From c1a7fb2cd1da18b95e749d9ad7ffdd889acf2dde Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Wed, 12 May 2021 23:38:22 -0400 Subject: [PATCH 01/27] added surface Pt111 libraries of Novell, Offermans, Ralph, Ryan and Schneider --- .../Surface/Novell_Pt111/dictionary.txt | 34 ++ .../Surface/Novell_Pt111/reactions.py | 77 ++++ .../Surface/Offermans_Pt111/dictionary.txt | 68 ++++ .../Surface/Offermans_Pt111/reactions.py | 253 +++++++++++++ .../Surface/Ralph_Pt111/dictionary.txt | 53 +++ .../Surface/Ralph_Pt111/reactions.py | 144 ++++++++ .../Surface/Ryan_Pt111/dictionary.txt | 34 ++ .../libraries/Surface/Ryan_Pt111/reactions.py | 96 +++++ .../Surface/Schneider_Pt111/dictionary.txt | 89 +++++ .../Surface/Schneider_Pt111/reactions.py | 340 ++++++++++++++++++ 10 files changed, 1188 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Novell_Pt111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Novell_Pt111/reactions.py create mode 100644 input/kinetics/libraries/Surface/Offermans_Pt111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py create mode 100644 input/kinetics/libraries/Surface/Ralph_Pt111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Ralph_Pt111/reactions.py create mode 100644 input/kinetics/libraries/Surface/Ryan_Pt111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Ryan_Pt111/reactions.py create mode 100644 input/kinetics/libraries/Surface/Schneider_Pt111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py diff --git a/input/kinetics/libraries/Surface/Novell_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Novell_Pt111/dictionary.txt new file mode 100644 index 0000000000..63125a26da --- /dev/null +++ b/input/kinetics/libraries/Surface/Novell_Pt111/dictionary.txt @@ -0,0 +1,34 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Novell_Pt111/reactions.py b/input/kinetics/libraries/Surface/Novell_Pt111/reactions.py new file mode 100644 index 0000000000..92eecfd5cd --- /dev/null +++ b/input/kinetics/libraries/Surface/Novell_Pt111/reactions.py @@ -0,0 +1,77 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Novell_Pt111" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b +""" + +entry( + index = 16, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.859E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (91000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 500K) = 7.1E11(1/s)/2.483E-9(mol/cm^2) = 2.859E20 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 17, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.430E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (101000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 500K) = 1.1E13(1/s)/2.483E-9(mol/cm^2) = 4.430E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 18, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (5.236E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (116000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 500K) = 1.3E13(1/s)/2.483E-9(mol/cm^2) = 5.236E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) diff --git a/input/kinetics/libraries/Surface/Offermans_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Offermans_Pt111/dictionary.txt new file mode 100644 index 0000000000..7a21bf47c5 --- /dev/null +++ b/input/kinetics/libraries/Surface/Offermans_Pt111/dictionary.txt @@ -0,0 +1,68 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py b/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py new file mode 100644 index 0000000000..a34f684d6d --- /dev/null +++ b/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py @@ -0,0 +1,253 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Offermans_Pt111" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +""" + +entry( + index = 5, + label = "N2 + X <=> N2_X", + kinetics = SurfaceArrhenius( + A = (3.464E21, 'cm^2/(mol*s)'), + n = 0, + Ea = (4000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_vdW""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K)= 8.6E12(1/s)/2.483E-9(mol/cm^2) = 3.464E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 12, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.255E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (93000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K)= 5.6E11(1/s)/2.483E-9(mol/cm^2) = 2.255E20 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 13, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.014E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (110000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 5.0E12(1/s)/2.483E-9(mol/cm^2) = 2.014E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 14, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.08997E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (118000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 7.2E12(1/s)/2.483E-9(mol/cm^2) = 2.8997E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 15, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4.833E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (42000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 1.2E12(1/s)/2.483E-9(mol/cm^2) = 4.833E20 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 16, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.457E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (87000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 6.1E12(1/s)/2.483E-9(mol/cm^2) = 2.457E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 17, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.061E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (84000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 7.6E12(1/s)/2.483E-9(mol/cm^2) = 3.061E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 18, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (6.444E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (73000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 1.6E11(1/s)/2.483E-9(mol/cm^2) = 6.444E19 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 19, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (1.369E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (22000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 3.4E12(1/s)/2.483E-9(mol/cm^2) = 1.369E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 20, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.054E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (35000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 5.1E11(1/s)/2.483E-9(mol/cm^2) = 2.054E20 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 24, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (2.859E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (1000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 7.1E12(1/s)/2.483E-9(mol/cm^2) = 2.859E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Ralph_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Ralph_Pt111/dictionary.txt new file mode 100644 index 0000000000..101bc55f31 --- /dev/null +++ b/input/kinetics/libraries/Surface/Ralph_Pt111/dictionary.txt @@ -0,0 +1,53 @@ +X +1 X u0 p0 c0 + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} diff --git a/input/kinetics/libraries/Surface/Ralph_Pt111/reactions.py b/input/kinetics/libraries/Surface/Ralph_Pt111/reactions.py new file mode 100644 index 0000000000..1c2e747a5d --- /dev/null +++ b/input/kinetics/libraries/Surface/Ralph_Pt111/reactions.py @@ -0,0 +1,144 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Ralph_Pt111" +shortDesc = u"" +longDesc = u""" +Based primarily on +"Ammonia Oxidation over Polycrystalline Platinum: +Surface Morphology and Kinetics at Atmospheric Pressure." +Krähnert, Ralph(2005) A Doctoral Thesis. +http://dx.doi.org/10.14279/depositonce-1270 +""" + +entry( + index = 24, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (4.91E16, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (135300, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"Ammonia Oxidation over Polycrystalline Platinum: +Surface Morphology and Kinetics at Atmospheric Pressure." +Krähnert, Ralph(2005) A Doctoral Thesis. +http://dx.doi.org/10.14279/depositonce-1270 +A = k/exp(Ea/RT) = 9.34(mol/m^2/s)/exp(135300J/mol / 8.314J/molK / 298K) = 4.91E16 cm^2/mol/s +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 49, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (7.06E17, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (139000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Ammonia Oxidation over Polycrystalline Platinum: +Surface Morphology and Kinetics at Atmospheric Pressure." +Krähnert, Ralph(2005) A Doctoral Thesis. +http://dx.doi.org/10.14279/depositonce-1270 +A = k/exp(Ea/RT) = 64.2(mol/m^2/s)/exp(139000J/mol / 8.314J/molK / 298K) = 7.06E17 cm^2/mol/s +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 50, + label = "O_X + O_X <=> O2 + X + X", + kinetics = SurfaceArrhenius( + A = (5.21E9, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (181000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Ammonia Oxidation over Polycrystalline Platinum: +Surface Morphology and Kinetics at Atmospheric Pressure." +Krähnert, Ralph(2005) A Doctoral Thesis. +http://dx.doi.org/10.14279/depositonce-1270 +A = k/exp(Ea/RT) = 1.09E-10(mol/m^2/s)/exp(181000J/mol / 8.314J/molK / 298K) = 5.21E9 cm^2/mol/s +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 58, + label = "NH3_X <=> NH3 + X", + kinetics = SurfaceArrhenius( + A = (3.09E9, '1/s'), + n = 0.0, + Ea = (60900, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Ammonia Oxidation over Polycrystalline Platinum: +Surface Morphology and Kinetics at Atmospheric Pressure." +Krähnert, Ralph(2005) A Doctoral Thesis. +http://dx.doi.org/10.14279/depositonce-1270 +A = k/exp(Ea/RT) = 2.17(mol/m^2/s)/exp(60900J/mol / 8.314J/molK / 298K) = 4.09E9 cm^2/mol/s +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 76, + label = "NO_X <=> NO + X", + kinetics = SurfaceArrhenius( + A = (3.19E17, '1/s'), + n = 0.0, + Ea = (154800, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"Ammonia Oxidation over Polycrystalline Platinum: +Surface Morphology and Kinetics at Atmospheric Pressure." +Krähnert, Ralph(2005) A Doctoral Thesis. +http://dx.doi.org/10.14279/depositonce-1270 +A = k/exp(Ea/RT) = 1.24(mol/m^2/s)/exp(154800J/mol / 8.314J/molK / 298K) = 3.19E17 cm^2/mol/s +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 80, + label = "N_X + NO_X <=> N2O + X + X", + kinetics = SurfaceArrhenius( + A = (1.45E18, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (155200, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Default""", + longDesc = u""" +"Ammonia Oxidation over Polycrystalline Platinum: +Surface Morphology and Kinetics at Atmospheric Pressure." +Krähnert, Ralph(2005) A Doctoral Thesis. +http://dx.doi.org/10.14279/depositonce-1270 +A = k/exp(Ea/RT) = 5.2(mol/m^2/s)/exp(155200J/mol / 8.314J/molK / 298K) = 1.45E18 cm^2/mol/s +""", + metal = "Pt", + facet = "111", +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Ryan_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Ryan_Pt111/dictionary.txt new file mode 100644 index 0000000000..87b07faca9 --- /dev/null +++ b/input/kinetics/libraries/Surface/Ryan_Pt111/dictionary.txt @@ -0,0 +1,34 @@ +X +1 X u0 p0 c0 + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + + +NO2_X +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 N u0 p1 c0 {1,S} {2,D} +4 X u0 p0 c0 {1,S} + +NO2 +multiplicity 2 +1 N u0 p1 c0 {2,D} {3,S} +2 O u0 p2 c0 {1,D} +3 O u1 p2 c0 {1,S} diff --git a/input/kinetics/libraries/Surface/Ryan_Pt111/reactions.py b/input/kinetics/libraries/Surface/Ryan_Pt111/reactions.py new file mode 100644 index 0000000000..0906b30505 --- /dev/null +++ b/input/kinetics/libraries/Surface/Ryan_Pt111/reactions.py @@ -0,0 +1,96 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Ryan_Pt111" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" +Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) +https://doi.org/10.1116/1.4903225 +""" + +entry( + index = 1, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.1768, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" +Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) +https://doi.org/10.1116/1.4903225 +A = ((3.19E7 /bar) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 32 g/mol * molar gas constant * 298 kelvin) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 28, + label = "NO_X + O_X <=> NO2_X + X", + kinetics = SurfaceArrhenius( + A = (1.776E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (115788, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" +Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) +https://doi.org/10.1116/1.4903225 +A (at 300K) = 4.41E13(1/s)/2.483E-9(mol/cm^2) = 1.776E22 cm^2/(mol*s) +Ea = 1.2eV * 96490J/eV mol = 115788J/mol +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 29, + label = "NO + X <=> NO_X", + kinetics = StickingCoefficient( + A = 1.4917E-6, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" +Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) +https://doi.org/10.1116/1.4903225 +A = ((2.78E2 /bar) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 30 g/mol * molar gas constant * 298 kelvin) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 30, + label = "NO2 + X <=> NO2_X", + kinetics = StickingCoefficient( + A = 1.4884E-6, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u""" """, + longDesc = u""" +"First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" +Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) +https://doi.org/10.1116/1.4903225 +A = ((2.24E2 /bar) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 46 g/mol * molar gas constant * 298 kelvin) +""", + metal = "Pt", + facet = "111", +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Schneider_Pt111/dictionary.txt new file mode 100644 index 0000000000..d027b065aa --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pt111/dictionary.txt @@ -0,0 +1,89 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +4 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py new file mode 100644 index 0000000000..a4a1f4af84 --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py @@ -0,0 +1,340 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Schneider_Pt111" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 +""" + +#Commet out since sitcking coefficient ≈ 1 +# entry( +# index = 1, +# label = "O2 + X + X <=> O_X + O_X", +# kinetics = StickingCoefficient( +# A = 0.9975, +# n = 0, +# Ea = (0, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +# DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +# https://doi.org/10.1021/acscatal.8b04251 +# A = ((1.8E3 /pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 32 g/mol * molar gas constant * 298 kelvin) +# """, +# metal = "Pt", +# facet = "111", +# ) + +#Commet out since sitcking coefficient = 1 +# entry( +# index = 2, +# label = "NH3 + X <=> NH3_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0, +# Ea = (0, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +# DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +# https://doi.org/10.1021/acscatal.8b04251 +# A = ((2.5E3 /pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 17 g/mol * molar gas constant * 298 kelvin) +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 3, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.007E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (67543, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.2E12(1/s)/2.483E-9(mol/cm^2) 1.007E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 4, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.215E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (78157, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.5E12(1/s)/2.483E-9(mol/cm^2) = 2.215E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 5, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.141E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (154380, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 7.8E12(1/s)/2.483E-9(mol/cm^2) = 3.141E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 6, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (1.973E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (33772, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 4.9E13(1/s)/2.483E-9(mol/cm^2) = 1.973E22 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 7, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (6.041E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (965, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.5E13(1/s)/2.483E-9(mol/cm^2) = 6.041E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 8, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.376E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (39561, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.9E12(1/s)/2.483E-9(mol/cm^2) = 2.376E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 9, + label = "OH_X + OH_X <=> O_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (1.248E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Reverse R95""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 3.1E12(1/s)/2.483E-9(mol/cm^2) = 1.248E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +#Commet out since sitcking coefficient ≈ 1 +# entry( +# index = 10, +# label = "H2O + X <=> H2O_X", +# kinetics = StickingCoefficient( +# A = 9.97E-1, +# n = 0.0, +# Ea = (0, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption""", +# longDesc = u""" +# "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +# DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +# https://doi.org/10.1021/acscatal.8b04251 +# ((2.4e3 /Pa) / s) * (2.4e-9 mol/cm2) * sqrt(2 * pi * 18 g/mol * molar gas constant * 298 kelvin) +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 11, + label = "N2 + X + X <=> N_X + N_X", + kinetics = StickingCoefficient( + A = 3.525E-5, + n = 0.0, + Ea = (244119, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 +((6.8E-2 /Pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 28 g/mol * molar gas constant * 298 kelvin) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 12, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (3.343E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (213243, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.3E12(1/s)/2.483E-9(mol/cm^2) = 3.343E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +#Commet out since sitcking coefficient = 1 +# entry( +# index = 13, +# label = "NO + X <=> NO_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (0, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +# DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +# https://doi.org/10.1021/acscatal.8b04251 +# ((1.9E3 /Pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 30 g/mol * molar gas constant * 298 kelvin) +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 14, + label = "N_X + NO_X <=> N2O_X + X", + kinetics = SurfaceArrhenius( + A = (1.732E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (164998, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 4.3E12(1/s)/2.483E-9(mol/cm^2) = 1.732E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +#Commet out since sitcking coefficient = 1 +# entry( +# index = 15, +# label = "N2O + X <=> N2O_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (0, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", +# longDesc = u""" +# "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +# DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +# https://doi.org/10.1021/acscatal.8b04251 +# ((1.6E3 /Pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 44 g/mol * molar gas constant * 298 kelvin) +# """, +# metal = "Pt", +# facet = "111", +# ) \ No newline at end of file From 0c95aa77d9fde40d635a19229e8d67973698aa97 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Thu, 13 May 2021 12:46:52 -0400 Subject: [PATCH 02/27] added training reactions from Novell, Offermans, Ralph, Ryan and Schneider_Pt111 libraries --- .../training/dictionary.txt | 79 ++++++---- .../Surface_Abstraction/training/reactions.py | 84 ++++++++++ .../training/dictionary.txt | 23 +++ .../training/reactions.py | 42 +++++ .../training/dictionary.txt | 48 +++++- .../training/reactions.py | 147 ++++++++++++++++++ .../training/dictionary.txt | 18 ++- .../training/reactions.py | 60 +++++++ .../training/dictionary.txt | 35 ++++- .../training/reactions.py | 42 +++++ .../training/dictionary.txt | 114 ++++++++------ .../training/reactions.py | 105 +++++++++++++ .../training/dictionary.txt | 14 +- .../training/reactions.py | 42 +++++ .../Surface/Offermans_Pt111/reactions.py | 4 +- 15 files changed, 755 insertions(+), 102 deletions(-) diff --git a/input/kinetics/families/Surface_Abstraction/training/dictionary.txt b/input/kinetics/families/Surface_Abstraction/training/dictionary.txt index 3cd99757ec..f8fe44c7d4 100644 --- a/input/kinetics/families/Surface_Abstraction/training/dictionary.txt +++ b/input/kinetics/families/Surface_Abstraction/training/dictionary.txt @@ -1,48 +1,48 @@ CH2X_1 -1 *1 C u0 p0 {2,S} {3,S} {4,D} -2 H u0 p0 {1,S} -3 H u0 p0 {1,S} -4 *2 X u0 p0 {1,D} +1 *1 C u0 p0 c0 {2,S} {3,S} {4,D} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *2 X u0 p0 c0 {1,D} HOX_3 -1 *3 O u0 p2 {2,S} {3,S} -2 *4 H u0 p0 {1,S} -3 *5 X u0 p0 {1,S} +1 *3 O u0 p2 c0 {2,S} {3,S} +2 *4 H u0 p0 c0 {1,S} +3 *5 X u0 p0 c0 {1,S} CH3X_4 -1 *1 C u0 p0 {2,S} {3,S} {4,S} {5,S} -2 *4 H u0 p0 {1,S} -3 H u0 p0 {1,S} -4 H u0 p0 {1,S} -5 *2 X u0 p0 {1,S} +1 *1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 *4 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *2 X u0 p0 c0 {1,S} OX_5 -1 *5 X u0 p0 c0 {2,D} -2 *3 O u0 p2 c0 {1,D} +1 *3 O u0 p2 c0 {2,D} +2 *5 X u0 p0 c0 {1,D} CHX_1 -1 *1 C u0 p0 {2,S} {3,T} -2 H u0 p0 {1,S} -3 *2 X u0 p0 {1,T} +1 *1 C u0 p0 c0 {2,S} {3,T} +2 H u0 p0 c0 {1,S} +3 *2 X u0 p0 c0 {1,T} CH2X_4 -1 *1 C u0 p0 {2,S} {3,S} {4,D} -2 *4 H u0 p0 {1,S} -3 H u0 p0 {1,S} -4 *2 X u0 p0 {1,D} +1 *1 C u0 p0 c0 {2,S} {3,S} {4,D} +2 *4 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *2 X u0 p0 c0 {1,D} CX_1 -1 *1 C u0 p0 {2,Q} -2 *2 X u0 p0 {1,Q} +1 *1 C u0 p0 c0 {2,Q} +2 *2 X u0 p0 c0 {1,Q} CHX_4 -1 *1 C u0 p0 {2,S} {3,T} -2 *4 H u0 p0 {1,S} -3 *2 X u0 p0 {1,T} +1 *1 C u0 p0 c0 {2,S} {3,T} +2 *4 H u0 p0 c0 {1,S} +3 *2 X u0 p0 c0 {1,T} O* -1 *2 X u0 p0 c0 {2,D} -2 *1 O u0 p2 c0 {1,D} +1 *1 O u0 p2 c0 {2,D} +2 *2 X u0 p0 c0 {1,D} HCO* 1 O u0 p2 c0 {2,D} @@ -58,4 +58,25 @@ OH* CO* 1 O u0 p2 c0 {2,D} 2 *3 C u0 p0 c0 {1,D} {3,D} -3 *5 X u0 p0 c0 {2,D} \ No newline at end of file +3 *5 X u0 p0 c0 {2,D} + +H2NX +1 *3 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *4 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *5 X u0 p0 c0 {1,S} + +HNX +1 *3 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 *5 X u0 p0 c0 {1,D} + +HNX-2 +1 *3 N u0 p1 c0 {2,S} {3,D} +2 *4 H u0 p0 c0 {1,S} +3 *5 X u0 p0 c0 {1,D} + +NX +1 *3 N u0 p1 c0 {2,T} +2 *5 X u0 p0 c0 {1,T} + diff --git a/input/kinetics/families/Surface_Abstraction/training/reactions.py b/input/kinetics/families/Surface_Abstraction/training/reactions.py index da2f0f3774..433928984e 100644 --- a/input/kinetics/families/Surface_Abstraction/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction/training/reactions.py @@ -115,3 +115,87 @@ """, metal = "Cu", ) +entry( + index = 40, + label = "H2NX + O* <=> OH* + HNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.215e+21,'cm^2/(mol*s)'), n=0, Ea=(78157,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt111 +Original entry: NH2_X +O_X <=> NH_X + OH_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.5E12(1/s)/2.483E-9(mol/cm^2) = 2.215E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 41, + label = "HNX-2 + O* <=> OH* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.141e+21,'cm^2/(mol*s)'), n=0, Ea=(154380,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt111 +Original entry: NH_X + O_X <=> N_X + OH_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 7.8E12(1/s)/2.483E-9(mol/cm^2) = 3.141E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 42, + label = "H2NX + O* <=> OH* + HNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.457e+21,'cm^2/(mol*s)'), n=0, Ea=(87000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Offermans_Pt111 +Original entry: NH2_X +O_X <=> NH_X + OH_X +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 6.1E12(1/s)/2.483E-9(mol/cm^2) = 2.457E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 43, + label = "HNX-2 + O* <=> OH* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.061e+21,'cm^2/(mol*s)'), n=0, Ea=(84000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Offermans_Pt111 +Original entry: NH_X + O_X <=> N_X + OH_X +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 7.6E12(1/s)/2.483E-9(mol/cm^2) = 3.061E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/dictionary.txt index 8b13789179..bcc157dade 100644 --- a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/dictionary.txt @@ -1 +1,24 @@ +HOX +1 *4 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 *5 X u0 p0 c0 {1,S} + +H3NX +1 *2 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *3 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *1 X u0 p0 c0 + +H2NX +1 *2 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *1 X u0 p0 c0 {1,S} + +H2OX +1 *4 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 *3 H u0 p0 c0 {1,S} +4 *5 X u0 p0 c0 diff --git a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py index 5923ee141f..3c2ed9ce2a 100644 --- a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py @@ -8,3 +8,45 @@ training set for generating rate rules to populate this kinetics family. """ +entry( + index = 1, + label = "HOX + H3NX <=> H2NX + H2OX", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(1.973e+22,'cm^2/(mol*s)'), n=0, Ea=(33772,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt111 +Original entry: NH3_X + OH_X <=> NH2_X + H2O_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 4.9E13(1/s)/2.483E-9(mol/cm^2) = 1.973E22 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 2, + label = "HOX + H3NX <=> H2NX + H2OX", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(6.444e+19,'cm^2/(mol*s)'), n=0, Ea=(73000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Offermans_Pt111 +Original entry: NH3_X + OH_X <=> NH2_X + H2O_X +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 1.6E11(1/s)/2.483E-9(mol/cm^2) = 6.444E19 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt index f9f7eb7c90..828e2f3a7b 100644 --- a/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt @@ -62,13 +62,13 @@ CH3OH* 7 *1 X u0 p0 c0 HCOOCH3* -1 O u0 p2 c0 {2,D} -2 *3 C u0 p0 c0 {1,D} {3,S} {5,S} -3 *2 O u0 p2 c0 {2,S} {4,S} -4 C u0 p0 c0 {3,S} {6,S} {7,S} {8,S} -5 H u0 p0 c0 {2,S} -6 H u0 p0 c0 {4,S} -7 H u0 p0 c0 {4,S} +1 *2 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {4,D} +3 C u0 p0 c0 {1,S} {5,S} {6,S} {7,S} +4 *3 C u0 p0 c0 {1,S} {2,D} {8,S} +5 H u0 p0 c0 {3,S} +6 H u0 p0 c0 {3,S} +7 H u0 p0 c0 {3,S} 8 H u0 p0 c0 {4,S} 9 *1 X u0 p0 c0 @@ -93,3 +93,37 @@ CH3* 3 H u0 p0 c0 {1,S} 4 H u0 p0 c0 {1,S} 5 *1 X u0 p0 c0 {1,S} + +H3NX +1 *2 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *3 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *1 X u0 p0 c0 + +H2NX +1 *2 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *1 X u0 p0 c0 {1,S} + +H2NX-2 +1 *4 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 *3 H u0 p0 c0 {1,S} +4 *5 X u0 p0 c0 {1,S} + +HNX +1 *4 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 *5 X u0 p0 c0 {1,D} + +HNX-2 +1 *4 N u0 p1 c0 {2,S} {3,D} +2 *3 H u0 p0 c0 {1,S} +3 *5 X u0 p0 c0 {1,D} + +NX +1 *4 N u0 p1 c0 {2,T} +2 *5 X u0 p0 c0 {1,T} + diff --git a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py index c6606c7759..6a56a46996 100644 --- a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py @@ -166,3 +166,150 @@ """, metal = "Cu", ) +entry( + index = 47, + label = "O* + H3NX <=> H2NX + OH_4*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(1.007e+21,'cm^2/(mol*s)'), n=0, Ea=(67543,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt111 +Original entry: NH3_X +O_X <=> NH2_X + OH_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.2E12(1/s)/2.483E-9(mol/cm^2) 1.007E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 48, + label = "H2NX-2 + OH_2* <=> H2O* + HNX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(6.041e+21,'cm^2/(mol*s)'), n=0, Ea=(965,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt111 +Original entry: NH2_X + OH_X <=> NH_X + H2O_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.5E13(1/s)/2.483E-9(mol/cm^2) = 6.041E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 49, + label = "HNX-2 + OH_2* <=> H2O* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.376e+21,'cm^2/(mol*s)'), n=0, Ea=(39561,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt111 +Original entry: NH_X + OH_X <=> N_X + H2O_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.9E12(1/s)/2.483E-9(mol/cm^2) = 2.376E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 50, + label = "OH_2* + OH_4* <=> H2O* + O*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.248e+21,'cm^2/(mol*s)'), n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Reverse R95""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt111 +Original entry: OH_X + OH_X <=> O_X + H2O_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 3.1E12(1/s)/2.483E-9(mol/cm^2) = 1.248E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 51, + label = "O* + H3NX <=> H2NX + OH_4*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(4.833e+20,'cm^2/(mol*s)'), n=0, Ea=(42000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Offermans_Pt111 +Original entry: NH3_X +O_X <=> NH2_X + OH_X +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 1.2E12(1/s)/2.483E-9(mol/cm^2) = 4.833E20 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 52, + label = "H2NX-2 + OH_2* <=> H2O* + HNX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.369e+21,'cm^2/(mol*s)'), n=0, Ea=(22000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Offermans_Pt111 +Original entry: NH2_X + OH_X <=> NH_X + H2O_X +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 3.4E12(1/s)/2.483E-9(mol/cm^2) = 1.369E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 53, + label = "HNX-2 + OH_2* <=> H2O* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.054e+20,'cm^2/(mol*s)'), n=0, Ea=(35000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Offermans_Pt111 +Original entry: NH_X + OH_X <=> N_X + H2O_X +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 5.1E11(1/s)/2.483E-9(mol/cm^2) = 2.054E20 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt b/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt index 65450d01ae..80fd885420 100644 --- a/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt +++ b/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt @@ -1,6 +1,7 @@ NO -1 *1 N u1 p1 c0 {2,D} -2 O u0 p2 c0 {1,D} +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 *1 N u1 p1 c0 {1,D} Pt 1 *2 X u0 p0 c0 @@ -9,3 +10,16 @@ NO_X 1 O u0 p2 c0 {2,D} 2 *1 N u0 p1 c0 {1,D} {3,S} 3 *2 X u0 p0 c0 {2,S} + +NO2 +multiplicity 2 +1 *1 O u1 p2 c0 {3,S} +2 O u0 p2 c0 {3,D} +3 N u0 p1 c0 {1,S} {2,D} + +NO2X +1 *1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 N u0 p1 c0 {1,S} {2,D} +4 *2 X u0 p0 c0 {1,S} + diff --git a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py index 4743daadbb..55fd5ada09 100644 --- a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py @@ -28,3 +28,63 @@ This is R48""", metal = "Pt", ) +entry( + index = 49, + label = "NO_X <=> NO + Pt", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.19e+17,'1/s'), n=0, Ea=(154800,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Ralph_Pt111 +Original entry: NO_X <=> NO + X +"Ammonia Oxidation over Polycrystalline Platinum: +Surface Morphology and Kinetics at Atmospheric Pressure." +Krähnert, Ralph(2005) A Doctoral Thesis. +http://dx.doi.org/10.14279/depositonce-1270 +A = k/exp(Ea/RT) = 1.24(mol/m^2/s)/exp(154800J/mol / 8.314J/molK / 298K) = 3.19E17 cm^2/mol/s +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 50, + label = "Pt + NO <=> NO_X", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1.4917e-06, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Ryan_Pt111 +Original entry: NO + X <=> NO_X +"First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" +Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) +https://doi.org/10.1116/1.4903225 +A = ((2.78E2 /bar) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 30 g/mol * molar gas constant * 298 kelvin) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 51, + label = "Pt + NO2 <=> NO2X", + degeneracy = 2.0, + kinetics = StickingCoefficient(A=1.4884e-06, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + longDesc = +""" +Training reaction from kinetics library: Surface/Ryan_Pt111 +Original entry: NO2 + X <=> NO2_X +"First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" +Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) +https://doi.org/10.1116/1.4903225 +A = ((2.24E2 /bar) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 46 g/mol * molar gas constant * 298 kelvin) +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt index 3d5c247450..1c798e1875 100644 --- a/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt @@ -13,14 +13,14 @@ H2OX 4 *2 X u0 p0 c0 CO2 -1 *1 C u0 p0 c0 {2,D} {3,D} -2 O u0 p2 c0 {1,D} -3 O u0 p2 c0 {1,D} +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 *1 C u0 p0 c0 {1,D} {2,D} CO2X -1 *1 C u0 p0 c0 {2,D} {3,D} -2 O u0 p2 c0 {1,D} -3 O u0 p2 c0 {1,D} +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 *1 C u0 p0 c0 {1,D} {2,D} 4 *2 X u0 p0 c0 CH4 @@ -37,3 +37,26 @@ CH4X 4 H u0 p0 c0 {1,S} 5 H u0 p0 c0 {1,S} 6 *2 X u0 p0 c0 + +H3NX +1 *1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *2 X u0 p0 c0 + +H3N +1 *1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +N2 +1 *1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +N2X +1 *1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 *2 X u0 p0 c0 + diff --git a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py index b505bf30e9..0b248a3c3a 100644 --- a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py @@ -67,3 +67,45 @@ Catalysts, 2015, 5, 871-904""", metal = "Ni", ) +entry( + index = 12, + label = "H3NX <=> H3N + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.09e+09,'1/s'), n=0, Ea=(60900,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Ralph_Pt111 +Original entry: NH3_X <=> NH3 + X +"Ammonia Oxidation over Polycrystalline Platinum: +Surface Morphology and Kinetics at Atmospheric Pressure." +Krähnert, Ralph(2005) A Doctoral Thesis. +http://dx.doi.org/10.14279/depositonce-1270 +A = k/exp(Ea/RT) = 2.17(mol/m^2/s)/exp(60900J/mol / 8.314J/molK / 298K) = 4.09E9 cm^2/mol/s +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 13, + label = "X + N2 <=> N2X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.464e+21,'cm^3/(mol*s)'), n=0, Ea=(4000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """N2 Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Offermans_Pt111 +Original entry: N2 + X <=> N2_X +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K from p.62)= 8.6E12(1/s)/2.483E-9(mol/cm^2) = 3.464E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Dissociation/training/dictionary.txt b/input/kinetics/families/Surface_Dissociation/training/dictionary.txt index bcff6e36ae..d51ec97ae7 100644 --- a/input/kinetics/families/Surface_Dissociation/training/dictionary.txt +++ b/input/kinetics/families/Surface_Dissociation/training/dictionary.txt @@ -1,74 +1,74 @@ CH2X_3 -1 *1 C u0 p0 {2,S} {3,S} {4,D} -2 H u0 p0 {1,S} -3 H u0 p0 {1,S} -4 *3 X u0 p0 {1,D} +1 *1 C u0 p0 c0 {2,S} {3,S} {4,D} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *3 X u0 p0 c0 {1,D} Ni_4 1 *4 X u0 p0 c0 CH3X_1 -1 *1 C u0 p0 {2,S} {3,S} {4,S} {5,S} -2 *2 H u0 p0 {1,S} -3 H u0 p0 {1,S} -4 H u0 p0 {1,S} -5 *3 X u0 p0 {1,S} +1 *1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 *2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *3 X u0 p0 c0 {1,S} HX_5 -1 *2 H u0 p0 {2,S} -2 *4 X u0 p0 {1,S} +1 *2 H u0 p0 c0 {2,S} +2 *4 X u0 p0 c0 {1,S} CHX_3 -1 *1 C u0 p0 {2,S} {3,T} -2 H u0 p0 {1,S} -3 *3 X u0 p0 {1,T} +1 *1 C u0 p0 c0 {2,S} {3,T} +2 H u0 p0 c0 {1,S} +3 *3 X u0 p0 c0 {1,T} CH2X_1 -1 *1 C u0 p0 {2,S} {3,S} {4,D} -2 *2 H u0 p0 {1,S} -3 H u0 p0 {1,S} -4 *3 X u0 p0 {1,D} +1 *1 C u0 p0 c0 {2,S} {3,S} {4,D} +2 *2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *3 X u0 p0 c0 {1,D} HOX_1 -1 *1 O u0 p2 {2,S} {3,S} -2 *2 H u0 p0 {1,S} -3 *3 X u0 p0 {1,S} +1 *1 O u0 p2 c0 {2,S} {3,S} +2 *2 H u0 p0 c0 {1,S} +3 *3 X u0 p0 c0 {1,S} OX_3 -1 *1 X u0 p0 c0 {2,D} -2 *3 O u0 p2 c0 {1,D} +1 *3 O u0 p2 c0 {2,D} +2 *1 X u0 p0 c0 {1,D} HOCXO_1 -1 *1 C u0 p0 {2,D} {3,S} {5,S} -2 O u0 p2 {1,D} -3 *2 O u0 p2 {1,S} {4,S} -4 H u0 p0 {3,S} -5 *3 X u0 p0 {1,S} +1 *2 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 *1 C u0 p0 c0 {1,S} {2,D} {5,S} +4 H u0 p0 c0 {1,S} +5 *3 X u0 p0 c0 {3,S} OCX_3 -1 *1 C u0 p0 {2,D} {3,D} -2 O u0 p2 {1,D} -3 *3 X u0 p0 {1,D} +1 O u0 p2 c0 {2,D} +2 *1 C u0 p0 c0 {1,D} {3,D} +3 *3 X u0 p0 c0 {2,D} HOX_5 -1 *2 O u0 p2 {2,S} {3,S} -2 H u0 p0 {1,S} -3 *4 X u0 p0 {1,S} +1 *2 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 *4 X u0 p0 c0 {1,S} CXHO_1 -1 *1 C u0 p0 {2,D} {3,S} {4,S} -2 O u0 p2 {1,D} -3 *2 H u0 p0 {1,S} -4 *3 X u0 p0 {1,S} +1 O u0 p2 c0 {2,D} +2 *1 C u0 p0 c0 {1,D} {3,S} {4,S} +3 *2 H u0 p0 c0 {2,S} +4 *3 X u0 p0 c0 {2,S} CHX_1 -1 *1 C u0 p0 {2,S} {3,T} -2 *2 H u0 p0 {1,S} -3 *3 X u0 p0 {1,T} +1 *1 C u0 p0 c0 {2,S} {3,T} +2 *2 H u0 p0 c0 {1,S} +3 *3 X u0 p0 c0 {1,T} CX_3 -1 *1 C u0 p0 {2,Q} -2 *3 X u0 p0 {1,Q} +1 *1 C u0 p0 c0 {2,Q} +2 *3 X u0 p0 c0 {1,Q} HCO* 1 O u0 p2 c0 {2,D} @@ -122,15 +122,31 @@ NH2_X 4 *3 X u0 p0 c0 {1,S} NHX_1 -1 *1 N u0 p1 c0 {2,D} {3,S} -2 *3 X u0 p0 c0 {1,D} -3 H u0 p0 c0 {1,S} +1 *1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 *3 X u0 p0 c0 {1,D} NHX_2 -1 *1 N u0 p1 c0 {2,D} {3,S} -2 *3 X u0 p0 c0 {1,D} -3 *2 H u0 p0 c0 {1,S} +1 *1 N u0 p1 c0 {2,S} {3,D} +2 *2 H u0 p0 c0 {1,S} +3 *3 X u0 p0 c0 {1,D} NX 1 *1 N u0 p1 c0 {2,T} 2 *3 X u0 p0 c0 {1,T} + +NOX +1 O u0 p2 c0 {2,D} +2 *2 N u0 p1 c0 {1,D} {3,S} +3 *4 X u0 p0 c0 {2,S} + +OX +1 *1 O u0 p2 c0 {2,D} +2 *3 X u0 p0 c0 {1,D} + +NO2X +1 *1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 *2 N u0 p1 c0 {1,S} {2,D} +4 *3 X u0 p0 c0 {1,S} + diff --git a/input/kinetics/families/Surface_Dissociation/training/reactions.py b/input/kinetics/families/Surface_Dissociation/training/reactions.py index c5b0d9bee9..13a652a5b1 100644 --- a/input/kinetics/families/Surface_Dissociation/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation/training/reactions.py @@ -360,3 +360,108 @@ """, metal = "Cu", ) +entry( + index = 49, + label = "NOX + OX <=> NO2X + Ni_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.776e+22,'cm^2/(mol*s)'), n=0, Ea=(115788,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Ryan_Pt111 +Original entry: NO_X + O_X <=> NO2_X + X +"First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" +Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) +https://doi.org/10.1116/1.4903225 +A (at 300K) = 4.41E13(1/s)/2.483E-9(mol/cm^2) = 1.776E22 cm^2/(mol*s) +Ea = 1.2eV * 96490J/eV mol = 115788J/mol +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 50, + label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.014e+21,'cm^2/(mol*s)'), n=0, Ea=(110000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Offermans_Pt111 +Original entry: NH2_X + X <=> NH_X + H_X +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 5.0E12(1/s)/2.483E-9(mol/cm^2) = 2.014E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 51, + label = "Ni_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.08997e+21,'cm^2/(mol*s)'), n=0, Ea=(118000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Offermans_Pt111 +Original entry: NH_X + X <=> N_X + H_X +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 7.2E12(1/s)/2.483E-9(mol/cm^2) = 2.8997E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 52, + label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(4.43e+21,'cm^2/(mol*s)'), n=0, Ea=(101000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Novell_Pt111 +Original entry: NH2_X + X <=> NH_X + H_X +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 500K) = 1.1E13(1/s)/2.483E-9(mol/cm^2) = 4.430E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 53, + label = "Ni_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(5.236e+21,'cm^2/(mol*s)'), n=0, Ea=(116000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Novell_Pt111 +Original entry: NH_X + X <=> N_X + H_X +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 500K) = 1.3E13(1/s)/2.483E-9(mol/cm^2) = 5.236E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Dissociation_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Dissociation_vdW/training/dictionary.txt index 6bd8f5d6b5..5278e808f8 100644 --- a/input/kinetics/families/Surface_Dissociation_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Dissociation_vdW/training/dictionary.txt @@ -44,7 +44,6 @@ HCOOH* 5 H u0 p0 c0 {1,S} 6 *3 X u0 p0 c0 - HCOO* 1 *1 O u0 p2 c0 {3,S} {5,S} 2 O u0 p2 c0 {3,D} @@ -104,12 +103,12 @@ NH2_X 4 *3 X u0 p0 c0 {1,S} CH3O* -1 C u0 p0 c0 {2,S} {4,S} {5,S} {6,S} -2 *1 O u0 p2 c0 {1,S} {3,S} -3 *3 X u0 p0 c0 {2,S} -4 H u0 p0 c0 {1,S} -5 H u0 p0 c0 {1,S} -6 H u0 p0 c0 {1,S} +1 *1 O u0 p2 c0 {2,S} {6,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 *3 X u0 p0 c0 {1,S} CH3OH_2* 1 *1 O u0 p2 c0 {2,S} {6,S} @@ -134,3 +133,4 @@ CH3* 3 H u0 p0 c0 {1,S} 4 H u0 p0 c0 {1,S} 5 *3 X u0 p0 c0 {1,S} + diff --git a/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py b/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py index 7c4aa0f281..1dee00a021 100644 --- a/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py @@ -233,3 +233,45 @@ """, metal = "Cu", ) +entry( + index = 35, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.255e+20,'cm^2/(mol*s)'), n=0, Ea=(93000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Offermans_Pt111 +Original entry: NH3_X + X <=> NH2_X + H_X +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K)= 5.6E11(1/s)/2.483E-9(mol/cm^2) = 2.255E20 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 36, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.859e+20,'cm^2/(mol*s)'), n=0, Ea=(91000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Novell_Pt111 +Original entry: NH3_X + X <=> NH2_X + H_X +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 500K) = 7.1E11(1/s)/2.483E-9(mol/cm^2) = 2.859E20 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py b/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py index a34f684d6d..fff6a1a5b1 100644 --- a/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py @@ -14,7 +14,7 @@ index = 5, label = "N2 + X <=> N2_X", kinetics = SurfaceArrhenius( - A = (3.464E21, 'cm^2/(mol*s)'), + A = (3.464E21, 'cm^3/(mol*s)'), n = 0, Ea = (4000, 'J/mol'), Tmin = (200, 'K'), @@ -26,7 +26,7 @@ Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A (at 300K)= 8.6E12(1/s)/2.483E-9(mol/cm^2) = 3.464E21 cm^2/(mol*s) +A (at 300K from p.62)= 8.6E12(1/s)/2.483E-9(mol/cm^2) = 3.464E21 cm^2/(mol*s) """, metal = "Pt", facet = "111", From fe4c71bfca23ec12a6e906693e3de54c457e1a0e Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 15 May 2021 13:46:34 -0400 Subject: [PATCH 03/27] added Schneider Pd111, Pd211, Rh111, revised Schneider Pt111 and added Ishikawa_Rh111, Popa_Rh111 --- .../Surface_Abstraction/training/reactions.py | 212 +++++++ .../training/reactions.py | 106 ++++ .../training/reactions.py | 394 +++++++++++++ .../training/reactions.py | 314 ++++++++++ .../training/dictionary.txt | 12 + .../training/reactions.py | 52 ++ .../training/reactions.py | 180 ++++++ .../Surface/Ishikawa_Rh111/dictionary.txt | 47 ++ .../Surface/Ishikawa_Rh111/reactions.py | 148 +++++ .../Surface/Popa_Rh111/dictionary.txt | 48 ++ .../libraries/Surface/Popa_Rh111/reactions.py | 317 ++++++++++ .../Surface/Schneider_Pd111/dictionary.txt | 89 +++ .../Surface/Schneider_Pd111/reactions.py | 539 +++++++++++++++++ .../Surface/Schneider_Pd211/dictionary.txt | 89 +++ .../Surface/Schneider_Pd211/reactions.py | 541 +++++++++++++++++ .../Surface/Schneider_Pt111/reactions.py | 4 +- .../Surface/Schneider_Rh111/dictionary.txt | 89 +++ .../Surface/Schneider_Rh111/reactions.py | 542 ++++++++++++++++++ .../Surface/Schneider_Rh211 /dictionary.txt | 89 +++ .../Surface/Schneider_Rh211 /reactions.py | 541 +++++++++++++++++ 20 files changed, 4351 insertions(+), 2 deletions(-) create mode 100644 input/kinetics/libraries/Surface/Ishikawa_Rh111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Ishikawa_Rh111/reactions.py create mode 100644 input/kinetics/libraries/Surface/Popa_Rh111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Popa_Rh111/reactions.py create mode 100644 input/kinetics/libraries/Surface/Schneider_Pd111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Schneider_Pd111/reactions.py create mode 100644 input/kinetics/libraries/Surface/Schneider_Pd211/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Schneider_Pd211/reactions.py create mode 100644 input/kinetics/libraries/Surface/Schneider_Rh111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py create mode 100644 input/kinetics/libraries/Surface/Schneider_Rh211 /dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Schneider_Rh211 /reactions.py diff --git a/input/kinetics/families/Surface_Abstraction/training/reactions.py b/input/kinetics/families/Surface_Abstraction/training/reactions.py index 433928984e..02b91ebf1c 100644 --- a/input/kinetics/families/Surface_Abstraction/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction/training/reactions.py @@ -199,3 +199,215 @@ facet = "111", ) +entry( + index = 44, + label = "H2NX + O* <=> OH* + HNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(106139,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: NH2_X +O_X <=> NH_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.1eV = 106139J/mol + +This is reaction (4) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 45, + label = "HNX-2 + O* <=> OH* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(142805,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: NH_X + O_X <=> N_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.48eV = 142805.2J/mol + +This is reaction (5) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 46, + label = "H2NX + O* <=> OH* + HNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.44e+21,'cm^2/(mol*s)'), n=0, Ea=(104209,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: NH2_X +O_X <=> NH_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.08eV = 104209.2J/mol + +This is reaction (4) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 47, + label = "HNX-2 + O* <=> OH* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.44e+21,'cm^2/(mol*s)'), n=0, Ea=(23157.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: NH_X + O_X <=> N_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.24eV = 23157.6J/mol + +This is reaction (5) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 48, + label = "H2NX + O* <=> OH* + HNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(85876.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: NH2_X +O_X <=> NH_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.89eV = 85876.1J/mol + +This is reaction (4) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 49, + label = "HNX-2 + O* <=> OH* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(133156,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: NH_X + O_X <=> N_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.38eV = 133156.2J/mol + +This is reaction (5) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 50, + label = "H2NX + O* <=> OH* + HNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(6.29e+21,'cm^2/(mol*s)'), n=0, Ea=(71402.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Popa_Rh111 +Original entry: NH2_X +O_X <=> NH_X + OH_X +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 4a. in TABLE 4. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.67E13(1/s)/2.656E-9(mol/cm^2) = 6.29E21 cm^2/(mol*s) +Ea = 0.74eV = 71402.6J/mol +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 51, + label = "HNX-2 + O* <=> OH* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.832e+22,'cm^2/(mol*s)'), n=0, Ea=(84911.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Popa_Rh111 +Original entry: NH_X +O_X <=> N_X + OH_X +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 2a. in TABLE 4. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 2.21E13(1/s)/2.656E-9(mol/cm^2) = 8.32E21 cm^2/(mol*s) +Ea = 0.88eV = 84911.2J/mol +""", + metal = "Rh", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py index 3c2ed9ce2a..d809eb6616 100644 --- a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py @@ -50,3 +50,109 @@ facet = "111", ) +entry( + index = 3, + label = "HOX + H3NX <=> H2NX + H2OX", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(68507.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: NH3_X + OH_X <=> NH2_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.71eV = 68507.9J/mol + +This is reaction (6) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 4, + label = "HOX + H3NX <=> H2NX + H2OX", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.44e+21,'cm^2/(mol*s)'), n=0, Ea=(70437.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: NH3_X + OH_X <=> NH2_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.73eV = 70437.7J/mol + +This is reaction (6) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 5, + label = "HOX + H3NX <=> H2NX + H2OX", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(44385.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: NH3_X + OH_X <=> NH2_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.46eV = 44385.4J/mol + +This is reaction (6) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 6, + label = "HOX + H3NX <=> H2NX + H2OX", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(1.727e+21,'cm^2/(mol*s)'), n=0, Ea=(23157.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Popa_Rh111 +Original entry: NH3_X + OH_X <=> NH2_X + H2O_X +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 1a. in TABLE 5. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.93E12(1/s)/2.656E-9(mol/cm^2) = 7.27E20 cm^2/(mol*s) +Ea = 0.24eV = 23157.6J/mol +""", + metal = "Rh", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py index 6a56a46996..3bf7892c0a 100644 --- a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py @@ -313,3 +313,397 @@ facet = "111", ) +entry( + index = 54, + label = "O* + H3NX <=> H2NX + OH_4*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(86841,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: NH3_X +O_X <=> NH2_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.9eV = 86841J/mol + +This is reaction (3) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 55, + label = "H2NX-2 + OH_2* <=> H2O* + HNX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(25087.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: NH2_X + OH_X <=> NH_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.26eV = 25087.4J/mol + +This is reaction (7) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 56, + label = "HNX-2 + OH_2* <=> H2O* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(39561,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: NH_X + OH_X <=> N_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.66eV = 63683.4J/mol + +This is reaction (8) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 57, + label = "OH_2* + OH_4* <=> H2O* + O*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: OH_X + OH_X <=> O_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 + +This is reaction (9) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 58, + label = "O* + H3NX <=> H2NX + OH_4*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.44e+21,'cm^2/(mol*s)'), n=0, Ea=(39560.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: NH3_X +O_X <=> NH2_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.41eV = 39560.9J/mol + +This is reaction (3) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 59, + label = "H2NX-2 + OH_2* <=> H2O* + HNX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.44e+21,'cm^2/(mol*s)'), n=0, Ea=(73332.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: NH2_X + OH_X <=> NH_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.76eV = 73332.4J/mol + +This is reaction (7) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 60, + label = "HNX-2 + OH_2* <=> H2O* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.44e+21,'cm^2/(mol*s)'), n=0, Ea=(41490.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: NH_X + OH_X <=> N_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.43eV = 41490.7J/mol + +This is reaction (8) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 61, + label = "OH_2* + OH_4* <=> H2O* + O*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.44e+21,'cm^2/(mol*s)'), n=0, Ea=(71402.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: OH_X + OH_X <=> O_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.74eV = 71402.6J/mol + +This is reaction (9) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 62, + label = "O* + H3NX <=> H2NX + OH_4*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(69472.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: NH3_X +O_X <=> NH2_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.72eV = 69472.8J/mol + +This is reaction (3) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 63, + label = "H2NX-2 + OH_2* <=> H2O* + HNX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(7719.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: NH2_X + OH_X <=> NH_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.08eV = 7719.2J/mol + +This is reaction (7) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 64, + label = "HNX-2 + OH_2* <=> H2O* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(46315.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: NH_X + OH_X <=> N_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.48eV = 46315.2J/mol + +This is reaction (8) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 65, + label = "OH_2* + OH_4* <=> H2O* + O*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: OH_X + OH_X <=> O_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 + +This is reaction (9) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 66, + label = "O* + H3NX <=> H2NX + OH_4*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(6.4e+20,'cm^2/(mol*s)'), n=0, Ea=(92630.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Popa_Rh111 +Original entry: NH3_X +O_X <=> NH2_X + OH_X +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 2a. in TABLE 4. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.7E12(1/s)/2.656E-9(mol/cm^2) = 6.40E20 cm^2/(mol*s) +Ea = 0.96eV = 92630.4J/mol +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 67, + label = "H2NX-2 + OH_2* <=> H2O* + HNX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.5e+21,'cm^2/(mol*s)'), n=0, Ea=(13508.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Popa_Rh111 +Original entry: NH2_X + OH_X <=> NH_X + H2O_X +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 3a. in TABLE 5. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 3.98E12(1/s)/2.656E-9(mol/cm^2) = 1.50E21 cm^2/(mol*s) +Ea = 0.14eV = 13508.6J/mol +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 68, + label = "HNX-2 + OH_2* <=> H2O* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.52e+20,'cm^2/(mol*s)'), n=0, Ea=(22192.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Popa_Rh111 +Original entry: NH_X + OH_X <=> N_X + H2O_X +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 6a. in TABLE 5. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.2E12(1/s)/2.656E-9(mol/cm^2) = 4.52E20 cm^2/(mol*s) +Ea = 0.23eV = 22192.7J/mol +""", + metal = "Rh", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Dissociation/training/reactions.py b/input/kinetics/families/Surface_Dissociation/training/reactions.py index 13a652a5b1..630c39f464 100644 --- a/input/kinetics/families/Surface_Dissociation/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation/training/reactions.py @@ -465,3 +465,317 @@ facet = "111", ) +entry( + index = 54, + label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.33e+23,'cm^2/(mol*s)'), n=0, Ea=(83946.3,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: NH2_X + X <=> NH_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 0.87eV = 83946.3J/mol + +This is reaction (2) in Table S5 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 55, + label = "Ni_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.33e+23,'cm^2/(mol*s)'), n=0, Ea=(98419.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: NH_X + X <=> N_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.02eV = 98419.8J/mol + +This is reaction (3) in Table S5 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 56, + label = "HX_5 + OX <=> HOX_1 + Ni_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(61753.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: H_X + O_X <=> OH_X + X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.64eV = 61753.6J/mol + +This is reaction (4) in Table S5 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 57, + label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.23e+23,'cm^2/(mol*s)'), n=0, Ea=(152454,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: NH2_X + X <=> NH_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.58eV = 152454.2J/mol + +This is reaction (2) in Table S4 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 58, + label = "Ni_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.23e+23,'cm^2/(mol*s)'), n=0, Ea=(118683,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: NH_X + X <=> N_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.23eV = 118682.7J/mol + +This is reaction (3) in Table S4 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 59, + label = "HX_5 + OX <=> HOX_1 + Ni_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.44e+21,'cm^2/(mol*s)'), n=0, Ea=(123507,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: H_X + O_X <=> OH_X + X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.28eV = 123507.2J/mol + +This is reaction (4) in Table S4 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 60, + label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.44e+23,'cm^2/(mol*s)'), n=0, Ea=(85876.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: NH2_X + X <=> NH_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 0.89eV = 85876.1J/mol + +This is reaction (2) in Table S5 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 61, + label = "Ni_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.44e+23,'cm^2/(mol*s)'), n=0, Ea=(113858,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: NH_X + X <=> N_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.18eV = 113858.2J/mol + +This is reaction (3) in Table S5 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 62, + label = "HX_5 + OX <=> HOX_1 + Ni_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(97454.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: H_X + O_X <=> OH_X + X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.01eV = 97454.9J/mol + +This is reaction (4) in Table S5 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 63, + label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(6.33e+21,'cm^2/(mol*s)'), n=0, Ea=(92630.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Popa_Rh111 +Original entry: NH2_X + X <=> NH_X + H_X +Based primarily on "Ab initio density-functional theory study of +NHx dehydrogenation and reverse reactions on the Rh(111) surface" +C. Popa, W. K. Offermans, R. A. van Santen, and A. P. J. Jansen +American Physical Society Vol. 74, Iss. 15—15, 2006 +https://doi.org/10.1103/PhysRevB.74.155428 + +This is reaction 3 in TABLE VI. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.68E13(1/s)/2.656E-9(mol/cm^2) = 6.33E21 cm^2/(mol*s) +Ea = 0.86eV = 92630.4J/mol +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 64, + label = "Ni_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(7.94e+21,'cm^2/(mol*s)'), n=0, Ea=(97454.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Popa_Rh111 +Original entry: NH_X + X <=> N_X + H_X +Based primarily on "Ab initio density-functional theory study of +NHx dehydrogenation and reverse reactions on the Rh(111) surface" +C. Popa, W. K. Offermans, R. A. van Santen, and A. P. J. Jansen +American Physical Society Vol. 74, Iss. 15—15, 2006 +https://doi.org/10.1103/PhysRevB.74.155428 + +This is reaction 7 in TABLE VI. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 2.11E13(1/s)/2.656E-9(mol/cm^2) = 7.94E21 cm^2/(mol*s) +Ea = 1.91eV = 97454.9J/mol +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 65, + label = "NOX + OX <=> NO2X + Ni_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(6.52e+19,'cm^2/(mol*s)'), n=1.015, Ea=(155285,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Ishikawa_Rh111 +Original entry: NO_X + O_X <=> NO2_X + X +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameters is calculed from +Table 2. Activation Energy (Ea) +and +Table S3. Reaction rate constant at different temperatures +""", + metal = "Rh", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/dictionary.txt index eaa2d32cc7..4db2050750 100644 --- a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/dictionary.txt @@ -30,3 +30,15 @@ HCOH* 3 H u0 p0 c0 {2,S} 4 H u0 p0 c0 {1,S} 5 *4 X u0 p0 c0 {2,D} + +N2OX +1 *2 O u0 p2 c0 {2,D} +2 *3 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +4 *1 X u0 p0 c0 + +N2X +1 *3 N u0 p0 c+1 {2,D} {3,D} +2 N u0 p2 c-1 {1,D} +3 *4 X u0 p0 c0 {1,D} + diff --git a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py index b005431279..c943ad3c9e 100644 --- a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py @@ -74,3 +74,55 @@ """, metal = "Cu", ) +entry( + index = 36, + label = "X_4 + N2OX <=> O* + N2X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(9.12e+19,'cm^2/(mol*s)'), n=1.004, Ea=(63657,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Addition_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Ishikawa_Rh111 +Original entry: N2O_X + X <=> N2_X + O_X +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameters is calculed from +Table 2. Activation Energy (Ea) +and +Table S3. Reaction rate constant at different temperatures +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 37, + label = "CO* + O* <=> CO2* + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.73e+20,'cm^2/(mol*s)'), n=1.001, Ea=(119598,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_Double_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Ishikawa_Rh111 +Original entry: CO_X + O_X <=> CO2_X + X +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameters is calculed from +Table 2. Activation Energy (Ea) +and +Table S3. Reaction rate constant at different temperatures +""", + metal = "Rh", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py b/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py index 1dee00a021..8d1b7e7a78 100644 --- a/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py @@ -275,3 +275,183 @@ facet = "111", ) +entry( + index = 37, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.08e+23,'cm^2/(mol*s)'), n=0, Ea=(100350,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: NH3_X + X <=> NH2_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.04eV = 100349.6J/mol +This is reaction (1) in Table S5 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 38, + label = "H* + OH* <=> H2O* + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(63683.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: H_X + OH_X <=> H2O_X + X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.66eV = 63683.4J/mol + +This is reaction (5) in Table S5 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 39, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.06e+23,'cm^2/(mol*s)'), n=0, Ea=(97454.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: NH3_X + X <=> NH2_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.01eV = 97454.9/mol +This is reaction (1) in Table S4 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 40, + label = "H* + OH* <=> H2O* + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.44e+21,'cm^2/(mol*s)'), n=0, Ea=(91665.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: H_X + OH_X <=> H2O_X + X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.95eV = 91665.5J/mol + +This is reaction (5) in Table S4 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 41, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.18e+23,'cm^2/(mol*s)'), n=0, Ea=(104209,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: NH3_X + X <=> NH2_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.08eV = 104209.2J/mol +This is reaction (1) in Table S5 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 42, + label = "H* + OH* <=> H2O* + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(64648.3,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: H_X + OH_X <=> H2O_X + X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.67eV = 64648.3J/mol + +This is reaction (5) in Table S5 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 43, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(8.21e+21,'cm^2/(mol*s)'), n=0, Ea=(109034,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Popa_Rh111 +Original entry: NH3_X + X <=> NH2_X + H_X +Based primarily on "Ab initio density-functional theory study of +NHx dehydrogenation and reverse reactions on the Rh(111) surface" +C. Popa, W. K. Offermans, R. A. van Santen, and A. P. J. Jansen +American Physical Society Vol. 74, Iss. 15—15, 2006 +https://doi.org/10.1103/PhysRevB.74.155428 + +This is reaction 1 in TABLE VI. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 2.18E13(1/s)/2.656E-9(mol/cm^2) = 8.21E21 cm^2/(mol*s) +Ea = 1.13eV = 109033.7J/mol +""", + metal = "Rh", + facet = "111", +) + diff --git a/input/kinetics/libraries/Surface/Ishikawa_Rh111/dictionary.txt b/input/kinetics/libraries/Surface/Ishikawa_Rh111/dictionary.txt new file mode 100644 index 0000000000..e2c5df5897 --- /dev/null +++ b/input/kinetics/libraries/Surface/Ishikawa_Rh111/dictionary.txt @@ -0,0 +1,47 @@ +X +1 X u0 p0 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +N2_X +1 N u0 p0 c+1 {2,D} {3,D} +2 N u0 p2 c-1 {1,D} +3 X u0 p0 c0 {1,D} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +NO2_X +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 N u0 p1 c0 {1,S} {2,D} +4 X u0 p0 c0 {1,S} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +4 X u0 p0 c0 + +CO_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,D} +3 X u0 p0 c0 {2,D} + +CO2_X +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} +4 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Ishikawa_Rh111/reactions.py b/input/kinetics/libraries/Surface/Ishikawa_Rh111/reactions.py new file mode 100644 index 0000000000..2e3ea0efc0 --- /dev/null +++ b/input/kinetics/libraries/Surface/Ishikawa_Rh111/reactions.py @@ -0,0 +1,148 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Ishikawa_Rh111" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 +""" + +entry( + index = 1, + label = "NO_X + X <=> N_X + O_X", + kinetics = SurfaceArrhenius( + A = (8.19E19, 'cm^2/(mol*s)'), + n = 1.009, + Ea = (76196, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""NO Dissociation""", + longDesc = u""" +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameters is calculed from +Table 2. Activation Energy (Ea) +and +Table S3. Reaction rate constant at different temperatures +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 2, + label = "NO_X + O_X <=> NO2_X + X", + kinetics = SurfaceArrhenius( + A = (6.52E19, 'cm^2/(mol*s)'), + n = 1.015, + Ea = (155285, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameters is calculed from +Table 2. Activation Energy (Ea) +and +Table S3. Reaction rate constant at different temperatures +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 3, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (1.43E20, 'cm^2/(mol*s)'), + n = 1.012, + Ea = (171681, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameters is calculed from +Table 2. Activation Energy (Ea) +and +Table S3. Reaction rate constant at different temperatures +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 4, + label = "N2O_X + X <=> N2_X + O_X", + kinetics = SurfaceArrhenius( + A = (9.12E19, 'cm^2/(mol*s)'), + n = 1.004, + Ea = (63657, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Addition_Single_vdW""", + longDesc = u""" +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameters is calculed from +Table 2. Activation Energy (Ea) +and +Table S3. Reaction rate constant at different temperatures +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 5, + label = "CO_X + O_X <=> CO2_X + X", + kinetics = SurfaceArrhenius( + A = (1.73E20, 'cm^2/(mol*s)'), + n = 1.001, + Ea = (119598, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_Double_vdW""", + longDesc = u""" +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameters is calculed from +Table 2. Activation Energy (Ea) +and +Table S3. Reaction rate constant at different temperatures +""", + metal = "Rh", + facet = "111", +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Popa_Rh111/dictionary.txt b/input/kinetics/libraries/Surface/Popa_Rh111/dictionary.txt new file mode 100644 index 0000000000..910ab0b5d9 --- /dev/null +++ b/input/kinetics/libraries/Surface/Popa_Rh111/dictionary.txt @@ -0,0 +1,48 @@ +X +1 X u0 p0 c0 + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Popa_Rh111/reactions.py b/input/kinetics/libraries/Surface/Popa_Rh111/reactions.py new file mode 100644 index 0000000000..2420a536f6 --- /dev/null +++ b/input/kinetics/libraries/Surface/Popa_Rh111/reactions.py @@ -0,0 +1,317 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Popa_Rh111" +shortDesc = u"" +longDesc = u""" +Based primarily on +"Ab initio density-functional theory study of +NHx dehydrogenation and reverse reactions on the Rh(111) surface" +C. Popa, W. K. Offermans, R. A. van Santen, and A. P. J. Jansen +American Physical Society 2006, Vol. 74, Iss. 15—15 +https://doi.org/10.1103/PhysRevB.74.155428 + +and + +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g +""" + +#top <=> bridge + hcp +entry( + index = 1, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (8.21E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (109033.