From 3b750e4294c073908bb253775893b9c18a684962 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 3 Jul 2021 08:08:29 -0400 Subject: [PATCH 01/27] add Rebrov_Pt111 library --- .../Surface/Rebrov_Pt111/dictionary.txt | 91 ++++ .../Surface/Rebrov_Pt111/reactions.py | 478 ++++++++++++++++++ 2 files changed, 569 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Rebrov_Pt111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py diff --git a/input/kinetics/libraries/Surface/Rebrov_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Rebrov_Pt111/dictionary.txt new file mode 100644 index 0000000000..608257ab17 --- /dev/null +++ b/input/kinetics/libraries/Surface/Rebrov_Pt111/dictionary.txt @@ -0,0 +1,91 @@ +X +1 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +NO +multiplicity 2 +1 N u1 p1 c0 {2,D} +2 O u0 p2 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +NHO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +4 X u0 p0 c0 + +N2_X +1 N u0 p0 c+1 {2,D} {3,D} +2 N u0 p2 c-1 {1,D} +3 X u0 p0 c0 {1,D} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py b/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py new file mode 100644 index 0000000000..ee3273dc95 --- /dev/null +++ b/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py @@ -0,0 +1,478 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Rebrov_Pt111" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 +""" + +entry( + index = 1, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 0.79731, + n = 0.0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((2e8 /atm)/(101325 Pa/atm)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(17(g/mol))*the molar gas constant*(298 kelvin)) + +This is R1 in Table 3 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 2, +# label = "NH3_X <=> NH3 + X", +# kinetics = SurfaceArrhenius( +# A = (1.9E13, '1/s'), +# n = 0.0, +# Ea = (96000, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +# Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +# https://doi.org/10.1016/S1385-8947(02)00068-2 + +# This is R2 in Table 3 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 3, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.0235189884, + n = 0.0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((4.3e6 /atm)/(101325 Pa/atm)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(32(g/mol))*the molar gas constant*(298 kelvin)) + +This is R3 in Table 3 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 4, +# label = "O_X + O_X <=> O2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (4.03E21, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (213200, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +# Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +# https://doi.org/10.1016/S1385-8947(02)00068-2 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +# This is R4 in Table 3 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 5, + label = "NH3_X + O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (6.85E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (157000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.7E15(1/s)/2.483E-9(mol/cm^2) = 6.85E23 cm^2/(mol*s) + +This is R5 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 6, + label = "NH2_X + O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4.03E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (96490, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is R6 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 7, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4.03E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (58500, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is R7 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 8, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (8.46E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (131000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 2.1E13(1/s)/2.483E-9(mol/cm^2) = 8.46E21 cm^2/(mol*s) + +This is L10 in Table 3 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 9, + label = "NH_X + O_X <=> NHO_X + X", + kinetics = SurfaceArrhenius( + A = (4.03E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (73000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_Double_vdW""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is R9 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 10, + label = "NHO_X + O_X <=> NO_X + OH_X", + kinetics = SurfaceArrhenius( + A = (8.05E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (118000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 2E15(1/s)/2.483E-9(mol/cm^2) = 8.05E23 cm^2/(mol*s) + +This is R10 in Table 1, it's from ref[52] where metal = Pt100. +""", + metal = "Pt", + facet = "111", +) + +#Reverse of index = 8 +# entry( +# index = 11, +# label = "NO_X + X <=> N_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4.03E21, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (118000, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Nitrogen/51""", +# longDesc = u""" +# "Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +# Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +# https://doi.org/10.1016/S1385-8947(02)00068-2 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +# This is L8 in Table 3 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 12, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (3.22E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (124000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8E12(1/s)/2.483E-9(mol/cm^2) = 3.22E21 cm^2/(mol*s) + +This is L6 in Table 3 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 13, + label = "N_X + NO_X <=> N2O + X + X", + kinetics = SurfaceArrhenius( + A = (1.01E19, 'cm^2/(mol*s)'), + n = 0, + Ea = (98900, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""doesn't match a family""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 2.5E10(1/s)/2.483E-9(mol/cm^2) = 1.01E19 cm^2/(mol*s) + +This is L7 in Table 3 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 14, + label = "N2O + X <=> N2 + O_X", + kinetics = StickingCoefficient( + A = 0.0160339874, + n = 0, + Ea = (72200, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((2.5e6/atm)/s)*(2.483e-9(mol/cm2))*sqrt(2*pi*(44(g/mol))*the molar gas constant*(298 kelvin)) + +This is L13 in Table 3 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 15, + label = "NO_X <=> NO + X", + kinetics = SurfaceArrhenius( + A = (1.5E13, '1/s'), + n = 0.0, + Ea = (143000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This is L12 in Table 3 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 16, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (4.03E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (46000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is R16 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +#reverse reaction of R18 +entry( + index = 17, + label = "OH_X + OH_X <=> O_X + H2O + X", + kinetics = SurfaceArrhenius( + A = (4.03E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (113000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is L9 in Table 3 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 18, + label = "O_X + H2O_X <=> OH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4.03E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (52700, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E11(1/s)/2.483E-9(mol/cm^2) = 4.03E19 cm^2/(mol*s) +This is R18 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +#endothermic, and Deutschmann's paper: A=4.5E8, n=0, Ea=41800J/mol +# entry( +# index = 19, +# label = "H2O_X <=> H2O + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (40300, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +# Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +# https://doi.org/10.1016/S1385-8947(02)00068-2 + +# This is R19 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) From ab0ad057201e80175c298c7e164806c1cf3682c3 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 3 Jul 2021 08:31:17 -0400 Subject: [PATCH 02/27] add Schneider_Pt111 and Pt211 libraries --- .../Surface/Schneider_Pt111/dictionary.txt | 89 +++ .../Surface/Schneider_Pt111/reactions.py | 522 ++++++++++++++++++ .../Surface/Schneider_Pt211/dictionary.txt | 89 +++ .../Surface/Schneider_Pt211/reactions.py | 519 +++++++++++++++++ 4 files changed, 1219 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Schneider_Pt111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py create mode 100644 input/kinetics/libraries/Surface/Schneider_Pt211/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py diff --git a/input/kinetics/libraries/Surface/Schneider_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Schneider_Pt111/dictionary.txt new file mode 100644 index 0000000000..7c1c94ba6a --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pt111/dictionary.txt @@ -0,0 +1,89 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 N u0 p1 c0 {2,S} {4,D} +4 X u0 p0 c0 {3,D} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py new file mode 100644 index 0000000000..9148464021 --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py @@ -0,0 +1,522 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Schneider_Pt111" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 +""" + +entry( + index = 1, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.9975, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((1.8E3 /pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 32 g/mol * molar gas constant * 298 kelvin) + +This is R1 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 2, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((2.5E3 /pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 17 g/mol * molar gas constant * 298 kelvin) ≈ 1 + +This is R2 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 3, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.09E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (67543, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.2E12(1/s)/2.483E-9(mol/cm^2) = 2.09E21 cm^2/(mol*s) +Ea = 0.7eV = 67543J/mol + +This is R3 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 4, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.22E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (78156.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.5E12(1/s)/2.483E-9(mol/cm^2) = 2.22E21 cm^2/(mol*s) +Ea = 0.81eV = 78156.9J/mol + +This is R4 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 5, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.14E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (154384, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 7.8E12(1/s)/2.483E-9(mol/cm^2) = 3.14E21 cm^2/(mol*s) +Ea = 1.6eV = 154384J/mol + +This is R5 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 6, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (1.97E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (33771.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 4.9E13(1/s)/2.483E-9(mol/cm^2) = 1.97E22 cm^2/(mol*s) +Ea = 0.35eV = 33771.5J/mol + +This is R6 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 7, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (6.04E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (964.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.5E13(1/s)/2.483E-9(mol/cm^2) = 6.04E21 cm^2/(mol*s) +Ea = 0.01eV = 964.9J/mol + +This is R7 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 8, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.38E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (39560.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.9E12(1/s)/2.483E-9(mol/cm^2) = 2.38E21 cm^2/(mol*s) +Ea = 0.41eV = 39560.9J/mol + +This is R8 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 9, + label = "OH_X + OH_X <=> O_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (1.25E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 3.1E12(1/s)/2.483E-9(mol/cm^2) = 1.25E21 cm^2/(mol*s) + +This is R9 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + + +#Endothermic, Deutschmann's paper: A=4.5E8, n=0, Ea=41800J/mol +# entry( +# index = 10, +# label = "H2O_X <=> H2O + X", +# kinetics = SurfaceArrhenius( +# A = (5.9E15, '1/s'), +# n = 0.0, +# Ea = (18333.1, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +# DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +# https://doi.org/10.1021/acscatal.8b04251 + +# Ea = 0.19eV = 18333.1J/mol + +# This is R10 in Table S2 and S4 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 11, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (3.71E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (244119.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 9.2E12(1/s)/2.483E-9(mol/cm^2) = 3.71E21 cm^2/(mol*s) +revised A from 3.71E21 to 3.71E20 based on the ammonia model + +Ea = 2.53eV = 244119.7J/mol + +This is R11 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 12, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (3.34E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (213242.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.3E12(1/s)/2.483E-9(mol/cm^2) = 3.34E21 cm^2/(mol*s) + +Ea = 2.21eV = 213242.9J/mol + +This is R12 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 13, + label = "NO_X <=> NO + X", + kinetics = SurfaceArrhenius( + A = (2.6E17, '1/s'), + n = 0.0, + Ea = (184295.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +Ea = 1.91eV = 184295.9J/mol + +This is R13 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 14, + label = "N_X + NO_X <=> N2O_X + X", + kinetics = SurfaceArrhenius( + A = (1.73E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (164997.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 4.3E12(1/s)/2.483E-9(mol/cm^2) = 1.73E21 cm^2/(mol*s) +revised A from 1.73E21 to 1.73E20 based on the ammonia model + +Ea = 1.71eV = 164997.9J/mol + +This is R14 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 15, + label = "N2O_X <=> N2O + X", + kinetics = SurfaceArrhenius( + A = (1.4E16, '1/s'), + n = 0.0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This is R15 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 16, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.82E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (111928.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +A factor is a mean value from other Pt111 libraries +Ea = 1.16eV = 111928.4J/mol + +This is reaction (1) in Table S3 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 17, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.45E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (131226.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +A factor is a mean value from other Pt111 libraries +Ea = 1.36eV = 131226.4J/mol + +This is reaction (2) in Table S3 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 18, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.63E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (134121.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +A factor is a mean value from other Pt111 libraries +Ea = 1.39eV = 134121.1J/mol + +This is reaction (3) in Table S3 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 19, + label = "H_X + O_X <=> OH_X + X", + kinetics = SurfaceArrhenius( + A = (1.28E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (105174.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +A factor from CPOX/Deutschmann +Ea = 1.09eV = 105174.1J/mol + +This is reaction (4) in Table S3 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 20, + label = "H_X + OH_X <=> H2O_X + X", + kinetics = SurfaceArrhenius( + A = (2.04E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (20262.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +A factor from CPOX/Deutschmann +Ea = 0.21eV = 20262.9J/mol + +This is reaction (5) in Table S3 +""", + metal = "Pt", + facet = "111", +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Pt211/dictionary.txt b/input/kinetics/libraries/Surface/Schneider_Pt211/dictionary.txt new file mode 100644 index 0000000000..7c1c94ba6a --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pt211/dictionary.txt @@ -0,0 +1,89 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 N u0 p1 c0 {2,S} {4,D} +4 X u0 p0 c0 {3,D} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py new file mode 100644 index 0000000000..9fb29ab16c --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py @@ -0,0 +1,519 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Schneider_Pt211" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 +""" + +entry( + index = 1, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.9975, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = ((1.8E3 /pa) / s) * (2.634E-9 mol/cm2) * sqrt(2 * pi * 32 g/mol * molar gas constant * 298 kelvin) + +This is R1 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 2, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = ((2.5E3 /pa) / s) * (2.634E-9 mol/cm2) * sqrt(2 * pi * 17 g/mol * molar gas constant * 298 kelvin) + +This is R2 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 3, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.56E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (55964.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 4.1E12(1/s)/2.634E-9(mol/cm^2) = 1.56E21 cm^2/(mol*s) +Ea = 0.58eV = 55964.2J/mol + +This is R3 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 4, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.78E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (139910.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 4.7E12(1/s)/2.634E-9(mol/cm^2) = 1.78E21 cm^2/(mol*s) +Ea = 1.45eV = 139910.5J/mol + +This is R4 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 5, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.29E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (45350.3, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 3.4E12(1/s)/2.634E-9(mol/cm^2) = 1.29E21 cm^2/(mol*s) +Ea = 0.47eV = 45350.3J/mol + +This is R5 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 6, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (3.11E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (80086.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 8.2E12(1/s)/2.634E-9(mol/cm^2) = 3.11E21 cm^2/(mol*s) +Ea = 0.83eV = 80086.7J/mol + +This is R6 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 7, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (1.48E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (76227.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 3.9E12(1/s)/2.634E-9(mol/cm^2) = 1.48E21 cm^2/(mol*s) +Ea = 0.79eV = 76227.1J/mol + +This is R7 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 8, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.01E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (81051.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 5.3E12(1/s)/2.634E-9(mol/cm^2) = 2.01E21 cm^2/(mol*s) +Ea = 0.84eV = 81051.6J/mol + +This is R8 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 9, + label = "OH_X + OH_X <=> O_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (1.59E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (81051.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 4.2E12(1/s)/2.634E-9(mol/cm^2) = 1.59E21 cm^2/(mol*s) +Ea = 0.84eV = 81051.6J/mol + +This is R9 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +#Endothermic, Deutschmann's paper: A=4.5E8, n=0, Ea=41800J/mol +# entry( +# index = 10, +# label = "H2O_X <=> H2O + X", +# kinetics = SurfaceArrhenius( +# A = (3.7E15, '1/s'), +# n = 0.0, +# Ea = (24122.5, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +# DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +# https://doi.org/10.1021/acscatal.8b04251 + +# Ea = 0.25eV = 24122.5J/mol + +# This is R10 in Table S2 and S4 +# """, +# metal = "Pt", +# facet = "211", +# ) + +entry( + index = 11, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (2.01E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (113858.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 5.3E12(1/s)/2.634E-9(mol/cm^2) = 2.01E21 cm^2/(mol*s) +Ea = 1.18eV = 113858.2J/mol + +This is R11 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 12, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (1.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (140875.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 3.8E12(1/s)/2.634E-9(mol/cm^2) = 1.44E21 cm^2/(mol*s) +Ea = 1.46eV = 140875.4J/mol + +This is R12 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 13, + label = "NO_X <=> NO + X", + kinetics = SurfaceArrhenius( + A = (1.3E17, '1/s'), + n = 0.0, + Ea = (224821.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +Ea = 2.33eV = 224821.7J/mol + +This is R13 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 14, + label = "N_X + NO_X <=> N2O_X + X", + kinetics = SurfaceArrhenius( + A = (2.32E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (156313.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 6.1E12(1/s)/2.634E-9(mol/cm^2) = 2.32E21 cm^2/(mol*s) +Ea = 1.62eV = 156313.8J/mol + +This is R14 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 15, + label = "N2O_X <=> N2O + X", + kinetics = SurfaceArrhenius( + A = (1.5E17, '1/s'), + n = 0.0, + Ea = (9649, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +Ea = 0.1eV = 9649J/mol + +This is R15 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 16, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.6E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (110963.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pt211 +Ea = 1.15eV = 110963.5J/mol + +This is reaction (1) in Table S3 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 17, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.26E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (155348.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pt211 +Ea = 1.61eV = 155348.9J/mol + +This is reaction (2) in Table S3 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 18, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.42E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (125437, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pt211 +Ea = 1.3eV = 125437J/mol + +This is reaction (3) in Table S3 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 19, + label = "H_X + O_X <=> OH_X + X", + kinetics = SurfaceArrhenius( + A = (1.21E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (48245, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pt211 +Ea = 0.5eV = 48245J/mol + +This is reaction (4) in Table S3 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 20, + label = "H_X + OH_X <=> H2O_X + X", + kinetics = SurfaceArrhenius( + A = (1.92E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (92630.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pt211 +Ea = 0.96eV = 92630.4J/mol + +This is reaction (5) in Table S3 +""", + metal = "Pt", + facet = "211", +) \ No newline at end of file From 3df591532864aa5480e255b5329304a95f92d70b Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 3 Jul 2021 08:31:32 -0400 Subject: [PATCH 03/27] add schneider_Pd111 and Pd211 libraries --- .../Surface/Schneider_Pd111/dictionary.txt | 89 +++ .../Surface/Schneider_Pd111/reactions.py | 549 +++++++++++++++++ .../Surface/Schneider_Pd211/dictionary.txt | 89 +++ .../Surface/Schneider_Pd211/reactions.py | 553 ++++++++++++++++++ 4 files changed, 1280 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Schneider_Pd111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Schneider_Pd111/reactions.py create mode 100644 input/kinetics/libraries/Surface/Schneider_Pd211/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Schneider_Pd211/reactions.py diff --git a/input/kinetics/libraries/Surface/Schneider_Pd111/dictionary.txt b/input/kinetics/libraries/Surface/Schneider_Pd111/dictionary.txt new file mode 100644 index 0000000000..7c1c94ba6a --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pd111/dictionary.txt @@ -0,0 +1,89 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 N u0 p1 c0 {2,S} {4,D} +4 X u0 p0 c0 {3,D} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Pd111/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pd111/reactions.py new file mode 100644 index 0000000000..ef8250bb10 --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pd111/reactions.py @@ -0,0 +1,549 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Schneider_Pd111" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 +""" + +entry( + index = 1, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.9975, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Scitcking coefficient from Schneider_Pt111 + +This is reaction (1) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 2, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Scitcking coefficient from Schneider_Pt111 + +This is reaction (2) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 3, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.05E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (69472.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd111 +revised from 2.05E21 to 2.05E22 based on the ammonia model + +Ea = 0.72eV = 69472.8J/mol + +This is reaction (3) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 4, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.17E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (85876.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd111 +A factor revised from 2.17E21 to 2.17E22 based on the ammonia model + +Ea = 0.89eV = 85876.1J/mol + +This is reaction (4) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 5, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.08E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (133156.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd111 +A factor revised from 3.08E21 to 3.08E20 based on the ammonia model +Ea = 1.38eV = 133156.2J/mol + +This is reaction (5) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 6, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (1.93E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (44385.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd111 +Ea = 0.46eV = 44385.4J/mol + +This is reaction (6) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 7, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (5.92E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (7719.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd111 +Ea = 0.08eV = 7719.2J/mol + +This is reaction (7) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 8, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (46315.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd111 +A factor revised from 2.33E21 to 2.33E20 based on the ammonia model +Ea = 0.48eV = 46315.2J/mol + +This is reaction (8) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 9, + label = "OH_X + OH_X <=> O_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (1.22E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd111 + +This is reaction (9) in Table S3 +""", + metal = "Pd", + facet = "111", +) + + + +#Endothermic, Deutschmann's paper: A=4.5E8, n=0, Ea=41800J/mol +# entry( +# index = 10, +# label = "H2O_X <=> H2O + X", +# kinetics = SurfaceArrhenius( +# A = (5.9E15, '1/s'), +# n = 0.0, +# Ea = (20262.9, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 +# Ea = 0.21eV = 20262.9J/mol +# +# This is reaction (10) in Table S3 +# """, +# metal = "Pd", +# facet = "111", +# ) + +entry( + index = 11, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (3.63E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (208418.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd111 + +Ea = 2.16eV = 208418.4J/mol + +This is reaction (11) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 12, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (3.28E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (187190.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd111 +A factor revised from 3.28E21 to 3.28E22 based on the ammonia model + +Ea = 1.94eV = 187190.6J/mol + +This is reaction (12) in Table S3 +""", + metal = "Pd", + facet = "111", +) + + +entry( + index = 13, + label = "NO_X <=> NO + X", + kinetics = SurfaceArrhenius( + A = (2.6E12, '1/s'), #revise A=2.6E17 to A=2.6E12 and match the coverage plot + n = 0.0, + Ea = (221927, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 2.3eV = 221927J/mol + +This is reaction (13) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 14, + label = "N_X + NO_X <=> N2O_X + X", + kinetics = SurfaceArrhenius( + A = (1.7E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (186225.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd111 +A factor revised from 1.7E21 to 1.7E19 based on the ammonia model + +Ea = 1.93eV = 186225.7J/mol + +This is reaction (14) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 15, + label = "N2O_X <=> N2O + X", + kinetics = SurfaceArrhenius( + A = (1.4E10, '1/s'), + n = 0.0, + Ea = (11578.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd111 +A factor revised from 1.4E16 to A=1.4E10 based on the ammonia model, +this value is close to the value of Deutschmann's Nitrogen library and better match the models + +Ea = 0.12eV = 11578.8J/mol + +This is reaction (15) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 16, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.74E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (104209.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd111 + +Ea = 1.08eV = 104209.2J/mol + +This is reaction (1) in Table S5 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 17, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.38E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (85876.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd111 + +Ea = 0.89eV = 85876.1J/mol + +This is reaction (2) in Table S5 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 18, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.56E20, 'cm^2/(mol*s)'), #revised from 3.56E21 to 3.56E20 based on the models + n = 0.0, + Ea = (113858.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd111 + +Ea = 1.18eV = 113858.2J/mol + +This is reaction (3) in Table S5 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 19, + label = "H_X + O_X <=> OH_X + X", + kinetics = SurfaceArrhenius( + A = (1.25E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (97454.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd111 + +Ea = 1.01eV = 97454.9J/mol + +This is reaction (4) in Table S5 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 20, + label = "H_X + OH_X <=> H2O_X + X", + kinetics = SurfaceArrhenius( + A = (2E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (64648.3, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd111 + +Ea = 0.67eV = 64648.3J/mol + +This is reaction (5) in Table S5 +""", + metal = "Pd", + facet = "111", +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Pd211/dictionary.txt b/input/kinetics/libraries/Surface/Schneider_Pd211/dictionary.txt new file mode 100644 index 0000000000..7c1c94ba6a --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pd211/dictionary.txt @@ -0,0 +1,89 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 N u0 p1 c0 {2,S} {4,D} +4 X u0 p0 c0 {3,D} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Pd211/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pd211/reactions.py new file mode 100644 index 0000000000..345462578b --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pd211/reactions.py @@ -0,0 +1,553 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Schneider_Pd211" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 +""" + +entry( + index = 1, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.9975, + n = 0, + Ea = (28947, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Scitcking coefficient from Schneider_Pt111 + +Ea = 0.3eV = 28947J/mol + +This is reaction (1) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 2, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Scitcking coefficient from Schneider_Pt111 + +This is reaction (2) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 3, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.93E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (39560.