-
Notifications
You must be signed in to change notification settings - Fork 1
Open
Labels
Description
Description
Create a retrieval quality evaluation framework with test datasets and metrics to monitor search quality over time.
Background
Search quality needs to be monitored to detect regressions and measure improvements. An evaluation framework provides objective quality metrics.
Requirements
- Create small Q/A evaluation dataset
- Implement NDCG@k and hit@k metrics
- Add eval suite to CI for regression detection
- Track retrieval quality over time
- Document how to add custom eval datasets
- Add benchmarking tools
- Create evaluation dashboard
Implementation Details
Files to modify:
evaluation/- New evaluation moduledata/eval/- Evaluation datasetssrc/contextforge_memory/evaluation/- Evaluation frameworktests/evaluation/- Evaluation testsREADME.md- Evaluation documentation
Technical approach:
- Create evaluation framework
- Implement standard IR metrics
- Add CI integration for regression detection
- Create evaluation datasets
- Add benchmarking tools
Acceptance Criteria
- Eval suite runs in CI
- Metrics are tracked over time
- Regressions are detected
- Custom datasets can be added
- Benchmarking tools work
Testing Requirements
- Evaluation framework tests
- Metric calculation tests
- CI integration tests
- Benchmarking tests
Documentation Updates
- README.md - Evaluation guide
- Evaluation docs - Framework usage
- Metrics docs - Understanding metrics
- CI docs - Regression detection
Related Issues
- Depends on: P2 hybrid search, P2 re-ranking
- Blocks: None