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +Based primarily on "Ab initio density-functional theory study of +NHx dehydrogenation and reverse reactions on the Rh(111) surface" +C. Popa, W. K. Offermans, R. A. van Santen, and A. P. J. Jansen +American Physical Society Vol. 74, Iss. 15—15, 2006 +https://doi.org/10.1103/PhysRevB.74.155428 + +This is reaction 1 in TABLE VI. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 2.18E13(1/s)/2.656E-9(mol/cm^2) = 8.21E21 cm^2/(mol*s) +Ea = 1.13eV = 109033.7J/mol +""", + metal = "Rh", + facet = "111", +) + +#bridge <=> fcc + fcc +entry( + index = 2, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (6.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (92630.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +Based primarily on "Ab initio density-functional theory study of +NHx dehydrogenation and reverse reactions on the Rh(111) surface" +C. Popa, W. K. Offermans, R. A. van Santen, and A. P. J. Jansen +American Physical Society Vol. 74, Iss. 15—15, 2006 +https://doi.org/10.1103/PhysRevB.74.155428 + +This is reaction 3 in TABLE VI. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.68E13(1/s)/2.656E-9(mol/cm^2) = 6.33E21 cm^2/(mol*s) +Ea = 0.86eV = 92630.4J/mol +""", + metal = "Rh", + facet = "111", +) +#hcp <=> hcp + hcp +entry( + index = 3, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (7.94E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (97454.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +Based primarily on "Ab initio density-functional theory study of +NHx dehydrogenation and reverse reactions on the Rh(111) surface" +C. Popa, W. K. Offermans, R. A. van Santen, and A. P. J. Jansen +American Physical Society Vol. 74, Iss. 15—15, 2006 +https://doi.org/10.1103/PhysRevB.74.155428 + +This is reaction 7 in TABLE VI. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 2.11E13(1/s)/2.656E-9(mol/cm^2) = 7.94E21 cm^2/(mol*s) +Ea = 1.91eV = 97454.9J/mol +""", + metal = "Rh", + facet = "111", +) + +# top + hcp <=> bridge + top +entry( + index = 4, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A=(6.40E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (92630.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 2a. in TABLE 4. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.7E12(1/s)/2.656E-9(mol/cm^2) = 6.40E20 cm^2/(mol*s) +Ea = 0.96eV = 92630.4J/mol +""", + metal = "Rh", + facet = "111", +) + +# brigde + fcc <=> hcp + top +entry( + index = 5, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A=(6.29E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (71402.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 4a. in TABLE 4. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.67E13(1/s)/2.656E-9(mol/cm^2) = 6.29E21 cm^2/(mol*s) +Ea = 0.74eV = 71402.6J/mol +""", + metal = "Rh", + facet = "111", +) + +# hcp + hcp <=> hcp + top +entry( + index = 6, + label = "NH_X +O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A=(28.32E21 , 'cm^2/(mol*s)'), + n = 0.0, + Ea = (84911.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 2a. in TABLE 4. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 2.21E13(1/s)/2.656E-9(mol/cm^2) = 8.32E21 cm^2/(mol*s) +Ea = 0.88eV = 84911.2J/mol +""", + metal = "Rh", + facet = "111", +) + +# top + top <=> bridge + top +entry( + index = 7, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A=(17.27E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (23157.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 1a. in TABLE 5. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.93E12(1/s)/2.656E-9(mol/cm^2) = 7.27E20 cm^2/(mol*s) +Ea = 0.24eV = 23157.6J/mol +""", + metal = "Rh", + facet = "111", +) + +# bridge + top + hcp + top +entry( + index = 8, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A=(1.50E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (13508.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 3a. in TABLE 5. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 3.98E12(1/s)/2.656E-9(mol/cm^2) = 1.50E21 cm^2/(mol*s) +Ea = 0.14eV = 13508.6J/mol +""", + metal = "Rh", + facet = "111", +) + +# hcp + top <=> hcp + top +entry( + index = 9, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A=(4.52E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (22192.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 6a. in TABLE 5. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.2E12(1/s)/2.656E-9(mol/cm^2) = 4.52E20 cm^2/(mol*s) +Ea = 0.23eV = 22192.7J/mol +""", + metal = "Rh", + facet = "111", +) + +# hcp + fcc <=> top +entry( + index = 10, + label = "N_X + N_X <=> N2_X + X", + kinetics = SurfaceArrhenius( + A=(1.69E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (1147629.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Default""", + longDesc = u""" +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 3a. in TABLE 6. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 4.48E13(1/s)/2.656E-9(mol/cm^2) = 1.69E22 cm^2/(mol*s) +Ea = 1.53eV = 147629.7J/mol +""", + metal = "Rh", + facet = "111", +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Pd111/dictionary.txt b/input/kinetics/libraries/Surface/Schneider_Pd111/dictionary.txt new file mode 100644 index 0000000000..d027b065aa --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pd111/dictionary.txt @@ -0,0 +1,89 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +4 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Pd111/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pd111/reactions.py new file mode 100644 index 0000000000..6932bf0730 --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pd111/reactions.py @@ -0,0 +1,539 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Schneider_Pd111" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 +""" + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 1, +# label = "O2 + X + X <=> O_X + O_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0, +# Ea = (0, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 + +# This is reaction (1) in Table S3 +# """, +# metal = "Pd", +# facet = "111", +# ) + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 2, +# label = "NH3 + X <=> NH3_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0, +# Ea = (0, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 + +# This is reaction (2) in Table S3 +# """, +# metal = "Pd", +# facet = "111", +# ) + +entry( + index = 3, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (69472.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.72eV = 69472.8J/mol + +This is reaction (3) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 4, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (85876.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.89eV = 85876.1J/mol + +This is reaction (4) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 5, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (133156.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.38eV = 133156.2J/mol + +This is reaction (5) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 6, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (44385.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.46eV = 44385.4J/mol + +This is reaction (6) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 7, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (7719.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.08eV = 7719.2J/mol + +This is reaction (7) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 8, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (46315.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.48eV = 46315.2J/mol + +This is reaction (8) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 9, + label = "OH_X + OH_X <=> O_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 + +This is reaction (9) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 10, +# label = "H2O + X <=> H2O_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (20262.9, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 +# Ea = 0.21eV = 20262.9J/mol +# +# This is reaction (10) in Table S3 +# """, +# metal = "Pd", +# facet = "111", +# ) + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 11, +# label = "N2 + X + X <=> N_X + N_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (208418.4, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""N2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 + +# Ea = 2.16eV = 208418.4J/mol + +# This is reaction (11) in Table S3 +# """, +# metal = "Pd", +# facet = "111", +# ) + +entry( + index = 12, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (187190.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.94eV = 187190.6J/mol + +This is reaction (12) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 13, +# label = "NO + X <=> NO_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (221927, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 + +# Ea = 2.3eV = 221927J/mol + +# This is reaction (13) in Table S3 +# """, +# metal = "Pd", +# facet = "111", +# ) + +entry( + index = 14, + label = "N_X + NO_X <=> N2O_X + X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (186225.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.93eV = 186225.7J/mol + +This is reaction (14) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 15, +# label = "N2O + X <=> N2O_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (11578.8, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 + +# Ea = 0.12eV = 11578.8J/mol + +# This is reaction (15) in Table S3 +# """, +# metal = "Pd", +# facet = "111", +# ) + +entry( + index = 16, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.18E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (104209.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.08eV = 104209.2J/mol +This is reaction (1) in Table S5 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 17, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.44E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (85876.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 0.89eV = 85876.1J/mol + +This is reaction (2) in Table S5 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 18, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.44E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (113858.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.18eV = 113858.2J/mol + +This is reaction (3) in Table S5 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 19, + label = "H_X + O_X <=> OH_X + X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (97454.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.01eV = 97454.9J/mol + +This is reaction (4) in Table S5 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 20, + label = "H_X + OH_X <=> H2O_X + X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (64648.3, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.67eV = 64648.3J/mol + +This is reaction (5) in Table S5 +""", + metal = "Pd", + facet = "111", +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Pd211/dictionary.txt b/input/kinetics/libraries/Surface/Schneider_Pd211/dictionary.txt new file mode 100644 index 0000000000..d027b065aa --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pd211/dictionary.txt @@ -0,0 +1,89 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +4 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Pd211/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pd211/reactions.py new file mode 100644 index 0000000000..86837c7dcb --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pd211/reactions.py @@ -0,0 +1,541 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Schneider_Pd211" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 +""" + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 1, +# label = "O2 + X + X <=> O_X + O_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0, +# Ea = (28947, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 + +#Ea = 0.3eV = 28947J/mol +# This is reaction (1) in Table S2 +# """, +# metal = "Pd", +# facet = "211", +# ) + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 2, +# label = "NH3 + X <=> NH3_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0, +# Ea = (0, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 + +# This is reaction (2) in Table S2 +# """, +# metal = "Pd", +# facet = "211", +# ) + +entry( + index = 3, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (39560.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.41eV = 39560.9J/mol + +This is reaction (3) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 4, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (104209.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.08eV = 104209.2J/mol + +This is reaction (4) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 5, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (23157.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.24eV = 23157.6J/mol + +This is reaction (5) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 6, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (70437.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.73eV = 70437.7J/mol + +This is reaction (6) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 7, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (73332.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.76eV = 73332.4J/mol + +This is reaction (7) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 8, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (41490.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.43eV = 41490.7J/mol + +This is reaction (8) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 9, + label = "OH_X + OH_X <=> O_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (71402.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.74eV = 71402.6J/mol + +This is reaction (9) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 10, +# label = "H2O + X <=> H2O_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (30876.8, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 +# Ea = 0.32eV = 30876.8J/mol +# +# This is reaction (10) in Table S2 +# """, +# metal = "Pd", +# facet = "211", +# ) + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 11, +# label = "N2 + X + X <=> N_X + N_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (119647.6, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""N2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 + +# Ea = 1.24eV = 119647.6J/mol + +# This is reaction (11) in Table S2 +# """, +# metal = "Pd", +# facet = "211", +# ) + +entry( + index = 12, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (2.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (82981.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.86eV = 82981.4J/mol + +This is reaction (12) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 13, +# label = "NO + X <=> NO_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (225786.6, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 + +# Ea = 2.34eV = 225786.6J/mol + +# This is reaction (13) in Table S2 +# """, +# metal = "Pd", +# facet = "211", +# ) + +entry( + index = 14, + label = "N_X + NO_X <=> N2O_X + X", + kinetics = SurfaceArrhenius( + A = (2.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (191050.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.98eV = 191050.2J/mol + +This is reaction (14) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 15, +# label = "N2O + X <=> N2O_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (36666.2, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 + +# Ea = 0.38eV = 36666.2J/mol + +# This is reaction (15) in Table S2 +# """, +# metal = "Pd", +# facet = "211", +# ) + +entry( + index = 16, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.06E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (97454.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.01eV = 97454.9/mol +This is reaction (1) in Table S4 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 17, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.23E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (152454.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.58eV = 152454.2J/mol + +This is reaction (2) in Table S4 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 18, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.23E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (118682.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.23eV = 118682.7J/mol + +This is reaction (3) in Table S4 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 19, + label = "H_X + O_X <=> OH_X + X", + kinetics = SurfaceArrhenius( + A = (2.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (123507.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.28eV = 123507.2J/mol + +This is reaction (4) in Table S4 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 20, + label = "H_X + OH_X <=> H2O_X + X", + kinetics = SurfaceArrhenius( + A = (2.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (91665.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.95eV = 91665.5J/mol + +This is reaction (5) in Table S4 +""", + metal = "Pd", + facet = "211", +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py index a4a1f4af84..b39a279f25 100644 --- a/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py @@ -226,8 +226,8 @@ # https://doi.org/10.1021/acscatal.8b04251 # ((2.4e3 /Pa) / s) * (2.4e-9 mol/cm2) * sqrt(2 * pi * 18 g/mol * molar gas constant * 298 kelvin) # """, -# metal = "Pt", -# facet = "111", +# metal = "Pt", +# facet = "111", # ) entry( diff --git a/input/kinetics/libraries/Surface/Schneider_Rh111/dictionary.txt b/input/kinetics/libraries/Surface/Schneider_Rh111/dictionary.txt new file mode 100644 index 0000000000..d027b065aa --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Rh111/dictionary.txt @@ -0,0 +1,89 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +4 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py b/input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py new file mode 100644 index 0000000000..2bd80499ee --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py @@ -0,0 +1,542 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Schneider_Rh111" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 +""" + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 1, +# label = "O2 + X + X <=> O_X + O_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0, +# Ea = (0, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 + +# This is reaction (1) in Table S3 +# """, +# metal = "Rh", +# facet = "111", +# ) + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 2, +# label = "NH3 + X <=> NH3_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0, +# Ea = (0, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 + +# This is reaction (2) in Table S3 +# """, +# metal = "Rh", +# facet = "111", +# ) + +entry( + index = 3, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (86841, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.9eV = 86841J/mol + +This is reaction (3) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 4, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (106139, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.1eV = 106139J/mol + +This is reaction (4) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 5, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (142805.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.48eV = 142805.2J/mol + +This is reaction (5) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 6, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (68507.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.71eV = 68507.9J/mol + +This is reaction (6) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 7, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (25087.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.26eV = 25087.4J/mol + +This is reaction (7) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 8, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (39561, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.66eV = 63683.4J/mol + +This is reaction (8) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 9, + label = "OH_X + OH_X <=> O_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 + +This is reaction (9) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 10, +# label = "H2O + X <=> H2O_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (27017.2, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 + +# Ea = 0.28eV = 27017.2J/mol + +# This is reaction (10) in Table S3 +# """, +# metal = "Rh", +# facet = "111", +# ) + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 11, +# label = "N2 + X + X <=> N_X + N_X", +# kinetics = SurfaceArrhenius( +# A = (1.56E23, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (246049.5, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""N2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 + +# This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +# Using the method proposed by Campbell et al. to calculate A actor. +# Ea = 2.55eV = 246049.5J/mol + +# This is reaction (11) in Table S3 +# """, +# metal = "Rh", +# facet = "111", +# ) + +entry( + index = 12, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (226751.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 2.35eV = 226751.5J/mol + +This is reaction (12) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 13, +# label = "NO + X <=> NO_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (241225, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 + +# Ea = 2.5eV = 241225J/mol + +# This is reaction (13) in Table S3 +# """, +# metal = "Rh", +# facet = "111", +# ) + +entry( + index = 14, + label = "N_X + NO_X <=> N2O_X + X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (206488.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 2.14eV = 206488.6J/mol + +This is reaction (14) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 15, +# label = "N2O + X <=> N2O_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (32806.6, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 + +# Ea = 0.34eV = 32806.6J/mol + +# This is reaction (15) in Table S3 +# """, +# metal = "Rh", +# facet = "111", +# ) + +entry( + index = 16, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.08E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (100349.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.04eV = 100349.6J/mol +This is reaction (1) in Table S5 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 17, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.33E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (83946.3, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 0.87eV = 83946.3J/mol + +This is reaction (2) in Table S5 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 18, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.33E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (98419.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.02eV = 98419.8J/mol + +This is reaction (3) in Table S5 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 19, + label = "H_X + O_X <=> OH_X + X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (61753.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.64eV = 61753.6J/mol + +This is reaction (4) in Table S5 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 20, + label = "H_X + OH_X <=> H2O_X + X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (63683.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.66eV = 63683.4J/mol + +This is reaction (5) in Table S5 +""", + metal = "Rh", + facet = "111", +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Rh211 /dictionary.txt b/input/kinetics/libraries/Surface/Schneider_Rh211 /dictionary.txt new file mode 100644 index 0000000000..d027b065aa --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Rh211 /dictionary.txt @@ -0,0 +1,89 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +4 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Rh211 /reactions.py b/input/kinetics/libraries/Surface/Schneider_Rh211 /reactions.py new file mode 100644 index 0000000000..1382392c76 --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Rh211 /reactions.py @@ -0,0 +1,541 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Schneider_Rh211" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 +""" + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 1, +# label = "O2 + X + X <=> O_X + O_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0, +# Ea = (0, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 + +# This is reaction (1) in Table S2 +# """, +# metal = "Rh", +# facet = "211", +# ) + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 2, +# label = "NH3 + X <=> NH3_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0, +# Ea = (0, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 + +# This is reaction (2) in Table S2 +# """, +# metal = "Rh", +# facet = "211", +# ) + +entry( + index = 3, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (62718.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.65eV = 62718.5J/mol + +This is reaction (3) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 4, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (143770.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.49eV = 143770.1J/mol + +This is reaction (4) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 5, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (60788.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.63eV = 60788.7J/mol + +This is reaction (5) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 6, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (91665.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.95eV = 91665.5J/mol + +This is reaction (6) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 7, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (97454.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.01eV = 97454.9J/mol + +This is reaction (7) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 8, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (85876.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.89eV = 85876.1J/mol + +This is reaction (8) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 9, + label = "OH_X + OH_X <=> O_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (92630.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.96eV = 92630.4J/mol + +This is reaction (9) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 10, +# label = "H2O + X <=> H2O_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (43420.5, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 + +# Ea = 0.45eV = 43420.5J/mol + +# This is reaction (10) in Table S2 +# """, +# metal = "Rh", +# facet = "211", +# ) + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 11, +# label = "N2 + X + X <=> N_X + N_X", +# kinetics = StickingCoefficient( +# A = 1. +# n = 0.0, +# Ea = (169822.4, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""N2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 + +# Ea = 1.76eV = 169822.4J/mol + +# This is reaction (11) in Table S2 +# """, +# metal = "Rh", +# facet = "211", +# ) + +entry( + index = 12, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (2.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (166927.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.73eV = 166927.7J/mol + +This is reaction (12) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 13, +# label = "NO + X <=> NO_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (270172, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 + +# Ea = 2.8eV = 270172J/mol + +# This is reaction (13) in Table S2 +# """, +# metal = "Rh", +# facet = "211", +# ) + +entry( + index = 14, + label = "N_X + NO_X <=> N2O_X + X", + kinetics = SurfaceArrhenius( + A = (2.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (211313.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 2.19eV = 211313.1J/mol + +This is reaction (14) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +# Commet out since the authors assumed sitcking coefficient ≈ 1 +# entry( +# index = 15, +# label = "N2O + X <=> N2O_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (54999.3, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", +# longDesc = u""" +# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +# Hanyu Ma, and William F.Schneider +# Journal of Catalysis 383 (2020) 322–330 +# https://doi.org/10.1016/j.jcat.2020.01.029 + +# Ea = 0.57eV = 54999.3J/mol + +# This is reaction (15) in Table S2 +# """, +# metal = "Rh", +# facet = "211", +# ) + +entry( + index = 16, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.96E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (88770.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 0.92eV = 88770.8J/mol +This is reaction (1) in Table S4 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 17, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.19E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (117717.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.22eV = 117717.8J/mol + +This is reaction (2) in Table S4 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 18, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.19E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (88770.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 0.92eV = 88770.8J/mol + +This is reaction (3) in Table S4 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 19, + label = "H_X + O_X <=> OH_X + X", + kinetics = SurfaceArrhenius( + A = (2.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (85876.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.89eV = 85876.1J/mol + +This is reaction (4) in Table S4 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 20, + label = "H_X + OH_X <=> H2O_X + X", + kinetics = SurfaceArrhenius( + A = (2.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (96490, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1eV = 96490J/mol + +This is reaction (5) in Table S4 +""", + metal = "Rh", + facet = "211", +) \ No newline at end of file From 72d655b74445388851fab358febd29c63fdaf2af Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sun, 16 May 2021 18:54:04 -0400 Subject: [PATCH 04/27] added Rebrov_Pt111, revised some longDesc and fixed typo in Surface_Abstraction_vdW family --- .../Surface_Abstraction/training/reactions.py | 28 ++ .../training/reactions.py | 5 +- .../training/dictionary.txt | 11 + .../training/reactions.py | 105 ++++- .../training/reactions.py | 27 ++ .../training/reactions.py | 48 +++ .../training/reactions.py | 9 +- .../training/dictionary.txt | 11 + .../training/reactions.py | 49 +++ .../training/reactions.py | 8 +- .../Surface/Ishikawa_Rh111/reactions.py | 5 + .../Surface/Novell_Pt111/reactions.py | 5 +- .../Surface/Offermans_Pt111/reactions.py | 11 + .../Surface/Ralph_Pt111/reactions.py | 6 + .../Surface/Rebrov_Pt111/dictionary.txt | 91 +++++ .../Surface/Rebrov_Pt111/reactions.py | 360 ++++++++++++++++++ .../libraries/Surface/Ryan_Pt111/reactions.py | 8 + .../Surface/Schneider_Pt111/reactions.py | 31 +- .../Surface/Schneider_Rh111/reactions.py | 1 + .../Surface/Schneider_Rh211 /reactions.py | 1 + 20 files changed, 807 insertions(+), 13 deletions(-) create mode 100644 input/kinetics/libraries/Surface/Rebrov_Pt111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py diff --git a/input/kinetics/families/Surface_Abstraction/training/reactions.py b/input/kinetics/families/Surface_Abstraction/training/reactions.py index 02b91ebf1c..3bad9e72a9 100644 --- a/input/kinetics/families/Surface_Abstraction/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction/training/reactions.py @@ -129,6 +129,7 @@ "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A = 5.5E12(1/s)/2.483E-9(mol/cm^2) = 2.215E21 cm^2/(mol*s) """, @@ -150,6 +151,7 @@ "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A = 7.8E12(1/s)/2.483E-9(mol/cm^2) = 3.141E21 cm^2/(mol*s) """, @@ -171,6 +173,7 @@ "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K) = 6.1E12(1/s)/2.483E-9(mol/cm^2) = 2.457E21 cm^2/(mol*s) """, @@ -192,6 +195,7 @@ "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K) = 7.6E12(1/s)/2.483E-9(mol/cm^2) = 3.061E21 cm^2/(mol*s) """, @@ -411,3 +415,27 @@ facet = "111", ) +entry( + index = 52, + label = "HNX-2 + O* <=> OH* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.03e+21,'cm^2/(mol*s)'), n=0, Ea=(58500,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Rebrov_Pt111 +Original entry: NH_X + O_X <=> N_X + OH_X +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is R7 in Table 1 +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py index d809eb6616..a0dfab4d0e 100644 --- a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py @@ -22,6 +22,7 @@ "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A = 4.9E13(1/s)/2.483E-9(mol/cm^2) = 1.973E22 cm^2/(mol*s) """, @@ -43,6 +44,7 @@ "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K) = 1.6E11(1/s)/2.483E-9(mol/cm^2) = 6.444E19 cm^2/(mol*s) """, @@ -154,5 +156,4 @@ """, metal = "Rh", facet = "111", -) - +) \ No newline at end of file diff --git a/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt index 828e2f3a7b..bcf06507e1 100644 --- a/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt @@ -127,3 +127,14 @@ NX 1 *4 N u0 p1 c0 {2,T} 2 *5 X u0 p0 c0 {1,T} +HNOX +1 O u0 p2 c0 {2,D} +2 *2 N u0 p1 c0 {1,D} {3,S} +3 *3 H u0 p0 c0 {2,S} +4 *1 X u0 p0 c0 + +NOX +1 O u0 p2 c0 {2,D} +2 *2 N u0 p1 c0 {1,D} {3,S} +3 *1 X u0 p0 c0 {2,S} + diff --git a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py index 3bf7892c0a..009083cd74 100644 --- a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py @@ -180,8 +180,9 @@ "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 5.2E12(1/s)/2.483E-9(mol/cm^2) 1.007E21 cm^2/(mol*s) +A = 5.2E12(1/s)/2.483E-9(mol/cm^2) = 1.007E21 cm^2/(mol*s) """, metal = "Pt", facet = "111", @@ -201,6 +202,7 @@ "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A = 1.5E13(1/s)/2.483E-9(mol/cm^2) = 6.041E21 cm^2/(mol*s) """, @@ -222,6 +224,7 @@ "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A = 5.9E12(1/s)/2.483E-9(mol/cm^2) = 2.376E21 cm^2/(mol*s) """, @@ -243,6 +246,7 @@ "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A = 3.1E12(1/s)/2.483E-9(mol/cm^2) = 1.248E21 cm^2/(mol*s) """, @@ -264,6 +268,7 @@ "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K) = 1.2E12(1/s)/2.483E-9(mol/cm^2) = 4.833E20 cm^2/(mol*s) """, @@ -285,6 +290,7 @@ "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K) = 3.4E12(1/s)/2.483E-9(mol/cm^2) = 1.369E21 cm^2/(mol*s) """, @@ -306,6 +312,7 @@ "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K) = 5.1E11(1/s)/2.483E-9(mol/cm^2) = 2.054E20 cm^2/(mol*s) """, @@ -707,3 +714,99 @@ facet = "111", ) +entry( + index = 69, + label = "O* + H3NX <=> H2NX + OH_4*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(6.85e+23,'cm^2/(mol*s)'), n=0, Ea=(157,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Rebrov_Pt111 +Original entry: NH3_X +O_X <=> NH2_X + OH_X +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.7E15(1/s)/2.483E-9(mol/cm^2) = 6.85E23 cm^2/(mol*s) + +This is R5 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 70, + label = "O* + HNOX <=> NOX + OH_4*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(8.05e+23,'cm^2/(mol*s)'), n=0, Ea=(11800,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Rebrov_Pt111 +Original entry: NHO_X + O_X <=> NO_X + OH_X +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 2E15(1/s)/2.483E-9(mol/cm^2) = 8.05E23 cm^2/(mol*s) + +This is R10 in Table 1, it's from ref[52] where metal = Pt100. +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 71, + label = "HNX-2 + OH_2* <=> H2O* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.03e+19,'cm^2/(mol*s)'), n=0, Ea=(79000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Rebrov_Pt111 +Original entry: NH_X + OH_X <=> N_X + H2O_X +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E11(1/s)/2.483E-9(mol/cm^2) = 4.03E19 cm^2/(mol*s) + +This is R2 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 72, + label = "O* + H2O* <=> OH_2* + OH_4*", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(4.03e+19,'cm^2/(mol*s)'), n=0, Ea=(52700,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Rebrov_Pt111 +Original entry: O_X + H2O_X <=> OH_X + OH_X +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E11(1/s)/2.483E-9(mol/cm^2) = 4.03E19 cm^2/(mol*s) + +This is R18 in Table 1 +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py index 55fd5ada09..95fa240853 100644 --- a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py @@ -43,6 +43,7 @@ Surface Morphology and Kinetics at Atmospheric Pressure." Krähnert, Ralph(2005) A Doctoral Thesis. http://dx.doi.org/10.14279/depositonce-1270 + A = k/exp(Ea/RT) = 1.24(mol/m^2/s)/exp(154800J/mol / 8.314J/molK / 298K) = 3.19E17 cm^2/mol/s """, metal = "Pt", @@ -63,6 +64,8 @@ "First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) https://doi.org/10.1116/1.4903225 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A = ((2.78E2 /bar) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 30 g/mol * molar gas constant * 298 kelvin) """, metal = "Pt", @@ -82,7 +85,31 @@ "First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) https://doi.org/10.1116/1.4903225 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A = ((2.24E2 /bar) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 46 g/mol * molar gas constant * 298 kelvin) +""", + metal = "Pt", + facet = "111", +)entry( + index = 52, + label = "NO_X <=> NO + Pt", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.03e+24,'1/s'), n=0, Ea=(140000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Rebrov_Pt111 +Original entry: NO_X <=> NO + X +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E16(1/s)/2.483E-9(mol/cm^2) = 4.03E24 cm^2/(mol*s) + +This is R15 in Table 1 """, metal = "Pt", facet = "111", diff --git a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py index 0b248a3c3a..4e69d96211 100644 --- a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py @@ -82,6 +82,7 @@ Surface Morphology and Kinetics at Atmospheric Pressure." Krähnert, Ralph(2005) A Doctoral Thesis. http://dx.doi.org/10.14279/depositonce-1270 + A = k/exp(Ea/RT) = 2.17(mol/m^2/s)/exp(60900J/mol / 8.314J/molK / 298K) = 4.09E9 cm^2/mol/s """, metal = "Pt", @@ -102,8 +103,55 @@ "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K from p.62)= 8.6E12(1/s)/2.483E-9(mol/cm^2) = 3.464E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +)entry( + index = 14, + label = "H3NX <=> H3N + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.03e+17,'1/s'), n=0, Ea=(75200,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Rebrov_Pt111 +Original entry: NH3_X <=> NH3 + X +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E9(mol/cm^2/s)/2.483E-9(mol/cm^2) = 4.03E17 (1/s) + +This is R2 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 15, + label = "H2OX <=> H2O + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.03e+21,'1/s'), n=0, Ea=(40300,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption""", + longDesc = +""" +Training reaction from kinetics library: Surface/Rebrov_Pt111 +Original entry: H2O_X <=> H2O + X +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is R19 in Table 1 """, metal = "Pt", facet = "111", diff --git a/input/kinetics/families/Surface_Dissociation/training/reactions.py b/input/kinetics/families/Surface_Dissociation/training/reactions.py index 630c39f464..fcae89eac1 100644 --- a/input/kinetics/families/Surface_Dissociation/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation/training/reactions.py @@ -374,6 +374,8 @@ "First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) https://doi.org/10.1116/1.4903225 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K) = 4.41E13(1/s)/2.483E-9(mol/cm^2) = 1.776E22 cm^2/(mol*s) Ea = 1.2eV * 96490J/eV mol = 115788J/mol """, @@ -395,6 +397,7 @@ "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K) = 5.0E12(1/s)/2.483E-9(mol/cm^2) = 2.014E21 cm^2/(mol*s) """, @@ -416,6 +419,7 @@ "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K) = 7.2E12(1/s)/2.483E-9(mol/cm^2) = 2.8997E21 cm^2/(mol*s) """, @@ -437,6 +441,7 @@ "Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 https://doi.org/10.1021/jp064742b + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 500K) = 1.1E13(1/s)/2.483E-9(mol/cm^2) = 4.430E21 cm^2/(mol*s) """, @@ -458,6 +463,7 @@ "Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 https://doi.org/10.1021/jp064742b + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 500K) = 1.3E13(1/s)/2.483E-9(mol/cm^2) = 5.236E21 cm^2/(mol*s) """, @@ -777,5 +783,4 @@ """, metal = "Rh", facet = "111", -) - +) \ No newline at end of file diff --git a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/dictionary.txt index 4db2050750..88a342282d 100644 --- a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/dictionary.txt @@ -42,3 +42,14 @@ N2X 2 N u0 p2 c-1 {1,D} 3 *4 X u0 p0 c0 {1,D} +HNX +1 *3 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 *4 X u0 p0 c0 {1,D} + +HNOX +1 *2 O u0 p2 c0 {2,D} +2 *3 N u0 p1 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} +4 *1 X u0 p0 c0 + diff --git a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py index c943ad3c9e..342993af82 100644 --- a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py @@ -116,6 +116,7 @@ Atsushi Ishikawa and Yoshitaka Tateyama J. Phys. Chem. C 2018, 122, 30, 17378–17388 https://doi.org/10.1021/acs.jpcc.8b05906 + This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. The modified Arrhenius parameters is calculed from Table 2. Activation Energy (Ea) @@ -126,3 +127,51 @@ facet = "111", ) +entry( + index = 38, + label = "HNX + O* <=> HNOX + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.03e+21,'cm^2/(mol*s)'), n=0, Ea=(73000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_Double_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Rebrov_Pt111 +Original entry: NH_X + O_X <=> NHO_X + X +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is R9 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 39, + label = "X_4 + N2OX <=> O* + N2X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.01e+17,'cm^2/(mol*s)'), n=0, Ea=(72200,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Addition_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Rebrov_Pt111 +Original entry: N2O_X + X <=> N2_X + O_X +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 2.5E8(1/s)/2.483E-9(mol/cm^2) = 1.01E17 cm^2/(mol*s) + +This is R14 in Table 1 +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py b/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py index 8d1b7e7a78..9259d6c2bc 100644 --- a/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py @@ -247,6 +247,7 @@ "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K)= 5.6E11(1/s)/2.483E-9(mol/cm^2) = 2.255E20 cm^2/(mol*s) """, @@ -268,6 +269,7 @@ "Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 https://doi.org/10.1021/jp064742b + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 500K) = 7.1E11(1/s)/2.483E-9(mol/cm^2) = 2.859E20 cm^2/(mol*s) """, @@ -294,6 +296,7 @@ This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. Using the method proposed by Campbell et al. to calculate A actor. Ea = 1.04eV = 100349.6J/mol + This is reaction (1) in Table S5 """, metal = "Rh", @@ -345,6 +348,7 @@ This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. Using the method proposed by Campbell et al. to calculate A actor. Ea = 1.01eV = 97454.9/mol + This is reaction (1) in Table S4 """, metal = "Pd", @@ -396,6 +400,7 @@ This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. Using the method proposed by Campbell et al. to calculate A actor. Ea = 1.08eV = 104209.2J/mol + This is reaction (1) in Table S5 """, metal = "Pd", @@ -453,5 +458,4 @@ """, metal = "Rh", facet = "111", -) - +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Ishikawa_Rh111/reactions.py b/input/kinetics/libraries/Surface/Ishikawa_Rh111/reactions.py index 2e3ea0efc0..4f6f9c6c9a 100644 --- a/input/kinetics/libraries/Surface/Ishikawa_Rh111/reactions.py +++ b/input/kinetics/libraries/Surface/Ishikawa_Rh111/reactions.py @@ -29,6 +29,7 @@ Atsushi Ishikawa and Yoshitaka Tateyama J. Phys. Chem. C 2018, 122, 30, 17378–17388 https://doi.org/10.1021/acs.jpcc.8b05906 + This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. The modified Arrhenius parameters is calculed from Table 2. Activation Energy (Ea) @@ -56,6 +57,7 @@ Atsushi Ishikawa and Yoshitaka Tateyama J. Phys. Chem. C 2018, 122, 30, 17378–17388 https://doi.org/10.1021/acs.jpcc.8b05906 + This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. The modified Arrhenius parameters is calculed from Table 2. Activation Energy (Ea) @@ -83,6 +85,7 @@ Atsushi Ishikawa and Yoshitaka Tateyama J. Phys. Chem. C 2018, 122, 30, 17378–17388 https://doi.org/10.1021/acs.jpcc.8b05906 + This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. The modified Arrhenius parameters is calculed from Table 2. Activation Energy (Ea) @@ -110,6 +113,7 @@ Atsushi Ishikawa and Yoshitaka Tateyama J. Phys. Chem. C 2018, 122, 30, 17378–17388 https://doi.org/10.1021/acs.jpcc.8b05906 + This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. The modified Arrhenius parameters is calculed from Table 2. Activation Energy (Ea) @@ -137,6 +141,7 @@ Atsushi Ishikawa and Yoshitaka Tateyama J. Phys. Chem. C 2018, 122, 30, 17378–17388 https://doi.org/10.1021/acs.jpcc.8b05906 + This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. The modified Arrhenius parameters is calculed from Table 2. Activation Energy (Ea) diff --git a/input/kinetics/libraries/Surface/Novell_Pt111/reactions.py b/input/kinetics/libraries/Surface/Novell_Pt111/reactions.py index 92eecfd5cd..86fca38803 100644 --- a/input/kinetics/libraries/Surface/Novell_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Novell_Pt111/reactions.py @@ -25,6 +25,7 @@ "Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 https://doi.org/10.1021/jp064742b + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 500K) = 7.1E11(1/s)/2.483E-9(mol/cm^2) = 2.859E20 cm^2/(mol*s) """, @@ -47,6 +48,7 @@ "Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 https://doi.org/10.1021/jp064742b + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 500K) = 1.1E13(1/s)/2.483E-9(mol/cm^2) = 4.430E21 cm^2/(mol*s) """, @@ -69,9 +71,10 @@ "Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 https://doi.org/10.1021/jp064742b + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 500K) = 1.3E13(1/s)/2.483E-9(mol/cm^2) = 5.236E21 cm^2/(mol*s) """, metal = "Pt", facet = "111", -) +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py b/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py index fff6a1a5b1..40b6062f8f 100644 --- a/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py @@ -25,6 +25,7 @@ "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K from p.62)= 8.6E12(1/s)/2.483E-9(mol/cm^2) = 3.464E21 cm^2/(mol*s) """, @@ -47,6 +48,7 @@ "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K)= 5.6E11(1/s)/2.483E-9(mol/cm^2) = 2.255E20 cm^2/(mol*s) """, @@ -69,6 +71,7 @@ "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K) = 5.0E12(1/s)/2.483E-9(mol/cm^2) = 2.014E21 cm^2/(mol*s) """, @@ -91,6 +94,7 @@ "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K) = 7.2E12(1/s)/2.483E-9(mol/cm^2) = 2.8997E21 cm^2/(mol*s) """, @@ -113,6 +117,7 @@ "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K) = 1.2E12(1/s)/2.483E-9(mol/cm^2) = 4.833E20 cm^2/(mol*s) """, @@ -135,6 +140,7 @@ "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K) = 6.1E12(1/s)/2.483E-9(mol/cm^2) = 2.457E21 cm^2/(mol*s) """, @@ -157,6 +163,7 @@ "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K) = 7.6E12(1/s)/2.483E-9(mol/cm^2) = 3.061E21 cm^2/(mol*s) """, @@ -179,6 +186,7 @@ "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K) = 1.6E11(1/s)/2.483E-9(mol/cm^2) = 6.444E19 cm^2/(mol*s) """, @@ -201,6 +209,7 @@ "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K) = 3.4E12(1/s)/2.483E-9(mol/cm^2) = 1.369E21 cm^2/(mol*s) """, @@ -223,6 +232,7 @@ "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K) = 5.1E11(1/s)/2.483E-9(mol/cm^2) = 2.054E20 cm^2/(mol*s) """, @@ -245,6 +255,7 @@ "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K) = 7.1E12(1/s)/2.483E-9(mol/cm^2) = 2.859E21 cm^2/(mol*s) """, diff --git a/input/kinetics/libraries/Surface/Ralph_Pt111/reactions.py b/input/kinetics/libraries/Surface/Ralph_Pt111/reactions.py index 1c2e747a5d..0b424be418 100644 --- a/input/kinetics/libraries/Surface/Ralph_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Ralph_Pt111/reactions.py @@ -27,6 +27,7 @@ Surface Morphology and Kinetics at Atmospheric Pressure." Krähnert, Ralph(2005) A Doctoral Thesis. http://dx.doi.org/10.14279/depositonce-1270 + A = k/exp(Ea/RT) = 9.34(mol/m^2/s)/exp(135300J/mol / 8.314J/molK / 298K) = 4.91E16 cm^2/mol/s """, metal = "Pt", @@ -49,6 +50,7 @@ Surface Morphology and Kinetics at Atmospheric Pressure." Krähnert, Ralph(2005) A Doctoral Thesis. http://dx.doi.org/10.14279/depositonce-1270 + A = k/exp(Ea/RT) = 64.2(mol/m^2/s)/exp(139000J/mol / 8.314J/molK / 298K) = 7.06E17 cm^2/mol/s """, metal = "Pt", @@ -71,6 +73,7 @@ Surface Morphology and Kinetics at Atmospheric Pressure." Krähnert, Ralph(2005) A Doctoral Thesis. http://dx.doi.org/10.14279/depositonce-1270 + A = k/exp(Ea/RT) = 1.09E-10(mol/m^2/s)/exp(181000J/mol / 8.314J/molK / 298K) = 5.21E9 cm^2/mol/s """, metal = "Pt", @@ -93,6 +96,7 @@ Surface Morphology and Kinetics at Atmospheric Pressure." Krähnert, Ralph(2005) A Doctoral Thesis. http://dx.doi.org/10.14279/depositonce-1270 + A = k/exp(Ea/RT) = 2.17(mol/m^2/s)/exp(60900J/mol / 8.314J/molK / 298K) = 4.09E9 cm^2/mol/s """, metal = "Pt", @@ -115,6 +119,7 @@ Surface Morphology and Kinetics at Atmospheric Pressure." Krähnert, Ralph(2005) A Doctoral Thesis. http://dx.doi.org/10.14279/depositonce-1270 + A = k/exp(Ea/RT) = 1.24(mol/m^2/s)/exp(154800J/mol / 8.314J/molK / 298K) = 3.19E17 cm^2/mol/s """, metal = "Pt", @@ -137,6 +142,7 @@ Surface Morphology and Kinetics at Atmospheric Pressure." Krähnert, Ralph(2005) A Doctoral Thesis. http://dx.doi.org/10.14279/depositonce-1270 + A = k/exp(Ea/RT) = 5.2(mol/m^2/s)/exp(155200J/mol / 8.314J/molK / 298K) = 1.45E18 cm^2/mol/s """, metal = "Pt", diff --git a/input/kinetics/libraries/Surface/Rebrov_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Rebrov_Pt111/dictionary.txt new file mode 100644 index 0000000000..608257ab17 --- /dev/null +++ b/input/kinetics/libraries/Surface/Rebrov_Pt111/dictionary.txt @@ -0,0 +1,91 @@ +X +1 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +NO +multiplicity 2 +1 N u1 p1 c0 {2,D} +2 O u0 p2 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +NHO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +4 X u0 p0 c0 + +N2_X +1 N u0 p0 c+1 {2,D} {3,D} +2 N u0 p2 c-1 {1,D} +3 X u0 p0 c0 {1,D} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py b/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py new file mode 100644 index 0000000000..6c15b8c130 --- /dev/null +++ b/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py @@ -0,0 +1,360 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Rebrov_Pt111" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 +""" + +entry( + index = 2, + label = "NH3_X <=> NH3 + X", + kinetics = SurfaceArrhenius( + A = (4.03E17, '1/s'), + n = 0.0, + Ea = (75200, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E9(mol/cm^2/s)/2.483E-9(mol/cm^2) = 4.03E17 (1/s) + +This is R2 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 4, + label = "O_X + O_X <=> O2 + X + X", + kinetics = SurfaceArrhenius( + A = (4.03E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (213200, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is R4 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 5, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (6.85E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (157, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.7E15(1/s)/2.483E-9(mol/cm^2) = 6.85E23 cm^2/(mol*s) + +This is R5 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 7, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4.03E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (58500, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is R7 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 8, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (4.03E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (121200, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is R8 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 9, + label = "NH_X + O_X <=> NHO_X + X", + kinetics = SurfaceArrhenius( + A = (4.03E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (73000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_Double_vdW""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is R9 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 10, + label = "NHO_X + O_X <=> NO_X + OH_X", + kinetics = SurfaceArrhenius( + A = (8.05E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (11800, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 2E15(1/s)/2.483E-9(mol/cm^2) = 8.05E23 cm^2/(mol*s) + +This is R10 in Table 1, it's from ref[52] where metal = Pt100. +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 12, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (4.03E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (79100, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E11(1/s)/2.483E-9(mol/cm^2) = 4.03E19 cm^2/(mol*s) + +This is R12 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 13, + label = "N_X + NO_X <=> N2O + X + X", + kinetics = SurfaceArrhenius( + A = (4.03E19, 'cm^2/(mol*s)'), + n = 0, + Ea = (92900, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""R13 in Table 1, doesn't match a family""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E11(1/s)/2.483E-9(mol/cm^2) = 4.03E19 cm^2/(mol*s) + +This is R13 in Table 1 +""", + metal = "Pt", + facet = "111", +) +entry( + index = 14, + label = "N2O_X + X <=> N2_X + O_X", + kinetics = SurfaceArrhenius( + A = (1.01E17, 'cm^2/(mol*s)'), + n = 0, + Ea = (72200, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Addition_Single_vdW""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 2.5E8(1/s)/2.483E-9(mol/cm^2) = 1.01E17 cm^2/(mol*s) + +This is R14 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 15, + label = "NO_X <=> NO + X", + kinetics = SurfaceArrhenius( + A = (4.03E24, '1/s'), + n = 0.0, + Ea = (140000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E16(1/s)/2.483E-9(mol/cm^2) = 4.03E24 cm^2/(mol*s) + +This is R15 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 16, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (4.03E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (79000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E11(1/s)/2.483E-9(mol/cm^2) = 4.03E19 cm^2/(mol*s) + +This is R2 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 18, + label = "O_X + H2O_X <=> OH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4.03E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (52700, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E11(1/s)/2.483E-9(mol/cm^2) = 4.03E19 cm^2/(mol*s) + +This is R18 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 19, + label = "H2O_X <=> H2O + X", + kinetics = SurfaceArrhenius( + A = (4.03E21, '1/s'), + n = 0.0, + Ea = (40300, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is R19 in Table 1 +""", + metal = "Pt", + facet = "111", +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Ryan_Pt111/reactions.py b/input/kinetics/libraries/Surface/Ryan_Pt111/reactions.py index 0906b30505..33a82c1cfe 100644 --- a/input/kinetics/libraries/Surface/Ryan_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Ryan_Pt111/reactions.py @@ -25,6 +25,8 @@ "First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) https://doi.org/10.1116/1.4903225 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A = ((3.19E7 /bar) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 32 g/mol * molar gas constant * 298 kelvin) """, metal = "Pt", @@ -46,6 +48,8 @@ "First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) https://doi.org/10.1116/1.4903225 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K) = 4.41E13(1/s)/2.483E-9(mol/cm^2) = 1.776E22 cm^2/(mol*s) Ea = 1.2eV * 96490J/eV mol = 115788J/mol """, @@ -68,6 +72,8 @@ "First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) https://doi.org/10.1116/1.4903225 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A = ((2.78E2 /bar) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 30 g/mol * molar gas constant * 298 kelvin) """, metal = "Pt", @@ -89,6 +95,8 @@ "First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) https://doi.org/10.1116/1.4903225 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A = ((2.24E2 /bar) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 46 g/mol * molar gas constant * 298 kelvin) """, metal = "Pt", diff --git a/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py index b39a279f25..39d3bafe84 100644 --- a/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py @@ -26,6 +26,8 @@ # "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." # DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. # https://doi.org/10.1021/acscatal.8b04251 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. # A = ((1.8E3 /pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 32 g/mol * molar gas constant * 298 kelvin) # """, # metal = "Pt", @@ -48,6 +50,8 @@ # "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." # DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. # https://doi.org/10.1021/acscatal.8b04251 +# +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. # A = ((2.5E3 /pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 17 g/mol * molar gas constant * 298 kelvin) # """, # metal = "Pt", @@ -69,8 +73,9 @@ "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 5.2E12(1/s)/2.483E-9(mol/cm^2) 1.007E21 cm^2/(mol*s) +A = 5.2E12(1/s)/2.483E-9(mol/cm^2) = 1.007E21 cm^2/(mol*s) """, metal = "Pt", facet = "111", @@ -91,6 +96,7 @@ "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A = 5.5E12(1/s)/2.483E-9(mol/cm^2) = 2.215E21 cm^2/(mol*s) """, @@ -113,6 +119,7 @@ "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A = 7.8E12(1/s)/2.483E-9(mol/cm^2) = 3.141E21 cm^2/(mol*s) """, @@ -135,6 +142,7 @@ "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A = 4.9E13(1/s)/2.483E-9(mol/cm^2) = 1.973E22 cm^2/(mol*s) """, @@ -157,6 +165,7 @@ "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A = 1.5E13(1/s)/2.483E-9(mol/cm^2) = 6.041E21 cm^2/(mol*s) """, @@ -179,6 +188,7 @@ "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A = 5.9E12(1/s)/2.483E-9(mol/cm^2) = 2.376E21 cm^2/(mol*s) """, @@ -201,6 +211,7 @@ "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A = 3.1E12(1/s)/2.483E-9(mol/cm^2) = 1.248E21 cm^2/(mol*s) """, @@ -224,7 +235,9 @@ # "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." # DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. # https://doi.org/10.1021/acscatal.8b04251 -# ((2.4e3 /Pa) / s) * (2.4e-9 mol/cm2) * sqrt(2 * pi * 18 g/mol * molar gas constant * 298 kelvin) + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = ((2.4e3 /Pa) / s) * (2.4e-9 mol/cm2) * sqrt(2 * pi * 18 g/mol * molar gas constant * 298 kelvin) # """, # metal = "Pt", # facet = "111", @@ -245,7 +258,9 @@ "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 -((6.8E-2 /Pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 28 g/mol * molar gas constant * 298 kelvin) + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((6.8E-2 /Pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 28 g/mol * molar gas constant * 298 kelvin) """, metal = "Pt", facet = "111", @@ -266,6 +281,7 @@ "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A = 8.3E12(1/s)/2.483E-9(mol/cm^2) = 3.343E21 cm^2/(mol*s) """, @@ -289,7 +305,9 @@ # "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." # DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. # https://doi.org/10.1021/acscatal.8b04251 -# ((1.9E3 /Pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 30 g/mol * molar gas constant * 298 kelvin) + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = ((1.9E3 /Pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 30 g/mol * molar gas constant * 298 kelvin) # """, # metal = "Pt", # facet = "111", @@ -310,6 +328,7 @@ "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 + This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A = 4.3E12(1/s)/2.483E-9(mol/cm^2) = 1.732E21 cm^2/(mol*s) """, @@ -333,7 +352,9 @@ # "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." # DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. # https://doi.org/10.1021/acscatal.8b04251 -# ((1.6E3 /Pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 44 g/mol * molar gas constant * 298 kelvin) +# +#This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = ((1.6E3 /Pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 44 g/mol * molar gas constant * 298 kelvin) # """, # metal = "Pt", # facet = "111", diff --git a/input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py b/input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py index 2bd80499ee..f1866f6081 100644 --- a/input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py +++ b/input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py @@ -427,6 +427,7 @@ This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. Using the method proposed by Campbell et al. to calculate A actor. Ea = 1.04eV = 100349.6J/mol + This is reaction (1) in Table S5 """, metal = "Rh", diff --git a/input/kinetics/libraries/Surface/Schneider_Rh211 /reactions.py b/input/kinetics/libraries/Surface/Schneider_Rh211 /reactions.py index 1382392c76..75cad6d41a 100644 --- a/input/kinetics/libraries/Surface/Schneider_Rh211 /reactions.py +++ b/input/kinetics/libraries/Surface/Schneider_Rh211 /reactions.py @@ -426,6 +426,7 @@ This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. Using the method proposed by Campbell et al. to calculate A actor. Ea = 0.92eV = 88770.8J/mol + This is reaction (1) in Table S4 """, metal = "Rh", From a8f7aa8ed1eef7aa3e6f348bebadafe1a4f8e00d Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sun, 16 May 2021 23:24:34 -0400 Subject: [PATCH 05/27] added Scheuer_Pt --- .../Surface_Abstraction/training/reactions.py | 1 + .../training/reactions.py | 3 +- .../training/reactions.py | 1 + .../training/reactions.py | 1 + .../training/reactions.py | 51 ++- .../training/reactions.py | 28 +- .../training/reactions.py | 27 +- .../training/reactions.py | 2 + .../training/reactions.py | 4 +- .../Surface/Scheuer_Pt/dictionary.txt | 92 +++++ .../libraries/Surface/Scheuer_Pt/reactions.py | 331 ++++++++++++++++++ 11 files changed, 536 insertions(+), 5 deletions(-) create mode 100644 input/kinetics/libraries/Surface/Scheuer_Pt/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Scheuer_Pt/reactions.py diff --git a/input/kinetics/families/Surface_Abstraction/training/reactions.py b/input/kinetics/families/Surface_Abstraction/training/reactions.py index 3bad9e72a9..c33856b5b4 100644 --- a/input/kinetics/families/Surface_Abstraction/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction/training/reactions.py @@ -115,6 +115,7 @@ """, metal = "Cu", ) + entry( index = 40, label = "H2NX + O* <=> OH* + HNX", diff --git a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py index a0dfab4d0e..cba44af82c 100644 --- a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py @@ -156,4 +156,5 @@ """, metal = "Rh", facet = "111", -) \ No newline at end of file +) + diff --git a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py index 009083cd74..8f48617051 100644 --- a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py @@ -166,6 +166,7 @@ """, metal = "Cu", ) + entry( index = 47, label = "O* + H3NX <=> H2NX + OH_4*", diff --git a/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py b/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py index 52e152207d..d9164d29be 100644 --- a/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py @@ -213,3 +213,4 @@ """, metal = "Cu", ) + diff --git a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py index 95fa240853..6f6e4940ce 100644 --- a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py @@ -28,6 +28,7 @@ This is R48""", metal = "Pt", ) + entry( index = 49, label = "NO_X <=> NO + Pt", @@ -91,7 +92,9 @@ """, metal = "Pt", facet = "111", -)entry( +) + +entry( index = 52, label = "NO_X <=> NO + Pt", degeneracy = 1.0, @@ -115,3 +118,49 @@ facet = "111", ) +entry( + index = 53, + label = "Pt + NO <=> NO_X", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.1556, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Scheuer_Pt +Original entry: NO + X <=> NO_X +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((290/Pa)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(30(g/mol))*the molar gas constant*(298 kelvin)) = 0.1556 + +This is R7 in Table 1 +""", + metal = "Pt", +) + +entry( + index = 54, + label = "NO2X <=> NO2 + Pt", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(5.24e+22,'1/s'), n=0, Ea=(100000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Scheuer_Pt +Original entry: NO2_X <=> NO2 + X +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.3E14(mol/cm^2/s)/2.483E-9(mol/cm^2) = 5.24E22 (1/s) + +This is R13 in Table 1 +""", + metal = "Pt", +) + diff --git a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py index 4e69d96211..764bc89bc1 100644 --- a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py @@ -67,6 +67,7 @@ Catalysts, 2015, 5, 871-904""", metal = "Ni", ) + entry( index = 12, label = "H3NX <=> H3N + X", @@ -109,7 +110,9 @@ """, metal = "Pt", facet = "111", -)entry( +) + +entry( index = 14, label = "H3NX <=> H3N + X", degeneracy = 1.0, @@ -157,3 +160,26 @@ facet = "111", ) +entry( + index = 16, + label = "X + H3N <=> H3NX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.00768, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Scheuer_Pt +Original entry: NH3 + X <=> NH3_X +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((19/Pa)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(17(g/mol))*the molar gas constant*(298 kelvin))= 0.00768 + +This is R1 in Table 1 +""", + metal = "Pt", +) + diff --git a/input/kinetics/families/Surface_Dissociation/training/reactions.py b/input/kinetics/families/Surface_Dissociation/training/reactions.py index fcae89eac1..46f8b23c3b 100644 --- a/input/kinetics/families/Surface_Dissociation/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation/training/reactions.py @@ -360,6 +360,7 @@ """, metal = "Cu", ) + entry( index = 49, label = "NOX + OX <=> NO2X + Ni_4", @@ -783,4 +784,28 @@ """, metal = "Rh", facet = "111", -) \ No newline at end of file +) + +entry( + index = 66, + label = "Ni_4 + NO2X <=> OX + NOX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.29e+20,'cm^2/(mol*s)'), n=0, Ea=(83000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Scheuer_Pt +Original entry: NO2_X + X <=> NO_X + O_X +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 3.2E11(1/s)/2.483E-9(mol/cm^2) = 1.29E20 cm^2/(mol*s) + +This is R12 in Table 1 +""", + metal = "Pt", +) + diff --git a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py index 342993af82..8439b58296 100644 --- a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py @@ -74,6 +74,7 @@ """, metal = "Cu", ) + entry( index = 36, label = "X_4 + N2OX <=> O* + N2X", @@ -90,6 +91,7 @@ Atsushi Ishikawa and Yoshitaka Tateyama J. Phys. Chem. C 2018, 122, 30, 17378–17388 https://doi.org/10.1021/acs.jpcc.8b05906 + This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. The modified Arrhenius parameters is calculed from Table 2. Activation Energy (Ea) diff --git a/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py b/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py index 9259d6c2bc..261f1c4df8 100644 --- a/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py @@ -233,6 +233,7 @@ """, metal = "Cu", ) + entry( index = 35, label = "X_4 + NH3_X <=> NH2_X + H*", @@ -458,4 +459,5 @@ """, metal = "Rh", facet = "111", -) \ No newline at end of file +) + diff --git a/input/kinetics/libraries/Surface/Scheuer_Pt/dictionary.txt b/input/kinetics/libraries/Surface/Scheuer_Pt/dictionary.txt new file mode 100644 index 0000000000..b3a20ae8b0 --- /dev/null +++ b/input/kinetics/libraries/Surface/Scheuer_Pt/dictionary.txt @@ -0,0 +1,92 @@ +X +1 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +NHO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +NO2 +multiplicity 2 +1 N u0 p1 c0 {2,D} {3,S} +2 O u0 p2 c0 {1,D} +3 O u1 p2 c0 {1,S} + +NO2_X +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 N u0 p1 c0 {1,S} {2,D} +4 X u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Scheuer_Pt/reactions.py b/input/kinetics/libraries/Surface/Scheuer_Pt/reactions.py new file mode 100644 index 0000000000..c5f6319224 --- /dev/null +++ b/input/kinetics/libraries/Surface/Scheuer_Pt/reactions.py @@ -0,0 +1,331 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Scheuer_Pt" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 +""" + +entry( + index = 1, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 0.00768, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((19/Pa)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(17(g/mol))*the molar gas constant*(298 kelvin))= 0.00768 + +This is R1 in Table 1 +""", + metal = "Pt", +) + +#Reverse reaction of R1 +# entry( +# index = 2, +# label = "NH3_X <=> NH3 + X", +# kinetics = SurfaceArrhenius( +# A = (2.66E13, '1/s'), +# n = 0.0, +# Ea = (116000, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +# Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +# https://doi.org/10.1016/j.apcatb.2011.10.032 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 6.6E4(mol/cm^2/s)/2.483E-9(mol/cm^2) = 2.66E13 (1/s) + +# This is R2 in Table 1 +# """, +# metal = "Pt", +# ) + +entry( + index = 3, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.1441, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((260/Pa)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(32(g/mol))*the molar gas constant*(298 kelvin)) = 0.1441 + +This is R3 in Table 1 +""", + metal = "Pt", +) + +#Reverse reaction of R3 +# entry( +# index = 4, +# label = "O_X + O_X <=> O2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (4.83E20, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (128000, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +# Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +# https://doi.org/10.1016/j.apcatb.2011.10.032 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.2E12(1/s)/2.483E-9(mol/cm^2) = 4.83E20 cm^2/(mol*s) + +# This is R4 in Table 1 +# """, +# metal = "Pt", +# ) + +#skip R5 + +#Reverse reaction of R7 +# entry( +# index = 6, +# label = "NO_X <=> NO + X", +# kinetics = SurfaceArrhenius( +# A = (1.13E25, '1/s'), +# n = 0.0, +# Ea = (126000, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +# Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +# https://doi.org/10.1016/j.apcatb.2011.10.032 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 6E17(mol/cm^2/s)/2.483E-9(mol/cm^2) = 1.13E25 (1/s) + +# This is R6 in Table 1 +# """, +# metal = "Pt", +# ) + +entry( + index = 7, + label = "NO + X <=> NO_X", + kinetics = StickingCoefficient( + A = 0.1556, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((290/Pa)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(30(g/mol))*the molar gas constant*(298 kelvin)) = 0.1556 + +This is R7 in Table 1 +""", + metal = "Pt", +) + +entry( + index = 8, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (4.83E27, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (181000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.2E19(1/s)/2.483E-9(mol/cm^2) = 4.83E27 cm^2/(mol*s) + +This is R8 in Table 1 +""", + metal = "Pt", +) + +entry( + index = 9, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (1.13E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (126000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 2.8E13(1/s)/2.483E-9(mol/cm^2) = 1.13E22 cm^2/(mol*s) + +This is R9 in Table 1 +""", + metal = "Pt", +) + +entry( + index = 10, + label = "N_X + NO_X <=> N2O + X + X", + kinetics = SurfaceArrhenius( + A = (4.03E28, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (139000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N and NO Association""", + longDesc = u""" +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E20(1/s)/2.483E-9(mol/cm^2) = 4.03E28 cm^2/(mol*s) + +This is R10 in Table 1 +""", + metal = "Pt", +) + +#Reverse reaction of R12 +# entry( +# index = 11, +# label = "NO_X + O_X <=> NO2_X + X", +# kinetics = SurfaceArrhenius( +# A = (2.74E23, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (11500, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +# Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +# https://doi.org/10.1016/j.apcatb.2011.10.032 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 6.8E14(1/s)/2.483E-9(mol/cm^2) = 2.74E23 cm^2/(mol*s) + +# This is R11 in Table 1 +# """, +# metal = "Pt", +# ) + +entry( + index = 12, + label = "NO2_X + X <=> NO_X + O_X", + kinetics = SurfaceArrhenius( + A = (1.29E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (83000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 3.2E11(1/s)/2.483E-9(mol/cm^2) = 1.29E20 cm^2/(mol*s) + +This is R12 in Table 1 +""", + metal = "Pt", +) + +entry( + index = 13, + label = "NO2_X <=> NO2 + X", + kinetics = SurfaceArrhenius( + A = (5.24E22, '1/s'), + n = 0.0, + Ea = (100000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.3E14(mol/cm^2/s)/2.483E-9(mol/cm^2) = 5.24E22 (1/s) + +This is R13 in Table 1 +""", + metal = "Pt", +) + +#skip R14 since sticking coefficient is larger than 1. +# entry( +# index = 14, +# label = "NO2 + X <=> NO2_X", +# kinetics = StickingCoefficient( +# A = , +# n = 0, +# Ea = (, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +# Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +# https://doi.org/10.1016/j.apcatb.2011.10.032 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = ((48000/Pa)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(46(g/mol))*the molar gas constant*(298 kelvin)) = 31.894218 +# Sticking coefficient is larger than 1, skip this reaction. + +# This is R14 in Table 1 +# """, +# metal = "Pt", +# ) \ No newline at end of file From 5472f865b429a899dd09c8e3b203c8e33cffff51 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Mon, 17 May 2021 13:08:01 -0400 Subject: [PATCH 06/27] added Schnedier_Pt211, Duan_Ni111, Duan_ Ni211 and revised Schnedier_Pt111 --- .../Surface_Abstraction/training/reactions.py | 65 ++- .../training/reactions.py | 32 +- .../training/reactions.py | 139 +++++- .../training/reactions.py | 50 +++ .../training/dictionary.txt | 11 + .../training/reactions.py | 99 +++++ .../training/reactions.py | 126 ++++++ .../training/reactions.py | 63 +++ .../Surface/Duan_Ni111/dictionary.txt | 32 ++ .../libraries/Surface/Duan_Ni111/reactions.py | 163 +++++++ .../Surface/Duan_Ni211/dictionary.txt | 32 ++ .../libraries/Surface/Duan_Ni211/reactions.py | 128 ++++++ .../Surface/Offermans_Pt111/reactions.py | 4 +- .../libraries/Surface/Popa_Rh111/reactions.py | 4 +- .../Surface/Rebrov_Pt111/reactions.py | 2 +- .../Surface/Schneider_Pt111/reactions.py | 236 ++++++----- .../Surface/Schneider_Pt211/dictionary.txt | 89 ++++ .../Surface/Schneider_Pt211/reactions.py | 401 ++++++++++++++++++ 18 files changed, 1551 insertions(+), 125 deletions(-) create mode 100644 input/kinetics/libraries/Surface/Duan_Ni111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Duan_Ni111/reactions.py create mode 100644 input/kinetics/libraries/Surface/Duan_Ni211/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Duan_Ni211/reactions.py create mode 100644 input/kinetics/libraries/Surface/Schneider_Pt211/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py diff --git a/input/kinetics/families/Surface_Abstraction/training/reactions.py b/input/kinetics/families/Surface_Abstraction/training/reactions.py index c33856b5b4..e6df641b7e 100644 --- a/input/kinetics/families/Surface_Abstraction/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction/training/reactions.py @@ -120,7 +120,7 @@ index = 40, label = "H2NX + O* <=> OH* + HNX", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(2.215e+21,'cm^2/(mol*s)'), n=0, Ea=(78157,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.22e+21,'cm^2/(mol*s)'), n=0, Ea=(78156.