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd211 + +Ea = 0.41eV = 39560.9J/mol + +This is reaction (3) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 4, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.05E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (104209.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd211 + +Ea = 1.08eV = 104209.2J/mol + +This is reaction (4) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 5, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.9E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (23157.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd211 + +Ea = 0.24eV = 23157.6J/mol + +This is reaction (5) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 6, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (1.82E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (70437.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd211 + +Ea = 0.73eV = 70437.7J/mol + +This is reaction (6) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 7, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (5.58E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (73332.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd211 + +Ea = 0.76eV = 73332.4J/mol + +This is reaction (7) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 8, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.19E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (41490.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd211 + +Ea = 0.43eV = 41490.7J/mol + +This is reaction (8) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 9, + label = "OH_X + OH_X <=> O_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (1.15E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (71402.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd211 +A factor revised from 1.15E21 to 1.15E20 base on the ammonia model + +Ea = 0.74eV = 71402.6J/mol + +This is reaction (9) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +#Endothermic, Deutschmann's paper: A=4.5E8, n=0, Ea=41800J/mol +# entry( +# index = 10, +# label = "H2O_X <=> H2O + X", +# kinetics = SurfaceArrhenius( +# A = (3.7E15, '1/s'), +# n = 0.0, +# Ea = (30876.8, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 +# +# A factor from Schneider_Pt211 library +# +# Ea = 0.32eV = 30876.8J/mol +# +# This is reaction (10) in Table S2 +# """, +# metal = "Pd", +# facet = "211", +# ) + +entry( + index = 11, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (3.42E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (119647.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd211 + +Ea = 1.24eV = 119647.6J/mol + +This is reaction (11) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 12, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (3.09E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (82981.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd211 + +Ea = 0.86eV = 82981.4J/mol + +This is reaction (12) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 13, + label = "NO_X <=> NO + X", + kinetics = SurfaceArrhenius( + A = (6.55E13, '1/s'), + n = 0.0, + Ea = (225786.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt211 library and scale up by RMG's surface site density of Pd211 +A factor revised from 3.7E17 =6.55E13 base on the models + +Ea = 2.34eV = 225786.6J/mol + +This is reaction (13) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 14, + label = "N_X + NO_X <=> N2O_X + X", + kinetics = SurfaceArrhenius( + A = (1.6E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (191050.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +A factor revised from 1.6E21 to A=1.6E20 base on the ammonia model +Ea = 1.98eV = 191050.2J/mol + +This is reaction (14) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 15, + label = "N2O_X <=> N2O + X", + kinetics = SurfaceArrhenius( + A = (1.5E13, '1/s'), + n = 0.0, + Ea = (36666.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt211 library +A factor revised from 1.5E17 to 1.E13 base on ammonia model + +Ea = 0.38eV = 36666.2J/mol + +This is reaction (15) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 16, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.52E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (97454.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd211 +Ea = 1.01eV = 97454.9/mol + +This is reaction (1) in Table S4 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 17, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.19E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (152454.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd211 + +Ea = 1.58eV = 152454.2J/mol + +This is reaction (2) in Table S4 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 18, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.35E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (118682.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd211 + +Ea = 1.23eV = 118682.7J/mol + +This is reaction (3) in Table S4 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 19, + label = "H_X + O_X <=> OH_X + X", + kinetics = SurfaceArrhenius( + A = (1.18E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (123507.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd211 + +Ea = 1.28eV = 123507.2J/mol + +This is reaction (4) in Table S4 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 20, + label = "H_X + OH_X <=> H2O_X + X", + kinetics = SurfaceArrhenius( + A = (1.88E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (91665.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Pd211 + +Ea = 0.95eV = 91665.5J/mol + +This is reaction (5) in Table S4 +""", + metal = "Pd", + facet = "211", +) \ No newline at end of file From d155ce69d93ed2594bfbc6f34e7003323081f199 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 3 Jul 2021 08:31:53 -0400 Subject: [PATCH 04/27] add Schneider_Rh111 and Rh211 libraries --- .../Surface/Schneider_Rh111/dictionary.txt | 89 +++ .../Surface/Schneider_Rh111/reactions.py | 549 +++++++++++++++++ .../Surface/Schneider_Rh211/dictionary.txt | 89 +++ .../Surface/Schneider_Rh211/reactions.py | 554 ++++++++++++++++++ 4 files changed, 1281 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Schneider_Rh111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py create mode 100644 input/kinetics/libraries/Surface/Schneider_Rh211/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Schneider_Rh211/reactions.py diff --git a/input/kinetics/libraries/Surface/Schneider_Rh111/dictionary.txt b/input/kinetics/libraries/Surface/Schneider_Rh111/dictionary.txt new file mode 100644 index 0000000000..7c1c94ba6a --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Rh111/dictionary.txt @@ -0,0 +1,89 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 N u0 p1 c0 {2,S} {4,D} +4 X u0 p0 c0 {3,D} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py b/input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py new file mode 100644 index 0000000000..a258f97a9e --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py @@ -0,0 +1,549 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Schneider_Rh111" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 +""" + +entry( + index = 1, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.9975, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Scitcking coefficient from Schneider_Pt111 + +This is reaction (1) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 2, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Scitcking coefficient from Schneider_Pt111 + +This is reaction (2) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 3, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.96E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (86841, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh111 + +Ea = 0.9eV = 86841J/mol + +This is reaction (3) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 4, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.07E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (106139, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh111 + +Ea = 1.1eV = 106139J/mol + +This is reaction (4) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 5, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.94E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (142805.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh111 + +Ea = 1.48eV = 142805.2J/mol + +This is reaction (5) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 6, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (1.84E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (68507.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh111 + +Ea = 0.71eV = 68507.9J/mol + +This is reaction (6) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 7, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (5.65E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (25087.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh111 + +Ea = 0.26eV = 25087.4J/mol + +This is reaction (7) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 8, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.22E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (39561, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh111 + +Ea = 0.66eV = 63683.4J/mol + +This is reaction (8) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 9, + label = "OH_X + OH_X <=> O_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (1.17E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh111 + +This is reaction (9) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +#Endothermic, Deutschmann's paper: A=4.5E8, n=0, Ea=41800J/mol +# entry( +# index = 10, +# label = "H2O_X <=> H2O + X", +# kinetics = SurfaceArrhenius( +# A = (5.9E15, '1/s'), +# n = 0.0, +# Ea = (27017.2, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 +# +# A factor from Schneider_Pt111 library +# +# Ea = 0.28eV = 27017.2J/mol +# +# This is reaction (10) in Table S3 +# """, +# metal = "Rh", +# facet = "111", +# ) + +entry( + index = 11, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (3.46E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (246049.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh111 +A factor revise from 3.46E21 to 3.46E22 base on the ammonia model +Ea = 2.55eV = 246049.5J/mol + +This is reaction (11) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 12, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (3.13E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (226751.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh111 +A factor revise from 3.13E21 to 3.13E22 base on the ammonia model + +Ea = 2.35eV = 226751.5J/mol + +This is reaction (12) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 13, + label = "NO_X <=> NO + X", + kinetics = SurfaceArrhenius( + A = (6.55E15, '1/s'), + n = 0.0, + Ea = (241225, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor calculated from the equation proposed by Campbell1 et al. (2013) + +Ea = 2.5eV = 241225J/mol + +This is reaction (13) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 14, + label = "N_X + NO_X <=> N2O_X + X", + kinetics = SurfaceArrhenius( + A = (1.62E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (206488.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh111 +A factor revise from 1.62E21 to 1.62E22 base on the ammonia model + +Ea = 2.14eV = 206488.6J/mol + +This is reaction (14) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 15, + label = "N2O_X <=> N2O + X", + kinetics = SurfaceArrhenius( + A = (1.4E16, '1/s'), + n = 0.0, + Ea = (32806.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library + +Ea = 0.34eV = 32806.6J/mol + +This is reaction (15) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 16, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.57E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (100349.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh111 + +Ea = 1.04eV = 100349.6J/mol + +This is reaction (1) in Table S5 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 17, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.23E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (83946.3, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh111 + +Ea = 0.87eV = 83946.3J/mol + +This is reaction (2) in Table S5 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 18, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.4E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (98419.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh111 + +Ea = 1.02eV = 98419.8J/mol + +This is reaction (3) in Table S5 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 19, + label = "H_X + O_X <=> OH_X + X", + kinetics = SurfaceArrhenius( + A = (1.2E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (61753.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh111 + +Ea = 0.64eV = 61753.6J/mol + +This is reaction (4) in Table S5 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 20, + label = "H_X + OH_X <=> H2O_X + X", + kinetics = SurfaceArrhenius( + A = (1.91E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (63683.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh111 + +Ea = 0.66eV = 63683.4J/mol + +This is reaction (5) in Table S5 +""", + metal = "Rh", + facet = "111", +) diff --git a/input/kinetics/libraries/Surface/Schneider_Rh211/dictionary.txt b/input/kinetics/libraries/Surface/Schneider_Rh211/dictionary.txt new file mode 100644 index 0000000000..7c1c94ba6a --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Rh211/dictionary.txt @@ -0,0 +1,89 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 N u0 p1 c0 {2,S} {4,D} +4 X u0 p0 c0 {3,D} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Rh211/reactions.py b/input/kinetics/libraries/Surface/Schneider_Rh211/reactions.py new file mode 100644 index 0000000000..51deb43637 --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Rh211/reactions.py @@ -0,0 +1,554 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Schneider_Rh211" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 +""" + +entry( + index = 1.0, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.9975, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Scitcking coefficient from Schneider_Pt111 + +This is reaction (1) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 2, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Scitcking coefficient from Schneider_Pt111 + +This is reaction (2) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 3, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.85E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (62718.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh211 +A factor revise from 1.85E21 to 1.85E22 base on the ammonia model + +Ea = 0.65eV = 62718.5J/mol + +This is reaction (3) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 4, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.95E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (143770.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh211 +A factor revise from 1.95E21 to 1.95E22 base on the ammonia model + +Ea = 1.49eV = 143770.1J/mol + +This is reaction (4) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 5, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.77E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (60788.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh211 + +Ea = 0.63eV = 60788.7J/mol + +This is reaction (5) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 6, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (1.74E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (91665.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh211 + +Ea = 0.95eV = 91665.5J/mol + +This is reaction (6) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 7, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (5.32E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (97454.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh211 + +Ea = 1.01eV = 97454.9J/mol + +This is reaction (7) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 8, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.09E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (85876.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh211 +A factor revise from 2.09E21 to 2.09E22 base on the ammonia model + +Ea = 0.89eV = 85876.1J/mol + +This is reaction (8) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 9, + label = "OH_X + OH_X <=> O_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (1.10E18, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (92630.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh211 +A factor revise from 1.01E21 to 1.01E18 base on the ammonia model + +Ea = 0.96eV = 92630.4J/mol + +This is reaction (9) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +#Endothermic, Deutschmann's paper: A=4.5E8, n=0, Ea=41800J/mol +# entry( +# index = 10, +# label = "H2O_X <=> H2O + X", +# kinetics = SurfaceArrhenius( +# A = (3.7E15, '1/s'), +# n = 0.0, +# Ea = (27017.2, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 +# +#A factor from Schneider_Pt211 library +# +# Ea = 0.28eV = 27017.2J/mol +# +# This is reaction (10) in Table S3 +# """, +# metal = "Rh", +# facet = "111", +# ) + +entry( + index = 11, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (3.27E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (169822.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh211 + +Ea = 1.76eV = 169822.4J/mol + +This is reaction (11) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 12, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (2.95E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (166927.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh211 + +Ea = 1.73eV = 166927.7J/mol + +This is reaction (12) in Table S2 +""", + metal = "Rh", + facet = "211", +) + + +entry( + index = 13, + label = "NO_X <=> NO + X", + kinetics = SurfaceArrhenius( + A = (2.6E12, '1/s'), + n = 0.0, + Ea = (270172, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and revise from 2.6E17 to 2.6E12 base on the model +Ea = 2.8eV = 270172J/mol + +This is reaction (13) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 14, + label = "N_X + NO_X <=> N2O_X + X", + kinetics = SurfaceArrhenius( + A = (1.54E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (211313.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh211 +A factor revise from 1.54E21 to 1.54E20 base on the ammonia model + +Ea = 2.19eV = 211313.1J/mol + +This is reaction (14) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 15, + label = "N2O_X <=> N2O + X", + kinetics = SurfaceArrhenius( + A = (1.4E16, '1/s'), + n = 0.0, + Ea = (54999.3, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library + +Ea = 0.57eV = 54999.3J/mol + +This is reaction (15) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 16, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.36E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (88770.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh211 + +Ea = 0.92eV = 88770.8J/mol + +This is reaction (1) in Table S4 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 17, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.04E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (117717.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh211 + +Ea = 1.22eV = 117717.8J/mol + +This is reaction (2) in Table S4 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 18, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.20E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (88770.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh211 + +Ea = 0.92eV = 88770.8J/mol + +This is reaction (3) in Table S4 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 19, + label = "H_X + O_X <=> OH_X + X", + kinetics = SurfaceArrhenius( + A = (1.13E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (85876.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh211 + +Ea = 0.89eV = 85876.1J/mol + +This is reaction (4) in Table S4 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 20, + label = "H_X + OH_X <=> H2O_X + X", + kinetics = SurfaceArrhenius( + A = (1.8E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (96490, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +A factor from Schneider_Pt111 library and scale up by RMG's surface site density of Rh211 + +Ea = 1eV = 96490J/mol + +This is reaction (5) in Table S4 +""", + metal = "Rh", + facet = "211", +) From c39dd4e3f1c8eeeffe79084f11896e4d579f9b21 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 3 Jul 2021 08:48:56 -0400 Subject: [PATCH 05/27] add Duan_Ni111 and Ni211 libraries --- .../Surface/Duan_Ni111/dictionary.txt | 32 ++++ .../libraries/Surface/Duan_Ni111/reactions.py | 163 ++++++++++++++++++ .../Surface/Duan_Ni211/dictionary.txt | 32 ++++ .../libraries/Surface/Duan_Ni211/reactions.py | 128 ++++++++++++++ 4 files changed, 355 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Duan_Ni111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Duan_Ni111/reactions.py create mode 100644 input/kinetics/libraries/Surface/Duan_Ni211/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Duan_Ni211/reactions.py diff --git a/input/kinetics/libraries/Surface/Duan_Ni111/dictionary.txt b/input/kinetics/libraries/Surface/Duan_Ni111/dictionary.txt new file mode 100644 index 0000000000..e12230fdec --- /dev/null +++ b/input/kinetics/libraries/Surface/Duan_Ni111/dictionary.txt @@ -0,0 +1,32 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Duan_Ni111/reactions.py b/input/kinetics/libraries/Surface/Duan_Ni111/reactions.py new file mode 100644 index 0000000000..540a155a25 --- /dev/null +++ b/input/kinetics/libraries/Surface/Duan_Ni111/reactions.py @@ -0,0 +1,163 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Duan_Ni111" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and +Ni(1 1 1) surfaces: A density functional theory study" +Duan et al. Journal of Molecular Catalysis A: Chemical 357 (2012) 81–86 +https://doi.org/10.1016/j.molcata.2012.01.023 + +and + +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 +""" + +entry( + index = 1, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.35E15, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (107103.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and +Ni(1 1 1) surfaces: A density functional theory study" +Duan et al. Journal of Molecular Catalysis A: Chemical 357 (2012) 81–86 +https://doi.org/10.1016/j.molcata.2012.01.023 + +and + +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni111 = 3.148E-9(mol/cm^2) to calculate the A factor. +A = k/exp(-Ea/RT) = 5.35(1/s)/exp(-107103.9(J/mol)/8.314(J/mol/K)/873K) = 1.37E7/s + = (1.37E7/s)/3.148E-9(mol/cm^2) = 4.35E15 cm^2/mol/s + +Ea = 1.11eV = 107103.9J/mol + +This is reaction 1 from Table 2 +""", + metal = "Ni", + facet = "111", +) + +entry( + index = 2, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (8.34E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (56929.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and +Ni(1 1 1) surfaces: A density functional theory study" +Duan et al. Journal of Molecular Catalysis A: Chemical 357 (2012) 81–86 +https://doi.org/10.1016/j.molcata.2012.01.023 + +and + +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni111 = 3.148E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 1.03E8(1/s)/exp(-56929.1(J/mol)/8.314(J/mol/K)/873K) = 2.63E11/s + = (2.63E11/s)/3.148E-9(mol/cm^2) = 8.34E19cm^2/mol/s + +Ea = 0.59eV = 56929.1J/mol + +This is reaction 2 from Table 2 +""", + metal = "Ni", + facet = "111", +) + +entry( + index = 3, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.46E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (107103.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and +Ni(1 1 1) surfaces: A density functional theory study" +Duan et al. Journal of Molecular Catalysis A: Chemical 357 (2012) 81–86 +https://doi.org/10.1016/j.molcata.2012.01.023 + +and + +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni111 = 3.148E-9(mol/cm^2) to calculate the A factor. +A = k/exp(-Ea/RT) = 3.02E4(1/s)/exp(-107103.9J/mol / 8.314(J/mol/K)/873K) = 7.74E10/s + = (7.74E10/s)/3.148E-9(mol/cm^2) = 2.46E19 cm^2/mol/s + +Ea = 1.11eV = 107103.9J/mol + +This is reaction 3 from Table 2 +""", + metal = "Ni", + facet = "111", +) + +entry( + index = 4, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (3.62E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (179471.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and +Ni(1 1 1) surfaces: A density functional theory study" +Duan et al. Journal of Molecular Catalysis A: Chemical 357 (2012) 81–86 +https://doi.org/10.1016/j.molcata.2012.01.023 + +and + +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni111 = 3.148E-9(mol/cm^2) to calculate the A factor. +A = k/exp(-Ea/RT) = 2.08E1(1/s)/exp(-179471.4(J/mol)/8.314(J/mol/K)/873K) = 1.14E12/s + = (1.14E12/s)/3.148E-9(mol/cm^2) = 3.62E20 cm^2/mol/s + +Ea = 1.86eV = 179471.4J/mol + +This is reaction 4 from Table 2 +""", + metal = "Ni", + facet = "111", +) diff --git a/input/kinetics/libraries/Surface/Duan_Ni211/dictionary.txt b/input/kinetics/libraries/Surface/Duan_Ni211/dictionary.txt new file mode 100644 index 0000000000..e12230fdec --- /dev/null +++ b/input/kinetics/libraries/Surface/Duan_Ni211/dictionary.txt @@ -0,0 +1,32 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Duan_Ni211/reactions.py b/input/kinetics/libraries/Surface/Duan_Ni211/reactions.py new file mode 100644 index 0000000000..dfd00ccdc7 --- /dev/null +++ b/input/kinetics/libraries/Surface/Duan_Ni211/reactions.py @@ -0,0 +1,128 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Duan_Ni211" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 +""" + +entry( + index = 1, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (5.52E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (63683.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni211 = 3.339E-9(mol/cm^2) to calculate the A factor. +A = k/exp(-Ea/RT) = 2.85E7(1/s)/exp(-63683.4(J/mol)/8.314(J/mol/K)/873K) = 1.84E11/s + = (1.84E11/s)/3.339E-9(mol/cm^2) = 5.52E19 cm^2/mol/s + +Ea = 0.66eV = 63683.4J/mol + +This is reaction 1 from Table 2 +""", + metal = "Ni", + facet = "211", +) + +entry( + index = 2, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.31E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (86841, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni211 = 3.339E-9(mol/cm^2) to calculate the A factor. +A = k/exp(-Ea/RT) = 4.91E6(1/s)/exp(-86841(J/mol)/8.314(J/mol/K)/873K) = 7.71E11/s + = (7.71E11/s)/3.339E-9(mol/cm^2) = 2.31E20 cm^2/mol/s + +Ea = 0.9eV = 86841J/mol + +This is reaction 2 from Table 2 +""", + metal = "Ni", + facet = "211", +) + +entry( + index = 3, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.36E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (100349.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni211 = 3.339E-9(mol/cm^2) to calculate the A factor. +A = k/exp(-Ea/RT) = 1.11E7(1/s)/exp(-100349.6(J/mol)/8.314(J/mol/K)/873K) = 1.12E13/s + = (1.12E13/s)/3.339E-9(mol/cm^2) = 3.36E21 cm^2/mol/s + +Ea = 1.04eV = 100349.6J/mol + +This is reaction 3 from Table 2 +""", + metal = "Ni", + facet = "211", +) + +entry( + index = 4, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (4.90E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (285610.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni211 = 3.339E-9(mol/cm^2) to calculate the A factor. +A = k/exp(-Ea/RT) = 1.33E-5(1/s)/exp(-285610.4(J/mol)/8.314(J/mol/K)/873K) = 1.64E12/s + = (1.64E12/s)/3.339E-9(mol/cm^2) = 4.90E20 cm^2/mol/s + +Ea = 2.96eV = 285610.4J/mol + +This is reaction 4 from Table 2 +""", + metal = "Ni", + facet = "211", +) From 3d12b616cdf448c202b904d21097f77d3f285eb5 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 3 Jul 2021 08:57:45 -0400 Subject: [PATCH 06/27] enlarge Nitrogen library with Deutschmann's paper --- .../libraries/Surface/Nitrogen/dictionary.txt | 36 ++ .../libraries/Surface/Nitrogen/reactions.py | 352 ++++++++++++++++++ 2 files changed, 388 insertions(+) diff --git a/input/kinetics/libraries/Surface/Nitrogen/dictionary.txt b/input/kinetics/libraries/Surface/Nitrogen/dictionary.txt index 044d88d7cd..514927c253 100644 --- a/input/kinetics/libraries/Surface/Nitrogen/dictionary.txt +++ b/input/kinetics/libraries/Surface/Nitrogen/dictionary.txt @@ -31,3 +31,39 @@ O_X 1 O u0 p2 c0 {2,D} 2 X u0 p0 c0 {1,D} +NO +multiplicity 2 +1 N u1 p1 c0 {2,D} +2 O u0 p2 c0 {1,D} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 N u0 p1 c0 {2,S} {4,D} +4 X u0 p0 c0 {3,D} + +NO2 +multiplicity 2 +1 N u0 p1 c0 {2,D} {3,S} +2 O u0 p2 c0 {1,D} +3 O u1 p2 c0 {1,S} + +NO2_X +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 N u0 p1 c0 {1,S} {2,D} +4 X u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} diff --git a/input/kinetics/libraries/Surface/Nitrogen/reactions.py b/input/kinetics/libraries/Surface/Nitrogen/reactions.py index bc9dbb2766..bf0f2d96e3 100644 --- a/input/kinetics/libraries/Surface/Nitrogen/reactions.py +++ b/input/kinetics/libraries/Surface/Nitrogen/reactions.py @@ -49,6 +49,26 @@ metal = 'Ni', ) +#Reverse reaction of index = 3 +# entry( +# index = 4, +# label = "N_X + N_X <=> N2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (3.7e21, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (113.9, 'kJ/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""N2 Surface_Adsorption_Dissociative""", +# longDesc = """ +# Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases +# Deutschmann et al. (2009) +# doi:10.1016/j.apcatb.2009.05.006 +# """, +# metal = "Pt", +# ) + entry( index = 51, label = "NO_X + X <=> N_X + O_X", @@ -71,3 +91,335 @@ """, metal = 'Pt', ) + +#Reverse reaction of index = 51 +# entry( +# index = 5, +# label = "N_X + O_X <=> NO_X + X", +# kinetics = SurfaceArrhenius( +# A = (1e21, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (122.6, 'kJ/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Nitrogen/51""", +# longDesc = """ +# Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases +# Deutschmann et al. (2009) +# doi:10.1016/j.apcatb.2009.05.006 +# """, +# metal = "Pt", +# ) + +entry( + index = 6, + label = "NO + X <=> NO_X", + kinetics = StickingCoefficient( + A = 0.85, + n = 0, + Ea = (0, 'kJ/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = """ + Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases + Deutschmann et al. (2009) + doi:10.1016/j.apcatb.2009.05.006 + """, + metal = "Pt", +) + +#Reverse reaction of index = 6 +# entry( +# index = 7, +# label = "NO_X <=> NO + X", +# kinetics = SurfaceArrhenius( +# A = (2.1e12, '1/s'), +# n = 0.0, +# Ea = (80.7, 'kJ/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = """ +# Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases +# Deutschmann et al. (2009) +# doi:10.1016/j.apcatb.2009.05.006 +# """, +# metal = "Pt", +# ) + +entry( + index = 8, + label = "NO2 + X <=> NO2_X", + kinetics = StickingCoefficient( + A = 0.9, + n = 0, + Ea = (0, 'kJ/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = """ + Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases + Deutschmann et al. (2009) + doi:10.1016/j.apcatb.2009.05.006 + """, + metal = "Pt", +) + +#Reverse reaction of index = 8 +# entry( +# index = 9, +# label = "NO2_X <=> NO2 + X", +# kinetics = SurfaceArrhenius( +# A = (1.4e13, '1/s'), +# n = 0.0, +# Ea = (61, 'kJ/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = """ + # Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases + # Deutschmann et al. (2009) + # doi:10.1016/j.apcatb.2009.05.006 + # """, +# metal = "Pt", +# ) + +entry( + index = 10, + label = "N2O + X <=> N2O_X", + kinetics = StickingCoefficient( + A = 0.025, + n = 0, + Ea = (0, 'kJ/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = """ + Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases + Deutschmann et al. (2009) + doi:10.1016/j.apcatb.2009.05.006 + """, + metal = "Pt", +) + +#Reverse reaction of index = 10 +# entry( +# index = 11, +# label = "N2O_X <=> N2O + X", +# kinetics = SurfaceArrhenius( +# A = (1.2e10, '1/s'), +# n = 0.0, +# Ea = (0.7, 'kJ/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", +# longDesc = """ + # Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases + # Deutschmann et al. (2009) + # doi:10.1016/j.apcatb.2009.05.006 + # """, +# metal = "Pt", +# ) + +#Reverse reaction of index = 13 +# entry( +# index = 