|
5 | 5 | import java.util.List; |
6 | 6 |
|
7 | 7 | /** |
8 | | - * The KnightsTour class solves the Knight's Tour problem using backtracking. |
| 8 | + * Solves the Knight's Tour problem using backtracking combined with |
| 9 | + * Warnsdorff's heuristic for improved efficiency. |
9 | 10 | * |
10 | | - * Problem Statement: |
11 | | - * Given an N*N board with a knight placed on the first block, the knight must |
12 | | - * move according to chess rules and visit each square on the board exactly once. |
13 | | - * The class outputs the sequence of moves for the knight. |
14 | | - * |
15 | | - * Example: |
16 | | - * Input: N = 8 (8x8 chess board) |
17 | | - * Output: The sequence of numbers representing the order in which the knight visits each square. |
| 11 | + * A knight must visit every square on an N × N chessboard exactly once. |
18 | 12 | */ |
19 | | -public final class KnightsTour { |
20 | | - private KnightsTour() { |
21 | | - } |
| 13 | +public class KnightsTour { |
22 | 14 |
|
23 | | - // The size of the chess board (12x12 grid, with 2 extra rows/columns as a buffer around a 8x8 area) |
24 | | - private static final int BASE = 12; |
| 15 | + private final int n; // Board dimension |
| 16 | + private final int[][] board; // Stores visiting order |
| 17 | + private final int totalSquares; // n * n |
25 | 18 |
|
26 | | - // Possible moves for a knight in chess |
| 19 | + // Knight's possible movements |
27 | 20 | private static final int[][] MOVES = { |
28 | | - {1, -2}, |
29 | | - {2, -1}, |
30 | | - {2, 1}, |
31 | | - {1, 2}, |
32 | | - {-1, 2}, |
33 | | - {-2, 1}, |
34 | | - {-2, -1}, |
35 | | - {-1, -2}, |
| 21 | + {1, -2}, {2, -1}, {2, 1}, {1, 2}, |
| 22 | + {-1, 2}, {-2, 1}, {-2, -1}, {-1, -2} |
36 | 23 | }; |
37 | 24 |
|
38 | | - // Chess grid representing the board |
39 | | - static int[][] grid; |
40 | | - |
41 | | - // Total number of cells the knight needs to visit |
42 | | - static int total; |
43 | | - |
44 | 25 | /** |
45 | | - * Resets the chess board to its initial state. |
46 | | - * Initializes the grid with boundary cells marked as -1 and internal cells as 0. |
47 | | - * Sets the total number of cells the knight needs to visit. |
| 26 | + * Creates a Knight's Tour solver for an n × n board. |
| 27 | + * |
| 28 | + * @param n board size (must be >= 1) |
48 | 29 | */ |
49 | | - public static void resetBoard() { |
50 | | - grid = new int[BASE][BASE]; |
51 | | - total = (BASE - 4) * (BASE - 4); |
52 | | - for (int r = 0; r < BASE; r++) { |
53 | | - for (int c = 0; c < BASE; c++) { |
54 | | - if (r < 2 || r > BASE - 3 || c < 2 || c > BASE - 3) { |
55 | | - grid[r][c] = -1; // Mark boundary cells |
56 | | - } |
57 | | - } |
| 30 | + public KnightsTour(int n) { |
| 31 | + if (n < 1) { |
| 32 | + throw new IllegalArgumentException("Board size must be positive"); |
58 | 33 | } |
| 34 | + this.n = n; |
| 35 | + this.board = new int[n][n]; |
| 36 | + this.totalSquares = n * n; |
59 | 37 | } |
60 | 38 |
|
61 | 39 | /** |
62 | | - * Recursive method to solve the Knight's Tour problem. |
| 40 | + * Attempts to solve the Knight's Tour starting from (row, col). |
63 | 41 | * |
64 | | - * @param row The current row of the knight |
65 | | - * @param column The current column of the knight |
66 | | - * @param count The current move number |
67 | | - * @return True if a solution is found, False otherwise |
| 42 | + * @param row starting row |
| 43 | + * @param col starting column |
| 44 | + * @return true if a complete tour exists |
68 | 45 | */ |
69 | | - static boolean solve(int row, int column, int count) { |
70 | | - if (count > total) { |
71 | | - return true; |
72 | | - } |
73 | | - |
74 | | - List<int[]> neighbor = neighbors(row, column); |
| 46 | + public boolean solve(int row, int col) { |
| 47 | + board[row][col] = 1; |
| 48 | + return backtrack(row, col, 2); |
| 49 | + } |
75 | 50 |
|
76 | | - if (neighbor.isEmpty() && count != total) { |
77 | | - return false; |
| 51 | + /** Recursive solver using Warnsdorff's ordering */ |
| 52 | + private boolean backtrack(int row, int col, int move) { |
| 53 | + if (move > totalSquares) { |
| 54 | + return true; // Successfully visited all squares |
78 | 55 | } |
79 | 56 |
|
80 | | - // Sort neighbors by Warnsdorff's rule (fewest onward moves) |
81 | | - neighbor.sort(Comparator.comparingInt(a -> a[2])); |
