 52 | + df = df.aggregate([], [f.sum(col("a"))]) |
| 53 | + df.collect() |
| 54 | + end = time.time() |
| 55 | + |
| 56 | + print( |
| 57 | + f"Processed {num_rows} rows using {partitions} partitions in {end - start:.3f}s" |
| 58 | + ) |
| 59 | + |
| 60 | + |
| 61 | +if __name__ == "__main__": |
| 62 | + parser = argparse.ArgumentParser(description=__doc__) |
| 63 | + parser.add_argument( |
| 64 | + "--rows", |
| 65 | + type=int, |
| 66 | + default=1_000_000, |
| 67 | + help="Number of rows in the generated dataset", |
| 68 | + ) |
| 69 | + parser.add_argument( |
| 70 | + "--partitions", |
| 71 | + type=int, |
| 72 | + default=multiprocessing.cpu_count(), |
| 73 | + help="Target number of partitions to use", |
| 74 | + ) |
| 75 | + args = parser.parse_args() |
| 76 | + main(args.rows, args.partitions) |
0 commit comments