12, +# label = "O_X + NO <=> NO2_X", +# kinetics = SurfaceArrhenius( +# A = (2e13, 'cm^3/(mol*s)'), +# n = 0.0, +# Ea = (111.3, 'kJ/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = """ + # Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases + # Deutschmann et al. (2009) + # doi:10.1016/j.apcatb.2009.05.006 + # """, +# metal = "Pt", +# ) + +entry( + index = 13, + label = "NO2_X <=> O_X + NO", + kinetics = SurfaceArrhenius( + A = (3.3e14, '1/s'), + n = 0.0, + Ea = (115.5, 'kJ/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = """ + Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases + Deutschmann et al. (2009) + doi:10.1016/j.apcatb.2009.05.006 + """, + metal = "Pt", +) + +entry( + index = 14, + label = "N_X + NO_X <=> N2O_X + X", + kinetics = SurfaceArrhenius( + A = (1e21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (90.9, 'kJ/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = """ + Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases + Deutschmann et al. (2009) + doi:10.1016/j.apcatb.2009.05.006 + """, + metal = "Pt", +) + +#Reverse reaction of index = 14 +# entry( +# index = 15, +# label = "N2O_X + X <=> N_X + NO_X", +# kinetics = SurfaceArrhenius( +# A = (2.9e24, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (133.1, 'kJ/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = """ + # Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases + # Deutschmann et al. (2009) + # doi:10.1016/j.apcatb.2009.05.006 + # """, +# metal = "Pt", +# ) + +entry( + index = 16, + label = "NO_X + O_X <=> NO2_X + X", + kinetics = SurfaceArrhenius( + A = (1.3e17, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (133, 'kJ/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = """ + Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases + Deutschmann et al. (2009) + doi:10.1016/j.apcatb.2009.05.006 + """, + metal = "Pt", +) + +#Reverse reaction of index = 16 +# entry( +# index = 17, +# label = "NO2_X + X <=> NO_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (8.1e18, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (58, 'kJ/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = """ + # Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases + # Deutschmann et al. (2009) + # doi:10.1016/j.apcatb.2009.05.006 + # """, +# metal = "Pt", +# ) + +entry( + index = 18, + label = "NO_X + H_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.2e21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (25, 'kJ/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = """ + Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases + Deutschmann et al. (2009) + doi:10.1016/j.apcatb.2009.05.006 + """, + metal = "Pt", +) + +#Reverse reaction of index = 18 +# entry( +# index = 19, +# label = "N_X + OH_X <=> NO_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (6.4e21, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (99, 'kJ/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = """ + # Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases + # Deutschmann et al. (2009) + # doi:10.1016/j.apcatb.2009.05.006 + # """, +# metal = "Pt", +# ) + +entry( + index = 20, + label = "NO2_X + H_X <=> NO_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.9e21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (20, 'kJ/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = """ + Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases + Deutschmann et al. (2009) + doi:10.1016/j.apcatb.2009.05.006 + """, + metal = "Pt", +) + +#Reverse reaction of index = 20 +# entry( +# index = 21, +# label = "NO_X + OH_X <=> NO2_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (6.1e22, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (175.3, 'kJ/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = """ + # Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases + # Deutschmann et al. (2009) + # doi:10.1016/j.apcatb.2009.05.006 + # """, +# metal = "Pt", +# ) From 0331e5e60e8575a776e267539324fe3eb5cab578 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 3 Jul 2021 08:58:22 -0400 Subject: [PATCH 07/27] add Novell_Pt111, Pd111 and Rh111 libraries --- .../Surface/Novell_Pd111/dictionary.txt | 34 ++++++++ .../Surface/Novell_Pd111/reactions.py | 80 +++++++++++++++++++ .../Surface/Novell_Pt111/dictionary.txt | 34 ++++++++ .../Surface/Novell_Pt111/reactions.py | 80 +++++++++++++++++++ .../Surface/Novell_Rh111/dictionary.txt | 34 ++++++++ .../Surface/Novell_Rh111/reactions.py | 80 +++++++++++++++++++ 6 files changed, 342 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Novell_Pd111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Novell_Pd111/reactions.py create mode 100644 input/kinetics/libraries/Surface/Novell_Pt111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Novell_Pt111/reactions.py create mode 100644 input/kinetics/libraries/Surface/Novell_Rh111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Novell_Rh111/reactions.py diff --git a/input/kinetics/libraries/Surface/Novell_Pd111/dictionary.txt b/input/kinetics/libraries/Surface/Novell_Pd111/dictionary.txt new file mode 100644 index 0000000000..63125a26da --- /dev/null +++ b/input/kinetics/libraries/Surface/Novell_Pd111/dictionary.txt @@ -0,0 +1,34 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Novell_Pd111/reactions.py b/input/kinetics/libraries/Surface/Novell_Pd111/reactions.py new file mode 100644 index 0000000000..0e3334689c --- /dev/null +++ b/input/kinetics/libraries/Surface/Novell_Pd111/reactions.py @@ -0,0 +1,80 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Novell_Pd111" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b +""" + +entry( + index = 1, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.78E17, 'cm^2/(mol*s)'), + n = 1.146, + Ea = (104000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b + +This reaction used RMG's surface site density of Pd111 = 2.534E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameter is calculated from TABLE 4. +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 2, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.8E19, 'cm^2/(mol*s)'), + n = 0.783, + Ea = (86000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b + +This reaction used RMG's surface site density of Pd111 = 2.534E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameter is calculated from TABLE 4. +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 3, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (8.14E17, 'cm^2/(mol*s)'), + n = 1.445, + Ea = (113000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b + +This reaction used RMG's surface site density of Pd111 = 2.534E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameter is calculated from TABLE 4. +""", + metal = "Pd", + facet = "111", +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Novell_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Novell_Pt111/dictionary.txt new file mode 100644 index 0000000000..63125a26da --- /dev/null +++ b/input/kinetics/libraries/Surface/Novell_Pt111/dictionary.txt @@ -0,0 +1,34 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Novell_Pt111/reactions.py b/input/kinetics/libraries/Surface/Novell_Pt111/reactions.py new file mode 100644 index 0000000000..49807ee1b7 --- /dev/null +++ b/input/kinetics/libraries/Surface/Novell_Pt111/reactions.py @@ -0,0 +1,80 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Novell_Pt111" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b +""" + +entry( + index = 1, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.859E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (91000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 500K) = 7.1E11(1/s)/2.483E-9(mol/cm^2) = 2.859E20 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 2, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.430E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (101000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 500K) = 1.1E13(1/s)/2.483E-9(mol/cm^2) = 4.430E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 3, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (5.236E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (116000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 500K) = 1.3E13(1/s)/2.483E-9(mol/cm^2) = 5.236E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Novell_Rh111/dictionary.txt b/input/kinetics/libraries/Surface/Novell_Rh111/dictionary.txt new file mode 100644 index 0000000000..63125a26da --- /dev/null +++ b/input/kinetics/libraries/Surface/Novell_Rh111/dictionary.txt @@ -0,0 +1,34 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Novell_Rh111/reactions.py b/input/kinetics/libraries/Surface/Novell_Rh111/reactions.py new file mode 100644 index 0000000000..d437fa17e5 --- /dev/null +++ b/input/kinetics/libraries/Surface/Novell_Rh111/reactions.py @@ -0,0 +1,80 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Novell_Rh111" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b +""" + +entry( + index = 1, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.31E23, 'cm^2/(mol*s)'), + n = -0.791, + Ea = (100000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameter is calculated from TABLE 4. +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 2, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.23E19, 'cm^2/(mol*s)'), + n = 0.902, + Ea = (84000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameter is calculated from TABLE 4. +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 3, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.1E19, 'cm^2/(mol*s)'), + n = 0.965, + Ea = (98000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameter is calculated from TABLE 4. +""", + metal = "Rh", + facet = "111", +) \ No newline at end of file From 386d4496035d31c8436202572871257770bba1bc Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 3 Jul 2021 09:09:56 -0400 Subject: [PATCH 08/27] add Scheuer_Pt library --- .../Surface/Scheuer_Pt/dictionary.txt | 92 +++++ .../libraries/Surface/Scheuer_Pt/reactions.py | 329 ++++++++++++++++++ 2 files changed, 421 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Scheuer_Pt/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Scheuer_Pt/reactions.py diff --git a/input/kinetics/libraries/Surface/Scheuer_Pt/dictionary.txt b/input/kinetics/libraries/Surface/Scheuer_Pt/dictionary.txt new file mode 100644 index 0000000000..b3a20ae8b0 --- /dev/null +++ b/input/kinetics/libraries/Surface/Scheuer_Pt/dictionary.txt @@ -0,0 +1,92 @@ +X +1 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +NHO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +NO2 +multiplicity 2 +1 N u0 p1 c0 {2,D} {3,S} +2 O u0 p2 c0 {1,D} +3 O u1 p2 c0 {1,S} + +NO2_X +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 N u0 p1 c0 {1,S} {2,D} +4 X u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Scheuer_Pt/reactions.py b/input/kinetics/libraries/Surface/Scheuer_Pt/reactions.py new file mode 100644 index 0000000000..d11d652ee4 --- /dev/null +++ b/input/kinetics/libraries/Surface/Scheuer_Pt/reactions.py @@ -0,0 +1,329 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Scheuer_Pt" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 +""" + +entry( + index = 1, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 0.00768, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((19/Pa)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(17(g/mol))*the molar gas constant*(298 kelvin))= 0.00768 + +This is R1 in Table 1 +""", + metal = "Pt", +) + +#Reverse reaction of R1 +# entry( +# index = 2, +# label = "NH3_X <=> NH3 + X", +# kinetics = SurfaceArrhenius( +# A = (2.66E13, '1/s'), +# n = 0.0, +# Ea = (116000, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +# Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +# https://doi.org/10.1016/j.apcatb.2011.10.032 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 6.6E4(mol/cm^2/s)/2.483E-9(mol/cm^2) = 2.66E13 (1/s) + +# This is R2 in Table 1 +# """, +# metal = "Pt", +# ) + +entry( + index = 3, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.1441, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((260/Pa)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(32(g/mol))*the molar gas constant*(298 kelvin)) = 0.1441 + +This is R3 in Table 1 +""", + metal = "Pt", +) + +#Reverse reaction of R3 +# entry( +# index = 4, +# label = "O_X + O_X <=> O2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (4.83E20, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (128000, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +# Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +# https://doi.org/10.1016/j.apcatb.2011.10.032 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.2E12(1/s)/2.483E-9(mol/cm^2) = 4.83E20 cm^2/(mol*s) + +# This is R4 in Table 1 +# """, +# metal = "Pt", +# ) + +#skip R5 + +#Reverse reaction of R7 +# entry( +# index = 6, +# label = "NO_X <=> NO + X", +# kinetics = SurfaceArrhenius( +# A = (6E17, '1/s'), +# n = 0.0, +# Ea = (126000, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +# Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +# https://doi.org/10.1016/j.apcatb.2011.10.032 + +# This is R6 in Table 1 +# """, +# metal = "Pt", +# ) + +entry( + index = 7, + label = "NO + X <=> NO_X", + kinetics = StickingCoefficient( + A = 0.1556, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((290/Pa)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(30(g/mol))*the molar gas constant*(298 kelvin)) = 0.1556 + +This is R7 in Table 1 +""", + metal = "Pt", +) + +# According to TST, the pre-exponential factor range of an associative desorption is between 1e12 to 1e16, +# The value reported from Scheuer et al. might be too large? +# entry( +# index = 8, +# label = "N_X + N_X <=> N2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (4.83E27, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (181000, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""N2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +# Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +# https://doi.org/10.1016/j.apcatb.2011.10.032 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.2E19(1/s)/2.483E-9(mol/cm^2) = 4.83E27 cm^2/(mol*s) + +# This is R8 in Table 1 +# """, +# metal = "Pt", +# ) + +entry( + index = 9, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (1.13E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (126000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 2.8E13(1/s)/2.483E-9(mol/cm^2) = 1.13E22 cm^2/(mol*s) + +This is R9 in Table 1 +""", + metal = "Pt", +) + +# According to TST, the pre-exponential factor range of an associative desorption is between 1e12 to 1e16, +# The value reported from Scheuer et al. might be too large? +# entry( +# index = 10, +# label = "N_X + NO_X <=> N2O + X + X", +# kinetics = SurfaceArrhenius( +# A = (4.03E28, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (139000, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""N and NO Association""", +# longDesc = u""" +# "Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +# Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +# https://doi.org/10.1016/j.apcatb.2011.10.032 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1E20(1/s)/2.483E-9(mol/cm^2) = 4.03E28 cm^2/(mol*s) + +# This is R10 in Table 1 +# """, +# metal = "Pt", +# ) + +#Reverse reaction of R12 +# entry( +# index = 11, +# label = "NO_X + O_X <=> NO2_X + X", +# kinetics = SurfaceArrhenius( +# A = (2.74E23, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (115000, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +# Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +# https://doi.org/10.1016/j.apcatb.2011.10.032 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 6.8E14(1/s)/2.483E-9(mol/cm^2) = 2.74E23 cm^2/(mol*s) + +# This is R11 in Table 1 +# """, +# metal = "Pt", +# ) + +entry( + index = 12, + label = "NO2_X + X <=> NO_X + O_X", + kinetics = SurfaceArrhenius( + A = (1.29E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (83000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 3.2E11(1/s)/2.483E-9(mol/cm^2) = 1.29E20 cm^2/(mol*s) + +This is R12 in Table 1 +""", + metal = "Pt", +) + +entry( + index = 13, + label = "NO2_X <=> NO2 + X", + kinetics = SurfaceArrhenius( + A = (1.3E14, '1/s'), + n = 0.0, + Ea = (100000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This is R13 in Table 1 +""", + metal = "Pt", +) + +#skip R14 since sticking coefficient is larger than 1. +# entry( +# index = 14, +# label = "NO2 + X <=> NO2_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0, +# Ea = (, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +# Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +# https://doi.org/10.1016/j.apcatb.2011.10.032 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = ((48000/Pa)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(46(g/mol))*the molar gas constant*(298 kelvin)) = 31.894218 +# Sticking coefficient is larger than 1, skip this reaction. + +# This is R14 in Table 1 +# """, +# metal = "Pt", +# ) \ No newline at end of file From 34fdcbee0f67dfa44cb2e33f87561cf60cf5a82e Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 3 Jul 2021 09:32:24 -0400 Subject: [PATCH 09/27] add Popa_Rh111 libraries --- .../Surface/Popa_Rh111/dictionary.txt | 48 +++ .../libraries/Surface/Popa_Rh111/reactions.py | 328 ++++++++++++++++++ 2 files changed, 376 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Popa_Rh111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Popa_Rh111/reactions.py diff --git a/input/kinetics/libraries/Surface/Popa_Rh111/dictionary.txt b/input/kinetics/libraries/Surface/Popa_Rh111/dictionary.txt new file mode 100644 index 0000000000..910ab0b5d9 --- /dev/null +++ b/input/kinetics/libraries/Surface/Popa_Rh111/dictionary.txt @@ -0,0 +1,48 @@ +X +1 X u0 p0 c0 + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Popa_Rh111/reactions.py b/input/kinetics/libraries/Surface/Popa_Rh111/reactions.py new file mode 100644 index 0000000000..af9e0fbe9b --- /dev/null +++ b/input/kinetics/libraries/Surface/Popa_Rh111/reactions.py @@ -0,0 +1,328 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Popa_Rh111" +shortDesc = u"" +longDesc = u""" +Based primarily on +"Ab initio density-functional theory study of +NHx dehydrogenation and reverse reactions on the Rh(111) surface" +C. Popa, W. K. Offermans, R. A. van Santen, and A. P. J. Jansen +American Physical Society 2006, Vol. 74, Iss. 15—15 +https://doi.org/10.1103/PhysRevB.74.155428 + +and + +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g +""" + +#top <=> bridge + hcp +entry( + index = 1, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (8.21E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (109033.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +Based primarily on "Ab initio density-functional theory study of +NHx dehydrogenation and reverse reactions on the Rh(111) surface" +C. Popa, W. K. Offermans, R. A. van Santen, and A. P. J. Jansen +American Physical Society Vol. 74, Iss. 15—15, 2006 +https://doi.org/10.1103/PhysRevB.74.155428 + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 2.18E13(1/s)/2.656E-9(mol/cm^2) = 8.21E21 cm^2/(mol*s) + +Ea = 1.13eV = 109033.7J/mol + +This is reaction 1 of TABLE VI. +""", + metal = "Rh", + facet = "111", +) + +#bridge <=> fcc + fcc +entry( + index = 2, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (6.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (92630.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +Based primarily on "Ab initio density-functional theory study of +NHx dehydrogenation and reverse reactions on the Rh(111) surface" +C. Popa, W. K. Offermans, R. A. van Santen, and A. P. J. Jansen +American Physical Society Vol. 74, Iss. 15—15, 2006 +https://doi.org/10.1103/PhysRevB.74.155428 + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.68E13(1/s)/2.656E-9(mol/cm^2) = 6.33E21 cm^2/(mol*s) + +Ea = 0.86eV = 92630.4J/mol + +This is reaction 3 of TABLE VI. +""", + metal = "Rh", + facet = "111", +) + +#hcp <=> hcp + hcp +entry( + index = 3, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (7.94E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (97454.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +Based primarily on "Ab initio density-functional theory study of +NHx dehydrogenation and reverse reactions on the Rh(111) surface" +C. Popa, W. K. Offermans, R. A. van Santen, and A. P. J. Jansen +American Physical Society Vol. 74, Iss. 15—15, 2006 +https://doi.org/10.1103/PhysRevB.74.155428 + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 2.11E13(1/s)/2.656E-9(mol/cm^2) = 7.94E21 cm^2/(mol*s) + +Ea = 1.01eV = 97454.9J/mol + +This is reaction 7 of TABLE VI. +""", + metal = "Rh", + facet = "111", +) + +# top + hcp <=> bridge + top +entry( + index = 4, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A=(6.40E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (92630.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.7E12(1/s)/2.656E-9(mol/cm^2) = 6.40E20 cm^2/(mol*s) + +Ea = 0.96eV = 92630.4J/mol + +This is reaction 2a. of TABLE 4. +""", + metal = "Rh", + facet = "111", +) + +# brigde + fcc <=> hcp + top +entry( + index = 5, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A=(6.29E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (71402.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.67E13(1/s)/2.656E-9(mol/cm^2) = 6.29E21 cm^2/(mol*s) + +Ea = 0.74eV = 71402.6J/mol + +This is reaction 4a. of TABLE 4. +""", + metal = "Rh", + facet = "111", +) + +# hcp + hcp <=> hcp + top +entry( + index = 6, + label = "NH_X +O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A=(8.32E21 , 'cm^2/(mol*s)'), + n = 0.0, + Ea = (84911.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 2.21E13(1/s)/2.656E-9(mol/cm^2) = 8.32E21 cm^2/(mol*s) + +Ea = 0.88eV = 84911.2J/mol + +This is reaction 2a. of TABLE 4. +""", + metal = "Rh", + facet = "111", +) + +# top + top <=> bridge + top +entry( + index = 7, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A=(7.27E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (23157.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.93E12(1/s)/2.656E-9(mol/cm^2) = 7.27E20 cm^2/(mol*s) + +Ea = 0.24eV = 23157.6J/mol + +This is reaction 1a. of TABLE 5. +""", + metal = "Rh", + facet = "111", +) + +# bridge + top + hcp + top +entry( + index = 8, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A=(1.50E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (13508.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 3.98E12(1/s)/2.656E-9(mol/cm^2) = 1.50E21 cm^2/(mol*s) + +Ea = 0.14eV = 13508.6J/mol + +This is reaction 3a. of TABLE 5. +""", + metal = "Rh", + facet = "111", +) + +# hcp + top <=> hcp + top +entry( + index = 9, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A=(4.52E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (22192.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.2E12(1/s)/2.656E-9(mol/cm^2) = 4.52E20 cm^2/(mol*s) + +Ea = 0.23eV = 22192.7J/mol + +This is reaction 6a. of TABLE 5. +""", + metal = "Rh", + facet = "111", +) + +# hcp + fcc <=> top +entry( + index = 10, + label = "N_X + N_X <=> N2_X + X", + kinetics = SurfaceArrhenius( + A=(1.69E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (147629.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Default""", + longDesc = u""" +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 4.48E13(1/s)/2.656E-9(mol/cm^2) = 1.69E22 cm^2/(mol*s) + +Ea = 1.53eV = 147629.7J/mol + +This is reaction 3a. of TABLE 6. +""", + metal = "Rh", + facet = "111", +) \ No newline at end of file From a18374292e96845edc9978233b6af53798aa5d0a Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 3 Jul 2021 09:33:00 -0400 Subject: [PATCH 10/27] add Ishikawa_Rh111 library --- .../Surface/Ishikawa_Rh111/dictionary.txt | 47 ++++++ .../Surface/Ishikawa_Rh111/reactions.py | 153 ++++++++++++++++++ 2 files changed, 200 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Ishikawa_Rh111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Ishikawa_Rh111/reactions.py diff --git a/input/kinetics/libraries/Surface/Ishikawa_Rh111/dictionary.txt b/input/kinetics/libraries/Surface/Ishikawa_Rh111/dictionary.txt new file mode 100644 index 0000000000..e2c5df5897 --- /dev/null +++ b/input/kinetics/libraries/Surface/Ishikawa_Rh111/dictionary.txt @@ -0,0 +1,47 @@ +X +1 X u0 p0 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +N2_X +1 N u0 p0 c+1 {2,D} {3,D} +2 N u0 p2 c-1 {1,D} +3 X u0 p0 c0 {1,D} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +NO2_X +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 N u0 p1 c0 {1,S} {2,D} +4 X u0 p0 c0 {1,S} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +4 X u0 p0 c0 + +CO_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,D} +3 X u0 p0 c0 {2,D} + +CO2_X +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} +4 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Ishikawa_Rh111/reactions.py b/input/kinetics/libraries/Surface/Ishikawa_Rh111/reactions.py new file mode 100644 index 0000000000..3b9a633892 --- /dev/null +++ b/input/kinetics/libraries/Surface/Ishikawa_Rh111/reactions.py @@ -0,0 +1,153 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Ishikawa_Rh111" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 +""" + +entry( + index = 1, + label = "NO_X + X <=> N_X + O_X", + kinetics = SurfaceArrhenius( + A = (8.19E19, 'cm^2/(mol*s)'), + n = 1.009, + Ea = (76196, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""NO Dissociation""", + longDesc = u""" +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameters is calculed from +Table 2. Activation Energy (Ea) +and +Table S3. Reaction rate constant at different temperatures +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 2, + label = "NO_X + O_X <=> NO2_X + X", + kinetics = SurfaceArrhenius( + A = (6.52E19, 'cm^2/(mol*s)'), + n = 1.015, + Ea = (155285, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameters is calculed from +Table 2. Activation Energy (Ea) +and +Table S3. Reaction rate constant at different temperatures +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 3, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (1.43E20, 'cm^2/(mol*s)'), + n = 1.012, + Ea = (171681, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameters is calculed from +Table 2. Activation Energy (Ea) +and +Table S3. Reaction rate constant at different temperatures +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 4, + label = "N2O_X + X <=> N2_X + O_X", + kinetics = SurfaceArrhenius( + A = (9.12E19, 'cm^2/(mol*s)'), + n = 1.004, + Ea = (63657, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_Double_vdW""", + longDesc = u""" +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameters is calculed from +Table 2. Activation Energy (Ea) +and +Table S3. Reaction rate constant at different temperatures +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 5, + label = "CO_X + O_X <=> CO2_X + X", + kinetics = SurfaceArrhenius( + A = (1.73E20, 'cm^2/(mol*s)'), + n = 1.001, + Ea = (119598, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_Double_vdW""", + longDesc = u""" +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameters is calculed from +Table 2. Activation Energy (Ea) +and +Table S3. Reaction rate constant at different temperatures +""", + metal = "Rh", + facet = "111", +) \ No newline at end of file From c8867c54aeae0e4a006912013c26d77d2c2cf2a6 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 3 Jul 2021 09:33:49 -0400 Subject: [PATCH 11/27] add Arevalo_Pt111 library --- .../Surface/Arevalo_Pt111/dictionary.txt | 34 ++++++ .../Surface/Arevalo_Pt111/reactions.py | 113 ++++++++++++++++++ 2 files changed, 147 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Arevalo_Pt111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Arevalo_Pt111/reactions.py diff --git a/input/kinetics/libraries/Surface/Arevalo_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Arevalo_Pt111/dictionary.txt new file mode 100644 index 0000000000..87b07faca9 --- /dev/null +++ b/input/kinetics/libraries/Surface/Arevalo_Pt111/dictionary.txt @@ -0,0 +1,34 @@ +X +1 X u0 p0 c0 + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + + +NO2_X +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 N u0 p1 c0 {1,S} {2,D} +4 X u0 p0 c0 {1,S} + +NO2 +multiplicity 2 +1 N u0 p1 c0 {2,D} {3,S} +2 O u0 p2 c0 {1,D} +3 O u1 p2 c0 {1,S} diff --git a/input/kinetics/libraries/Surface/Arevalo_Pt111/reactions.py b/input/kinetics/libraries/Surface/Arevalo_Pt111/reactions.py new file mode 100644 index 0000000000..1d18eebcc1 --- /dev/null +++ b/input/kinetics/libraries/Surface/Arevalo_Pt111/reactions.py @@ -0,0 +1,113 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Arevalo_Pt111" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" +Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) +https://doi.org/10.1116/1.4903225 +""" + +entry( + index = 1, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.1768, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" +Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) +https://doi.org/10.1116/1.4903225 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((3.19E7/bar)/s)*(2.483E-9(mol/cm^2))*sqrt(2*pi*32(g/mol)*molar gas constant*298 kelvin) + +This is R1 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 2, + label = "NO + X <=> NO_X", + kinetics = StickingCoefficient( + A = 1.4917E-6, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" +Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) +https://doi.org/10.1116/1.4903225 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((2.78E2/bar)/s)*(2.483E-9(mol/cm^2))*sqrt(2*pi*30(g/mol)*molar gas constant*298 kelvin) + +This is R3 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 3, + label = "NO_X + O_X <=> NO2_X + X", + kinetics = SurfaceArrhenius( + A = (1.776E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (115788, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" +Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) +https://doi.org/10.1116/1.4903225 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 4.41E13(1/s)/2.483E-9(mol/cm^2) = 1.776E22 cm^2/(mol*s) + +Ea = 1.2eV * 96490J/eV mol = 115788J/mol + +This is R5 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 4, + label = "NO2 + X <=> NO2_X", + kinetics = StickingCoefficient( + A = 1.4884E-6, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" +Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) +https://doi.org/10.1116/1.4903225 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((2.24E2/bar)/s)*(2.483E-9(mol/cm^2))*sqrt(2*pi*46(g/mol)*molar gas constant*298 kelvin) + +This is R7 in Table 1 +""", + metal = "Pt", + facet = "111", +) \ No newline at end of file From cc9bf3fa4c9dc46203fd8e7f88f1918ca85e673e Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 3 Jul 2021 09:54:34 -0400 Subject: [PATCH 12/27] add Offermans_Pt111 library --- .../Surface/Offermans_Pt111/dictionary.txt | 68 +++++ .../Surface/Offermans_Pt111/reactions.py | 264 ++++++++++++++++++ 2 files changed, 332 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Offermans_Pt111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py diff --git a/input/kinetics/libraries/Surface/Offermans_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Offermans_Pt111/dictionary.txt new file mode 100644 index 0000000000..7a21bf47c5 --- /dev/null +++ b/input/kinetics/libraries/Surface/Offermans_Pt111/dictionary.txt @@ -0,0 +1,68 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py b/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py new file mode 100644 index 0000000000..974a12a927 --- /dev/null +++ b/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py @@ -0,0 +1,264 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Offermans_Pt111" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +""" + +entry( + index = 1, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (3.46E21, 'cm^2/(mol*s)'), + n = 0, + Ea = (4000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_vdW""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K from p.62)= 8.6E12(1/s)/2.483E-9(mol/cm^2) = 3.46E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 2, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.26E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (93000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K)= 5.6E11(1/s)/2.483E-9(mol/cm^2) = 2.25E20 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 3, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.01E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (110000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 5.0E12(1/s)/2.483E-9(mol/cm^2) = 2.01E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 4, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.90E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (118000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 7.2E12(1/s)/2.483E-9(mol/cm^2) = 2.90E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 5, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4.83E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (42000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 1.2E12(1/s)/2.483E-9(mol/cm^2) = 4.83E20 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 6, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.46E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (87000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 6.1E12(1/s)/2.483E-9(mol/cm^2) = 2.46E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 7, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.06E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (84000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 7.6E12(1/s)/2.483E-9(mol/cm^2) = 3.06E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 8, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (6.44E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (73000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 1.6E11(1/s)/2.483E-9(mol/cm^2) = 6.44E19 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 9, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (1.37E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (22000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 3.4E12(1/s)/2.483E-9(mol/cm^2) = 1.37E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 10, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.05E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (35000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_AbstractionvdW""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 5.1E11(1/s)/2.483E-9(mol/cm^2) = 2.05E20 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 11, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (2.86E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (1000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 7.1E12(1/s)/2.483E-9(mol/cm^2) = 2.86E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) \ No newline at end of file From 0ff9a484b7644e5a49b39abdf7bb1dab87e3048e Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 3 Jul 2021 10:35:33 -0400 Subject: [PATCH 13/27] add Roldan_Ru0001 library --- .../Surface/Roldan_Ru0001/dictionary.txt | 52 ++++ .../Surface/Roldan_Ru0001/reactions.py | 235 ++++++++++++++++++ 2 files changed, 287 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Roldan_Ru0001/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py diff --git a/input/kinetics/libraries/Surface/Roldan_Ru0001/dictionary.txt b/input/kinetics/libraries/Surface/Roldan_Ru0001/dictionary.txt new file mode 100644 index 0000000000..332db2fa48 --- /dev/null +++ b/input/kinetics/libraries/Surface/Roldan_Ru0001/dictionary.txt @@ -0,0 +1,52 @@ +X +1 X u0 c0 + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p0 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +H2_X +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 + +H2 +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py b/input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py new file mode 100644 index 0000000000..79fbd70f95 --- /dev/null +++ b/input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py @@ -0,0 +1,235 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Roldan_Ru0001" +shortDesc = u"" +longDesc = u""" +Based primarily on +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b +""" +#skip R1 + +entry( + index = 1, + label = "NH3_X <=> NH3 + X", + kinetics = SurfaceArrhenius( + A = (1.29E8, '1/s'), + n = 0.0, + Ea = (72149.60, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +Ea was calculated from A factor and k rate constant in Table 3 + +This is D1 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +entry( + index = 2, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.14E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (117240.82, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 1.09E13(1/s)/2.630E-9(mol/cm^2) = 4.14E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R1 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +#skip R2 (reverse reaction of R1) + +entry( + index = 3, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.52E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (62155.01, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 4.01E12(1/s)/2.630E-9(mol/cm^2) = 1.52E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R3 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +#skip R4 (reverse reaction of R3) + +entry( + index = 4, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.71E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (99817.13, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 7.13E12(1/s)/2.630E-9(mol/cm^2) = 2.71E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R5 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +#skip R6 (reverse reaction of R5) + +entry( + index = 5, + label = "N_X + N_X <=> N2_X + X", + kinetics = SurfaceArrhenius( + A = (4.03E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (233750.36, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to estimate A factor. +A = 1.06E13(1/s)/2.630E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R7 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +#skip R8 (reverse reaction of R7) +#skip D2 (reverse reaction of A2) + +entry( + index = 6, + label = "N2 + X <=> N2_X", + kinetics = SurfaceArrhenius( + A = (1.29E8, 'cm^3/(mol*s)'), + n = 0.0, + Ea = (24482.97, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +Ea was calculated from A factor and k rate constant in Table 3 + +This is A2 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +entry( + index = 7, + label = "H_X + H_X <=> H2_X + X", + kinetics = SurfaceArrhenius( + A = (5.48E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (52021.02, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to estimate A factor. +A = 1.33E13(1/s)/2.630E-9(mol/cm^2) = 5.48E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R9 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +#skip R10 (reverse reaction of R9) +#skip A3 (reverse reaction of D3) + +entry( + index = 8, + label = "H2_X <=> H2 + X", + kinetics = SurfaceArrhenius( + A = (1.29E8, '1/s'), + n = 0.0, + Ea = (24482.97, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""H2 Surface_Adsorption_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +Ea was calculated from A factor and k rate constant in Table 3 + +This is D3 in Table 3 +""", + metal = "Ru", + facet = "0001", +) From 704b9cdec1a58436fc6713ce899771713b903fdd Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 3 Jul 2021 11:12:31 -0400 Subject: [PATCH 14/27] add Roldan_Cu111 library --- .../Surface/Roldan_Cu111/dictionary.txt | 111 +++ .../Surface/Roldan_Cu111/reactions.py | 822 ++++++++++++++++++ 2 files changed, 933 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Roldan_Cu111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Roldan_Cu111/reactions.py diff --git a/input/kinetics/libraries/Surface/Roldan_Cu111/dictionary.txt b/input/kinetics/libraries/Surface/Roldan_Cu111/dictionary.txt new file mode 100644 index 0000000000..f5209edee7 --- /dev/null +++ b/input/kinetics/libraries/Surface/Roldan_Cu111/dictionary.txt @@ -0,0 +1,111 @@ +X +1 X u0 c0 + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p0 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +H2_X +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 + +H2 +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +N2H4 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {2,S} + +N2H4_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {2,S} +7 X u0 p0 c0 + +N2H3_X +1 N u0 p1 c0 {2,S} {3,S} {6,S} +2 N u0 p1 c0 {1,S} {4,S} {5,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 X u0 p0 c0 {1,S} + +[Pt]NN[Pt] +1 N u0 p1 c0 {2,S} {3,S} {5,S} +2 N u0 p1 c0 {1,S} {4,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 X u0 p0 c0 {1,S} +6 X u0 p0 c0 {2,S} + +NN=[Pt] +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 {2,D} + +[Pt]NN=[Pt] +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} +5 X u0 p0 c0 {2,D} + +[Pt]N=N +1 N u0 p1 c0 {2,D} {4,S} +2 N u0 p1 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} +4 X u0 p0 c0 {1,S} + +[Pt]=NN=[Pt] +1 N u0 p1 c0 {2,S} {3,D} +2 N u0 p1 c0 {1,S} {4,D} +3 X u0 p0 c0 {1,D} +4 X u0 p0 c0 {2,D} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Roldan_Cu111/reactions.py b/input/kinetics/libraries/Surface/Roldan_Cu111/reactions.py new file mode 100644 index 0000000000..a2f524a7a9 --- /dev/null +++ b/input/kinetics/libraries/Surface/Roldan_Cu111/reactions.py @@ -0,0 +1,822 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Roldan_Cu111" +shortDesc = u"" +longDesc = u""" +Based primarily on +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F +""" + +entry( + index = 1, + label = "N2H4 + X <=> N2H4_X", + kinetics = StickingCoefficient( + A = 1.17E-6, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This is R0 in Table 2 at T=300K +""", + metal = "Cu", + facet = "111", +) + +#Skip R1 (reverse of R0) +# entry( +# index = 2, +# label = "N2H4_X <=> N2H4 + X", +# kinetics = SurfaceArrhenius( +# A = (4.27e19, '1/s'), +# n = -3.337, +# Ea = (0, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Micro-kinetic simulations of the catalytic decomposition +# of hydrazine on the Cu(111) surface" +# Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +# DOI:10.1039/C6FD00186F + +# A and n was calculated by numpy.linalg.lstsq from Table 1 + +# This is R1 in Table 1 +# """, +# metal = "Cu", +# facet = "111", +# ) + +#Skip R2 (reverse of R3) +# entry( +# index = 3, +# label = "NH3_X <=> NH3 + X", +# kinetics = SurfaceArrhenius( +# A = (1.29E15, '1/s'), +# n = -2.186, +# Ea = (0, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Micro-kinetic simulations of the catalytic decomposition +# of hydrazine on the Cu(111) surface" +# Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +# DOI:10.1039/C6FD00186F + +# A and n was calculated by numpy.linalg.lstsq from Table 1 + +# This is R2 in Table 1 +# """, +# metal = "Cu", +# facet = "111", +# ) + +entry( + index = 4, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1.88E-4, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This is R3 in Table 2 at T=300K +""", + metal = "Cu", + facet = "111", +) + +#Skip R4 (reverse of R5) +# entry( +# index = 5, +# label = "N2_X <=> N2 + X", +# kinetics = SurfaceArrhenius( +# A = (1.27E18, '1/s'), +# n = -2.938, +# Ea = (0, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Micro-kinetic simulations of the catalytic decomposition +# of hydrazine on the Cu(111) surface" +# Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +# DOI:10.1039/C6FD00186F + +# A and n was calculated by numpy.linalg.lstsq from Table 1 + +# This is R4 in Table 1 +# """, +# metal = "Cu", +# facet = "111", +# ) + +entry( + index = 6, + label = "N2 + X <=> N2_X", + kinetics = StickingCoefficient( + A = 5.5E-5, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This is R5 in Table 2 at T=300K +""", + metal = "Cu", + facet = "111", +) + +#Skip R6 (reverse of R7) +# entry( +# index = 7, +# label = "H_X + H_X <=> H2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (1.54E21, 'cm^2/(mol*s)'), +# n = 0.044, +# Ea = (104209, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""H2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "Micro-kinetic simulations of the catalytic decomposition +# of hydrazine on the Cu(111) surface" +# Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +# DOI:10.1039/C6FD00186F + +# This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to calculate the A factor. +# A and n was calculated by numpy.linalg.lstsq from Table 1 + +# This is R6 in Table 1 +# """, +# metal = "Cu", +# facet = "111", +# ) + +entry( + index = 8, + label = "H2 + X + X <=> H_X + H_X", + kinetics = StickingCoefficient( + A = 2.36E-2, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""H2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This is R7 in Table 2 at T=300K +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 9, + label = "N2H4_X + X <=> N2H3_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.69E18, 'cm^2/(mol*s)'), + n = 1.22, + Ea = (125437, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R8 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R9 (reverse of R10) + +entry( + index = 10, + label = "N2H3_X + X <=> NN=[Pt] + H_X", + kinetics = SurfaceArrhenius( + A = (1.34E17, 'cm^2/(mol*s)'), + n = 1.942, + Ea = (121577, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R10 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R11 (reverse of R12) + +entry( + index = 11, + label = "N2H3_X + X + X <=> [Pt]NN[Pt] + H_X", + kinetics = SurfaceArrhenius( + A = (1.95E18, 'cm^4/(mol^2*s)'), + n = 1.376, + Ea = (130262, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R12 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R13 (reverse of R12) + +entry( + index = 12, + label = "NN=[Pt] + X <=> [Pt]N=N + H_X", + kinetics = SurfaceArrhenius( + A = (1.09E19, 'cm^2/(mol*s)'), + n = 1.002, + Ea = (108069, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_Beta""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R14 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R15 (reverse of R14) + +entry( + index = 13, + label = "[Pt]NN[Pt] + X <=> [Pt]NN=[Pt] + H_X", + kinetics = SurfaceArrhenius( + A = (1.07E19, 'cm^2/(mol*s)'), + n = 1.134, + Ea = (141840, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R16 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R17 (reverse of R16) + +entry( + index = 14, + label = "[Pt]NN=[Pt] + X <=> [Pt]=NN=[Pt] + H_X", + kinetics = SurfaceArrhenius( + A = (3.43E18, 'cm^2/(mol*s)'), + n = 1.285, + Ea = (16403, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R18 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R19 (reverse of R18) + +entry( + index = 15, + label = "N2H4_X + X <=> NH2_X + NH2_X", + kinetics = SurfaceArrhenius( + A = (6.61E17, 'cm^2/(mol*s)'), + n = 1.589, + Ea = (66578, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R20 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R21 (reverse of R20) + +entry( + index = 16, + label = "N2H3_X + X <=> NH2_X + NH_X", + kinetics = SurfaceArrhenius( + A = (2.87E16, 'cm^2/(mol*s)'), + n = 2.065, + Ea = (86841, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R22 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R23 (reverse of R22) + +entry( + index = 17, + label = "NN=[Pt] + X <=> NH2_X + N_X", + kinetics = SurfaceArrhenius( + A = (4.03E19, 'cm^2/(mol*s)'), + n = 0.559, + Ea = (130262, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R24 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R25 (reverse of R24) + +entry( + index = 18, + label = "[Pt]NN[Pt] <=> NH_X + NH_X", + kinetics = SurfaceArrhenius( + A = (4.39E11, '1/s'), + n = 0.299, + Ea = (76227, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = """Surface_Bidentate_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R26 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R27 (reverse of R26) + +entry( + index = 19, + label = "[Pt]NN=[Pt] <=> NH_X + N_X", + kinetics = SurfaceArrhenius( + A = (2.59E11, '1/s'), + n = 0.619, + Ea = (137016, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Bidentate_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R28 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R29 (reverse of R28) + +entry( + index = 20, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (5.93E17, 'cm^2/(mol*s)'), + n = 1.321, + Ea = (136051, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R30 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R31 (reverse of R30) + +entry( + index = 21, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (5.67E19, 'cm^2/(mol*s)'), + n = 0.513, + Ea = (135086, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R32 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R33 (reverse of R32) + +entry( + index = 22, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.66E19, 'cm^2/(mol*s)'), + n = 0.853, + Ea = (172717, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R34 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R35 (reverse of R34) + +entry( + index = 23, + label = "NH2_X + NH2_X <=> NH_X + NH3_X", + kinetics = SurfaceArrhenius( + A = (1.16E20, 'cm^2/(mol*s)'), + n = 0.667, + Ea = (43420, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R36 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R37 (reverse of R36) + +entry( + index = 24, + label = "N2H4_X + NH2_X <=> N2H3_X + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.38E20, 'cm^2/(mol*s)'), + n = 0.156, + Ea = (40526, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R38 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R39 (reverse of R38) + +entry( + index = 25, + label = "N2H3_X + NH2_X + X <=> [Pt]NN[Pt] + NH3_X", + kinetics = SurfaceArrhenius( + A = (4.46E19, 'cm^4/(mol^2*s)'), + n = 0.659, + Ea = (61754, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R40 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R41 (reverse of R40) + +entry( + index = 26, + label = "N2H3_X + NH2_X <=> NN=[Pt] + NH3_X", + kinetics = SurfaceArrhenius( + A = (1.02E19, 'cm^2/(mol*s)'), + n = 1.073, + Ea = (51140, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R42 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R43 (reverse of R42) + +entry( + index = 27, + label = "[Pt]NN[Pt] + NH2_X <=> [Pt]NN=[Pt] + NH3_X", + kinetics = SurfaceArrhenius( + A = (1.94E20, 'cm^2/(mol*s)'), + n = 0.577, + Ea = (24122, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R44 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R45 (reverse of R44) + +entry( + index = 28, + label = "NN=[Pt] + NH2_X <=> [Pt]N=N + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.51E19, 'cm^2/(mol*s)'), + n = 0.966, + Ea = (28947, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R46 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R47 (reverse of R46) + +entry( + index = 29, + label = "[Pt]NN=[Pt] + NH2_X <=> [Pt]=NN=[Pt] + NH3_X", + kinetics = SurfaceArrhenius( + A = (4.04E19, 'cm^2/(mol*s)'), + n = 0.86, + Ea = (7719, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R48 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R49 (reverse of R48) + +entry( + index = 30, + label = "[Pt]=NN=[Pt] <=> N_X + N_X", + kinetics = SurfaceArrhenius( + A = (4.77E11, '1/s'), + n = 0.06, + Ea = (452538, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Bidentate_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R50 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R51 (reverse of R50) From 947598e6ad80f2ecab481f936b5a55e744addb88 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 3 Jul 2021 11:13:17 -0400 Subject: [PATCH 15/27] add Roldan_Ir111 library --- .../Surface/Roldan_Ir111/dictionary.txt | 116 +++ .../Surface/Roldan_Ir111/reactions.py | 686 ++++++++++++++++++ 2 files changed, 802 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Roldan_Ir111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py diff --git a/input/kinetics/libraries/Surface/Roldan_Ir111/dictionary.txt b/input/kinetics/libraries/Surface/Roldan_Ir111/dictionary.txt new file mode 100644 index 0000000000..a8a6d8d7e8 --- /dev/null +++ b/input/kinetics/libraries/Surface/Roldan_Ir111/dictionary.txt @@ -0,0 +1,116 @@ +X +1 X u0 c0 + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p0 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +H2_X +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 + +H2 +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +N2H4_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {2,S} +7 X u0 c0 + +N2H3_X +1 N u0 p1 c0 {2,S} {3,S} {6,S} +2 N u0 p1 c0 {1,S} {4,S} {5,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 X u0 p0 c0 {1,S} + +N2H2_X +1 N u0 p1 c0 {2,D} {3,S} +2 N u0 p1 c0 {1,D} {4,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 X u0 p0 c0 + +[Pt]NN=[Pt] +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} +5 X u0 p0 c0 {2,D} + +[Pt]N=N[Pt] +1 N u0 p1 c0 {2,D} {4,S} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} +4 X u0 p0 c0 {1,S} + +NN=[Pt] +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 {2,D} + +[Pt]=NN=[Pt] +1 N u0 p1 c0 {2,S} {3,D} +2 N u0 p1 c0 {1,S} {4,D} +3 X u0 p0 c0 {1,D} +4 X u0 p0 c0 {2,D} + +[Pt]NN[Pt] +1 N u0 p1 c0 {2,S} {3,S} {5,S} +2 N u0 p1 c0 {1,S} {4,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 X u0 p0 c0 {1,S} +6 X u0 p0 c0 {2,S} + +N2H_X +1 N u0 p1 c0 {2,D} {4,S} +2 N u0 p1 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} +4 X u0 p0 c0 {1,S} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py b/input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py new file mode 100644 index 0000000000..4c5adaf73d --- /dev/null +++ b/input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py @@ -0,0 +1,686 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Roldan_Ir111" +shortDesc = u"" +longDesc = u""" +Based primarily on +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +and + +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b +""" +#skip R1 + +entry( + index = 2, + label = "NH3_X <=> NH3 + X", + kinetics = SurfaceArrhenius( + A = (9.53E7, '1/s'), + n = 0.0, + Ea = (88574.75, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +Ea was calculated from A factor and k rate constant in Table 3 + +This is D1 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 3, + label = "N2_X <=> N2 + X", + kinetics = SurfaceArrhenius( + A = (9.52E7, '1/s'), + n = 0.0, + Ea = (10806.96, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +Ea was calculated from A factor and k rate constant in Table 3 + +This is D2 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 4, + label = "H2_X <=> H2 + X", + kinetics = SurfaceArrhenius( + A = (9.53E7, '1/s'), + n = 0.0, + Ea = (30972.36, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""H2 Surface_Adsorption_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +Ea was calculated from A factor and k rate constant in Table 3 + +This is D3 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 5, + label = "N2H4_X + X <=> N2H3_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (104209.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 1.08eV = 104209.2J/mol + +This is R5 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 6, + label = "N2H3_X + X <=> NN=[Pt] + H_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (98419.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 1.02eV = 98419.8J/mol + +This is R6 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +#Skip 7 + +entry( + index = 8, + label = "[Pt]NN[Pt] <=> N2H_X + H_X", + kinetics = SurfaceArrhenius( + A = (1E13, '1/s'), + n = 0.0, + Ea = (67543, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +Ea = 0.7eV = 67543J/mol + +This is R8 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +#skip R9 + +entry( + index = 10, + label = "N2H_X + X <=> N2_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (126401.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Addition_Single_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 1.31eV = 126401.9J/mol + +This is R10 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 11, + label = "N2H4_X + X <=> NH2_X + NH2_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (68507.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.71eV = 68507.9J/mol + +This is R11 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 12, + label = "N2H3_X + X <=> NH2_X + NH_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (75262.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.78eV = 75262.2J/mol + +This is R12 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 13, + label = "NN=[Pt] + X <=> NH2_X + N_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (70437.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.73eV = 70437.7J/mol + +This is R13 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 14, + label = "N2H2_X + X <=> NH_X + NH_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (70437.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_Double_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.73eV = 70437.7J/mol + +This is R14 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 15, + label = "[Pt]NN=[Pt] <=> NH_X + N_X", + kinetics = SurfaceArrhenius( + A = (1E13, '1/s'), + n = 0.0, + Ea = (137980.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Bidentate_Dissociation""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +Ea = 1.43eV = 137980.7J/mol + +This is R15 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 16, + label = "N2H4_X + NH2_X <=> N2H3_X + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (19298, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.2eV = 19298J/mol + +This is R16 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 17, + label = "N2H3_X + NH2_X <=> N2H2_X + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (22192.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.23eV = 22192.7J/mol + +This is R17 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 18, + label = "[Pt]NN[Pt] + NH2_X <=> [Pt]NN=[Pt] + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (18333.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.19eV = 18333.1J/mol + +This is R18 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 19, + label = "N2H3_X + NH2_X <=> NN=[Pt] + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (35701.3, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.37eV = 35701.3J/mol + +This is R19 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 20, + label = "N2H2_X + NH2_X <=> N2H_X + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (98419.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 1.02eV = 98419.8J/mol + +This is R20 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 21, + label = "[Pt]NN=[Pt] + NH2_X <=> [Pt]=NN=[Pt] + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (53069.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.55eV = 53069.5J/mol + +This is R21 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 22, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.22E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (147114.22, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. +A = 3.15E12(1/s)/2.587E-9(mol/cm^2) = 1.22E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R1 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 23, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.43E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (151612.95, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. +A = 3.71E12(1/s)/2.587E-9(mol/cm^2) = 1.43E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R3 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 24, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.68E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (88354.08, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. +A = 6.93E12(1/s)/2.587E-9(mol/cm^2) = 2.68E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R5 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 25, + label = "NH2_X + NH2_X <=> NH_X + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (32806.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.34eV = 32806.6J/mol + +This is R25 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 26, + label = "NH_X + NH2_X <=> N_X + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (94560.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.98eV = 94560.2J/mol + +This is R26 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 27, + label = "N_X + N_X <=> [Pt]=NN=[Pt]", + kinetics = SurfaceArrhenius( + A = (3.55E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (187423.24, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Bidentate_Dissociation""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to estimate A factor. +A = 9.18E12(1/s)/2.587E-9(mol/cm^2) = 3.55E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R7 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 28, + label = "H_X + H_X <=> H2_X + X", + kinetics = SurfaceArrhenius( + A = (2.42E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (60127.72, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to estimate A factor. +A = 6.25E12(1/s)/2.587E-9(mol/cm^2) = 2.42E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R9 in Table 3 +""", + metal = "Ir", + facet = "111", +) From 39675aac154d4ddd6923d473b3280404454c0002 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 3 Jul 2021 11:15:37 -0400 Subject: [PATCH 16/27] add Vlachos_Rh library --- .../Surface/Vlachos_Rh/dictionary.txt | 105 ++ .../libraries/Surface/Vlachos_Rh/reactions.py | 939 ++++++++++++++++++ 2 files changed, 1044 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Vlachos_Rh/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Vlachos_Rh/reactions.py diff --git a/input/kinetics/libraries/Surface/Vlachos_Rh/dictionary.txt b/input/kinetics/libraries/Surface/Vlachos_Rh/dictionary.txt new file mode 100644 index 0000000000..2e5d4a5db6 --- /dev/null +++ b/input/kinetics/libraries/Surface/Vlachos_Rh/dictionary.txt @@ -0,0 +1,105 @@ +X +1 X u0 p0 c0 + +O +multiplicity 3 +1 O u2 p2 c0 + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +CO +multiplicity 3 +1 O u0 p2 c0 {2,D} +2 C u2 p0 c0 {1,D} + +CO_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,D} +3 X u0 p0 c0 {2,D} + +CO2 +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} + +CO2_X +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} +4 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +H +multiplicity 2 +1 H u1 p0 c0 + +H2 +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} + +OH +multiplicity 2 +1 O u1 p2 c0 {2,S} +2 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +COOH_X +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,S} {2,D} {5,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 {3,S} + +C_X +1 C u0 p0 c0 {2,Q} +2 X u0 p0 c0 {1,Q} + +CH_X +1 C u0 p0 c0 {2,S} {3,T} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,T} + +CH2_X +1 C u0 p0 c0 {2,S} {3,S} {4,D} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,D} + +CH3_X +1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 {1,S} + +CH4 +1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {1,S} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Vlachos_Rh/reactions.py b/input/kinetics/libraries/Surface/Vlachos_Rh/reactions.py new file mode 100644 index 0000000000..74228aa99d --- /dev/null +++ b/input/kinetics/libraries/Surface/Vlachos_Rh/reactions.py @@ -0,0 +1,939 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Vlachos_Rh" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. +""" + +entry( + index = 1, + label = "H2 + X + X <=> H_X + H_X", + kinetics = StickingCoefficient( + A = 0.773, + n = 0.9387, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""H2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +This is R1 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 2, +# label = "H_X + H_X <=> H2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (2.23E20, 'cm^2/(mol*s)'), +# n = -0.4347, +# Ea = (12.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""H2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 5.56E11(1/s)/2.49E-9(mol/cm^2) = 2.23E20cm^2/(mol*s) + +# This is R2 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 3, + label = "H2O_X + X <=> H_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.31E20, 'cm^2/(mol*s)'), + n = 0.0281, + Ea = (18.