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction""", longDesc = @@ -132,8 +132,10 @@ https://doi.org/10.1021/acscatal.8b04251 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 5.5E12(1/s)/2.483E-9(mol/cm^2) = 2.215E21 cm^2/(mol*s) -""", +A = 5.5E12(1/s)/2.483E-9(mol/cm^2) = 2.22E21 cm^2/(mol*s) +Ea = 0.81eV = 78156.9J/mol + +This is R4 in Table S2 and S4""", metal = "Pt", facet = "111", ) @@ -142,7 +144,7 @@ index = 41, label = "HNX-2 + O* <=> OH* + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.141e+21,'cm^2/(mol*s)'), n=0, Ea=(154380,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.14e+21,'cm^2/(mol*s)'), n=0, Ea=(154384,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction""", longDesc = @@ -154,7 +156,10 @@ https://doi.org/10.1021/acscatal.8b04251 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 7.8E12(1/s)/2.483E-9(mol/cm^2) = 3.141E21 cm^2/(mol*s) +A = 7.8E12(1/s)/2.483E-9(mol/cm^2) = 3.14E21 cm^2/(mol*s) +Ea = 1.6eV = 154384J/mol + +This is R5 in Table S2 and S4 """, metal = "Pt", facet = "111", @@ -440,3 +445,53 @@ facet = "111", ) +entry( + index = 53, + label = "H2NX + O* <=> OH* + HNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(1.78e+21,'cm^2/(mol*s)'), n=0, Ea=(139910,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt211 +Original entry: NH2_X +O_X <=> NH_X + OH_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 4.7E12(1/s)/2.634E-9(mol/cm^2) = 1.78E21 cm^2/(mol*s) +Ea = 1.45eV = 139910.5J/mol + +This is R4 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 54, + label = "HNX-2 + O* <=> OH* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.29e+21,'cm^2/(mol*s)'), n=0, Ea=(45350.3,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt211 +Original entry: NH_X + O_X <=> N_X + OH_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 3.4E12(1/s)/2.634E-9(mol/cm^2) = 1.29E21 cm^2/(mol*s) +Ea = 0.47eV = 45350.3J/mol + +This is R5 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + diff --git a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py index cba44af82c..e402ae57c2 100644 --- a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py @@ -12,7 +12,7 @@ index = 1, label = "HOX + H3NX <=> H2NX + H2OX", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(1.973e+22,'cm^2/(mol*s)'), n=0, Ea=(33772,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.97e+22,'cm^2/(mol*s)'), n=0, Ea=(33771.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_Single_vdW""", longDesc = @@ -24,7 +24,10 @@ https://doi.org/10.1021/acscatal.8b04251 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 4.9E13(1/s)/2.483E-9(mol/cm^2) = 1.973E22 cm^2/(mol*s) +A = 4.9E13(1/s)/2.483E-9(mol/cm^2) = 1.97E22 cm^2/(mol*s) +Ea = 0.35eV = 33771.5J/mol + +This is R6 in Table S2 and S4 """, metal = "Pt", facet = "111", @@ -158,3 +161,28 @@ facet = "111", ) +entry( + index = 7, + label = "HOX + H3NX <=> H2NX + H2OX", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(3.11e+21,'cm^2/(mol*s)'), n=0, Ea=(80086.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt211 +Original entry: NH3_X + OH_X <=> NH2_X + H2O_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 8.2E12(1/s)/2.634E-9(mol/cm^2) = 3.11E21 cm^2/(mol*s) +Ea = 0.83eV = 80086.7J/mol + +This is R6 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + diff --git a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py index 8f48617051..418f5ce45d 100644 --- a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py @@ -171,7 +171,7 @@ index = 47, label = "O* + H3NX <=> H2NX + OH_4*", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(1.007e+21,'cm^2/(mol*s)'), n=0, Ea=(67543,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.01e+21,'cm^2/(mol*s)'), n=0, Ea=(67543,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -183,7 +183,10 @@ https://doi.org/10.1021/acscatal.8b04251 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 5.2E12(1/s)/2.483E-9(mol/cm^2) = 1.007E21 cm^2/(mol*s) +A = 5.2E12(1/s)/2.483E-9(mol/cm^2) = 1.01E21 cm^2/(mol*s) +Ea = 0.7eV = 67543J/mol + +This is R3 in Table S2 and S4 """, metal = "Pt", facet = "111", @@ -193,7 +196,7 @@ index = 48, label = "H2NX-2 + OH_2* <=> H2O* + HNX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(6.041e+21,'cm^2/(mol*s)'), n=0, Ea=(965,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(6.04e+21,'cm^2/(mol*s)'), n=0, Ea=(964.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -205,7 +208,10 @@ https://doi.org/10.1021/acscatal.8b04251 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 1.5E13(1/s)/2.483E-9(mol/cm^2) = 6.041E21 cm^2/(mol*s) +A = 1.5E13(1/s)/2.483E-9(mol/cm^2) = 6.04E21 cm^2/(mol*s) +Ea = 0.01eV = 964.9J/mol + +This is R7 in Table S2 and S4 """, metal = "Pt", facet = "111", @@ -215,7 +221,7 @@ index = 49, label = "HNX-2 + OH_2* <=> H2O* + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.376e+21,'cm^2/(mol*s)'), n=0, Ea=(39561,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.38e+21,'cm^2/(mol*s)'), n=0, Ea=(39560.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -227,7 +233,10 @@ https://doi.org/10.1021/acscatal.8b04251 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 5.9E12(1/s)/2.483E-9(mol/cm^2) = 2.376E21 cm^2/(mol*s) +A = 5.9E12(1/s)/2.483E-9(mol/cm^2) = 2.38E21 cm^2/(mol*s) +Ea = 0.41eV = 39560.9J/mol + +This is R8 in Table S2 and S4 """, metal = "Pt", facet = "111", @@ -237,9 +246,9 @@ index = 50, label = "OH_2* + OH_4* <=> H2O* + O*", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.248e+21,'cm^2/(mol*s)'), n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.25e+21,'cm^2/(mol*s)'), n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Reverse R95""", + shortDesc = """Surface_Abstraction_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Schneider_Pt111 @@ -249,7 +258,9 @@ https://doi.org/10.1021/acscatal.8b04251 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 3.1E12(1/s)/2.483E-9(mol/cm^2) = 1.248E21 cm^2/(mol*s) +A = 3.1E12(1/s)/2.483E-9(mol/cm^2) = 1.25E21 cm^2/(mol*s) + +This is R9 in Table S2 and S4 """, metal = "Pt", facet = "111", @@ -283,7 +294,7 @@ degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(1.369e+21,'cm^2/(mol*s)'), n=0, Ea=(22000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Abstraction_Single_vdW""", + shortDesc = """Surface_Abstraction_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Offermans_Pt111 @@ -305,7 +316,7 @@ degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(2.054e+20,'cm^2/(mol*s)'), n=0, Ea=(35000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Abstraction_Single_vdW""", + shortDesc = """Surface_Abstraction_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Offermans_Pt111 @@ -665,7 +676,7 @@ degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(1.5e+21,'cm^2/(mol*s)'), n=0, Ea=(13508.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Abstraction_Single_vdW""", + shortDesc = """Surface_Abstraction_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Popa_Rh111 @@ -693,7 +704,7 @@ degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(4.52e+20,'cm^2/(mol*s)'), n=0, Ea=(22192.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Abstraction_Single_vdW""", + shortDesc = """Surface_Abstraction_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Popa_Rh111 @@ -769,7 +780,7 @@ degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(4.03e+19,'cm^2/(mol*s)'), n=0, Ea=(79000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Abstraction_Single_vdW""", + shortDesc = """Surface_Abstraction_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Rebrov_Pt111 @@ -811,3 +822,103 @@ facet = "111", ) +entry( + index = 73, + label = "O* + H3NX <=> H2NX + OH_4*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(1.56e+21,'cm^2/(mol*s)'), n=0, Ea=(55964.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt211 +Original entry: NH3_X +O_X <=> NH2_X + OH_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 4.1E12(1/s)/2.634E-9(mol/cm^2) = 1.56E21 cm^2/(mol*s) +Ea = 0.58eV = 55964.2J/mol + +This is R3 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 74, + label = "H2NX-2 + OH_2* <=> H2O* + HNX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.48e+21,'cm^2/(mol*s)'), n=0, Ea=(76227.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt211 +Original entry: NH2_X + OH_X <=> NH_X + H2O_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 3.9E12(1/s)/2.634E-9(mol/cm^2) = 1.48E21 cm^2/(mol*s) +Ea = 0.79eV = 76227.1J/mol + +This is R7 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 75, + label = "HNX-2 + OH_2* <=> H2O* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.01e+21,'cm^2/(mol*s)'), n=0, Ea=(81051.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt211 +Original entry: NH_X + OH_X <=> N_X + H2O_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 5.3E12(1/s)/2.634E-9(mol/cm^2) = 2.01E21 cm^2/(mol*s) +Ea = 0.84eV = 81051.6J/mol + +This is R8 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 76, + label = "OH_2* + OH_4* <=> H2O* + O*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.59e+21,'cm^2/(mol*s)'), n=0, Ea=(81051.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Reverse R95""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt211 +Original entry: OH_X + OH_X <=> O_X + H2O_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 4.2E12(1/s)/2.634E-9(mol/cm^2) = 1.59E21 cm^2/(mol*s) +Ea = 0.84eV = 81051.6J/mol + +This is R9 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + diff --git a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py index 6f6e4940ce..b78d0e1ab1 100644 --- a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py @@ -164,3 +164,53 @@ metal = "Pt", ) +entry( + index = 55, + label = "NO_X <=> NO + Pt", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.05e+26,'1/s'), n=0, Ea=(184296,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt111 +Original entry: NO_X <=> NO + X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 2.6E17(1/s)/2.483E-9(mol/cm^2) = 1.05E26 cm^2/(mol*s) +Ea = 1.91eV = 184295.9J/mol + +This is R13 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 56, + label = "NO_X <=> NO + Pt", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.94e+25,'1/s'), n=0, Ea=(224822,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt211 +Original entry: NO_X <=> NO + X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 1.3E17(1/s)/2.634E-9(mol/cm^2) = 4.94E25 cm^2/(mol*s) +Ea = 2.33eV = 224821.7J/mol + +This is R13 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + diff --git a/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt index 1c798e1875..d9c45a9508 100644 --- a/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt @@ -60,3 +60,14 @@ N2X 2 N u0 p1 c0 {1,T} 3 *2 X u0 p0 c0 +N2OX +1 *1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +4 *2 X u0 p0 c0 + +N2O +1 *1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + diff --git a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py index 764bc89bc1..77e8579252 100644 --- a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py @@ -183,3 +183,102 @@ metal = "Pt", ) +entry( + index = 17, + label = "H2OX <=> H2O + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.38e+24,'1/s'), n=0, Ea=(18333.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt111 +Original entry: H2O_X <=> H2O + X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.9E15(1/s)/2.483E-9(mol/cm^2) = 2.38E24 cm^2/(mol*s) +Ea = 0.19eV = 18333.1J/mol + +This is R10 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 18, + label = "N2OX <=> N2O + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(5.64e+24,'1/s'), n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Double/Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt111 +Original entry: N2O_X <=> N2O + X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.4E16(1/s)/2.483E-9(mol/cm^2) = 5.64E24 cm^2/(mol*s) + +This is R15 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 19, + label = "H2OX <=> H2O + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.4e+24,'1/s'), n=0, Ea=(24122.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt211 +Original entry: H2O_X <=> H2O + X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 3.7E15(1/s)/2.634E-9(mol/cm^2) = 1.40E24 cm^2/(mol*s) +Ea = 0.25eV = 24122.5J/mol + +This is R10 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 20, + label = "N2OX <=> N2O + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(5.69e+25,'1/s'), n=0, Ea=(9649,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Double/Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt211 +Original entry: N2O_X <=> N2O + X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 1.5E17(1/s)/2.634E-9(mol/cm^2) = 5.69E25 cm^2/(mol*s) +Ea = 0.1eV = 9649J/mol + +This is R15 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + diff --git a/input/kinetics/families/Surface_Dissociation/training/reactions.py b/input/kinetics/families/Surface_Dissociation/training/reactions.py index 46f8b23c3b..8269f95821 100644 --- a/input/kinetics/families/Surface_Dissociation/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation/training/reactions.py @@ -809,3 +809,129 @@ metal = "Pt", ) +entry( + index = 67, + label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(8.34e+19,'cm^2/(mol*s)'), n=0, Ea=(56929.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Duan_Ni111 +Original entry: NH2_X + X <=> NH_X + H_X +"Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and +Ni(1 1 1) surfaces: A density functional theory study" +Duan et al. Journal of Molecular Catalysis A: Chemical 357 (2012) 81–86 +https://doi.org/10.1016/j.molcata.2012.01.023 + +and + +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni111 = 3.148E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 1.03E8(1/s)/exp(56929.1JJ/mol / 8.314J/molK/873K) = 2.63E11/s + = (2.63E11/s)/3.148E-9(mol/cm^2) = 8.34E19cm^2/mol/s + +Ea = 0.59eV = 56929.1J/mol + +This is reaction 2 from Table 2 +""", + metal = "Ni", + facet = "111", +) + +entry( + index = 68, + label = "Ni_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.46e+19,'cm^2/(mol*s)'), n=0, Ea=(107104,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Duan_Ni111 +Original entry: NH_X + X <=> N_X + H_X +"Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and +Ni(1 1 1) surfaces: A density functional theory study" +Duan et al. Journal of Molecular Catalysis A: Chemical 357 (2012) 81–86 +https://doi.org/10.1016/j.molcata.2012.01.023 + +and + +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni111 = 3.148E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 3.02E4(1/s)/exp(107103.9J/mol / 8.314J/molK/873K) = 7.74E10/s + = (7.74E10/s)/3.148E-9(mol/cm^2) = 2.46E19 cm^2/mol/s + +Ea = 1.11eV = 107103.9J/mol + +This is reaction 3 from Table 2 +""", + metal = "Ni", + facet = "111", +) + +entry( + index = 69, + label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.31e+20,'cm^2/(mol*s)'), n=0, Ea=(86841,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Duan_Ni211 +Original entry: NH2_X + X <=> NH_X + H_X +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni211 = 3.339E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 4.91E6(1/s)/exp(86841J/mol / 8.314J/molK/873K) = 7.71E11/s + = (7.71E11/s)/3.339E-9(mol/cm^2) = 2.31E20 cm^2/mol/s + +Ea = 0.9eV = 86841J/mol + +This is reaction 2 from Table 2 +""", + metal = "Ni", + facet = "211", +) + +entry( + index = 70, + label = "Ni_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.36e+21,'cm^2/(mol*s)'), n=0, Ea=(100350,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Duan_Ni211 +Original entry: NH_X + X <=> N_X + H_X +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni211 = 3.339E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 1.11E7(1/s)/exp(100349.6J/mol / 8.314J/molK/873K) = 1.12E13/s + = (1.12E13/s)/3.339E-9(mol/cm^2) = 3.36E21 cm^2/mol/s + +Ea = 1.04eV = 100349.6J/mol + +This is reaction 3 from Table 2 +""", + metal = "Ni", + facet = "211", +) + diff --git a/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py b/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py index 261f1c4df8..30103e3b54 100644 --- a/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py @@ -461,3 +461,66 @@ facet = "111", ) +entry( + index = 44, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(4.35e+15,'cm^2/(mol*s)'), n=0, Ea=(107104,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Duan_Ni111 +Original entry: NH3_X + X <=> NH2_X + H_X +"Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and +Ni(1 1 1) surfaces: A density functional theory study" +Duan et al. Journal of Molecular Catalysis A: Chemical 357 (2012) 81–86 +https://doi.org/10.1016/j.molcata.2012.01.023 + +and + +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni111 = 3.148E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 5.35(1/s)/exp(107103.9J/mol / 8.314J/molK/873K) = 1.37E7/s + = (1.37E7/s)/3.148E-9(mol/cm^2) = 4.35E15 cm^2/mol/s + +Ea = 1.11eV = 107103.9J/mol + +This is reaction 1 from Table 2 +""", + metal = "Ni", + facet = "111", +) + +entry( + index = 45, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(5.52e+19,'cm^2/(mol*s)'), n=0, Ea=(63683.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Duan_Ni211 +Original entry: NH3_X + X <=> NH2_X + H_X +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni211 = 3.339E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 2.85E7(1/s)/exp(63683.4J/mol / 8.314J/molK/873K) = 1.84E11/s + = (1.84E11/s)/3.339E-9(mol/cm^2) = 5.52E19 cm^2/mol/s + +Ea = 0.66eV = 63683.4J/mol + +This is reaction 1 from Table 2 +""", + metal = "Ni", + facet = "211", +) + diff --git a/input/kinetics/libraries/Surface/Duan_Ni111/dictionary.txt b/input/kinetics/libraries/Surface/Duan_Ni111/dictionary.txt new file mode 100644 index 0000000000..e12230fdec --- /dev/null +++ b/input/kinetics/libraries/Surface/Duan_Ni111/dictionary.txt @@ -0,0 +1,32 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Duan_Ni111/reactions.py b/input/kinetics/libraries/Surface/Duan_Ni111/reactions.py new file mode 100644 index 0000000000..d9fc9b1382 --- /dev/null +++ b/input/kinetics/libraries/Surface/Duan_Ni111/reactions.py @@ -0,0 +1,163 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Duan_Ni111" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and +Ni(1 1 1) surfaces: A density functional theory study" +Duan et al. Journal of Molecular Catalysis A: Chemical 357 (2012) 81–86 +https://doi.org/10.1016/j.molcata.2012.01.023 + +and + +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 +""" + +entry( + index = 1, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.35E15, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (107103.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and +Ni(1 1 1) surfaces: A density functional theory study" +Duan et al. Journal of Molecular Catalysis A: Chemical 357 (2012) 81–86 +https://doi.org/10.1016/j.molcata.2012.01.023 + +and + +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni111 = 3.148E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 5.35(1/s)/exp(107103.9J/mol / 8.314J/molK/873K) = 1.37E7/s + = (1.37E7/s)/3.148E-9(mol/cm^2) = 4.35E15 cm^2/mol/s + +Ea = 1.11eV = 107103.9J/mol + +This is reaction 1 from Table 2 +""", + metal = "Ni", + facet = "111", +) + +entry( + index = 2, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (8.34E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (56929.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and +Ni(1 1 1) surfaces: A density functional theory study" +Duan et al. Journal of Molecular Catalysis A: Chemical 357 (2012) 81–86 +https://doi.org/10.1016/j.molcata.2012.01.023 + +and + +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni111 = 3.148E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 1.03E8(1/s)/exp(56929.1JJ/mol / 8.314J/molK/873K) = 2.63E11/s + = (2.63E11/s)/3.148E-9(mol/cm^2) = 8.34E19cm^2/mol/s + +Ea = 0.59eV = 56929.1J/mol + +This is reaction 2 from Table 2 +""", + metal = "Ni", + facet = "111", +) + +entry( + index = 3, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.46E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (107103.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and +Ni(1 1 1) surfaces: A density functional theory study" +Duan et al. Journal of Molecular Catalysis A: Chemical 357 (2012) 81–86 +https://doi.org/10.1016/j.molcata.2012.01.023 + +and + +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni111 = 3.148E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 3.02E4(1/s)/exp(107103.9J/mol / 8.314J/molK/873K) = 7.74E10/s + = (7.74E10/s)/3.148E-9(mol/cm^2) = 2.46E19 cm^2/mol/s + +Ea = 1.11eV = 107103.9J/mol + +This is reaction 3 from Table 2 +""", + metal = "Ni", + facet = "111", +) + +entry( + index = 4, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (3.62E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (179471.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and +Ni(1 1 1) surfaces: A density functional theory study" +Duan et al. Journal of Molecular Catalysis A: Chemical 357 (2012) 81–86 +https://doi.org/10.1016/j.molcata.2012.01.023 + +and + +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni111 = 3.148E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 2.08E1(1/s)/exp(179471.4J/mol / 8.314J/molK/873K) = 1.14E12/s + = (1.14E12/s)/3.148E-9(mol/cm^2) = 3.62E20 cm^2/mol/s + +Ea = 1.86eV = 179471.4J/mol + +This is reaction 4 from Table 2 +""", + metal = "Ni", + facet = "111", +) diff --git a/input/kinetics/libraries/Surface/Duan_Ni211/dictionary.txt b/input/kinetics/libraries/Surface/Duan_Ni211/dictionary.txt new file mode 100644 index 0000000000..e12230fdec --- /dev/null +++ b/input/kinetics/libraries/Surface/Duan_Ni211/dictionary.txt @@ -0,0 +1,32 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Duan_Ni211/reactions.py b/input/kinetics/libraries/Surface/Duan_Ni211/reactions.py new file mode 100644 index 0000000000..9909644e36 --- /dev/null +++ b/input/kinetics/libraries/Surface/Duan_Ni211/reactions.py @@ -0,0 +1,128 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Duan_Ni211" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 +""" + +entry( + index = 1, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (5.52E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (63683.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni211 = 3.339E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 2.85E7(1/s)/exp(63683.4J/mol / 8.314J/molK/873K) = 1.84E11/s + = (1.84E11/s)/3.339E-9(mol/cm^2) = 5.52E19 cm^2/mol/s + +Ea = 0.66eV = 63683.4J/mol + +This is reaction 1 from Table 2 +""", + metal = "Ni", + facet = "211", +) + +entry( + index = 2, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.31E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (86841, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni211 = 3.339E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 4.91E6(1/s)/exp(86841J/mol / 8.314J/molK/873K) = 7.71E11/s + = (7.71E11/s)/3.339E-9(mol/cm^2) = 2.31E20 cm^2/mol/s + +Ea = 0.9eV = 86841J/mol + +This is reaction 2 from Table 2 +""", + metal = "Ni", + facet = "211", +) + +entry( + index = 3, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.36E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (100349.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni211 = 3.339E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 1.11E7(1/s)/exp(100349.6J/mol / 8.314J/molK/873K) = 1.12E13/s + = (1.12E13/s)/3.339E-9(mol/cm^2) = 3.36E21 cm^2/mol/s + +Ea = 1.04eV = 100349.6J/mol + +This is reaction 3 from Table 2 +""", + metal = "Ni", + facet = "211", +) + +entry( + index = 4, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (4.90E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (285610.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni211 = 3.339E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 1.33E-5(1/s)/exp(285610.4J/mol / 8.314J/molK/873K) = 1.64E12/s + = (1.64E12/s)/3.339E-9(mol/cm^2) = 4.90E20 cm^2/mol/s + +Ea = 2.96eV = 285610.4J/mol + +This is reaction 4 from Table 2 +""", + metal = "Ni", + facet = "211", +) diff --git a/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py b/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py index 40b6062f8f..d00e3d5075 100644 --- a/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py @@ -204,7 +204,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Abstraction_Single_vdW""", + shortDesc = u"""Surface_Abstraction_vdW""", longDesc = u""" "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. @@ -227,7 +227,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Abstraction_Single_vdW""", + shortDesc = u"""Surface_AbstractionvdW""", longDesc = u""" "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. diff --git a/input/kinetics/libraries/Surface/Popa_Rh111/reactions.py b/input/kinetics/libraries/Surface/Popa_Rh111/reactions.py index 2420a536f6..ede4cc645e 100644 --- a/input/kinetics/libraries/Surface/Popa_Rh111/reactions.py +++ b/input/kinetics/libraries/Surface/Popa_Rh111/reactions.py @@ -237,7 +237,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Abstraction_Single_vdW""", + shortDesc = u"""Surface_Abstraction_vdW""", longDesc = u""" Based primarily on "Density-functional theory study of NHx oxidation @@ -267,7 +267,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Abstraction_Single_vdW""", + shortDesc = u"""Surface_Abstraction_vdW""", longDesc = u""" Based primarily on "Density-functional theory study of NHx oxidation diff --git a/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py b/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py index 6c15b8c130..e1dc06587b 100644 --- a/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py @@ -294,7 +294,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Abstraction_Single_vdW""", + shortDesc = u"""Surface_Abstraction_vdW""", longDesc = u""" "Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. diff --git a/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py index 39d3bafe84..f6d0630bf7 100644 --- a/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py @@ -29,8 +29,10 @@ # This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. # A = ((1.8E3 /pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 32 g/mol * molar gas constant * 298 kelvin) +# +# This is R1 in Table S2 and S4 # """, -# metal = "Pt", +# metal = "Pt", # facet = "111", # ) @@ -53,6 +55,8 @@ # # This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. # A = ((2.5E3 /pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 17 g/mol * molar gas constant * 298 kelvin) +# +# This is R2 in Table S2 and S4 # """, # metal = "Pt", # facet = "111", @@ -62,7 +66,7 @@ index = 3, label = "NH3_X +O_X <=> NH2_X + OH_X", kinetics = SurfaceArrhenius( - A = (1.007E21, 'cm^2/(mol*s)'), + A = (1.01E21, 'cm^2/(mol*s)'), n = 0.0, Ea = (67543, 'J/mol'), Tmin = (200, 'K'), @@ -75,7 +79,10 @@ https://doi.org/10.1021/acscatal.8b04251 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 5.2E12(1/s)/2.483E-9(mol/cm^2) = 1.007E21 cm^2/(mol*s) +A = 5.2E12(1/s)/2.483E-9(mol/cm^2) = 1.01E21 cm^2/(mol*s) +Ea = 0.7eV = 67543J/mol + +This is R3 in Table S2 and S4 """, metal = "Pt", facet = "111", @@ -85,9 +92,9 @@ index = 4, label = "NH2_X +O_X <=> NH_X + OH_X", kinetics = SurfaceArrhenius( - A = (2.215E21, 'cm^2/(mol*s)'), + A = (2.22E21, 'cm^2/(mol*s)'), n = 0.0, - Ea = (78157, 'J/mol'), + Ea = (78156.9, 'J/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -98,7 +105,10 @@ https://doi.org/10.1021/acscatal.8b04251 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 5.5E12(1/s)/2.483E-9(mol/cm^2) = 2.215E21 cm^2/(mol*s) +A = 5.5E12(1/s)/2.483E-9(mol/cm^2) = 2.22E21 cm^2/(mol*s) +Ea = 0.81eV = 78156.9J/mol + +This is R4 in Table S2 and S4 """, metal = "Pt", facet = "111", @@ -108,9 +118,9 @@ index = 5, label = "NH_X + O_X <=> N_X + OH_X", kinetics = SurfaceArrhenius( - A = (3.141E21, 'cm^2/(mol*s)'), + A = (3.14E21, 'cm^2/(mol*s)'), n = 0.0, - Ea = (154380, 'J/mol'), + Ea = (154384, 'J/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -121,7 +131,10 @@ https://doi.org/10.1021/acscatal.8b04251 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 7.8E12(1/s)/2.483E-9(mol/cm^2) = 3.141E21 cm^2/(mol*s) +A = 7.8E12(1/s)/2.483E-9(mol/cm^2) = 3.14E21 cm^2/(mol*s) +Ea = 1.6eV = 154384J/mol + +This is R5 in Table S2 and S4 """, metal = "Pt", facet = "111", @@ -131,9 +144,9 @@ index = 6, label = "NH3_X + OH_X <=> NH2_X + H2O_X", kinetics = SurfaceArrhenius( - A = (1.973E22, 'cm^2/(mol*s)'), + A = (1.97E22, 'cm^2/(mol*s)'), n = 0.0, - Ea = (33772, 'J/mol'), + Ea = (33771.5, 'J/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -144,7 +157,10 @@ https://doi.org/10.1021/acscatal.8b04251 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 4.9E13(1/s)/2.483E-9(mol/cm^2) = 1.973E22 cm^2/(mol*s) +A = 4.9E13(1/s)/2.483E-9(mol/cm^2) = 1.97E22 cm^2/(mol*s) +Ea = 0.35eV = 33771.5J/mol + +This is R6 in Table S2 and S4 """, metal = "Pt", facet = "111", @@ -154,9 +170,9 @@ index = 7, label = "NH2_X + OH_X <=> NH_X + H2O_X", kinetics = SurfaceArrhenius( - A = (6.041E21, 'cm^2/(mol*s)'), + A = (6.04E21, 'cm^2/(mol*s)'), n = 0.0, - Ea = (965, 'J/mol'), + Ea = (964.9, 'J/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -167,7 +183,10 @@ https://doi.org/10.1021/acscatal.8b04251 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 1.5E13(1/s)/2.483E-9(mol/cm^2) = 6.041E21 cm^2/(mol*s) +A = 1.5E13(1/s)/2.483E-9(mol/cm^2) = 6.04E21 cm^2/(mol*s) +Ea = 0.01eV = 964.9J/mol + +This is R7 in Table S2 and S4 """, metal = "Pt", facet = "111", @@ -177,9 +196,9 @@ index = 8, label = "NH_X + OH_X <=> N_X + H2O_X", kinetics = SurfaceArrhenius( - A = (2.376E21, 'cm^2/(mol*s)'), + A = (2.38E21, 'cm^2/(mol*s)'), n = 0.0, - Ea = (39561, 'J/mol'), + Ea = (39560.9, 'J/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -190,7 +209,10 @@ https://doi.org/10.1021/acscatal.8b04251 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 5.9E12(1/s)/2.483E-9(mol/cm^2) = 2.376E21 cm^2/(mol*s) +A = 5.9E12(1/s)/2.483E-9(mol/cm^2) = 2.38E21 cm^2/(mol*s) +Ea = 0.41eV = 39560.9J/mol + +This is R8 in Table S2 and S4 """, metal = "Pt", facet = "111", @@ -200,56 +222,60 @@ index = 9, label = "OH_X + OH_X <=> O_X + H2O_X", kinetics = SurfaceArrhenius( - A = (1.248E21, 'cm^2/(mol*s)'), + A = (1.25E21, 'cm^2/(mol*s)'), n = 0.0, Ea = (0, 'J/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Reverse R95""", + shortDesc = u"""Surface_Abstraction_vdW""", longDesc = u""" "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 3.1E12(1/s)/2.483E-9(mol/cm^2) = 1.248E21 cm^2/(mol*s) +A = 3.1E12(1/s)/2.483E-9(mol/cm^2) = 1.25E21 cm^2/(mol*s) + +This is R9 in Table S2 and S4 """, metal = "Pt", facet = "111", ) -#Commet out since sitcking coefficient ≈ 1 -# entry( -# index = 10, -# label = "H2O + X <=> H2O_X", -# kinetics = StickingCoefficient( -# A = 9.97E-1, -# n = 0.0, -# Ea = (0, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption""", -# longDesc = u""" -# "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." -# DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. -# https://doi.org/10.1021/acscatal.8b04251 +entry( + index = 10, + label = "H2O_X <=> H2O + X", + kinetics = SurfaceArrhenius( + A = (2.38E24, '1/s'), + n = 0.0, + Ea = (18333.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 -# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = ((2.4e3 /Pa) / s) * (2.4e-9 mol/cm2) * sqrt(2 * pi * 18 g/mol * molar gas constant * 298 kelvin) -# """, -# metal = "Pt", -# facet = "111", -# ) +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.9E15(1/s)/2.483E-9(mol/cm^2) = 2.38E24 cm^2/(mol*s) +Ea = 0.19eV = 18333.1J/mol + +This is R10 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) entry( index = 11, - label = "N2 + X + X <=> N_X + N_X", - kinetics = StickingCoefficient( - A = 3.525E-5, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (3.71E21, 'cm^2/(mol*s)'), n = 0.0, - Ea = (244119, 'J/mol'), + Ea = (244119.7, 'J/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -260,7 +286,10 @@ https://doi.org/10.1021/acscatal.8b04251 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = ((6.8E-2 /Pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 28 g/mol * molar gas constant * 298 kelvin) +A = 9.2E12(1/s)/2.483E-9(mol/cm^2) = 3.71E21 cm^2/(mol*s) +Ea = 2.53eV = 244119.7J/mol + +This is R11 in Table S2 and S4 """, metal = "Pt", facet = "111", @@ -270,9 +299,9 @@ index = 12, label = "N_X + O_X <=> NO_X + X", kinetics = SurfaceArrhenius( - A = (3.343E21, 'cm^2/(mol*s)'), + A = (3.34E21, 'cm^2/(mol*s)'), n = 0.0, - Ea = (213243, 'J/mol'), + Ea = (213242.9, 'J/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -283,43 +312,48 @@ https://doi.org/10.1021/acscatal.8b04251 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 8.3E12(1/s)/2.483E-9(mol/cm^2) = 3.343E21 cm^2/(mol*s) +A = 8.3E12(1/s)/2.483E-9(mol/cm^2) = 3.34E21 cm^2/(mol*s) +Ea = 2.21eV = 213242.9J/mol + +This is R12 in Table S2 and S4 """, metal = "Pt", facet = "111", ) -#Commet out since sitcking coefficient = 1 -# entry( -# index = 13, -# label = "NO + X <=> NO_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (0, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_Single""", -# longDesc = u""" -# "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." -# DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. -# https://doi.org/10.1021/acscatal.8b04251 +entry( + index = 13, + label = "NO_X <=> NO + X", + kinetics = SurfaceArrhenius( + A = (1.05E26, '1/s'), + n = 0.0, + Ea = (184295.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 -# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = ((1.9E3 /Pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 30 g/mol * molar gas constant * 298 kelvin) -# """, -# metal = "Pt", -# facet = "111", -# ) +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 2.6E17(1/s)/2.483E-9(mol/cm^2) = 1.05E26 cm^2/(mol*s) +Ea = 1.91eV = 184295.9J/mol + +This is R13 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) entry( index = 14, label = "N_X + NO_X <=> N2O_X + X", kinetics = SurfaceArrhenius( - A = (1.732E21, 'cm^2/(mol*s)'), + A = (1.73E21, 'cm^2/(mol*s)'), n = 0.0, - Ea = (164998, 'J/mol'), + Ea = (164997.9, 'J/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -330,32 +364,36 @@ https://doi.org/10.1021/acscatal.8b04251 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 4.3E12(1/s)/2.483E-9(mol/cm^2) = 1.732E21 cm^2/(mol*s) +A = 4.3E12(1/s)/2.483E-9(mol/cm^2) = 1.73E21 cm^2/(mol*s) +Ea = 1.71eV = 164997.9J/mol + +This is R14 in Table S2 and S4 """, metal = "Pt", facet = "111", ) -#Commet out since sitcking coefficient = 1 -# entry( -# index = 15, -# label = "N2O + X <=> N2O_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (0, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", -# longDesc = u""" -# "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." -# DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. -# https://doi.org/10.1021/acscatal.8b04251 -# -#This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = ((1.6E3 /Pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 44 g/mol * molar gas constant * 298 kelvin) -# """, -# metal = "Pt", -# facet = "111", -# ) \ No newline at end of file +entry( + index = 15, + label = "N2O_X <=> N2O + X", + kinetics = SurfaceArrhenius( + A = (5.64E24, '1/s'), + n = 0.0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.4E16(1/s)/2.483E-9(mol/cm^2) = 5.64E24 cm^2/(mol*s) + +This is R15 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) diff --git a/input/kinetics/libraries/Surface/Schneider_Pt211/dictionary.txt b/input/kinetics/libraries/Surface/Schneider_Pt211/dictionary.txt new file mode 100644 index 0000000000..d027b065aa --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pt211/dictionary.txt @@ -0,0 +1,89 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +4 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py new file mode 100644 index 0000000000..f40e0fb88f --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py @@ -0,0 +1,401 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Schneider_Pt211" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 +""" + +#Commet out since sitcking coefficient ≈ 1 +# entry( +# index = 1, +# label = "O2 + X + X <=> O_X + O_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0, +# Ea = (0, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +# DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +# https://doi.org/10.1021/acscatal.8b04251 + +# This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +# A = ((1.8E3 /pa) / s) * (2.634E-9 mol/cm2) * sqrt(2 * pi * 32 g/mol * molar gas constant * 298 kelvin) +# +# This is R1 in Table S2 and S4 +# """, +# metal = "Pt", +# facet = "211", +# ) + +#Commet out since sitcking coefficient = 1 +# entry( +# index = 2, +# label = "NH3 + X <=> NH3_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0, +# Ea = (0, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +# DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +# https://doi.org/10.1021/acscatal.8b04251 +# +# This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +# A = ((2.5E3 /pa) / s) * (2.634E-9 mol/cm2) * sqrt(2 * pi * 17 g/mol * molar gas constant * 298 kelvin) +# +# This is R2 in Table S2 and S4 +# """, +# metal = "Pt", +# facet = "211", +# ) + +entry( + index = 3, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.56E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (55964.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 4.1E12(1/s)/2.634E-9(mol/cm^2) = 1.56E21 cm^2/(mol*s) +Ea = 0.58eV = 55964.2J/mol + +This is R3 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 4, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.78E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (139910.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 4.7E12(1/s)/2.634E-9(mol/cm^2) = 1.78E21 cm^2/(mol*s) +Ea = 1.45eV = 139910.5J/mol + +This is R4 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 5, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.29E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (45350.3, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 3.4E12(1/s)/2.634E-9(mol/cm^2) = 1.29E21 cm^2/(mol*s) +Ea = 0.47eV = 45350.3J/mol + +This is R5 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 6, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (3.11E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (80086.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 8.2E12(1/s)/2.634E-9(mol/cm^2) = 3.11E21 cm^2/(mol*s) +Ea = 0.83eV = 80086.7J/mol + +This is R6 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 7, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (1.48E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (76227.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 3.9E12(1/s)/2.634E-9(mol/cm^2) = 1.48E21 cm^2/(mol*s) +Ea = 0.79eV = 76227.1J/mol + +This is R7 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 8, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.01E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (81051.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 5.3E12(1/s)/2.634E-9(mol/cm^2) = 2.01E21 cm^2/(mol*s) +Ea = 0.84eV = 81051.6J/mol + +This is R8 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 9, + label = "OH_X + OH_X <=> O_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (1.59E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (81051.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Reverse R95""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 4.2E12(1/s)/2.634E-9(mol/cm^2) = 1.59E21 cm^2/(mol*s) +Ea = 0.84eV = 81051.6J/mol + +This is R9 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 10, + label = "H2O_X <=> H2O + X", + kinetics = SurfaceArrhenius( + A = (1.40E24, '1/s'), + n = 0.0, + Ea = (24122.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 3.7E15(1/s)/2.634E-9(mol/cm^2) = 1.40E24 cm^2/(mol*s) +Ea = 0.25eV = 24122.5J/mol + +This is R10 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 11, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (2.01E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (113858.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 5.3E12(1/s)/2.634E-9(mol/cm^2) = 2.01E21 cm^2/(mol*s) +Ea = 1.18eV = 113858.2J/mol + +This is R11 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 12, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (1.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (140875.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 3.8E12(1/s)/2.634E-9(mol/cm^2) = 1.44E21 cm^2/(mol*s) +Ea = 1.46eV = 140875.4J/mol + +This is R12 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 13, + label = "NO_X <=> NO + X", + kinetics = SurfaceArrhenius( + A = (4.94E25, '1/s'), + n = 0.0, + Ea = (224821.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 1.3E17(1/s)/2.634E-9(mol/cm^2) = 4.94E25 cm^2/(mol*s) +Ea = 2.33eV = 224821.7J/mol + +This is R13 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 14, + label = "N_X + NO_X <=> N2O_X + X", + kinetics = SurfaceArrhenius( + A = (2.32E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (156313.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 6.1E12(1/s)/2.634E-9(mol/cm^2) = 2.32E21 cm^2/(mol*s) +Ea = 1.62eV = 156313.8J/mol + +This is R14 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 15, + label = "N2O_X <=> N2O + X", + kinetics = SurfaceArrhenius( + A = (5.69E25, '1/s'), + n = 0.0, + Ea = (9649, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 1.5E17(1/s)/2.634E-9(mol/cm^2) = 5.69E25 cm^2/(mol*s) +Ea = 0.1eV = 9649J/mol + +This is R15 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) From 7295c8ebd9660e3b393271807c1cd8005c0cd368 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Tue, 18 May 2021 11:16:15 -0400 Subject: [PATCH 07/27] added Lu_Ir111 library --- .../libraries/Surface/Lu_Ir111/dictionary.txt | 117 +++ .../libraries/Surface/Lu_Ir111/reactions.py | 698 ++++++++++++++++++ 2 files changed, 815 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Lu_Ir111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Lu_Ir111/reactions.py diff --git a/input/kinetics/libraries/Surface/Lu_Ir111/dictionary.txt b/input/kinetics/libraries/Surface/Lu_Ir111/dictionary.txt new file mode 100644 index 0000000000..27c896a7ac --- /dev/null +++ b/input/kinetics/libraries/Surface/Lu_Ir111/dictionary.txt @@ -0,0 +1,117 @@ +X +1 X u0 c0 + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,D} {3,S} +2 N u0 p1 c0 {1,D} {4,S} +3 X u0 p0 c0 {1,S} +4 X u0 p0 c0 {2,S} + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +H2_X +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 + +H2 +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +N2H4_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {2,S} +7 X u0 c0 + +N2H3_X +1 N u0 p1 c0 {2,S} {3,S} {6,S} +2 N u0 p1 c0 {1,S} {4,S} {5,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 X u0 p0 c0 {1,S} + +N2H2_X +1 N u0 p1 c0 {2,D} {3,S} +2 N u0 p1 c0 {1,D} {4,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 X u0 p0 c0 + +[Pt]NN=[Pt] +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} +5 X u0 p0 c0 {2,D} + +[Pt]N=N[Pt] +1 N u0 p1 c0 {2,D} {4,S} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} +4 X u0 p0 c0 {1,S} + +NN=[Pt] +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 {2,D} + +[Pt]=NN=[Pt] +1 N u0 p1 c0 {2,S} {3,D} +2 N u0 p1 c0 {1,S} {4,D} +3 X u0 p0 c0 {1,D} +4 X u0 p0 c0 {2,D} + +[Pt]NN[Pt] +1 N u0 p1 c0 {2,S} {3,S} {5,S} +2 N u0 p1 c0 {1,S} {4,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 X u0 p0 c0 {1,S} +6 X u0 p0 c0 {2,S} + +N2H_X +1 N u0 p1 c0 {2,D} {4,S} +2 N u0 p1 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} +4 X u0 p0 c0 {1,S} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Lu_Ir111/reactions.py b/input/kinetics/libraries/Surface/Lu_Ir111/reactions.py new file mode 100644 index 0000000000..3bcc7d0952 --- /dev/null +++ b/input/kinetics/libraries/Surface/Lu_Ir111/reactions.py @@ -0,0 +1,698 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Lu_Ir111" +shortDesc = u"" +longDesc = u""" +Based primarily on +"Mechanistic study of hydrazine decomposition on Ir(111)" +Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +and + +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Xiuyuan Lu et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b +""" +#skip R1 + +entry( + index = 2, + label = "NH3_X <=> NH3 + X", + kinetics = SurfaceArrhenius( + A = (3.68E16, '1/s'), + n = 0.0, + Ea = (88574.75, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Xiuyuan Lu et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. +A = 9.53E7(mol/cm^2/s)/2.587E-9(mol/cm^2) = 3.68E16 (1/s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is D1 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 3, + label = "N2_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (3.68E16, '1/s'), + n = 0.0, + Ea = (10806.96, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Bidentate""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Xiuyuan Lu et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. +A = 9.52E7(mol/cm^2/s)/2.587E-9(mol/cm^2) = 3.68E16 (1/s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is D2 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 4, + label = "H2_X <=> H2 + X", + kinetics = SurfaceArrhenius( + A = (3.69E16, '1/s'), + n = 0.0, + Ea = (30972.36, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""H2 Surface_Adsorption_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Xiuyuan Lu et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. +A = 9.54E7(mol/cm^2/s)/2.587E-9(mol/cm^2) = 3.69E16 (1/s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is D3 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 5, + label = "N2H4_X + X <=> N2H3_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (104209.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 1.08eV = 104209.2J/mol + +This is R5 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 6, + label = "N2H3_X + X <=> NN=[Pt] + H_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (98419.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 1.02eV = 98419.8J/mol + +This is R6 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +#Skip 7 + +entry( + index = 8, + label = "[Pt]NN[Pt] + X <=> [Pt]NN=[Pt] + H_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (67543, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.7eV = 67543J/mol + +This is R8 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +#skip R9 + +entry( + index = 10, + label = "[Pt]NN=[Pt] + X <=> N2_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (126401.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 1.31eV = 126401.9J/mol + +This is R10 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 11, + label = "N2H4_X + X <=> NH2_X + NH2_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (68507.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.71eV = 68507.9J/mol + +This is R11 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 12, + label = "N2H3_X + X <=> NH2_X + NH_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (75262.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.78eV = 75262.2J/mol + +This is R12 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 13, + label = "NN=[Pt] + X <=> NH2_X + N_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (70437.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.73eV = 70437.7J/mol + +This is R13 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 14, + label = "N2H2_X + X <=> NH_X + NH_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (70437.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_Double_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.73eV = 70437.7J/mol + +This is R14 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 15, + label = "[Pt]NN=[Pt] <=> NH_X + N_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, '1/s'), + n = 0.0, + Ea = (137980.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Bidentate_Dissociation""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 1.43eV = 137980.7J/mol + +This is R15 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 16, + label = "N2H4_X + NH2_X <=> N2H3_X + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (19298, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.2eV = 19298J/mol + +This is R16 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 17, + label = "N2H3_X + NH2_X <=> N2H2_X + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (22192.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.23eV = 22192.7J/mol + +This is R17 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 18, + label = "[Pt]NN[Pt] + NH2_X <=> [Pt]NN=[Pt] + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (18333.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.19eV = 18333.1J/mol + +This is R18 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 19, + label = "N2H3_X + NH2_X <=> NN=[Pt] + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (35701.3, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.37eV = 35701.3J/mol + +This is R19 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 20, + label = "N2H2_X + NH2_X <=> N2H_X + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (98419.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 1.02eV = 98419.8J/mol + +This is R20 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 21, + label = "[Pt]NN=[Pt] + NH2_X <=> N2_X + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (53069.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.55eV = 53069.5J/mol + +This is R21 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 22, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.22E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (147114.22, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Xiuyuan Lu et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. +A = 3.15E12(1/s)/2.587E-9(mol/cm^2) = 1.22E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R1 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 23, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.43E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (151612.95, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Xiuyuan Lu et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. +A = 3.71E12(1/s)/2.587E-9(mol/cm^2) = 1.43E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R3 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 24, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.68E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (88354.08, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Xiuyuan Lu et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. +A = 6.93E12(1/s)/2.587E-9(mol/cm^2) = 2.68E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R5 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 25, + label = "NH2_X + NH2_X <=> NH_X + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (32806.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.34eV = 32806.6J/mol + +This is R25 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 26, + label = "NH_X + NH2_X <=> N_X + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (94560.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.98eV = 94560.2J/mol + +This is R26 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 27, + label = "N_X + N_X <=> [Pt]=NN=[Pt]", + kinetics = SurfaceArrhenius( + A = (3.55E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (187423.24, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Bidentate_Dissociation""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Xiuyuan Lu et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to estimate A factor. +A = 9.18E12(1/s)/2.587E-9(mol/cm^2) = 3.55E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R7 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 28, + label = "H_X + H_X <=> H2_X + X", + kinetics = SurfaceArrhenius( + A = (2.42E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (60127.72, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Xiuyuan Lu et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to estimate A factor. +A = 6.25E12(1/s)/2.587E-9(mol/cm^2) = 2.42E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R9 in Table 3 +""", + metal = "Ir", + facet = "111", +) From abc092442c00b40eecbf582899bfa5ece5b807b7 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sun, 23 May 2021 20:38:06 -0400 Subject: [PATCH 08/27] added Roldan_Ru0001, Cu111 and revised Lu_Ir111 to Roldan_Ir111 --- .../Surface/Roldan_Cu111/dictionary.txt | 111 +++ .../Surface/Roldan_Cu111/reactions.py | 828 ++++++++++++++++++ .../{Lu_Ir111 => Roldan_Ir111}/dictionary.txt | 0 .../{Lu_Ir111 => Roldan_Ir111}/reactions.py | 56 +- .../Surface/Roldan_Ru0001/dictionary.txt | 52 ++ .../Surface/Roldan_Ru0001/reactions.py | 241 +++++ 6 files changed, 1260 insertions(+), 28 deletions(-) create mode 100644 input/kinetics/libraries/Surface/Roldan_Cu111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Roldan_Cu111/reactions.py rename input/kinetics/libraries/Surface/{Lu_Ir111 => Roldan_Ir111}/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{Lu_Ir111 => Roldan_Ir111}/reactions.py (91%) create mode 100644 input/kinetics/libraries/Surface/Roldan_Ru0001/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py diff --git a/input/kinetics/libraries/Surface/Roldan_Cu111/dictionary.txt b/input/kinetics/libraries/Surface/Roldan_Cu111/dictionary.txt new file mode 100644 index 0000000000..f5209edee7 --- /dev/null +++ b/input/kinetics/libraries/Surface/Roldan_Cu111/dictionary.txt @@ -0,0 +1,111 @@ +X +1 X u0 c0 + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p0 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +H2_X +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 + +H2 +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +N2H4 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {2,S} + +N2H4_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {2,S} +7 X u0 p0 c0 + +N2H3_X +1 N u0 p1 c0 {2,S} {3,S} {6,S} +2 N u0 p1 c0 {1,S} {4,S} {5,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 X u0 p0 c0 {1,S} + +[Pt]NN[Pt] +1 N u0 p1 c0 {2,S} {3,S} {5,S} +2 N u0 p1 c0 {1,S} {4,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 X u0 p0 c0 {1,S} +6 X u0 p0 c0 {2,S} + +NN=[Pt] +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 {2,D} + +[Pt]NN=[Pt] +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} +5 X u0 p0 c0 {2,D} + +[Pt]N=N +1 N u0 p1 c0 {2,D} {4,S} +2 N u0 p1 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} +4 X u0 p0 c0 {1,S} + +[Pt]=NN=[Pt] +1 N u0 p1 c0 {2,S} {3,D} +2 N u0 p1 c0 {1,S} {4,D} +3 X u0 p0 c0 {1,D} +4 X u0 p0 c0 {2,D} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Roldan_Cu111/reactions.py b/input/kinetics/libraries/Surface/Roldan_Cu111/reactions.py new file mode 100644 index 0000000000..f45c0e6f72 --- /dev/null +++ b/input/kinetics/libraries/Surface/Roldan_Cu111/reactions.py @@ -0,0 +1,828 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Roldan_Cu111" +shortDesc = u"" +longDesc = u""" +Based primarily on +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F +""" + +entry( + index = 1, + label = "N2H4 + X <=> N2H4_X", + kinetics = StickingCoefficient( + A = 1.17E-6, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This is R0 in Table 2 at T=300K +""", + metal = "Cu", + facet = "111", +) + +#Skip R1 (reverse of R0) +# entry( +# index = 2, +# label = "N2H4_X <=> N2H4 + X", +# kinetics = SurfaceArrhenius( +# A = (1.45e28, '1/s'), +# n = -3.337, +# Ea = (0, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Micro-kinetic simulations of the catalytic decomposition +# of hydrazine on the Cu(111) surface" +# Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +# DOI:10.1039/C6FD00186F + +# This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to calculate the A factor. +# A and n was calculated by numpy.linalg.lstsq from Table 1 + +# This is R1 in Table 1 +# """, +# metal = "Cu", +# facet = "111", +# ) + +#Skip R2 (reverse of R3) +# entry( +# index = 3, +# label = "NH3_X <=> NH3 + X", +# kinetics = SurfaceArrhenius( +# A = (4.39E25, '1/s'), +# n = -2.186, +# Ea = (0, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Micro-kinetic simulations of the catalytic decomposition +# of hydrazine on the Cu(111) surface" +# Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +# DOI:10.1039/C6FD00186F + +# This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to calculate the A factor. +# A and n was calculated by numpy.linalg.lstsq from Table 1 + +# This is R2 in Table 1 +# """, +# metal = "Cu", +# facet = "111", +# ) + +entry( + index = 4, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1.88E-4, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This is R3 in Table 2 at T=300K +""", + metal = "Cu", + facet = "111", +) + +#Skip R4 (reverse of R5) +# entry( +# index = 5, +# label = "N2_X <=> N2 + X", +# kinetics = SurfaceArrhenius( +# A = (4.33E26, '1/s'), +# n = -2.938, +# Ea = (0, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Micro-kinetic simulations of the catalytic decomposition +# of hydrazine on the Cu(111) surface" +# Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +# DOI:10.1039/C6FD00186F + +# This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to calculate the A factor. +# A and n was calculated by numpy.linalg.lstsq from Table 1 + +# This is R4 in Table 1 +# """, +# metal = "Cu", +# facet = "111", +# ) + +entry( + index = 6, + label = "N2 + X <=> N2_X", + kinetics = StickingCoefficient( + A = 5.5E-5, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This is R5 in Table 2 at T=300K +""", + metal = "Cu", + facet = "111", +) + +#Skip R6 (reverse of R7) +# entry( +# index = 7, +# label = "H_X + H_X <=> H2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (1.54E21, 'cm^2/(mol*s)'), +# n = 0.044, +# Ea = (104209, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""H2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "Micro-kinetic simulations of the catalytic decomposition +# of hydrazine on the Cu(111) surface" +# Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +# DOI:10.1039/C6FD00186F + +# This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to calculate the A factor. +# A and n was calculated by numpy.linalg.lstsq from Table 1 + +# This is R6 in Table 1 +# """, +# metal = "Cu", +# facet = "111", +# ) + +entry( + index = 8, + label = "H2 + X + X <=> H_X + H_X", + kinetics = StickingCoefficient( + A = 2.36E-2, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""H2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This is R7 in Table 2 at T=300K +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 9, + label = "N2H4_X + X <=> N2H3_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.69E18, 'cm^2/(mol*s)'), + n = 1.22, + Ea = (125437, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R8 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R9 (reverse of R10) + +entry( + index = 10, + label = "N2H3_X + X <=> NN=[Pt] + H_X", + kinetics = SurfaceArrhenius( + A = (1.34E17, 'cm^2/(mol*s)'), + n = 1.942, + Ea = (121577, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R10 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R11 (reverse of R12) + +entry( + index = 11, + label = "N2H3_X + X + X <=> [Pt]NN[Pt] + H_X", + kinetics = SurfaceArrhenius( + A = (1.95E18, 'cm^4/(mol^2*s)'), + n = 1.376, + Ea = (130262, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R12 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R13 (reverse of R12) + +entry( + index = 12, + label = "NN=[Pt] + X <=> [Pt]N=N + H_X", + kinetics = SurfaceArrhenius( + A = (1.09E19, 'cm^2/(mol*s)'), + n = 1.002, + Ea = (108069, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_Beta""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R14 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R15 (reverse of R14) + +entry( + index = 13, + label = "[Pt]NN[Pt] + X <=> [Pt]NN=[Pt] + H_X", + kinetics = SurfaceArrhenius( + A = (1.07E19, 'cm^2/(mol*s)'), + n = 1.134, + Ea = (141840, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R16 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R17 (reverse of R16) + +entry( + index = 14, + label = "[Pt]NN=[Pt] + X <=> [Pt]=NN=[Pt] + H_X", + kinetics = SurfaceArrhenius( + A = (3.43E18, 'cm^2/(mol*s)'), + n = 1.285, + Ea = (16403, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R18 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R19 (reverse of R18) + +entry( + index = 15, + label = "N2H4_X + X <=> NH2_X + NH2_X", + kinetics = SurfaceArrhenius( + A = (6.61E17, 'cm^2/(mol*s)'), + n = 1.589, + Ea = (66578, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R20 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R21 (reverse of R20) + +entry( + index = 16, + label = "N2H3_X + X <=> NH2_X + NH_X", + kinetics = SurfaceArrhenius( + A = (2.87E16, 'cm^2/(mol*s)'), + n = 2.065, + Ea = (86841, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R22 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R23 (reverse of R22) + +entry( + index = 17, + label = "NN=[Pt] + X <=> NH2_X + N_X", + kinetics = SurfaceArrhenius( + A = (4.03E19, 'cm^2/(mol*s)'), + n = 0.559, + Ea = (130262, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R24 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R25 (reverse of R24) + +entry( + index = 18, + label = "[Pt]NN[Pt] <=> NH_X + NH_X", + kinetics = SurfaceArrhenius( + A = (1.49E20, '1/s'), + n = 0.299, + Ea = (76227, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R26 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R27 (reverse of R26) + +entry( + index = 19, + label = "[Pt]NN=[Pt] <=> NH_X + N_X", + kinetics = SurfaceArrhenius( + A = (8.81E19, '1/s'), + n = 0.619, + Ea = (137016, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Bidentate_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R28 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R29 (reverse of R28) + +entry( + index = 20, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (5.93E17, 'cm^2/(mol*s)'), + n = 1.321, + Ea = (136051, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R30 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R31 (reverse of R30) + +entry( + index = 21, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (5.67E19, 'cm^2/(mol*s)'), + n = 0.513, + Ea = (135086, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R32 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R33 (reverse of R32) + +entry( + index = 22, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.66E19, 'cm^2/(mol*s)'), + n = 0.853, + Ea = (172717, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R34 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R35 (reverse of R34) + +entry( + index = 23, + label = "NH2_X + NH2_X <=> NH_X + NH3_X", + kinetics = SurfaceArrhenius( + A = (1.16E20, 'cm^2/(mol*s)'), + n = 0.667, + Ea = (43420, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R36 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R37 (reverse of R36) + +entry( + index = 24, + label = "N2H4_X + NH2_X <=> N2H3_X + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.38E20, 'cm^2/(mol*s)'), + n = 0.156, + Ea = (40526, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R38 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R39 (reverse of R38) + +entry( + index = 25, + label = "N2H3_X + NH2_X + X <=> [Pt]NN[Pt] + NH3_X", + kinetics = SurfaceArrhenius( + A = (4.46E19, 'cm^4/(mol^2*s)'), + n = 0.659, + Ea = (61754, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R40 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R41 (reverse of R40) + +entry( + index = 26, + label = "N2H3_X + NH2_X <=> NN=[Pt] + NH3_X", + kinetics = SurfaceArrhenius( + A = (1.02E19, 'cm^2/(mol*s)'), + n = 1.073, + Ea = (51140, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R42 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R43 (reverse of R42) + +entry( + index = 27, + label = "[Pt]NN[Pt] + NH2_X <=> [Pt]NN=[Pt] + NH3_X", + kinetics = SurfaceArrhenius( + A = (1.94E20, 'cm^2/(mol*s)'), + n = 0.577, + Ea = (24122, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R44 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R45 (reverse of R44) + +entry( + index = 28, + label = "NN=[Pt] + NH2_X <=> [Pt]N=N + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.51E19, 'cm^2/(mol*s)'), + n = 0.966, + Ea = (28947, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R46 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R47 (reverse of R46) + +entry( + index = 29, + label = "[Pt]NN=[Pt] + NH2_X <=> [Pt]=NN=[Pt] + NH3_X", + kinetics = SurfaceArrhenius( + A = (4.04E19, 'cm^2/(mol*s)'), + n = 0.86, + Ea = (7719, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R48 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R49 (reverse of R48) + +entry( + index = 30, + label = "[Pt]=NN=[Pt] <=> N_X + N_X", + kinetics = SurfaceArrhenius( + A = (1.62E20, '1/s'), + n = 0.06, + Ea = (452538, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Bidentate_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R50 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R51 (reverse of R50) diff --git a/input/kinetics/libraries/Surface/Lu_Ir111/dictionary.txt b/input/kinetics/libraries/Surface/Roldan_Ir111/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Lu_Ir111/dictionary.txt rename to input/kinetics/libraries/Surface/Roldan_Ir111/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Lu_Ir111/reactions.py b/input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py similarity index 91% rename from input/kinetics/libraries/Surface/Lu_Ir111/reactions.py rename to input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py index 3bcc7d0952..1e00a8a19e 100644 --- a/input/kinetics/libraries/Surface/Lu_Ir111/reactions.py +++ b/input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py @@ -1,19 +1,19 @@ #!