| 57 | + List<int[]> nextMoves = getSortedMoves(row, col); |
82 | 58 |
|
83 | | - for (int[] nb : neighbor) { |
84 | | - int nextRow = nb[0]; |
85 | | - int nextCol = nb[1]; |
86 | | - grid[nextRow][nextCol] = count; |
87 | | - if (!orphanDetected(count, nextRow, nextCol) && solve(nextRow, nextCol, count + 1)) { |
| 59 | + for (int[] m : nextMoves) { |
| 60 | + int nr = m[0], nc = m[1]; |
| 61 | + board[nr][nc] = move; |
| 62 | + |
| 63 | + if (backtrack(nr, nc, move + 1)) { |
88 | 64 | return true; |
89 | 65 | } |
90 | | - grid[nextRow][nextCol] = 0; // Backtrack |
91 | | - } |
92 | 66 |
|
| 67 | + board[nr][nc] = 0; // Undo move (backtrack) |
| 68 | + } |
93 | 69 | return false; |
94 | 70 | } |
95 | 71 |
|
96 | 72 | /** |
97 | | - * Returns a list of valid neighboring cells where the knight can move. |
98 | | - * |
99 | | - * @param row The current row of the knight |
100 | | - * @param column The current column of the knight |
101 | | - * @return A list of arrays representing valid moves, where each array contains: |
102 | | - * {nextRow, nextCol, numberOfPossibleNextMoves} |
| 73 | + * Returns valid knight moves sorted by Warnsdorff degree rule. |
103 | 74 | */ |
104 | | - static List<int[]> neighbors(int row, int column) { |
105 | | - List<int[]> neighbour = new ArrayList<>(); |
| 75 | + private List<int[]> getSortedMoves(int row, int col) { |
| 76 | + List<int[]> moves = new ArrayList<>(); |
106 | 77 |
|
107 | 78 | for (int[] m : MOVES) { |
108 | | - int x = m[0]; |
109 | | - int y = m[1]; |
110 | | - if (row + y >= 0 && row + y < BASE && column + x >= 0 && column + x < BASE && grid[row + y][column + x] == 0) { |
111 | | - int num = countNeighbors(row + y, column + x); |
112 | | - neighbour.add(new int[] {row + y, column + x, num}); |
| 79 | + int nr = row + m[0]; |
| 80 | + int nc = col + m[1]; |
| 81 | + |
| 82 | + if (isValid(nr, nc)) { |
| 83 | + int degree = countDegree(nr, nc); |
| 84 | + moves.add(new int[] {nr, nc, degree}); |
113 | 85 | } |
114 | 86 | } |
115 | | - return neighbour; |
| 87 | + |
| 88 | + moves.sort(Comparator.comparingInt(a -> a[2])); // Fewest onward moves first |
| 89 | + return moves; |
116 | 90 | } |
117 | 91 |
|
118 | | - /** |
119 | | - * Counts the number of possible valid moves for a knight from a given position. |
120 | | - * |
121 | | - * @param row The row of the current position |
122 | | - * @param column The column of the current position |
123 | | - * @return The number of valid neighboring moves |
124 | | - */ |
125 | | - static int countNeighbors(int row, int column) { |
126 | | - int num = 0; |
| 92 | + /** Counts onward valid knight moves */ |
| 93 | + private int countDegree(int row, int col) { |
| 94 | + int count = 0; |
127 | 95 | for (int[] m : MOVES) { |
128 | | - int x = m[0]; |
129 | | - int y = m[1]; |
130 | | - if (row + y >= 0 && row + y < BASE && column + x >= 0 && column + x < BASE && grid[row + y][column + x] == 0) { |
131 | | - num++; |
| 96 | + int nr = row + m[0]; |
| 97 | + int nc = col + m[1]; |
| 98 | + if (isValid(nr, nc)) { |
| 99 | + count++; |
132 | 100 | } |
133 | 101 | } |
134 | | - return num; |
| 102 | + return count; |
| 103 | + } |
| 104 | + |
| 105 | + /** Checks bounds & whether square is unvisited */ |
| 106 | + private boolean isValid(int row, int col) { |
| 107 | + return row >= 0 && row < n && col >= 0 && col < n && board[row][col] == 0; |
135 | 108 | } |
136 | 109 |
|
137 | 110 | /** |
138 | | - * Detects if moving to a given position will create an orphan (a position with no further valid moves). |
| 111 | + * Returns the solved board. |
139 | 112 | * |
140 | | - * @param count The current move number |
141 | | - * @param row The row of the current position |
142 | | - * @param column The column of the current position |
143 | | - * @return True if an orphan is detected, False otherwise |
| 113 | + * @return board with visiting sequence |
144 | 114 | */ |
145 | | - static boolean orphanDetected(int count, int row, int column) { |
146 | | - if (count < total - 1) { |
147 | | - List<int[]> neighbor = neighbors(row, column); |
148 | | - for (int[] nb : neighbor) { |
149 | | - if (countNeighbors(nb[0], nb[1]) == 0) { |
150 | | - return true; |
151 | | - } |
152 | | - } |
153 | | - } |
154 | | - return false; |
| 115 | + public int[][] getBoard() { |
| 116 | + return board; |
155 | 117 | } |
156 | 118 | } |
0 commit comments