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 5.74E11(1/s)/2.49E-9(mol/cm^2) = 2.31E20 cm^2/(mol*s) + +This is R7 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 4, +# label = "H_X + OH_X <=> H2O_X + X", +# kinetics = SurfaceArrhenius( +# A = (7.23E17, 'cm^2/(mol*s)'), +# n = 1.2972, +# Ea = (16.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 1.80E09(1/s)/2.49E-9(mol/cm^2) = 7.23E17 cm^2/(mol*s) + +# This is R8 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 5, + label = "H2O + X <=> H2O_X", + kinetics = StickingCoefficient( + A = 0.0772, + n = 1.4067, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +This is R13 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 6, +# label = "H2O_X <=> H2O + X", +# kinetics = SurfaceArrhenius( +# A = (2.06E13, '1/s'), +# n = -1.8613, +# Ea = (7.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# This is R14 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 7, + label = "CO + X <=> CO_X", + kinetics = StickingCoefficient( + A = 0.5, + n = -2.00, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +This is R19 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 8, +# label = "CO_X <=> CO + X", +# kinetics = SurfaceArrhenius( +# A = (5.65E12, '1/s'), +# n = 1.9879, +# Ea = (32.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# This is R20 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 9, + label = "CO2 + X <=> CO2_X", + kinetics = StickingCoefficient( + A = 0.367, + n = -2.3294, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +This is R21 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 10, +# label = "CO2_X <=> CO2 + X", +# kinetics = SurfaceArrhenius( +# A = (7.54E10, '1/s'), +# n = 2.1831, +# Ea = (2.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# This is R22 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 11, + label = "CO2_X + H_X <=> CO_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.61E23, 'cm^2/(mol*s)'), + n = 0.0301, + Ea = (5.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann_Pt/19""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 4.00E14(1/s)/2.49E-9(mol/cm^2) = 1.61E23 cm^2/(mol*s) + +This is R29 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 12, +# label = "CO_X + OH_X <=> CO2_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (1.41E23, 'cm^2/(mol*s)'), +# n = -0.0301, +# Ea = (19.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann_Pt/19""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 3.51E14(1/s)/2.49E-9(mol/cm^2) = 1.41E23 cm^2/(mol*s) + +# This is R30 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 13, + label = "COOH_X + X <=> CO_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4.30E20, 'cm^2/(mol*s)'), + n = -0.4123, + Ea = (7.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 1.07E12(1/s)/2.49E-9(mol/cm^2) = 4.30E20 cm^2/(mol*s) + +This is R31 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 14, +# label = "CO_X + OH_X <=> COOH_X + X", +# kinetics = SurfaceArrhenius( +# A = (3.76E20, 'cm^2/(mol*s)'), +# n = 0.4123, +# Ea = (14.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 9.37E11(1/s)/2.49E-9(mol/cm^2) = 3.76E20 cm^2/(mol*s) + +# This is R32 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 15, + label = "COOH_X + X <=> CO2_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.02E18, 'cm^2/(mol*s)'), + n = -0.4424, + Ea = (7.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Addition_Single_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 1.00E10(1/s)/2.49E-9(mol/cm^2) = 4.02E18 cm^2/(mol*s) + +This is R33 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 16, +# label = "CO2_X + H_X <=> COOH_X + X", +# kinetics = SurfaceArrhenius( +# A = (4.01E18, 'cm^2/(mol*s)'), +# n = 0.4424, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Addition_Single_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 9.99E09(1/s)/2.49E-9(mol/cm^2) = 4.01E18 cm^2/(mol*s) + +# This is R34 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 17, + label = "CO_X + H2O_X <=> COOH_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.34E20, 'cm^2/(mol*s)'), + n = -0.2222, + Ea = (19.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 3.34E11(1/s)/2.49E-9(mol/cm^2) = 1.34E20 cm^2/(mol*s) + +This is R35 in Table 4 +""", + metal = "Rh", +) + +#R36 in the table 4 has a typo of the reactant H_X +# entry( +# index = 18, +# label = "COOH_X + H_X <=> CO_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (4.82E17, 'cm^2/(mol*s)'), +# n = 0.2223, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 1.20E09(1/s)/2.49E-9(mol/cm^2) = 4.82E17 cm^2/(mol*s) + +# This is R36 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 19, + label = "CO2_X + H2O_X <=> COOH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (7.15E20, 'cm^2/(mol*s)'), + n = -0.1992, + Ea = (13.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dual_Adsorption_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 1.78E12(1/s)/2.49E-9(mol/cm^2) = 7.15E20 cm^2/(mol*s) + +This is R39 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 20, +# label = "COOH_X + OH_X <=> CO2_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (2.25E18, 'cm^2/(mol*s)'), +# n = 0.1922, +# Ea = (18.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dual_Adsorption_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 5.60E09(1/s)/2.49E-9(mol/cm^2) = 2.25E18 cm^2/(mol*s) + +# This is R40 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 21, + label = "CH4 + X + X <=> CH3_X + H_X", + kinetics = StickingCoefficient( + A = 0.572, + n = 0.7883, + Ea = (14.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +This is R55 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 22, +# label = "CH3_X + H_X <=> CH4 + X + X", +# kinetics = SurfaceArrhenius( +# A = (3.10E19, 'cm^2/(mol*s)'), +# n = -0.7883, +# Ea = (5.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 7.72E10(1/s)/2.49E-9(mol/cm^2) = 3.10E19 cm^2/(mol*s) + +# This is R56 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 23, + label = "CH3_X + X <=> CH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.00E19, 'cm^2/(mol*s)'), + n = 0.0862, + Ea = (12.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Dissociative""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 2.49E10(1/s)/2.49E-9(mol/cm^2) = 1.00E19 cm^2/(mol*s) + +This is R57 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 24, +# label = "CH2_X + H_X <=> CH3_X + X", +# kinetics = SurfaceArrhenius( +# A = (1.03E18, 'cm^2/(mol*s)'), +# n = -0.0862, +# Ea = (25.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 2.57E09(1/s)/2.49E-9(mol/cm^2) = 1.03E18 cm^2/(mol*s) + +# This is R58 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 25, + label = "CH2_X + X <=> CH_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.21E19, 'cm^2/(mol*s)'), + n = -0.1312, + Ea = (21.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 5.50E10(1/s)/2.49E-9(mol/cm^2) = 2.21E19 cm^2/(mol*s) + +This is R59 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 26, +# label = "CH_X + H_X <=> CH2_X + X", +# kinetics = SurfaceArrhenius( +# A = (2.92E18, 'cm^2/(mol*s)'), +# n = 0.1312, +# Ea = (20.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 7.27E09(1/s)/2.49E-9(mol/cm^2) = 2.92E18 cm^2/(mol*s) + +# This is R60 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 27, + label = "CH_X + X <=> C_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.84E21, 'cm^2/(mol*s)'), + n = -0.2464, + Ea = (28.9, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 4.58E12(1/s)/2.49E-9(mol/cm^2) = 1.84E21 cm^2/(mol*s) + +This is R61 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 28, +# label = "C_X + H_X <=> CH_X + X", +# kinetics = SurfaceArrhenius( +# A = (8.76E19, 'cm^2/(mol*s)'), +# n = 0.2464, +# Ea = (14.1, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 2.18E11(1/s)/2.49E-9(mol/cm^2) = 8.76E19 cm^2/(mol*s) + +# This is R62 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 29, + label = "CH3_X + O_X <=> CH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.19E20, 'cm^2/(mol*s)'), + n = -0.1906, + Ea = (6.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 2.96E11(1/s)/2.49E-9(mol/cm^2) = 1.19E20 cm^2/(mol*s) + +This is R63 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 30, +# label = "CH2_X + OH_X <=> CH3_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (1.36E19, 'cm^2/(mol*s)'), +# n = 0.1906, +# Ea = (34.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 3.38E10(1/s)/2.49E-9(mol/cm^2) = 1.36E19 cm^2/(mol*s) + +# This is R64 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 31, + label = "CH2_X + H2O_X <=> CH3_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.30E19, 'cm^2/(mol*s)'), + n = -0.7208, + Ea = (20.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 5.73E10(1/s)/2.49E-9(mol/cm^2) = 2.30E19 cm^2/(mol*s) + +This is R69 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 32, +# label = "CH3_X + OH_X <=> CH2_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (6.99E17, 'cm^2/(mol*s)'), +# n = 0.7208, +# Ea = (4.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 1.74E09(1/s)/2.49E-9(mol/cm^2) = 6.99E17 cm^2/(mol*s) + +# This is R70 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 33, + label = "CH_X + H2O_X <=> CH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.61E20, 'cm^2/(mol*s)'), + n = -0.5033, + Ea = (21.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 6.49E11(1/s)/2.49E-9(mol/cm^2) = 2.61E20 cm^2/(mol*s) + +This is R71 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 34, +# label = "CH2_X + OH_X <=> CH_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (6.18E18, 'cm^2/(mol*s)'), +# n = 0.5033, +# Ea = (19.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 1.54E10(1/s)/2.49E-9(mol/cm^2) = 6.18E18 cm^2/(mol*s) + +# This is R72 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 35, + label = "C_X + H2O_X <=> CH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.91E20, 'cm^2/(mol*s)'), + n = -0.3882, + Ea = (17.0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 9.74E11(1/s)/2.49E-9(mol/cm^2) = 3.91E20 cm^2/(mol*s) + +This is R73 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 36, +# label = "CH_X + OH_X <=> C_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (2.57E19, 'cm^2/(mol*s)'), +# n = 0.3882, +# Ea = (29.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 6.41E10(1/s)/2.49E-9(mol/cm^2) = 2.57E19 cm^2/(mol*s) + +# This is R74 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 37, + label = "CO_X + H_X <=> C_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4.74E20, 'cm^2/(mol*s)'), + n = 0.2944, + Ea = (22.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann libraries""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 1.18E12(1/s)/2.49E-9(mol/cm^2) = 4.74E20 cm^2/(mol*s) + +This is R79 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 38, +# label = "C_X + OH_X <=> CO_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (3.05E21, 'cm^2/(mol*s)'), +# n = -0.2944, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann libraries""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 7.60E12(1/s)/2.49E-9(mol/cm^2) = 3.0521 cm^2/(mol*s) + +# This is R80 in Table 4 +# """, +# metal = "Rh", +# ) From 1361ae2fd81dd83c9f26ec599961ca8a50584022 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 3 Jul 2021 11:16:30 -0400 Subject: [PATCH 17/27] add Vlachos_Ru0001 library --- .../Surface/Vlachos_Ru0001/dictionary.txt | 42 +++++ .../Surface/Vlachos_Ru0001/reactions.py | 176 ++++++++++++++++++ 2 files changed, 218 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Vlachos_Ru0001/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Vlachos_Ru0001/reactions.py diff --git a/input/kinetics/libraries/Surface/Vlachos_Ru0001/dictionary.txt b/input/kinetics/libraries/Surface/Vlachos_Ru0001/dictionary.txt new file mode 100644 index 0000000000..e944f9a415 --- /dev/null +++ b/input/kinetics/libraries/Surface/Vlachos_Ru0001/dictionary.txt @@ -0,0 +1,42 @@ +X +1 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +H2 +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Vlachos_Ru0001/reactions.py b/input/kinetics/libraries/Surface/Vlachos_Ru0001/reactions.py new file mode 100644 index 0000000000..53aa5541af --- /dev/null +++ b/input/kinetics/libraries/Surface/Vlachos_Ru0001/reactions.py @@ -0,0 +1,176 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Vlachos_Ru0001" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 +""" + +entry( + index = 1, + label = "H2 + X + X <=> H_X + H_X", + kinetics = StickingCoefficient( + A = 0.87, + n = 0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""H2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This is R1 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +#skip R2 (reverse reaction of R1) + +entry( + index = 2, + label = "N2 + X + X <=> N_X + N_X", + kinetics = StickingCoefficient( + A = 0.2, + n = 0, + Ea = (7.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + # coverage_dependence = {'N_X': {'E': (26.3, 'kacl/mol'), 'm':0.0, 'a':0.0},}, + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This is R3 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +#skip R4 (reverse reaction of R3) + +entry( + index = 3, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (7.22E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (5.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + # coverage_dependence = {'N_X': {'E': (15.5, 'kacl/mol'), 'm':0.0, 'a':0.0},}, + # coverage_dependence = {'H_X': {'E': (1, 'kacl/mol'), 'm':0.0, 'a':0.0},}, + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 1.9E12(1/s)/2.630E-9(mol/cm^2) = 7.22E20 cm^2/(mol*s) + +This is R5 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +#skip R6 (reverse reaction of R5) + +entry( + index = 4, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (7.60E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (20.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + # coverage_dependence = {'H_X': {'E': (1.2, 'kacl/mol'), 'm':0.0, 'a':0.0},}, + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 2E12(1/s)/2.630E-9(mol/cm^2) = 7.60E20 cm^2/(mol*s) + +This is R7 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +#skip R9 (reverse reaction of R7) + +entry( + index = 5, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (7.60E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (18.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + # coverage_dependence = {'H_X': {'E': (1.3, 'kacl/mol'), 'm':0.0, 'a':0.0},}, + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 2E12(1/s)/2.630E-9(mol/cm^2) = 7.60E20 cm^2/(mol*s) + +This is R9 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +#skip R10 (reverse reaction of R9) + +entry( + index = 6, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 0.00015, + n = 0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This is R11 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +#skip R12 (reverse reaction of R11) \ No newline at end of file From 76b6a205538bd08a84f9b6fa46f486d0cb6bf355 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 3 Jul 2021 11:17:23 -0400 Subject: [PATCH 18/27] add Vlachos_Pt111 library --- .../Surface/Vlachos_Pt111/dictionary.txt | 230 ++ .../Surface/Vlachos_Pt111/reactions.py | 2665 +++++++++++++++++ 2 files changed, 2895 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Vlachos_Pt111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py diff --git a/input/kinetics/libraries/Surface/Vlachos_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Vlachos_Pt111/dictionary.txt new file mode 100644 index 0000000000..5fa63e71b5 --- /dev/null +++ b/input/kinetics/libraries/Surface/Vlachos_Pt111/dictionary.txt @@ -0,0 +1,230 @@ +X +1 X u0 p0 c0 + +O +multiplicity 3 +1 O u2 p2 c0 + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +CO +multiplicity 3 +1 O u0 p2 c0 {2,D} +2 C u2 p0 c0 {1,D} + +CO_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,D} +3 X u0 p0 c0 {2,D} + +CO2 +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} + +CO2_X +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} +4 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +H +multiplicity 2 +1 H u1 p0 c0 + +H2 +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} + +OH +multiplicity 2 +1 O u1 p2 c0 {2,S} +2 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +COOH_X +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,S} {2,D} {5,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 {3,S} + +COOH +multiplicity 2 +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 C u1 p0 c0 {1,S} {2,D} +4 H u0 p0 c0 {1,S} + +HCOO_XX +multiplicity 2 +1 O u0 p2 c0 {3,S} {6,S} +2 O u1 p2 c0 {3,S} +3 C u0 p0 c0 {1,S} {2,S} {4,S} {5,S} +4 H u0 p0 c0 {3,S} +5 X u0 p0 c0 {3,S} +6 X u0 p0 c0 {1,S} + +HCOO_X +1 O u0 p2 c0 {3,S} {5,S} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,S} {2,D} {4,S} +4 H u0 p0 c0 {3,S} +5 X u0 p0 c0 {1,S} + +HCOO +multiplicity 2 +1 O u1 p2 c0 {3,S} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,S} {2,D} {4,S} +4 H u0 p0 c0 {3,S} + +C +1 C u2 p1 c0 + +C_X +1 C u0 p0 c0 {2,Q} +2 X u0 p0 c0 {1,Q} + +CH +multiplicity 2 +1 C u1 p1 c0 {2,S} +2 H u0 p0 c0 {1,S} + +CH_X +1 C u0 p0 c0 {2,S} {3,T} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,T} + +CH2 +multiplicity 3 +1 C u2 p0 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +CH2_X +1 C u0 p0 c0 {2,S} {3,S} {4,D} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,D} + +CH3 +multiplicity 2 +1 C u1 p0 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +CH3_X +1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 {1,S} + +CH4 +1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {1,S} + +CH3OH +1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 O u0 p2 c0 {1,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {1,S} +6 H u0 p0 c0 {2,S} + +CH3OH_X +1 O u0 p2 c0 {2,S} {6,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {1,S} +7 X u0 p0 c0 + +CH3O +multiplicity 2 +1 O u1 p2 c0 {2,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} + +CH3O_X +1 O u0 p2 c0 {2,S} {6,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 X u0 p0 c0 {1,S} + +CH2O +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} + +CH2O_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 X u0 p0 c0 + +HCO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 C u1 p0 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} + +HCO_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 X u0 p0 c0 {2,S} + +CH2OH +multiplicity 2 +1 O u0 p2 c0 {2,S} {5,S} +2 C u1 p0 c0 {1,S} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {1,S} + +CH2OH_X +1 O u0 p2 c0 {2,S} {5,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {6,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {1,S} +6 X u0 p0 c0 {2,S} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py b/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py new file mode 100644 index 0000000000..37d03ba05f --- /dev/null +++ b/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py @@ -0,0 +1,2665 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Vlachos_Pt111" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c +""" + +entry( + index = 1, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.0542, + n = 0.766, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R1 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 2, +# label = "O_X + O_X <=> O2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (3.39E21, 'cm^2/(mol*s)'), +# n = -0.796, +# Ea = (50.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 8.41E12(1/s)/2.483E-9(mol/cm^2) = 3.39E21 cm^2/(mol*s) + +# This is R2 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 3, + label = "O + X <=> O_X", + kinetics = StickingCoefficient( + A = 0.0491, + n = 0.250, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R3 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 4, +# label = "O_X <=> O + X", +# kinetics = SurfaceArrhenius( +# A = (1.44E13, '1/s'), +# n = -0.250, +# Ea = (85.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R4 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 5, + label = "CO + X <=> CO_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R5 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 6, +# label = "CO_X <=> CO + X", +# kinetics = SurfaceArrhenius( +# A = (5.66E15, '1/s'), +# n = -0.500, +# Ea = (40, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R6 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 7, + label = "CO2 + X <=> CO2_X", + kinetics = StickingCoefficient( + A = 0.195, + n = 0.250, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R7 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 8, +# label = "CO2_X <=> CO2 + X", +# kinetics = SurfaceArrhenius( +# A = (3.63E12, '1/s'), +# n = -0.250, +# Ea = (3.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R8 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 9, + label = "CO2_X + X <=> CO_X + O_X", + kinetics = SurfaceArrhenius( + A = (1.68E19, 'cm^2/(mol*s)'), + n = 0.177, + Ea = (26.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_Double_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 4.18E10(1/s)/2.483E-9(mol/cm^2) = 1.68E19 cm^2/(mol*s) + +This is R9 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 10, +# label = "CO_X + O_X <=> CO2_X + X", +# kinetics = SurfaceArrhenius( +# A = (9.63E19, 'cm^2/(mol*s)'), +# n = -0.177, +# Ea = (20.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_Double_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 2.39E11(1/s)/2.483E-9(mol/cm^2) = 9.63E19 cm^2/(mol*s) + +# This is R10 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 11, + label = "H2 + X + X <=> H_X + H_X", + kinetics = StickingCoefficient( + A = 0.129, + n = 0.858, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""H2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R11 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 12, +# label = "H_X + H_X <=> H2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (3.20E21, 'cm^2/(mol*s)'), +# n = -0.001, +# Ea = (19.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""H2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 7.95E12(1/s)/2.483E-9(mol/cm^2) = 3.20E21 cm^2/(mol*s) + +# This is R12 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 13, + label = "OH_X + X <=> H_X + O_X", + kinetics = SurfaceArrhenius( + A = (7.85E20, 'cm^2/(mol*s)'), + n = 1.872, + Ea = (27.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.95E12(1/s)/2.483E-9(mol/cm^2) = 7.85E20 cm^2/(mol*s) + +This is R13 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 14, +# label = "H_X + O_X <=> OH_X + X", +# kinetics = SurfaceArrhenius( +# A = (2.55E21, 'cm^2/(mol*s)'), +# n = 0.624, +# Ea = (8.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 6.33E12(1/s)/2.483E-9(mol/cm^2) = 2.55E21 cm^2/(mol*s) + +# This is R14 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 15, + label = "H2O_X + X <=> H_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.77E21, 'cm^2/(mol*s)'), + n = -0.118, + Ea = (17.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 9.36E12(1/s)/2.483E-9(mol/cm^2) = 3.77E21 cm^2/(mol*s) + +This is R15 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 16, +# label = "H_X + OH_X <=> H2O_X + X", +# kinetics = SurfaceArrhenius( +# A = (4.02E21, 'cm^2/(mol*s)'), +# n = -1.049, +# Ea = (13.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 9.99E12(1/s)/2.483E-9(mol/cm^2) = 4.02E21 cm^2/(mol*s) + +# This is R16 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 17, + label = "O_X + H2O_X <=> OH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.74E19, 'cm^2/(mol*s)'), + n = 0.082, + Ea = (8.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 4.32E10(1/s)/2.483E-9(mol/cm^2) = 1.74E19 cm^2/(mol*s) + +This is R17 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 18, +# label = "OH_X + OH_X <=> O_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (6.85E18, 'cm^2/(mol*s)'), +# n = 0.325, +# Ea = (22.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.70E10(1/s)/2.483E-9(mol/cm^2) = 6.85E18 cm^2/(mol*s) + +# This is R18 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 19, + label = "OH + X <=> OH_X", + kinetics = StickingCoefficient( + A = 0.999, + n = 2.000, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R19 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 20, +# label = "OH_X <=> OH + X", +# kinetics = SurfaceArrhenius( +# A = (1.44E14, '1/s'), +# n = 2.000, +# Ea = (63.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R20 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 21, + label = "H2O + X <=> H2O_X", + kinetics = StickingCoefficient( + A = 0.108, + n = 1.162, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R21 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 22, +# label = "H2O_X <=> H2O + X", +# kinetics = SurfaceArrhenius( +# A = (2.03E12, '1/s'), +# n = 1.372, +# Ea = (10, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R22 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 23, + label = "H + X <=> H_X", + kinetics = StickingCoefficient( + A = 0.384, + n = 1.832, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R23 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 24, +# label = "H_X <=> H + X", +# kinetics = SurfaceArrhenius( +# A = (4.37E13, '1/s'), +# n = 1.890, +# Ea = (62.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R24 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 25, + label = "CO2_X + H_X <=> CO_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.23E17, 'cm^2/(mol*s)'), + n = -0.531, + Ea = (6.0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann_Pt/19""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.03E08(1/s)/2.483E-9(mol/cm^2) = 3.23E17 cm^2/(mol*s) + +This is R25 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 26, +# label = "CO_X + OH_X <=> CO2_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (5.03E17, 'cm^2/(mol*s)'), +# n = 0.531, +# Ea = (18.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann_Pt/19""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.25E09(1/s)/2.483E-9(mol/cm^2) = 5.03E17 cm^2/(mol*s) + +# This is R26 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 27, + label = "COOH + X <=> COOH_X", + kinetics = StickingCoefficient( + A = 0.0634, + n = -0.089, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R27 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 28, +# label = "COOH_X <=> COOH + X", +# kinetics = SurfaceArrhenius( +# A = (1.12E13, '1/s'), +# n = 0.089, +# Ea = (55.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R28 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 29, + label = "COOH_X + X <=> CO_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.40E17, 'cm^2/(mol*s)'), + n = 0.024, + Ea = (5.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.43E08(1/s)/2.483E-9(mol/cm^2) = 3.40E17 cm^2/(mol*s) + +This is R29 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 30, +# label = "CO_X + OH_X <=> COOH_X + X", +# kinetics = SurfaceArrhenius( +# A = (4.79E17, 'cm^2/(mol*s)'), +# n = -0.024, +# Ea = (19.1, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.19E09(1/s)/2.483E-9(mol/cm^2) = 4.79E17 cm^2/(mol*s) + +# This is R30 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 31, + label = "COOH_X + X <=> CO2_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.27E19, 'cm^2/(mol*s)'), + n = 0.549, + Ea = (1.0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Addition_Single_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.06E11(1/s)/2.483E-9(mol/cm^2) = 4.27E19 cm^2/(mol*s) + +This is R31 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 32, +# label = "CO2_X + H_X <=> COOH_X + X", +# kinetics = SurfaceArrhenius( +# A = (3.81E19, 'cm^2/(mol*s)'), +# n = -0.549, +# Ea = (2.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Addition_Single_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 9.45E10(1/s)/2.483E-9(mol/cm^2) = 3.81E19 cm^2/(mol*s) + +# This is R32 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 33, + label = "CO_X + H2O_X <=> COOH_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.43E19, 'cm^2/(mol*s)'), + n = 0.492, + Ea = (23.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.10E11(1/s)/2.483E-9(mol/cm^2) = 4.43E19 cm^2/(mol*s) + +This is R33 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 34, +# label = "COOH_X + H_X <=> CO_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (3.65E19, 'cm^2/(mol*s)'), +# n = -0.492, +# Ea = (5.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 9.07E10(1/s)/2.483E-9(mol/cm^2) = 3.65E19 cm^2/(mol*s) + +# This is R34 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 35, + label = "CO2_X + OH_X <=> COOH_X + O_X", + kinetics = SurfaceArrhenius( + A = (2.15E19, 'cm^2/(mol*s)'), + n = 0.097, + Ea = (26.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Abstraction_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.35E10(1/s)/2.483E-9(mol/cm^2) = 2.15E19 cm^2/(mol*s) + +This is R35 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 36, +# label = "COOH_X + O_X <=> CO2_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (7.53E19, 'cm^2/(mol*s)'), +# n = -0.097, +# Ea = (7.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Abstraction_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.87E11(1/s)/2.483E-9(mol/cm^2) = 7.53E19 cm^2/(mol*s) + +# This is R36 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 37, + label = "CO2_X + H2O_X <=> COOH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.48E19, 'cm^2/(mol*s)'), + n = -0.031, + Ea = (17.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dual_Adsorption_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.64E10(1/s)/2.483E-9(mol/cm^2) = 3.48E19 cm^2/(mol*s) + +This is R37 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 38, +# label = "COOH_X + OH_X <=> CO2_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (4.67E19, 'cm^2/(mol*s)'), +# n = 0.031, +# Ea = (11.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dual_Adsorption_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.16E11(1/s)/2.483E-9(mol/cm^2) = 4.67E19 cm^2/(mol*s) + +# This is R38 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 39, + label = "HCOO + X + X <=> HCOO_XX", + kinetics = StickingCoefficient( + A = 0.146, + n = 0.201, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Bidentate""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R39 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 40, +# label = "HCOO_XX <=> HCOO + X + X", +# kinetics = SurfaceArrhenius( +# A = (4.83E12, '1/s'), +# n = -0.201, +# Ea = (53.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Bidentate""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R40 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +#R41 in the paper was a bidentate HCOO_XX, which might cause the issue of an adsorbate vdW species. +#This might cause an UndeterminableKineticsError, maybe we don't want to include this reaction. +entry( + index = 41, + label = "CO2_X + H_X <=> HCOO_XX", + kinetics = SurfaceArrhenius( + A = (4.51E19, 'cm^2/(mol*s)'), + n = -0.422, + Ea = (18.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.12E11(1/s)/2.483E-9(mol/cm^2) = 4.51E19 cm^2/(mol*s) + +This is R41 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +#Same issue as R41 +# entry( +# index = 42, +# label = "HCOO_XX <=> CO2_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (3.61E19, 'cm^2/(mol*s)'), +# n = 0.422, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 8.96E10(1/s)/2.483E-9(mol/cm^2) = 3.61E19 cm^2/(mol*s) + +# This is R42 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +#R43 in the paper was a bidentate HCOO_XX, which might cause the issue of an adsorbate vdW species. +#This might cause an UndeterminableKineticsError, maybe we don't want to include this reaction. +entry( + index = 43, + label = "CO2_X + OH_X + X <=> HCOO_XX + O_X", + kinetics = SurfaceArrhenius( + A = (2.48E19, 'cm^4/(mol^2*s)'), + n = 0.236, + Ea = (36.