/usr/bin/env python # encoding: utf-8 -name = "Lu_Ir111" +name = "Roldan_Ir111" shortDesc = u"" longDesc = u""" Based primarily on "Mechanistic study of hydrazine decomposition on Ir(111)" -Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 DOI: 10.1039/c9cp06525c and "Kinetic and mechanistic analysis of NH3 decomposition on Ru(0001), Ru(111) and Ir(111) surfaces" -Xiuyuan Lu et al. Nanoscale Adv., 2021, 3, 1624 +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 DOI: 10.1039/d1na00015b """ #skip R1 @@ -32,7 +32,7 @@ longDesc = u""" "Kinetic and mechanistic analysis of NH3 decomposition on Ru(0001), Ru(111) and Ir(111) surfaces" -Xiuyuan Lu et al. Nanoscale Adv., 2021, 3, 1624 +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 DOI: 10.1039/d1na00015b This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. @@ -59,7 +59,7 @@ longDesc = u""" "Kinetic and mechanistic analysis of NH3 decomposition on Ru(0001), Ru(111) and Ir(111) surfaces" -Xiuyuan Lu et al. Nanoscale Adv., 2021, 3, 1624 +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 DOI: 10.1039/d1na00015b This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. @@ -86,7 +86,7 @@ longDesc = u""" "Kinetic and mechanistic analysis of NH3 decomposition on Ru(0001), Ru(111) and Ir(111) surfaces" -Xiuyuan Lu et al. Nanoscale Adv., 2021, 3, 1624 +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 DOI: 10.1039/d1na00015b This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. @@ -112,7 +112,7 @@ shortDesc = u"""Surface_Dissociation_vdW""", longDesc = u""" "Mechanistic study of hydrazine decomposition on Ir(111)" -Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 DOI: 10.1039/c9cp06525c This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) @@ -139,7 +139,7 @@ shortDesc = u"""Surface_Dissociation""", longDesc = u""" "Mechanistic study of hydrazine decomposition on Ir(111)" -Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 DOI: 10.1039/c9cp06525c This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) @@ -168,7 +168,7 @@ shortDesc = u"""Surface_Dissociation""", longDesc = u""" "Mechanistic study of hydrazine decomposition on Ir(111)" -Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 DOI: 10.1039/c9cp06525c This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) @@ -197,7 +197,7 @@ shortDesc = u"""Surface_Dissociation""", longDesc = u""" "Mechanistic study of hydrazine decomposition on Ir(111)" -Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 DOI: 10.1039/c9cp06525c This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) @@ -224,7 +224,7 @@ shortDesc = u"""Surface_Dissociation_vdW""", longDesc = u""" "Mechanistic study of hydrazine decomposition on Ir(111)" -Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 DOI: 10.1039/c9cp06525c This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) @@ -251,7 +251,7 @@ shortDesc = u"""Surface_Dissociation""", longDesc = u""" "Mechanistic study of hydrazine decomposition on Ir(111)" -Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 DOI: 10.1039/c9cp06525c This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) @@ -278,7 +278,7 @@ shortDesc = u"""Surface_Dissociation""", longDesc = u""" "Mechanistic study of hydrazine decomposition on Ir(111)" -Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 DOI: 10.1039/c9cp06525c This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) @@ -305,7 +305,7 @@ shortDesc = u"""Surface_Dissociation_Double_vdW""", longDesc = u""" "Mechanistic study of hydrazine decomposition on Ir(111)" -Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 DOI: 10.1039/c9cp06525c This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) @@ -332,7 +332,7 @@ shortDesc = u"""Surface_Bidentate_Dissociation""", longDesc = u""" "Mechanistic study of hydrazine decomposition on Ir(111)" -Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 DOI: 10.1039/c9cp06525c This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) @@ -359,7 +359,7 @@ shortDesc = u"""""", longDesc = u""" "Mechanistic study of hydrazine decomposition on Ir(111)" -Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 DOI: 10.1039/c9cp06525c This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) @@ -386,7 +386,7 @@ shortDesc = u"""Surface_Abstraction_vdW""", longDesc = u""" "Mechanistic study of hydrazine decomposition on Ir(111)" -Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 DOI: 10.1039/c9cp06525c This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) @@ -413,7 +413,7 @@ shortDesc = u"""Surface_Abstraction_vdW""", longDesc = u""" "Mechanistic study of hydrazine decomposition on Ir(111)" -Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 DOI: 10.1039/c9cp06525c This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) @@ -440,7 +440,7 @@ shortDesc = u"""Surface_Abstraction_vdW""", longDesc = u""" "Mechanistic study of hydrazine decomposition on Ir(111)" -Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 DOI: 10.1039/c9cp06525c This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) @@ -467,7 +467,7 @@ shortDesc = u"""""", longDesc = u""" "Mechanistic study of hydrazine decomposition on Ir(111)" -Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 DOI: 10.1039/c9cp06525c This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) @@ -494,7 +494,7 @@ shortDesc = u"""Surface_Abstraction_vdW""", longDesc = u""" "Mechanistic study of hydrazine decomposition on Ir(111)" -Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 DOI: 10.1039/c9cp06525c This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) @@ -522,7 +522,7 @@ longDesc = u""" "Kinetic and mechanistic analysis of NH3 decomposition on Ru(0001), Ru(111) and Ir(111) surfaces" -Xiuyuan Lu et al. Nanoscale Adv., 2021, 3, 1624 +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 DOI: 10.1039/d1na00015b This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. @@ -549,7 +549,7 @@ longDesc = u""" "Kinetic and mechanistic analysis of NH3 decomposition on Ru(0001), Ru(111) and Ir(111) surfaces" -Xiuyuan Lu et al. Nanoscale Adv., 2021, 3, 1624 +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 DOI: 10.1039/d1na00015b This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. @@ -576,7 +576,7 @@ longDesc = u""" "Kinetic and mechanistic analysis of NH3 decomposition on Ru(0001), Ru(111) and Ir(111) surfaces" -Xiuyuan Lu et al. Nanoscale Adv., 2021, 3, 1624 +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 DOI: 10.1039/d1na00015b This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. @@ -602,7 +602,7 @@ shortDesc = u"""Surface_Abstraction_vdW""", longDesc = u""" "Mechanistic study of hydrazine decomposition on Ir(111)" -Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 DOI: 10.1039/c9cp06525c This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) @@ -629,7 +629,7 @@ shortDesc = u"""Surface_Abstraction_vdW""", longDesc = u""" "Mechanistic study of hydrazine decomposition on Ir(111)" -Xiuyuan Lu et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 DOI: 10.1039/c9cp06525c This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) @@ -657,7 +657,7 @@ longDesc = u""" "Kinetic and mechanistic analysis of NH3 decomposition on Ru(0001), Ru(111) and Ir(111) surfaces" -Xiuyuan Lu et al. Nanoscale Adv., 2021, 3, 1624 +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 DOI: 10.1039/d1na00015b This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to estimate A factor. @@ -684,7 +684,7 @@ longDesc = u""" "Kinetic and mechanistic analysis of NH3 decomposition on Ru(0001), Ru(111) and Ir(111) surfaces" -Xiuyuan Lu et al. Nanoscale Adv., 2021, 3, 1624 +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 DOI: 10.1039/d1na00015b This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to estimate A factor. diff --git a/input/kinetics/libraries/Surface/Roldan_Ru0001/dictionary.txt b/input/kinetics/libraries/Surface/Roldan_Ru0001/dictionary.txt new file mode 100644 index 0000000000..332db2fa48 --- /dev/null +++ b/input/kinetics/libraries/Surface/Roldan_Ru0001/dictionary.txt @@ -0,0 +1,52 @@ +X +1 X u0 c0 + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p0 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +H2_X +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 + +H2 +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py b/input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py new file mode 100644 index 0000000000..44cc3a2728 --- /dev/null +++ b/input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py @@ -0,0 +1,241 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Roldan_Ru0001" +shortDesc = u"" +longDesc = u""" +Based primarily on +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b +""" +#skip R1 + +entry( + index = 1, + label = "NH3_X <=> NH3 + X", + kinetics = SurfaceArrhenius( + A = (4.90E16, '1/s'), + n = 0.0, + Ea = (72149.60, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 1.29E8(mol/cm^2/s)/2.630E-9(mol/cm^2) = 4.90E16 (1/s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is D1 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +entry( + index = 2, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.14E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (117240.82, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 1.09E13(1/s)/2.630E-9(mol/cm^2) = 4.14E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R1 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +#skip R2 (reverse reaction of R1) + +entry( + index = 3, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.52E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (62155.01, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 4.01E12(1/s)/2.630E-9(mol/cm^2) = 1.52E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R3 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +#skip R4 (reverse reaction of R3) + +entry( + index = 4, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.71E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (99817.13, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 7.13E12(1/s)/2.630E-9(mol/cm^2) = 2.71E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R5 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +#skip R6 (reverse reaction of R5) + +entry( + index = 5, + label = "N_X + N_X <=> N2_X + X", + kinetics = SurfaceArrhenius( + A = (4.03E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (233750.36, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u""" Surface_Adsorption_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to estimate A factor. +A = 1.06E13(1/s)/2.630E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R7 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +#skip R8 (reverse reaction of R7) +#skip D2 (reverse reaction of A2) + +entry( + index = 6, + label = "N2 + X <=> N2_X", + kinetics = SurfaceArrhenius( + A = (4.90E16, 'cm^3/(mol*s)'), + n = 0.0, + Ea = (24482.97, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Bidentate""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 1.29E8(mol/cm^2/s)/2.630E-9(mol/cm^2) = 4.90E16 (1/s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is A2 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +entry( + index = 7, + label = "H_X + H_X <=> H2_X + X", + kinetics = SurfaceArrhenius( + A = (5.48E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (52021.02, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to estimate A factor. +A = 1.33E13(1/s)/2.630E-9(mol/cm^2) = 5.48E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R9 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +#skip R10 (reverse reaction of R9) +#skip A3 (reverse reaction of D3) + +entry( + index = 8, + label = "H2_X <=> H2 + X", + kinetics = SurfaceArrhenius( + A = (4.90E16, '1/s'), + n = 0.0, + Ea = (24482.97, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""H2 Surface_Adsorption_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 1.29E8(mol/cm^2/s)/2.630E-9(mol/cm^2) = 4.90E16 (1/s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is D3 in Table 3 +""", + metal = "Ru", + facet = "0001", +) From d212953e0b5bb21cfa89ad56548f0b4823d28709 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sun, 23 May 2021 20:46:03 -0400 Subject: [PATCH 09/27] renamed Ralph_Pt111 to Kraehnert_Pt111, Ryan_Pt111 to Arevalo_Pt111 and revised the index of Novell_Pt111, Offermans_Pt111 --- .../training/reactions.py | 6 ++--- .../training/reactions.py | 2 +- .../training/reactions.py | 2 +- .../dictionary.txt | 0 .../reactions.py | 2 +- .../dictionary.txt | 0 .../reactions.py | 14 ++++++------ .../Surface/Novell_Pt111/reactions.py | 6 ++--- .../Surface/Offermans_Pt111/reactions.py | 22 +++++++++---------- 9 files changed, 27 insertions(+), 27 deletions(-) rename input/kinetics/libraries/Surface/{Ryan_Pt111 => Arevalo_Pt111}/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{Ryan_Pt111 => Arevalo_Pt111}/reactions.py (99%) rename input/kinetics/libraries/Surface/{Ralph_Pt111 => Kraehnert_Pt111}/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{Ralph_Pt111 => Kraehnert_Pt111}/reactions.py (97%) diff --git a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py index b78d0e1ab1..ca0b9e5463 100644 --- a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py @@ -38,7 +38,7 @@ shortDesc = """Surface_Adsorption_Single""", longDesc = """ -Training reaction from kinetics library: Surface/Ralph_Pt111 +Training reaction from kinetics library: Surface/Krahnert_Pt111 Original entry: NO_X <=> NO + X "Ammonia Oxidation over Polycrystalline Platinum: Surface Morphology and Kinetics at Atmospheric Pressure." @@ -60,7 +60,7 @@ shortDesc = """Surface_Adsorption_Single""", longDesc = """ -Training reaction from kinetics library: Surface/Ryan_Pt111 +Training reaction from kinetics library: Surface/Arevalo_Pt111 Original entry: NO + X <=> NO_X "First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) @@ -81,7 +81,7 @@ rank = 3, longDesc = """ -Training reaction from kinetics library: Surface/Ryan_Pt111 +Training reaction from kinetics library: Surface/Arevalo_Pt111 Original entry: NO2 + X <=> NO2_X "First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) diff --git a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py index 77e8579252..ad6649fb9e 100644 --- a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py @@ -77,7 +77,7 @@ shortDesc = """Surface_Adsorption_vdW""", longDesc = """ -Training reaction from kinetics library: Surface/Ralph_Pt111 +Training reaction from kinetics library: Surface/Krahnert_Pt111 Original entry: NH3_X <=> NH3 + X "Ammonia Oxidation over Polycrystalline Platinum: Surface Morphology and Kinetics at Atmospheric Pressure." diff --git a/input/kinetics/families/Surface_Dissociation/training/reactions.py b/input/kinetics/families/Surface_Dissociation/training/reactions.py index 8269f95821..65db7d1d9e 100644 --- a/input/kinetics/families/Surface_Dissociation/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation/training/reactions.py @@ -370,7 +370,7 @@ shortDesc = """Surface_Dissociation""", longDesc = """ -Training reaction from kinetics library: Surface/Ryan_Pt111 +Training reaction from kinetics library: Surface/Arevalo_Pt111 Original entry: NO_X + O_X <=> NO2_X + X "First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) diff --git a/input/kinetics/libraries/Surface/Ryan_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Arevalo_Pt111/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Ryan_Pt111/dictionary.txt rename to input/kinetics/libraries/Surface/Arevalo_Pt111/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Ryan_Pt111/reactions.py b/input/kinetics/libraries/Surface/Arevalo_Pt111/reactions.py similarity index 99% rename from input/kinetics/libraries/Surface/Ryan_Pt111/reactions.py rename to input/kinetics/libraries/Surface/Arevalo_Pt111/reactions.py index 33a82c1cfe..0d68da1776 100644 --- a/input/kinetics/libraries/Surface/Ryan_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Arevalo_Pt111/reactions.py @@ -90,7 +90,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u""" """, + shortDesc = u"""""", longDesc = u""" "First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) diff --git a/input/kinetics/libraries/Surface/Ralph_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Kraehnert_Pt111/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Ralph_Pt111/dictionary.txt rename to input/kinetics/libraries/Surface/Kraehnert_Pt111/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Ralph_Pt111/reactions.py b/input/kinetics/libraries/Surface/Kraehnert_Pt111/reactions.py similarity index 97% rename from input/kinetics/libraries/Surface/Ralph_Pt111/reactions.py rename to input/kinetics/libraries/Surface/Kraehnert_Pt111/reactions.py index 0b424be418..8350a8a84e 100644 --- a/input/kinetics/libraries/Surface/Ralph_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Kraehnert_Pt111/reactions.py @@ -1,7 +1,7 @@ #!/usr/bin/env python # encoding: utf-8 -name = "Ralph_Pt111" +name = "Kraehnert_Pt111" shortDesc = u"" longDesc = u""" Based primarily on @@ -12,7 +12,7 @@ """ entry( - index = 24, + index = 1, label = "N_X + O_X <=> NO_X + X", kinetics = SurfaceArrhenius( A = (4.91E16, 'cm^2/(mol*s)'), @@ -35,7 +35,7 @@ ) entry( - index = 49, + index = 2, label = "N_X + N_X <=> N2 + X + X", kinetics = SurfaceArrhenius( A = (7.06E17, 'cm^2/(mol*s)'), @@ -58,7 +58,7 @@ ) entry( - index = 50, + index = 3, label = "O_X + O_X <=> O2 + X + X", kinetics = SurfaceArrhenius( A = (5.21E9, 'cm^2/(mol*s)'), @@ -81,7 +81,7 @@ ) entry( - index = 58, + index = 4, label = "NH3_X <=> NH3 + X", kinetics = SurfaceArrhenius( A = (3.09E9, '1/s'), @@ -104,7 +104,7 @@ ) entry( - index = 76, + index = 5, label = "NO_X <=> NO + X", kinetics = SurfaceArrhenius( A = (3.19E17, '1/s'), @@ -127,7 +127,7 @@ ) entry( - index = 80, + index = 6, label = "N_X + NO_X <=> N2O + X + X", kinetics = SurfaceArrhenius( A = (1.45E18, 'cm^2/(mol*s)'), diff --git a/input/kinetics/libraries/Surface/Novell_Pt111/reactions.py b/input/kinetics/libraries/Surface/Novell_Pt111/reactions.py index 86fca38803..49807ee1b7 100644 --- a/input/kinetics/libraries/Surface/Novell_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Novell_Pt111/reactions.py @@ -11,7 +11,7 @@ """ entry( - index = 16, + index = 1, label = "NH3_X + X <=> NH2_X + H_X", kinetics = SurfaceArrhenius( A = (2.859E20, 'cm^2/(mol*s)'), @@ -34,7 +34,7 @@ ) entry( - index = 17, + index = 2, label = "NH2_X + X <=> NH_X + H_X", kinetics = SurfaceArrhenius( A = (4.430E21, 'cm^2/(mol*s)'), @@ -57,7 +57,7 @@ ) entry( - index = 18, + index = 3, label = "NH_X + X <=> N_X + H_X", kinetics = SurfaceArrhenius( A = (5.236E21, 'cm^2/(mol*s)'), diff --git a/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py b/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py index d00e3d5075..38d473cef1 100644 --- a/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py @@ -11,7 +11,7 @@ """ entry( - index = 5, + index = 1, label = "N2 + X <=> N2_X", kinetics = SurfaceArrhenius( A = (3.464E21, 'cm^3/(mol*s)'), @@ -34,7 +34,7 @@ ) entry( - index = 12, + index = 2, label = "NH3_X + X <=> NH2_X + H_X", kinetics = SurfaceArrhenius( A = (2.255E20, 'cm^2/(mol*s)'), @@ -57,7 +57,7 @@ ) entry( - index = 13, + index = 3, label = "NH2_X + X <=> NH_X + H_X", kinetics = SurfaceArrhenius( A = (2.014E21, 'cm^2/(mol*s)'), @@ -80,7 +80,7 @@ ) entry( - index = 14, + index = 4, label = "NH_X + X <=> N_X + H_X", kinetics = SurfaceArrhenius( A = (2.08997E21, 'cm^2/(mol*s)'), @@ -103,7 +103,7 @@ ) entry( - index = 15, + index = 5, label = "NH3_X +O_X <=> NH2_X + OH_X", kinetics = SurfaceArrhenius( A = (4.833E20, 'cm^2/(mol*s)'), @@ -126,7 +126,7 @@ ) entry( - index = 16, + index = 6, label = "NH2_X +O_X <=> NH_X + OH_X", kinetics = SurfaceArrhenius( A = (2.457E21, 'cm^2/(mol*s)'), @@ -149,7 +149,7 @@ ) entry( - index = 17, + index = 7, label = "NH_X + O_X <=> N_X + OH_X", kinetics = SurfaceArrhenius( A = (3.061E21, 'cm^2/(mol*s)'), @@ -172,7 +172,7 @@ ) entry( - index = 18, + index = 8, label = "NH3_X + OH_X <=> NH2_X + H2O_X", kinetics = SurfaceArrhenius( A = (6.444E19, 'cm^2/(mol*s)'), @@ -195,7 +195,7 @@ ) entry( - index = 19, + index = 9, label = "NH2_X + OH_X <=> NH_X + H2O_X", kinetics = SurfaceArrhenius( A = (1.369E21, 'cm^2/(mol*s)'), @@ -218,7 +218,7 @@ ) entry( - index = 20, + index = 10, label = "NH_X + OH_X <=> N_X + H2O_X", kinetics = SurfaceArrhenius( A = (2.054E20, 'cm^2/(mol*s)'), @@ -241,7 +241,7 @@ ) entry( - index = 24, + index = 11, label = "N_X + O_X <=> NO_X + X", kinetics = SurfaceArrhenius( A = (2.859E21, 'cm^2/(mol*s)'), From 6575ddcef718d98652b4b740eefd75b3269efd8c Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Tue, 25 May 2021 12:58:29 -0400 Subject: [PATCH 10/27] added Vlachos_Pt111 and Vlachos_Ru0001 libraries --- .../Surface/Vlachos_Pt111/dictionary.txt | 229 ++ .../Surface/Vlachos_Pt111/reactions.py | 2723 +++++++++++++++++ .../Surface/Vlachos_Ru0001/dictionary.txt | 42 + .../Surface/Vlachos_Ru0001/reactions.py | 176 ++ 4 files changed, 3170 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Vlachos_Pt111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py create mode 100644 input/kinetics/libraries/Surface/Vlachos_Ru0001/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Vlachos_Ru0001/reactions.py diff --git a/input/kinetics/libraries/Surface/Vlachos_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Vlachos_Pt111/dictionary.txt new file mode 100644 index 0000000000..36abac3aa1 --- /dev/null +++ b/input/kinetics/libraries/Surface/Vlachos_Pt111/dictionary.txt @@ -0,0 +1,229 @@ +X +1 X u0 p0 c0 + +O +multiplicity 3 +1 O u2 p2 c0 + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +CO +1 O u0 p1 c+1 {2,T} +2 C u0 p1 c-1 {1,T} + +CO_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,D} +3 X u0 p0 c0 {2,D} + +CO2 +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} + +CO2_X +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} +4 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +H +multiplicity 2 +1 H u1 p0 c0 + +H2 +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} + +OH +multiplicity 2 +1 O u1 p2 c0 {2,S} +2 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +COOH_X +1 O u0 p2 c0 {3,S} {5,S} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,S} {2,D} {4,S} +4 H u0 p0 c0 {3,S} +5 X u0 p0 c0 {1,S} + +COOH +multiplicity 2 +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 C u1 p0 c0 {1,S} {2,D} +4 H u0 p0 c0 {1,S} + +HCOO_XX +multiplicity 2 +1 O u0 p2 c0 {3,S} {6,S} +2 O u1 p2 c0 {3,S} +3 C u0 p0 c0 {1,S} {2,S} {4,S} {5,S} +4 H u0 p0 c0 {3,S} +5 X u0 p0 c0 {3,S} +6 X u0 p0 c0 {1,S} + +HCOO_X +1 O u0 p2 c0 {3,S} {5,S} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,S} {2,D} {4,S} +4 H u0 p0 c0 {3,S} +5 X u0 p0 c0 {1,S} + +HCOO +multiplicity 2 +1 O u1 p2 c0 {3,S} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,S} {2,D} {4,S} +4 H u0 p0 c0 {3,S} + +C +1 C u2 p1 c0 + +C_X +1 C u0 p1 c0 {2,D} +2 X u0 p0 c0 {1,D} + +CH +multiplicity 2 +1 C u1 p1 c0 {2,S} +2 H u0 p0 c0 {1,S} + +CH_X +1 C u0 p0 c0 {2,S} {3,T} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,T} + +CH2 +multiplicity 3 +1 C u2 p0 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +CH2_X +1 C u0 p0 c0 {2,S} {3,S} {4,D} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,D} + +CH3 +multiplicity 2 +1 C u1 p0 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +CH3_X +1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 {1,S} + +CH4 +1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {1,S} + +CH3OH +1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 O u0 p2 c0 {1,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {1,S} +6 H u0 p0 c0 {2,S} + +CH3OH_X +1 O u0 p2 c0 {2,S} {6,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {1,S} +7 X u0 p0 c0 + +CH3O +multiplicity 2 +1 O u1 p2 c0 {2,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} + +CH3O_X +1 O u0 p2 c0 {2,S} {6,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 X u0 p0 c0 {1,S} + +CH2O +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} + +CH2O_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 X u0 p0 c0 + +HCO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 C u1 p0 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} + +HCO_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 X u0 p0 c0 {2,S} + +CH2OH +multiplicity 2 +1 O u0 p2 c0 {2,S} {5,S} +2 C u1 p0 c0 {1,S} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {1,S} + +CH2OH_X +1 O u0 p2 c0 {2,S} {5,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {6,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {1,S} +6 X u0 p0 c0 {2,S} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py b/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py new file mode 100644 index 0000000000..62ce02889b --- /dev/null +++ b/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py @@ -0,0 +1,2723 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Vlachos_Pt111" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"Microkinetic Modeling of Ethane Total Oxidation on Pt" +D.G. Vlachos et al. (2014) +Industrial & Engineering Chemistry Research,53(24), 10051-10058. +DOI: 10.1021/ie5004587 + +and + +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c +""" + +entry( + index = 1, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.0542, + n = 0.766, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R1 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 2, +# label = "O_X + O_X <=> O2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (3.39E21, 'cm^2/(mol*s)'), +# n = -0.796, +# Ea = (50.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 8.41E12(1/s)/2.483E-9(mol/cm^2) = 3.39E21 cm^2/(mol*s) + +# This is R2 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 3, + label = "O + X <=> O_X", + kinetics = StickingCoefficient( + A = 0.0491, + n = 0.250, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R3 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 4, +# label = "O_X <=> O + X", +# kinetics = SurfaceArrhenius( +# A = (5.80E21, '1/s'), +# n = -0.250, +# Ea = (85.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.44E13(1/s)/2.483E-9(mol/cm^2) = 5.80E21 cm^2/(mol*s) + +# This is R4 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 5, + label = "CO + X <=> CO_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R5 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 6, +# label = "CO_X <=> CO + X", +# kinetics = SurfaceArrhenius( +# A = (2.28E24, '1/s'), +# n = -0.500, +# Ea = (40, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 5.66E15(1/s)/2.483E-9(mol/cm^2) = 2.28E24 cm^2/(mol*s) + +# This is R6 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 7, + label = "CO2 + X <=> CO2_X", + kinetics = StickingCoefficient( + A = 0.195, + n = 0.250, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R7 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 8, +# label = "CO2_X <=> CO2 + X", +# kinetics = SurfaceArrhenius( +# A = (1.46E21, '1/s'), +# n = -0.250, +# Ea = (3.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 3.63E12(1/s)/2.483E-9(mol/cm^2) = 1.46E21 cm^2/(mol*s) + +# This is R8 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 9, + label = "CO2_X + X <=> CO_X + O_X", + kinetics = SurfaceArrhenius( + A = (1.68E19, 'cm^2/(mol*s)'), + n = 0.177, + Ea = (26.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_Double_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 4.18E10(1/s)/2.483E-9(mol/cm^2) = 1.68E19 cm^2/(mol*s) + +This is R9 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 10, +# label = "CO_X + O_X <=> CO2_X + X", +# kinetics = SurfaceArrhenius( +# A = (9.63E19, 'cm^2/(mol*s)'), +# n = -0.177, +# Ea = (20.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_Double_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 2.39E11(1/s)/2.483E-9(mol/cm^2) = 9.63E19 cm^2/(mol*s) + +# This is R10 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 11, + label = "H2 + X + X <=> H_X + H_X", + kinetics = StickingCoefficient( + A = 0.129, + n = 0.858, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""H2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R11 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 12, +# label = "H_X + H_X <=> H2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (3.20E21, 'cm^2/(mol*s)'), +# n = -0.001, +# Ea = (19.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""H2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 7.95E12(1/s)/2.483E-9(mol/cm^2) = 3.20E21 cm^2/(mol*s) + +# This is R12 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 13, + label = "OH_X + X <=> H_X + O_X", + kinetics = SurfaceArrhenius( + A = (7.85E20, 'cm^2/(mol*s)'), + n = 1.872, + Ea = (27.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.95E12(1/s)/2.483E-9(mol/cm^2) = 7.85E20 cm^2/(mol*s) + +This is R13 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 14, +# label = "H_X + O_X <=> OH_X + X", +# kinetics = SurfaceArrhenius( +# A = (2.55E21, 'cm^2/(mol*s)'), +# n = 0.624, +# Ea = (8.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 6.33E12(1/s)/2.483E-9(mol/cm^2) = 2.55E21 cm^2/(mol*s) + +# This is R14 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 15, + label = "H2O_X + X <=> H_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.77E21, 'cm^2/(mol*s)'), + n = -0.118, + Ea = (17.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 9.36E12(1/s)/2.483E-9(mol/cm^2) = 3.77E21 cm^2/(mol*s) + +This is R15 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 16, +# label = "H_X + OH_X <=> H2O_X + X", +# kinetics = SurfaceArrhenius( +# A = (4.02E21, 'cm^2/(mol*s)'), +# n = -1.049, +# Ea = (13.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 9.99E12(1/s)/2.483E-9(mol/cm^2) = 4.02E21 cm^2/(mol*s) + +# This is R16 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 17, + label = "O_X + H2O_X <=> OH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.74E19, 'cm^2/(mol*s)'), + n = 0.082, + Ea = (8.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 4.32E10(1/s)/2.483E-9(mol/cm^2) = 1.74E19 cm^2/(mol*s) + +This is R17 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 18, +# label = "OH_X + OH_X <=> O_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (6.85E18, 'cm^2/(mol*s)'), +# n = 0.325, +# Ea = (22.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.70E10(1/s)/2.483E-9(mol/cm^2) = 6.85E18 cm^2/(mol*s) + +# This is R18 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 19, + label = "OH + X <=> OH_X", + kinetics = StickingCoefficient( + A = 0.999, + n = 2.000, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R19 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 20, +# label = "OH_X <=> OH + X", +# kinetics = SurfaceArrhenius( +# A = (5.80E22, '1/s'), +# n = 2.000, +# Ea = (63.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.44E14(1/s)/2.483E-9(mol/cm^2) = 5.80E22 cm^2/(mol*s) + +# This is R20 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 21, + label = "H2O + X <=> H2O_X", + kinetics = StickingCoefficient( + A = 0.108, + n = 1.162, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R21 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 22, +# label = "H2O_X <=> H2O + X", +# kinetics = SurfaceArrhenius( +# A = (8.18E20, '1/s'), +# n = 1.372, +# Ea = (10, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 2.03E12(1/s)/2.483E-9(mol/cm^2) = 8.18E20 cm^2/(mol*s) + +# This is R22 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 23, + label = "H + X <=> H_X", + kinetics = StickingCoefficient( + A = 0.384, + n = 1.832, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R23 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 24, +# label = "H_X <=> H + X", +# kinetics = SurfaceArrhenius( +# A = (1.76E22, '1/s'), +# n = 1.890, +# Ea = (62.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 4.37E13(1/s)/2.483E-9(mol/cm^2) = 1.76E22 cm^2/(mol*s) + +# This is R24 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 25, + label = "CO2_X + H_X <=> CO_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.23E17, 'cm^2/(mol*s)'), + n = -0.531, + Ea = (6.0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann_Pt/19""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.03E08(1/s)/2.483E-9(mol/cm^2) = 3.23E17 cm^2/(mol*s) + +This is R25 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 26, +# label = "CO_X + OH_X <=> CO2_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (5.03E17, 'cm^2/(mol*s)'), +# n = 0.531, +# Ea = (18.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann_Pt/19""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.25E09(1/s)/2.483E-9(mol/cm^2) = 5.03E17 cm^2/(mol*s) + +# This is R26 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 27, + label = "COOH + X <=> COOH_X", + kinetics = StickingCoefficient( + A = 0.0634, + n = -0.089, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R27 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 28, +# label = "COOH_X <=> COOH + X", +# kinetics = SurfaceArrhenius( +# A = (4.51E21, '1/s'), +# n = 0.089, +# Ea = (55.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.12E13(1/s)/2.483E-9(mol/cm^2) = 4.51E21 cm^2/(mol*s) + +# This is R28 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 29, + label = "COOH_X + X <=> CO_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.40E17, 'cm^2/(mol*s)'), + n = 0.024, + Ea = (5.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.43E08(1/s)/2.483E-9(mol/cm^2) = 3.40E17 cm^2/(mol*s) + +This is R29 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 30, +# label = "CO_X + OH_X <=> COOH_X + X", +# kinetics = SurfaceArrhenius( +# A = (4.79E17, 'cm^2/(mol*s)'), +# n = -0.024, +# Ea = (19.1, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.19E09(1/s)/2.483E-9(mol/cm^2) = 4.79E17 cm^2/(mol*s) + +# This is R30 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 31, + label = "COOH_X + X <=> CO2_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.27E19, 'cm^2/(mol*s)'), + n = 0.549, + Ea = (1.0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Addition_Single_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.06E11(1/s)/2.483E-9(mol/cm^2) = 4.27E19 cm^2/(mol*s) + +This is R31 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 32, +# label = "CO2_X + H_X <=> COOH_X + X", +# kinetics = SurfaceArrhenius( +# A = (3.81E19, 'cm^2/(mol*s)'), +# n = -0.549, +# Ea = (2.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Addition_Single_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 9.45E10(1/s)/2.483E-9(mol/cm^2) = 3.81E19 cm^2/(mol*s) + +# This is R32 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 33, + label = "CO_X + H2O_X <=> COOH_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.43E19, 'cm^2/(mol*s)'), + n = 0.492, + Ea = (23.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.10E11(1/s)/2.483E-9(mol/cm^2) = 4.43E19 cm^2/(mol*s) + +This is R33 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 34, +# label = "COOH_X + H_X <=> CO_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (3.65E19, 'cm^2/(mol*s)'), +# n = -0.492, +# Ea = (5.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 9.07E10(1/s)/2.483E-9(mol/cm^2) = 3.65E19 cm^2/(mol*s) + +# This is R34 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 35, + label = "CO2_X + OH_X <=> COOH_X + O_X", + kinetics = SurfaceArrhenius( + A = (2.15E19, 'cm^2/(mol*s)'), + n = 0.097, + Ea = (26.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Abstraction_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.35E10(1/s)/2.483E-9(mol/cm^2) = 2.15E19 cm^2/(mol*s) + +This is R35 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 36, +# label = "COOH_X + O_X <=> CO2_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (7.53E19, 'cm^2/(mol*s)'), +# n = -0.097, +# Ea = (7.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Abstraction_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.87E11(1/s)/2.483E-9(mol/cm^2) = 7.53E19 cm^2/(mol*s) + +# This is R36 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 37, + label = "CO2_X + H2O_X <=> COOH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.48E19, 'cm^2/(mol*s)'), + n = -0.031, + Ea = (17.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dual_Adsorption_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.64E10(1/s)/2.483E-9(mol/cm^2) = 3.48E19 cm^2/(mol*s) + +This is R37 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 38, +# label = "COOH_X + OH_X <=> CO2_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (4.67E19, 'cm^2/(mol*s)'), +# n = 0.031, +# Ea = (11.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dual_Adsorption_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.16E11(1/s)/2.483E-9(mol/cm^2) = 4.67E19 cm^2/(mol*s) + +# This is R38 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 39, + label = "HCOO + X + X <=> HCOO_XX", + kinetics = StickingCoefficient( + A = 0.146, + n = 0.201, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Bidentate""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R39 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 40, +# label = "HCOO_XX <=> HCOO + X + X", +# kinetics = SurfaceArrhenius( +# A = (1.95E21, '1/s'), +# n = -0.201, +# Ea = (53.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Bidentate""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 4.83E12(1/s)/2.483E-9(mol/cm^2) = 1.95E21 cm^2/(mol*s) + +# This is R40 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +#R41 in the paper was a bidentate HCOO_XX, which might cause the issue of an adsorbate vdW species. +#This might cause an UndeterminableKineticsError, maybe we don't want to include this reaction. +entry( + index = 41, + label = "CO2_X + H_X <=> HCOO_XX", + kinetics = SurfaceArrhenius( + A = (4.51E19, 'cm^2/(mol*s)'), + n = -0.422, + Ea = (18.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.12E11(1/s)/2.483E-9(mol/cm^2) = 4.51E19 cm^2/(mol*s) + +This is R41 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +#Same issue as R41 +# entry( +# index = 42, +# label = "HCOO_XX <=> CO2_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (3.61E19, 'cm^2/(mol*s)'), +# n = 0.422, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 8.96E10(1/s)/2.483E-9(mol/cm^2) = 3.61E19 cm^2/(mol*s) + +# This is R42 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +#R43 in the paper was a bidentate HCOO_XX, which might cause the issue of an adsorbate vdW species. +#This might cause an UndeterminableKineticsError, maybe we don't want to include this reaction. +entry( + index = 43, + label = "CO2_X + OH_X + X <=> HCOO_XX + O_X", + kinetics = SurfaceArrhenius( + A = (2.48E19, 'cm^4/(mol^2*s)'), + n = 0.236, + Ea = (36.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 6.17E10(1/s)/2.483E-9(mol/cm^2) = 2.48E19 cm^2/(mol*s) + +This is R43 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +#Same issue as R43 +# entry( +# index = 44, +# label = "HCOO_XX + O_X <=> CO2_X + OH_X + X", +# kinetics = SurfaceArrhenius( +# A = (6.52E19, 'cm^2/(mol*s)'), +# n = -0.236, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.62E11(1/s)/2.483E-9(mol/cm^2) = 6.52E19 cm^2/(mol*s) + +# This is R44 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +#Skip R45 and R46, which might cause a bidentate CO2 with a radical +# on surface site.(if match Surface_Dissociation family) + +entry( + index = 47, + label = "C + X <=> C_X", + kinetics = StickingCoefficient( + A = 0.0164, + n = 0.156, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Triple bonds""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R47 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 48, +# label = "C_X <=> C + X", +# kinetics = SurfaceArrhenius( +# A = (1.73E22, '1/s'), +# n = -0.156, +# Ea = (157.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Triple bonds""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 4.30E13(1/s)/2.483E-9(mol/cm^2) = 1.73E22 cm^2/(mol*s) + +# This is R48 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 49, + label = "CH + X <=> CH_X", + kinetics = StickingCoefficient( + A = 0.0135, + n = 0.051, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R49 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 50, +# label = "CH_X <=> CH + X", +# kinetics = SurfaceArrhenius( +# A = (2.10E22, '1/s'), +# n = -0.051, +# Ea = (157.1, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 5.22E13(1/s)/2.483E-9(mol/cm^2) = 2.10E22 cm^2/(mol*s) + +# This is R50 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 51, + label = "CH2 + X <=> CH2_X", + kinetics = StickingCoefficient( + A = 0.045, + n = 0.118, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R51 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 52, +# label = "CH2_X <=> CH2 + X", +# kinetics = SurfaceArrhenius( +# A = (6.32E21, '1/s'), +# n = -0.118, +# Ea = (91.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.57E13(1/s)/2.483E-9(mol/cm^2) = 6.32E21 cm^2/(mol*s) + +# This is R52 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 53, + label = "CH3 + X <=> CH3_X", + kinetics = StickingCoefficient( + A = 0.16, + n = -0.099, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R53 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 54, +# label = "CH3_X <=> CH3 + X", +# kinetics = SurfaceArrhenius( +# A = (1.78E21, '1/s'), +# n = 0.099, +# Ea = (45.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 4.42E12(1/s)/2.483E-9(mol/cm^2) = 1.78E21 cm^2/(mol*s) + +# This is R54 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 55, + label = "CH4 + X + X <=> CH3_X + H_X", + kinetics = StickingCoefficient( + A = 0.116, + n = 0.154, + Ea = (9, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Dissociative""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R55 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 56, +# label = "CH3_X + H_X <=> CH4 + X + X", +# kinetics = SurfaceArrhenius( +# A = (2.46E19, 'cm^2/(mol*s)'), +# n = -0.154, +# Ea = (11.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 6.12E10(1/s)/2.483E-9(mol/cm^2) = 2.46E19 cm^2/(mol*s) + +# This is R56 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 57, + label = "CH3_X + X <=> CH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.47E19, 'cm^2/(mol*s)'), + n = 0.419, + Ea = (15.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Dissociative""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.11E11(1/s)/2.483E-9(mol/cm^2) = 4.47E19 cm^2/(mol*s) + +This is R57 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 58, +# label = "CH2_X + H_X <=> CH3_X + X", +# kinetics = SurfaceArrhenius( +# A = (3.62E19, 'cm^2/(mol*s)'), +# n = -0.419, +# Ea = (13.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 8.99E10(1/s)/2.483E-9(mol/cm^2) = 3.62E19 cm^2/(mol*s) + +# This is R58 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 59, + label = "CH2_X + X <=> CH_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.10E19, 'cm^2/(mol*s)'), + n = 0.222, + Ea = (9.0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.22E10(1/s)/2.483E-9(mol/cm^2) = 2.10E19 cm^2/(mol*s) + +This is R59 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 60, +# label = "CH_X + H_X <=> CH2_X + X", +# kinetics = SurfaceArrhenius( +# A = (7.73E19, 'cm^2/(mol*s)'), +# n = -0.222, +# Ea = (35.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.92E11(1/s)/2.483E-9(mol/cm^2) = 7.73E19 cm^2/(mol*s) + +# This is R60 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 61, + label = "CH_X + X <=> C_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.67E19, 'cm^2/(mol*s)'), + n = 0.398, + Ea = (31.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 9.11E10(1/s)/2.483E-9(mol/cm^2) = 3.67E19 cm^2/(mol*s) + +This is R61 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 62, +# label = "C_X + H_X <=> CH_X + X", +# kinetics = SurfaceArrhenius( +# A = (4.43E19, 'cm^2/(mol*s)'), +# n = 0.414, +# Ea = (44.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.10E11(1/s)/2.483E-9(mol/cm^2) = 4.43E19 cm^2/(mol*s) + +# This is R62 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 63, + label = "CH3_X + O_X <=> CH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (7.93E19, 'cm^2/(mol*s)'), + n = -0.230, + Ea = (10.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.97E11(1/s)/2.483E-9(mol/cm^2) = 7.93E19 cm^2/(mol*s) + +This is R63 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 64, +# label = "CH2_X + OH_X <=> CH3_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (2.05E19, 'cm^2/(mol*s)'), +# n = 0.230, +# Ea = (26.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 5.08E10(1/s)/2.483E-9(mol/cm^2) = 2.05E19 cm^2/(mol*s) + +# This is R64 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 65, + label = "CH_X + OH_X <=> CH2_X + O_X", + kinetics = SurfaceArrhenius( + A = (4.43E19, 'cm^2/(mol*s)'), + n = 0.414, + Ea = (44.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.10E11(1/s)/2.483E-9(mol/cm^2) = 4.43E19 cm^2/(mol*s) + +This is R65 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 66, +# label = "CH2_X + O_X <=> CH_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (3.66E19, 'cm^2/(mol*s)'), +# n = -0.414, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 9.10E10(1/s)/2.483E-9(mol/cm^2) = 3.66E19 cm^2/(mol*s) + +# This is R66 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 67, + label = "C_X + OH_X <=> CH_X + O_X", + kinetics = SurfaceArrhenius( + A = (2.57E19, 'cm^2/(mol*s)'), + n = 0.225, + Ea = (27.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 6.37E10(1/s)/2.483E-9(mol/cm^2) = 2.57E19 cm^2/(mol*s) + +This is R67 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 68, +# label = "CH_X + O_X <=> C_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (6.32E19, 'cm^2/(mol*s)'), +# n = -0.225, +# Ea = (27.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.57E11(1/s)/2.483E-9(mol/cm^2) = 6.32E19 cm^2/(mol*s) + +# This is R68 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 69, + label = "CH2_X + H2O_X <=> CH3_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.30E19, 'cm^2/(mol*s)'), + n = 0.099, + Ea = (14.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.19E10(1/s)/2.483E-9(mol/cm^2) = 3.30E19 cm^2/(mol*s) + +This is R69 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 70, +# label = "CH3_X + OH_X <=> CH2_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (4.91E19, 'cm^2/(mol*s)'), +# n = -0.099, +# Ea = (12.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.22E11(1/s)/2.483E-9(mol/cm^2) = 4.91E19 cm^2/(mol*s) + +# This is R70 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 71, + label = "CH_X + H2O_X <=> CH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (7.29E19, 'cm^2/(mol*s)'), + n = 0.269, + Ea = (34.0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.81E11(1/s)/2.483E-9(mol/cm^2) = 7.29E19 cm^2/(mol*s) + +This is R71 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 72, +# label = "CH2_X + OH_X <=> CH_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (2.23E19, 'cm^2/(mol*s)'), +# n = -0.269, +# Ea = (3.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 5.53E10(1/s)/2.483E-9(mol/cm^2) = 2.23E19 cm^2/(mol*s) + +# This is R72 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 73, + label = "C_X + H2O_X <=> CH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4.19E19, 'cm^2/(mol*s)'), + n = 0.090, + Ea = (15.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.04E11(1/s)/2.483E-9(mol/cm^2) = 4.19E19 cm^2/(mol*s) + +This is R73 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 74, +# label = "CH_X + OH_X <=> C_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (3.87E19, 'cm^2/(mol*s)'), +# n = -0.090, +# Ea = (29.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 9.61E10(1/s)/2.483E-9(mol/cm^2) = 3.87E19 cm^2/(mol*s) + +# This is R74 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 75, + label = "CO_X + X <=> C_X + O_X", + kinetics = SurfaceArrhenius( + A = (1.15E20, 'cm^2/(mol*s)'), + n = 0.468, + Ea = (76.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann libraries""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 2.85E11(1/s)/2.483E-9(mol/cm^2) = 1.15E20 cm^2/(mol*s) + +This is R75 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 76, +# label = "C_X + O_X <=> CO_X + X", +# kinetics = SurfaceArrhenius( +# A = (1.41E19, 'cm^2/(mol*s)'), +# n = -0.468, +# Ea = (22.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann libraries""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 3.51E10(1/s)/2.483E-9(mol/cm^2) = 1.41E19 cm^2/(mol*s) + +# This is R76 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 77, + label = "CO_X + H_X <=> CH_X + O_X", + kinetics = SurfaceArrhenius( + A = (1.26E20, 'cm^2/(mol*s)'), + n = 0.073, + Ea = (45.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 3.12E11(1/s)/2.483E-9(mol/cm^2) = 1.26E20 cm^2/(mol*s) + +This is R77 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 78, +# label = "CH_X + O_X <=> CO_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (1.29E19, 'cm^2/(mol*s)'), +# n = -0.073, +# Ea = (9.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 3.21E10(1/s)/2.483E-9(mol/cm^2) = 1.29E19 cm^2/(mol*s) + +# This is R78 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 79, + label = "CO_X + H_X <=> C_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.00E20, 'cm^2/(mol*s)'), + n = -0.168, + Ea = (40.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann libraries""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 4.97E11(1/s)/2.483E-9(mol/cm^2) = 2.00E20 cm^2/(mol*s) + +This is R79 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 80, +# label = "C_X + OH_X <=> CO_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (8.10E18, 'cm^2/(mol*s)'), +# n = 0.168, +# Ea = (4.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann libraries""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 2.01E10(1/s)/2.483E-9(mol/cm^2) = 8.10E18 cm^2/(mol*s) + +# This is R80 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 81, + label = "CO_X + CO_X <=> C_X + CO2_X", + kinetics = SurfaceArrhenius( + A = (2.39E20, 'cm^2/(mol*s)'), + n = 0.393, + Ea = (48.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann libraries""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.94E11(1/s)/2.483E-9(mol/cm^2) = 2.39E20 cm^2/(mol*s) + +This is R81 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 82, +# label = "C_X + CO2_X <=> CO_X + CO_X", +# kinetics = SurfaceArrhenius( +# A = (6.77E18, 'cm^2/(mol*s)'), +# n = -0.393, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann libraries""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.68E10(1/s)/2.483E-9(mol/cm^2) = 6.77E18 cm^2/(mol*s) + +# This is R82 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 83, + label = "CH3OH + X <=> CH3OH_X", + kinetics = StickingCoefficient( + A = 0.334, + n = 0.258, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R83 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 84, +# label = "CH3OH_X <=> CH3OH + X", +# kinetics = SurfaceArrhenius( +# A = (8.50E20, '1/s'), +# n = -0.258, +# Ea = (9.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 2.11E12(1/s)/2.483E-9(mol/cm^2) = 8.50E20 cm^2/(mol*s) + +# This is R84 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 85, + label = "CH3O + X <=> CH3O_X", + kinetics = StickingCoefficient( + A = 0.149, + n = 0.054, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R85 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 86, +# label = "CH3O_X <=> CH3O + X", +# kinetics = SurfaceArrhenius( +# A = (1.90E21, '1/s'), +# n = -0.054, +# Ea = (37.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 4.73E12(1/s)/2.483E-9(mol/cm^2) = 1.90E21 cm^2/(mol*s) + +# This is R86 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 87, + label = "CH2O + X <=> CH2O_X", + kinetics = StickingCoefficient( + A = 0.0877, + n = 0.098, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R87 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 88, +# label = "CH2O_X <=> CH2O + X", +# kinetics = SurfaceArrhenius( +# A = (3.25E21, '1/s'), +# n = -0.098, +# Ea = (12.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 8.06E12(1/s)/2.483E-9(mol/cm^2) = 3.25E21 cm^2/(mol*s) + +# This is R88 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 89, + label = "HCO + X <=> HCO_X", + kinetics = StickingCoefficient( + A = 0.0114, + n = 0.096, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R89 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 90, +# label = "HCO_X <=> HCO + X", +# kinetics = SurfaceArrhenius( +# A = (2.50E22, '1/s'), +# n = -0.096, +# Ea = (55.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 6.21E13(1/s)/2.483E-9(mol/cm^2) = 2.50E22 cm^2/(mol*s) + +# This is R90 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 91, + label = "CH2OH + X <=> CH2OH_X", + kinetics = StickingCoefficient( + A = 0.0526, + n = 0.233, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R91 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 92, +# label = "CH2OH_X <=> CH2OH + X", +# kinetics = SurfaceArrhenius( +# A = (5.44E21, '1/s'), +# n = -0.233, +# Ea = (50.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.35E13(1/s)/2.483E-9(mol/cm^2) = 5.44E21 cm^2/(mol*s) + +# This is R92 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 93, + label = "CH3OH_X + X <=> CH3O_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.15E19, 'cm^2/(mol*s)'), + n = 0.102, + Ea = (18.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 7.82E10(1/s)/2.483E-9(mol/cm^2) = 3.15E19 cm^2/(mol*s) + +This is R93 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 94, +# label = "CH3O_X + H_X <=> CH3OH_X + X", +# kinetics = SurfaceArrhenius( +# A = (5.16E19, 'cm^2/(mol*s)'), +# n = -0.102, +# Ea = (4.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.28E11(1/s)/2.483E-9(mol/cm^2) = 5.16E19 cm^2/(mol*s) + +# This is R94 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 95, + label = "CH3O_X + X <=> CH2O_X + H_X", + kinetics = SurfaceArrhenius( + A = (5.03E19, 'cm^2/(mol*s)'), + n = 0.192, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Addition_Single_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.25E11(1/s)/2.483E-9(mol/cm^2) = 5.03E19 cm^2/(mol*s) + +This is R95 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 96, +# label = "CH2O_X + H_X <=> CH3O_X + X", +# kinetics = SurfaceArrhenius( +# A = (3.23E19, 'cm^2/(mol*s)'), +# n = -0.192, +# Ea = (14.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Addition_Single_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 8.03E10(1/s)/2.483E-9(mol/cm^2) = 3.23E19 cm^2/(mol*s) + +# This is R96 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 97, + label = "CH2O_X + X <=> HCO_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.88E19, 'cm^2/(mol*s)'), + n = 0.270, + Ea = (3.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 7.14E10(1/s)/2.483E-9(mol/cm^2) = 2.88E19 cm^2/(mol*s) + +This is R97 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 98, +# label = "HCO_X + H_X <=> CH2O_X + X", +# kinetics = SurfaceArrhenius( +# A = (5.64E19, 'cm^2/(mol*s)'), +# n = -0.270, +# Ea = (21.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.40E11(1/s)/2.483E-9(mol/cm^2) = 5.64E19 cm^2/(mol*s) + +# This is R98 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 99, + label = "HCO_X + X <=> CO_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.86E19, 'cm^2/(mol*s)'), + n = 0.330, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 7.11E10(1/s)/2.483E-9(mol/cm^2) = 2.86E19 cm^2/(mol*s) + +This is R99 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 100, +# label = "CO_X + H_X <=> HCO_X + X", +# kinetics = SurfaceArrhenius( +# A = (5.68E19, 'cm^2/(mol*s)'), +# n = -0.330, +# Ea = (30.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.41E11(1/s)/2.483E-9(mol/cm^2) = 5.68E19 cm^2/(mol*s) + +# This is R100 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 101, + label = "CH3OH_X + X <=> CH2OH_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.42E19, 'cm^2/(mol*s)'), + n = 0.403, + Ea = (8.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.48E10(1/s)/2.483E-9(mol/cm^2) = 3.42E19 cm^2/(mol*s) + +This is R101 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 102, +# label = "CH2OH_X + H_X <=> CH3OH_X + X", +# kinetics = SurfaceArrhenius( +# A = (4.75E19, 'cm^2/(mol*s)'), +# n = -0.403, +# Ea = (14.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.18E11(1/s)/2.483E-9(mol/cm^2) = 4.75E19 cm^2/(mol*s) + +# This is R102 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 103, + label = "CH2OH_X + X <=> CH2O_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.59E19, 'cm^2/(mol*s)'), + n = -0.104, + Ea = (7.9, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Addition_Single_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.14E11(1/s)/2.483E-9(mol/cm^2) = 4.59E19 cm^2/(mol*s) + +This is R103 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 104, +# label = "CH2O_X + H_X <=> CH2OH_X + X", +# kinetics = SurfaceArrhenius( +# A = (3.53E19, 'cm^2/(mol*s)'), +# n = 0.104, +# Ea = (2.2, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Addition_Single_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 8.77E10(1/s)/2.483E-9(mol/cm^2) = 3.53E19 cm^2/(mol*s) + +# This is R104 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) diff --git a/input/kinetics/libraries/Surface/Vlachos_Ru0001/dictionary.txt b/input/kinetics/libraries/Surface/Vlachos_Ru0001/dictionary.txt new file mode 100644 index 0000000000..e944f9a415 --- /dev/null +++ b/input/kinetics/libraries/Surface/Vlachos_Ru0001/dictionary.txt @@ -0,0 +1,42 @@ +X +1 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +H2 +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Vlachos_Ru0001/reactions.py b/input/kinetics/libraries/Surface/Vlachos_Ru0001/reactions.py new file mode 100644 index 0000000000..53aa5541af --- /dev/null +++ b/input/kinetics/libraries/Surface/Vlachos_Ru0001/reactions.py @@ -0,0 +1,176 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Vlachos_Ru0001" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 +""" + +entry( + index = 1, + label = "H2 + X + X <=> H_X + H_X", + kinetics = StickingCoefficient( + A = 0.87, + n = 0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""H2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This is R1 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +#skip R2 (reverse reaction of R1) + +entry( + index = 2, + label = "N2 + X + X <=> N_X + N_X", + kinetics = StickingCoefficient( + A = 0.2, + n = 0, + Ea = (7.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + # coverage_dependence = {'N_X': {'E': (26.3, 'kacl/mol'), 'm':0.0, 'a':0.0},}, + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This is R3 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +#skip R4 (reverse reaction of R3) + +entry( + index = 3, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (7.22E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (5.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + # coverage_dependence = {'N_X': {'E': (15.5, 'kacl/mol'), 'm':0.0, 'a':0.0},}, + # coverage_dependence = {'H_X': {'E': (1, 'kacl/mol'), 'm':0.0, 'a':0.0},}, + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 1.9E12(1/s)/2.630E-9(mol/cm^2) = 7.22E20 cm^2/(mol*s) + +This is R5 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +#skip R6 (reverse reaction of R5) + +entry( + index = 4, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (7.60E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (20.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + # coverage_dependence = {'H_X': {'E': (1.2, 'kacl/mol'), 'm':0.0, 'a':0.0},}, + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 2E12(1/s)/2.630E-9(mol/cm^2) = 7.60E20 cm^2/(mol*s) + +This is R7 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +#skip R9 (reverse reaction of R7) + +entry( + index = 5, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (7.60E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (18.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + # coverage_dependence = {'H_X': {'E': (1.3, 'kacl/mol'), 'm':0.0, 'a':0.0},}, + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 2E12(1/s)/2.630E-9(mol/cm^2) = 7.60E20 cm^2/(mol*s) + +This is R9 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +#skip R10 (reverse reaction of R9) + +entry( + index = 6, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 0.00015, + n = 0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This is R11 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +#skip R12 (reverse reaction of R11) \ No newline at end of file From fa5c0441aa0d067bc38d1c2397452b98327bd8e6 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Tue, 25 May 2021 16:22:05 -0400 Subject: [PATCH 11/27] added Vlachos_Rh surface library --- .../Surface/Vlachos_Rh/dictionary.txt | 104 ++ .../libraries/Surface/Vlachos_Rh/reactions.py | 948 ++++++++++++++++++ 2 files changed, 1052 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Vlachos_Rh/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Vlachos_Rh/reactions.py diff --git a/input/kinetics/libraries/Surface/Vlachos_Rh/dictionary.txt b/input/kinetics/libraries/Surface/Vlachos_Rh/dictionary.txt new file mode 100644 index 0000000000..38e98bc0c4 --- /dev/null +++ b/input/kinetics/libraries/Surface/Vlachos_Rh/dictionary.txt @@ -0,0 +1,104 @@ +X +1 X u0 p0 c0 + +O +multiplicity 3 +1 O u2 p2 c0 + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +CO +1 O u0 p1 c+1 {2,T} +2 C u0 p1 c-1 {1,T} + +CO_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,D} +3 X u0 p0 c0 {2,D} + +CO2 +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} + +CO2_X +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} +4 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +H +multiplicity 2 +1 H u1 p0 c0 + +H2 +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} + +OH +multiplicity 2 +1 O u1 p2 c0 {2,S} +2 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +COOH_X +1 O u0 p2 c0 {3,S} {5,S} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,S} {2,D} {4,S} +4 H u0 p0 c0 {3,S} +5 X u0 p0 c0 {1,S} + +C_X +1 C u0 p1 c0 {2,D} +2 X u0 p0 c0 {1,D} + +CH_X +1 C u0 p0 c0 {2,S} {3,T} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,T} + +CH2_X +1 C u0 p0 c0 {2,S} {3,S} {4,D} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,D} + +CH3_X +1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 {1,S} + +CH4 +1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {1,S} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Vlachos_Rh/reactions.py b/input/kinetics/libraries/Surface/Vlachos_Rh/reactions.py new file mode 100644 index 0000000000..9448d16164 --- /dev/null +++ b/input/kinetics/libraries/Surface/Vlachos_Rh/reactions.py @@ -0,0 +1,948 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Vlachos_Rh" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. +""" + +entry( + index = 1, + label = "H2 + X + X <=> H_X + H_X", + kinetics = StickingCoefficient( + A = 0.773, + n = 0.9387, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""H2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +This is R1 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 2, +# label = "H_X + H_X <=> H2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (2.23E+20, 'cm^2/(mol*s)'), +# n = -0.4347, +# Ea = (12.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""H2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 5.56E+11(1/s)/2.49E-9(mol/cm^2) = 2.23E+20cm^2/(mol*s) + +# This is R2 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 3, + label = "H2O_X + X <=> H_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.31E+20, 'cm^2/(mol*s)'), + n = 0.0281, + Ea = (18.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 5.74E+11(1/s)/2.49E-9(mol/cm^2) = 2.31E+20 cm^2/(mol*s) + +This is R7 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 4, +# label = "H_X + OH_X <=> H2O_X + X", +# kinetics = SurfaceArrhenius( +# A = (7.23E+17, 'cm^2/(mol*s)'), +# n = 1.2972, +# Ea = (16.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 1.80E+09(1/s)/2.49E-9(mol/cm^2) = 7.23E+17 cm^2/(mol*s) + +# This is R8 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 5, + label = "H2O + X <=> H2O_X", + kinetics = StickingCoefficient( + A = 0.0772, + n = 1.4067, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +This is R13 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 6, +# label = "H2O_X <=> H2O + X", +# kinetics = SurfaceArrhenius( +# A = (8.27E+21, '1/s'), +# n = -1.8613, +# Ea = (7.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 2.06E+13(mol/cm^2/s)/2.49E-9(mol/cm^2) = 8.27E+21 (1/s) + +# This is R14 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 7, + label = "CO + X <=> CO_X", + kinetics = StickingCoefficient( + A = 0.5, + n = -2.00, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +This is R19 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 8, +# label = "CO_X <=> CO + X", +# kinetics = SurfaceArrhenius( +# A = (2.27E+21, '1/s'), +# n = 1.9879, +# Ea = (32.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 5.65E+12(mol/cm^2/s)/2.49E-9(mol/cm^2) = 2.27E+21 (1/s) + +# This is R20 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 9, + label = "CO2 + X <=> CO2_X", + kinetics = StickingCoefficient( + A = 0.367, + n = -2.3294, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +This is R21 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 10, +# label = "CO2_X <=> CO2 + X", +# kinetics = SurfaceArrhenius( +# A = (3.03E+19, '1/s'), +# n = 2.1831, +# Ea = (2.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 7.54E+10(mol/cm^2/s)/2.49E-9(mol/cm^2) = 3.03E+19 (1/s) + +# This is R22 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 11, + label = "CO2_X + H_X <=> CO_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.61E+23, 'cm^2/(mol*s)'), + n = 0.0301, + Ea = (5.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann_Pt/19""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 4.00E+14(1/s)/2.49E-9(mol/cm^2) = 1.61E+23 cm^2/(mol*s) + +This is R29 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 12, +# label = "CO_X + OH_X <=> CO2_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (1.41E+23, 'cm^2/(mol*s)'), +# n = -0.0301, +# Ea = (19.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann_Pt/19""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 3.51E+14(1/s)/2.49E-9(mol/cm^2) = 1.41E+23 cm^2/(mol*s) + +# This is R30 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 13, + label = "COOH_X + X <=> CO_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4.30E+20, 'cm^2/(mol*s)'), + n = -0.4123, + Ea = (7.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 1.07E+12(1/s)/2.49E-9(mol/cm^2) = 4.30E+20 cm^2/(mol*s) + +This is R31 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 14, +# label = "CO_X + OH_X <=> COOH_X + X", +# kinetics = SurfaceArrhenius( +# A = (3.76E+20, 'cm^2/(mol*s)'), +# n = 0.4123, +# Ea = (14.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 9.37E+11(1/s)/2.49E-9(mol/cm^2) = 3.76E+20 cm^2/(mol*s) + +# This is R32 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 15, + label = "COOH_X + X <=> CO2_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.02E+18, 'cm^2/(mol*s)'), + n = -0.4424, + Ea = (7.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Addition_Single_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 1.00E+10(1/s)/2.49E-9(mol/cm^2) = 4.02E+18 cm^2/(mol*s) + +This is R33 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 16, +# label = "CO2_X + H_X <=> COOH_X + X", +# kinetics = SurfaceArrhenius( +# A = (4.01E+18, 'cm^2/(mol*s)'), +# n = 0.4424, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Addition_Single_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 9.99E+09(1/s)/2.49E-9(mol/cm^2) = 4.01E+18 cm^2/(mol*s) + +# This is R34 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 17, + label = "CO_X + H2O_X <=> COOH_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.34E+20, 'cm^2/(mol*s)'), + n = -0.2222, + Ea = (19.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 3.34E+11(1/s)/2.49E-9(mol/cm^2) = 1.34E+20 cm^2/(mol*s) + +This is R35 in Table 4 +""", + metal = "Rh", +) + +#R36 in the table 4 has a typo of the reactant H_X +# entry( +# index = 18, +# label = "COOH_X + H_X <=> CO_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (4.82E+17, 'cm^2/(mol*s)'), +# n = 0.2223, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 1.20E+09(1/s)/2.49E-9(mol/cm^2) = 4.82E+17 cm^2/(mol*s) + +# This is R36 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 19, + label = "CO2_X + H2O_X <=> COOH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (7.15E+20, 'cm^2/(mol*s)'), + n = -0.1992, + Ea = (13.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dual_Adsorption_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 1.78E+12(1/s)/2.49E-9(mol/cm^2) = 7.15E+20 cm^2/(mol*s) + +This is R39 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 20, +# label = "COOH_X + OH_X <=> CO2_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (2.25E+18, 'cm^2/(mol*s)'), +# n = 0.1922, +# Ea = (18.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dual_Adsorption_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 5.60E+09(1/s)/2.49E-9(mol/cm^2) = 2.25E+18 cm^2/(mol*s) + +# This is R40 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 21, + label = "CH4 + X + X <=> CH3_X + H_X", + kinetics = StickingCoefficient( + A = 0.572, + n = 0.7883, + Ea = (14.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Dissociative""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +This is R55 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 22, +# label = "CH3_X + H_X <=> CH4 + X + X", +# kinetics = SurfaceArrhenius( +# A = (3.10E+19, 'cm^2/(mol*s)'), +# n = -0.7883, +# Ea = (5.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 7.72E+10(1/s)/2.49E-9(mol/cm^2) = 3.10E+19 cm^2/(mol*s) + +# This is R56 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 23, + label = "CH3_X + X <=> CH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.00E+19, 'cm^2/(mol*s)'), + n = 0.0862, + Ea = (12.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Dissociative""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 2.49E+10(1/s)/2.49E-9(mol/cm^2) = 1.00E+19 cm^2/(mol*s) + +This is R57 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 24, +# label = "CH2_X + H_X <=> CH3_X + X", +# kinetics = SurfaceArrhenius( +# A = (1.03E+18, 'cm^2/(mol*s)'), +# n = -0.0862, +# Ea = (25.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 2.57E+09(1/s)/2.49E-9(mol/cm^2) = 1.03E+18 cm^2/(mol*s) + +# This is R58 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 25, + label = "CH2_X + X <=> CH_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.21E+19, 'cm^2/(mol*s)'), + n = -0.1312, + Ea = (21.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 5.50E+10(1/s)/2.49E-9(mol/cm^2) = 2.21E+19 cm^2/(mol*s) + +This is R59 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 26, +# label = "CH_X + H_X <=> CH2_X + X", +# kinetics = SurfaceArrhenius( +# A = (2.92E+18, 'cm^2/(mol*s)'), +# n = 0.1312, +# Ea = (20.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 7.27E+09(1/s)/2.49E-9(mol/cm^2) = 2.92E+18 cm^2/(mol*s) + +# This is R60 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 27, + label = "CH_X + X <=> C_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.84E+21, 'cm^2/(mol*s)'), + n = -0.2464, + Ea = (28.9, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 4.58E+12(1/s)/2.49E-9(mol/cm^2) = 1.84E+21 cm^2/(mol*s) + +This is R61 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 28, +# label = "C_X + H_X <=> CH_X + X", +# kinetics = SurfaceArrhenius( +# A = (8.76E+19, 'cm^2/(mol*s)'), +# n = 0.2464, +# Ea = (14.1, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 2.18E+11(1/s)/2.49E-9(mol/cm^2) = 8.76E+19 cm^2/(mol*s) + +# This is R62 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 29, + label = "CH3_X + O_X <=> CH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.19E+20, 'cm^2/(mol*s)'), + n = -0.1906, + Ea = (6.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 2.96E+11(1/s)/2.49E-9(mol/cm^2) = 1.19E+20 cm^2/(mol*s) + +This is R63 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 30, +# label = "CH2_X + OH_X <=> CH3_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (1.36E+19, 'cm^2/(mol*s)'), +# n = 0.1906, +# Ea = (34.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 3.38E+10(1/s)/2.49E-9(mol/cm^2) = 1.36E+19 cm^2/(mol*s) + +# This is R64 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 31, + label = "CH2_X + H2O_X <=> CH3_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.30E+19, 'cm^2/(mol*s)'), + n = -0.7208, + Ea = (20.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 5.73E+10(1/s)/2.49E-9(mol/cm^2) = 2.30E+19 cm^2/(mol*s) + +This is R69 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 32, +# label = "CH3_X + OH_X <=> CH2_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (6.99E+17, 'cm^2/(mol*s)'), +# n = 0.7208, +# Ea = (4.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 1.74E+09(1/s)/2.49E-9(mol/cm^2) = 6.99E+17 cm^2/(mol*s) + +# This is R70 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 33, + label = "CH_X + H2O_X <=> CH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.61E+20, 'cm^2/(mol*s)'), + n = -0.5033, + Ea = (21.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 6.49E+11(1/s)/2.49E-9(mol/cm^2) = 2.61E+20 cm^2/(mol*s) + +This is R71 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 34, +# label = "CH2_X + OH_X <=> CH_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (6.18E+18, 'cm^2/(mol*s)'), +# n = 0.5033, +# Ea = (19.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 1.54E+10(1/s)/2.49E-9(mol/cm^2) = 6.18E+18 cm^2/(mol*s) + +# This is R72 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 35, + label = "C_X + H2O_X <=> CH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.91E+20, 'cm^2/(mol*s)'), + n = -0.3882, + Ea = (17.0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 9.74E+11(1/s)/2.49E-9(mol/cm^2) = 3.91E+20 cm^2/(mol*s) + +This is R73 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 36, +# label = "CH_X + OH_X <=> C_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (2.57E+19, 'cm^2/(mol*s)'), +# n = 0.3882, +# Ea = (29.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 6.41E+10(1/s)/2.49E-9(mol/cm^2) = 2.57E+19 cm^2/(mol*s) + +# This is R74 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 37, + label = "CO_X + H_X <=> C_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4.74E+20, 'cm^2/(mol*s)'), + n = 0.2944, + Ea = (22.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann libraries""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 1.18E+12(1/s)/2.49E-9(mol/cm^2) = 4.74E+20 cm^2/(mol*s) + +This is R79 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 38, +# label = "C_X + OH_X <=> CO_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (3.05E+21, 'cm^2/(mol*s)'), +# n = -0.2944, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann libraries""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 7.60E+12(1/s)/2.49E-9(mol/cm^2) = 3.05E+21 cm^2/(mol*s) + +# This is R80 in Table 4 +# """, +# metal = "Rh", +# ) From 5f4cb5c6b5198be68ee83403d0a6881a41790004 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Tue, 25 May 2021 17:18:17 -0400 Subject: [PATCH 12/27] corrected the units of A factors and long description in Arevalo_Pt111, Kraehnert_Pt111, Offermans_Pt111, Rebrov_Pt111, Roldan_Ir111, Roldan_Ru0001 and Vlachos_Pt111 --- .../training/reactions.py | 4 +- .../training/reactions.py | 10 ++--- .../Surface/Arevalo_Pt111/reactions.py | 2 +- .../Surface/Kraehnert_Pt111/reactions.py | 24 +++++------ .../Surface/Offermans_Pt111/reactions.py | 2 +- .../Surface/Rebrov_Pt111/reactions.py | 4 +- .../Surface/Roldan_Ir111/reactions.py | 2 +- .../Surface/Roldan_Ru0001/reactions.py | 2 +- .../Surface/Vlachos_Pt111/reactions.py | 43 ++++++++----------- 9 files changed, 43 insertions(+), 50 deletions(-) diff --git a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py index ca0b9e5463..4967377efe 100644 --- a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py @@ -33,7 +33,7 @@ index = 49, label = "NO_X <=> NO + Pt", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.19e+17,'1/s'), n=0, Ea=(154800,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.41e+16,'1/s'), n=0, Ea=(154800,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = @@ -45,7 +45,7 @@ Krähnert, Ralph(2005) A Doctoral Thesis. http://dx.doi.org/10.14279/depositonce-1270 -A = k/exp(Ea/RT) = 1.24(mol/m^2/s)/exp(154800J/mol / 8.314J/molK / 298K) = 3.19E17 cm^2/mol/s +A = k/exp(Ea/RT) = 1.24(1/s)/exp(154800J/mol / 8.314J/molK / 658K) = 2.41E16 (1/s) """, metal = "Pt", facet = "111", diff --git a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py index ad6649fb9e..ee00aa1a48 100644 --- a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py @@ -72,7 +72,7 @@ index = 12, label = "H3NX <=> H3N + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.09e+09,'1/s'), n=0, Ea=(60900,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.48e+09,'1/s'), n=0, Ea=(60900,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = @@ -84,7 +84,7 @@ Krähnert, Ralph(2005) A Doctoral Thesis. http://dx.doi.org/10.14279/depositonce-1270 -A = k/exp(Ea/RT) = 2.17(mol/m^2/s)/exp(60900J/mol / 8.314J/molK / 298K) = 4.09E9 cm^2/mol/s +A = k/exp(Ea/RT) = 2.17(1/s)/exp(60900J/mol / 8.314J/molK / 658K) = 1.48E09 (1/s) """, metal = "Pt", facet = "111", @@ -106,7 +106,7 @@ https://doi.org/10.6100/IR630067 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A (at 300K from p.62)= 8.6E12(1/s)/2.483E-9(mol/cm^2) = 3.464E21 cm^2/(mol*s) +A (at 300K from p.62)= 8.6E12(cm/s)/2.483E-9(mol/cm^2) = 3.464E21 cm^3/(mol*s) """, metal = "Pt", facet = "111", @@ -142,7 +142,7 @@ degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(4.03e+21,'1/s'), n=0, Ea=(40300,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Adsorption""", + shortDesc = """Surface_Adsorption_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Rebrov_Pt111 @@ -152,7 +152,7 @@ https://doi.org/10.1016/S1385-8947(02)00068-2 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) +A = 1E13(mol/cm^2/s)/2.483E-9(mol/cm^2) = 4.03E21 (1/s) This is R19 in Table 1 """, diff --git a/input/kinetics/libraries/Surface/Arevalo_Pt111/reactions.py b/input/kinetics/libraries/Surface/Arevalo_Pt111/reactions.py index 0d68da1776..b4d77f9297 100644 --- a/input/kinetics/libraries/Surface/Arevalo_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Arevalo_Pt111/reactions.py @@ -1,7 +1,7 @@ #!/usr/bin/env python # encoding: utf-8 -name = "Ryan_Pt111" +name = "Arevalo_Pt111" shortDesc = u"" longDesc = u""" This library is built to import training reactions, based on: diff --git a/input/kinetics/libraries/Surface/Kraehnert_Pt111/reactions.py b/input/kinetics/libraries/Surface/Kraehnert_Pt111/reactions.py index 8350a8a84e..09c5b9a73c 100644 --- a/input/kinetics/libraries/Surface/Kraehnert_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Kraehnert_Pt111/reactions.py @@ -15,7 +15,7 @@ index = 1, label = "N_X + O_X <=> NO_X + X", kinetics = SurfaceArrhenius( - A = (4.91E16, 'cm^2/(mol*s)'), + A = (5.14E15, 'cm^2/(mol*s)'), n = 0.0, Ea = (135300, 'J/mol'), Tmin = (200, 'K'), @@ -28,7 +28,7 @@ Krähnert, Ralph(2005) A Doctoral Thesis. http://dx.doi.org/10.14279/depositonce-1270 -A = k/exp(Ea/RT) = 9.34(mol/m^2/s)/exp(135300J/mol / 8.314J/molK / 298K) = 4.91E16 cm^2/mol/s +A = k/exp(Ea/RT) = 9.34(cm^2/mol/s)/exp(135300J/mol / 8.314J/molK / 658K) = 5.14E15 cm^2/mol/s """, metal = "Pt", facet = "111", @@ -38,7 +38,7 @@ index = 2, label = "N_X + N_X <=> N2 + X + X", kinetics = SurfaceArrhenius( - A = (7.06E17, 'cm^2/(mol*s)'), + A = (6.96E16, 'cm^2/(mol*s)'), n = 0.0, Ea = (139000, 'J/mol'), Tmin = (200, 'K'), @@ -51,7 +51,7 @@ Krähnert, Ralph(2005) A Doctoral Thesis. http://dx.doi.org/10.14279/depositonce-1270 -A = k/exp(Ea/RT) = 64.2(mol/m^2/s)/exp(139000J/mol / 8.314J/molK / 298K) = 7.06E17 cm^2/mol/s +A = k/exp(Ea/RT) = 64.2(m^2/mol/s)/exp(139000J/mol / 8.314J/molK / 658K) = 6.96E16 cm^2/mol/s """, metal = "Pt", facet = "111", @@ -61,7 +61,7 @@ index = 3, label = "O_X + O_X <=> O2 + X + X", kinetics = SurfaceArrhenius( - A = (5.21E9, 'cm^2/(mol*s)'), + A = (2.55E08, 'cm^2/(mol*s)'), n = 0.0, Ea = (181000, 'J/mol'), Tmin = (200, 'K'), @@ -74,7 +74,7 @@ Krähnert, Ralph(2005) A Doctoral Thesis. http://dx.doi.org/10.14279/depositonce-1270 -A = k/exp(Ea/RT) = 1.09E-10(mol/m^2/s)/exp(181000J/mol / 8.314J/molK / 298K) = 5.21E9 cm^2/mol/s +A = k/exp(Ea/RT) = 1.09E-10(m^2/mol/s)/exp(181000J/mol / 8.314J/molK / 658K) = 2.55E08 (cm^2/mol/s) """, metal = "Pt", facet = "111", @@ -84,7 +84,7 @@ index = 4, label = "NH3_X <=> NH3 + X", kinetics = SurfaceArrhenius( - A = (3.09E9, '1/s'), + A = (1.48E09, '1/s'), n = 0.0, Ea = (60900, 'J/mol'), Tmin = (200, 'K'), @@ -97,7 +97,7 @@ Krähnert, Ralph(2005) A Doctoral Thesis. http://dx.doi.org/10.14279/depositonce-1270 -A = k/exp(Ea/RT) = 2.17(mol/m^2/s)/exp(60900J/mol / 8.314J/molK / 298K) = 4.09E9 cm^2/mol/s +A = k/exp(Ea/RT) = 2.17(1/s)/exp(60900J/mol / 8.314J/molK / 658K) = 1.48E09 (1/s) """, metal = "Pt", facet = "111", @@ -107,7 +107,7 @@ index = 5, label = "NO_X <=> NO + X", kinetics = SurfaceArrhenius( - A = (3.19E17, '1/s'), + A = (2.41E16, '1/s'), n = 0.0, Ea = (154800, 'J/mol'), Tmin = (200, 'K'), @@ -120,7 +120,7 @@ Krähnert, Ralph(2005) A Doctoral Thesis. http://dx.doi.org/10.14279/depositonce-1270 -A = k/exp(Ea/RT) = 1.24(mol/m^2/s)/exp(154800J/mol / 8.314J/molK / 298K) = 3.19E17 cm^2/mol/s +A = k/exp(Ea/RT) = 1.24(1/s)/exp(154800J/mol / 8.314J/molK / 658K) = 2.41E16 (1/s) """, metal = "Pt", facet = "111", @@ -130,7 +130,7 @@ index = 6, label = "N_X + NO_X <=> N2O + X + X", kinetics = SurfaceArrhenius( - A = (1.45E18, 'cm^2/(mol*s)'), + A = (1.09E17, 'cm^2/(mol*s)'), n = 0.0, Ea = (155200, 'J/mol'), Tmin = (200, 'K'), @@ -143,7 +143,7 @@ Krähnert, Ralph(2005) A Doctoral Thesis. http://dx.doi.org/10.14279/depositonce-1270 -A = k/exp(Ea/RT) = 5.2(mol/m^2/s)/exp(155200J/mol / 8.314J/molK / 298K) = 1.45E18 cm^2/mol/s +A = k/exp(Ea/RT) = 5.2(m^2/mol/s)/exp(155200J/mol / 8.314J/molK / 658K) = 1.09E17 (cm^2/mol/s) """, metal = "Pt", facet = "111", diff --git a/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py b/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py index 38d473cef1..14df83e88c 100644 --- a/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py @@ -27,7 +27,7 @@ https://doi.org/10.6100/IR630067 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A (at 300K from p.62)= 8.6E12(1/s)/2.483E-9(mol/cm^2) = 3.464E21 cm^2/(mol*s) +A (at 300K from p.62)= 8.6E12(cm/s)/2.483E-9(mol/cm^2) = 3.464E21 cm^3/(mol*s) """, metal = "Pt", facet = "111", diff --git a/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py b/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py index e1dc06587b..2483faf6c7 100644 --- a/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py @@ -344,14 +344,14 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Adsorption""", + shortDesc = u"""Surface_Adsorption_vdW""", longDesc = u""" "Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. https://doi.org/10.1016/S1385-8947(02)00068-2 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) +A = 1E13(mol/cm^2/s)/2.483E-9(mol/cm^2) = 4.03E21 (1/s) This is R19 in Table 1 """, diff --git a/input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py b/input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py index 1e00a8a19e..219af78ead 100644 --- a/input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py +++ b/input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py @@ -337,7 +337,7 @@ This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to estimate a default(1E13) A factor. -A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +A = 1E13(mol/cm^2/s)/2.587E-9(mol/cm^2) = 3.87E21 (1/s) Ea = 1.43eV = 137980.7J/mol This is R15 in Table 3 diff --git a/input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py b/input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py index 44cc3a2728..713a1f88e6 100644 --- a/input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py +++ b/input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py @@ -174,7 +174,7 @@ DOI: 10.1039/d1na00015b This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. -A = 1.29E8(mol/cm^2/s)/2.630E-9(mol/cm^2) = 4.90E16 (1/s) +A = 1.29E8(cm/s)/2.630E-9(mol/cm^2) = 4.90E16 (cm^3/(mol*s)) Ea was calculated from A factor and k rate constant in Table 3 This is A2 in Table 3 diff --git a/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py b/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py index 62ce02889b..f01ef30547 100644 --- a/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py @@ -5,13 +5,6 @@ shortDesc = u"" longDesc = u""" Primarily based on: -"Microkinetic Modeling of Ethane Total Oxidation on Pt" -D.G. Vlachos et al. (2014) -Industrial & Engineering Chemistry Research,53(24), 10051-10058. -DOI: 10.1021/ie5004587 - -and - "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" D.G. Vlachos et al. (2007) @@ -113,7 +106,7 @@ # DOI: 10.1021/ie070322c # This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 1.44E13(1/s)/2.483E-9(mol/cm^2) = 5.80E21 cm^2/(mol*s) +# A = 1.44E13(mol/cm^2/s)/2.483E-9(mol/cm^2) = 5.80E21 (1/s) # This is R4 in Table 1 # """, @@ -164,7 +157,7 @@ # DOI: 10.1021/ie070322c # This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 5.66E15(1/s)/2.483E-9(mol/cm^2) = 2.28E24 cm^2/(mol*s) +# A = 5.66E15(mol/cm^2/s)/2.483E-9(mol/cm^2) = 2.28E24 (1/s) # This is R6 in Table 1 # """, @@ -215,7 +208,7 @@ # DOI: 10.1021/ie070322c # This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 3.63E12(1/s)/2.483E-9(mol/cm^2) = 1.46E21 cm^2/(mol*s) +# A = 3.63E12(mol/cm^2/s)/2.483E-9(mol/cm^2) = 1.46E21 (1/s) # This is R8 in Table 1 # """, @@ -533,7 +526,7 @@ # DOI: 10.1021/ie070322c # This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 1.44E14(1/s)/2.483E-9(mol/cm^2) = 5.80E22 cm^2/(mol*s) +# A = 1.44E14(mol/cm^2/s)/2.483E-9(mol/cm^2) = 5.80E22 (1/s) # This is R20 in Table 1 # """, @@ -584,7 +577,7 @@ # DOI: 10.1021/ie070322c # This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 2.03E12(1/s)/2.483E-9(mol/cm^2) = 8.18E20 cm^2/(mol*s) +# A = 2.03E12(mol/cm^2/s)/2.483E-9(mol/cm^2) = 8.18E20 (1/s) # This is R22 in Table 1 # """, @@ -635,7 +628,7 @@ # DOI: 10.1021/ie070322c # This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 4.37E13(1/s)/2.483E-9(mol/cm^2) = 1.76E22 cm^2/(mol*s) +# A = 4.37E13(mol/cm^2/s)/2.483E-9(mol/cm^2) = 1.76E22 (1/s) # This is R24 in Table 1 # """, @@ -740,7 +733,7 @@ # DOI: 10.1021/ie070322c # This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 1.12E13(1/s)/2.483E-9(mol/cm^2) = 4.51E21 cm^2/(mol*s) +# A = 1.12E13(mol/cm^2/s)/2.483E-9(mol/cm^2) = 4.51E21 (1/s) # This is R28 in Table 1 # """, @@ -1061,7 +1054,7 @@ # DOI: 10.1021/ie070322c # This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 4.83E12(1/s)/2.483E-9(mol/cm^2) = 1.95E21 cm^2/(mol*s) +# A = 4.83E12(mol/cm^2/s)/2.483E-9(mol/cm^2) = 1.95E21 (1/s) # This is R40 in Table 1 # """, @@ -1147,7 +1140,7 @@ DOI: 10.1021/ie070322c This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 6.17E10(1/s)/2.483E-9(mol/cm^2) = 2.48E19 cm^2/(mol*s) +A = 6.17E10(cm^2/mol/s)/2.483E-9(mol/cm^2) = 2.48E19 cm^4/(mol^2*s) This is R43 in Table 1 """, @@ -1229,7 +1222,7 @@ # DOI: 10.1021/ie070322c # This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 4.30E13(1/s)/2.483E-9(mol/cm^2) = 1.73E22 cm^2/(mol*s) +# A = 4.30E13(mol/cm^2/s)/2.483E-9(mol/cm^2) = 1.73E22 (1/s) # This is R48 in Table 2 # """, @@ -1280,7 +1273,7 @@ # DOI: 10.1021/ie070322c # This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 5.22E13(1/s)/2.483E-9(mol/cm^2) = 2.10E22 cm^2/(mol*s) +# A = 5.22E13(mol/cm^2/s)/2.483E-9(mol/cm^2) = 2.10E22 (1/s) # This is R50 in Table 2 # """, @@ -1331,7 +1324,7 @@ # DOI: 10.1021/ie070322c # This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 1.57E13(1/s)/2.483E-9(mol/cm^2) = 6.32E21 cm^2/(mol*s) +# A = 1.57E13(mol/cm^2/s)/2.483E-9(mol/cm^2) = 6.32E21 (1/s) # This is R52 in Table 2 # """, @@ -1382,7 +1375,7 @@ # DOI: 10.1021/ie070322c # This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 4.42E12(1/s)/2.483E-9(mol/cm^2) = 1.78E21 cm^2/(mol*s) +# A = 4.42E12(mol/cm^2/s)/2.483E-9(mol/cm^2) = 1.78E21 (1/s) # This is R54 in Table 2 # """, @@ -2186,7 +2179,7 @@ # DOI: 10.1021/ie070322c # This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 2.11E12(1/s)/2.483E-9(mol/cm^2) = 8.50E20 cm^2/(mol*s) +# A = 2.11E12(mol/cm^2/s)/2.483E-9(mol/cm^2) = 8.50E20 (1/s) # This is R84 in Table 2 # """, @@ -2237,7 +2230,7 @@ # DOI: 10.1021/ie070322c # This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 4.73E12(1/s)/2.483E-9(mol/cm^2) = 1.90E21 cm^2/(mol*s) +# A = 4.73E12(mol/cm^2/s)/2.483E-9(mol/cm^2) = 1.90E21 (1/s) # This is R86 in Table 2 # """, @@ -2288,7 +2281,7 @@ # DOI: 10.1021/ie070322c # This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 8.06E12(1/s)/2.483E-9(mol/cm^2) = 3.25E21 cm^2/(mol*s) +# A = 8.06E12(mol/cm^2/s)/2.483E-9(mol/cm^2) = 3.25E21 (1/s) # This is R88 in Table 2 # """, @@ -2339,7 +2332,7 @@ # DOI: 10.1021/ie070322c # This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 6.21E13(1/s)/2.483E-9(mol/cm^2) = 2.50E22 cm^2/(mol*s) +# A = 6.21E13(mol/cm^2/s)/2.483E-9(mol/cm^2) = 2.50E22 (1/s) # This is R90 in Table 2 # """, @@ -2390,7 +2383,7 @@ # DOI: 10.1021/ie070322c # This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 1.35E13(1/s)/2.483E-9(mol/cm^2) = 5.44E21 cm^2/(mol*s) +# A = 1.35E13(mol/cm^2/s)/2.483E-9(mol/cm^2) = 5.44E21 (1/s) # This is R92 in Table 2 # """, From d7e359108cdf5532da788cefd7ed23253c56b994 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Tue, 25 May 2021 17:48:05 -0400 Subject: [PATCH 13/27] Added the Vlachos_Ru0001, Vlachos_Pt111, Vlachos_Rh, Roldan_Cu111, Roldan_Ir111, Roldan_Ru0001 libraries into the training reactions. --- .../training/dictionary.txt | 22 + .../Surface_Abstraction/training/reactions.py | 102 +++ .../training/dictionary.txt | 43 ++ .../training/reactions.py | 75 ++ .../training/dictionary.txt | 76 ++ .../training/reactions.py | 406 +++++++++++ .../training/dictionary.txt | 59 +- .../training/reactions.py | 102 +++ .../training/dictionary.txt | 43 +- .../training/reactions.py | 26 + .../training/dictionary.txt | 32 + .../training/reactions.py | 49 ++ .../training/dictionary.txt | 27 +- .../training/reactions.py | 132 ++++ .../training/dictionary.txt | 86 +++ .../training/reactions.py | 161 +++++ .../training/dictionary.txt | 67 ++ .../training/reactions.py | 352 ++++++++++ .../training/dictionary.txt | 39 ++ .../training/reactions.py | 126 ++++ .../training/dictionary.txt | 64 ++ .../training/reactions.py | 661 ++++++++++++++++++ .../training/dictionary.txt | 26 +- .../training/reactions.py | 25 + .../training/dictionary.txt | 12 + .../training/reactions.py | 52 ++ .../training/dictionary.txt | 32 + .../training/reactions.py | 332 +++++++++ .../training/dictionary.txt | 42 ++ .../training/reactions.py | 76 ++ 30 files changed, 3296 insertions(+), 51 deletions(-) diff --git a/input/kinetics/families/Surface_Abstraction/training/dictionary.txt b/input/kinetics/families/Surface_Abstraction/training/dictionary.txt index f8fe44c7d4..079278322e 100644 --- a/input/kinetics/families/Surface_Abstraction/training/dictionary.txt +++ b/input/kinetics/families/Surface_Abstraction/training/dictionary.txt @@ -80,3 +80,25 @@ NX 1 *3 N u0 p1 c0 {2,T} 2 *5 X u0 p0 c0 {1,T} +CH3X +1 *3 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 *4 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *5 X u0 p0 c0 {1,S} + +CH2X +1 *3 C u0 p0 c0 {2,S} {3,S} {4,D} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *5 X u0 p0 c0 {1,D} + +CX +1 *1 C u0 p1 c0 {2,D} +2 *2 X u0 p0 c0 {1,D} + +CHX +1 *1 C u0 p1 c0 {2,S} {3,S} +2 *4 H u0 p0 c0 {1,S} +3 *2 X u0 p0 c0 {1,S} + diff --git a/input/kinetics/families/Surface_Abstraction/training/reactions.py b/input/kinetics/families/Surface_Abstraction/training/reactions.py index e6df641b7e..6e50356f71 100644 --- a/input/kinetics/families/Surface_Abstraction/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction/training/reactions.py @@ -495,3 +495,105 @@ facet = "211", ) +entry( + index = 55, + label = "CH3X + O* <=> OH* + CH2X", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(7.93e+19,'cm^2/(mol*s)'), n=-0.23, Ea=(10.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH3_X + O_X <=> CH2_X + OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.97E11(1/s)/2.483E-9(mol/cm^2) = 7.93E19 cm^2/(mol*s) + +This is R63 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 56, + label = "HOX_3 + CHX_1 <=> CH2X_4 + OX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.43e+19,'cm^2/(mol*s)'), n=0.414, Ea=(44.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH_X + OH_X <=> CH2_X + O_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.10E11(1/s)/2.483E-9(mol/cm^2) = 4.43E19 cm^2/(mol*s) + +This is R65 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 57, + label = "HOX_3 + CX <=> CHX + OX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.57e+19,'cm^2/(mol*s)'), n=0.225, Ea=(27.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: C_X + OH_X <=> CH_X + O_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 6.37E10(1/s)/2.483E-9(mol/cm^2) = 2.57E19 cm^2/(mol*s) + +This is R67 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 58, + label = "CH3X + O* <=> OH* + CH2X", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(1.19e+20,'cm^2/(mol*s)'), n=-0.1906, Ea=(6.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: CH3_X + O_X <=> CH2_X + OH_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 2.96E+11(1/s)/2.49E-9(mol/cm^2) = 1.19E+20 cm^2/(mol*s) + +This is R63 in Table 4 +""", + metal = "Rh", +) + diff --git a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/dictionary.txt index bcc157dade..1e2a52f82f 100644 --- a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/dictionary.txt @@ -22,3 +22,46 @@ H2OX 3 *3 H u0 p0 c0 {1,S} 4 *5 X u0 p0 c0 +H2NX-2 +1 *4 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *5 X u0 p0 c0 {1,S} + +H4N2X +1 *2 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,S} {6,S} +3 *3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {2,S} +7 *1 X u0 p0 c0 + +H3N2X +1 *2 N u0 p1 c0 {2,S} {3,S} {6,S} +2 N u0 p1 c0 {1,S} {4,S} {5,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 *1 X u0 p0 c0 {1,S} + +H3NX-2 +1 *4 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *3 H u0 p0 c0 {1,S} +5 *5 X u0 p0 c0 + +H2N2X +1 *2 N u0 p1 c0 {2,D} {3,S} +2 N u0 p1 c0 {1,D} {4,S} +3 *3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 *1 X u0 p0 c0 + +HN2X +1 *2 N u0 p1 c0 {2,D} {4,S} +2 N u0 p1 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} +4 *1 X u0 p0 c0 {1,S} + diff --git a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py index e402ae57c2..cb91f4d12e 100644 --- a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py @@ -186,3 +186,78 @@ facet = "211", ) +entry( + index = 8, + label = "H2NX-2 + H4N2X <=> H3N2X + H3NX-2", + degeneracy = 4.0, + kinetics = SurfaceArrhenius(A=(3.38e+20,'cm^2/(mol*s)'), n=0.156, Ea=(40526,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: N2H4_X + NH2_X <=> N2H3_X + NH3_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R38 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 9, + label = "H2NX-2 + H4N2X <=> H3N2X + H3NX-2", + degeneracy = 4.0, + kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(19298,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N2H4_X + NH2_X <=> N2H3_X + NH3_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.2eV = 19298J/mol + +This is R16 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 10, + label = "H2NX-2 + H2N2X <=> HN2X + H3NX-2", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(98419.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N2H2_X + NH2_X <=> N2H_X + NH3_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 1.02eV = 98419.8J/mol + +This is R20 in Table 3 +""", + metal = "Ir", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt index bcf06507e1..0be95bbfbe 100644 --- a/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt @@ -138,3 +138,79 @@ NOX 2 *2 N u0 p1 c0 {1,D} {3,S} 3 *1 X u0 p0 c0 {2,S} +CH2X +1 *4 C u0 p0 c0 {2,S} {3,S} {4,D} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *5 X u0 p0 c0 {1,D} + +CH3X +1 *4 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *3 H u0 p0 c0 {1,S} +5 *5 X u0 p0 c0 {1,S} + +CHX +1 *4 C u0 p0 c0 {2,S} {3,T} +2 H u0 p0 c0 {1,S} +3 *5 X u0 p0 c0 {1,T} + +CH2X-2 +1 *4 C u0 p0 c0 {2,S} {3,S} {4,D} +2 H u0 p0 c0 {1,S} +3 *3 H u0 p0 c0 {1,S} +4 *5 X u0 p0 c0 {1,D} + +CX +1 *4 C u0 p1 c0 {2,D} +2 *5 X u0 p0 c0 {1,D} + +CHX-2 +1 *4 C u0 p1 c0 {2,S} {3,S} +2 *3 H u0 p0 c0 {1,S} +3 *5 X u0 p0 c0 {1,S} + +H3N2X +1 *4 N u0 p1 c0 {2,S} {3,S} {6,S} +2 N u0 p1 c0 {1,S} {4,S} {5,S} +3 *3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 *5 X u0 p0 c0 {1,S} + +H2N2X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *4 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *5 X u0 p0 c0 {2,D} + +H2N2X2 +1 *4 N u0 p1 c0 {2,S} {3,S} {5,S} +2 N u0 p1 c0 {1,S} {4,S} {6,S} +3 *3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 *5 X u0 p0 c0 {1,S} +6 X u0 p0 c0 {2,S} + +HN2X2 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *4 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} +5 *5 X u0 p0 c0 {2,D} + +HN2X2-2 +1 *4 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,D} +3 *3 H u0 p0 c0 {1,S} +4 *5 X u0 p0 c0 {1,S} +5 X u0 p0 c0 {2,D} + +N2X2 +1 *4 N u0 p1 c0 {2,S} {3,D} +2 N u0 p1 c0 {1,S} {4,D} +3 *5 X u0 p0 c0 {1,D} +4 X u0 p0 c0 {2,D} + diff --git a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py index 418f5ce45d..1d6fb0adb0 100644 --- a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py @@ -922,3 +922,409 @@ facet = "211", ) +entry( + index = 77, + label = "O* + H2O* <=> OH_2* + OH_4*", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(1.74e+19,'cm^2/(mol*s)'), n=0.082, Ea=(8.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: O_X + H2O_X <=> OH_X + OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 4.32E10(1/s)/2.483E-9(mol/cm^2) = 1.74E19 cm^2/(mol*s) + +This is R17 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 78, + label = "CH2X + H2O* <=> OH_2* + CH3X", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(3.3e+19,'cm^2/(mol*s)'), n=0.099, Ea=(14.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH2_X + H2O_X <=> CH3_X + OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.19E10(1/s)/2.483E-9(mol/cm^2) = 3.30E19 cm^2/(mol*s) + +This is R69 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 79, + label = "CHX + H2O* <=> OH_2* + CH2X-2", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(7.29e+19,'cm^2/(mol*s)'), n=0.269, Ea=(34,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH_X + H2O_X <=> CH2_X + OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.81E11(1/s)/2.483E-9(mol/cm^2) = 7.29E19 cm^2/(mol*s) + +This is R71 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 80, + label = "CX + H2O* <=> OH_2* + CHX-2", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(4.19e+19,'cm^2/(mol*s)'), n=0.09, Ea=(15.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: C_X + H2O_X <=> CH_X + OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.04E11(1/s)/2.483E-9(mol/cm^2) = 4.19E19 cm^2/(mol*s) + +This is R73 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 81, + label = "CH2X + H2O* <=> OH_2* + CH3X", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.3e+19,'cm^2/(mol*s)'), n=-0.7208, Ea=(20.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: CH2_X + H2O_X <=> CH3_X + OH_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 5.73E+10(1/s)/2.49E-9(mol/cm^2) = 2.30E+19 cm^2/(mol*s) + +This is R69 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 82, + label = "CHX + H2O* <=> OH_2* + CH2X-2", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.61e+20,'cm^2/(mol*s)'), n=-0.5033, Ea=(21.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: CH_X + H2O_X <=> CH2_X + OH_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 6.49E+11(1/s)/2.49E-9(mol/cm^2) = 2.61E+20 cm^2/(mol*s) + +This is R71 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 83, + label = "CX + H2O* <=> OH_2* + CHX-2", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(3.91e+20,'cm^2/(mol*s)'), n=-0.3882, Ea=(17,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: C_X + H2O_X <=> CH_X + OH_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 9.74E+11(1/s)/2.49E-9(mol/cm^2) = 3.91E+20 cm^2/(mol*s) + +This is R73 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 84, + label = "H2NX + H2NX-2 <=> H3NX + HNX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.16e+20,'cm^2/(mol*s)'), n=0.667, Ea=(43420,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: NH2_X + NH2_X <=> NH_X + NH3_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R36 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 85, + label = "H3N2X + H2NX <=> H3NX + H2N2X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.02e+19,'cm^2/(mol*s)'), n=1.073, Ea=(51140,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: N2H3_X + NH2_X <=> NN=[Pt] + NH3_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R42 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 86, + label = "H2N2X2 + H2NX <=> H3NX + HN2X2", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.94e+20,'cm^2/(mol*s)'), n=0.577, Ea=(24122,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: [Pt]NN[Pt] + NH2_X <=> [Pt]NN=[Pt] + NH3_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R44 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 87, + label = "HN2X2-2 + H2NX <=> H3NX + N2X2", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.04e+19,'cm^2/(mol*s)'), n=0.86, Ea=(7719,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: [Pt]NN=[Pt] + NH2_X <=> [Pt]=NN=[Pt] + NH3_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R48 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 88, + label = "H2N2X2 + H2NX <=> H3NX + HN2X2", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(18333.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: [Pt]NN[Pt] + NH2_X <=> [Pt]NN=[Pt] + NH3_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.19eV = 18333.1J/mol + +This is R18 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 89, + label = "H3N2X + H2NX <=> H3NX + H2N2X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(35701.3,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N2H3_X + NH2_X <=> NN=[Pt] + NH3_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.37eV = 35701.3J/mol + +This is R19 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 90, + label = "HN2X2-2 + H2NX <=> H3NX + N2X2", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(53069.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: [Pt]NN=[Pt] + NH2_X <=> N2_X + NH3_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.55eV = 53069.5J/mol + +This is R21 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 91, + label = "H2NX + H2NX-2 <=> H3NX + HNX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(32806.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: NH2_X + NH2_X <=> NH_X + NH3_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.34eV = 32806.6J/mol + +This is R25 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 92, + label = "HNX-2 + H2NX <=> H3NX + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(94560.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: NH_X + NH2_X <=> N_X + NH3_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.98eV = 94560.2J/mol + +This is R26 in Table 3 +""", + metal = "Ir", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Addition_Single_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Addition_Single_vdW/training/dictionary.txt index 98dff0f0d5..33fb37c9ce 100644 --- a/input/kinetics/families/Surface_Addition_Single_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Addition_Single_vdW/training/dictionary.txt @@ -1,6 +1,6 @@ H* -1 *5 X u0 p0 c0 {2,S} -2 *4 H u0 p0 c0 {1,S} +1 *4 H u0 p0 c0 {2,S} +2 *5 X u0 p0 c0 {1,S} CO2* 1 O u0 p2 c0 {3,D} @@ -101,36 +101,37 @@ CH3O_5* 6 *5 X u0 p0 c0 {1,S} H2COOCH3* -1 *2 O u0 p2 c0 {2,S} {9,S} -2 *3 C u0 p0 c0 {1,S} {3,S} {5,S} {10,S} -3 *4 O u0 p2 c0 {2,S} {4,S} -4 C u0 p0 c0 {3,S} {6,S} {7,S} {8,S} -5 H u0 p0 c0 {2,S} -6 H u0 p0 c0 {4,S} -7 H u0 p0 c0 {4,S} -8 H u0 p0 c0 {4,S} -9 *1 X u0 p0 c0 {1,S} -10 H u0 p0 c0 {2,S} +1 *4 O u0 p2 c0 {3,S} {4,S} +2 *2 O u0 p2 c0 {3,S} {10,S} +3 *3 C u0 p0 c0 {1,S} {2,S} {5,S} {6,S} +4 C u0 p0 c0 {1,S} {7,S} {8,S} {9,S} +5 H u0 p0 c0 {3,S} +6 H u0 p0 c0 {3,S} +7 H u0 p0 c0 {4,S} +8 H u0 p0 c0 {4,S} +9 H u0 p0 c0 {4,S} +10 *1 X u0 p0 c0 {2,S} HCOOCH3* -1 *2 O u0 p2 c0 {2,D} -2 *3 C u0 p0 c0 {1,D} {3,S} {5,S} -3 O u0 p2 c0 {2,S} {4,S} -4 C u0 p0 c0 {3,S} {6,S} {7,S} {8,S} -5 H u0 p0 c0 {2,S} -6 H u0 p0 c0 {4,S} -7 H u0 p0 c0 {4,S} +1 O u0 p2 c0 {3,S} {4,S} +2 *2 O u0 p2 c0 {4,D} +3 C u0 p0 c0 {1,S} {5,S} {6,S} {7,S} +4 *3 C u0 p0 c0 {1,S} {2,D} {8,S} +5 H u0 p0 c0 {3,S} +6 H u0 p0 c0 {3,S} +7 H u0 p0 c0 {3,S} 8 H u0 p0 c0 {4,S} 9 *1 X u0 p0 c0 H2COOCH3_2* -1 *2 O u0 p2 c0 {2,S} {9,S} -2 *3 C u0 p0 c0 {1,S} {3,S} {5,S} {10,S} -3 O u0 p2 c0 {2,S} {4,S} -4 C u0 p0 c0 {3,S} {6,S} {7,S} {8,S} -5 *4 H u0 p0 c0 {2,S} -6 H u0 p0 c0 {4,S} -7 H u0 p0 c0 {4,S} -8 H u0 p0 c0 {4,S} -9 *1 X u0 p0 c0 {1,S} -10 H u0 p0 c0 {2,S} +1 O u0 p2 c0 {3,S} {4,S} +2 *2 O u0 p2 c0 {3,S} {10,S} +3 *3 C u0 p0 c0 {1,S} {2,S} {5,S} {6,S} +4 C u0 p0 c0 {1,S} {7,S} {8,S} {9,S} +5 *4 H u0 p0 c0 {3,S} +6 H u0 p0 c0 {3,S} +7 H u0 p0 c0 {4,S} +8 H u0 p0 c0 {4,S} +9 H u0 p0 c0 {4,S} +10 *1 X u0 p0 c0 {2,S} + diff --git a/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py b/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py index d9164d29be..83649364dd 100644 --- a/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py @@ -214,3 +214,105 @@ metal = "Cu", ) +entry( + index = 49, + label = "X_5 + HCOO* <=> CO2* + H*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.27e+19,'cm^2/(mol*s)'), n=0.549, Ea=(1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Addition_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: COOH_X + X <=> CO2_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.06E11(1/s)/2.483E-9(mol/cm^2) = 4.27E19 cm^2/(mol*s) + +This is R31 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 50, + label = "X_5 + CH3O_1* <=> CH2O* + H*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(5.03e+19,'cm^2/(mol*s)'), n=0.192, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Addition_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH3O_X + X <=> CH2O_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.25E11(1/s)/2.483E-9(mol/cm^2) = 5.03E19 cm^2/(mol*s) + +This is R95 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 51, + label = "X_5 + CH2OH* <=> CH2O_2* + H*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.59e+19,'cm^2/(mol*s)'), n=-0.104, Ea=(7.9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Addition_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH2OH_X + X <=> CH2O_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.14E11(1/s)/2.483E-9(mol/cm^2) = 4.59E19 cm^2/(mol*s) + +This is R103 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 52, + label = "X_5 + HCOO* <=> CO2* + H*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.02e+18,'cm^2/(mol*s)'), n=-0.4424, Ea=(7.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Addition_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: COOH_X + X <=> CO2_X + H_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 1.00E+10(1/s)/2.49E-9(mol/cm^2) = 4.02E+18 cm^2/(mol*s) + +This is R33 in Table 4 +""", + metal = "Rh", +) + diff --git a/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/dictionary.txt index b28f9b51d2..951a08b370 100644 --- a/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/dictionary.txt @@ -27,16 +27,39 @@ CO* 3 *6 X u0 p0 c0 {2,D} CH2O* -1 *3 C u0 p0 c0 {2,D} {3,S} {4,S} -2 *2 O u0 p2 c0 {1,D} -3 H u0 p0 c0 {1,S} -4 H u0 p0 c0 {1,S} +1 *2 O u0 p2 c0 {2,D} +2 *3 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} 5 *1 X u0 p0 c0 CH3O* -1 *3 C u0 p0 c0 {2,S} {4,S} {5,S} {6,S} -2 *2 O u0 p2 c0 {1,S} {3,S} -3 *1 X u0 p0 c0 {2,S} -4 *5 H u0 p0 c0 {1,S} -5 H u0 p0 c0 {1,S} -6 H u0 p0 c0 {1,S} +1 *2 O u0 p2 c0 {2,S} {6,S} +2 *3 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 *5 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 *1 X u0 p0 c0 {1,S} + +HOX +1 *4 O u0 p2 c0 {2,S} {3,S} +2 *5 H u0 p0 c0 {1,S} +3 *6 X u0 p0 c0 {1,S} + +CO2X +1 *2 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 *3 C u0 p0 c0 {1,D} {2,D} +4 *1 X u0 p0 c0 + +CHO2X +1 *2 O u0 p2 c0 {3,S} {5,S} +2 O u0 p2 c0 {3,D} +3 *3 C u0 p0 c0 {1,S} {2,D} {4,S} +4 *5 H u0 p0 c0 {3,S} +5 *1 X u0 p0 c0 {1,S} + +OX +1 *4 O u0 p2 c0 {2,D} +2 *6 X u0 p0 c0 {1,D} + diff --git a/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/reactions.py index fd9ad8a6cd..b5c393892e 100644 --- a/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/reactions.py @@ -51,3 +51,29 @@ """, metal = "Cu", ) +entry( + index = 45, + label = "HOX + CO2X <=> CHO2X + OX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.15e+19,'cm^2/(mol*s)'), n=0.097, Ea=(26.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CO2_X + OH_X <=> COOH_X + O_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.35E10(1/s)/2.483E-9(mol/cm^2) = 2.15E19 cm^2/(mol*s) + +This is R35 in Table 1 +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Adsorption_Bidentate/training/dictionary.txt b/input/kinetics/families/Surface_Adsorption_Bidentate/training/dictionary.txt index e69de29bb2..ee69093092 100644 --- a/input/kinetics/families/Surface_Adsorption_Bidentate/training/dictionary.txt +++ b/input/kinetics/families/Surface_Adsorption_Bidentate/training/dictionary.txt @@ -0,0 +1,32 @@ +X +1 *3 X u0 p0 c0 + +X-2 +1 *4 X u0 p0 c0 + +CHO2 +multiplicity 2 +1 O u1 p2 c0 {3,S} +2 *1 O u0 p2 c0 {3,D} +3 *2 C u0 p0 c0 {1,S} {2,D} {4,S} +4 H u0 p0 c0 {3,S} + +CHO2X2 +multiplicity 2 +1 *1 O u0 p2 c0 {3,S} {6,S} +2 O u1 p2 c0 {3,S} +3 *2 C u0 p0 c0 {1,S} {2,S} {4,S} {5,S} +4 H u0 p0 c0 {3,S} +5 *4 X u0 p0 c0 {3,S} +6 *3 X u0 p0 c0 {1,S} + +N2X2 +1 *1 N u0 p1 c0 {2,D} {3,S} +2 *2 N u0 p1 c0 {1,D} {4,S} +3 *3 X u0 p0 c0 {1,S} +4 *4 X u0 p0 c0 {2,S} + +N2 +1 *1 N u0 p1 c0 {2,T} +2 *2 N u0 p1 c0 {1,T} + diff --git a/input/kinetics/families/Surface_Adsorption_Bidentate/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Bidentate/training/reactions.py index 566c66deca..1555acb379 100644 --- a/input/kinetics/families/Surface_Adsorption_Bidentate/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Bidentate/training/reactions.py @@ -7,3 +7,52 @@ Put kinetic parameters for specific reactions in this file to use as a training set for generating rate rules to populate this kinetics family. """ +entry( + index = 1, + label = "X + X-2 + CHO2 <=> CHO2X2", + degeneracy = 2.0, + kinetics = StickingCoefficient(A=0.146, n=0.201, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Bidentate""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: HCOO + X + X <=> HCOO_XX +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R39 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 2, + label = "N2X2 <=> N2 + X + X-2", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.68e+16,'1/s'), n=0, Ea=(10807,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Bidentate""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N2_X <=> N2 + X + X +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. +A = 9.52E7(mol/cm^2/s)/2.587E-9(mol/cm^2) = 3.68E16 (1/s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is D2 in Table 3 +""", + metal = "Ir", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Adsorption_Dissociative/training/dictionary.txt b/input/kinetics/families/Surface_Adsorption_Dissociative/training/dictionary.txt index 2f4945a83c..81b2d4a78f 100644 --- a/input/kinetics/families/Surface_Adsorption_Dissociative/training/dictionary.txt +++ b/input/kinetics/families/Surface_Adsorption_Dissociative/training/dictionary.txt @@ -9,19 +9,34 @@ H2 2 *2 H u0 p0 c0 {1,S} HX_3 -1 *1 H u0 p0 {2,S} -2 *3 X u0 p0 {1,S} +1 *1 H u0 p0 c0 {2,S} +2 *3 X u0 p0 c0 {1,S} HX_4 -1 *2 H u0 p0 {2,S} -2 *4 X u0 p0 {1,S} +1 *2 H u0 p0 c0 {2,S} +2 *4 X u0 p0 c0 {1,S} HOX_1 1 *1 O u0 p2 c0 {2,S} {3,S} -2 *3 X u0 p0 c0 {1,S} -3 H u0 p0 c0 {1,S} +2 H u0 p0 c0 {1,S} +3 *3 X u0 p0 c0 {1,S} H2O 1 *1 O u0 p2 c0 {2,S} {3,S} 2 *2 H u0 p0 c0 {1,S} 3 H u0 p0 c0 {1,S} + +CH4 +1 *1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 *2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {1,S} + +CH3X +1 *1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *3 X u0 p0 c0 {1,S} + diff --git a/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py index 6eb76f14ee..2f5a151c71 100644 --- a/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py @@ -74,3 +74,135 @@ # """, # metal = "Pt" # ) +entry( + index = 3, + label = "Ni_3 + Ni_4 + H2 <=> HX_3 + HX_4", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.129, n=0.858, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """H2 Surface_Adsorption_Dissociative""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: H2 + X + X <=> H_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R11 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 4, + label = "Ni_3 + Ni_4 + CH4 <=> CH3X + HX_4", + degeneracy = 2.0, + kinetics = StickingCoefficient(A=0.116, n=0.154, Ea=(9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Dissociative""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH4 + X + X <=> CH3_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R55 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 5, + label = "Ni_3 + Ni_4 + H2 <=> HX_3 + HX_4", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.87, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """H2 Surface_Adsorption_Dissociative""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Ru0001 +Original entry: H2 + X + X <=> H_X + H_X +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This is R1 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +entry( + index = 6, + label = "Ni_3 + Ni_4 + H2 <=> HX_3 + HX_4", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.773, n=0.9387, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """H2 Surface_Adsorption_Dissociative""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: H2 + X + X <=> H_X + H_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +This is R1 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 7, + label = "Ni_3 + Ni_4 + CH4 <=> CH3X + HX_4", + degeneracy = 2.0, + kinetics = StickingCoefficient(A=0.572, n=0.7883, Ea=(14.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Dissociative""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: CH4 + X + X <=> CH3_X + H_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +This is R55 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 8, + label = "Ni_3 + Ni_4 + H2 <=> HX_3 + HX_4", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.0236, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """H2 Surface_Adsorption_Dissociative""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: H2 + X + X <=> H_X + H_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This is R7 in Table 2 at T=300K +""", + metal = "Cu", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt b/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt index 80fd885420..4b47b2a05f 100644 --- a/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt +++ b/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt @@ -23,3 +23,89 @@ NO2X 3 N u0 p1 c0 {1,S} {2,D} 4 *2 X u0 p0 c0 {1,S} +HO +multiplicity 2 +1 *1 O u1 p2 c0 {2,S} +2 H u0 p0 c0 {1,S} + +HOX +1 *1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 *2 X u0 p0 c0 {1,S} + +H +multiplicity 2 +1 *1 H u1 p0 c0 + +HX +1 *1 H u0 p0 c0 {2,S} +2 *2 X u0 p0 c0 {1,S} + +CH +multiplicity 2 +1 *1 C u1 p1 c0 {2,S} +2 H u0 p0 c0 {1,S} + +CHX +1 *1 C u0 p1 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 *2 X u0 p0 c0 {1,S} + +CH3 +multiplicity 2 +1 *1 C u1 p0 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +CH3X +1 *1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *2 X u0 p0 c0 {1,S} + +CH3O +multiplicity 2 +1 *1 O u1 p2 c0 {2,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} + +CH3OX +1 *1 O u0 p2 c0 {2,S} {6,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 *2 X u0 p0 c0 {1,S} + +CHO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 *1 C u1 p0 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} + +CHOX +1 O u0 p2 c0 {2,D} +2 *1 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 *2 X u0 p0 c0 {2,S} + +CH3O-2 +multiplicity 2 +1 O u0 p2 c0 {2,S} {5,S} +2 *1 C u1 p0 c0 {1,S} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {1,S} + +CH3OX-2 +1 O u0 p2 c0 {2,S} {5,S} +2 *1 C u0 p0 c0 {1,S} {3,S} {4,S} {6,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {1,S} +6 *2 X u0 p0 c0 {2,S} + diff --git a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py index 4967377efe..3bcb45908f 100644 --- a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py @@ -214,3 +214,164 @@ facet = "211", ) +entry( + index = 57, + label = "Pt + HO <=> HOX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.999, n=2, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: OH + X <=> OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R19 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 58, + label = "Pt + H <=> HX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.384, n=1.832, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: H + X <=> H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R23 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 59, + label = "Pt + CH <=> CHX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.0135, n=0.051, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH + X <=> CH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R49 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 60, + label = "Pt + CH3 <=> CH3X", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.16, n=-0.099, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH3 + X <=> CH3_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R53 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 61, + label = "Pt + CH3O <=> CH3OX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.149, n=0.054, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH3O + X <=> CH3O_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R85 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 62, + label = "Pt + CHO <=> CHOX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.0114, n=0.096, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: HCO + X <=> HCO_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R89 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 63, + label = "Pt + CH3O-2 <=> CH3OX-2", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.0526, n=0.233, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH2OH + X <=> CH2OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R91 in Table 2 +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt index d9c45a9508..7ef022f5e6 100644 --- a/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt @@ -71,3 +71,70 @@ N2O 2 N u0 p0 c+1 {1,D} {3,D} 3 N u0 p2 c-1 {2,D} +CO2-2 +1 *1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} + +CO2X-2 +1 *1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} +4 *2 X u0 p0 c0 + +CH4O +1 *1 O u0 p2 c0 {2,S} {6,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {1,S} + +CH4OX +1 *1 O u0 p2 c0 {2,S} {6,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {1,S} +7 *2 X u0 p0 c0 + +CH2O +1 *1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} + +CH2OX +1 *1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 *2 X u0 p0 c0 + +H4N2 +1 *1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {2,S} + +H4N2X +1 *1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {2,S} +7 *2 X u0 p0 c0 + +H2X +1 *1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} +3 *2 X u0 p0 c0 + +H2 +1 *1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} + diff --git a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py index ee00aa1a48..a9f371bd39 100644 --- a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py @@ -282,3 +282,355 @@ facet = "211", ) +entry( + index = 21, + label = "X + CO2-2 <=> CO2X-2", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.195, n=0.25, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CO2 + X <=> CO2_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R7 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 22, + label = "X + H2O <=> H2OX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.108, n=1.162, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: H2O + X <=> H2O_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R21 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 23, + label = "X + CH4O <=> CH4OX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.334, n=0.258, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH3OH + X <=> CH3OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R83 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 24, + label = "X + CH2O <=> CH2OX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.0877, n=0.098, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH2O + X <=> CH2O_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R87 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 25, + label = "X + H3N <=> H3NX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.00015, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Ru0001 +Original entry: NH3 + X <=> NH3_X +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This is R11 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +entry( + index = 26, + label = "X + H2O <=> H2OX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.0772, n=1.4067, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: H2O + X <=> H2O_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +This is R13 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 27, + label = "X + CO2-2 <=> CO2X-2", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.367, n=-2.3294, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: CO2 + X <=> CO2_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +This is R21 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 28, + label = "X + H4N2 <=> H4N2X", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1.17e-06, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: N2H4 + X <=> N2H4_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This is R0 in Table 2 at T=300K +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 29, + label = "X + H3N <=> H3NX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.000188, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: NH3 + X <=> NH3_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This is R3 in Table 2 at T=300K +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 30, + label = "X + N2 <=> N2X", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=5.5e-05, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: N2 + X <=> N2_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This is R5 in Table 2 at T=300K +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 31, + label = "H3NX <=> H3N + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.68e+16,'1/s'), n=0, Ea=(88574.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: NH3_X <=> NH3 + X +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. +A = 9.53E7(mol/cm^2/s)/2.587E-9(mol/cm^2) = 3.68E16 (1/s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is D1 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 32, + label = "H2X <=> H2 + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.69e+16,'1/s'), n=0, Ea=(30972.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """H2 Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: H2_X <=> H2 + X +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. +A = 9.54E7(mol/cm^2/s)/2.587E-9(mol/cm^2) = 3.69E16 (1/s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is D3 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 33, + label = "H3NX <=> H3N + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.9e+16,'1/s'), n=0, Ea=(72149.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ru0001 +Original entry: NH3_X <=> NH3 + X +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 1.29E8(mol/cm^2/s)/2.630E-9(mol/cm^2) = 4.90E16 (1/s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is D1 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +entry( + index = 34, + label = "X + N2 <=> N2X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.9e+16,'cm^3/(mol*s)'), n=0, Ea=(24483,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Bidentate""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ru0001 +Original entry: N2 + X <=> N2_X +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 1.29E8(cm/s)/2.630E-9(mol/cm^2) = 4.90E16 (cm^3/(mol*s)) +Ea was calculated from A factor and k rate constant in Table 3 + +This is A2 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +entry( + index = 35, + label = "H2X <=> H2 + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.9e+16,'1/s'), n=0, Ea=(24483,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """H2 Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ru0001 +Original entry: H2_X <=> H2 + X +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 1.29E8(mol/cm^2/s)/2.630E-9(mol/cm^2) = 4.90E16 (1/s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is D3 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + diff --git a/input/kinetics/families/Surface_Bidentate_Dissociation/training/dictionary.txt b/input/kinetics/families/Surface_Bidentate_Dissociation/training/dictionary.txt index e69de29bb2..59a04e7bfe 100644 --- a/input/kinetics/families/Surface_Bidentate_Dissociation/training/dictionary.txt +++ b/input/kinetics/families/Surface_Bidentate_Dissociation/training/dictionary.txt @@ -0,0 +1,39 @@ +H2N2X2 +1 *1 N u0 p1 c0 {2,S} {3,S} {5,S} +2 *2 N u0 p1 c0 {1,S} {4,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 *3 X u0 p0 c0 {1,S} +6 *4 X u0 p0 c0 {2,S} + +HNX +1 *1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 *3 X u0 p0 c0 {1,D} + +HNX-2 +1 *2 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 *4 X u0 p0 c0 {1,D} + +HN2X2 +1 *1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *2 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 *3 X u0 p0 c0 {1,S} +5 *4 X u0 p0 c0 {2,D} + +NX +1 *2 N u0 p1 c0 {2,T} +2 *4 X u0 p0 c0 {1,T} + +N2X2 +1 *1 N u0 p1 c0 {2,S} {3,D} +2 *2 N u0 p1 c0 {1,S} {4,D} +3 *3 X u0 p0 c0 {1,D} +4 *4 X u0 p0 c0 {2,D} + +NX-2 +1 *1 N u0 p1 c0 {2,T} +2 *3 X u0 p0 c0 {1,T} + diff --git a/input/kinetics/families/Surface_Bidentate_Dissociation/training/reactions.py b/input/kinetics/families/Surface_Bidentate_Dissociation/training/reactions.py index 858ae6b15f..a3d8431927 100644 --- a/input/kinetics/families/Surface_Bidentate_Dissociation/training/reactions.py +++ b/input/kinetics/families/Surface_Bidentate_Dissociation/training/reactions.py @@ -7,3 +7,129 @@ Put kinetic parameters for specific reactions in this file to use as a training set for generating rate rules to populate this kinetics family. """ +entry( + index = 1, + label = "H2N2X2 <=> HNX + HNX-2", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.49e+20,'1/s'), n=0.299, Ea=(76227,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: [Pt]NN[Pt] <=> NH_X + NH_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R26 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 2, + label = "HN2X2 <=> HNX + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(8.81e+19,'1/s'), n=0.619, Ea=(137016,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Bidentate_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: [Pt]NN=[Pt] <=> NH_X + N_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R28 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 3, + label = "N2X2 <=> NX-2 + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.62e+20,'1/s'), n=0.06, Ea=(452538,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Bidentate_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: [Pt]=NN=[Pt] <=> N_X + N_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R50 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 4, + label = "HN2X2 <=> HNX + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.87e+21,'1/s'), n=0, Ea=(137981,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Bidentate_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: [Pt]NN=[Pt] <=> NH_X + N_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(mol/cm^2/s)/2.587E-9(mol/cm^2) = 3.87E21 (1/s) +Ea = 1.43eV = 137980.7J/mol + +This is R15 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 5, + label = "NX-2 + NX <=> N2X2", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.55e+21,'cm^2/(mol*s)'), n=0, Ea=(187423,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Bidentate_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N_X + N_X <=> [Pt]=NN=[Pt] +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to estimate A factor. +A = 9.18E12(1/s)/2.587E-9(mol/cm^2) = 3.55E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R7 in Table 3 +""", + metal = "Ir", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Dissociation/training/dictionary.txt b/input/kinetics/families/Surface_Dissociation/training/dictionary.txt index d51ec97ae7..079999c6b3 100644 --- a/input/kinetics/families/Surface_Dissociation/training/dictionary.txt +++ b/input/kinetics/families/Surface_Dissociation/training/dictionary.txt @@ -150,3 +150,67 @@ NO2X 3 *2 N u0 p1 c0 {1,S} {2,D} 4 *3 X u0 p0 c0 {1,S} +H3N2X +1 *1 N u0 p1 c0 {2,S} {3,S} {6,S} +2 N u0 p1 c0 {1,S} {4,S} {5,S} +3 *2 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 *3 X u0 p0 c0 {1,S} + +H2N2X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *1 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *3 X u0 p0 c0 {2,D} + +H2N2X2 +1 *1 N u0 p1 c0 {2,S} {3,S} {5,S} +2 N u0 p1 c0 {1,S} {4,S} {6,S} +3 *2 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 *3 X u0 p0 c0 {1,S} +6 X u0 p0 c0 {2,S} + +HN2X2 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *1 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} +5 *3 X u0 p0 c0 {2,D} + +HN2X2-2 +1 *1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,D} +3 *2 H u0 p0 c0 {1,S} +4 *3 X u0 p0 c0 {1,S} +5 X u0 p0 c0 {2,D} + +N2X2 +1 N u0 p1 c0 {2,S} {3,D} +2 *1 N u0 p1 c0 {1,S} {4,D} +3 X u0 p0 c0 {1,D} +4 *3 X u0 p0 c0 {2,D} + +H3N2X-2 +1 *1 N u0 p1 c0 {2,S} {3,S} {6,S} +2 *2 N u0 p1 c0 {1,S} {4,S} {5,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 *3 X u0 p0 c0 {1,S} + +H2NX +1 *2 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *4 X u0 p0 c0 {1,S} + +H2N2X-2 +1 *2 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *1 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *3 X u0 p0 c0 {2,D} + diff --git a/input/kinetics/families/Surface_Dissociation/training/reactions.py b/input/kinetics/families/Surface_Dissociation/training/reactions.py index 65db7d1d9e..7d4a22ec5d 100644 --- a/input/kinetics/families/Surface_Dissociation/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation/training/reactions.py @@ -935,3 +935,664 @@ facet = "211", ) +entry( + index = 71, + label = "Ni_4 + HOX_1 <=> OX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(7.85e+20,'cm^2/(mol*s)'), n=1.872, Ea=(27.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: OH_X + X <=> H_X + O_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.95E12(1/s)/2.483E-9(mol/cm^2) = 7.85E20 cm^2/(mol*s) + +This is R13 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 72, + label = "Ni_4 + CH3X_1 <=> CH2X_3 + HX_5", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(4.47e+19,'cm^2/(mol*s)'), n=0.419, Ea=(15.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Dissociative""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH3_X + X <=> CH2_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.11E11(1/s)/2.483E-9(mol/cm^2) = 4.47E19 cm^2/(mol*s) + +This is R57 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 73, + label = "Ni_4 + CH2X_1 <=> CHX_3 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.1e+19,'cm^2/(mol*s)'), n=0.222, Ea=(9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH2_X + X <=> CH_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.22E10(1/s)/2.483E-9(mol/cm^2) = 2.10E19 cm^2/(mol*s) + +This is R59 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 74, + label = "Ni_4 + CHX_1 <=> CX_3 + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.67e+19,'cm^2/(mol*s)'), n=0.398, Ea=(31.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH_X + X <=> C_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 9.11E10(1/s)/2.483E-9(mol/cm^2) = 3.67E19 cm^2/(mol*s) + +This is R61 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 75, + label = "Ni_4 + CXHO_1 <=> OCX_3 + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.86e+19,'cm^2/(mol*s)'), n=0.33, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: HCO_X + X <=> CO_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 7.11E10(1/s)/2.483E-9(mol/cm^2) = 2.86E19 cm^2/(mol*s) + +This is R99 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 76, + label = "Ni_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(7.22e+20,'cm^2/(mol*s)'), n=0, Ea=(5.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Ru0001 +Original entry: NH_X + X <=> N_X + H_X +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 1.9E12(1/s)/2.630E-9(mol/cm^2) = 7.22E20 cm^2/(mol*s) + +This is R5 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +entry( + index = 77, + label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(7.6e+20,'cm^2/(mol*s)'), n=0, Ea=(20.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Ru0001 +Original entry: NH2_X + X <=> NH_X + H_X +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 2E12(1/s)/2.630E-9(mol/cm^2) = 7.60E20 cm^2/(mol*s) + +This is R7 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +entry( + index = 78, + label = "Ni_4 + CH3X_1 <=> CH2X_3 + HX_5", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(1e+19,'cm^2/(mol*s)'), n=0.0862, Ea=(12.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Dissociative""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: CH3_X + X <=> CH2_X + H_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 2.49E+10(1/s)/2.49E-9(mol/cm^2) = 1.00E+19 cm^2/(mol*s) + +This is R57 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 79, + label = "Ni_4 + CH2X_1 <=> CHX_3 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.21e+19,'cm^2/(mol*s)'), n=-0.1312, Ea=(21.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: CH2_X + X <=> CH_X + H_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 5.50E+10(1/s)/2.49E-9(mol/cm^2) = 2.21E+19 cm^2/(mol*s) + +This is R59 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 80, + label = "Ni_4 + CHX_1 <=> CX_3 + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.84e+21,'cm^2/(mol*s)'), n=-0.2464, Ea=(28.9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: CH_X + X <=> C_X + H_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 4.58E+12(1/s)/2.49E-9(mol/cm^2) = 1.84E+21 cm^2/(mol*s) + +This is R61 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 81, + label = "Ni_4 + H3N2X <=> H2N2X + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.34e+17,'cm^2/(mol*s)'), n=1.942, Ea=(121577,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: N2H3_X + X <=> NN=[Pt] + H_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R10 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 82, + label = "Ni_4 + H2N2X2 <=> HN2X2 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(1.07e+19,'cm^2/(mol*s)'), n=1.134, Ea=(141840,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: [Pt]NN[Pt] + X <=> [Pt]NN=[Pt] + H_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R16 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 83, + label = "Ni_4 + HN2X2-2 <=> N2X2 + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.43e+18,'cm^2/(mol*s)'), n=1.285, Ea=(16403,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: [Pt]NN=[Pt] + X <=> [Pt]=NN=[Pt] + H_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R18 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 84, + label = "Ni_4 + H3N2X-2 <=> NHX_1 + H2NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.87e+16,'cm^2/(mol*s)'), n=2.065, Ea=(86841,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: N2H3_X + X <=> NH2_X + NH_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R22 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 85, + label = "Ni_4 + H2N2X-2 <=> NX + H2NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.03e+19,'cm^2/(mol*s)'), n=0.559, Ea=(130262,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: NN=[Pt] + X <=> NH2_X + N_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R24 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 86, + label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(5.67e+19,'cm^2/(mol*s)'), n=0.513, Ea=(135086,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: NH2_X + X <=> NH_X + H_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R32 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 87, + label = "Ni_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.66e+19,'cm^2/(mol*s)'), n=0.853, Ea=(172717,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: NH_X + X <=> N_X + H_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R34 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 88, + label = "Ni_4 + H3N2X <=> H2N2X + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(98419.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N2H3_X + X <=> NN=[Pt] + H_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 1.02eV = 98419.8J/mol + +This is R6 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 89, + label = "Ni_4 + H2N2X2 <=> HN2X2 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(67543,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: [Pt]NN[Pt] + X <=> [Pt]NN=[Pt] + H_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.7eV = 67543J/mol + +This is R8 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 90, + label = "Ni_4 + HN2X2-2 <=> N2X2 + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(126402,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: [Pt]NN=[Pt] + X <=> N2_X + H_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 1.31eV = 126401.9J/mol + +This is R10 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 91, + label = "Ni_4 + H3N2X-2 <=> NHX_1 + H2NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(75262.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N2H3_X + X <=> NH2_X + NH_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.78eV = 75262.2J/mol + +This is R12 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 92, + label = "Ni_4 + H2N2X-2 <=> NX + H2NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(70437.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: NN=[Pt] + X <=> NH2_X + N_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.73eV = 70437.7J/mol + +This is R13 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 93, + label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(1.43e+21,'cm^2/(mol*s)'), n=0, Ea=(151613,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: NH2_X + X <=> NH_X + H_X +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. +A = 3.71E12(1/s)/2.587E-9(mol/cm^2) = 1.43E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R3 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 94, + label = "Ni_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.68e+21,'cm^2/(mol*s)'), n=0, Ea=(88354.