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 6.17E10(cm^2/mol/s)/2.483E-9(mol/cm^2) = 2.48E19 cm^4/(mol^2*s) + +This is R43 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +#Same issue as R43 +# entry( +# index = 44, +# label = "HCOO_XX + O_X <=> CO2_X + OH_X + X", +# kinetics = SurfaceArrhenius( +# A = (6.52E19, 'cm^2/(mol*s)'), +# n = -0.236, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.62E11(1/s)/2.483E-9(mol/cm^2) = 6.52E19 cm^2/(mol*s) + +# This is R44 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +#Skip R45 and R46, which might cause a bidentate CO2 with a radical +# on surface site.(if match Surface_Dissociation family) + +entry( + index = 47, + label = "C + X <=> C_X", + kinetics = StickingCoefficient( + A = 0.0164, + n = 0.156, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Quadruple bonds""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R47 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 48, +# label = "C_X <=> C + X", +# kinetics = SurfaceArrhenius( +# A = (4.30E13, '1/s'), +# n = -0.156, +# Ea = (157.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Quadruple bonds""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R48 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 49, + label = "CH + X <=> CH_X", + kinetics = StickingCoefficient( + A = 0.0135, + n = 0.051, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R49 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 50, +# label = "CH_X <=> CH + X", +# kinetics = SurfaceArrhenius( +# A = (5.22E13, '1/s'), +# n = -0.051, +# Ea = (157.1, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R50 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 51, + label = "CH2 + X <=> CH2_X", + kinetics = StickingCoefficient( + A = 0.045, + n = 0.118, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R51 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 52, +# label = "CH2_X <=> CH2 + X", +# kinetics = SurfaceArrhenius( +# A = (1.57E13, '1/s'), +# n = -0.118, +# Ea = (91.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R52 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 53, + label = "CH3 + X <=> CH3_X", + kinetics = StickingCoefficient( + A = 0.16, + n = -0.099, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R53 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 54, +# label = "CH3_X <=> CH3 + X", +# kinetics = SurfaceArrhenius( +# A = (4.42E12, '1/s'), +# n = 0.099, +# Ea = (45.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R54 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 55, + label = "CH4 + X + X <=> CH3_X + H_X", + kinetics = StickingCoefficient( + A = 0.116, + n = 0.154, + Ea = (9, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Dissociative""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R55 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 56, +# label = "CH3_X + H_X <=> CH4 + X + X", +# kinetics = SurfaceArrhenius( +# A = (2.46E19, 'cm^2/(mol*s)'), +# n = -0.154, +# Ea = (11.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 6.12E10(1/s)/2.483E-9(mol/cm^2) = 2.46E19 cm^2/(mol*s) + +# This is R56 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 57, + label = "CH3_X + X <=> CH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.47E19, 'cm^2/(mol*s)'), + n = 0.419, + Ea = (15.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.11E11(1/s)/2.483E-9(mol/cm^2) = 4.47E19 cm^2/(mol*s) + +This is R57 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 58, +# label = "CH2_X + H_X <=> CH3_X + X", +# kinetics = SurfaceArrhenius( +# A = (3.62E19, 'cm^2/(mol*s)'), +# n = -0.419, +# Ea = (13.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 8.99E10(1/s)/2.483E-9(mol/cm^2) = 3.62E19 cm^2/(mol*s) + +# This is R58 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 59, + label = "CH2_X + X <=> CH_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.10E19, 'cm^2/(mol*s)'), + n = 0.222, + Ea = (9.0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.22E10(1/s)/2.483E-9(mol/cm^2) = 2.10E19 cm^2/(mol*s) + +This is R59 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 60, +# label = "CH_X + H_X <=> CH2_X + X", +# kinetics = SurfaceArrhenius( +# A = (7.73E19, 'cm^2/(mol*s)'), +# n = -0.222, +# Ea = (35.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.92E11(1/s)/2.483E-9(mol/cm^2) = 7.73E19 cm^2/(mol*s) + +# This is R60 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 61, + label = "CH_X + X <=> C_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.67E19, 'cm^2/(mol*s)'), + n = 0.398, + Ea = (31.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 9.11E10(1/s)/2.483E-9(mol/cm^2) = 3.67E19 cm^2/(mol*s) + +This is R61 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 62, +# label = "C_X + H_X <=> CH_X + X", +# kinetics = SurfaceArrhenius( +# A = (4.43E19, 'cm^2/(mol*s)'), +# n = 0.414, +# Ea = (44.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.10E11(1/s)/2.483E-9(mol/cm^2) = 4.43E19 cm^2/(mol*s) + +# This is R62 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 63, + label = "CH3_X + O_X <=> CH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (7.93E19, 'cm^2/(mol*s)'), + n = -0.230, + Ea = (10.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.97E11(1/s)/2.483E-9(mol/cm^2) = 7.93E19 cm^2/(mol*s) + +This is R63 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 64, +# label = "CH2_X + OH_X <=> CH3_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (2.05E19, 'cm^2/(mol*s)'), +# n = 0.230, +# Ea = (26.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 5.08E10(1/s)/2.483E-9(mol/cm^2) = 2.05E19 cm^2/(mol*s) + +# This is R64 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 65, + label = "CH_X + OH_X <=> CH2_X + O_X", + kinetics = SurfaceArrhenius( + A = (4.43E19, 'cm^2/(mol*s)'), + n = 0.414, + Ea = (44.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.10E11(1/s)/2.483E-9(mol/cm^2) = 4.43E19 cm^2/(mol*s) + +This is R65 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 66, +# label = "CH2_X + O_X <=> CH_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (3.66E19, 'cm^2/(mol*s)'), +# n = -0.414, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 9.10E10(1/s)/2.483E-9(mol/cm^2) = 3.66E19 cm^2/(mol*s) + +# This is R66 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 67, + label = "C_X + OH_X <=> CH_X + O_X", + kinetics = SurfaceArrhenius( + A = (2.57E19, 'cm^2/(mol*s)'), + n = 0.225, + Ea = (27.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 6.37E10(1/s)/2.483E-9(mol/cm^2) = 2.57E19 cm^2/(mol*s) + +This is R67 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 68, +# label = "CH_X + O_X <=> C_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (6.32E19, 'cm^2/(mol*s)'), +# n = -0.225, +# Ea = (27.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.57E11(1/s)/2.483E-9(mol/cm^2) = 6.32E19 cm^2/(mol*s) + +# This is R68 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 69, + label = "CH2_X + H2O_X <=> CH3_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.30E19, 'cm^2/(mol*s)'), + n = 0.099, + Ea = (14.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.19E10(1/s)/2.483E-9(mol/cm^2) = 3.30E19 cm^2/(mol*s) + +This is R69 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 70, +# label = "CH3_X + OH_X <=> CH2_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (4.91E19, 'cm^2/(mol*s)'), +# n = -0.099, +# Ea = (12.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.22E11(1/s)/2.483E-9(mol/cm^2) = 4.91E19 cm^2/(mol*s) + +# This is R70 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 71, + label = "CH_X + H2O_X <=> CH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (7.29E19, 'cm^2/(mol*s)'), + n = 0.269, + Ea = (34.0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.81E11(1/s)/2.483E-9(mol/cm^2) = 7.29E19 cm^2/(mol*s) + +This is R71 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 72, +# label = "CH2_X + OH_X <=> CH_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (2.23E19, 'cm^2/(mol*s)'), +# n = -0.269, +# Ea = (3.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 5.53E10(1/s)/2.483E-9(mol/cm^2) = 2.23E19 cm^2/(mol*s) + +# This is R72 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 73, + label = "C_X + H2O_X <=> CH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4.19E19, 'cm^2/(mol*s)'), + n = 0.090, + Ea = (15.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.04E11(1/s)/2.483E-9(mol/cm^2) = 4.19E19 cm^2/(mol*s) + +This is R73 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 74, +# label = "CH_X + OH_X <=> C_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (3.87E19, 'cm^2/(mol*s)'), +# n = -0.090, +# Ea = (29.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 9.61E10(1/s)/2.483E-9(mol/cm^2) = 3.87E19 cm^2/(mol*s) + +# This is R74 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 75, + label = "CO_X + X <=> C_X + O_X", + kinetics = SurfaceArrhenius( + A = (1.15E20, 'cm^2/(mol*s)'), + n = 0.468, + Ea = (76.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann libraries""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 2.85E11(1/s)/2.483E-9(mol/cm^2) = 1.15E20 cm^2/(mol*s) + +This is R75 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 76, +# label = "C_X + O_X <=> CO_X + X", +# kinetics = SurfaceArrhenius( +# A = (1.41E19, 'cm^2/(mol*s)'), +# n = -0.468, +# Ea = (22.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann libraries""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 3.51E10(1/s)/2.483E-9(mol/cm^2) = 1.41E19 cm^2/(mol*s) + +# This is R76 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 77, + label = "CO_X + H_X <=> CH_X + O_X", + kinetics = SurfaceArrhenius( + A = (1.26E20, 'cm^2/(mol*s)'), + n = 0.073, + Ea = (45.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 3.12E11(1/s)/2.483E-9(mol/cm^2) = 1.26E20 cm^2/(mol*s) + +This is R77 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 78, +# label = "CH_X + O_X <=> CO_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (1.29E19, 'cm^2/(mol*s)'), +# n = -0.073, +# Ea = (9.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 3.21E10(1/s)/2.483E-9(mol/cm^2) = 1.29E19 cm^2/(mol*s) + +# This is R78 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 79, + label = "CO_X + H_X <=> C_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.00E20, 'cm^2/(mol*s)'), + n = -0.168, + Ea = (40.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann libraries""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 4.97E11(1/s)/2.483E-9(mol/cm^2) = 2.00E20 cm^2/(mol*s) + +This is R79 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 80, +# label = "C_X + OH_X <=> CO_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (8.10E18, 'cm^2/(mol*s)'), +# n = 0.168, +# Ea = (4.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann libraries""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 2.01E10(1/s)/2.483E-9(mol/cm^2) = 8.10E18 cm^2/(mol*s) + +# This is R80 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 81, + label = "CO_X + CO_X <=> C_X + CO2_X", + kinetics = SurfaceArrhenius( + A = (2.39E20, 'cm^2/(mol*s)'), + n = 0.393, + Ea = (48.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann libraries""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.94E11(1/s)/2.483E-9(mol/cm^2) = 2.39E20 cm^2/(mol*s) + +This is R81 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 82, +# label = "C_X + CO2_X <=> CO_X + CO_X", +# kinetics = SurfaceArrhenius( +# A = (6.77E18, 'cm^2/(mol*s)'), +# n = -0.393, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann libraries""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.68E10(1/s)/2.483E-9(mol/cm^2) = 6.77E18 cm^2/(mol*s) + +# This is R82 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 83, + label = "CH3OH + X <=> CH3OH_X", + kinetics = StickingCoefficient( + A = 0.334, + n = 0.258, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R83 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 84, +# label = "CH3OH_X <=> CH3OH + X", +# kinetics = SurfaceArrhenius( +# A = (2.11E12, '1/s'), +# n = -0.258, +# Ea = (9.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R84 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 85, + label = "CH3O + X <=> CH3O_X", + kinetics = StickingCoefficient( + A = 0.149, + n = 0.054, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R85 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 86, +# label = "CH3O_X <=> CH3O + X", +# kinetics = SurfaceArrhenius( +# A = (4.73E12, '1/s'), +# n = -0.054, +# Ea = (37.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R86 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 87, + label = "CH2O + X <=> CH2O_X", + kinetics = StickingCoefficient( + A = 0.0877, + n = 0.098, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R87 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 88, +# label = "CH2O_X <=> CH2O + X", +# kinetics = SurfaceArrhenius( +# A = (8.06E12, '1/s'), +# n = -0.098, +# Ea = (12.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R88 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 89, + label = "HCO + X <=> HCO_X", + kinetics = StickingCoefficient( + A = 0.0114, + n = 0.096, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R89 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 90, +# label = "HCO_X <=> HCO + X", +# kinetics = SurfaceArrhenius( +# A = (6.21E13, '1/s'), +# n = -0.096, +# Ea = (55.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R90 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 91, + label = "CH2OH + X <=> CH2OH_X", + kinetics = StickingCoefficient( + A = 0.0526, + n = 0.233, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R91 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 92, +# label = "CH2OH_X <=> CH2OH + X", +# kinetics = SurfaceArrhenius( +# A = (1.35E13, '1/s'), +# n = -0.233, +# Ea = (50.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R92 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 93, + label = "CH3OH_X + X <=> CH3O_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.15E19, 'cm^2/(mol*s)'), + n = 0.102, + Ea = (18.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 7.82E10(1/s)/2.483E-9(mol/cm^2) = 3.15E19 cm^2/(mol*s) + +This is R93 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 94, +# label = "CH3O_X + H_X <=> CH3OH_X + X", +# kinetics = SurfaceArrhenius( +# A = (5.16E19, 'cm^2/(mol*s)'), +# n = -0.102, +# Ea = (4.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.28E11(1/s)/2.483E-9(mol/cm^2) = 5.16E19 cm^2/(mol*s) + +# This is R94 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 95, + label = "CH3O_X + X <=> CH2O_X + H_X", + kinetics = SurfaceArrhenius( + A = (5.03E19, 'cm^2/(mol*s)'), + n = 0.192, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Addition_Single_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.25E11(1/s)/2.483E-9(mol/cm^2) = 5.03E19 cm^2/(mol*s) + +This is R95 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 96, +# label = "CH2O_X + H_X <=> CH3O_X + X", +# kinetics = SurfaceArrhenius( +# A = (3.23E19, 'cm^2/(mol*s)'), +# n = -0.192, +# Ea = (14.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Addition_Single_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 8.03E10(1/s)/2.483E-9(mol/cm^2) = 3.23E19 cm^2/(mol*s) + +# This is R96 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 97, + label = "CH2O_X + X <=> HCO_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.88E19, 'cm^2/(mol*s)'), + n = 0.270, + Ea = (3.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 7.14E10(1/s)/2.483E-9(mol/cm^2) = 2.88E19 cm^2/(mol*s) + +This is R97 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 98, +# label = "HCO_X + H_X <=> CH2O_X + X", +# kinetics = SurfaceArrhenius( +# A = (5.64E19, 'cm^2/(mol*s)'), +# n = -0.270, +# Ea = (21.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.40E11(1/s)/2.483E-9(mol/cm^2) = 5.64E19 cm^2/(mol*s) + +# This is R98 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 99, + label = "HCO_X + X <=> CO_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.86E19, 'cm^2/(mol*s)'), + n = 0.330, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 7.11E10(1/s)/2.483E-9(mol/cm^2) = 2.86E19 cm^2/(mol*s) + +This is R99 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 100, +# label = "CO_X + H_X <=> HCO_X + X", +# kinetics = SurfaceArrhenius( +# A = (5.68E19, 'cm^2/(mol*s)'), +# n = -0.330, +# Ea = (30.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.41E11(1/s)/2.483E-9(mol/cm^2) = 5.68E19 cm^2/(mol*s) + +# This is R100 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 101, + label = "CH3OH_X + X <=> CH2OH_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.42E19, 'cm^2/(mol*s)'), + n = 0.403, + Ea = (8.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.48E10(1/s)/2.483E-9(mol/cm^2) = 3.42E19 cm^2/(mol*s) + +This is R101 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 102, +# label = "CH2OH_X + H_X <=> CH3OH_X + X", +# kinetics = SurfaceArrhenius( +# A = (4.75E19, 'cm^2/(mol*s)'), +# n = -0.403, +# Ea = (14.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.18E11(1/s)/2.483E-9(mol/cm^2) = 4.75E19 cm^2/(mol*s) + +# This is R102 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 103, + label = "CH2OH_X + X <=> CH2O_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.59E19, 'cm^2/(mol*s)'), + n = -0.104, + Ea = (7.9, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Addition_Single_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.14E11(1/s)/2.483E-9(mol/cm^2) = 4.59E19 cm^2/(mol*s) + +This is R103 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 104, +# label = "CH2O_X + H_X <=> CH2OH_X + X", +# kinetics = SurfaceArrhenius( +# A = (3.53E19, 'cm^2/(mol*s)'), +# n = 0.104, +# Ea = (2.2, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Addition_Single_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 8.77E10(1/s)/2.483E-9(mol/cm^2) = 3.53E19 cm^2/(mol*s) + +# This is R104 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) From abccd4eba19a3dbb50b0a3e0c18913ed782a1b1d Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 3 Jul 2021 11:18:29 -0400 Subject: [PATCH 19/27] add Mhadeshwar_Pt111 library --- .../Surface/Mhadeshwar_Pt111/dictionary.txt | 229 ++ .../Surface/Mhadeshwar_Pt111/reactions.py | 3379 +++++++++++++++++ 2 files changed, 3608 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Mhadeshwar_Pt111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Mhadeshwar_Pt111/reactions.py diff --git a/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/dictionary.txt new file mode 100644 index 0000000000..c0b6adead3 --- /dev/null +++ b/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/dictionary.txt @@ -0,0 +1,229 @@ +X +1 X u0 p0 c0 + +O +multiplicity 3 +1 O u2 p2 c0 + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +CO +multiplicity 3 +1 O u0 p2 c0 {2,D} +2 C u2 p0 c0 {1,D} + +CO_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,D} +3 X u0 p0 c0 {2,D} + +CO2 +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} + +CO2_X +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} +4 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +H +multiplicity 2 +1 H u1 p0 c0 + +H2 +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} + +OH +multiplicity 2 +1 O u1 p2 c0 {2,S} +2 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +COOH_X +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,S} {2,D} {5,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 {3,S} + +COOH +multiplicity 2 +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 C u1 p0 c0 {1,S} {2,D} +4 H u0 p0 c0 {1,S} + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH2 +multiplicity 2 +1 N u1 p1 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH +multiplicity 3 +1 N u2 p1 c0 {2,S} +2 H u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N +multiplicity 4 +1 N u3 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NO +multiplicity 2 +1 N u1 p1 c0 {2,D} +2 O u0 p2 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +NO2 +multiplicity 2 +1 N u0 p1 c0 {2,D} {3,S} +2 O u0 p2 c0 {1,D} +3 O u1 p2 c0 {1,S} + +NO2_X +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 N u0 p1 c0 {1,S} {2,D} +4 X u0 p0 c0 {1,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 N u0 p1 c0 {2,S} {4,D} +4 X u0 p0 c0 {3,D} + +HCN +1 N u0 p1 c0 {2,T} +2 C u0 p0 c0 {1,T} {3,S} +3 H u0 p0 c0 {2,S} + +HCN_X +1 N u0 p1 c0 {2,T} +2 C u0 p0 c0 {1,T} {3,S} +3 H u0 p0 c0 {2,S} +4 X u0 p0 c0 + +CN +multiplicity 2 +1 N u0 p1 c0 {2,T} +2 C u1 p0 c0 {1,T} + +CN_X +1 N u0 p1 c0 {2,T} +2 C u0 p0 c0 {1,T} {3,S} +3 X u0 p0 c0 {2,S} + +C +1 C u2 p1 c0 + +C_X +1 C u0 p0 c0 {2,Q} +2 X u0 p0 c0 {1,Q} + +CH2O +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} + +CH2O_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 X u0 p0 c0 + +HCO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 C u1 p0 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} + +HCO_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 X u0 p0 c0 {2,S} + +C2N2 +1 N u0 p1 c0 {3,T} +2 N u0 p1 c0 {4,T} +3 C u0 p0 c0 {1,T} {4,S} +4 C u0 p0 c0 {2,T} {3,S} + +C2N2_X +1 N u0 p1 c0 {3,T} +2 N u0 p1 c0 {4,T} +3 C u0 p0 c0 {1,T} {4,S} +4 C u0 p0 c0 {2,T} {3,S} +5 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/reactions.py b/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/reactions.py new file mode 100644 index 0000000000..b21c765908 --- /dev/null +++ b/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/reactions.py @@ -0,0 +1,3379 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Mhadeshwar_Pt111" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 +""" + +#---------------------O2 adsorption/desorption------------------------ + +entry( + index = 1, + label = "O + X <=> O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R1 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +#Reverse reaction of R1 +# entry( +# index = 2, +# label = "O_X <=> O + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (86, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R2 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 3, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.05, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R3 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R3 +# entry( +# index = 4, +# label = "O_X + O_X <=> O2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (52.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +# This is R4 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +#---------------------CO oxidation----------------------------------- + +entry( + index = 5, + label = "CO + X <=> CO_X", + kinetics = StickingCoefficient( + A = 0.5, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R5 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R5 +# entry( +# index = 6, +# label = "CO_X <=> CO + X", +# kinetics = SurfaceArrhenius( +# A = (2.28E25, '1/s'), +# n = 0.0, +# Ea = (40, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 5.7E16(1/s)/2.5E-9(mol/cm^2) = 2.28E25 cm^2/(mol*s) + +# This is R6 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + + +entry( + index = 7, + label = "CO2 + X <=> CO2_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R7 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R7 +# entry( +# index = 8, +# label = "CO2_X <=> CO2 + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (3.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R8 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R9 +# entry( +# index = 9, +# label = "CO2_X + X <=> CO_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (23.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_Double_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R9 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 10, + label = "CO_X + O_X <=> CO2_X + X", + kinetics = SurfaceArrhenius( + A = (4E18, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (18.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_Double_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E10(1/s)/2.5E-9(mol/cm^2) = 4E18 cm^2/(mol*s) + +This is R10 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +#---------------------H2 oxidation----------------------------------- + +entry( + index = 11, + label = "H + X <=> H_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R11 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R11 +# entry( +# index = 12, +# label = "H_X <=> H + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (60.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R12 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 13, + label = "H2 + X + X <=> H_X + H_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""H2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R13 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R13 +# entry( +# index = 14, +# label = "H_X + H_X <=> H2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (4E21, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (17.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""H2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +# This is R14 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 15, + label = "H2O + X <=> H2O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R15 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R15 +# entry( +# index = 16, +# label = "H2O_X <=> H2O + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (10.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R16 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 17, + label = "OH + X <=> OH_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R17 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R17 +# entry( +# index = 18, +# label = "OH_X <=> OH + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (63, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R18 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R20 +# entry( +# index = 19, +# label = "OH_X + X <=> H_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (27, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R19 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 20, + label = "H_X + O_X <=> OH_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (8.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R20 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R22 +# entry( +# index = 21, +# label = "H2O_X + X <=> H_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (18.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R21 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 22, + label = "H_X + OH_X <=> H2O_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (12.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R22 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R24 +# entry( +# index = 23, +# label = "O_X + H2O_X <=> OH_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (9.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R23 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 24, + label = "OH_X + OH_X <=> O_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (22.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R24 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +#-----------------Water promoted CO oxidation------------------------ + +entry( + index = 25, + label = "COOH + X <=> COOH_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R25 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R25 +# entry( +# index = 26, +# label = "COOH_X <=> COOH + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (56.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R26 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R28 +# entry( +# index = 27, +# label = "CO2_X + H_X <=> CO_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (5.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann_Pt/19""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R27 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 28, + label = "CO_X + OH_X <=> CO2_X + H_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (19, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann_Pt/19""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R28 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R30 +# entry( +# index = 29, +# label = "COOH_X + X <=> CO_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (5.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R29 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 30, + label = "CO_X + OH_X <=> COOH_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (18.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R30 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R32 +# entry( +# index = 31, +# label = "COOH_X + X <=> CO2_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (2.1, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Addition_Single_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R31 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 32, + label = "CO2_X + H_X <=> COOH_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (1.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Addition_Single_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R32 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R34 +# entry( +# index = 33, +# label = "CO_X + H2O_X <=> COOH_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (23.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R33 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 34, + label = "COOH_X + H_X <=> CO_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (5.4, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R34 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R36 +# entry( +# index = 35, +# label = "CO2_X + OH_X <=> COOH_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (25.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R35 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 36, + label = "COOH_X + O_X <=> CO2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (8.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R36 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R38 +# entry( +# index = 37, +# label = "CO2_X + H2O_X <=> COOH_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (17.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dual_Adsorption_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R37 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 38, + label = "COOH_X + OH_X <=> CO2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (12.4, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dual_Adsorption_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R38 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +#---------------------NH3 oxidation---------------------------------- + +entry( + index = 39, + label = "N + X <=> N_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Triple""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R39 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R39 +# entry( +# index = 40, +# label = "N_X <=> N + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (107.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Triple""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R40 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 41, + label = "N2 + X + X <=> N_X + N_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (27.9, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R41 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R41 +# entry( +# index = 42, +# label = "N_X + N_X <=> N2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (4E21, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (16.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""N2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +# This is R42 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 43, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R43 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R43 +# entry( +# index = 44, +# label = "NH3_X <=> NH3 + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (20.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R44 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 45, + label = "NH2 + X <=> NH2_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R45 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R45 +# entry( +# index = 46, +# label = "NH2_X <=> NH2 + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (54.