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: NH_X + X <=> N_X + H_X +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. +A = 6.93E12(1/s)/2.587E-9(mol/cm^2) = 2.68E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R5 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 95, + label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(1.52e+21,'cm^2/(mol*s)'), n=0, Ea=(62155,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ru0001 +Original entry: NH2_X + X <=> NH_X + H_X +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 4.01E12(1/s)/2.630E-9(mol/cm^2) = 1.52E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R3 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +entry( + index = 96, + label = "Ni_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.71e+21,'cm^2/(mol*s)'), n=0, Ea=(99817.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ru0001 +Original entry: NH_X + X <=> N_X + H_X +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 7.13E12(1/s)/2.630E-9(mol/cm^2) = 2.71E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R5 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + diff --git a/input/kinetics/families/Surface_Dissociation_Beta/training/dictionary.txt b/input/kinetics/families/Surface_Dissociation_Beta/training/dictionary.txt index 77cfd85114..7f80567a1e 100644 --- a/input/kinetics/families/Surface_Dissociation_Beta/training/dictionary.txt +++ b/input/kinetics/families/Surface_Dissociation_Beta/training/dictionary.txt @@ -19,12 +19,26 @@ Cu 1 *5 X u0 p0 c0 CO* -1 *1 X u0 p0 c0 {2,D} +1 *3 O u0 p2 c0 {2,D} 2 *2 C u0 p0 c0 {1,D} {3,D} -3 *3 O u0 p2 c0 {2,D} +3 *1 X u0 p0 c0 {2,D} COH* -1 *1 X u0 p0 c0 {2,T} -2 *2 C u0 p0 c0 {1,T} {3,S} -3 *3 O u0 p2 c0 {2,S} {4,S} -4 *4 H u0 p0 c0 {3,S} +1 *3 O u0 p2 c0 {2,S} {3,S} +2 *2 C u0 p0 c0 {1,S} {4,T} +3 *4 H u0 p0 c0 {1,S} +4 *1 X u0 p0 c0 {2,T} + +H2N2X +1 *3 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *2 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 *4 H u0 p0 c0 {1,S} +5 *1 X u0 p0 c0 {2,D} + +HN2X +1 *2 N u0 p1 c0 {2,D} {4,S} +2 *3 N u0 p1 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} +4 *1 X u0 p0 c0 {1,S} + diff --git a/input/kinetics/families/Surface_Dissociation_Beta/training/reactions.py b/input/kinetics/families/Surface_Dissociation_Beta/training/reactions.py index 8ad1ebdf42..df0768d382 100644 --- a/input/kinetics/families/Surface_Dissociation_Beta/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_Beta/training/reactions.py @@ -53,3 +53,28 @@ """, metal = "Cu", ) +entry( + index = 30, + label = "Cu + H2N2X <=> HN2X + H*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.09e+19,'cm^2/(mol*s)'), n=1.002, Ea=(108069,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_Beta""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: NN=[Pt] + X <=> [Pt]N=N + H_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R14 in Table 1 +""", + metal = "Cu", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/dictionary.txt index 88a342282d..f6a18a0654 100644 --- a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/dictionary.txt @@ -53,3 +53,15 @@ HNOX 3 H u0 p0 c0 {2,S} 4 *1 X u0 p0 c0 +H2N2X +1 *2 N u0 p1 c0 {2,D} {3,S} +2 *3 N u0 p1 c0 {1,D} {4,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 *1 X u0 p0 c0 + +HNX-2 +1 *2 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 *1 X u0 p0 c0 {1,D} + diff --git a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py index 8439b58296..00b09580b9 100644 --- a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py @@ -177,3 +177,55 @@ facet = "111", ) +entry( + index = 40, + label = "X_4 + CO2* <=> O* + CO*", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(1.68e+19,'cm^2/(mol*s)'), n=0.177, Ea=(26.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_Double_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CO2_X + X <=> CO_X + O_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 4.18E10(1/s)/2.483E-9(mol/cm^2) = 1.68E19 cm^2/(mol*s) + +This is R9 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 41, + label = "X_4 + H2N2X <=> HNX-2 + HNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(70437.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_Double_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N2H2_X + X <=> NH_X + NH_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.73eV = 70437.7J/mol + +This is R14 in Table 3 +""", + metal = "Ir", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Dissociation_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Dissociation_vdW/training/dictionary.txt index 5278e808f8..fa7f595d10 100644 --- a/input/kinetics/families/Surface_Dissociation_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Dissociation_vdW/training/dictionary.txt @@ -134,3 +134,35 @@ CH3* 4 H u0 p0 c0 {1,S} 5 *3 X u0 p0 c0 {1,S} +H4N2X +1 *1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,S} {6,S} +3 *2 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {2,S} +7 *3 X u0 p0 c0 + +H3N2X +1 *1 N u0 p1 c0 {2,S} {3,S} {6,S} +2 N u0 p1 c0 {1,S} {4,S} {5,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 *3 X u0 p0 c0 {1,S} + +H4N2X-2 +1 *1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *2 N u0 p1 c0 {1,S} {5,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {2,S} +7 *3 X u0 p0 c0 + +H2NX +1 *2 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *4 X u0 p0 c0 {1,S} + diff --git a/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py b/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py index 30103e3b54..085b694e16 100644 --- a/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py @@ -524,3 +524,335 @@ facet = "211", ) +entry( + index = 46, + label = "X_4 + H2O* <=> OH* + H*", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(3.77e+21,'cm^2/(mol*s)'), n=-0.118, Ea=(17.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: H2O_X + X <=> H_X + OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 9.36E12(1/s)/2.483E-9(mol/cm^2) = 3.77E21 cm^2/(mol*s) + +This is R15 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 47, + label = "X_4 + CH3OH_2* <=> CH3O* + H*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.15e+19,'cm^2/(mol*s)'), n=0.102, Ea=(18.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH3OH_X + X <=> CH3O_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 7.82E10(1/s)/2.483E-9(mol/cm^2) = 3.15E19 cm^2/(mol*s) + +This is R93 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 48, + label = "X_4 + CH2O* <=> HCO* + H*", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.88e+19,'cm^2/(mol*s)'), n=0.27, Ea=(3.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH2O_X + X <=> HCO_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 7.14E10(1/s)/2.483E-9(mol/cm^2) = 2.88E19 cm^2/(mol*s) + +This is R97 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 49, + label = "X_4 + CH3OH_1* <=> CH2OH* + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(3.42e+19,'cm^2/(mol*s)'), n=0.403, Ea=(8.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH3OH_X + X <=> CH2OH_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.48E10(1/s)/2.483E-9(mol/cm^2) = 3.42E19 cm^2/(mol*s) + +This is R101 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 50, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(7.6e+20,'cm^2/(mol*s)'), n=0, Ea=(18.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Ru0001 +Original entry: NH3_X + X <=> NH2_X + H_X +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 2E12(1/s)/2.630E-9(mol/cm^2) = 7.60E20 cm^2/(mol*s) + +This is R9 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +entry( + index = 51, + label = "X_4 + H2O* <=> OH* + H*", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.31e+20,'cm^2/(mol*s)'), n=0.0281, Ea=(18.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: H2O_X + X <=> H_X + OH_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 5.74E+11(1/s)/2.49E-9(mol/cm^2) = 2.31E+20 cm^2/(mol*s) + +This is R7 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 52, + label = "X_4 + H4N2X <=> H3N2X + H*", + degeneracy = 4.0, + kinetics = SurfaceArrhenius(A=(2.69e+18,'cm^2/(mol*s)'), n=1.22, Ea=(125437,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: N2H4_X + X <=> N2H3_X + H_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R8 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 53, + label = "X_4 + H4N2X-2 <=> NH2_X + H2NX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(6.61e+17,'cm^2/(mol*s)'), n=1.589, Ea=(66578,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: N2H4_X + X <=> NH2_X + NH2_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R20 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 54, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(5.93e+17,'cm^2/(mol*s)'), n=1.321, Ea=(136051,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: NH3_X + X <=> NH2_X + H_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R30 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 55, + label = "X_4 + H4N2X <=> H3N2X + H*", + degeneracy = 4.0, + kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(104209,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N2H4_X + X <=> N2H3_X + H_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 1.08eV = 104209.2J/mol + +This is R5 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 56, + label = "X_4 + H4N2X-2 <=> NH2_X + H2NX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(68507.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N2H4_X + X <=> NH2_X + NH2_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.71eV = 68507.9J/mol + +This is R11 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 57, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(1.22e+21,'cm^2/(mol*s)'), n=0, Ea=(147114,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: NH3_X + X <=> NH2_X + H_X +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. +A = 3.15E12(1/s)/2.587E-9(mol/cm^2) = 1.22E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R1 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 58, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(4.14e+21,'cm^2/(mol*s)'), n=0, Ea=(117241,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ru0001 +Original entry: NH3_X + X <=> NH2_X + H_X +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 1.09E13(1/s)/2.630E-9(mol/cm^2) = 4.14E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R1 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + diff --git a/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/dictionary.txt index cc44785f46..c41491706e 100644 --- a/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/dictionary.txt @@ -21,3 +21,45 @@ H2O* 2 *4 H u0 p0 c0 {1,S} 3 H u0 p0 c0 {1,S} 4 *5 X u0 p0 c0 + +CO2X +1 *2 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 *3 C u0 p0 c0 {1,D} {2,D} +4 *1 X u0 p0 c0 + +CHO2X +1 *2 O u0 p2 c0 {3,S} {5,S} +2 O u0 p2 c0 {3,D} +3 *3 C u0 p0 c0 {1,S} {2,D} {4,S} +4 *4 H u0 p0 c0 {3,S} +5 *1 X u0 p0 c0 {1,S} + +H2NX +1 *6 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *5 X u0 p0 c0 {1,S} + +H3N2X +1 *2 N u0 p1 c0 {2,S} {3,S} {6,S} +2 *3 N u0 p1 c0 {1,S} {4,S} {5,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 *4 H u0 p0 c0 {2,S} +6 *1 X u0 p0 c0 {1,S} + +H2N2X +1 *2 N u0 p1 c0 {2,D} {3,S} +2 *3 N u0 p1 c0 {1,D} {4,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 *1 X u0 p0 c0 + +H3NX +1 *6 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *4 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *5 X u0 p0 c0 + diff --git a/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/reactions.py b/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/reactions.py index 3f21cb2f4c..d54cc8d9bd 100644 --- a/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/reactions.py @@ -30,3 +30,79 @@ """, metal = "Cu", ) +entry( + index = 13, + label = "H2O* + CO2X <=> CHO2X + OH*", + degeneracy = 4.0, + kinetics = SurfaceArrhenius(A=(3.48e+19,'cm^2/(mol*s)'), n=-0.031, Ea=(17.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dual_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CO2_X + H2O_X <=> COOH_X + OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.64E10(1/s)/2.483E-9(mol/cm^2) = 3.48E19 cm^2/(mol*s) + +This is R37 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 14, + label = "H2O* + CO2X <=> CHO2X + OH*", + degeneracy = 4.0, + kinetics = SurfaceArrhenius(A=(7.15e+20,'cm^2/(mol*s)'), n=-0.1992, Ea=(13.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dual_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: CO2_X + H2O_X <=> COOH_X + OH_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 1.78E+12(1/s)/2.49E-9(mol/cm^2) = 7.15E+20 cm^2/(mol*s) + +This is R39 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 15, + label = "H2NX + H3N2X <=> H2N2X + H3NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(22192.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N2H3_X + NH2_X <=> N2H2_X + NH3_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.23eV = 22192.7J/mol + +This is R17 in Table 3 +""", + metal = "Ir", + facet = "111", +) + From 9826bcff7644d31cc72fc9efa889bb2e181b50cb Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Fri, 28 May 2021 15:52:42 -0400 Subject: [PATCH 14/27] deleted the extra space of Schneider_Rh211 library --- .../Surface/{Schneider_Rh211 => Schneider_Rh211}/dictionary.txt | 0 .../Surface/{Schneider_Rh211 => Schneider_Rh211}/reactions.py | 0 2 files changed, 0 insertions(+), 0 deletions(-) rename input/kinetics/libraries/Surface/{Schneider_Rh211 => Schneider_Rh211}/dictionary.txt (100%) rename input/kinetics/libraries/Surface/{Schneider_Rh211 => Schneider_Rh211}/reactions.py (100%) diff --git a/input/kinetics/libraries/Surface/Schneider_Rh211 /dictionary.txt b/input/kinetics/libraries/Surface/Schneider_Rh211/dictionary.txt similarity index 100% rename from input/kinetics/libraries/Surface/Schneider_Rh211 /dictionary.txt rename to input/kinetics/libraries/Surface/Schneider_Rh211/dictionary.txt diff --git a/input/kinetics/libraries/Surface/Schneider_Rh211 /reactions.py b/input/kinetics/libraries/Surface/Schneider_Rh211/reactions.py similarity index 100% rename from input/kinetics/libraries/Surface/Schneider_Rh211 /reactions.py rename to input/kinetics/libraries/Surface/Schneider_Rh211/reactions.py From c9965d9ba0dbe95a2e5ebb9d33a4abe5a0bcb90f Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 29 May 2021 15:55:12 -0400 Subject: [PATCH 15/27] added more nodes in the tree of the Surface_Adsorption_Single family --- .../Surface_Adsorption_Single/groups.py | 149 +++++++++++++++++- 1 file changed, 148 insertions(+), 1 deletion(-) diff --git a/input/kinetics/families/Surface_Adsorption_Single/groups.py b/input/kinetics/families/Surface_Adsorption_Single/groups.py index 6cff78bd7d..1dfa19329c 100644 --- a/input/kinetics/families/Surface_Adsorption_Single/groups.py +++ b/input/kinetics/families/Surface_Adsorption_Single/groups.py @@ -50,6 +50,67 @@ entry( index = 3, + label = "H", + group = +""" +multiplicity [2] +1 *1 H u1 p0 c0 +""", + kinetics = None, +) + +entry( + index = 4, + label = "C", + group = +""" +multiplicity [2] +1 *1 C u1 +""", + kinetics = None, +) + +entry( + index = 5, + label = "C-H", + group = +""" +multiplicity [2] +1 *1 C u1 p1 cx {2,S} +2 H u0 p0 c0 {1,S} +""", + kinetics = None, +) + +entry( + index = 6, + label = "CH=O", + group = +""" +multiplicity [2] +1 O u0 p2 cx {2,D} +2 *1 C u1 p0 cx {1,D} {3,S} +3 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 7, + label = "CH2-H", + group = +""" +multiplicity [2] +1 *1 C u1 p0 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +""", + kinetics = None, +) + +entry( + index = 8, label = "N", group = """ @@ -60,7 +121,7 @@ ) entry( - index = 4, + index = 9, label = "N=O", group = """ @@ -71,11 +132,97 @@ kinetics = None, ) +entry( + index = 10, + label = "O", + group = +""" +multiplicity [2] +1 *1 O u1 +""", + kinetics = None, +) + +entry( + index = 11, + label = "O-H", + group = +""" +multiplicity [2] +1 *1 O u1 p2 c0 {2,S} +2 H u0 p0 c0 {1,S} +""", + kinetics = None, +) + +entry( + index = 12, + label = "O-C", + group = +""" +multiplicity [2] +1 *1 O u1 p2 cx {2,S} +2 C u0 p0 cx {1,S} +""", + kinetics = None, +) + +entry( + index = 13, + label = "O-CH3", + group = +""" +multiplicity [2] +1 *1 O u1 p2 c0 {2,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 14, + label = "O-N", + group = +""" +multiplicity [2] +1 *1 O u1 p2 cx {2,S} +2 N u0 p1 cx {1,S} +""", + kinetics = None, +) + +entry( + index = 15, + label = "O-N=O", + group = +""" +multiplicity [2] +1 *1 O u1 p2 cx {3,S} +2 O u0 p2 cx {3,D} +3 N u0 p1 cx {1,S} {2,D} +""", + kinetics = None, +) + tree( """ L1: Adsorbate + L2: H + L2: C + L3: C-H + L3: CH=O + L3: CH2-H L2: N L3: N=O + L2: O + L3: O-H + L3: O-C + L4: O-CH3 + L3: O-N + L4: O-N=O L1: VacantSite """ From cddc4c5bef2d71a2b03efb9f02fa9c80b49a7b6e Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 29 May 2021 16:07:46 -0400 Subject: [PATCH 16/27] added more nodes in the tree of the Surface_Adsorption_vdW family --- .../families/Surface_Adsorption_vdW/groups.py | 575 ++++++++++++++++++ 1 file changed, 575 insertions(+) diff --git a/input/kinetics/families/Surface_Adsorption_vdW/groups.py b/input/kinetics/families/Surface_Adsorption_vdW/groups.py index 4043d59abc..4f3eda0f7d 100644 --- a/input/kinetics/families/Surface_Adsorption_vdW/groups.py +++ b/input/kinetics/families/Surface_Adsorption_vdW/groups.py @@ -47,11 +47,586 @@ kinetics = None, ) +entry( + index = 3, + label = "H", + group = +""" +multiplicity [1] +1 *1 H u0 p0 c0 +""", + kinetics = None, +) + +entry( + index = 4, + label = "H2", + group = +""" +multiplicity [1] +1 *1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} +""", + kinetics = None, +) + +entry( + index = 5, + label = "CH4", + group = +""" +multiplicity [1] +1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 *1 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {1,S} +""", + kinetics = None, +) + +entry( + index = 6, + label = "NH3", + group = +""" +multiplicity [1] +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *1 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +""", + kinetics = None, +) + +entry( + index = 7, + label = "C", + group = +""" +multiplicity [1] +1 *1 C u0 px c0 {2,[S,D,T,Q]} +2 R!H u0 px cx {1,[S,D,T,Q]} +""", + kinetics = None, +) + +entry( + index = 8, + label = "CC", + group = +""" +multiplicity [1] +1 *1 C u0 px c0 {2,[S,D,T,Q]} +2 C u0 px cx {1,[S,D,T,Q]} +""", + kinetics = None, +) + +entry( + index = 9, + label = "C-C", + group = +""" +multiplicity [1] +1 *1 C u0 px c0 {2,S} +2 C u0 px cx {1,S} +""", + kinetics = None, +) + +entry( + index = 10, + label = "C2H6", + group = +""" +multiplicity [1] +1 *1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 C u0 p0 c0 {1,S} {6,S} {7,S} {8,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {1,S} +6 H u0 p0 c0 {2,S} +7 H u0 p0 c0 {2,S} +8 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 11, + label = "C=C", + group = +""" +multiplicity [1] +1 *1 C u0 px c0 {2,D} +2 C u0 px cx {1,D} +""", + kinetics = None, +) + +entry( + index = 12, + label = "C2H4", + group = +""" +multiplicity [1] +1 *1 C u0 p0 c0 {2,D} {3,S} {5,S} +2 C u0 p0 c0 {1,D} {4,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {1,S} +6 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 13, + label = "C#C", + group = +""" +multiplicity [1] +1 *1 C u0 px c0 {2,T} +2 C u0 px cx {1,T} +""", + kinetics = None, +) + +entry( + index = 14, + label = "C2H2", + group = +""" +multiplicity [1] +1 *1 C u0 p0 c0 {2,T} {3,S} +2 C u0 p0 c0 {1,T} {4,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 15, + label = "CN", + group = +""" +multiplicity [1] +1 *1 C u0 px c0 {2,[S,D,T]} +2 N u0 px cx {1,[S,D,T]} +""", + kinetics = None, +) + +entry( + index = 16, + label = "C-N", + group = +""" +multiplicity [1] +1 *1 C u0 px c0 {2,S} +2 N u0 px cx {1,S} +""", + kinetics = None, +) + +entry( + index = 17, + label = "CH3NH2", + group = +""" +multiplicity [1] +1 *1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 N u0 p1 c0 {1,S} {6,S} {7,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {1,S} +6 H u0 p0 c0 {2,S} +7 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 18, + label = "C#N", + group = +""" +multiplicity [1] +1 *1 C u0 px c0 {2,T} +2 N u0 px cx {1,T} +""", + kinetics = None, +) + +entry( + index = 19, + label = "CHN", + group = +""" +multiplicity [1] +1 N u0 p1 c0 {2,T} +2 *1 C u0 p0 c0 {1,T} {3,S} +3 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 20, + label = "CO", + group = +""" +multiplicity [1] +1 *1 C u0 px c0 {2,[S,D]} +2 O u0 px cx {1,[S,D]} +""", + kinetics = None, +) + +entry( + index = 21, + label = "C-O", + group = +""" +multiplicity [1] +1 *1 C u0 px c0 {2,S} +2 O u0 px cx {1,S} +""", + kinetics = None, +) + +entry( + index = 22, + label = "CH3OH", + group = +""" +multiplicity [1] +1 *1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 O u0 p2 c0 {1,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {1,S} +6 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 23, + label = "C=O", + group = +""" +multiplicity [1] +1 *1 C u0 px c0 {2,D} +2 O u0 px cx {1,D} +""", + kinetics = None, +) + +entry( + index = 24, + label = "CH2O", + group = +""" +multiplicity [1] +1 O u0 p2 c0 {2,D} +2 *1 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 25, + label = "CO2", + group = +""" +multiplicity [1] +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 *1 C u0 p0 c0 {1,D} {2,D} +""", + kinetics = None, +) + +entry( + index = 26, + label = "N", + group = +""" +multiplicity [1] +1 *1 N u0 px c0 {2,[S,D,T]} +2 R!H u0 px cx {1,[S,D,T]} +""", + kinetics = None, +) + +entry( + index = 27, + label = "NO", + group = +""" +multiplicity [1] +1 *1 N u0 px c0 {2,[S,D]} +2 O u0 px cx {1,[S,D]} +""", + kinetics = None, +) + +entry( + index = 28, + label = "N-O", + group = +""" +multiplicity [1] +1 *1 N u0 px c0 {2,S} +2 O u0 px cx {1,S} +""", + kinetics = None, +) + +entry( + index = 29, + label = "H3NO", + group = +""" +multiplicity [1] +1 O u0 p2 c0 {2,S} {5,S} +2 *1 N u0 p1 c0 {1,S} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {1,S} +""", + kinetics = None, +) + +entry( + index = 30, + label = "N=O", + group = +""" +multiplicity [1] +1 *1 N u0 px c0 {2,D} +2 O u0 px cx {1,D} +""", + kinetics = None, +) + +entry( + index = 31, + label = "HNO", + group = +""" +multiplicity [1] + 1 O u0 p2 c0 {2,D} + 2 *1 N u0 p1 c0 {1,D} {3,S} + 3 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 32, + label = "NN", + group = +""" +multiplicity [1] +1 *1 N u0 px c0 {2,[S,D,T]} +2 N u0 px cx {1,[S,D,T]} +""", + kinetics = None, +) + +entry( + index = 33, + label = "N-N", + group = +""" +multiplicity [1] +1 *1 N u0 px c0 {2,S} +2 N u0 px cx {1,S} +""", + kinetics = None, +) + +entry( + index = 34, + label = "N2H4", + group = +""" +multiplicity [1] +1 *1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 35, + label = "N=N", + group = +""" +multiplicity [1] +1 *1 N u0 px c0 {2,D} +2 N u0 px cx {1,D} +""", + kinetics = None, +) + +entry( + index = 36, + label = "N2H2", + group = +""" +multiplicity [1] +1 *1 N u0 p1 c0 {2,D} {3,S} +2 N u0 p1 c0 {1,D} {4,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 37, + label = "N#N", + group = +""" +multiplicity [1] +1 *1 N u0 px c0 {2,T} +2 N u0 px c0 {1,T} +""", + kinetics = None, +) + +entry( + index = 38, + label = "O", + group = +""" +multiplicity [1] +1 *1 O u0 px c0 +""", + kinetics = None, +) + +entry( + index = 39, + label = "O-H", + group = +""" +multiplicity [1] +1 *1 O u0 px c0 {2,S} +2 H u0 p0 c0 {1,S} +""", + kinetics = None, +) + +entry( + index = 40, + label = "H2O", + group = +""" +multiplicity [1] +1 *1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +""", + kinetics = None, +) + +entry( + index = 41, + label = "H2O2", + group = +""" +multiplicity [1] +1 *1 O u0 p2 c0 {2,S} {3,S} +2 O u0 p2 c0 {1,S} {4,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 42, + label = "O=N", + group = +""" +multiplicity [1] +1 *1 O u0 px c0 {2,D} +2 N u0 px cx {1,D} +""", + kinetics = None, +) + +entry( + index = 43, + label = "N2O", + group = +""" +multiplicity [1] +1 *1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +""", + kinetics = None, +) + tree( """ L1: Adsorbate + L2: H + L3: H2 + L3: CH4 + L3: NH3 + L2: C + L3: CC + L4: C-C + L5: C2H6 + L4: C=C + L5: C2H4 + L4: C#C + L5: C2H2 + L3: CN + L4: C-N + L5: CH3NH2 + L4: C#N + L5: CHN + L3: CO + L4: C-O + L5: CH3OH + L4: C=O + L5: CH2O + L5: CO2 + L2: N + L3: NO + L4: N-O + L5: H3NO + L4: N=O + L5: HNO + L3: NN + L4: N-N + L5: N2H4 + L4: N=N + L5: N2H2 + L4: N#N + L2: O + L3: O-H + L4: H2O + L4: H2O2 + L3: O=N + L4: N2O L1: VacantSite """ From 22d0dd55a204e9cbfe9b9bd3ba026abfdd383146 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 29 May 2021 16:10:55 -0400 Subject: [PATCH 17/27] revised the label of empty sites from Pt, Ni or Cu to X in some kinetics families. (Surface_Adsorption_Dissociative, Surface_Adsorption_Single, Surface_Dissociation and Surface_Dissociation_Beta) --- .../training/dictionary.txt | 4 +- .../training/reactions.py | 18 +-- .../training/dictionary.txt | 2 +- .../training/reactions.py | 32 ++--- .../training/dictionary.txt | 2 +- .../training/reactions.py | 128 +++++++++--------- .../training/dictionary.txt | 2 +- .../training/reactions.py | 6 +- .../training/dictionary.txt | 1 - 9 files changed, 97 insertions(+), 98 deletions(-) diff --git a/input/kinetics/families/Surface_Adsorption_Dissociative/training/dictionary.txt b/input/kinetics/families/Surface_Adsorption_Dissociative/training/dictionary.txt index 81b2d4a78f..5a49b2df51 100644 --- a/input/kinetics/families/Surface_Adsorption_Dissociative/training/dictionary.txt +++ b/input/kinetics/families/Surface_Adsorption_Dissociative/training/dictionary.txt @@ -1,7 +1,7 @@ -Ni_3 +X_3 1 *3 X u0 p0 c0 -Ni_4 +X_4 1 *4 X u0 p0 c0 H2 diff --git a/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py index 2f5a151c71..3e43547cce 100644 --- a/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py @@ -10,7 +10,7 @@ entry( index = 1, - label = "H2 + Ni_3 + Ni_4 <=> HX_3 + HX_4", + label = "H2 + X_3 + X_4 <=> HX_3 + HX_4", degeneracy = 2, kinetics = StickingCoefficient( A = 3.2E-2, @@ -31,7 +31,7 @@ entry( index = 2, - label = "H2 + Ni_3 + Ni_4 <=> HX_3 + HX_4", + label = "H2 + X_3 + X_4 <=> HX_3 + HX_4", degeneracy = 2, kinetics = StickingCoefficient( A = 0.046, @@ -54,7 +54,7 @@ # entry( # index = 6, -# label = "HX_4 + HOX_1 <=> H2O + Ni_3 + Ni_4", +# label = "HX_4 + HOX_1 <=> H2O + X_3 + Ni_4", # degeneracy = 1, # kinetics = SurfaceArrhenius( # A = (4.02e14, 'm^2/(mol*s)'), @@ -76,7 +76,7 @@ # ) entry( index = 3, - label = "Ni_3 + Ni_4 + H2 <=> HX_3 + HX_4", + label = "X_3 + X_4 + H2 <=> HX_3 + HX_4", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.129, n=0.858, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -99,7 +99,7 @@ entry( index = 4, - label = "Ni_3 + Ni_4 + CH4 <=> CH3X + HX_4", + label = "X_3 + X_4 + CH4 <=> CH3X + HX_4", degeneracy = 2.0, kinetics = StickingCoefficient(A=0.116, n=0.154, Ea=(9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -122,7 +122,7 @@ entry( index = 5, - label = "Ni_3 + Ni_4 + H2 <=> HX_3 + HX_4", + label = "X_3 + X_4 + H2 <=> HX_3 + HX_4", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.87, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -144,7 +144,7 @@ entry( index = 6, - label = "Ni_3 + Ni_4 + H2 <=> HX_3 + HX_4", + label = "X_3 + X_4 + H2 <=> HX_3 + HX_4", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.773, n=0.9387, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -165,7 +165,7 @@ entry( index = 7, - label = "Ni_3 + Ni_4 + CH4 <=> CH3X + HX_4", + label = "X_3 + X_4 + CH4 <=> CH3X + HX_4", degeneracy = 2.0, kinetics = StickingCoefficient(A=0.572, n=0.7883, Ea=(14.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -186,7 +186,7 @@ entry( index = 8, - label = "Ni_3 + Ni_4 + H2 <=> HX_3 + HX_4", + label = "X_3 + X_4 + H2 <=> HX_3 + HX_4", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.0236, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, diff --git a/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt b/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt index 4b47b2a05f..6ffa75d756 100644 --- a/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt +++ b/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt @@ -3,7 +3,7 @@ multiplicity 2 1 O u0 p2 c0 {2,D} 2 *1 N u1 p1 c0 {1,D} -Pt +X 1 *2 X u0 p0 c0 NO_X diff --git a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py index 3bcb45908f..ba00a3aae8 100644 --- a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py @@ -9,7 +9,7 @@ """ entry( index = 48, - label = "NO + Pt <=> NO_X", + label = "NO + X <=> NO_X", degeneracy = 1, kinetics = StickingCoefficient( A = 0.85, @@ -31,7 +31,7 @@ entry( index = 49, - label = "NO_X <=> NO + Pt", + label = "NO_X <=> NO + X", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(2.41e+16,'1/s'), n=0, Ea=(154800,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -53,7 +53,7 @@ entry( index = 50, - label = "Pt + NO <=> NO_X", + label = "X + NO <=> NO_X", degeneracy = 1.0, kinetics = StickingCoefficient(A=1.4917e-06, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -75,7 +75,7 @@ entry( index = 51, - label = "Pt + NO2 <=> NO2X", + label = "X + NO2 <=> NO2X", degeneracy = 2.0, kinetics = StickingCoefficient(A=1.4884e-06, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -96,7 +96,7 @@ entry( index = 52, - label = "NO_X <=> NO + Pt", + label = "NO_X <=> NO + X", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(4.03e+24,'1/s'), n=0, Ea=(140000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -120,7 +120,7 @@ entry( index = 53, - label = "Pt + NO <=> NO_X", + label = "X + NO <=> NO_X", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.1556, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -143,7 +143,7 @@ entry( index = 54, - label = "NO2X <=> NO2 + Pt", + label = "NO2X <=> NO2 + X", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(5.24e+22,'1/s'), n=0, Ea=(100000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -166,7 +166,7 @@ entry( index = 55, - label = "NO_X <=> NO + Pt", + label = "NO_X <=> NO + X", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(1.05e+26,'1/s'), n=0, Ea=(184296,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -191,7 +191,7 @@ entry( index = 56, - label = "NO_X <=> NO + Pt", + label = "NO_X <=> NO + X", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(4.94e+25,'1/s'), n=0, Ea=(224822,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -216,7 +216,7 @@ entry( index = 57, - label = "Pt + HO <=> HOX", + label = "X + HO <=> HOX", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.999, n=2, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -239,7 +239,7 @@ entry( index = 58, - label = "Pt + H <=> HX", + label = "X + H <=> HX", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.384, n=1.832, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -262,7 +262,7 @@ entry( index = 59, - label = "Pt + CH <=> CHX", + label = "X + CH <=> CHX", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.0135, n=0.051, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -285,7 +285,7 @@ entry( index = 60, - label = "Pt + CH3 <=> CH3X", + label = "X + CH3 <=> CH3X", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.16, n=-0.099, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -308,7 +308,7 @@ entry( index = 61, - label = "Pt + CH3O <=> CH3OX", + label = "X + CH3O <=> CH3OX", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.149, n=0.054, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -331,7 +331,7 @@ entry( index = 62, - label = "Pt + CHO <=> CHOX", + label = "X + CHO <=> CHOX", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.0114, n=0.096, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -354,7 +354,7 @@ entry( index = 63, - label = "Pt + CH3O-2 <=> CH3OX-2", + label = "X + CH3O-2 <=> CH3OX-2", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.0526, n=0.233, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, diff --git a/input/kinetics/families/Surface_Dissociation/training/dictionary.txt b/input/kinetics/families/Surface_Dissociation/training/dictionary.txt index 079999c6b3..72b434630b 100644 --- a/input/kinetics/families/Surface_Dissociation/training/dictionary.txt +++ b/input/kinetics/families/Surface_Dissociation/training/dictionary.txt @@ -4,7 +4,7 @@ CH2X_3 3 H u0 p0 c0 {1,S} 4 *3 X u0 p0 c0 {1,D} -Ni_4 +X_4 1 *4 X u0 p0 c0 CH3X_1 diff --git a/input/kinetics/families/Surface_Dissociation/training/reactions.py b/input/kinetics/families/Surface_Dissociation/training/reactions.py index 7d4a22ec5d..b229b30465 100644 --- a/input/kinetics/families/Surface_Dissociation/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation/training/reactions.py @@ -10,7 +10,7 @@ entry( index = 1, - label = "OCX_3 + HOX_5 <=> HOCXO_1 + Ni_4", + label = "OCX_3 + HOX_5 <=> HOCXO_1 + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( A=(4.02E14, 'm^2/(mol*s)'), @@ -31,7 +31,7 @@ entry( index = 4, - label = "HOCXO_1 + Ni_4 <=> OCX_3 + HOX_5", + label = "HOCXO_1 + X_4 <=> OCX_3 + HOX_5", degeneracy = 1, kinetics = SurfaceArrhenius( A=(1.46E20, 'm^2/(mol*s)'), @@ -52,7 +52,7 @@ entry( index = 10, - label = "OCX_3 + HOX_5 <=> HOCXO_1 + Ni_4", + label = "OCX_3 + HOX_5 <=> HOCXO_1 + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( A=(1.586e16, 'm^2/(mol*s)'), @@ -75,7 +75,7 @@ entry( index = 9, - label = "NH2_X + Ni_4 <=> NHX_1 + HX_5", + label = "NH2_X + X_4 <=> NHX_1 + HX_5", degeneracy = 2, kinetics = SurfaceArrhenius( A = (2.718e22, 'cm^2/(mol*s)'), @@ -98,7 +98,7 @@ entry( index = 11, - label = "NHX_2 + Ni_4 <=> NX + HX_5", + label = "NHX_2 + X_4 <=> NX + HX_5", kinetics = SurfaceArrhenius( A = (6.213e19, 'cm^2/(mol*s)'), n = 0, @@ -120,7 +120,7 @@ entry( index = 16, - label = "CH2X_3 + HX_5 <=> CH3X_1 + Ni_4", + label = "CH2X_3 + HX_5 <=> CH3X_1 + X_4", degeneracy = 3, kinetics = SurfaceArrhenius( A=(3.09E19, 'm^2/(mol*s)'), @@ -142,7 +142,7 @@ entry( index = 18, - label = "CHX_3 + HX_5 <=> CH2X_1 + Ni_4", + label = "CHX_3 + HX_5 <=> CH2X_1 + X_4", degeneracy = 2, kinetics = SurfaceArrhenius( A=(9.77E20, 'm^2/(mol*s)'), @@ -164,7 +164,7 @@ #Delgado has this reaction as exothermic. However, our own thermo has this reaction as endothermic. removing and replacing with reverse direction, R20. #entry( # index = 19, -# label = "CHX_1 + Ni_4 <=> CX_3 + HX_5", +# label = "CHX_1 + X_4 <=> CX_3 + HX_5", # degeneracy = 1, # kinetics = SurfaceArrhenius( # A=(9.88E16, 'm^2/(mol*s)'), @@ -185,7 +185,7 @@ entry( index = 20, - label = "CX_3 + HX_5 <=> CHX_1 + Ni_4", + label = "CX_3 + HX_5 <=> CHX_1 + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( A=(1.70E20, 'm^2/(mol*s)'), @@ -206,7 +206,7 @@ entry( index = 28, - label = "HCOO* + Ni_4 <=> HCO* + OX_3", + label = "HCOO* + X_4 <=> HCO* + OX_3", degeneracy = 1, kinetics = SurfaceArrhenius( A=(8.733e16, 'm^2/(mol*s)'), @@ -229,7 +229,7 @@ entry( index = 31, - label = "HCOH* + HX_5 <=> CH2OH* + Ni_4", + label = "HCOH* + HX_5 <=> CH2OH* + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( A=(1.257e17, 'm^2/(mol*s)'), @@ -252,7 +252,7 @@ entry( index = 32, - label = "HOX_1 + Ni_4 <=> OX_3 + HX_5", + label = "HOX_1 + X_4 <=> OX_3 + HX_5", degeneracy = 1, kinetics = SurfaceArrhenius( A=(2.25E16, 'm^2/(mol*s)'), @@ -273,7 +273,7 @@ entry( index = 15, - label = "HOX_1 + Ni_4 <=> OX_3 + HX_5", + label = "HOX_1 + X_4 <=> OX_3 + HX_5", degeneracy = 1, kinetics = SurfaceArrhenius( A=(7.452e17, 'm^2/(mol*s)'), @@ -296,7 +296,7 @@ entry( index = 36, - label = "CH3O2* + Ni_4 <=> CH2OH*_2 + OX_3", + label = "CH3O2* + X_4 <=> CH2OH*_2 + OX_3", degeneracy = 1, kinetics = SurfaceArrhenius( A=(1.864e18, 'm^2/(mol*s)'), @@ -319,7 +319,7 @@ entry( index = 48, - label = "CXHO_1 + Ni_4 <=> OCX_3 + HX_5", + label = "CXHO_1 + X_4 <=> OCX_3 + HX_5", degeneracy = 1, kinetics = SurfaceArrhenius( A=(3.71E17, 'm^2/(mol*s)'), @@ -340,7 +340,7 @@ entry( index = 26, - label = "OCX_3 + HX_5 <=> CXHO_1 + Ni_4", + label = "OCX_3 + HX_5 <=> CXHO_1 + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( A=(3.140e17, 'm^2/(mol*s)'), @@ -363,7 +363,7 @@ entry( index = 49, - label = "NOX + OX <=> NO2X + Ni_4", + label = "NOX + OX <=> NO2X + X_4", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(1.776e+22,'cm^2/(mol*s)'), n=0, Ea=(115788,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -386,7 +386,7 @@ entry( index = 50, - label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, kinetics = SurfaceArrhenius(A=(2.014e+21,'cm^2/(mol*s)'), n=0, Ea=(110000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -408,7 +408,7 @@ entry( index = 51, - label = "Ni_4 + NHX_2 <=> NX + HX_5", + label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(2.08997e+21,'cm^2/(mol*s)'), n=0, Ea=(118000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -430,7 +430,7 @@ entry( index = 52, - label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, kinetics = SurfaceArrhenius(A=(4.43e+21,'cm^2/(mol*s)'), n=0, Ea=(101000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -452,7 +452,7 @@ entry( index = 53, - label = "Ni_4 + NHX_2 <=> NX + HX_5", + label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(5.236e+21,'cm^2/(mol*s)'), n=0, Ea=(116000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -474,7 +474,7 @@ entry( index = 54, - label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, kinetics = SurfaceArrhenius(A=(2.33e+23,'cm^2/(mol*s)'), n=0, Ea=(83946.3,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -500,7 +500,7 @@ entry( index = 55, - label = "Ni_4 + NHX_2 <=> NX + HX_5", + label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(2.33e+23,'cm^2/(mol*s)'), n=0, Ea=(98419.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -526,7 +526,7 @@ entry( index = 56, - label = "HX_5 + OX <=> HOX_1 + Ni_4", + label = "HX_5 + OX <=> HOX_1 + X_4", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(61753.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -552,7 +552,7 @@ entry( index = 57, - label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, kinetics = SurfaceArrhenius(A=(2.23e+23,'cm^2/(mol*s)'), n=0, Ea=(152454,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -578,7 +578,7 @@ entry( index = 58, - label = "Ni_4 + NHX_2 <=> NX + HX_5", + label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(2.23e+23,'cm^2/(mol*s)'), n=0, Ea=(118683,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -604,7 +604,7 @@ entry( index = 59, - label = "HX_5 + OX <=> HOX_1 + Ni_4", + label = "HX_5 + OX <=> HOX_1 + X_4", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(2.44e+21,'cm^2/(mol*s)'), n=0, Ea=(123507,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -630,7 +630,7 @@ entry( index = 60, - label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, kinetics = SurfaceArrhenius(A=(2.44e+23,'cm^2/(mol*s)'), n=0, Ea=(85876.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -656,7 +656,7 @@ entry( index = 61, - label = "Ni_4 + NHX_2 <=> NX + HX_5", + label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(2.44e+23,'cm^2/(mol*s)'), n=0, Ea=(113858,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -682,7 +682,7 @@ entry( index = 62, - label = "HX_5 + OX <=> HOX_1 + Ni_4", + label = "HX_5 + OX <=> HOX_1 + X_4", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(97454.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -708,7 +708,7 @@ entry( index = 63, - label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, kinetics = SurfaceArrhenius(A=(6.33e+21,'cm^2/(mol*s)'), n=0, Ea=(92630.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -735,7 +735,7 @@ entry( index = 64, - label = "Ni_4 + NHX_2 <=> NX + HX_5", + label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(7.94e+21,'cm^2/(mol*s)'), n=0, Ea=(97454.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -762,7 +762,7 @@ entry( index = 65, - label = "NOX + OX <=> NO2X + Ni_4", + label = "NOX + OX <=> NO2X + X_4", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(6.52e+19,'cm^2/(mol*s)'), n=1.015, Ea=(155285,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -788,7 +788,7 @@ entry( index = 66, - label = "Ni_4 + NO2X <=> OX + NOX", + label = "X_4 + NO2X <=> OX + NOX", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(1.29e+20,'cm^2/(mol*s)'), n=0, Ea=(83000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -811,7 +811,7 @@ entry( index = 67, - label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, kinetics = SurfaceArrhenius(A=(8.34e+19,'cm^2/(mol*s)'), n=0, Ea=(56929.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -846,7 +846,7 @@ entry( index = 68, - label = "Ni_4 + NHX_2 <=> NX + HX_5", + label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(2.46e+19,'cm^2/(mol*s)'), n=0, Ea=(107104,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -881,7 +881,7 @@ entry( index = 69, - label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, kinetics = SurfaceArrhenius(A=(2.31e+20,'cm^2/(mol*s)'), n=0, Ea=(86841,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -909,7 +909,7 @@ entry( index = 70, - label = "Ni_4 + NHX_2 <=> NX + HX_5", + label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(3.36e+21,'cm^2/(mol*s)'), n=0, Ea=(100350,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -937,7 +937,7 @@ entry( index = 71, - label = "Ni_4 + HOX_1 <=> OX + HX_5", + label = "X_4 + HOX_1 <=> OX + HX_5", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(7.85e+20,'cm^2/(mol*s)'), n=1.872, Ea=(27.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -963,7 +963,7 @@ entry( index = 72, - label = "Ni_4 + CH3X_1 <=> CH2X_3 + HX_5", + label = "X_4 + CH3X_1 <=> CH2X_3 + HX_5", degeneracy = 3.0, kinetics = SurfaceArrhenius(A=(4.47e+19,'cm^2/(mol*s)'), n=0.419, Ea=(15.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -989,7 +989,7 @@ entry( index = 73, - label = "Ni_4 + CH2X_1 <=> CHX_3 + HX_5", + label = "X_4 + CH2X_1 <=> CHX_3 + HX_5", degeneracy = 2.0, kinetics = SurfaceArrhenius(A=(2.1e+19,'cm^2/(mol*s)'), n=0.222, Ea=(9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -1015,7 +1015,7 @@ entry( index = 74, - label = "Ni_4 + CHX_1 <=> CX_3 + HX_5", + label = "X_4 + CHX_1 <=> CX_3 + HX_5", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(3.67e+19,'cm^2/(mol*s)'), n=0.398, Ea=(31.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -1041,7 +1041,7 @@ entry( index = 75, - label = "Ni_4 + CXHO_1 <=> OCX_3 + HX_5", + label = "X_4 + CXHO_1 <=> OCX_3 + HX_5", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(2.86e+19,'cm^2/(mol*s)'), n=0.33, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -1067,7 +1067,7 @@ entry( index = 76, - label = "Ni_4 + NHX_2 <=> NX + HX_5", + label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(7.22e+20,'cm^2/(mol*s)'), n=0, Ea=(5.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -1092,7 +1092,7 @@ entry( index = 77, - label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, kinetics = SurfaceArrhenius(A=(7.6e+20,'cm^2/(mol*s)'), n=0, Ea=(20.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -1117,7 +1117,7 @@ entry( index = 78, - label = "Ni_4 + CH3X_1 <=> CH2X_3 + HX_5", + label = "X_4 + CH3X_1 <=> CH2X_3 + HX_5", degeneracy = 3.0, kinetics = SurfaceArrhenius(A=(1e+19,'cm^2/(mol*s)'), n=0.0862, Ea=(12.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -1141,7 +1141,7 @@ entry( index = 79, - label = "Ni_4 + CH2X_1 <=> CHX_3 + HX_5", + label = "X_4 + CH2X_1 <=> CHX_3 + HX_5", degeneracy = 2.0, kinetics = SurfaceArrhenius(A=(2.21e+19,'cm^2/(mol*s)'), n=-0.1312, Ea=(21.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -1165,7 +1165,7 @@ entry( index = 80, - label = "Ni_4 + CHX_1 <=> CX_3 + HX_5", + label = "X_4 + CHX_1 <=> CX_3 + HX_5", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(1.84e+21,'cm^2/(mol*s)'), n=-0.2464, Ea=(28.9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -1189,7 +1189,7 @@ entry( index = 81, - label = "Ni_4 + H3N2X <=> H2N2X + HX_5", + label = "X_4 + H3N2X <=> H2N2X + HX_5", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(1.34e+17,'cm^2/(mol*s)'), n=1.942, Ea=(121577,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -1214,7 +1214,7 @@ entry( index = 82, - label = "Ni_4 + H2N2X2 <=> HN2X2 + HX_5", + label = "X_4 + H2N2X2 <=> HN2X2 + HX_5", degeneracy = 2.0, kinetics = SurfaceArrhenius(A=(1.07e+19,'cm^2/(mol*s)'), n=1.134, Ea=(141840,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -1239,7 +1239,7 @@ entry( index = 83, - label = "Ni_4 + HN2X2-2 <=> N2X2 + HX_5", + label = "X_4 + HN2X2-2 <=> N2X2 + HX_5", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(3.43e+18,'cm^2/(mol*s)'), n=1.285, Ea=(16403,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -1264,7 +1264,7 @@ entry( index = 84, - label = "Ni_4 + H3N2X-2 <=> NHX_1 + H2NX", + label = "X_4 + H3N2X-2 <=> NHX_1 + H2NX", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(2.87e+16,'cm^2/(mol*s)'), n=2.065, Ea=(86841,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -1289,7 +1289,7 @@ entry( index = 85, - label = "Ni_4 + H2N2X-2 <=> NX + H2NX", + label = "X_4 + H2N2X-2 <=> NX + H2NX", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(4.03e+19,'cm^2/(mol*s)'), n=0.559, Ea=(130262,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -1314,7 +1314,7 @@ entry( index = 86, - label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, kinetics = SurfaceArrhenius(A=(5.67e+19,'cm^2/(mol*s)'), n=0.513, Ea=(135086,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -1339,7 +1339,7 @@ entry( index = 87, - label = "Ni_4 + NHX_2 <=> NX + HX_5", + label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(1.66e+19,'cm^2/(mol*s)'), n=0.853, Ea=(172717,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -1364,7 +1364,7 @@ entry( index = 88, - label = "Ni_4 + H3N2X <=> H2N2X + HX_5", + label = "X_4 + H3N2X <=> H2N2X + HX_5", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(98419.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -1390,7 +1390,7 @@ entry( index = 89, - label = "Ni_4 + H2N2X2 <=> HN2X2 + HX_5", + label = "X_4 + H2N2X2 <=> HN2X2 + HX_5", degeneracy = 2.0, kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(67543,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -1416,7 +1416,7 @@ entry( index = 90, - label = "Ni_4 + HN2X2-2 <=> N2X2 + HX_5", + label = "X_4 + HN2X2-2 <=> N2X2 + HX_5", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(126402,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -1442,7 +1442,7 @@ entry( index = 91, - label = "Ni_4 + H3N2X-2 <=> NHX_1 + H2NX", + label = "X_4 + H3N2X-2 <=> NHX_1 + H2NX", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(75262.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -1468,7 +1468,7 @@ entry( index = 92, - label = "Ni_4 + H2N2X-2 <=> NX + H2NX", + label = "X_4 + H2N2X-2 <=> NX + H2NX", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(70437.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -1494,7 +1494,7 @@ entry( index = 93, - label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, kinetics = SurfaceArrhenius(A=(1.43e+21,'cm^2/(mol*s)'), n=0, Ea=(151613,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -1520,7 +1520,7 @@ entry( index = 94, - label = "Ni_4 + NHX_2 <=> NX + HX_5", + label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(2.68e+21,'cm^2/(mol*s)'), n=0, Ea=(88354.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -1546,7 +1546,7 @@ entry( index = 95, - label = "Ni_4 + NH2_X <=> NHX_1 + HX_5", + label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, kinetics = SurfaceArrhenius(A=(1.52e+21,'cm^2/(mol*s)'), n=0, Ea=(62155,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, @@ -1572,7 +1572,7 @@ entry( index = 96, - label = "Ni_4 + NHX_2 <=> NX + HX_5", + label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(2.71e+21,'cm^2/(mol*s)'), n=0, Ea=(99817.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, diff --git a/input/kinetics/families/Surface_Dissociation_Beta/training/dictionary.txt b/input/kinetics/families/Surface_Dissociation_Beta/training/dictionary.txt index 7f80567a1e..fe43801d33 100644 --- a/input/kinetics/families/Surface_Dissociation_Beta/training/dictionary.txt +++ b/input/kinetics/families/Surface_Dissociation_Beta/training/dictionary.txt @@ -15,7 +15,7 @@ HCOH* 4 *4 H u0 p0 c0 {1,S} 5 *1 X u0 p0 c0 {2,D} -Cu +X 1 *5 X u0 p0 c0 CO* diff --git a/input/kinetics/families/Surface_Dissociation_Beta/training/reactions.py b/input/kinetics/families/Surface_Dissociation_Beta/training/reactions.py index df0768d382..01470b7168 100644 --- a/input/kinetics/families/Surface_Dissociation_Beta/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_Beta/training/reactions.py @@ -10,7 +10,7 @@ entry( index = 27, - label = "CO* + H* <=> COH* + Cu", + label = "CO* + H* <=> COH* + X", degeneracy = 1, kinetics = SurfaceArrhenius( A = (3.799e17, 'm^2/(mol*s)'), @@ -33,7 +33,7 @@ entry( index = 29, - label = "HCO* + H* <=> HCOH* + Cu", + label = "HCO* + H* <=> HCOH* + X", degeneracy = 4, kinetics = SurfaceArrhenius( A = (3.048e17, 'm^2/(mol*s)'), @@ -55,7 +55,7 @@ ) entry( index = 30, - label = "Cu + H2N2X <=> HN2X + H*", + label = "X + H2N2X <=> HN2X + H*", degeneracy = 1.0, kinetics = SurfaceArrhenius(A=(1.09e+19,'cm^2/(mol*s)'), n=1.002, Ea=(108069,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, diff --git a/input/kinetics/families/Surface_vdW_to_Bidentate/training/dictionary.txt b/input/kinetics/families/Surface_vdW_to_Bidentate/training/dictionary.txt index 8b13789179..e69de29bb2 100644 --- a/input/kinetics/families/Surface_vdW_to_Bidentate/training/dictionary.txt +++ b/input/kinetics/families/Surface_vdW_to_Bidentate/training/dictionary.txt @@ -1 +0,0 @@ - From 79ded71ec0f1e54b65180eda877081260338d3f7 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Sat, 29 May 2021 17:40:49 -0400 Subject: [PATCH 18/27] added more nodes in the tree of the Surface_Dissociation and Surface_Dissociation_Beta families --- .../families/Surface_Dissociation/groups.py | 111 ++++++++++++++++++ .../Surface_Dissociation_Beta/groups.py | 67 +++++++++-- 2 files changed, 165 insertions(+), 13 deletions(-) diff --git a/input/kinetics/families/Surface_Dissociation/groups.py b/input/kinetics/families/Surface_Dissociation/groups.py index e270cab438..0e45366245 100644 --- a/input/kinetics/families/Surface_Dissociation/groups.py +++ b/input/kinetics/families/Surface_Dissociation/groups.py @@ -161,18 +161,129 @@ kinetics = None, ) +entry( + index = 12, + label = "CH", + group = +""" +1 *1 C u0 {2,S} {3,T} +2 *2 H u0 {1,S} +3 *3 Xo u0 {1,T} +""", + kinetics = None, +) + +entry( + index = 13, + label = "CH2", + group = +""" +1 *1 C u0 {2,S} {3,D} {4,S} +2 *2 H u0 {1,S} +3 *3 Xo u0 {1,D} +4 H u0 {1,S} +""", + kinetics = None, +) + +entry( + index = 14, + label = "CH3", + group = +""" +1 *1 C u0 {2,S} {3,S} {4,S} {5,S} +2 *2 H u0 {1,S} +3 *3 Xo u0 {1,S} +4 H u0 {1,S} +5 H u0 {1,S} +""", + kinetics = None, +) + +entry( + index = 15, + label = "C-OH", + group = +""" +1 *1 C u0 {2,S} {3,S} +2 *2 O u0 {1,S} {4,S} +3 *3 Xo u0 {1,S} +4 H u0 {2,S} +""", + kinetics = None, +) + +entry( + index = 16, + label = "O-C=O", + group = +""" +1 *1 O u0 {2,S} {3,S} +2 *2 C u0 {1,S} {4,D} +3 *3 Xo u0 {1,S} +4 O u0 {2,D} +""", + kinetics = None, +) + +entry( + index = 17, + label = "O-N", + group = +""" +1 *1 O u0 {2,S} {3,S} +2 *2 N u0 {1,S} +3 *3 Xo u0 {1,S} +""", + kinetics = None, +) + +entry( + index = 18, + label = "O-N=O", + group = +""" +1 *1 O u0 {2,S} {3,S} +2 *2 N u0 {1,S} {4,D} +3 *3 Xo u0 {1,S} +4 O u0 {2,D} +""", + kinetics = None, +) + +entry( + index = 19, + label = "N-N", + group = +""" +1 *1 N u0 {2,S} {3,D} +2 *2 N u0 {1,S} +3 *3 Xo u0 {1,D} +""", + kinetics = None, +) + + tree( """ L1: Combined L2: C L3: C-H + L4: CH + L4: CH2 + L4: CH3 L3: C-O + L4: C-OH L2: O L3: O-H L3: O-C + L4: O-C=O + L3: O-N + L4: O-N=O L2: N L3: N-H2 L3: N-H + L3: N-N L1: VacantSite """ ) diff --git a/input/kinetics/families/Surface_Dissociation_Beta/groups.py b/input/kinetics/families/Surface_Dissociation_Beta/groups.py index 6e9ee38b98..d583e0e12b 100644 --- a/input/kinetics/families/Surface_Dissociation_Beta/groups.py +++ b/input/kinetics/families/Surface_Dissociation_Beta/groups.py @@ -35,7 +35,7 @@ label = "Adsorbate1", group = """ -1 *1 Xo ux p0 c0 {2,[S,D]} +1 *1 Xo ux p0 c0 {2,[S,D]} 2 *2 R!H ux px cx {1,[S,D]} {3,[D,T]} 3 *3 R!H ux px cx {2,[D,T]} """, @@ -48,7 +48,7 @@ group = """ 1 *5 Xo ux px cx {2,S} -2 *4 R ux px cx {1,S} +2 *4 R ux px cx {1,S} """, kinetics = None, ) @@ -58,7 +58,7 @@ label = "*C", group = """ -1 *1 Xo ux p0 c0 {2,[S,D]} +1 *1 Xo ux p0 c0 {2,[S,D]} 2 *2 C ux px cx {1,[S,D]} {3,[D,T]} 3 *3 R!H ux px cx {2,[D,T]} """, @@ -70,7 +70,7 @@ label = "*-C=", group = """ -1 *1 Xo ux p0 c0 {2,S} +1 *1 Xo ux p0 c0 {2,S} 2 *2 C u0 p0 c0 {1,S} {3,D} 3 *3 R!H ux px cx {2,D} """, @@ -84,8 +84,8 @@ group = """ 1 *1 Xo ux p0 c0 {2,S} -2 *2 C u0 p0 c0 {1,S} {3,D} -3 *3 O ux px cx {2,D} +2 *2 C u0 p0 c0 {1,S} {3,D} +3 *3 O ux px cx {2,D} """, kinetics = None, ) @@ -96,8 +96,8 @@ group = """ 1 *1 Xo ux p0 c0 {2,S} -2 *2 C u0 p0 c0 {1,S} {3,D} -3 *3 C u0 p0 c0 {2,D} +2 *2 C u0 p0 c0 {1,S} {3,D} +3 *3 C u0 p0 c0 {2,D} """, kinetics = None, ) @@ -108,8 +108,8 @@ group = """ 1 *1 Xo ux p0 c0 {2,S} -2 *2 C u0 p0 c0 {1,S} {3,T} -3 *3 C ux px cx {2,T} +2 *2 C u0 p0 c0 {1,S} {3,T} +3 *3 C ux px cx {2,T} """, kinetics = None, ) @@ -120,7 +120,7 @@ group = """ 1 *5 Xo u0 p0 c0 {2,S} -2 *4 H u0 p0 c0 {1,S} +2 *4 H u0 p0 c0 {1,S} """, kinetics = None, ) @@ -131,7 +131,7 @@ group = """ 1 *5 Xo u0 p0 c0 {2,S} -2 *4 O u0 p2 c0 {1,S} +2 *4 O u0 p2 c0 {1,S} """, kinetics = None, ) @@ -142,7 +142,7 @@ group = """ 1 *5 Xo u0 p0 c0 {2,S} -2 *4 C u0 p0 c0 {1,S} +2 *4 C u0 p0 c0 {1,S} """, kinetics = None, ) @@ -195,6 +195,44 @@ kinetics = None, ) +entry( + index = 15, + label = "*N", + group = +""" +1 *1 Xo ux p0 c0 {2,S} +2 *2 N ux px cx {1,S} {3,D} +3 *3 R!H ux px cx {2,D} +""", + kinetics = None, +) + +entry( + index = 16, + label = "*-N=N", + group = +""" +1 *1 Xo ux p0 c0 {2,S} +2 *2 N ux px cx {1,S} {3,D} +3 *3 N ux px cx {2,D} +""", + kinetics = None, +) + +entry( + index = 17, + label = "*-N=NH", + group = +""" +1 *1 Xo u0 p0 c0 {2,S} +2 *2 N u0 p1 c0 {1,S} {3,D} +3 *3 N u0 p1 c0 {2,D} {4,S} +4 H u0 p0 c0 {3,S} +""", + kinetics = None, +) + + tree( """ L1: Adsorbate1 @@ -207,6 +245,9 @@ L3: *=C L4: *=C=C L4: *=C=O + L2: *N + L3: *-N=N + L4: *-N=NH L1: Adsorbate2 L2: H-* L2: O-* From 99db710451b481f6abb55e1d4f5e344da7efafca Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Tue, 1 Jun 2021 11:07:32 -0400 Subject: [PATCH 19/27] added Mhadeshwar_Pt111 library (This library includes some new NO* pathways) --- .../Surface/Mhadeshwar_Pt111/dictionary.txt | 228 ++ .../Surface/Mhadeshwar_Pt111/reactions.py | 3434 +++++++++++++++++ 2 files changed, 3662 insertions(+) create mode 100644 input/kinetics/libraries/Surface/Mhadeshwar_Pt111/dictionary.txt create mode 100644 input/kinetics/libraries/Surface/Mhadeshwar_Pt111/reactions.py diff --git a/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/dictionary.txt new file mode 100644 index 0000000000..f16389d29f --- /dev/null +++ b/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/dictionary.txt @@ -0,0 +1,228 @@ +X +1 X u0 p0 c0 + +O +multiplicity 3 +1 O u2 p2 c0 + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +CO +1 O u0 p1 c+1 {2,T} +2 C u0 p1 c-1 {1,T} + +CO_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,D} +3 X u0 p0 c0 {2,D} + +CO2 +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} + +CO2_X +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} +4 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +H +multiplicity 2 +1 H u1 p0 c0 + +H2 +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} + +OH +multiplicity 2 +1 O u1 p2 c0 {2,S} +2 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +COOH_X +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,S} {2,D} {5,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 {3,S} + +COOH +multiplicity 2 +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 C u1 p0 c0 {1,S} {2,D} +4 H u0 p0 c0 {1,S} + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH2 +multiplicity 2 +1 N u1 p1 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH +multiplicity 3 +1 N u2 p1 c0 {2,S} +2 H u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N +multiplicity 4 +1 N u3 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NO +multiplicity 2 +1 N u1 p1 c0 {2,D} +2 O u0 p2 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +NO2 +multiplicity 2 +1 N u0 p1 c0 {2,D} {3,S} +2 O u0 p2 c0 {1,D} +3 O u1 p2 c0 {1,S} + +NO2_X +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 N u0 p1 c0 {1,S} {2,D} +4 X u0 p0 c0 {1,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 N u0 p1 c0 {2,S} {4,D} +4 X u0 p0 c0 {3,D} + +HCN +1 N u0 p1 c0 {2,T} +2 C u0 p0 c0 {1,T} {3,S} +3 H u0 p0 c0 {2,S} + +HCN_X +1 N u0 p1 c0 {2,T} +2 C u0 p0 c0 {1,T} {3,S} +3 H u0 p0 c0 {2,S} +4 X u0 p0 c0 + +CN +multiplicity 2 +1 N u0 p1 c0 {2,T} +2 C u1 p0 c0 {1,T} + +CN_X +1 N u0 p1 c0 {2,T} +2 C u0 p0 c0 {1,T} {3,S} +3 X u0 p0 c0 {2,S} + +C +1 C u2 p1 c0 + +C_X +1 C u0 p0 c0 {2,Q} +2 X u0 p0 c0 {1,Q} + +CH2O +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} + +CH2O_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 X u0 p0 c0 + +HCO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 C u1 p0 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} + +HCO_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 X u0 p0 c0 {2,S} + +C2N2 +1 N u0 p1 c0 {3,T} +2 N u0 p1 c0 {4,T} +3 C u0 p0 c0 {1,T} {4,S} +4 C u0 p0 c0 {2,T} {3,S} + +C2N2_X +1 N u0 p1 c0 {3,T} +2 N u0 p1 c0 {4,T} +3 C u0 p0 c0 {1,T} {4,S} +4 C u0 p0 c0 {2,T} {3,S} +5 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/reactions.py b/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/reactions.py new file mode 100644 index 0000000000..39bd0b8d6e --- /dev/null +++ b/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/reactions.py @@ -0,0 +1,3434 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Mhadeshwar_Pt111" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 +""" + +#---------------------O2 adsorption/desorption------------------------ + +# Reverse reaction of R2 +# entry( +# index = 1, +# label = "O + X <=> O_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R1 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 2, + label = "O_X <=> O + X", + kinetics = SurfaceArrhenius( + A = (4E21, '1/s'), + n = 0.0, + Ea = (86, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R2 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 3, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.05, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R3 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R3 +# entry( +# index = 4, +# label = "O_X + O_X <=> O2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (52.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +# This is R4 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +#---------------------CO oxidation----------------------------------- + +entry( + index = 5, + label = "CO + X <=> CO_X", + kinetics = StickingCoefficient( + A = 0.5, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R5 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R5 +# entry( +# index = 6, +# label = "CO_X <=> CO + X", +# kinetics = SurfaceArrhenius( +# A = (2.28E25, '1/s'), +# n = 0.0, +# Ea = (40, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 5.7E16(1/s)/2.5E-9(mol/cm^2) = 2.28E25 cm^2/(mol*s) + +# This is R6 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R8 +# entry( +# index = 7, +# label = "CO2 + X <=> CO2_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R7 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 8, + label = "CO2_X <=> CO2 + X", + kinetics = SurfaceArrhenius( + A = (4E21, '1/s'), + n = 0.0, + Ea = (3.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R8 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R9 +# entry( +# index = 9, +# label = "CO2_X + X <=> CO_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (23.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_Double_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R9 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 10, + label = "CO_X + O_X <=> CO2_X + X", + kinetics = SurfaceArrhenius( + A = (4E18, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (18.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_Double_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E10(1/s)/2.5E-9(mol/cm^2) = 4E18 cm^2/(mol*s) + +This is R10 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +#---------------------H2 oxidation----------------------------------- + +# Reverse reaction of R12 +# entry( +# index = 11, +# label = "H + X <=> H_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R11 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 12, + label = "H_X <=> H + X", + kinetics = SurfaceArrhenius( + A = (4E21, '1/s'), + n = 0.0, + Ea = (60.9, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R12 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R14 +# entry( +# index = 13, +# label = "H2 + X + X <=> H_X + H_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""H2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R13 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 14, + label = "H_X + H_X <=> H2 + X + X", + kinetics = SurfaceArrhenius( + A = (4E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (17.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""H2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R14 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R16 +# entry( +# index = 15, +# label = "H2O + X <=> H2O_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R15 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 16, + label = "H2O_X <=> H2O + X", + kinetics = SurfaceArrhenius( + A = (4E21, '1/s'), + n = 0.0, + Ea = (10.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R16 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R18 +# entry( +# index = 17, +# label = "OH + X <=> OH_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R17 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 18, + label = "OH_X <=> OH + X", + kinetics = SurfaceArrhenius( + A = (4E21, '1/s'), + n = 0.0, + Ea = (63, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R18 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R20 +# entry( +# index = 19, +# label = "OH_X + X <=> H_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (27, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R19 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 20, + label = "H_X + O_X <=> OH_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (8.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R20 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R22 +# entry( +# index = 21, +# label = "H2O_X + X <=> H_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (18.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R21 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 22, + label = "H_X + OH_X <=> H2O_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (12.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R22 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R24 +# entry( +# index = 23, +# label = "O_X + H2O_X <=> OH_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (9.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R23 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 24, + label = "OH_X + OH_X <=> O_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (22.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R24 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +#-----------------Water promoted CO oxidation------------------------ + +# Reverse reaction of R26 +# entry( +# index = 25, +# label = "COOH + X <=> COOH_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R25 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 26, + label = "COOH_X <=> COOH + X", + kinetics = SurfaceArrhenius( + A = (4E21, '1/s'), + n = 0.0, + Ea = (56.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R26 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R28 +# entry( +# index = 27, +# label = "CO2_X + H_X <=> CO_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (5.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann_Pt/19""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R27 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 28, + label = "CO_X + OH_X <=> CO2_X + H_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (19, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann_Pt/19""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R28 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R30 +# entry( +# index = 29, +# label = "COOH_X + X <=> CO_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (5.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R29 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 30, + label = "CO_X + OH_X <=> COOH_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (18.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R30 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R32 +# entry( +# index = 31, +# label = "COOH_X + X <=> CO2_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (2.1, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Addition_Single_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R31 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 32, + label = "CO2_X + H_X <=> COOH_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (1.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Addition_Single_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R32 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R34 +# entry( +# index = 33, +# label = "CO_X + H2O_X <=> COOH_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (23.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R33 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 34, + label = "COOH_X + H_X <=> CO_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (5.4, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R34 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R36 +# entry( +# index = 35, +# label = "CO2_X + OH_X <=> COOH_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (25.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R35 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 36, + label = "COOH_X + O_X <=> CO2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (8.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R36 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R38 +# entry( +# index = 37, +# label = "CO2_X + H2O_X <=> COOH_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (17.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dual_Adsorption_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R37 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 38, + label = "COOH_X + OH_X <=> CO2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (12.4, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dual_Adsorption_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R38 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +#---------------------NH3 oxidation---------------------------------- + +# Reverse reaction of R40 +# entry( +# index = 39, +# label = "N + X <=> N_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Triple""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R39 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 40, + label = "N_X <=> N + X", + kinetics = SurfaceArrhenius( + A = (4E21, '1/s'), + n = 0.0, + Ea = (107.4, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Triple""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R40 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R42 +# entry( +# index = 41, +# label = "N2 + X + X <=> N_X + N_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (27.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""N2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R41 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 42, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (4E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (16.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R42 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R44 +# entry( +# index = 43, +# label = "NH3 + X <=> NH3_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R43 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 44, + label = "NH3_X <=> NH3 + X", + kinetics = SurfaceArrhenius( + A = (4E21, '1/s'), + n = 0.0, + Ea = (20.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R44 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R46 +# entry( +# index = 45, +# label = "NH2 + X <=> NH2_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R45 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 46, + label = "NH2_X <=> NH2 + X", + kinetics = SurfaceArrhenius( + A = (4E21, '1/s'), + n = 0.0, + Ea = (54.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R46 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R48 +# entry( +# index = 47, +# label = "NH + X <=> NH_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R47 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 48, + label = "NH_X <=> NH + X", + kinetics = SurfaceArrhenius( + A = (4E21, '1/s'), + n = 0.0, + Ea = (83, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R48 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R50 +# entry( +# index = 49, +# label = "NH3_X + X <=> NH2_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (21.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R49 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 50, + label = "NH2_X + H_X <=> NH3_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (7.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R50 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R52 +# entry( +# index = 51, +# label = "NH2_X + X <=> NH_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (18.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R51 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 52, + label = "NH_X + H_X <=> NH2_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (16.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R52 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R54 +# entry( +# index = 53, +# label = "NH_X + X <=> N_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (19, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R53 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 54, + label = "N_X + H_X <=> NH_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (24.