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R46 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 47, + label = "NH + X <=> NH_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R47 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R47 +# entry( +# index = 48, +# label = "NH_X <=> NH + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (83, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R48 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R50 +# entry( +# index = 49, +# label = "NH3_X + X <=> NH2_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (21.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R49 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 50, + label = "NH2_X + H_X <=> NH3_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (7.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R50 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R52 +# entry( +# index = 51, +# label = "NH2_X + X <=> NH_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (18.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R51 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 52, + label = "NH_X + H_X <=> NH2_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (16.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R52 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R54 +# entry( +# index = 53, +# label = "NH_X + X <=> N_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (19, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R53 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 54, + label = "N_X + H_X <=> NH_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (24.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R54 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R56 +# entry( +# index = 55, +# label = "NH3_X + O_X <=> NH2_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (12.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R55 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 56, + label = "NH2_X + OH_X <=> NH3_X + O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (16.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R56 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R58 +# entry( +# index = 57, +# label = "NH_X + OH_X <=> NH2_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (24.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R57 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 58, + label = "NH2_X + O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (8.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R58 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R60 +# entry( +# index = 59, +# label = "N_X + OH_X <=> NH_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (39.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R59 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 60, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (15.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R60 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R62 +# entry( +# index = 61, +# label = "NH2_X + H2O_X <=> NH3_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (3.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_Single_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R61 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 62, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (12, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R62 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R64 +# entry( +# index = 63, +# label = "NH_X + H2O_X <=> NH2_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (16.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R63 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 64, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (12.9, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R64 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R66 +# entry( +# index = 65, +# label = "N_X + H2O_X <=> NH_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (33.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R65 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 66, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (22.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R66 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +#---------------------NO oxidation---------------------------------- + +entry( + index = 67, + label = "NO + X <=> NO_X", + kinetics = StickingCoefficient( + A = 0.88, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R67 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R67 +# entry( +# index = 68, +# label = "NO_X <=> NO + X", +# kinetics = SurfaceArrhenius( +# A = (1E16, '1/s'), +# n = 0.0, +# Ea = (30.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R68 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 69, + label = "NO2 + X <=> NO2_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R69 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R69 +# entry( +# index = 70, +# label = "NO2_X <=> NO2 + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (23.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R70 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R72 +# entry( +# index = 71, +# label = "NO_X + X <=> N_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (31.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Nitrogen/51""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R71 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 72, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (43.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R72 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R74 +# entry( +# index = 73, +# label = "NO_X + H_X <=> N_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (4.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R73 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 74, + label = "N_X + OH_X <=> NO_X + H_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (35.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R74 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R76 +# entry( +# index = 75, +# label = "NO_X + H_X <=> NH_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (8.2, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R75 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 76, + label = "NH_X + O_X <=> NO_X + H_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (14.9, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R76 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 77, + label = "NO_X + OH_X <=> NO2_X + H_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (38.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R77 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R77 +# entry( +# index = 78, +# label = "NO2_X + H_X <=> NO_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R78 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R80 +# entry( +# index = 79, +# label = "NO2_X + X <=> NO_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = -0.93, +# Ea = (1.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R79 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 80, + label = "NO_X + O_X <=> NO2_X + X", + kinetics = SurfaceArrhenius( + A = (1.2E21, 'cm^2/(mol*s)'), + n = 0.93, + Ea = (21.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 3E12(1/s)/2.5E-9(mol/cm^2) = 1.2E21 cm^2/(mol*s) + +This is R80 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +#---------------------HCN oxidation---------------------------------- + + +entry( + index = 81, + label = "HCN + X <=> HCN_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R81 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R81 +# entry( +# index = 82, +# label = "HCN_X <=> HCN + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (21.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R82 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 83, + label = "CN + X <=> CN_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R83 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R83 +# entry( +# index = 84, +# label = "CN_X <=> CN + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (78.2, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R84 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R86 +# entry( +# index = 85, +# label = "HCN_X + X <=> CN_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (21.1, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R85 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 86, + label = "CN_X + H_X <=> HCN_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (13.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R86 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R88 +# entry( +# index = 87, +# label = "HCN_X + O_X <=> CN_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (17.1, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R87 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 88, + label = "CN_X + OH_X <=> HCN_X + O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (27.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R88 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R90 +# entry( +# index = 89, +# label = "HCN_X + OH_X <=> CN_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (5.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_Single_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R89 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 90, + label = "CN_X + H2O_X <=> HCN_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (3.4, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R90 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R92 +# entry( +# index = 91, +# label = "CN_X + O_X <=> C_X + NO_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (8.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R91 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 92, + label = "C_X + NO_X <=> CN_X + O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (4.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R92 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R94 +# entry( +# index = 93, +# label = "CO_X + N_X <=> CN_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (76.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R93 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 94, + label = "CN_X + O_X <=> CO_X + N_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (15.4, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R94 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +#---------------------CH2O oxidation--------------------------------- + +entry( + index = 95, + label = "CH2O + X <=> CH2O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R95 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R95 +# entry( +# index = 96, +# label = "CH2O_X <=> CH2O + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (14.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R96 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 97, + label = "HCO + X <=> HCO_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R97 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R97 +# entry( +# index = 98, +# label = "HCO_X <=> HCO + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (54.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R98 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R100 +# entry( +# index = 99, +# label = "CH2O_X + X <=> HCO_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (8.1, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R99 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 100, + label = "HCO_X + H_X <=> CH2O_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (20.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R100 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 101, + label = "HCO_X + OH_X <=> CH2O_X + O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (30.9, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R101 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R101 +# entry( +# index = 102, +# label = "CH2O_X + O_X <=> HCO_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R102 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 103, + label = "HCO_X + H2O_X <=> CH2O_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (18.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R103 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R103 +# entry( +# index = 104, +# label = "CH2O_X + OH_X <=> HCO_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_Single_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R104 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R106 +# entry( +# index = 105, +# label = "HCO_X + X <=> CO_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R105 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 106, + label = "CO_X + H_X <=> HCO_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (30.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R106 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 107, + label = "CO_X + OH_X <=> HCO_X + O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (49.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R107 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R107 +# entry( +# index = 108, +# label = "HCO_X + O_X <=> CO_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (6E20, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1.5E12(1/s)/2.5E-9(mol/cm^2) = 6E20 cm^2/(mol*s) + +# This is R108 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 109, + label = "CO_X + H2O_X <=> HCO_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (36.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R109 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R109 +# entry( +# index = 110, +# label = "HCO_X + OH_X <=> CO_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R110 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +#---------------------C foramtion and oxidation---------------------- + +entry( + index = 111, + label = "C + X <=> C_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Quadruple bonds""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R111 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R111 +# entry( +# index = 112, +# label = "C_X <=> C + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (158.2, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Quadruple bonds""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R112 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R114 +# entry( +# index = 113, +# label = "CO_X + X <=> C_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (54.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann libraries""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R113 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 114, + label = "C_X + O_X <=> CO_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (1.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann libraries""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R114 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 115, + label = "CO_X + CO_X <=> C_X + CO2_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (48.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann libraries""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R115 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R115 +# entry( +# index = 116, +# label = "C_X + CO2_X <=> CO_X + CO_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann libraries""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R116 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +#---------------------N2O and C2N2 formation/decomposition----------- + +entry( + index = 117, + label = "N2O + X <=> N2O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R117 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R117 +# entry( +# index = 118, +# label = "N2O_X <=> N2O + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (6.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R118 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R120 +# entry( +# index = 119, +# label = "N2O_X + X <=> N_X + NO_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (3.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R119 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 120, + label = "N_X + NO_X <=> N2O_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (19.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R120 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 121, + label = "C2N2 + X <=> C2N2_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R121 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R121 +# entry( +# index = 122, +# label = "C2N2_X <=> C2N2 + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (21, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R122 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R124 +# entry( +# index = 123, +# label = "C2N2_X + X <=> CN_X + CN_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (29.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R123 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 124, + label = "CN_X + CN_X <=> C2N2_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (28.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R124 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) From fba051e8940b3aa6c2b0b883e24c39907901d1fd Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 3 Jul 2021 11:19:26 -0400 Subject: [PATCH 20/27] add Kraehnert_Pt111 --- .../Surface/Kraehnert_Pt111/dictionary.txt | 53 ++++++ .../Surface/Kraehnert_Pt111/reactions.py | 161 ++++++++++++++++++ 2 files changed, 214 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Kraehnert_Pt111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Kraehnert_Pt111/reactions.py diff --git a/input/kinetics/libraries/Surface/Kraehnert_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Kraehnert_Pt111/dictionary.txt new file mode 100644 index 0000000000..101bc55f31 --- /dev/null +++ b/input/kinetics/libraries/Surface/Kraehnert_Pt111/dictionary.txt @@ -0,0 +1,53 @@ +X +1 X u0 p0 c0 + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} diff --git a/input/kinetics/libraries/Surface/Kraehnert_Pt111/reactions.py b/input/kinetics/libraries/Surface/Kraehnert_Pt111/reactions.py new file mode 100644 index 0000000000..7012fdcd3c --- /dev/null +++ b/input/kinetics/libraries/Surface/Kraehnert_Pt111/reactions.py @@ -0,0 +1,161 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Kraehnert_Pt111" +shortDesc = u"" +longDesc = u""" +Based primarily on +"Kinetics of ammonia oxidation over Pt foil studied in a micro-structured quartz-reactor" +Kraehnert et al.(2008) +Chemical Engineering Journal,137(2), 361-375 +https://doi.org/10.1016/j.cej.2007.05.005 +""" + +entry( + index = 1, + label = "NH3_X <=> NH3 + X", + kinetics = SurfaceArrhenius( + A = (1.48E9, '1/s'), + n = 0.0, + Ea = (60900, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Kinetics of ammonia oxidation over Pt foil studied in a micro-structured quartz-reactor" +Kraehnert et al.(2008) +Chemical Engineering Journal,137(2), 361-375 +https://doi.org/10.1016/j.cej.2007.05.005 + +A = k/exp(-Ea/RT) = 2.17(1/s)/exp(-60900(J/mol)/8.314(J/mol/K)/658K) = 1.48E09 (1/s) + +Table 3, R1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 2, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.16293, + n = 0.0, + Ea = (181000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Kinetics of ammonia oxidation over Pt foil studied in a micro-structured quartz-reactor" +Kraehnert et al.(2008) +Chemical Engineering Journal,137(2), 361-375 +https://doi.org/10.1016/j.cej.2007.05.005 + +A = ((2.94e2/Pa)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(32(g/mol))*the molar gas constant*(298 kelvin)) =0.16293 +Table 3, R2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 3, + label = "NO_X <=> NO + X", + kinetics = SurfaceArrhenius( + A = (2.41E16, '1/s'), + n = 0.0, + Ea = (154800, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"Kinetics of ammonia oxidation over Pt foil studied in a micro-structured quartz-reactor" +Kraehnert et al.(2008) +Chemical Engineering Journal,137(2), 361-375 +https://doi.org/10.1016/j.cej.2007.05.005 + +A = k/exp(-Ea/RT) = 1.24(1/s)/exp(-154800(J/mol)/8.314(J/mol/K)/658K) = 2.41E16 (1/s) + +Table 3, R4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 4, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (6.96E16, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (139000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Kinetics of ammonia oxidation over Pt foil studied in a micro-structured quartz-reactor" +Kraehnert et al.(2008) +Chemical Engineering Journal,137(2), 361-375 +https://doi.org/10.1016/j.cej.2007.05.005 + +A = k/exp(-Ea/RT) = 64.2(m^2/mol/s)/exp(-139000(J/mol)/8.314(J/mol/K)/658K) = 6.96E16 cm^2/mol/s + +Table 3, R5 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 5, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (5.14E15, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (135300, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"Kinetics of ammonia oxidation over Pt foil studied in a micro-structured quartz-reactor" +Kraehnert et al.(2008) +Chemical Engineering Journal,137(2), 361-375 +https://doi.org/10.1016/j.cej.2007.05.005 + +A = k/exp(-Ea/RT) = 9.34(cm^2/mol/s)/exp(-135300(J/mol)/8.314(J/mol/K)/658K) = 5.14E15 cm^2/mol/s + +Table 3, R6 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 6, + label = "N_X + NO_X <=> N2O + X + X", + kinetics = SurfaceArrhenius( + A = (1.09E17, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (155200, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Default""", + longDesc = u""" +"Kinetics of ammonia oxidation over Pt foil studied in a micro-structured quartz-reactor" +Kraehnert et al.(2008) +Chemical Engineering Journal,137(2), 361-375 +https://doi.org/10.1016/j.cej.2007.05.005 + +A = k/exp(-Ea/RT) = 5.2(m^2/mol/s)/exp(-155200(J/mol)/8.314(J/mol*K)/658K) = 1.09E17 (cm^2/mol/s) + +Table 3, R7 +""", + metal = "Pt", + facet = "111", +) \ No newline at end of file From 18ff3afa3c632b5ea7491a6027c0cf18818a8ee3 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Tue, 20 Jul 2021 22:18:16 -0400 Subject: [PATCH 21/27] reorganize surface libraries to Methane, Ammonia, DOC, Hydrazine --- .../libraries/Surface/{ => Ammonia}/Duan_Ni111/dictionary.txt | 0 .../libraries/Surface/{ => Ammonia}/Duan_Ni111/reactions.py | 0 .../libraries/Surface/{ => Ammonia}/Duan_Ni211/dictionary.txt | 0 .../libraries/Surface/{ => Ammonia}/Duan_Ni211/reactions.py | 0 .../Surface/{ => Ammonia}/Kraehnert_Pt111/dictionary.txt | 0 .../libraries/Surface/{ => Ammonia}/Kraehnert_Pt111/reactions.py | 0 .../libraries/Surface/{ => Ammonia}/Novell_Pd111/dictionary.txt | 0 .../libraries/Surface/{ => Ammonia}/Novell_Pd111/reactions.py | 0 .../libraries/Surface/{ => Ammonia}/Novell_Pt111/dictionary.txt | 0 .../libraries/Surface/{ => Ammonia}/Novell_Pt111/reactions.py | 0 .../libraries/Surface/{ => Ammonia}/Novell_Rh111/dictionary.txt | 0 .../libraries/Surface/{ => Ammonia}/Novell_Rh111/reactions.py | 0 .../Surface/{ => Ammonia}/Offermans_Pt111/dictionary.txt | 0 .../libraries/Surface/{ => Ammonia}/Offermans_Pt111/reactions.py | 0 .../libraries/Surface/{ => Ammonia}/Popa_Rh111/dictionary.txt | 0 .../libraries/Surface/{ => Ammonia}/Popa_Rh111/reactions.py | 0 .../libraries/Surface/{ => Ammonia}/Rebrov_Pt111/dictionary.txt | 0 .../libraries/Surface/{ => Ammonia}/Rebrov_Pt111/reactions.py | 0 .../libraries/Surface/{ => Ammonia}/Roldan_Ru0001/dictionary.txt | 0 .../libraries/Surface/{ => Ammonia}/Roldan_Ru0001/reactions.py | 0 .../libraries/Surface/{ => Ammonia}/Scheuer_Pt/dictionary.txt | 0 .../libraries/Surface/{ => Ammonia}/Scheuer_Pt/reactions.py | 0 .../Surface/{ => Ammonia}/Schneider_Pd111/dictionary.txt | 0 .../libraries/Surface/{ => Ammonia}/Schneider_Pd111/reactions.py | 0 .../Surface/{ => Ammonia}/Schneider_Pd211/dictionary.txt | 0 .../libraries/Surface/{ => Ammonia}/Schneider_Pd211/reactions.py | 0 .../Surface/{ => Ammonia}/Schneider_Pt111/dictionary.txt | 0 .../libraries/Surface/{ => Ammonia}/Schneider_Pt111/reactions.py | 0 .../Surface/{ => Ammonia}/Schneider_Pt211/dictionary.txt | 0 .../libraries/Surface/{ => Ammonia}/Schneider_Pt211/reactions.py | 0 .../Surface/{ => Ammonia}/Schneider_Rh111/dictionary.txt | 0 .../libraries/Surface/{ => Ammonia}/Schneider_Rh111/reactions.py | 0 .../Surface/{ => Ammonia}/Schneider_Rh211/dictionary.txt | 0 .../libraries/Surface/{ => Ammonia}/Schneider_Rh211/reactions.py | 0 .../libraries/Surface/{ => Ammonia}/Vlachos_Ru0001/dictionary.txt | 0 .../libraries/Surface/{ => Ammonia}/Vlachos_Ru0001/reactions.py | 0 .../libraries/Surface/{ => DOC}/Arevalo_Pt111/dictionary.txt | 0 .../libraries/Surface/{ => DOC}/Arevalo_Pt111/reactions.py | 0 .../libraries/Surface/{ => DOC}/Ishikawa_Rh111/dictionary.txt | 0 .../libraries/Surface/{ => DOC}/Ishikawa_Rh111/reactions.py | 0 .../libraries/Surface/{ => DOC}/Mhadeshwar_Pt111/dictionary.txt | 0 .../libraries/Surface/{ => DOC}/Mhadeshwar_Pt111/reactions.py | 0 .../kinetics/libraries/Surface/{ => DOC}/Nitrogen/dictionary.txt | 0 input/kinetics/libraries/Surface/{ => DOC}/Nitrogen/reactions.py | 0 .../libraries/Surface/{ => Hydrazine}/Roldan_Cu111/dictionary.txt | 0 .../libraries/Surface/{ => Hydrazine}/Roldan_Cu111/reactions.py | 0 .../libraries/Surface/{ => Hydrazine}/Roldan_Ir111/dictionary.txt | 0 .../libraries/Surface/{ => Hydrazine}/Roldan_Ir111/reactions.py | 0 .../libraries/Surface/{ => Methane}/Deutschmann_Ni/dictionary.txt | 0 .../libraries/Surface/{ => Methane}/Deutschmann_Ni/reactions.py | 0 .../Surface/{ => Methane}/Deutschmann_Ni_full/dictionary.txt | 0 .../Surface/{ => Methane}/Deutschmann_Ni_full/reactions.py | 0 .../Deutschmann2006 => Methane/Deutschmann_Pt}/dictionary.txt | 0 .../Deutschmann2006 => Methane/Deutschmann_Pt}/reactions.py | 0 .../libraries/Surface/{ => Methane}/Vlachos_Pt111/dictionary.txt | 0 .../libraries/Surface/{ => Methane}/Vlachos_Pt111/reactions.py | 0 .../libraries/Surface/{ => Methane}/Vlachos_Rh/dictionary.txt | 0 .../libraries/Surface/{ => Methane}/Vlachos_Rh/reactions.py | 0 58 files changed, 0 insertions(+), 0 deletions(-) rename input/kinetics/libraries/Surface/{ => Ammonia}/Duan_Ni111/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Duan_Ni111/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Duan_Ni211/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Duan_Ni211/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Kraehnert_Pt111/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Kraehnert_Pt111/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Novell_Pd111/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Novell_Pd111/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Novell_Pt111/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Novell_Pt111/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Novell_Rh111/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Novell_Rh111/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Offermans_Pt111/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Offermans_Pt111/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Popa_Rh111/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Popa_Rh111/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Rebrov_Pt111/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Rebrov_Pt111/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Roldan_Ru0001/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Roldan_Ru0001/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Scheuer_Pt/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Scheuer_Pt/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Schneider_Pd111/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Schneider_Pd111/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Schneider_Pd211/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Schneider_Pd211/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Schneider_Pt111/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Schneider_Pt111/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Schneider_Pt211/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Schneider_Pt211/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Schneider_Rh111/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Schneider_Rh111/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Schneider_Rh211/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Schneider_Rh211/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Vlachos_Ru0001/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Ammonia}/Vlachos_Ru0001/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => DOC}/Arevalo_Pt111/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => DOC}/Arevalo_Pt111/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => DOC}/Ishikawa_Rh111/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => DOC}/Ishikawa_Rh111/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => DOC}/Mhadeshwar_Pt111/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => DOC}/Mhadeshwar_Pt111/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => DOC}/Nitrogen/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => DOC}/Nitrogen/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => Hydrazine}/Roldan_Cu111/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Hydrazine}/Roldan_Cu111/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => Hydrazine}/Roldan_Ir111/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Hydrazine}/Roldan_Ir111/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => Methane}/Deutschmann_Ni/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Methane}/Deutschmann_Ni/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => Methane}/Deutschmann_Ni_full/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Methane}/Deutschmann_Ni_full/reactions.py (100%) rename input/kinetics/libraries/Surface/{CPOX_Pt/Deutschmann2006 => Methane/Deutschmann_Pt}/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{CPOX_Pt/Deutschmann2006 => Methane/Deutschmann_Pt}/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => Methane}/Vlachos_Pt111/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Methane}/Vlachos_Pt111/reactions.py (100%) rename input/kinetics/libraries/Surface/{ => Methane}/Vlachos_Rh/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{ => Methane}/Vlachos_Rh/reactions.py (100%) diff --git a/input/kinetics/libraries/Surface/Duan_Ni111/dictionary.txt b/input/kinetics/libraries/Surface/Ammonia/Duan_Ni111/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Duan_Ni111/dictionary.txt rename to input/kinetics/libraries/Surface/Ammonia/Duan_Ni111/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Duan_Ni111/reactions.py b/input/kinetics/libraries/Surface/Ammonia/Duan_Ni111/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Duan_Ni111/reactions.py rename to input/kinetics/libraries/Surface/Ammonia/Duan_Ni111/reactions.py diff --git a/input/kinetics/libraries/Surface/Duan_Ni211/dictionary.txt b/input/kinetics/libraries/Surface/Ammonia/Duan_Ni211/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Duan_Ni211/dictionary.txt rename to input/kinetics/libraries/Surface/Ammonia/Duan_Ni211/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Duan_Ni211/reactions.py b/input/kinetics/libraries/Surface/Ammonia/Duan_Ni211/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Duan_Ni211/reactions.py rename to input/kinetics/libraries/Surface/Ammonia/Duan_Ni211/reactions.py diff --git a/input/kinetics/libraries/Surface/Kraehnert_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Ammonia/Kraehnert_Pt111/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Kraehnert_Pt111/dictionary.txt rename to input/kinetics/libraries/Surface/Ammonia/Kraehnert_Pt111/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Kraehnert_Pt111/reactions.py b/input/kinetics/libraries/Surface/Ammonia/Kraehnert_Pt111/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Kraehnert_Pt111/reactions.py rename to input/kinetics/libraries/Surface/Ammonia/Kraehnert_Pt111/reactions.py diff --git a/input/kinetics/libraries/Surface/Novell_Pd111/dictionary.txt b/input/kinetics/libraries/Surface/Ammonia/Novell_Pd111/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Novell_Pd111/dictionary.txt rename to input/kinetics/libraries/Surface/Ammonia/Novell_Pd111/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Novell_Pd111/reactions.py