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R54 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R56 +# entry( +# index = 55, +# label = "NH3_X + O_X <=> NH2_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (12.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R55 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 56, + label = "NH2_X + OH_X <=> NH3_X + O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (16.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R56 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R58 +# entry( +# index = 57, +# label = "NH_X + OH_X <=> NH2_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (24.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R57 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 58, + label = "NH2_X + O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (8.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R58 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R60 +# entry( +# index = 59, +# label = "N_X + OH_X <=> NH_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (39.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R59 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 60, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (15.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R60 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R62 +# entry( +# index = 61, +# label = "NH2_X + H2O_X <=> NH3_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (3.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_Single_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R61 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 62, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (12, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R62 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R64 +# entry( +# index = 63, +# label = "NH_X + H2O_X <=> NH2_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (16.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R63 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 64, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (12.9, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R64 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R66 +# entry( +# index = 65, +# label = "N_X + H2O_X <=> NH_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (33.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R65 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 66, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (22.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R66 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +#---------------------NO oxidation---------------------------------- + +# Reverse reaction of R68 +# entry( +# index = 67, +# label = "NO + X <=> NO_X", +# kinetics = StickingCoefficient( +# A = 0.88, +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R67 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 68, + label = "NO_X <=> NO + X", + kinetics = SurfaceArrhenius( + A = (4E24, '1/s'), + n = 0.0, + Ea = (30.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E16(1/s)/2.5E-9(mol/cm^2) = 4E24 cm^2/(mol*s) + +This is R68 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R70 +# entry( +# index = 69, +# label = "NO2 + X <=> NO2_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R69 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 70, + label = "NO2_X <=> NO2 + X", + kinetics = SurfaceArrhenius( + A = (4E21, '1/s'), + n = 0.0, + Ea = (23.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R70 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R72 +# entry( +# index = 71, +# label = "NO_X + X <=> N_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (31.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Nitrogen/51""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R71 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 72, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (43.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R72 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R74 +# entry( +# index = 73, +# label = "NO_X + H_X <=> N_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (4.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R73 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 74, + label = "N_X + OH_X <=> NO_X + H_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (35.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R74 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R76 +# entry( +# index = 75, +# label = "NO_X + H_X <=> NH_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (8.2, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R75 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 76, + label = "NH_X + O_X <=> NO_X + H_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (14.9, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R76 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 77, + label = "NO_X + OH_X <=> NO2_X + H_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (38.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R77 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R77 +# entry( +# index = 78, +# label = "NO2_X + H_X <=> NO_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R78 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R80 +# entry( +# index = 79, +# label = "NO2_X + X <=> NO_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = -0.93, +# Ea = (1.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R79 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 80, + label = "NO_X + O_X <=> NO2_X + X", + kinetics = SurfaceArrhenius( + A = (1.2E21, 'cm^2/(mol*s)'), + n = 0.93, + Ea = (21.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 3E12(1/s)/2.5E-9(mol/cm^2) = 1.2E21 cm^2/(mol*s) + +This is R80 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +#---------------------HCN oxidation---------------------------------- + +# Reverse reaction of R82 +# entry( +# index = 81, +# label = "HCN + X <=> HCN_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R81 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 82, + label = "HCN_X <=> HCN + X", + kinetics = SurfaceArrhenius( + A = (4E21, '1/s'), + n = 0.0, + Ea = (21.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R82 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R84 +# entry( +# index = 83, +# label = "CN + X <=> CN_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R83 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 84, + label = "CN_X <=> CN + X", + kinetics = SurfaceArrhenius( + A = (4E21, '1/s'), + n = 0.0, + Ea = (78.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R84 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R86 +# entry( +# index = 85, +# label = "HCN_X + X <=> CN_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (21.1, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R85 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 86, + label = "CN_X + H_X <=> HCN_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (13.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R86 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R88 +# entry( +# index = 87, +# label = "HCN_X + O_X <=> CN_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (17.1, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R87 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 88, + label = "CN_X + OH_X <=> HCN_X + O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (27.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R88 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R90 +# entry( +# index = 89, +# label = "HCN_X + OH_X <=> CN_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (5.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_Single_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R89 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 90, + label = "CN_X + H2O_X <=> HCN_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (3.4, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R90 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R92 +# entry( +# index = 91, +# label = "CN_X + O_X <=> C_X + NO_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (8.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R91 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 92, + label = "C_X + NO_X <=> CN_X + O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (4.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R92 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R94 +# entry( +# index = 93, +# label = "CO_X + N_X <=> CN_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (76.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R93 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 94, + label = "CN_X + O_X <=> CO_X + N_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (15.4, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R94 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +#---------------------CH2O oxidation--------------------------------- + +# Reverse reaction of R96 +# entry( +# index = 95, +# label = "CH2O + X <=> CH2O_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R95 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 96, + label = "CH2O_X <=> CH2O + X", + kinetics = SurfaceArrhenius( + A = (4E21, '1/s'), + n = 0.0, + Ea = (14.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R96 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R98 +# entry( +# index = 97, +# label = "HCO + X <=> HCO_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R97 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 98, + label = "HCO_X <=> HCO + X", + kinetics = SurfaceArrhenius( + A = (4E21, '1/s'), + n = 0.0, + Ea = (54.4, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R98 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R100 +# entry( +# index = 99, +# label = "CH2O_X + X <=> HCO_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (8.1, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R99 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 100, + label = "HCO_X + H_X <=> CH2O_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (20.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R100 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 101, + label = "HCO_X + OH_X <=> CH2O_X + O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (30.9, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R101 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R101 +# entry( +# index = 102, +# label = "CH2O_X + O_X <=> HCO_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R102 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 103, + label = "HCO_X + H2O_X <=> CH2O_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (18.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R103 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R103 +# entry( +# index = 104, +# label = "CH2O_X + OH_X <=> HCO_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_Single_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R104 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R106 +# entry( +# index = 105, +# label = "HCO_X + X <=> CO_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R105 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 106, + label = "CO_X + H_X <=> HCO_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (30.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R106 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 107, + label = "CO_X + OH_X <=> HCO_X + O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (49.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R107 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R107 +# entry( +# index = 108, +# label = "HCO_X + O_X <=> CO_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (6E20, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1.5E12(1/s)/2.5E-9(mol/cm^2) = 6E20 cm^2/(mol*s) + +# This is R108 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 109, + label = "CO_X + H2O_X <=> HCO_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (36.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R109 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R109 +# entry( +# index = 110, +# label = "HCO_X + OH_X <=> CO_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R110 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +#---------------------C foramtion and oxidation---------------------- + +# Reverse reaction of R112 +# entry( +# index = 111, +# label = "C + X <=> C_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Quadruple bonds""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R111 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 112, + label = "C_X <=> C + X", + kinetics = SurfaceArrhenius( + A = (4E21, '1/s'), + n = 0.0, + Ea = (158.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Quadruple bonds""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R112 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R114 +# entry( +# index = 113, +# label = "CO_X + X <=> C_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (54.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann libraries""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R113 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 114, + label = "C_X + O_X <=> CO_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (1.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann libraries""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R114 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 115, + label = "CO_X + CO_X <=> C_X + CO2_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (48.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann libraries""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R115 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R115 +# entry( +# index = 116, +# label = "C_X + CO2_X <=> CO_X + CO_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann libraries""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R116 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +#---------------------N2O and C2N2 formation/decomposition----------- + +# Reverse reaction of R118 +# entry( +# index = 117, +# label = "N2O + X <=> N2O_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R117 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 118, + label = "N2O_X <=> N2O + X", + kinetics = SurfaceArrhenius( + A = (4E21, '1/s'), + n = 0.0, + Ea = (6.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R118 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R120 +# entry( +# index = 119, +# label = "N2O_X + X <=> N_X + NO_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (3.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R119 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 120, + label = "N_X + NO_X <=> N2O_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (19.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R120 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R122 +# entry( +# index = 121, +# label = "C2N2 + X <=> C2N2_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0.0, +# Ea = (,0 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R121 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 122, + label = "C2N2_X <=> C2N2 + X", + kinetics = SurfaceArrhenius( + A = (4E21, '1/s'), + n = 0.0, + Ea = (21, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R122 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R124 +# entry( +# index = 123, +# label = "C2N2_X + X <=> CN_X + CN_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (29.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R123 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 124, + label = "CN_X + CN_X <=> C2N2_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (28.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R124 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) From 6ad663902dcaf91b45c9d5c4e599d0c35e381345 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Tue, 1 Jun 2021 15:36:33 -0400 Subject: [PATCH 20/27] =?UTF-8?q?1.=20fixed=20some=20typos=20in=20the=20sh?= =?UTF-8?q?ort=20(families=E2=80=99=20names)=20and=20the=20long=20descript?= =?UTF-8?q?ion=20(the=20unit=20conversion=20of=20A=20factors=20and=20the?= =?UTF-8?q?=20citation)?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit 2. rearranged the number of the entries in all families 3. fixed the typos of C_X from double bonds to quadruple bonds, CH_X from single bonds to triple bonds. Then re-imported the libraries into the training reactions and removed the wrong old ones. --- .../training/dictionary.txt | 9 - .../Surface_Abstraction/training/reactions.py | 144 +++---- .../training/reactions.py | 22 +- .../training/dictionary.txt | 35 +- .../training/reactions.py | 392 ++++++++++-------- .../training/reactions.py | 120 +++--- .../training/dictionary.txt | 34 +- .../training/reactions.py | 17 +- .../training/reactions.py | 2 +- .../training/reactions.py | 15 +- .../training/dictionary.txt | 14 + .../training/reactions.py | 70 +++- .../training/reactions.py | 98 ++--- .../training/reactions.py | 11 +- .../training/reactions.py | 322 ++++++++------ .../training/reactions.py | 17 +- .../training/reactions.py | 44 +- .../training/reactions.py | 154 +++---- .../training/dictionary.txt | 7 - .../training/reactions.py | 71 ++-- .../Surface/Arevalo_Pt111/reactions.py | 46 +- .../Surface/Ishikawa_Rh111/reactions.py | 2 +- .../Surface/Rebrov_Pt111/reactions.py | 2 +- .../Surface/Roldan_Cu111/reactions.py | 2 +- .../Surface/Roldan_Ir111/reactions.py | 4 +- .../Surface/Roldan_Ru0001/reactions.py | 2 +- .../Surface/Schneider_Pd111/reactions.py | 2 +- .../Surface/Schneider_Pd211/reactions.py | 2 +- .../Surface/Schneider_Pt111/reactions.py | 2 +- .../Surface/Schneider_Pt211/reactions.py | 4 +- .../Surface/Schneider_Rh111/reactions.py | 2 +- .../Surface/Vlachos_Pt111/dictionary.txt | 12 +- .../Surface/Vlachos_Pt111/reactions.py | 16 +- .../Surface/Vlachos_Rh/dictionary.txt | 12 +- .../libraries/Surface/Vlachos_Rh/reactions.py | 12 +- 35 files changed, 928 insertions(+), 792 deletions(-) diff --git a/input/kinetics/families/Surface_Abstraction/training/dictionary.txt b/input/kinetics/families/Surface_Abstraction/training/dictionary.txt index 079278322e..f91772612b 100644 --- a/input/kinetics/families/Surface_Abstraction/training/dictionary.txt +++ b/input/kinetics/families/Surface_Abstraction/training/dictionary.txt @@ -93,12 +93,3 @@ CH2X 3 H u0 p0 c0 {1,S} 4 *5 X u0 p0 c0 {1,D} -CX -1 *1 C u0 p1 c0 {2,D} -2 *2 X u0 p0 c0 {1,D} - -CHX -1 *1 C u0 p1 c0 {2,S} {3,S} -2 *4 H u0 p0 c0 {1,S} -3 *2 X u0 p0 c0 {1,S} - diff --git a/input/kinetics/families/Surface_Abstraction/training/reactions.py b/input/kinetics/families/Surface_Abstraction/training/reactions.py index 6e50356f71..8ad248ec32 100644 --- a/input/kinetics/families/Surface_Abstraction/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction/training/reactions.py @@ -9,11 +9,11 @@ """ entry( - index = 24, + index = 1, label = "CH2X_1 + HOX_3 <=> CH3X_4 + OX_5", degeneracy = 1, kinetics = SurfaceArrhenius( - A=(1.39E17, 'm^2/(mol*s)'), + A=(1.39e17, 'm^2/(mol*s)'), n = 0.101, Ea=(19000.0, 'J/mol'), Tmin = (298, 'K'), @@ -30,11 +30,11 @@ ) entry( - index = 26, + index = 2, label = "CHX_1 + HOX_3 <=> CH2X_4 + OX_5", degeneracy = 1, kinetics = SurfaceArrhenius( - A=(4.40E18, 'm^2/(mol*s)'), + A=(4.40e18, 'm^2/(mol*s)'), n = 0.101, Ea=(42400.0, 'J/mol'), Tmin = (298, 'K'), @@ -52,11 +52,11 @@ #Delgado has this reaction as exothermic. However, our own thermo has this reaction as endothermic. removing and replacing with reverse direction, R28. #entry( -# index = 27, +# index = 3, # label = "OX_5 + CHX_4 <=> HOX_3 + CX_1 ", # degeneracy = 1, # kinetics = SurfaceArrhenius( -# A=(2.47E17, 'm^2/(mol*s)'), +# A=(2.47e17, 'm^2/(mol*s)'), # n = 0.312, # Ea=(57700.0, 'J/mol'), # Tmin = (298, 'K'), @@ -73,11 +73,11 @@ #) entry( - index = 28, + index = 4, label = "HOX_3 + CX_1 <=> OX_5 + CHX_4 ", degeneracy = 1, kinetics = SurfaceArrhenius( - A=(2.43E17, 'm^2/(mol*s)'), + A=(2.43e17, 'm^2/(mol*s)'), n = -0.312, Ea=(118900.0, 'J/mol'), Tmin = (298, 'K'), @@ -94,7 +94,7 @@ ) entry( - index = 39, + index = 5, label = "O* + HCO* <=> OH* + CO*", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -111,16 +111,16 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -1.0e13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 3.298e17 m^2/(mol*s) -""", +1.0e13 1/s / 2.943e‐5 mol/m^2 = 3.298e17 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 40, + index = 6, label = "H2NX + O* <=> OH* + HNX", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(2.22e+21,'cm^2/(mol*s)'), n=0, Ea=(78156.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.22e21,'cm^2/(mol*s)'), n=0, Ea=(78156.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction""", longDesc = @@ -141,10 +141,10 @@ ) entry( - index = 41, + index = 7, label = "HNX-2 + O* <=> OH* + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.14e+21,'cm^2/(mol*s)'), n=0, Ea=(154384,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.14e21,'cm^2/(mol*s)'), n=0, Ea=(154384,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction""", longDesc = @@ -166,10 +166,10 @@ ) entry( - index = 42, + index = 8, label = "H2NX + O* <=> OH* + HNX", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(2.457e+21,'cm^2/(mol*s)'), n=0, Ea=(87000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.457e21,'cm^2/(mol*s)'), n=0, Ea=(87000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction""", longDesc = @@ -188,10 +188,10 @@ ) entry( - index = 43, + index = 9, label = "HNX-2 + O* <=> OH* + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.061e+21,'cm^2/(mol*s)'), n=0, Ea=(84000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.061e21,'cm^2/(mol*s)'), n=0, Ea=(84000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction""", longDesc = @@ -210,10 +210,10 @@ ) entry( - index = 44, + index = 10, label = "H2NX + O* <=> OH* + HNX", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(106139,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(106139,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction""", longDesc = @@ -236,10 +236,10 @@ ) entry( - index = 45, + index = 11, label = "HNX-2 + O* <=> OH* + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(142805,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(142805,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction""", longDesc = @@ -262,10 +262,10 @@ ) entry( - index = 46, + index = 12, label = "H2NX + O* <=> OH* + HNX", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(2.44e+21,'cm^2/(mol*s)'), n=0, Ea=(104209,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.44e21,'cm^2/(mol*s)'), n=0, Ea=(104209,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction""", longDesc = @@ -288,10 +288,10 @@ ) entry( - index = 47, + index = 13, label = "HNX-2 + O* <=> OH* + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.44e+21,'cm^2/(mol*s)'), n=0, Ea=(23157.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.44e21,'cm^2/(mol*s)'), n=0, Ea=(23157.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction""", longDesc = @@ -314,10 +314,10 @@ ) entry( - index = 48, + index = 14, label = "H2NX + O* <=> OH* + HNX", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(85876.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(85876.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction""", longDesc = @@ -340,10 +340,10 @@ ) entry( - index = 49, + index = 15, label = "HNX-2 + O* <=> OH* + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(133156,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(133156,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction""", longDesc = @@ -366,10 +366,10 @@ ) entry( - index = 50, + index = 16, label = "H2NX + O* <=> OH* + HNX", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(6.29e+21,'cm^2/(mol*s)'), n=0, Ea=(71402.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(6.29e21,'cm^2/(mol*s)'), n=0, Ea=(71402.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction""", longDesc = @@ -394,10 +394,10 @@ ) entry( - index = 51, + index = 17, label = "HNX-2 + O* <=> OH* + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.832e+22,'cm^2/(mol*s)'), n=0, Ea=(84911.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.832e22,'cm^2/(mol*s)'), n=0, Ea=(84911.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction""", longDesc = @@ -422,10 +422,10 @@ ) entry( - index = 52, + index = 18, label = "HNX-2 + O* <=> OH* + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.03e+21,'cm^2/(mol*s)'), n=0, Ea=(58500,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.03e21,'cm^2/(mol*s)'), n=0, Ea=(58500,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction""", longDesc = @@ -446,10 +446,10 @@ ) entry( - index = 53, + index = 19, label = "H2NX + O* <=> OH* + HNX", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(1.78e+21,'cm^2/(mol*s)'), n=0, Ea=(139910,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.78e21,'cm^2/(mol*s)'), n=0, Ea=(139910,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction""", longDesc = @@ -471,10 +471,10 @@ ) entry( - index = 54, + index = 20, label = "HNX-2 + O* <=> OH* + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.29e+21,'cm^2/(mol*s)'), n=0, Ea=(45350.3,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.29e21,'cm^2/(mol*s)'), n=0, Ea=(45350.3,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction""", longDesc = @@ -496,10 +496,10 @@ ) entry( - index = 55, + index = 21, label = "CH3X + O* <=> OH* + CH2X", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(7.93e+19,'cm^2/(mol*s)'), n=-0.23, Ea=(10.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(7.93e19,'cm^2/(mol*s)'), n=-0.23, Ea=(10.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction""", longDesc = @@ -522,10 +522,10 @@ ) entry( - index = 56, + index = 22, label = "HOX_3 + CHX_1 <=> CH2X_4 + OX_5", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.43e+19,'cm^2/(mol*s)'), n=0.414, Ea=(44.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.43e19,'cm^2/(mol*s)'), n=0.414, Ea=(44.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction""", longDesc = @@ -548,10 +548,34 @@ ) entry( - index = 57, - label = "HOX_3 + CX <=> CHX + OX_5", + index = 23, + label = "CH3X + O* <=> OH* + CH2X", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(1.19e20,'cm^2/(mol*s)'), n=-0.1906, Ea=(6.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: CH3_X + O_X <=> CH2_X + OH_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 2.96E+11(1/s)/2.49E-9(mol/cm^2) = 1.19E+20 cm^2/(mol*s) + +This is R63 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 24, + label = "HOX_3 + CX_1 <=> CHX_4 + OX_5", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.57e+19,'cm^2/(mol*s)'), n=0.225, Ea=(27.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.57e19,'cm^2/(mol*s)'), n=0.225, Ea=(27.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction""", longDesc = @@ -573,27 +597,3 @@ facet = "111", ) -entry( - index = 58, - label = "CH3X + O* <=> OH* + CH2X", - degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(1.19e+20,'cm^2/(mol*s)'), n=-0.1906, Ea=(6.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), - rank = 3, - shortDesc = """Surface_Abstraction""", - longDesc = -""" -Training reaction from kinetics library: Surface/Vlachos_Rh -Original entry: CH3_X + O_X <=> CH2_X + OH_X -"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" -Vlachos et al. (2008) -Journal of Catalysis,259(2), 211-222, 0021-9517 -DOI: 10.1016/j.jcat.2008.08.008.D.G. - -Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -A = 2.96E+11(1/s)/2.49E-9(mol/cm^2) = 1.19E+20 cm^2/(mol*s) - -This is R63 in Table 4 -""", - metal = "Rh", -) - diff --git a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py index cb91f4d12e..89d72cbcdd 100644 --- a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py @@ -12,7 +12,7 @@ index = 1, label = "HOX + H3NX <=> H2NX + H2OX", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(1.97e+22,'cm^2/(mol*s)'), n=0, Ea=(33771.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.97e22,'cm^2/(mol*s)'), n=0, Ea=(33771.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_Single_vdW""", longDesc = @@ -37,7 +37,7 @@ index = 2, label = "HOX + H3NX <=> H2NX + H2OX", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(6.444e+19,'cm^2/(mol*s)'), n=0, Ea=(73000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(6.444e19,'cm^2/(mol*s)'), n=0, Ea=(73000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_Single_vdW""", longDesc = @@ -59,7 +59,7 @@ index = 3, label = "HOX + H3NX <=> H2NX + H2OX", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(68507.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(68507.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_Single_vdW""", longDesc = @@ -85,7 +85,7 @@ index = 4, label = "HOX + H3NX <=> H2NX + H2OX", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(2.44e+21,'cm^2/(mol*s)'), n=0, Ea=(70437.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.44e21,'cm^2/(mol*s)'), n=0, Ea=(70437.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_Single_vdW""", longDesc = @@ -111,7 +111,7 @@ index = 5, label = "HOX + H3NX <=> H2NX + H2OX", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(44385.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(44385.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_Single_vdW""", longDesc = @@ -137,7 +137,7 @@ index = 6, label = "HOX + H3NX <=> H2NX + H2OX", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(1.727e+21,'cm^2/(mol*s)'), n=0, Ea=(23157.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.727e21,'cm^2/(mol*s)'), n=0, Ea=(23157.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_Single_vdW""", longDesc = @@ -165,7 +165,7 @@ index = 7, label = "HOX + H3NX <=> H2NX + H2OX", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(3.11e+21,'cm^2/(mol*s)'), n=0, Ea=(80086.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.11e21,'cm^2/(mol*s)'), n=0, Ea=(80086.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_Single_vdW""", longDesc = @@ -190,7 +190,7 @@ index = 8, label = "H2NX-2 + H4N2X <=> H3N2X + H3NX-2", degeneracy = 4.0, - kinetics = SurfaceArrhenius(A=(3.38e+20,'cm^2/(mol*s)'), n=0.156, Ea=(40526,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.38e20,'cm^2/(mol*s)'), n=0.156, Ea=(40526,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_Single_vdW""", longDesc = @@ -215,8 +215,9 @@ index = 9, label = "H2NX-2 + H4N2X <=> H3N2X + H3NX-2", degeneracy = 4.0, - kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(19298,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(19298,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Roldan_Ir111 @@ -240,8 +241,9 @@ index = 10, label = "H2NX-2 + H2N2X <=> HN2X + H3NX-2", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(98419.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(98419.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Roldan_Ir111 diff --git a/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt index 0be95bbfbe..4ced559c71 100644 --- a/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt @@ -162,15 +162,6 @@ CH2X-2 3 *3 H u0 p0 c0 {1,S} 4 *5 X u0 p0 c0 {1,D} -CX -1 *4 C u0 p1 c0 {2,D} -2 *5 X u0 p0 c0 {1,D} - -CHX-2 -1 *4 C u0 p1 c0 {2,S} {3,S} -2 *3 H u0 p0 c0 {1,S} -3 *5 X u0 p0 c0 {1,S} - H3N2X 1 *4 N u0 p1 c0 {2,S} {3,S} {6,S} 2 N u0 p1 c0 {1,S} {4,S} {5,S} @@ -214,3 +205,29 @@ N2X2 3 *5 X u0 p0 c0 {1,D} 4 X u0 p0 c0 {2,D} +H2OX +1 *3 O u0 p2 c0 {2,S} {3,S} +2 *2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *1 X u0 p0 c0 + +HX +1 *2 H u0 p0 c0 {2,S} +2 *1 X u0 p0 c0 {1,S} + +CHO2X +1 *3 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 *4 C u0 p0 c0 {1,S} {2,D} {5,S} +4 H u0 p0 c0 {1,S} +5 *5 X u0 p0 c0 {3,S} + +CX +1 *4 C u0 p0 c0 {2,Q} +2 *5 X u0 p0 c0 {1,Q} + +CHX-2 +1 *4 C u0 p0 c0 {2,S} {3,T} +2 *3 H u0 p0 c0 {1,S} +3 *5 X u0 p0 c0 {1,T} + diff --git a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py index 1d6fb0adb0..c1e570e5a9 100644 --- a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py @@ -8,13 +8,13 @@ training set for generating rate rules to populate this kinetics family. """ -# reverse of 16, below +# reverse of 2, below # entry( -# index = 34, +# index = 1, # label = "H2O* + O* <=> OH_2* + OH_4*", # degeneracy = 2, # kinetics = SurfaceArrhenius( -# A = (8.14E20, 'm^2/(mol*s)'), +# A = (8.14e20, 'm^2/(mol*s)'), # n = -0.274, # Ea = (218400, 'J/mol'), # Tmin = (200, 'K'), @@ -30,9 +30,9 @@ # metal = "Ni", # ) -# reverse of 34, above +# reverse of 1, above entry( - index = 16, + index = 2, label = "OH_2* + OH_4* <=> H2O* + O*", degeneracy = 2, kinetics = SurfaceArrhenius( @@ -49,17 +49,17 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -1.675e12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 5.691e16 m^2/(mol*s) -""", +1.675e12 1/s / 2.943e‐5 mol/m^2 = 5.691e16 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 21, + index = 3, label = "CH4* + O* <=> CH3* + OH_4*", degeneracy = 4, kinetics = SurfaceArrhenius( - A = (5.62E20, 'm^2/(mol*s)'), + A = (5.62e20, 'm^2/(mol*s)'), n = -0.101, Ea = (92700, 'J/mol'), Tmin = (200, 'K'), @@ -76,7 +76,7 @@ ) entry( - index = 40, + index = 4, label = "OH_2* + HCO* <=> H2O* + CO*", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -93,17 +93,17 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -9.597e12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 3.261e17 m^2/(mol*s) -""", +9.597e12 1/s / 2.943e‐5 mol/m^2 = 3.261e17 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 41, + index = 5, label = "HCOO_1* + HCO* <=> HCOOH* + CO*", degeneracy = 1, kinetics = SurfaceArrhenius( - A = (7.475e18, 'm^2/(mol*s)'), + A = (7.475E18, 'm^2/(mol*s)'), n = 0., Ea = (13.8363288, 'kcal/mol'), Tmin = (298, 'K'), @@ -116,13 +116,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -2.2e14 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 7.475e18 m^2/(mol*s) -""", +2.2e14 1/s / 2.943e‐5 mol/m^2 = 7.475e18 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 45, + index = 6, label = "CH3O* + HCO* <=> CH3OH* + CO*", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -139,13 +139,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -1.934e12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 6.572e16 m^2/(mol*s) -""", +1.934e12 1/s / 2.943e‐5 mol/m^2 = 6.572e16 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 46, + index = 7, label = "CH3O* + HCOO_5* <=> HCOOCH3* + O*", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -162,16 +162,16 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -6.934e11 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 2.356e16 m^2/(mol*s) -""", +6.934e11 1/s / 2.943e‐5 mol/m^2 = 2.356e16 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 47, + index = 8, label = "O* + H3NX <=> H2NX + OH_4*", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(1.01e+21,'cm^2/(mol*s)'), n=0, Ea=(67543,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.01e21,'cm^2/(mol*s)'), n=0, Ea=(67543,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -193,10 +193,10 @@ ) entry( - index = 48, + index = 9, label = "H2NX-2 + OH_2* <=> H2O* + HNX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(6.04e+21,'cm^2/(mol*s)'), n=0, Ea=(964.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(6.04e21,'cm^2/(mol*s)'), n=0, Ea=(964.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -218,10 +218,10 @@ ) entry( - index = 49, + index = 10, label = "HNX-2 + OH_2* <=> H2O* + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.38e+21,'cm^2/(mol*s)'), n=0, Ea=(39560.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.38e21,'cm^2/(mol*s)'), n=0, Ea=(39560.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -243,10 +243,10 @@ ) entry( - index = 50, + index = 11, label = "OH_2* + OH_4* <=> H2O* + O*", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.25e+21,'cm^2/(mol*s)'), n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.25e21,'cm^2/(mol*s)'), n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -267,10 +267,10 @@ ) entry( - index = 51, + index = 12, label = "O* + H3NX <=> H2NX + OH_4*", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(4.833e+20,'cm^2/(mol*s)'), n=0, Ea=(42000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.833e20,'cm^2/(mol*s)'), n=0, Ea=(42000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -289,10 +289,10 @@ ) entry( - index = 52, + index = 13, label = "H2NX-2 + OH_2* <=> H2O* + HNX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.369e+21,'cm^2/(mol*s)'), n=0, Ea=(22000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.369e21,'cm^2/(mol*s)'), n=0, Ea=(22000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -311,10 +311,10 @@ ) entry( - index = 53, + index = 14, label = "HNX-2 + OH_2* <=> H2O* + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.054e+20,'cm^2/(mol*s)'), n=0, Ea=(35000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.054e20,'cm^2/(mol*s)'), n=0, Ea=(35000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -333,10 +333,10 @@ ) entry( - index = 54, + index = 15, label = "O* + H3NX <=> H2NX + OH_4*", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(86841,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(86841,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -359,10 +359,10 @@ ) entry( - index = 55, + index = 16, label = "H2NX-2 + OH_2* <=> H2O* + HNX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(25087.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(25087.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -385,10 +385,10 @@ ) entry( - index = 56, + index = 17, label = "HNX-2 + OH_2* <=> H2O* + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(39561,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(39561,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -411,10 +411,10 @@ ) entry( - index = 57, + index = 18, label = "OH_2* + OH_4* <=> H2O* + O*", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -436,10 +436,10 @@ ) entry( - index = 58, + index = 19, label = "O* + H3NX <=> H2NX + OH_4*", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(2.44e+21,'cm^2/(mol*s)'), n=0, Ea=(39560.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.44e21,'cm^2/(mol*s)'), n=0, Ea=(39560.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -462,10 +462,10 @@ ) entry( - index = 59, + index = 20, label = "H2NX-2 + OH_2* <=> H2O* + HNX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.44e+21,'cm^2/(mol*s)'), n=0, Ea=(73332.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.44e21,'cm^2/(mol*s)'), n=0, Ea=(73332.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -488,10 +488,10 @@ ) entry( - index = 60, + index = 21, label = "HNX-2 + OH_2* <=> H2O* + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.44e+21,'cm^2/(mol*s)'), n=0, Ea=(41490.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.44e21,'cm^2/(mol*s)'), n=0, Ea=(41490.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -514,10 +514,10 @@ ) entry( - index = 61, + index = 22, label = "OH_2* + OH_4* <=> H2O* + O*", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.44e+21,'cm^2/(mol*s)'), n=0, Ea=(71402.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.44e21,'cm^2/(mol*s)'), n=0, Ea=(71402.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -540,10 +540,10 @@ ) entry( - index = 62, + index = 23, label = "O* + H3NX <=> H2NX + OH_4*", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(69472.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(69472.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -566,10 +566,10 @@ ) entry( - index = 63, + index = 24, label = "H2NX-2 + OH_2* <=> H2O* + HNX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(7719.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(7719.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -592,10 +592,10 @@ ) entry( - index = 64, + index = 25, label = "HNX-2 + OH_2* <=> H2O* + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(46315.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(46315.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -618,10 +618,10 @@ ) entry( - index = 65, + index = 26, label = "OH_2* + OH_4* <=> H2O* + O*", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -643,10 +643,10 @@ ) entry( - index = 66, + index = 27, label = "O* + H3NX <=> H2NX + OH_4*", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(6.4e+20,'cm^2/(mol*s)'), n=0, Ea=(92630.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(6.4e20,'cm^2/(mol*s)'), n=0, Ea=(92630.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -671,10 +671,10 @@ ) entry( - index = 67, + index = 28, label = "H2NX-2 + OH_2* <=> H2O* + HNX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.5e+21,'cm^2/(mol*s)'), n=0, Ea=(13508.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.5e21,'cm^2/(mol*s)'), n=0, Ea=(13508.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -699,10 +699,10 @@ ) entry( - index = 68, + index = 29, label = "HNX-2 + OH_2* <=> H2O* + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.52e+20,'cm^2/(mol*s)'), n=0, Ea=(22192.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.52e20,'cm^2/(mol*s)'), n=0, Ea=(22192.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -727,10 +727,10 @@ ) entry( - index = 69, + index = 30, label = "O* + H3NX <=> H2NX + OH_4*", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(6.85e+23,'cm^2/(mol*s)'), n=0, Ea=(157,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(6.85e23,'cm^2/(mol*s)'), n=0, Ea=(157,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -751,10 +751,10 @@ ) entry( - index = 70, + index = 31, label = "O* + HNOX <=> NOX + OH_4*", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(8.05e+23,'cm^2/(mol*s)'), n=0, Ea=(11800,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(8.05e23,'cm^2/(mol*s)'), n=0, Ea=(11800,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -775,10 +775,10 @@ ) entry( - index = 71, + index = 32, label = "HNX-2 + OH_2* <=> H2O* + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.03e+19,'cm^2/(mol*s)'), n=0, Ea=(79000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.03e19,'cm^2/(mol*s)'), n=0, Ea=(79000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -799,10 +799,10 @@ ) entry( - index = 72, + index = 33, label = "O* + H2O* <=> OH_2* + OH_4*", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(4.03e+19,'cm^2/(mol*s)'), n=0, Ea=(52700,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.03e19,'cm^2/(mol*s)'), n=0, Ea=(52700,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -823,10 +823,10 @@ ) entry( - index = 73, + index = 34, label = "O* + H3NX <=> H2NX + OH_4*", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(1.56e+21,'cm^2/(mol*s)'), n=0, Ea=(55964.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.56e21,'cm^2/(mol*s)'), n=0, Ea=(55964.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -848,10 +848,10 @@ ) entry( - index = 74, + index = 35, label = "H2NX-2 + OH_2* <=> H2O* + HNX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.48e+21,'cm^2/(mol*s)'), n=0, Ea=(76227.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.48e21,'cm^2/(mol*s)'), n=0, Ea=(76227.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -873,10 +873,10 @@ ) entry( - index = 75, + index = 36, label = "HNX-2 + OH_2* <=> H2O* + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.01e+21,'cm^2/(mol*s)'), n=0, Ea=(81051.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.01e21,'cm^2/(mol*s)'), n=0, Ea=(81051.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -898,12 +898,12 @@ ) entry( - index = 76, + index = 37, label = "OH_2* + OH_4* <=> H2O* + O*", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.59e+21,'cm^2/(mol*s)'), n=0, Ea=(81051.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.59e21,'cm^2/(mol*s)'), n=0, Ea=(81051.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Reverse R95""", + shortDesc = """Surface_Abstraction_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Schneider_Pt211 @@ -923,10 +923,10 @@ ) entry( - index = 77, + index = 38, label = "O* + H2O* <=> OH_2* + OH_4*", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(1.74e+19,'cm^2/(mol*s)'), n=0.082, Ea=(8.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.74e19,'cm^2/(mol*s)'), n=0.082, Ea=(8.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -949,10 +949,10 @@ ) entry( - index = 78, + index = 39, label = "CH2X + H2O* <=> OH_2* + CH3X", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(3.3e+19,'cm^2/(mol*s)'), n=0.099, Ea=(14.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.3e19,'cm^2/(mol*s)'), n=0.099, Ea=(14.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -975,10 +975,10 @@ ) entry( - index = 79, + index = 40, label = "CHX + H2O* <=> OH_2* + CH2X-2", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(7.29e+19,'cm^2/(mol*s)'), n=0.269, Ea=(34,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(7.29e19,'cm^2/(mol*s)'), n=0.269, Ea=(34,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -1001,36 +1001,10 @@ ) entry( - index = 80, - label = "CX + H2O* <=> OH_2* + CHX-2", - degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(4.19e+19,'cm^2/(mol*s)'), n=0.09, Ea=(15.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), - rank = 3, - shortDesc = """Surface_Abstraction_vdW""", - longDesc = -""" -Training reaction from kinetics library: Surface/Vlachos_Pt111 -Original entry: C_X + H2O_X <=> CH_X + OH_X -"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, -Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" -D.G. Vlachos et al. (2007) -Industrial & Engineering Chemistry Research, 46(16), 5310-5324. -DOI: 10.1021/ie070322c - -This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 1.04E11(1/s)/2.483E-9(mol/cm^2) = 4.19E19 cm^2/(mol*s) - -This is R73 in Table 2 -""", - metal = "Pt", - facet = "111", -) - -entry( - index = 81, + index = 41, label = "CH2X + H2O* <=> OH_2* + CH3X", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(2.3e+19,'cm^2/(mol*s)'), n=-0.7208, Ea=(20.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.3e19,'cm^2/(mol*s)'), n=-0.7208, Ea=(20.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -1051,58 +1025,10 @@ ) entry( - index = 82, - label = "CHX + H2O* <=> OH_2* + CH2X-2", - degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(2.61e+20,'cm^2/(mol*s)'), n=-0.5033, Ea=(21.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), - rank = 3, - shortDesc = """Surface_Abstraction_vdW""", - longDesc = -""" -Training reaction from kinetics library: Surface/Vlachos_Rh -Original entry: CH_X + H2O_X <=> CH2_X + OH_X -"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" -Vlachos et al. (2008) -Journal of Catalysis,259(2), 211-222, 0021-9517 -DOI: 10.1016/j.jcat.2008.08.008.D.G. - -Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -A = 6.49E+11(1/s)/2.49E-9(mol/cm^2) = 2.61E+20 cm^2/(mol*s) - -This is R71 in Table 4 -""", - metal = "Rh", -) - -entry( - index = 83, - label = "CX + H2O* <=> OH_2* + CHX-2", - degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(3.91e+20,'cm^2/(mol*s)'), n=-0.3882, Ea=(17,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), - rank = 3, - shortDesc = """Surface_Abstraction_vdW""", - longDesc = -""" -Training reaction from kinetics library: Surface/Vlachos_Rh -Original entry: C_X + H2O_X <=> CH_X + OH_X -"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" -Vlachos et al. (2008) -Journal of Catalysis,259(2), 211-222, 0021-9517 -DOI: 10.1016/j.jcat.2008.08.008.D.G. - -Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -A = 9.74E+11(1/s)/2.49E-9(mol/cm^2) = 3.91E+20 cm^2/(mol*s) - -This is R73 in Table 4 -""", - metal = "Rh", -) - -entry( - index = 84, + index = 42, label = "H2NX + H2NX-2 <=> H3NX + HNX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.16e+20,'cm^2/(mol*s)'), n=0.667, Ea=(43420,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.16e20,'cm^2/(mol*s)'), n=0.667, Ea=(43420,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -1124,10 +1050,10 @@ ) entry( - index = 85, + index = 43, label = "H3N2X + H2NX <=> H3NX + H2N2X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.02e+19,'cm^2/(mol*s)'), n=1.073, Ea=(51140,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.02e19,'cm^2/(mol*s)'), n=1.073, Ea=(51140,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -1149,10 +1075,10 @@ ) entry( - index = 86, + index = 44, label = "H2N2X2 + H2NX <=> H3NX + HN2X2", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.94e+20,'cm^2/(mol*s)'), n=0.577, Ea=(24122,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.94e20,'cm^2/(mol*s)'), n=0.577, Ea=(24122,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -1174,10 +1100,10 @@ ) entry( - index = 87, + index = 45, label = "HN2X2-2 + H2NX <=> H3NX + N2X2", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.04e+19,'cm^2/(mol*s)'), n=0.86, Ea=(7719,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.04e19,'cm^2/(mol*s)'), n=0.86, Ea=(7719,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -1199,10 +1125,10 @@ ) entry( - index = 88, + index = 46, label = "H2N2X2 + H2NX <=> H3NX + HN2X2", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(18333.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(18333.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -1225,10 +1151,10 @@ ) entry( - index = 89, + index = 47, label = "H3N2X + H2NX <=> H3NX + H2N2X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(35701.3,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(35701.3,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -1251,10 +1177,10 @@ ) entry( - index = 90, + index = 48, label = "HN2X2-2 + H2NX <=> H3NX + N2X2", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(53069.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(53069.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -1277,10 +1203,10 @@ ) entry( - index = 91, + index = 49, label = "H2NX + H2NX-2 <=> H3NX + HNX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(32806.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(32806.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -1303,10 +1229,10 @@ ) entry( - index = 92, + index = 50, label = "HNX-2 + H2NX <=> H3NX + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(94560.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(94560.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -1328,3 +1254,103 @@ facet = "111", ) +entry( + index = 51, + label = "CO* + H2OX <=> HX + CHO2X", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(1.34e20,'cm^2/(mol*s)'), n=-0.2222, Ea=(19.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: CO_X + H2O_X <=> COOH_X + H_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 3.34E+11(1/s)/2.49E-9(mol/cm^2) = 1.34E+20 cm^2/(mol*s) + +This is R35 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 52, + label = "CX + H2O* <=> OH_2* + CHX-2", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(3.91e20,'cm^2/(mol*s)'), n=-0.3882, Ea=(17,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: C_X + H2O_X <=> CH_X + OH_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 9.74E+11(1/s)/2.49E-9(mol/cm^2) = 3.91E+20 cm^2/(mol*s) + +This is R73 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 53, + label = "CO* + H2OX <=> HX + CHO2X", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(4.43e19,'cm^2/(mol*s)'), n=0.492, Ea=(23.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CO_X + H2O_X <=> COOH_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.10E11(1/s)/2.483E-9(mol/cm^2) = 4.43E19 cm^2/(mol*s) + +This is R33 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 54, + label = "CX + H2O* <=> OH_2* + CHX-2", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(4.19e19,'cm^2/(mol*s)'), n=0.09, Ea=(15.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: C_X + H2O_X <=> CH_X + OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.04E11(1/s)/2.483E-9(mol/cm^2) = 4.19E19 cm^2/(mol*s) + +This is R73 in Table 2 +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py b/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py index 83649364dd..51503301dd 100644 --- a/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py @@ -9,7 +9,7 @@ """ entry( - index = 11, + index = 1, label = "COOH* + X_5 <=> CO2_2* + H*", degeneracy = 2, kinetics = SurfaceArrhenius( @@ -26,18 +26,18 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -2.3626e13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 8.028e17 m^2/(mol*s) -""", +2.3626e13 1/s / 2.943e‐5 mol/m^2 = 8.028e17 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) -#reverse of 11 +#reverse of 1 # entry( -# index = 45, +# index = 2, # label = "CO2_2* + H* <=> COOH* + X_5", # degeneracy = 2, # kinetics = SurfaceArrhenius( -# A = (6.25E20, 'm^2/(mol*s)'), +# A = (6.25e20, 'm^2/(mol*s)'), # n = -0.475, # Ea = (117200, 'J/mol'), # Tmin = (200, 'K'), @@ -54,7 +54,7 @@ # ) entry( - index = 17, + index = 3, label = "CO2* + H* <=> HCOO* + X_5", degeneracy = 2, kinetics = SurfaceArrhenius( @@ -71,13 +71,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -3.658e13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 1.243e18 m^2/(mol*s) -""", +3.658e13 1/s / 2.943e‐5 mol/m^2 = 1.243e18 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 20, + index = 4, label = "HCOOH* + H* <=> CH3O2_2* + X_5", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -94,13 +94,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -6.244e14 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 2.122e19 m^2/(mol*s) -""", +6.244e14 1/s / 2.943e‐5 mol/m^2 = 2.122e19 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 23, + index = 5, label = "CH3O2* + X_5 <=> CH2O* + OH*", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -117,13 +117,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -1.001e13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 3.401e17 m^2/(mol*s) -""", +1.001e13 1/s / 2.943e‐5 mol/m^2 = 3.401e17 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 24, + index = 6, label = "CH2O* + H* <=> CH3O_1* + X_5", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -140,13 +140,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -1.815e13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 6.167e17 m^2/(mol*s) -""", +1.815e13 1/s / 2.943e‐5 mol/m^2 = 6.167e17 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 31, + index = 7, label = "CH2O_2* + H* <=> CH2OH* + X_5", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -163,13 +163,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -9.518e14 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 3.234e19 m^2/(mol*s) -""", +9.518e14 1/s / 2.943e‐5 mol/m^2 = 3.234e19 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 47, + index = 8, label = "CH3O_5* + CH2O* <=> H2COOCH3* + X_5", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -186,13 +186,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -6.405e13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 2.176e18 m^2/(mol*s) -""", +6.405e13 1/s / 2.943e‐5 mol/m^2 = 2.176e18 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 48, + index = 9, label = "HCOOCH3* + H* <=> H2COOCH3_2* + X_5", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -209,42 +209,16 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -1.536e12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 5.219e16 m^2/(mol*s) -""", +1.536e12 1/s / 2.943e‐5 mol/m^2 = 5.219e16 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 49, - label = "X_5 + HCOO* <=> CO2* + H*", - degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.27e+19,'cm^2/(mol*s)'), n=0.549, Ea=(1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), - rank = 3, - shortDesc = """Surface_Addition_Single_vdW""", - longDesc = -""" -Training reaction from kinetics library: Surface/Vlachos_Pt111 -Original entry: COOH_X + X <=> CO2_X + H_X -"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, -Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" -D.G. Vlachos et al. (2007) -Industrial & Engineering Chemistry Research, 46(16), 5310-5324. -DOI: 10.1021/ie070322c - -This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 1.06E11(1/s)/2.483E-9(mol/cm^2) = 4.27E19 cm^2/(mol*s) - -This is R31 in Table 1 -""", - metal = "Pt", - facet = "111", -) - -entry( - index = 50, + index = 10, label = "X_5 + CH3O_1* <=> CH2O* + H*", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(5.03e+19,'cm^2/(mol*s)'), n=0.192, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(5.03e19,'cm^2/(mol*s)'), n=0.192, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Addition_Single_vdW""", longDesc = @@ -267,10 +241,10 @@ ) entry( - index = 51, + index = 11, label = "X_5 + CH2OH* <=> CH2O_2* + H*", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.59e+19,'cm^2/(mol*s)'), n=-0.104, Ea=(7.9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.59e19,'cm^2/(mol*s)'), n=-0.104, Ea=(7.9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Addition_Single_vdW""", longDesc = @@ -293,10 +267,10 @@ ) entry( - index = 52, - label = "X_5 + HCOO* <=> CO2* + H*", + index = 12, + label = "X_5 + COOH* <=> CO2_2* + H*", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.02e+18,'cm^2/(mol*s)'), n=-0.4424, Ea=(7.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.02e18,'cm^2/(mol*s)'), n=-0.4424, Ea=(7.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Addition_Single_vdW""", longDesc = @@ -316,3 +290,29 @@ metal = "Rh", ) +entry( + index = 13, + label = "X_5 + COOH* <=> CO2_2* + H*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.27e19,'cm^2/(mol*s)'), n=0.549, Ea=(1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Addition_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: COOH_X + X <=> CO2_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.06E11(1/s)/2.483E-9(mol/cm^2) = 4.27E19 cm^2/(mol*s) + +This is R31 in Table 1 +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/dictionary.txt index 951a08b370..5975b5f4a4 100644 --- a/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/dictionary.txt @@ -21,6 +21,14 @@ CH3O2* 6 H u0 p0 c0 {1,S} 7 *1 X u0 p0 c0 {2,S} +CH3O* +1 *2 O u0 p2 c0 {2,S} {6,S} +2 *3 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 *5 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 *1 X u0 p0 c0 {1,S} + CO* 1 O u0 p2 c0 {2,D} 2 *4 C u0 p0 c0 {1,D} {3,D} @@ -33,13 +41,9 @@ CH2O* 4 H u0 p0 c0 {2,S} 5 *1 X u0 p0 c0 -CH3O* -1 *2 O u0 p2 c0 {2,S} {6,S} -2 *3 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} -3 *5 H u0 p0 c0 {2,S} -4 H u0 p0 c0 {2,S} -5 H u0 p0 c0 {2,S} -6 *1 X u0 p0 c0 {1,S} +OX +1 *4 O u0 p2 c0 {2,D} +2 *6 X u0 p0 c0 {1,D} HOX 1 *4 O u0 p2 c0 {2,S} {3,S} @@ -47,19 +51,15 @@ HOX 3 *6 X u0 p0 c0 {1,S} CO2X -1 *2 O u0 p2 c0 {3,D} +1 *3 O u0 p2 c0 {3,D} 2 O u0 p2 c0 {3,D} -3 *3 C u0 p0 c0 {1,D} {2,D} +3 *2 C u0 p0 c0 {1,D} {2,D} 4 *1 X u0 p0 c0 CHO2X -1 *2 O u0 p2 c0 {3,S} {5,S} +1 *3 O u0 p2 c0 {3,S} {4,S} 2 O u0 p2 c0 {3,D} -3 *3 C u0 p0 c0 {1,S} {2,D} {4,S} -4 *5 H u0 p0 c0 {3,S} -5 *1 X u0 p0 c0 {1,S} - -OX -1 *4 O u0 p2 c0 {2,D} -2 *6 X u0 p0 c0 {1,D} +3 *2 C u0 p0 c0 {1,S} {2,D} {5,S} +4 *5 H u0 p0 c0 {1,S} +5 *1 X u0 p0 c0 {3,S} diff --git a/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/reactions.py index b5c393892e..0524b871b2 100644 --- a/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/reactions.py @@ -9,7 +9,7 @@ """ entry( - index = 43, + index = 1, label = "HCOOH* + HCO* <=> CH3O2* + CO*", kinetics = SurfaceArrhenius( A = (1.814e16, 'm^2/(mol*s)'), @@ -25,13 +25,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -5.34e11 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 1.814e16 m^2/(mol*s) -""", +5.34e11 1/s / 2.943e‐5 mol/m^2 = 1.814e16 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 44, + index = 2, label = "CH2O* + HCO* <=> CH3O* + CO*", kinetics = SurfaceArrhenius( A = (3.398e17, 'm^2/(mol*s)'), @@ -47,15 +47,16 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -1.0e13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 3.398e17 m^2/(mol*s) -""", +1.0e13 1/s / 2.943e‐5 mol/m^2 = 3.398e17 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) + entry( - index = 45, + index = 3, label = "HOX + CO2X <=> CHO2X + OX", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(2.15e+19,'cm^2/(mol*s)'), n=0.097, Ea=(26.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.15e19,'cm^2/(mol*s)'), n=0.097, Ea=(26.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Abstraction_vdW""", longDesc = diff --git a/input/kinetics/families/Surface_Adsorption_Bidentate/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Bidentate/training/reactions.py index 1555acb379..fba7f6e8b9 100644 --- a/input/kinetics/families/Surface_Adsorption_Bidentate/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Bidentate/training/reactions.py @@ -34,7 +34,7 @@ index = 2, label = "N2X2 <=> N2 + X + X-2", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.68e+16,'1/s'), n=0, Ea=(10807,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.68e16,'1/s'), n=0, Ea=(10807,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Bidentate""", longDesc = diff --git a/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py index 3e43547cce..c5639b25c8 100644 --- a/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py @@ -53,7 +53,7 @@ ) # entry( -# index = 6, +# index = 3, # label = "HX_4 + HOX_1 <=> H2O + X_3 + Ni_4", # degeneracy = 1, # kinetics = SurfaceArrhenius( @@ -74,8 +74,9 @@ # """, # metal = "Pt" # ) + entry( - index = 3, + index = 4, label = "X_3 + X_4 + H2 <=> HX_3 + HX_4", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.129, n=0.858, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -98,7 +99,7 @@ ) entry( - index = 4, + index = 5, label = "X_3 + X_4 + CH4 <=> CH3X + HX_4", degeneracy = 2.0, kinetics = StickingCoefficient(A=0.116, n=0.154, Ea=(9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -121,7 +122,7 @@ ) entry( - index = 5, + index = 6, label = "X_3 + X_4 + H2 <=> HX_3 + HX_4", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.87, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -143,7 +144,7 @@ ) entry( - index = 6, + index = 7, label = "X_3 + X_4 + H2 <=> HX_3 + HX_4", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.773, n=0.9387, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -164,7 +165,7 @@ ) entry( - index = 7, + index = 8, label = "X_3 + X_4 + CH4 <=> CH3X + HX_4", degeneracy = 2.0, kinetics = StickingCoefficient(A=0.572, n=0.7883, Ea=(14.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -185,7 +186,7 @@ ) entry( - index = 8, + index = 9, label = "X_3 + X_4 + H2 <=> HX_3 + HX_4", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.0236, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), diff --git a/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt b/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt index 6ffa75d756..c88f45241f 100644 --- a/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt +++ b/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt @@ -109,3 +109,17 @@ CH3OX-2 5 H u0 p0 c0 {1,S} 6 *2 X u0 p0 c0 {2,S} +CHO2 +multiplicity 2 +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 *1 C u1 p0 c0 {1,S} {2,D} +4 H u0 p0 c0 {1,S} + +CHO2X +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 *1 C u0 p0 c0 {1,S} {2,D} {5,S} +4 H u0 p0 c0 {1,S} +5 *2 X u0 p0 c0 {3,S} + diff --git a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py index ba00a3aae8..6fa8e94855 100644 --- a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py @@ -8,7 +8,7 @@ training set for generating rate rules to populate this kinetics family. """ entry( - index = 48, + index = 1, label = "NO + X <=> NO_X", degeneracy = 1, kinetics = StickingCoefficient( @@ -30,10 +30,10 @@ ) entry( - index = 49, + index = 2, label = "NO_X <=> NO + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.41e+16,'1/s'), n=0, Ea=(154800,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.41e16,'1/s'), n=0, Ea=(154800,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = @@ -52,7 +52,7 @@ ) entry( - index = 50, + index = 3, label = "X + NO <=> NO_X", degeneracy = 1.0, kinetics = StickingCoefficient(A=1.4917e-06, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -68,17 +68,20 @@ This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A = ((2.78E2 /bar) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 30 g/mol * molar gas constant * 298 kelvin) + +This is R3 in Table 1 """, metal = "Pt", facet = "111", ) entry( - index = 51, + index = 4, label = "X + NO2 <=> NO2X", degeneracy = 2.0, kinetics = StickingCoefficient(A=1.4884e-06, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, + shortDesc = """Surface_Adsorption_Single""", longDesc = """ Training reaction from kinetics library: Surface/Arevalo_Pt111 @@ -89,16 +92,18 @@ This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A = ((2.24E2 /bar) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 46 g/mol * molar gas constant * 298 kelvin) + +This is R7 in Table 1 """, metal = "Pt", facet = "111", ) entry( - index = 52, + index = 5, label = "NO_X <=> NO + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.03e+24,'1/s'), n=0, Ea=(140000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.03e24,'1/s'), n=0, Ea=(140000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = @@ -119,7 +124,7 @@ ) entry( - index = 53, + index = 6, label = "X + NO <=> NO_X", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.1556, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -142,10 +147,10 @@ ) entry( - index = 54, + index = 7, label = "NO2X <=> NO2 + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(5.24e+22,'1/s'), n=0, Ea=(100000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(5.24e22,'1/s'), n=0, Ea=(100000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = @@ -165,10 +170,10 @@ ) entry( - index = 55, + index = 8, label = "NO_X <=> NO + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.05e+26,'1/s'), n=0, Ea=(184296,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.05e26,'1/s'), n=0, Ea=(184296,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = @@ -190,10 +195,10 @@ ) entry( - index = 56, + index = 9, label = "NO_X <=> NO + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.94e+25,'1/s'), n=0, Ea=(224822,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.94e25,'1/s'), n=0, Ea=(224822,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = @@ -215,7 +220,7 @@ ) entry( - index = 57, + index = 10, label = "X + HO <=> HOX", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.999, n=2, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -238,7 +243,7 @@ ) entry( - index = 58, + index = 11, label = "X + H <=> HX", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.384, n=1.832, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -261,7 +266,7 @@ ) entry( - index = 59, + index = 12, label = "X + CH <=> CHX", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.0135, n=0.051, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -284,7 +289,7 @@ ) entry( - index = 60, + index = 13, label = "X + CH3 <=> CH3X", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.16, n=-0.099, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -307,7 +312,7 @@ ) entry( - index = 61, + index = 14, label = "X + CH3O <=> CH3OX", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.149, n=0.054, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -330,7 +335,7 @@ ) entry( - index = 62, + index = 15, label = "X + CHO <=> CHOX", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.0114, n=0.096, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -353,7 +358,7 @@ ) entry( - index = 63, + index = 16, label = "X + CH3O-2 <=> CH3OX-2", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.0526, n=0.233, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -375,3 +380,26 @@ facet = "111", ) +entry( + index = 17, + label = "X + CHO2 <=> CHO2X", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.0634, n=-0.089, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: COOH + X <=> COOH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R27 in Table 1 +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py index a9f371bd39..5cc0447f97 100644 --- a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py @@ -9,10 +9,10 @@ """ entry( - index = 5, + index = 1, label = "H2O + X <=> H2OX", kinetics = StickingCoefficient( - A = 1.0E-1, + A = 1.0e-1, n = 0, Ea = (0, 'J/mol'), Tmin = (200, 'K'), @@ -29,10 +29,10 @@ ) entry( - index = 7, + index = 2, label = "CO2 + X <=> CO2X", kinetics = StickingCoefficient( - A = 7.0E-6, + A = 7.0e-6, n = 0, Ea = (0, 'J/mol'), Tmin = (200, 'K'), @@ -49,10 +49,10 @@ ) entry( - index = 11, + index = 3, label = "CH4 + X <=> CH4X", kinetics = StickingCoefficient( - A = 8.0E-3, + A = 8.0e-3, n = 0, Ea = (0, 'J/mol'), Tmin = (200, 'K'), @@ -69,10 +69,10 @@ ) entry( - index = 12, + index = 4, label = "H3NX <=> H3N + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.48e+09,'1/s'), n=0, Ea=(60900,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.48e09,'1/s'), n=0, Ea=(60900,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = @@ -91,10 +91,10 @@ ) entry( - index = 13, + index = 5, label = "X + N2 <=> N2X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.464e+21,'cm^3/(mol*s)'), n=0, Ea=(4000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.464e21,'cm^3/(mol*s)'), n=0, Ea=(4000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """N2 Surface_Adsorption_vdW""", longDesc = @@ -113,10 +113,10 @@ ) entry( - index = 14, + index = 6, label = "H3NX <=> H3N + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.03e+17,'1/s'), n=0, Ea=(75200,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.03e17,'1/s'), n=0, Ea=(75200,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = @@ -137,10 +137,10 @@ ) entry( - index = 15, + index = 7, label = "H2OX <=> H2O + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.03e+21,'1/s'), n=0, Ea=(40300,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.03e21,'1/s'), n=0, Ea=(40300,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = @@ -161,7 +161,7 @@ ) entry( - index = 16, + index = 8, label = "X + H3N <=> H3NX", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.00768, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -184,12 +184,12 @@ ) entry( - index = 17, + index = 9, label = "H2OX <=> H2O + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.38e+24,'1/s'), n=0, Ea=(18333.