b/input/kinetics/libraries/Surface/Ammonia/Novell_Pd111/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Novell_Pd111/reactions.py rename to input/kinetics/libraries/Surface/Ammonia/Novell_Pd111/reactions.py diff --git a/input/kinetics/libraries/Surface/Novell_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Ammonia/Novell_Pt111/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Novell_Pt111/dictionary.txt rename to input/kinetics/libraries/Surface/Ammonia/Novell_Pt111/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Novell_Pt111/reactions.py b/input/kinetics/libraries/Surface/Ammonia/Novell_Pt111/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Novell_Pt111/reactions.py rename to input/kinetics/libraries/Surface/Ammonia/Novell_Pt111/reactions.py diff --git a/input/kinetics/libraries/Surface/Novell_Rh111/dictionary.txt b/input/kinetics/libraries/Surface/Ammonia/Novell_Rh111/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Novell_Rh111/dictionary.txt rename to input/kinetics/libraries/Surface/Ammonia/Novell_Rh111/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Novell_Rh111/reactions.py b/input/kinetics/libraries/Surface/Ammonia/Novell_Rh111/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Novell_Rh111/reactions.py rename to input/kinetics/libraries/Surface/Ammonia/Novell_Rh111/reactions.py diff --git a/input/kinetics/libraries/Surface/Offermans_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Ammonia/Offermans_Pt111/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Offermans_Pt111/dictionary.txt rename to input/kinetics/libraries/Surface/Ammonia/Offermans_Pt111/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py b/input/kinetics/libraries/Surface/Ammonia/Offermans_Pt111/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py rename to input/kinetics/libraries/Surface/Ammonia/Offermans_Pt111/reactions.py diff --git a/input/kinetics/libraries/Surface/Popa_Rh111/dictionary.txt b/input/kinetics/libraries/Surface/Ammonia/Popa_Rh111/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Popa_Rh111/dictionary.txt rename to input/kinetics/libraries/Surface/Ammonia/Popa_Rh111/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Popa_Rh111/reactions.py b/input/kinetics/libraries/Surface/Ammonia/Popa_Rh111/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Popa_Rh111/reactions.py rename to input/kinetics/libraries/Surface/Ammonia/Popa_Rh111/reactions.py diff --git a/input/kinetics/libraries/Surface/Rebrov_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Ammonia/Rebrov_Pt111/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Rebrov_Pt111/dictionary.txt rename to input/kinetics/libraries/Surface/Ammonia/Rebrov_Pt111/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py b/input/kinetics/libraries/Surface/Ammonia/Rebrov_Pt111/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py rename to input/kinetics/libraries/Surface/Ammonia/Rebrov_Pt111/reactions.py diff --git a/input/kinetics/libraries/Surface/Roldan_Ru0001/dictionary.txt b/input/kinetics/libraries/Surface/Ammonia/Roldan_Ru0001/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Roldan_Ru0001/dictionary.txt rename to input/kinetics/libraries/Surface/Ammonia/Roldan_Ru0001/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py b/input/kinetics/libraries/Surface/Ammonia/Roldan_Ru0001/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py rename to input/kinetics/libraries/Surface/Ammonia/Roldan_Ru0001/reactions.py diff --git a/input/kinetics/libraries/Surface/Scheuer_Pt/dictionary.txt b/input/kinetics/libraries/Surface/Ammonia/Scheuer_Pt/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Scheuer_Pt/dictionary.txt rename to input/kinetics/libraries/Surface/Ammonia/Scheuer_Pt/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Scheuer_Pt/reactions.py b/input/kinetics/libraries/Surface/Ammonia/Scheuer_Pt/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Scheuer_Pt/reactions.py rename to input/kinetics/libraries/Surface/Ammonia/Scheuer_Pt/reactions.py diff --git a/input/kinetics/libraries/Surface/Schneider_Pd111/dictionary.txt b/input/kinetics/libraries/Surface/Ammonia/Schneider_Pd111/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Schneider_Pd111/dictionary.txt rename to input/kinetics/libraries/Surface/Ammonia/Schneider_Pd111/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Schneider_Pd111/reactions.py b/input/kinetics/libraries/Surface/Ammonia/Schneider_Pd111/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Schneider_Pd111/reactions.py rename to input/kinetics/libraries/Surface/Ammonia/Schneider_Pd111/reactions.py diff --git a/input/kinetics/libraries/Surface/Schneider_Pd211/dictionary.txt b/input/kinetics/libraries/Surface/Ammonia/Schneider_Pd211/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Schneider_Pd211/dictionary.txt rename to input/kinetics/libraries/Surface/Ammonia/Schneider_Pd211/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Schneider_Pd211/reactions.py b/input/kinetics/libraries/Surface/Ammonia/Schneider_Pd211/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Schneider_Pd211/reactions.py rename to input/kinetics/libraries/Surface/Ammonia/Schneider_Pd211/reactions.py diff --git a/input/kinetics/libraries/Surface/Schneider_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Ammonia/Schneider_Pt111/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Schneider_Pt111/dictionary.txt rename to input/kinetics/libraries/Surface/Ammonia/Schneider_Pt111/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py b/input/kinetics/libraries/Surface/Ammonia/Schneider_Pt111/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py rename to input/kinetics/libraries/Surface/Ammonia/Schneider_Pt111/reactions.py diff --git a/input/kinetics/libraries/Surface/Schneider_Pt211/dictionary.txt b/input/kinetics/libraries/Surface/Ammonia/Schneider_Pt211/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Schneider_Pt211/dictionary.txt rename to input/kinetics/libraries/Surface/Ammonia/Schneider_Pt211/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py b/input/kinetics/libraries/Surface/Ammonia/Schneider_Pt211/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py rename to input/kinetics/libraries/Surface/Ammonia/Schneider_Pt211/reactions.py diff --git a/input/kinetics/libraries/Surface/Schneider_Rh111/dictionary.txt b/input/kinetics/libraries/Surface/Ammonia/Schneider_Rh111/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Schneider_Rh111/dictionary.txt rename to input/kinetics/libraries/Surface/Ammonia/Schneider_Rh111/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py b/input/kinetics/libraries/Surface/Ammonia/Schneider_Rh111/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py rename to input/kinetics/libraries/Surface/Ammonia/Schneider_Rh111/reactions.py diff --git a/input/kinetics/libraries/Surface/Schneider_Rh211/dictionary.txt b/input/kinetics/libraries/Surface/Ammonia/Schneider_Rh211/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Schneider_Rh211/dictionary.txt rename to input/kinetics/libraries/Surface/Ammonia/Schneider_Rh211/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Schneider_Rh211/reactions.py b/input/kinetics/libraries/Surface/Ammonia/Schneider_Rh211/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Schneider_Rh211/reactions.py rename to input/kinetics/libraries/Surface/Ammonia/Schneider_Rh211/reactions.py diff --git a/input/kinetics/libraries/Surface/Vlachos_Ru0001/dictionary.txt b/input/kinetics/libraries/Surface/Ammonia/Vlachos_Ru0001/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Vlachos_Ru0001/dictionary.txt rename to input/kinetics/libraries/Surface/Ammonia/Vlachos_Ru0001/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Vlachos_Ru0001/reactions.py b/input/kinetics/libraries/Surface/Ammonia/Vlachos_Ru0001/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Vlachos_Ru0001/reactions.py rename to input/kinetics/libraries/Surface/Ammonia/Vlachos_Ru0001/reactions.py diff --git a/input/kinetics/libraries/Surface/Arevalo_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/DOC/Arevalo_Pt111/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Arevalo_Pt111/dictionary.txt rename to input/kinetics/libraries/Surface/DOC/Arevalo_Pt111/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Arevalo_Pt111/reactions.py b/input/kinetics/libraries/Surface/DOC/Arevalo_Pt111/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Arevalo_Pt111/reactions.py rename to input/kinetics/libraries/Surface/DOC/Arevalo_Pt111/reactions.py diff --git a/input/kinetics/libraries/Surface/Ishikawa_Rh111/dictionary.txt b/input/kinetics/libraries/Surface/DOC/Ishikawa_Rh111/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Ishikawa_Rh111/dictionary.txt rename to input/kinetics/libraries/Surface/DOC/Ishikawa_Rh111/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Ishikawa_Rh111/reactions.py b/input/kinetics/libraries/Surface/DOC/Ishikawa_Rh111/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Ishikawa_Rh111/reactions.py rename to input/kinetics/libraries/Surface/DOC/Ishikawa_Rh111/reactions.py diff --git a/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/DOC/Mhadeshwar_Pt111/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Mhadeshwar_Pt111/dictionary.txt rename to input/kinetics/libraries/Surface/DOC/Mhadeshwar_Pt111/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/reactions.py b/input/kinetics/libraries/Surface/DOC/Mhadeshwar_Pt111/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Mhadeshwar_Pt111/reactions.py rename to input/kinetics/libraries/Surface/DOC/Mhadeshwar_Pt111/reactions.py diff --git a/input/kinetics/libraries/Surface/Nitrogen/dictionary.txt b/input/kinetics/libraries/Surface/DOC/Nitrogen/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Nitrogen/dictionary.txt rename to input/kinetics/libraries/Surface/DOC/Nitrogen/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Nitrogen/reactions.py b/input/kinetics/libraries/Surface/DOC/Nitrogen/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Nitrogen/reactions.py rename to input/kinetics/libraries/Surface/DOC/Nitrogen/reactions.py diff --git a/input/kinetics/libraries/Surface/Roldan_Cu111/dictionary.txt b/input/kinetics/libraries/Surface/Hydrazine/Roldan_Cu111/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Roldan_Cu111/dictionary.txt rename to input/kinetics/libraries/Surface/Hydrazine/Roldan_Cu111/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Roldan_Cu111/reactions.py b/input/kinetics/libraries/Surface/Hydrazine/Roldan_Cu111/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Roldan_Cu111/reactions.py rename to input/kinetics/libraries/Surface/Hydrazine/Roldan_Cu111/reactions.py diff --git a/input/kinetics/libraries/Surface/Roldan_Ir111/dictionary.txt b/input/kinetics/libraries/Surface/Hydrazine/Roldan_Ir111/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Roldan_Ir111/dictionary.txt rename to input/kinetics/libraries/Surface/Hydrazine/Roldan_Ir111/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py b/input/kinetics/libraries/Surface/Hydrazine/Roldan_Ir111/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py rename to input/kinetics/libraries/Surface/Hydrazine/Roldan_Ir111/reactions.py diff --git a/input/kinetics/libraries/Surface/Deutschmann_Ni/dictionary.txt b/input/kinetics/libraries/Surface/Methane/Deutschmann_Ni/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Deutschmann_Ni/dictionary.txt rename to input/kinetics/libraries/Surface/Methane/Deutschmann_Ni/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Deutschmann_Ni/reactions.py b/input/kinetics/libraries/Surface/Methane/Deutschmann_Ni/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Deutschmann_Ni/reactions.py rename to input/kinetics/libraries/Surface/Methane/Deutschmann_Ni/reactions.py diff --git a/input/kinetics/libraries/Surface/Deutschmann_Ni_full/dictionary.txt b/input/kinetics/libraries/Surface/Methane/Deutschmann_Ni_full/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Deutschmann_Ni_full/dictionary.txt rename to input/kinetics/libraries/Surface/Methane/Deutschmann_Ni_full/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Deutschmann_Ni_full/reactions.py b/input/kinetics/libraries/Surface/Methane/Deutschmann_Ni_full/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Deutschmann_Ni_full/reactions.py rename to input/kinetics/libraries/Surface/Methane/Deutschmann_Ni_full/reactions.py diff --git a/input/kinetics/libraries/Surface/CPOX_Pt/Deutschmann2006/dictionary.txt b/input/kinetics/libraries/Surface/Methane/Deutschmann_Pt/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/CPOX_Pt/Deutschmann2006/dictionary.txt rename to input/kinetics/libraries/Surface/Methane/Deutschmann_Pt/dictionary.txt diff --git a/input/kinetics/libraries/Surface/CPOX_Pt/Deutschmann2006/reactions.py b/input/kinetics/libraries/Surface/Methane/Deutschmann_Pt/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/CPOX_Pt/Deutschmann2006/reactions.py rename to input/kinetics/libraries/Surface/Methane/Deutschmann_Pt/reactions.py diff --git a/input/kinetics/libraries/Surface/Vlachos_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Methane/Vlachos_Pt111/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Vlachos_Pt111/dictionary.txt rename to input/kinetics/libraries/Surface/Methane/Vlachos_Pt111/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py b/input/kinetics/libraries/Surface/Methane/Vlachos_Pt111/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py rename to input/kinetics/libraries/Surface/Methane/Vlachos_Pt111/reactions.py diff --git a/input/kinetics/libraries/Surface/Vlachos_Rh/dictionary.txt b/input/kinetics/libraries/Surface/Methane/Vlachos_Rh/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Vlachos_Rh/dictionary.txt rename to input/kinetics/libraries/Surface/Methane/Vlachos_Rh/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Vlachos_Rh/reactions.py b/input/kinetics/libraries/Surface/Methane/Vlachos_Rh/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Vlachos_Rh/reactions.py rename to input/kinetics/libraries/Surface/Methane/Vlachos_Rh/reactions.py From 0331b6443ba2748059c172f511c5fbd59ac8b57d Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Wed, 21 Jul 2021 14:19:10 -0400 Subject: [PATCH 22/27] add coverage_dependence into Vlachos_Ru0001 --- .../Ammonia/Vlachos_Ru0001/reactions.py | 195 ++++++++++++++++-- 1 file changed, 174 insertions(+), 21 deletions(-) diff --git a/input/kinetics/libraries/Surface/Ammonia/Vlachos_Ru0001/reactions.py b/input/kinetics/libraries/Surface/Ammonia/Vlachos_Ru0001/reactions.py index 53aa5541af..e04f39ce63 100644 --- a/input/kinetics/libraries/Surface/Ammonia/Vlachos_Ru0001/reactions.py +++ b/input/kinetics/libraries/Surface/Ammonia/Vlachos_Ru0001/reactions.py @@ -34,10 +34,36 @@ facet = "0001", ) -#skip R2 (reverse reaction of R1) +#Reverse reaction of R1 +# entry( +# index = 2, +# label = "H_X + H_X <=> H2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (4.18E19, 'cm^2/(mol*s)'), +# n = 0, +# Ea = (19.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# coverage_dependence = {'H_X': {'a':0.0, 'm':0.0,'E': (-7.0, 'kcal/mol')}}, +# ), +# shortDesc = u"""H2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "The role of adsorbate–adsorbate interactions in the rate controlling step +# and the most abundant reaction intermediate of NH3 decomposition on Ru" +# D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +# https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +# This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +# A = 1.1E11(1/s)/2.630E-9(mol/cm^2) = 4.18E19 cm^2/(mol*s) + +# This is R2 in Table 2 (set A) +# """, +# metal = "Ru", +# facet = "0001", +# ) entry( - index = 2, + index = 3, label = "N2 + X + X <=> N_X + N_X", kinetics = StickingCoefficient( A = 0.2, @@ -45,10 +71,10 @@ Ea = (7.1, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), - # coverage_dependence = {'N_X': {'E': (26.3, 'kacl/mol'), 'm':0.0, 'a':0.0},}, + coverage_dependence = {'N_X': {'a':0.0, 'm':0.0,'E': (26.3, 'kcal/mol')}}, ), shortDesc = u"""N2 Surface_Adsorption_Dissociative""", - longDesc = u""" + longDesc = u""" "The role of adsorbate–adsorbate interactions in the rate controlling step and the most abundant reaction intermediate of NH3 decomposition on Ru" D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. @@ -60,10 +86,36 @@ facet = "0001", ) -#skip R4 (reverse reaction of R3) +#Reverse reaction of R3 +# entry( +# index = 4, +# label = "N_X + N_X <=> N2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (6.46E20, 'cm^2/(mol*s)'), +# n = 0, +# Ea = (51.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# coverage_dependence = {'N_X': {'a':0.0, 'm':0.0,'E': (-43.8, 'kcal/mol')}}, +# ), +# shortDesc = u"""H2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "The role of adsorbate–adsorbate interactions in the rate controlling step +# and the most abundant reaction intermediate of NH3 decomposition on Ru" +# D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +# https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +# This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +# A = 1.7E12(1/s)/2.630E-9(mol/cm^2) = 6.46E20 cm^2/(mol*s) + +# This is R4 in Table 2 (set A) +# """, +# metal = "Ru", +# facet = "0001", +# ) entry( - index = 3, + index = 5, label = "NH_X + X <=> N_X + H_X", kinetics = SurfaceArrhenius( A = (7.22E20, 'cm^2/(mol*s)'), @@ -71,11 +123,11 @@ Ea = (5.3, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), - # coverage_dependence = {'N_X': {'E': (15.5, 'kacl/mol'), 'm':0.0, 'a':0.0},}, - # coverage_dependence = {'H_X': {'E': (1, 'kacl/mol'), 'm':0.0, 'a':0.0},}, + coverage_dependence = {'N_X': {'a':0.0, 'm':0.0, 'E':(15.5, 'kcal/mol')}, + 'H_X': {'a':0.0, 'm':0.0, 'E':(1.0, 'kcal/mol')}}, ), shortDesc = u"""Surface_Dissociation""", - longDesc = u""" + longDesc = u""" "The role of adsorbate–adsorbate interactions in the rate controlling step and the most abundant reaction intermediate of NH3 decomposition on Ru" D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. @@ -90,10 +142,37 @@ facet = "0001", ) -#skip R6 (reverse reaction of R5) +#Reverse reaction of R5 +# entry( +# index = 6, +# label = "N_X + H_X <=> NH_X + X", +# kinetics = SurfaceArrhenius( +# A = (2.89E18, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (37.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# coverage_dependence = {'N_X': {'a':0.0, 'm':0.0, 'E':(19.5, 'kcal/mol')}, +# 'H_X': {'a':0.0, 'm':0.0, 'E':(2.5, 'kcal/mol')}}, +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "The role of adsorbate–adsorbate interactions in the rate controlling step +# and the most abundant reaction intermediate of NH3 decomposition on Ru" +# D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +# https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +# This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +# A = 7.6E9˙(1/s)/2.630E-9(mol/cm^2) = 2.89E18 cm^2/(mol*s) + +# This is R6 in Table 2 (set A) +# """, +# metal = "Ru", +# facet = "0001", +# ) entry( - index = 4, + index = 7, label = "NH2_X + X <=> NH_X + H_X", kinetics = SurfaceArrhenius( A = (7.60E20, 'cm^2/(mol*s)'), @@ -101,10 +180,10 @@ Ea = (20.1, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), - # coverage_dependence = {'H_X': {'E': (1.2, 'kacl/mol'), 'm':0.0, 'a':0.0},}, + coverage_dependence = {'H_X': {'a':0.0, 'm':0.0, 'E':(1.2, 'kcal/mol')}}, ), shortDesc = u"""Surface_Dissociation""", - longDesc = u""" + longDesc = u""" "The role of adsorbate–adsorbate interactions in the rate controlling step and the most abundant reaction intermediate of NH3 decomposition on Ru" D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. @@ -119,10 +198,36 @@ facet = "0001", ) -#skip R9 (reverse reaction of R7) +#Reverse reaction of R7 +# entry( +# index = 8, +# label = "NH_X + H_X <=> NH2_X + X", +# kinetics = SurfaceArrhenius( +# A = (5.32E18, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (15.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# coverage_dependence = {'H_X': {'a':0.0, 'm':0.0, 'E':(2.3, 'kcal/mol')}}, +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "The role of adsorbate–adsorbate interactions in the rate controlling step +# and the most abundant reaction intermediate of NH3 decomposition on Ru" +# D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +# https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +# This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +# A = 1.4E10(1/s)/2.630E-9(mol/cm^2) = 5.32E18 cm^2/(mol*s) + +# This is R8 in Table 2 (set A) +# """, +# metal = "Ru", +# facet = "0001", +# ) entry( - index = 5, + index = 9, label = "NH3_X + X <=> NH2_X + H_X", kinetics = SurfaceArrhenius( A = (7.60E20, 'cm^2/(mol*s)'), @@ -130,10 +235,10 @@ Ea = (18.7, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), - # coverage_dependence = {'H_X': {'E': (1.3, 'kacl/mol'), 'm':0.0, 'a':0.0},}, + coverage_dependence = {'H_X': {'a':0.0, 'm':0.0, 'E':(1.3, 'kcal/mol')}}, ), shortDesc = u"""Surface_Dissociation_vdW""", - longDesc = u""" + longDesc = u""" "The role of adsorbate–adsorbate interactions in the rate controlling step and the most abundant reaction intermediate of NH3 decomposition on Ru" D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. @@ -148,10 +253,36 @@ facet = "0001", ) -#skip R10 (reverse reaction of R9) +#Reverse reaction of R9 +# entry( +# index = 10, +# label = "NH2_X + H_X <=> NH3_X + X", +# kinetics = SurfaceArrhenius( +# A = (1.29E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (11.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# coverage_dependence = {'H_X': {'a':0.0, 'm':0.0, 'E':(2.2, 'kcal/mol')}}, +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "The role of adsorbate–adsorbate interactions in the rate controlling step +# and the most abundant reaction intermediate of NH3 decomposition on Ru" +# D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +# https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +# This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +# A = 3.4E10(1/s)/2.630E-9(mol/cm^2) = 1.29E19 cm^2/(mol*s) + +# This is R10 in Table 2 (set A) +# """, +# metal = "Ru", +# facet = "0001", +# ) entry( - index = 6, + index = 11, label = "NH3 + X <=> NH3_X", kinetics = StickingCoefficient( A = 0.00015, @@ -161,7 +292,7 @@ Tmax = (3000, 'K'), ), shortDesc = u"""Surface_Adsorption_vdW""", - longDesc = u""" + longDesc = u""" "The role of adsorbate–adsorbate interactions in the rate controlling step and the most abundant reaction intermediate of NH3 decomposition on Ru" D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. @@ -173,4 +304,26 @@ facet = "0001", ) -#skip R12 (reverse reaction of R11) \ No newline at end of file +#Reverse reaction of R11 +# entry( +# index = 12, +# label = "NH3_X <=> NH3 + X", +# kinetics = SurfaceArrhenius( +# A = (8.1E11, '1/s'), +# n = 0.0, +# Ea = (17.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "The role of adsorbate–adsorbate interactions in the rate controlling step +# and the most abundant reaction intermediate of NH3 decomposition on Ru" +# D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +# https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +# This is R12 in Table 2 (set A) +# """, +# metal = "Ru", +# facet = "0001", +# ) From c1b3542812d5393bc9fa3f07681e463df73809da Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Wed, 21 Jul 2021 14:20:03 -0400 Subject: [PATCH 23/27] add coverage_dependence into Vlachos_Pt111 --- .../libraries/Surface/Methane/Vlachos_Pt111/reactions.py | 9 +++++++++ 1 file changed, 9 insertions(+) diff --git a/input/kinetics/libraries/Surface/Methane/Vlachos_Pt111/reactions.py b/input/kinetics/libraries/Surface/Methane/Vlachos_Pt111/reactions.py index 37d03ba05f..3a6ea0e053 100644 --- a/input/kinetics/libraries/Surface/Methane/Vlachos_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Methane/Vlachos_Pt111/reactions.py @@ -45,6 +45,7 @@ # Ea = (50.9, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), +# coverage_dependence = {'O_X': {'a':0.0, 'm':0.0, 'E':(-32, 'kcal/mol')}}, # ), # shortDesc = u"""O2 Surface_Adsorption_Dissociative""", # longDesc = u""" @@ -96,6 +97,7 @@ # Ea = (85.0, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), +# coverage_dependence = {'O_X': {'a':0.0, 'm':0.0, 'E':(-16, 'kcal/mol')}}, # ), # shortDesc = u"""Surface_Adsorption_Double""", # longDesc = u""" @@ -144,6 +146,7 @@ # Ea = (40, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), +# coverage_dependence = {'CO_X': {'a':0.0, 'm':0.0, 'E':(-15, 'kcal/mol')}}, # ), # shortDesc = u"""Surface_Adsorption_Double""", # longDesc = u""" @@ -294,6 +297,7 @@ # Ea = (19.8, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), +# coverage_dependence = {'H_X': {'a':0.0, 'm':0.0, 'E':(-6, 'kcal/mol')}}, # ), # shortDesc = u"""H2 Surface_Adsorption_Dissociative""", # longDesc = u""" @@ -507,6 +511,8 @@ # Ea = (63.0, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), +# coverage_dependence = {'O_X': {'a':0.0, 'm':0.0, 'E':(-33, 'kcal/mol')} +# 'H2O_X': {'a':0.0, 'm':0.0, 'E':(25, 'kcal/mol')}}, # ), # shortDesc = u"""Surface_Adsorption_Single""", # longDesc = u""" @@ -555,6 +561,8 @@ # Ea = (10, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), +# coverage_dependence = {'OH_X': {'a':0.0, 'm':0.0, 'E':(25, 'kcal/mol')} +# 'H2O_X': {'a':0.0, 'm':0.0, 'E':(-2.5, 'kcal/mol')}}, # ), # shortDesc = u"""Surface_Adsorption_vdW""", # longDesc = u""" @@ -603,6 +611,7 @@ # Ea = (62.0, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), +# coverage_dependence = {'H_X': {'a':0.0, 'm':0.0, 'E':(-3, 'kcal/mol')}}, # ), # shortDesc = u"""Surface_Adsorption_Single""", # longDesc = u""" From d351b9595790b95c7b7ac050e6cc9a212eb1b088 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Wed, 21 Jul 2021 14:20:44 -0400 Subject: [PATCH 24/27] add coverage_dependence into Nitrogen library --- input/kinetics/libraries/Surface/DOC/Nitrogen/reactions.py | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/input/kinetics/libraries/Surface/DOC/Nitrogen/reactions.py b/input/kinetics/libraries/Surface/DOC/Nitrogen/reactions.py index bf0f2d96e3..2f60f62466 100644 --- a/input/kinetics/libraries/Surface/DOC/Nitrogen/reactions.py +++ b/input/kinetics/libraries/Surface/DOC/Nitrogen/reactions.py @@ -59,6 +59,7 @@ # Ea = (113.9, 'kJ/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), +# coverage_dependence = {'CO_X': {'a':0.0, 'm':0.0, 'E':(-75, 'kJ/mol')}}, # ), # shortDesc = u"""N2 Surface_Adsorption_Dissociative""", # longDesc = """ @@ -102,6 +103,7 @@ # Ea = (122.6, 'kJ/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), +# coverage_dependence = {'O_X': {'a':0.0, 'm':0.0, 'E':(-60, 'kJ/mol')}}, # ), # shortDesc = u"""Nitrogen/51""", # longDesc = """ @@ -239,6 +241,8 @@ # Ea = (111.3, 'kJ/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), +# coverage_dependence = {'CO_X': {'a':0.0, 'm':0.0, 'E':(75, 'kJ/mol')} +# 'O_X': {'a':0.0, 'm':0.0, 'E':(-60, 'kJ/mol')}}, # ), # shortDesc = u"""""", # longDesc = """ @@ -316,6 +320,7 @@ Ea = (133, 'kJ/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), + coverage_dependence = {'CO_X': {'a':0.0, 'm':0.0, 'E':(75, 'kJ/mol')}}, ), shortDesc = u"""Surface_Dissociation""", longDesc = """ From dd3873bc3536f2923b3a5b45f32c5f436798aa25 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Wed, 21 Jul 2021 14:21:06 -0400 Subject: [PATCH 25/27] add coverage_dependence into Mhadeshwar_Pt111 --- .../libraries/Surface/DOC/Mhadeshwar_Pt111/reactions.py | 9 +++++++++ 1 file changed, 9 insertions(+) diff --git a/input/kinetics/libraries/Surface/DOC/Mhadeshwar_Pt111/reactions.py b/input/kinetics/libraries/Surface/DOC/Mhadeshwar_Pt111/reactions.py index b21c765908..f02b1b2e1d 100644 --- a/input/kinetics/libraries/Surface/DOC/Mhadeshwar_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/DOC/Mhadeshwar_Pt111/reactions.py @@ -50,6 +50,7 @@ # Ea = (86, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), +# coverage_dependence = {'O_X': {'a':0.0, 'm':0.0, 'E':(13.3, 'kcal/mol')}}, # ), # shortDesc = u"""Surface_Adsorption_Double""", # longDesc = u""" @@ -101,6 +102,7 @@ # Ea = (52.9, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), +# coverage_dependence = {'O_X': {'a':0.0, 'm':0.0, 'E':(-26.6, 'kcal/mol')}}, # ), # shortDesc = u"""O2 Surface_Adsorption_Dissociative""", # longDesc = u""" @@ -155,6 +157,7 @@ # Ea = (40, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), +# coverage_dependence = {'CO_X': {'a':0.0, 'm':0.0, 'E':(-8.3, 'kcal/mol')}}, # ), # shortDesc = u"""Surface_Adsorption_Double""", # longDesc = u""" @@ -316,6 +319,7 @@ # Ea = (60.9, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), +# coverage_dependence = {'H_X': {'a':0.0, 'm':0.0, 'E':(-1.9, 'kcal/mol')}}, # ), # shortDesc = u"""Surface_Adsorption_Single""", # longDesc = u""" @@ -367,6 +371,7 @@ # Ea = (17.6, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), +# coverage_dependence = {'H_X': {'a':0.0, 'm':0.0, 'E':(-3.8, 'kcal/mol')}}, # ), # shortDesc = u"""H2 Surface_Adsorption_Dissociative""", # longDesc = u""" @@ -470,6 +475,7 @@ # Ea = (63, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), +# coverage_dependence = {'O_X': {'a':0.0, 'm':0.0, 'E':(-33, 'kcal/mol')}}, # ), # shortDesc = u"""Surface_Adsorption_Single""", # longDesc = u""" @@ -1190,6 +1196,7 @@ # Ea = (20.7, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), +# coverage_dependence = {'NH3_X': {'a':0.0, 'm':0.0, 'E':(-9.5, 'kcal/mol')}}, # ), # shortDesc = u"""Surface_Adsorption_vdW""", # longDesc = u""" @@ -1842,6 +1849,8 @@ # Ea = (30.5, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), +# coverage_dependence = {'NO_X': {'a':0.0, 'm':0.0, 'E':(-8, 'kcal/mol')}, +# 'O_X': {'a':0.0, 'm':0.0, 'E':(-16, 'kcal/mol')}}, # ), # shortDesc = u"""Surface_Adsorption_Single""", # longDesc = u""" From c1f77276f616c71dd1868baf84b7e5721710e44a Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Wed, 21 Jul 2021 16:56:50 -0400 Subject: [PATCH 26/27] add CO_X to Nitrogen/dictionary --- input/kinetics/libraries/Surface/DOC/Nitrogen/dictionary.txt | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/input/kinetics/libraries/Surface/DOC/Nitrogen/dictionary.txt b/input/kinetics/libraries/Surface/DOC/Nitrogen/dictionary.txt index 514927c253..685dd8f3ad 100644 --- a/input/kinetics/libraries/Surface/DOC/Nitrogen/dictionary.txt +++ b/input/kinetics/libraries/Surface/DOC/Nitrogen/dictionary.txt @@ -67,3 +67,8 @@ OH_X H_X 1 H u0 p0 c0 {2,S} 2 X u0 p0 c0 {1,S} + +CO_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,D} +3 X u0 p0 c0 {2,D} \ No newline at end of file From 0662f093a140340374db9d4573c0d7737620bcb7 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Wed, 21 Jul 2021 17:15:34 -0400 Subject: [PATCH 27/27] add coverage_dependence into Vlachos_Rh --- .../libraries/Surface/Methane/Vlachos_Rh/reactions.py | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/input/kinetics/libraries/Surface/Methane/Vlachos_Rh/reactions.py b/input/kinetics/libraries/Surface/Methane/Vlachos_Rh/reactions.py index 74228aa99d..9125fba909 100644 --- a/input/kinetics/libraries/Surface/Methane/Vlachos_Rh/reactions.py +++ b/input/kinetics/libraries/Surface/Methane/Vlachos_Rh/reactions.py @@ -42,6 +42,8 @@ # Ea = (12.3, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), +# coverage_dependence = {'O_X': {'a':0.0, 'm':0.0, 'E':(-5, 'kcal/mol')} +# 'CO_X': {'a':0.0, 'm':0.0, 'E':(-7.4, 'kcal/mol')}}, # ), # shortDesc = u"""H2 Surface_Adsorption_Dissociative""", # longDesc = u""" @@ -139,6 +141,8 @@ # Ea = (7.5, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), +# coverage_dependence = {'H2O_X': {'a':0.0, 'm':0.0, 'E':(-4.5, 'kcal/mol')} +# 'OH_X': {'a':0.0, 'm':0.0, 'E':(25, 'kcal/mol')}}, # ), # shortDesc = u"""Surface_Adsorption_vdW""", # longDesc = u""" @@ -183,6 +187,8 @@ # Ea = (32.8, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), +# coverage_dependence = {'H_X': {'a':0.0, 'm':0.0, 'E':(-3.7, 'kcal/mol')} +# 'CO_X': {'a':0.0, 'm':0.0, 'E':(-15, 'kcal/mol')}}, # ), # shortDesc = u"""Surface_Adsorption_Double""", # longDesc = u"""