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.38e24,'1/s'), n=0, Ea=(18333.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Adsorption""", + shortDesc = """Surface_Adsorption_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Schneider_Pt111 @@ -209,12 +209,12 @@ ) entry( - index = 18, + index = 10, label = "N2OX <=> N2O + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(5.64e+24,'1/s'), n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(5.64e24,'1/s'), n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Adsorption_Double/Surface_Adsorption_vdW""", + shortDesc = """Surface_Adsorption_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Schneider_Pt111 @@ -233,12 +233,12 @@ ) entry( - index = 19, + index = 11, label = "H2OX <=> H2O + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.4e+24,'1/s'), n=0, Ea=(24122.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.4e24,'1/s'), n=0, Ea=(24122.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Adsorption""", + shortDesc = """Surface_Adsorption_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Schneider_Pt211 @@ -258,12 +258,12 @@ ) entry( - index = 20, + index = 12, label = "N2OX <=> N2O + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(5.69e+25,'1/s'), n=0, Ea=(9649,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(5.69e25,'1/s'), n=0, Ea=(9649,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Adsorption_Double/Surface_Adsorption_vdW""", + shortDesc = """Surface_Adsorption_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Schneider_Pt211 @@ -283,7 +283,7 @@ ) entry( - index = 21, + index = 13, label = "X + CO2-2 <=> CO2X-2", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.195, n=0.25, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -306,7 +306,7 @@ ) entry( - index = 22, + index = 14, label = "X + H2O <=> H2OX", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.108, n=1.162, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -329,7 +329,7 @@ ) entry( - index = 23, + index = 15, label = "X + CH4O <=> CH4OX", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.334, n=0.258, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -352,7 +352,7 @@ ) entry( - index = 24, + index = 16, label = "X + CH2O <=> CH2OX", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.0877, n=0.098, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -375,7 +375,7 @@ ) entry( - index = 25, + index = 17, label = "X + H3N <=> H3NX", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.00015, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -397,12 +397,12 @@ ) entry( - index = 26, + index = 18, label = "X + H2O <=> H2OX", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.0772, n=1.4067, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Adsorption""", + shortDesc = """Surface_Adsorption_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Vlachos_Rh @@ -418,7 +418,7 @@ ) entry( - index = 27, + index = 19, label = "X + CO2-2 <=> CO2X-2", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.367, n=-2.3294, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -439,7 +439,7 @@ ) entry( - index = 28, + index = 20, label = "X + H4N2 <=> H4N2X", degeneracy = 1.0, kinetics = StickingCoefficient(A=1.17e-06, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -461,7 +461,7 @@ ) entry( - index = 29, + index = 21, label = "X + H3N <=> H3NX", degeneracy = 1.0, kinetics = StickingCoefficient(A=0.000188, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -483,7 +483,7 @@ ) entry( - index = 30, + index = 22, label = "X + N2 <=> N2X", degeneracy = 1.0, kinetics = StickingCoefficient(A=5.5e-05, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), @@ -505,10 +505,10 @@ ) entry( - index = 31, + index = 23, label = "H3NX <=> H3N + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.68e+16,'1/s'), n=0, Ea=(88574.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.68e16,'1/s'), n=0, Ea=(88574.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = @@ -531,10 +531,10 @@ ) entry( - index = 32, + index = 24, label = "H2X <=> H2 + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.69e+16,'1/s'), n=0, Ea=(30972.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.69e16,'1/s'), n=0, Ea=(30972.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """H2 Surface_Adsorption_vdW""", longDesc = @@ -557,10 +557,10 @@ ) entry( - index = 33, + index = 25, label = "H3NX <=> H3N + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.9e+16,'1/s'), n=0, Ea=(72149.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.9e16,'1/s'), n=0, Ea=(72149.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = @@ -583,12 +583,12 @@ ) entry( - index = 34, + index = 26, label = "X + N2 <=> N2X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.9e+16,'cm^3/(mol*s)'), n=0, Ea=(24483,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.9e16,'cm^3/(mol*s)'), n=0, Ea=(24483,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Adsorption_Bidentate""", + shortDesc = """Surface_Adsorption_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Roldan_Ru0001 @@ -609,10 +609,10 @@ ) entry( - index = 35, + index = 27, label = "H2X <=> H2 + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.9e+16,'1/s'), n=0, Ea=(24483,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.9e16,'1/s'), n=0, Ea=(24483,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """H2 Surface_Adsorption_vdW""", longDesc = diff --git a/input/kinetics/families/Surface_Bidentate_Dissociation/training/reactions.py b/input/kinetics/families/Surface_Bidentate_Dissociation/training/reactions.py index a3d8431927..5d4ac602a7 100644 --- a/input/kinetics/families/Surface_Bidentate_Dissociation/training/reactions.py +++ b/input/kinetics/families/Surface_Bidentate_Dissociation/training/reactions.py @@ -11,8 +11,9 @@ index = 1, label = "H2N2X2 <=> HNX + HNX-2", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.49e+20,'1/s'), n=0.299, Ea=(76227,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.49e20,'1/s'), n=0.299, Ea=(76227,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, + shortDesc = """Surface_Bidentate_Dissociation""", longDesc = """ Training reaction from kinetics library: Surface/Roldan_Cu111 @@ -35,7 +36,7 @@ index = 2, label = "HN2X2 <=> HNX + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(8.81e+19,'1/s'), n=0.619, Ea=(137016,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(8.81e19,'1/s'), n=0.619, Ea=(137016,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Bidentate_Dissociation""", longDesc = @@ -60,7 +61,7 @@ index = 3, label = "N2X2 <=> NX-2 + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.62e+20,'1/s'), n=0.06, Ea=(452538,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.62e20,'1/s'), n=0.06, Ea=(452538,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Bidentate_Dissociation""", longDesc = @@ -85,7 +86,7 @@ index = 4, label = "HN2X2 <=> HNX + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.87e+21,'1/s'), n=0, Ea=(137981,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.87e21,'1/s'), n=0, Ea=(137981,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Bidentate_Dissociation""", longDesc = @@ -111,7 +112,7 @@ index = 5, label = "NX-2 + NX <=> N2X2", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.55e+21,'cm^2/(mol*s)'), n=0, Ea=(187423,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.55e21,'cm^2/(mol*s)'), n=0, Ea=(187423,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Bidentate_Dissociation""", longDesc = diff --git a/input/kinetics/families/Surface_Dissociation/training/reactions.py b/input/kinetics/families/Surface_Dissociation/training/reactions.py index b229b30465..98fb7a0ecd 100644 --- a/input/kinetics/families/Surface_Dissociation/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation/training/reactions.py @@ -13,7 +13,7 @@ label = "OCX_3 + HOX_5 <=> HOCXO_1 + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( - A=(4.02E14, 'm^2/(mol*s)'), + A=(4.02e14, 'm^2/(mol*s)'), n = 0.0, Ea=(11.5, 'kJ/mol'), Tmin = (298, 'K'), @@ -30,11 +30,11 @@ ) entry( - index = 4, + index = 2, label = "HOCXO_1 + X_4 <=> OCX_3 + HOX_5", degeneracy = 1, kinetics = SurfaceArrhenius( - A=(1.46E20, 'm^2/(mol*s)'), + A=(1.46e20, 'm^2/(mol*s)'), n = -0.213, Ea=(54300.0, 'J/mol'), Tmin = (298, 'K'), @@ -45,13 +45,13 @@ longDesc = u""" "Surface Reaction Kinetics of Steam- and CO2-Reforming as well as Oxidation of Methane over Nickel-Based Catalysts" Delgado et al -Catalysts, 2015, 5, 871-904. Reaction R4 -""", +Catalysts, 2015, 5, 871-904. Reaction R44 +""", #This is Reaction R44 metal = 'Ni', ) entry( - index = 10, + index = 3, label = "OCX_3 + HOX_5 <=> HOCXO_1 + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -68,13 +68,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -4.667E11 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 1.586e16 m^2/(mol*s) -""", +4.667E11 1/s / 2.943e‐5 mol/m^2 = 1.586e16 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 9, + index = 4, label = "NH2_X + X_4 <=> NHX_1 + HX_5", degeneracy = 2, kinetics = SurfaceArrhenius( @@ -97,7 +97,7 @@ ) entry( - index = 11, + index = 5, label = "NHX_2 + X_4 <=> NX + HX_5", kinetics = SurfaceArrhenius( A = (6.213e19, 'cm^2/(mol*s)'), @@ -119,11 +119,11 @@ ) entry( - index = 16, + index = 6, label = "CH2X_3 + HX_5 <=> CH3X_1 + X_4", degeneracy = 3, kinetics = SurfaceArrhenius( - A=(3.09E19, 'm^2/(mol*s)'), + A=(3.09e19, 'm^2/(mol*s)'), n = -0.087, Ea=(57200.0, 'J/mol'), Tmin = (298, 'K'), @@ -141,11 +141,11 @@ entry( - index = 18, + index = 7, label = "CHX_3 + HX_5 <=> CH2X_1 + X_4", degeneracy = 2, kinetics = SurfaceArrhenius( - A=(9.77E20, 'm^2/(mol*s)'), + A=(9.77e20, 'm^2/(mol*s)'), n = -0.087, Ea=(81000.0, 'J/mol'), Tmin = (298, 'K'), @@ -161,9 +161,9 @@ metal = "Ni", ) -#Delgado has this reaction as exothermic. However, our own thermo has this reaction as endothermic. removing and replacing with reverse direction, R20. +#Delgado has this reaction as exothermic. However, our own thermo has this reaction as endothermic. removing and replacing with reverse direction, R9. #entry( -# index = 19, +# index = 8, # label = "CHX_1 + X_4 <=> CX_3 + HX_5", # degeneracy = 1, # kinetics = SurfaceArrhenius( @@ -184,7 +184,7 @@ #) entry( - index = 20, + index = 9, label = "CX_3 + HX_5 <=> CHX_1 + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -205,7 +205,7 @@ ) entry( - index = 28, + index = 10, label = "HCOO* + X_4 <=> HCO* + OX_3", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -222,13 +222,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -2.570E12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 8.733e16 m^2/(mol*s) -""", +2.570E12 1/s / 2.943e‐5 mol/m^2 = 8.733e16 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 31, + index = 11, label = "HCOH* + HX_5 <=> CH2OH* + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -245,13 +245,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -3.698E12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 1.257e17 m^2/(mol*s) -""", +3.698E12 1/s / 2.943e‐5 mol/m^2 = 1.257e17 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 32, + index = 12, label = "HOX_1 + X_4 <=> OX_3 + HX_5", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -272,7 +272,7 @@ ) entry( - index = 15, + index = 13, label = "HOX_1 + X_4 <=> OX_3 + HX_5", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -289,13 +289,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -2.193E13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 7.452e17 m^2/(mol*s) -""", +2.193E13 1/s / 2.943e‐5 mol/m^2 = 7.452e17 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 36, + index = 14, label = "CH3O2* + X_4 <=> CH2OH*_2 + OX_3", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -312,13 +312,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -5.485E13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 1.864e18 m^2/(mol*s) -""", +5.485E13 1/s / 2.943e‐5 mol/m^2 = 1.864e18 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 48, + index = 15, label = "CXHO_1 + X_4 <=> OCX_3 + HX_5", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -333,13 +333,13 @@ longDesc = u""" "Surface Reaction Kinetics of Steam- and CO2-Reforming as well as Oxidation of Methane over Nickel-Based Catalysts" Delgado et al -Catalysts, 2015, 5, 871-904. Reaction R8 -""", +Catalysts, 2015, 5, 871-904. Reaction R48 +""", #This is Reaction R48 not R8 metal = "Ni", ) entry( - index = 26, + index = 16, label = "OCX_3 + HX_5 <=> CXHO_1 + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -356,16 +356,16 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -9.240E12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 3.140e17 m^2/(mol*s) -""", +9.240E12 1/s / 2.943e‐5 mol/m^2 = 3.140e17 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 49, + index = 17, label = "NOX + OX <=> NO2X + X_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.776e+22,'cm^2/(mol*s)'), n=0, Ea=(115788,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.776e22,'cm^2/(mol*s)'), n=0, Ea=(115788,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -379,16 +379,18 @@ This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A (at 300K) = 4.41E13(1/s)/2.483E-9(mol/cm^2) = 1.776E22 cm^2/(mol*s) Ea = 1.2eV * 96490J/eV mol = 115788J/mol + +This is R5 in Table 1 """, metal = "Pt", facet = "111", ) entry( - index = 50, + index = 18, label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(2.014e+21,'cm^2/(mol*s)'), n=0, Ea=(110000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.014e21,'cm^2/(mol*s)'), n=0, Ea=(110000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -407,10 +409,10 @@ ) entry( - index = 51, + index = 19, label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.08997e+21,'cm^2/(mol*s)'), n=0, Ea=(118000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.08997e21,'cm^2/(mol*s)'), n=0, Ea=(118000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -429,10 +431,10 @@ ) entry( - index = 52, + index = 20, label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(4.43e+21,'cm^2/(mol*s)'), n=0, Ea=(101000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.43e21,'cm^2/(mol*s)'), n=0, Ea=(101000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -451,10 +453,10 @@ ) entry( - index = 53, + index = 21, label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(5.236e+21,'cm^2/(mol*s)'), n=0, Ea=(116000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(5.236e21,'cm^2/(mol*s)'), n=0, Ea=(116000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -473,10 +475,10 @@ ) entry( - index = 54, + index = 22, label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(2.33e+23,'cm^2/(mol*s)'), n=0, Ea=(83946.3,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.33e23,'cm^2/(mol*s)'), n=0, Ea=(83946.3,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -499,10 +501,10 @@ ) entry( - index = 55, + index = 23, label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.33e+23,'cm^2/(mol*s)'), n=0, Ea=(98419.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.33e23,'cm^2/(mol*s)'), n=0, Ea=(98419.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -525,10 +527,10 @@ ) entry( - index = 56, + index = 24, label = "HX_5 + OX <=> HOX_1 + X_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(61753.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(61753.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -551,10 +553,10 @@ ) entry( - index = 57, + index = 25, label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(2.23e+23,'cm^2/(mol*s)'), n=0, Ea=(152454,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.23e23,'cm^2/(mol*s)'), n=0, Ea=(152454,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -577,10 +579,10 @@ ) entry( - index = 58, + index = 26, label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.23e+23,'cm^2/(mol*s)'), n=0, Ea=(118683,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.23e23,'cm^2/(mol*s)'), n=0, Ea=(118683,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -603,10 +605,10 @@ ) entry( - index = 59, + index = 27, label = "HX_5 + OX <=> HOX_1 + X_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.44e+21,'cm^2/(mol*s)'), n=0, Ea=(123507,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.44e21,'cm^2/(mol*s)'), n=0, Ea=(123507,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -629,10 +631,10 @@ ) entry( - index = 60, + index = 28, label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(2.44e+23,'cm^2/(mol*s)'), n=0, Ea=(85876.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.44e23,'cm^2/(mol*s)'), n=0, Ea=(85876.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -655,10 +657,10 @@ ) entry( - index = 61, + index = 29, label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.44e+23,'cm^2/(mol*s)'), n=0, Ea=(113858,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.44e23,'cm^2/(mol*s)'), n=0, Ea=(113858,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -681,10 +683,10 @@ ) entry( - index = 62, + index = 30, label = "HX_5 + OX <=> HOX_1 + X_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(97454.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(97454.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -707,10 +709,10 @@ ) entry( - index = 63, + index = 31, label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(6.33e+21,'cm^2/(mol*s)'), n=0, Ea=(92630.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(6.33e21,'cm^2/(mol*s)'), n=0, Ea=(92630.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -734,10 +736,10 @@ ) entry( - index = 64, + index = 32, label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(7.94e+21,'cm^2/(mol*s)'), n=0, Ea=(97454.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(7.94e21,'cm^2/(mol*s)'), n=0, Ea=(97454.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -761,10 +763,10 @@ ) entry( - index = 65, + index = 33, label = "NOX + OX <=> NO2X + X_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(6.52e+19,'cm^2/(mol*s)'), n=1.015, Ea=(155285,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(6.52e19,'cm^2/(mol*s)'), n=1.015, Ea=(155285,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -787,10 +789,10 @@ ) entry( - index = 66, + index = 34, label = "X_4 + NO2X <=> OX + NOX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.29e+20,'cm^2/(mol*s)'), n=0, Ea=(83000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.29e20,'cm^2/(mol*s)'), n=0, Ea=(83000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -810,10 +812,10 @@ ) entry( - index = 67, + index = 35, label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(8.34e+19,'cm^2/(mol*s)'), n=0, Ea=(56929.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(8.34e19,'cm^2/(mol*s)'), n=0, Ea=(56929.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -845,10 +847,10 @@ ) entry( - index = 68, + index = 36, label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.46e+19,'cm^2/(mol*s)'), n=0, Ea=(107104,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.46e19,'cm^2/(mol*s)'), n=0, Ea=(107104,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -880,10 +882,10 @@ ) entry( - index = 69, + index = 37, label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(2.31e+20,'cm^2/(mol*s)'), n=0, Ea=(86841,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.31e20,'cm^2/(mol*s)'), n=0, Ea=(86841,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -908,10 +910,10 @@ ) entry( - index = 70, + index = 38, label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.36e+21,'cm^2/(mol*s)'), n=0, Ea=(100350,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.36e21,'cm^2/(mol*s)'), n=0, Ea=(100350,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -936,10 +938,10 @@ ) entry( - index = 71, + index = 39, label = "X_4 + HOX_1 <=> OX + HX_5", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(7.85e+20,'cm^2/(mol*s)'), n=1.872, Ea=(27.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(7.85e20,'cm^2/(mol*s)'), n=1.872, Ea=(27.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -962,12 +964,12 @@ ) entry( - index = 72, + index = 40, label = "X_4 + CH3X_1 <=> CH2X_3 + HX_5", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(4.47e+19,'cm^2/(mol*s)'), n=0.419, Ea=(15.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.47e19,'cm^2/(mol*s)'), n=0.419, Ea=(15.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Adsorption_Dissociative""", + shortDesc = """Surface_Dissociation""", longDesc = """ Training reaction from kinetics library: Surface/Vlachos_Pt111 @@ -988,10 +990,10 @@ ) entry( - index = 73, + index = 41, label = "X_4 + CH2X_1 <=> CHX_3 + HX_5", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(2.1e+19,'cm^2/(mol*s)'), n=0.222, Ea=(9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.1e19,'cm^2/(mol*s)'), n=0.222, Ea=(9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1014,10 +1016,10 @@ ) entry( - index = 74, + index = 42, label = "X_4 + CHX_1 <=> CX_3 + HX_5", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.67e+19,'cm^2/(mol*s)'), n=0.398, Ea=(31.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.67e19,'cm^2/(mol*s)'), n=0.398, Ea=(31.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1040,12 +1042,12 @@ ) entry( - index = 75, + index = 43, label = "X_4 + CXHO_1 <=> OCX_3 + HX_5", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.86e+19,'cm^2/(mol*s)'), n=0.33, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.86e19,'cm^2/(mol*s)'), n=0.33, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Dissociation_vdW""", + shortDesc = """Surface_Dissociation""", longDesc = """ Training reaction from kinetics library: Surface/Vlachos_Pt111 @@ -1066,10 +1068,10 @@ ) entry( - index = 76, + index = 44, label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(7.22e+20,'cm^2/(mol*s)'), n=0, Ea=(5.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(7.22e20,'cm^2/(mol*s)'), n=0, Ea=(5.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1091,10 +1093,10 @@ ) entry( - index = 77, + index = 45, label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(7.6e+20,'cm^2/(mol*s)'), n=0, Ea=(20.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(7.6e20,'cm^2/(mol*s)'), n=0, Ea=(20.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1116,12 +1118,12 @@ ) entry( - index = 78, + index = 46, label = "X_4 + CH3X_1 <=> CH2X_3 + HX_5", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(1e+19,'cm^2/(mol*s)'), n=0.0862, Ea=(12.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1e19,'cm^2/(mol*s)'), n=0.0862, Ea=(12.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Adsorption_Dissociative""", + shortDesc = """Surface_Dissociation""", longDesc = """ Training reaction from kinetics library: Surface/Vlachos_Rh @@ -1140,10 +1142,10 @@ ) entry( - index = 79, + index = 47, label = "X_4 + CH2X_1 <=> CHX_3 + HX_5", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(2.21e+19,'cm^2/(mol*s)'), n=-0.1312, Ea=(21.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.21e19,'cm^2/(mol*s)'), n=-0.1312, Ea=(21.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1164,10 +1166,10 @@ ) entry( - index = 80, + index = 48, label = "X_4 + CHX_1 <=> CX_3 + HX_5", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.84e+21,'cm^2/(mol*s)'), n=-0.2464, Ea=(28.9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.84e21,'cm^2/(mol*s)'), n=-0.2464, Ea=(28.9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1188,10 +1190,10 @@ ) entry( - index = 81, + index = 49, label = "X_4 + H3N2X <=> H2N2X + HX_5", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.34e+17,'cm^2/(mol*s)'), n=1.942, Ea=(121577,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.34e17,'cm^2/(mol*s)'), n=1.942, Ea=(121577,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1213,10 +1215,10 @@ ) entry( - index = 82, + index = 50, label = "X_4 + H2N2X2 <=> HN2X2 + HX_5", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(1.07e+19,'cm^2/(mol*s)'), n=1.134, Ea=(141840,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.07e19,'cm^2/(mol*s)'), n=1.134, Ea=(141840,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1238,10 +1240,10 @@ ) entry( - index = 83, + index = 51, label = "X_4 + HN2X2-2 <=> N2X2 + HX_5", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.43e+18,'cm^2/(mol*s)'), n=1.285, Ea=(16403,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.43e18,'cm^2/(mol*s)'), n=1.285, Ea=(16403,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1263,10 +1265,10 @@ ) entry( - index = 84, + index = 52, label = "X_4 + H3N2X-2 <=> NHX_1 + H2NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.87e+16,'cm^2/(mol*s)'), n=2.065, Ea=(86841,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.87e16,'cm^2/(mol*s)'), n=2.065, Ea=(86841,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1288,10 +1290,10 @@ ) entry( - index = 85, + index = 53, label = "X_4 + H2N2X-2 <=> NX + H2NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.03e+19,'cm^2/(mol*s)'), n=0.559, Ea=(130262,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.03e19,'cm^2/(mol*s)'), n=0.559, Ea=(130262,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1313,10 +1315,10 @@ ) entry( - index = 86, + index = 54, label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(5.67e+19,'cm^2/(mol*s)'), n=0.513, Ea=(135086,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(5.67e19,'cm^2/(mol*s)'), n=0.513, Ea=(135086,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1338,10 +1340,10 @@ ) entry( - index = 87, + index = 55, label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.66e+19,'cm^2/(mol*s)'), n=0.853, Ea=(172717,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.66e19,'cm^2/(mol*s)'), n=0.853, Ea=(172717,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1363,10 +1365,10 @@ ) entry( - index = 88, + index = 56, label = "X_4 + H3N2X <=> H2N2X + HX_5", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(98419.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(98419.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1389,10 +1391,10 @@ ) entry( - index = 89, + index = 57, label = "X_4 + H2N2X2 <=> HN2X2 + HX_5", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(67543,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(67543,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1415,10 +1417,10 @@ ) entry( - index = 90, + index = 58, label = "X_4 + HN2X2-2 <=> N2X2 + HX_5", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(126402,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(126402,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1441,10 +1443,10 @@ ) entry( - index = 91, + index = 59, label = "X_4 + H3N2X-2 <=> NHX_1 + H2NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(75262.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(75262.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1467,10 +1469,10 @@ ) entry( - index = 92, + index = 60, label = "X_4 + H2N2X-2 <=> NX + H2NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(70437.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(70437.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1493,10 +1495,10 @@ ) entry( - index = 93, + index = 61, label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(1.43e+21,'cm^2/(mol*s)'), n=0, Ea=(151613,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.43e21,'cm^2/(mol*s)'), n=0, Ea=(151613,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1519,10 +1521,10 @@ ) entry( - index = 94, + index = 62, label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.68e+21,'cm^2/(mol*s)'), n=0, Ea=(88354.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.68e21,'cm^2/(mol*s)'), n=0, Ea=(88354.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1545,10 +1547,10 @@ ) entry( - index = 95, + index = 63, label = "X_4 + NH2_X <=> NHX_1 + HX_5", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(1.52e+21,'cm^2/(mol*s)'), n=0, Ea=(62155,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.52e21,'cm^2/(mol*s)'), n=0, Ea=(62155,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1571,10 +1573,10 @@ ) entry( - index = 96, + index = 64, label = "X_4 + NHX_2 <=> NX + HX_5", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.71e+21,'cm^2/(mol*s)'), n=0, Ea=(99817.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.71e21,'cm^2/(mol*s)'), n=0, Ea=(99817.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1596,3 +1598,53 @@ facet = "0001", ) +entry( + index = 65, + label = "X_4 + HOCXO_1 <=> OCX_3 + HOX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.3e20,'cm^2/(mol*s)'), n=-0.4123, Ea=(7.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: COOH_X + X <=> CO_X + OH_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 1.07E+12(1/s)/2.49E-9(mol/cm^2) = 4.30E+20 cm^2/(mol*s) + +This is R31 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 66, + label = "X_4 + HOCXO_1 <=> OCX_3 + HOX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.4e17,'cm^2/(mol*s)'), n=0.024, Ea=(5.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: COOH_X + X <=> CO_X + OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.43E08(1/s)/2.483E-9(mol/cm^2) = 3.40E17 cm^2/(mol*s) + +This is R29 in Table 1 +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Dissociation_Beta/training/reactions.py b/input/kinetics/families/Surface_Dissociation_Beta/training/reactions.py index 01470b7168..fe8cc3636a 100644 --- a/input/kinetics/families/Surface_Dissociation_Beta/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_Beta/training/reactions.py @@ -9,7 +9,7 @@ """ entry( - index = 27, + index = 1, label = "CO* + H* <=> COH* + X", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -26,13 +26,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/c s200055d A factor from paper / surface site density of Cu -1.118e13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 3.799e17 m^2/(mol*s) -""", +1.118e13 1/s / 2.943e‐5 mol/m^2 = 3.799e17 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 29, + index = 2, label = "HCO* + H* <=> HCOH* + X", degeneracy = 4, kinetics = SurfaceArrhenius( @@ -49,15 +49,16 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/c s200055d A factor from paper / surface site density of Cu -8.971e12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 3.048e17 m^2/(mol*s) -""", +8.971e12 1/s / 2.943e‐5 mol/m^2 = 3.048e17 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) + entry( - index = 30, + index = 3, label = "X + H2N2X <=> HN2X + H*", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.09e+19,'cm^2/(mol*s)'), n=1.002, Ea=(108069,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.09e19,'cm^2/(mol*s)'), n=1.002, Ea=(108069,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_Beta""", longDesc = diff --git a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py index 00b09580b9..545b9e1c1f 100644 --- a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py @@ -9,7 +9,7 @@ """ entry( - index = 9, + index = 1, label = "CO* + O* <=> CO2* + X_4", degeneracy = 2, kinetics = SurfaceArrhenius( @@ -26,14 +26,14 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -1.195e12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 4.060e16 m^2/(mol*s) -""", +1.195e12 1/s / 2.943e‐5 mol/m^2 = 4.060e16 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) -# duplicate of 9 +# duplicate of 1 # entry( -# index = 42, +# index = 2, # label = "CO2* + X_4 <=> CO* + O*", # kinetics = SurfaceArrhenius( # A = (4.64E19, 'm^2/(mol*s)'), @@ -53,7 +53,7 @@ # ) entry( - index = 35, + index = 3, label = "HCOOH* + X_4 <=> HCOH* + O*", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -70,18 +70,18 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -4.828e11 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 1.641e16 m^2/(mol*s) -""", +4.828e11 1/s / 2.943e‐5 mol/m^2 = 1.641e16 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 36, + index = 4, label = "X_4 + N2OX <=> O* + N2X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(9.12e+19,'cm^2/(mol*s)'), n=1.004, Ea=(63657,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(9.12e19,'cm^2/(mol*s)'), n=1.004, Ea=(63657,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Addition_Single_vdW""", + shortDesc = """Surface_Dissociation_Double_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Ishikawa_Rh111 @@ -103,10 +103,10 @@ ) entry( - index = 37, + index = 5, label = "CO* + O* <=> CO2* + X_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.73e+20,'cm^2/(mol*s)'), n=1.001, Ea=(119598,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.73e20,'cm^2/(mol*s)'), n=1.001, Ea=(119598,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_Double_vdW""", longDesc = @@ -130,10 +130,10 @@ ) entry( - index = 38, + index = 6, label = "HNX + O* <=> HNOX + X_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.03e+21,'cm^2/(mol*s)'), n=0, Ea=(73000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.03e21,'cm^2/(mol*s)'), n=0, Ea=(73000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_Double_vdW""", longDesc = @@ -154,12 +154,12 @@ ) entry( - index = 39, + index = 7, label = "X_4 + N2OX <=> O* + N2X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.01e+17,'cm^2/(mol*s)'), n=0, Ea=(72200,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.01e17,'cm^2/(mol*s)'), n=0, Ea=(72200,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Addition_Single_vdW""", + shortDesc = """Surface_Dissociation_Double_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Rebrov_Pt111 @@ -178,10 +178,10 @@ ) entry( - index = 40, + index = 8, label = "X_4 + CO2* <=> O* + CO*", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(1.68e+19,'cm^2/(mol*s)'), n=0.177, Ea=(26.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.68e19,'cm^2/(mol*s)'), n=0.177, Ea=(26.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_Double_vdW""", longDesc = @@ -204,10 +204,10 @@ ) entry( - index = 41, + index = 9, label = "X_4 + H2N2X <=> HNX-2 + HNX", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(70437.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(70437.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_Double_vdW""", longDesc = diff --git a/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py b/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py index 085b694e16..51c138f6e9 100644 --- a/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py @@ -9,7 +9,7 @@ """ entry( - index = 7, + index = 1, label = "NH3_X + X_4 <=> NH2_X + H*", degeneracy = 3, kinetics = SurfaceArrhenius( @@ -32,7 +32,7 @@ ) entry( - index = 12, + index = 2, label = "CH4* + X_4 <=> CH3* + H*", degeneracy = 4, kinetics = SurfaceArrhenius( @@ -53,7 +53,7 @@ ) entry( - index = 13, + index = 3, label = "COOH* + H* <=> HCOOH* + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -70,13 +70,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -6.793e13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 2.308e18 m^2/(mol*s) -""", +6.793e13 1/s / 2.943e‐5 mol/m^2 = 2.308e18 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 14, + index = 4, label = "H2O* + X_4 <=> OH* + H*", degeneracy = 2, kinetics = SurfaceArrhenius( @@ -93,14 +93,14 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -1.436e11 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 4.879e15 m^2/(mol*s) -""", +1.436e11 1/s / 2.943e‐5 mol/m^2 = 4.879e15 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) -#duplicate of 14 +#duplicate of 4 # entry( -# index = 29, +# index = 5, # label = "H2O* + X_4 <=> OH* + H*", # kinetics = SurfaceArrhenius( # A = (3.67E17, 'm^2/(mol*s)'), @@ -120,7 +120,7 @@ # ) entry( - index = 19, + index = 6, label = "HCOO* + H* <=> HCOOH_1* + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -137,13 +137,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -1.302e14 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 4.424e18 m^2/(mol*s) -""", +1.302e14 1/s / 2.943e‐5 mol/m^2 = 4.424e18 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 25, + index = 7, label = "CH3O* + H* <=> CH3OH_2* + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -161,12 +161,12 @@ A factor from paper / surface site density of Cu 1.28e18 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 4.349e22 m^2/(mol*s) -""", +""", #Ting-Chen: A in the paper is 1.28e13; so 1.28e13 1/s / 2.943e‐5 mol/m^2 = 4.349e17 m^2/(mol*s) metal = "Cu", ) entry( - index = 30, + index = 8, label = "HCO* + H* <=> CH2O* + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -183,13 +183,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -5.685e12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 1.932e17 m^2/(mol*s) -""", +5.685e12 1/s / 2.943e‐5 mol/m^2 = 1.932e17 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 33, + index = 9, label = "CH2OH* + H* <=> CH3OH_1* + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -206,13 +206,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -8.189e12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 2.783e17 m^2/(mol*s) -""", +8.189e12 1/s / 2.943e‐5 mol/m^2 = 2.783e17 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 34, + index = 10, label = "HCOOH_2* + X_4 <=> HCO* + OH_2*", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -229,16 +229,16 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -5.242e12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 1.781e17 m^2/(mol*s) -""", +5.242e12 1/s / 2.943e‐5 mol/m^2 = 1.781e17 m^2/(mol*s) +""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) metal = "Cu", ) entry( - index = 35, + index = 11, label = "X_4 + NH3_X <=> NH2_X + H*", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(2.255e+20,'cm^2/(mol*s)'), n=0, Ea=(93000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.255e20,'cm^2/(mol*s)'), n=0, Ea=(93000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_vdW""", longDesc = @@ -257,10 +257,10 @@ ) entry( - index = 36, + index = 12, label = "X_4 + NH3_X <=> NH2_X + H*", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(2.859e+20,'cm^2/(mol*s)'), n=0, Ea=(91000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.859e20,'cm^2/(mol*s)'), n=0, Ea=(91000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_vdW""", longDesc = @@ -279,10 +279,10 @@ ) entry( - index = 37, + index = 13, label = "X_4 + NH3_X <=> NH2_X + H*", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(2.08e+23,'cm^2/(mol*s)'), n=0, Ea=(100350,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.08e23,'cm^2/(mol*s)'), n=0, Ea=(100350,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_vdW""", longDesc = @@ -305,12 +305,12 @@ ) entry( - index = 38, + index = 14, label = "H* + OH* <=> H2O* + X_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(63683.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(63683.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Dissociation""", + shortDesc = """Surface_Dissociation_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Schneider_Rh111 @@ -331,10 +331,10 @@ ) entry( - index = 39, + index = 15, label = "X_4 + NH3_X <=> NH2_X + H*", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(2.06e+23,'cm^2/(mol*s)'), n=0, Ea=(97454.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.06e23,'cm^2/(mol*s)'), n=0, Ea=(97454.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_vdW""", longDesc = @@ -357,12 +357,12 @@ ) entry( - index = 40, + index = 16, label = "H* + OH* <=> H2O* + X_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.44e+21,'cm^2/(mol*s)'), n=0, Ea=(91665.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.44e21,'cm^2/(mol*s)'), n=0, Ea=(91665.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Dissociation""", + shortDesc = """Surface_Dissociation_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Schneider_Pd211 @@ -383,10 +383,10 @@ ) entry( - index = 41, + index = 17, label = "X_4 + NH3_X <=> NH2_X + H*", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(2.18e+23,'cm^2/(mol*s)'), n=0, Ea=(104209,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.18e23,'cm^2/(mol*s)'), n=0, Ea=(104209,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_vdW""", longDesc = @@ -409,12 +409,12 @@ ) entry( - index = 42, + index = 18, label = "H* + OH* <=> H2O* + X_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.47e+21,'cm^2/(mol*s)'), n=0, Ea=(64648.3,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(64648.3,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Dissociation""", + shortDesc = """Surface_Dissociation_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Schneider_Pd111 @@ -435,10 +435,10 @@ ) entry( - index = 43, + index = 19, label = "X_4 + NH3_X <=> NH2_X + H*", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(8.21e+21,'cm^2/(mol*s)'), n=0, Ea=(109034,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(8.21e21,'cm^2/(mol*s)'), n=0, Ea=(109034,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_vdW""", longDesc = @@ -462,10 +462,10 @@ ) entry( - index = 44, + index = 20, label = "X_4 + NH3_X <=> NH2_X + H*", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(4.35e+15,'cm^2/(mol*s)'), n=0, Ea=(107104,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.35e15,'cm^2/(mol*s)'), n=0, Ea=(107104,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_vdW""", longDesc = @@ -497,10 +497,10 @@ ) entry( - index = 45, + index = 21, label = "X_4 + NH3_X <=> NH2_X + H*", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(5.52e+19,'cm^2/(mol*s)'), n=0, Ea=(63683.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(5.52e19,'cm^2/(mol*s)'), n=0, Ea=(63683.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_vdW""", longDesc = @@ -525,12 +525,12 @@ ) entry( - index = 46, + index = 22, label = "X_4 + H2O* <=> OH* + H*", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(3.77e+21,'cm^2/(mol*s)'), n=-0.118, Ea=(17.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.77e21,'cm^2/(mol*s)'), n=-0.118, Ea=(17.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Dissociation""", + shortDesc = """Surface_Dissociation_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Vlachos_Pt111 @@ -551,10 +551,10 @@ ) entry( - index = 47, + index = 23, label = "X_4 + CH3OH_2* <=> CH3O* + H*", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.15e+19,'cm^2/(mol*s)'), n=0.102, Ea=(18.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.15e19,'cm^2/(mol*s)'), n=0.102, Ea=(18.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_vdW""", longDesc = @@ -577,10 +577,10 @@ ) entry( - index = 48, + index = 24, label = "X_4 + CH2O* <=> HCO* + H*", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(2.88e+19,'cm^2/(mol*s)'), n=0.27, Ea=(3.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.88e19,'cm^2/(mol*s)'), n=0.27, Ea=(3.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_vdW""", longDesc = @@ -603,10 +603,10 @@ ) entry( - index = 49, + index = 25, label = "X_4 + CH3OH_1* <=> CH2OH* + H*", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(3.42e+19,'cm^2/(mol*s)'), n=0.403, Ea=(8.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.42e19,'cm^2/(mol*s)'), n=0.403, Ea=(8.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_vdW""", longDesc = @@ -629,10 +629,10 @@ ) entry( - index = 50, + index = 26, label = "X_4 + NH3_X <=> NH2_X + H*", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(7.6e+20,'cm^2/(mol*s)'), n=0, Ea=(18.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(7.6e20,'cm^2/(mol*s)'), n=0, Ea=(18.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_vdW""", longDesc = @@ -654,12 +654,12 @@ ) entry( - index = 51, + index = 27, label = "X_4 + H2O* <=> OH* + H*", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(2.31e+20,'cm^2/(mol*s)'), n=0.0281, Ea=(18.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.31e20,'cm^2/(mol*s)'), n=0.0281, Ea=(18.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Dissociation""", + shortDesc = """Surface_Dissociation_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Vlachos_Rh @@ -678,10 +678,10 @@ ) entry( - index = 52, + index = 28, label = "X_4 + H4N2X <=> H3N2X + H*", degeneracy = 4.0, - kinetics = SurfaceArrhenius(A=(2.69e+18,'cm^2/(mol*s)'), n=1.22, Ea=(125437,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.69e18,'cm^2/(mol*s)'), n=1.22, Ea=(125437,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_vdW""", longDesc = @@ -703,10 +703,10 @@ ) entry( - index = 53, + index = 29, label = "X_4 + H4N2X-2 <=> NH2_X + H2NX", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(6.61e+17,'cm^2/(mol*s)'), n=1.589, Ea=(66578,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(6.61e17,'cm^2/(mol*s)'), n=1.589, Ea=(66578,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_vdW""", longDesc = @@ -728,10 +728,10 @@ ) entry( - index = 54, + index = 30, label = "X_4 + NH3_X <=> NH2_X + H*", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(5.93e+17,'cm^2/(mol*s)'), n=1.321, Ea=(136051,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(5.93e17,'cm^2/(mol*s)'), n=1.321, Ea=(136051,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_vdW""", longDesc = @@ -753,10 +753,10 @@ ) entry( - index = 55, + index = 31, label = "X_4 + H4N2X <=> H3N2X + H*", degeneracy = 4.0, - kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(104209,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(104209,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_vdW""", longDesc = @@ -779,10 +779,10 @@ ) entry( - index = 56, + index = 32, label = "X_4 + H4N2X-2 <=> NH2_X + H2NX", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(68507.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(68507.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_vdW""", longDesc = @@ -805,10 +805,10 @@ ) entry( - index = 57, + index = 33, label = "X_4 + NH3_X <=> NH2_X + H*", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(1.22e+21,'cm^2/(mol*s)'), n=0, Ea=(147114,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.22e21,'cm^2/(mol*s)'), n=0, Ea=(147114,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_vdW""", longDesc = @@ -831,10 +831,10 @@ ) entry( - index = 58, + index = 34, label = "X_4 + NH3_X <=> NH2_X + H*", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(4.14e+21,'cm^2/(mol*s)'), n=0, Ea=(117241,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.14e21,'cm^2/(mol*s)'), n=0, Ea=(117241,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_vdW""", longDesc = diff --git a/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/dictionary.txt index c41491706e..506d778a07 100644 --- a/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/dictionary.txt @@ -28,13 +28,6 @@ CO2X 3 *3 C u0 p0 c0 {1,D} {2,D} 4 *1 X u0 p0 c0 -CHO2X -1 *2 O u0 p2 c0 {3,S} {5,S} -2 O u0 p2 c0 {3,D} -3 *3 C u0 p0 c0 {1,S} {2,D} {4,S} -4 *4 H u0 p0 c0 {3,S} -5 *1 X u0 p0 c0 {1,S} - H2NX 1 *6 N u0 p1 c0 {2,S} {3,S} {4,S} 2 H u0 p0 c0 {1,S} diff --git a/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/reactions.py b/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/reactions.py index d54cc8d9bd..5a928ddfd2 100644 --- a/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/reactions.py @@ -9,7 +9,7 @@ """ entry( - index = 12, + index = 1, label = "COOH* + OH* <=> CO2* + H2O*", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -30,37 +30,38 @@ """, metal = "Cu", ) + entry( - index = 13, - label = "H2O* + CO2X <=> CHO2X + OH*", - degeneracy = 4.0, - kinetics = SurfaceArrhenius(A=(3.48e+19,'cm^2/(mol*s)'), n=-0.031, Ea=(17.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + index = 2, + label = "H2NX + H3N2X <=> H2N2X + H3NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(22192.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dual_Adsorption_vdW""", longDesc = """ -Training reaction from kinetics library: Surface/Vlachos_Pt111 -Original entry: CO2_X + H2O_X <=> COOH_X + OH_X -"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, -Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" -D.G. Vlachos et al. (2007) -Industrial & Engineering Chemistry Research, 46(16), 5310-5324. -DOI: 10.1021/ie070322c +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N2H3_X + NH2_X <=> N2H2_X + NH3_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c -This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 8.64E10(1/s)/2.483E-9(mol/cm^2) = 3.48E19 cm^2/(mol*s) +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.23eV = 22192.7J/mol -This is R37 in Table 1 +This is R17 in Table 3 """, - metal = "Pt", + metal = "Ir", facet = "111", ) entry( - index = 14, - label = "H2O* + CO2X <=> CHO2X + OH*", + index = 3, + label = "H2O* + CO2* <=> COOH* + OH*", degeneracy = 4.0, - kinetics = SurfaceArrhenius(A=(7.15e+20,'cm^2/(mol*s)'), n=-0.1992, Ea=(13.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(7.15e20,'cm^2/(mol*s)'), n=-0.1992, Ea=(13.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dual_Adsorption_vdW""", longDesc = @@ -81,28 +82,28 @@ ) entry( - index = 15, - label = "H2NX + H3N2X <=> H2N2X + H3NX", - degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.87e+21,'cm^2/(mol*s)'), n=0, Ea=(22192.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + index = 4, + label = "H2O* + CO2* <=> COOH* + OH*", + degeneracy = 4.0, + kinetics = SurfaceArrhenius(A=(3.48e19,'cm^2/(mol*s)'), n=-0.031, Ea=(17.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Abstraction_vdW""", + shortDesc = """Surface_Dual_Adsorption_vdW""", longDesc = """ -Training reaction from kinetics library: Surface/Roldan_Ir111 -Original entry: N2H3_X + NH2_X <=> N2H2_X + NH3_X -"Mechanistic study of hydrazine decomposition on Ir(111)" -Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 -DOI: 10.1039/c9cp06525c +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CO2_X + H2O_X <=> COOH_X + OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c -This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) -to estimate a default(1E13) A factor. -A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) -Ea = 0.23eV = 22192.7J/mol +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.64E10(1/s)/2.483E-9(mol/cm^2) = 3.48E19 cm^2/(mol*s) -This is R17 in Table 3 +This is R37 in Table 1 """, - metal = "Ir", + metal = "Pt", facet = "111", ) diff --git a/input/kinetics/libraries/Surface/Arevalo_Pt111/reactions.py b/input/kinetics/libraries/Surface/Arevalo_Pt111/reactions.py index b4d77f9297..a7402a7215 100644 --- a/input/kinetics/libraries/Surface/Arevalo_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Arevalo_Pt111/reactions.py @@ -28,60 +28,66 @@ This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A = ((3.19E7 /bar) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 32 g/mol * molar gas constant * 298 kelvin) + +This is R1 in Table 1 """, metal = "Pt", facet = "111", ) entry( - index = 28, - label = "NO_X + O_X <=> NO2_X + X", - kinetics = SurfaceArrhenius( - A = (1.776E22, 'cm^2/(mol*s)'), - n = 0.0, - Ea = (115788, 'J/mol'), + index = 2, + label = "NO + X <=> NO_X", + kinetics = StickingCoefficient( + A = 1.4917E-6, + n = 0, + Ea = (0, 'J/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Dissociation""", + shortDesc = u"""Surface_Adsorption_Single""", longDesc = u""" "First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) https://doi.org/10.1116/1.4903225 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A (at 300K) = 4.41E13(1/s)/2.483E-9(mol/cm^2) = 1.776E22 cm^2/(mol*s) -Ea = 1.2eV * 96490J/eV mol = 115788J/mol +A = ((2.78E2 /bar) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 30 g/mol * molar gas constant * 298 kelvin) + +This is R3 in Table 1 """, metal = "Pt", facet = "111", ) entry( - index = 29, - label = "NO + X <=> NO_X", - kinetics = StickingCoefficient( - A = 1.4917E-6, - n = 0, - Ea = (0, 'J/mol'), + index = 3, + label = "NO_X + O_X <=> NO2_X + X", + kinetics = SurfaceArrhenius( + A = (1.776E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (115788, 'J/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Adsorption_Single""", + shortDesc = u"""Surface_Dissociation""", longDesc = u""" "First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) https://doi.org/10.1116/1.4903225 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = ((2.78E2 /bar) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 30 g/mol * molar gas constant * 298 kelvin) +A (at 300K) = 4.41E13(1/s)/2.483E-9(mol/cm^2) = 1.776E22 cm^2/(mol*s) +Ea = 1.2eV * 96490J/eV mol = 115788J/mol + +This is R5 in Table 1 """, metal = "Pt", facet = "111", ) entry( - index = 30, + index = 4, label = "NO2 + X <=> NO2_X", kinetics = StickingCoefficient( A = 1.4884E-6, @@ -90,7 +96,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""""", + shortDesc = u"""Surface_Adsorption_Single""", longDesc = u""" "First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) @@ -98,6 +104,8 @@ This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. A = ((2.24E2 /bar) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 46 g/mol * molar gas constant * 298 kelvin) + +This is R7 in Table 1 """, metal = "Pt", facet = "111", diff --git a/input/kinetics/libraries/Surface/Ishikawa_Rh111/reactions.py b/input/kinetics/libraries/Surface/Ishikawa_Rh111/reactions.py index 4f6f9c6c9a..3b9a633892 100644 --- a/input/kinetics/libraries/Surface/Ishikawa_Rh111/reactions.py +++ b/input/kinetics/libraries/Surface/Ishikawa_Rh111/reactions.py @@ -106,7 +106,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Addition_Single_vdW""", + shortDesc = u"""Surface_Dissociation_Double_vdW""", longDesc = u""" "First-Principles Microkinetic Analysis of NO + CO Reactions on Rh(111) Surface toward Understanding NOx Reduction Pathways" diff --git a/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py b/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py index 2483faf6c7..8e74bc649d 100644 --- a/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py @@ -244,7 +244,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Addition_Single_vdW""", + shortDesc = u"""Surface_Dissociation_Double_vdW""", longDesc = u""" "Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. diff --git a/input/kinetics/libraries/Surface/Roldan_Cu111/reactions.py b/input/kinetics/libraries/Surface/Roldan_Cu111/reactions.py index f45c0e6f72..6f69eb6316 100644 --- a/input/kinetics/libraries/Surface/Roldan_Cu111/reactions.py +++ b/input/kinetics/libraries/Surface/Roldan_Cu111/reactions.py @@ -473,7 +473,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""""", + shortDesc = """Surface_Bidentate_Dissociation""", longDesc = u""" "Micro-kinetic simulations of the catalytic decomposition of hydrazine on the Cu(111) surface" diff --git a/input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py b/input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py index 219af78ead..29471c95f9 100644 --- a/input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py +++ b/input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py @@ -356,7 +356,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""""", + shortDesc = u"""Surface_Abstraction_Single_vdW""", longDesc = u""" "Mechanistic study of hydrazine decomposition on Ir(111)" Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 @@ -464,7 +464,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""""", + shortDesc = u"""Surface_Abstraction_Single_vdW""", longDesc = u""" "Mechanistic study of hydrazine decomposition on Ir(111)" Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 diff --git a/input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py b/input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py index 713a1f88e6..1dd2d83afd 100644 --- a/input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py +++ b/input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py @@ -166,7 +166,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Adsorption_Bidentate""", + shortDesc = u"""Surface_Adsorption_vdW""", longDesc = u""" "Kinetic and mechanistic analysis of NH3 decomposition on Ru(0001), Ru(111) and Ir(111) surfaces" diff --git a/input/kinetics/libraries/Surface/Schneider_Pd111/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pd111/reactions.py index 6932bf0730..1c513863da 100644 --- a/input/kinetics/libraries/Surface/Schneider_Pd111/reactions.py +++ b/input/kinetics/libraries/Surface/Schneider_Pd111/reactions.py @@ -521,7 +521,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Dissociation""", + shortDesc = u"""Surface_Dissociation_vdW""", longDesc = u""" "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" Hanyu Ma, and William F.Schneider diff --git a/input/kinetics/libraries/Surface/Schneider_Pd211/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pd211/reactions.py index 86837c7dcb..31a3f79404 100644 --- a/input/kinetics/libraries/Surface/Schneider_Pd211/reactions.py +++ b/input/kinetics/libraries/Surface/Schneider_Pd211/reactions.py @@ -523,7 +523,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Dissociation""", + shortDesc = u"""Surface_Dissociation_vdW""", longDesc = u""" "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" Hanyu Ma, and William F.Schneider diff --git a/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py index f6d0630bf7..358807a69a 100644 --- a/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py @@ -253,7 +253,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Adsorption""", + shortDesc = u"""Surface_Adsorption_vdW""", longDesc = u""" "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. diff --git a/input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py index f40e0fb88f..0a4b574cb9 100644 --- a/input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py +++ b/input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py @@ -228,7 +228,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Reverse R95""", + shortDesc = u"""Surface_Abstraction_vdW""", longDesc = u""" "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. @@ -254,7 +254,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Adsorption""", + shortDesc = u"""Surface_Adsorption_vdW""", longDesc = u""" "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. diff --git a/input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py b/input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py index f1866f6081..8255dbc109 100644 --- a/input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py +++ b/input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py @@ -525,7 +525,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Dissociation""", + shortDesc = u"""Surface_Dissociation_vdW""", longDesc = u""" "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" Hanyu Ma, and William F.Schneider diff --git a/input/kinetics/libraries/Surface/Vlachos_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Vlachos_Pt111/dictionary.txt index 36abac3aa1..bf68c19f1b 100644 --- a/input/kinetics/libraries/Surface/Vlachos_Pt111/dictionary.txt +++ b/input/kinetics/libraries/Surface/Vlachos_Pt111/dictionary.txt @@ -68,11 +68,11 @@ H2O_X 4 X u0 p0 c0 COOH_X -1 O u0 p2 c0 {3,S} {5,S} +1 O u0 p2 c0 {3,S} {4,S} 2 O u0 p2 c0 {3,D} -3 C u0 p0 c0 {1,S} {2,D} {4,S} -4 H u0 p0 c0 {3,S} -5 X u0 p0 c0 {1,S} +3 C u0 p0 c0 {1,S} {2,D} {5,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 {3,S} COOH multiplicity 2 @@ -108,8 +108,8 @@ C 1 C u2 p1 c0 C_X -1 C u0 p1 c0 {2,D} -2 X u0 p0 c0 {1,D} +1 C u0 p0 c0 {2,Q} +2 X u0 p0 c0 {1,Q} CH multiplicity 2 diff --git a/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py b/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py index f01ef30547..1138e1c720 100644 --- a/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py @@ -385,7 +385,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Dissociation""", + shortDesc = u"""Surface_Dissociation_vdW""", longDesc = u""" "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" @@ -412,7 +412,7 @@ # Tmin = (200, 'K'), # Tmax = (3000, 'K'), # ), -# shortDesc = u"""Surface_Dissociation""", +# shortDesc = u"""Surface_Dissociation_vdW""", # longDesc = u""" # "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, # Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" @@ -1189,7 +1189,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Adsorption_Triple bonds""", + shortDesc = u"""Surface_Adsorption_Quadruple bonds""", longDesc = u""" "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" @@ -1213,7 +1213,7 @@ # Tmin = (200, 'K'), # Tmax = (3000, 'K'), # ), -# shortDesc = u"""Surface_Adsorption_Triple bonds""", +# shortDesc = u"""Surface_Adsorption_Quadruple bonds""", # longDesc = u""" # "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, # Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" @@ -1444,7 +1444,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Adsorption_Dissociative""", + shortDesc = u"""Surface_Dissociation""", longDesc = u""" "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" @@ -1471,7 +1471,7 @@ # Tmin = (200, 'K'), # Tmax = (3000, 'K'), # ), -# shortDesc = u"""Surface_Adsorption_Dissociative""", +# shortDesc = u"""Surface_Dissociation""", # longDesc = u""" # "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, # Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" @@ -2509,7 +2509,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Dissociation_vdW""", + shortDesc = u"""Surface_Dissociation""", longDesc = u""" "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" @@ -2536,7 +2536,7 @@ # Tmin = (200, 'K'), # Tmax = (3000, 'K'), # ), -# shortDesc = u"""Surface_Dissociation_vdW""", +# shortDesc = u"""Surface_Dissociation""", # longDesc = u""" # "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, # Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" diff --git a/input/kinetics/libraries/Surface/Vlachos_Rh/dictionary.txt b/input/kinetics/libraries/Surface/Vlachos_Rh/dictionary.txt index 38e98bc0c4..4f0d7dc97b 100644 --- a/input/kinetics/libraries/Surface/Vlachos_Rh/dictionary.txt +++ b/input/kinetics/libraries/Surface/Vlachos_Rh/dictionary.txt @@ -68,15 +68,15 @@ H2O_X 4 X u0 p0 c0 COOH_X -1 O u0 p2 c0 {3,S} {5,S} +1 O u0 p2 c0 {3,S} {4,S} 2 O u0 p2 c0 {3,D} -3 C u0 p0 c0 {1,S} {2,D} {4,S} -4 H u0 p0 c0 {3,S} -5 X u0 p0 c0 {1,S} +3 C u0 p0 c0 {1,S} {2,D} {5,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 {3,S} C_X -1 C u0 p1 c0 {2,D} -2 X u0 p0 c0 {1,D} +1 C u0 p0 c0 {2,Q} +2 X u0 p0 c0 {1,Q} CH_X 1 C u0 p0 c0 {2,S} {3,T} diff --git a/input/kinetics/libraries/Surface/Vlachos_Rh/reactions.py b/input/kinetics/libraries/Surface/Vlachos_Rh/reactions.py index 9448d16164..3ab7bd6d5f 100644 --- a/input/kinetics/libraries/Surface/Vlachos_Rh/reactions.py +++ b/input/kinetics/libraries/Surface/Vlachos_Rh/reactions.py @@ -68,7 +68,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Dissociation""", + shortDesc = u"""Surface_Dissociation_vdW""", longDesc = u""" "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" Vlachos et al. (2008) @@ -93,7 +93,7 @@ # Tmin = (200, 'K'), # Tmax = (3000, 'K'), # ), -# shortDesc = u"""Surface_Dissociation""", +# shortDesc = u"""Surface_Dissociation_vdW""", # longDesc = u""" # "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" # Vlachos et al. (2008) @@ -118,7 +118,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Adsorption""", + shortDesc = u"""Surface_Adsorption_vdW""", longDesc = u""" "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" Vlachos et al. (2008) @@ -140,7 +140,7 @@ # Tmin = (200, 'K'), # Tmax = (3000, 'K'), # ), -# shortDesc = u"""Surface_Adsorption""", +# shortDesc = u"""Surface_Adsorption_vdW""", # longDesc = u""" # "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" # Vlachos et al. (2008) @@ -510,7 +510,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Adsorption_Dissociative""", + shortDesc = u"""Surface_Dissociation""", longDesc = u""" "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" Vlachos et al. (2008) @@ -532,7 +532,7 @@ # Tmin = (200, 'K'), # Tmax = (3000, 'K'), # ), -# shortDesc = u"""Surface_Adsorption_Dissociative""", +# shortDesc = u"""Surface_Dissociation""", # longDesc = u""" # "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" # Vlachos et al. (2008) From 98ebf08f78a28eb2a62507feb6346eb99218a464 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Tue, 1 Jun 2021 18:36:33 -0400 Subject: [PATCH 21/27] 1. added more nodes in the tree of the Surface_Adsorption_Double family 2. corrected adjacency list of CO species in the Mhadeshwar_Pt111, Vlachos_Pt111 and Vlachos_Rh libraries --- .../Surface_Adsorption_Double/groups.py | 114 ++++++++++++++++++ .../Surface/Mhadeshwar_Pt111/dictionary.txt | 5 +- .../Surface/Vlachos_Pt111/dictionary.txt | 5 +- .../Surface/Vlachos_Rh/dictionary.txt | 5 +- 4 files changed, 123 insertions(+), 6 deletions(-) diff --git a/input/kinetics/families/Surface_Adsorption_Double/groups.py b/input/kinetics/families/Surface_Adsorption_Double/groups.py index 39af2dc4d5..f4a64c8e3f 100644 --- a/input/kinetics/families/Surface_Adsorption_Double/groups.py +++ b/input/kinetics/families/Surface_Adsorption_Double/groups.py @@ -48,11 +48,125 @@ kinetics = None, ) +entry( + index = 3, + label = "C", + group = +""" +1 *1 C u2 +""", + kinetics = None, +) + +entry( + index = 4, + label = "CH2", + group = +""" +multiplicity [3] +1 *1 C u2 p0 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +""", + kinetics = None, +) + +entry( + index = 5, + label = "CO", + group = +""" +multiplicity [3] +1 O u0 p2 c0 {2,D} +2 *1 C u2 p0 c0 {1,D} +""", + kinetics = None, +) + +entry( + index = 6, + label = "C2O", + group = +""" +multiplicity [3] +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,D} +3 *1 C u2 p0 c0 {2,D} +""", + kinetics = None, +) + +entry( + index = 7, + label = "N", + group = +""" +1 *1 N u2 +""", + kinetics = None, +) + +entry( + index = 8, + label = "NH", + group = +""" +multiplicity [3] +1 *1 N u2 p1 c0 {2,S} +2 H u0 p0 c0 {1,S} +""", + kinetics = None, +) +entry( + index = 9, + label = "NN", + group = +""" +multiplicity [3] +1 N u0 {2,S} +2 *1 N u2 {1,S} +""", + kinetics = None, +) + +entry( + index = 10, + label = "N2H2", + group = +""" +multiplicity [3] +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *1 N u2 p1 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +""", + kinetics = None, +) + +entry( + index = 11, + label = "O", + group = +""" +1 *1 O u2 +""", + kinetics = None, +) tree( """ L1: Adsorbate + L2: C + L3: CH2 + L3: CO + L3: C2O + L2: N + L3: NH + L3: NN + L4: N2H2 + L2: O + L1: VacantSite """ diff --git a/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/dictionary.txt index f16389d29f..c0b6adead3 100644 --- a/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/dictionary.txt +++ b/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/dictionary.txt @@ -15,8 +15,9 @@ multiplicity 3 2 O u1 p2 c0 {1,S} CO -1 O u0 p1 c+1 {2,T} -2 C u0 p1 c-1 {1,T} +multiplicity 3 +1 O u0 p2 c0 {2,D} +2 C u2 p0 c0 {1,D} CO_X 1 O u0 p2 c0 {2,D} diff --git a/input/kinetics/libraries/Surface/Vlachos_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Vlachos_Pt111/dictionary.txt index bf68c19f1b..5fa63e71b5 100644 --- a/input/kinetics/libraries/Surface/Vlachos_Pt111/dictionary.txt +++ b/input/kinetics/libraries/Surface/Vlachos_Pt111/dictionary.txt @@ -15,8 +15,9 @@ multiplicity 3 2 O u1 p2 c0 {1,S} CO -1 O u0 p1 c+1 {2,T} -2 C u0 p1 c-1 {1,T} +multiplicity 3 +1 O u0 p2 c0 {2,D} +2 C u2 p0 c0 {1,D} CO_X 1 O u0 p2 c0 {2,D} diff --git a/input/kinetics/libraries/Surface/Vlachos_Rh/dictionary.txt b/input/kinetics/libraries/Surface/Vlachos_Rh/dictionary.txt index 4f0d7dc97b..2e5d4a5db6 100644 --- a/input/kinetics/libraries/Surface/Vlachos_Rh/dictionary.txt +++ b/input/kinetics/libraries/Surface/Vlachos_Rh/dictionary.txt @@ -15,8 +15,9 @@ multiplicity 3 2 O u1 p2 c0 {1,S} CO -1 O u0 p1 c+1 {2,T} -2 C u0 p1 c-1 {1,T} +multiplicity 3 +1 O u0 p2 c0 {2,D} +2 C u2 p0 c0 {1,D} CO_X 1 O u0 p2 c0 {2,D} From ebc703bc8e06534163d435a36817499520e71876 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Tue, 1 Jun 2021 18:37:14 -0400 Subject: [PATCH 22/27] added Mhadeshwar_Pt111 library to training reactions --- .../training/dictionary.txt | 11 + .../Surface_Abstraction/training/reactions.py | 78 +++++++ .../training/dictionary.txt | 35 +++ .../training/reactions.py | 78 +++++++ .../training/dictionary.txt | 24 ++ .../training/reactions.py | 210 +++++++++++++++++ .../training/reactions.py | 26 +++ .../training/reactions.py | 28 +++ .../training/reactions.py | 26 +++ .../training/dictionary.txt | 22 ++ .../training/reactions.py | 220 ++++++++++++++++++ .../training/dictionary.txt | 24 ++ .../training/reactions.py | 158 +++++++++++++ .../training/dictionary.txt | 6 + .../training/reactions.py | 182 +++++++++++++++ .../training/reactions.py | 26 +++ .../training/dictionary.txt | 23 ++ .../training/reactions.py | 132 +++++++++++ .../training/reactions.py | 28 +++ 19 files changed, 1337 insertions(+) diff --git a/input/kinetics/families/Surface_Abstraction/training/dictionary.txt b/input/kinetics/families/Surface_Abstraction/training/dictionary.txt index f91772612b..dd0024b1c5 100644 --- a/input/kinetics/families/Surface_Abstraction/training/dictionary.txt +++ b/input/kinetics/families/Surface_Abstraction/training/dictionary.txt @@ -93,3 +93,14 @@ CH2X 3 H u0 p0 c0 {1,S} 4 *5 X u0 p0 c0 {1,D} +COX +1 O u0 p2 c0 {2,D} +2 *1 C u0 p0 c0 {1,D} {3,D} +3 *2 X u0 p0 c0 {2,D} + +CHOX +1 O u0 p2 c0 {2,D} +2 *1 C u0 p0 c0 {1,D} {3,S} {4,S} +3 *4 H u0 p0 c0 {2,S} +4 *2 X u0 p0 c0 {2,S} + diff --git a/input/kinetics/families/Surface_Abstraction/training/reactions.py b/input/kinetics/families/Surface_Abstraction/training/reactions.py index 8ad248ec32..5c5d082b1f 100644 --- a/input/kinetics/families/Surface_Abstraction/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction/training/reactions.py @@ -597,3 +597,81 @@ facet = "111", ) +entry( + index = 25, + label = "H2NX + O* <=> OH* + HNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(8.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NH2_X + O_X <=> NH_X + OH_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R58 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 26, + label = "HNX-2 + O* <=> OH* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(15.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NH_X + O_X <=> N_X + OH_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R60 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 27, + label = "HOX_3 + COX <=> CHOX + OX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(49.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CO_X + OH_X <=> HCO_X + O_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R107 in Appendix A +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/dictionary.txt index 1e2a52f82f..2eb8a73b56 100644 --- a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/dictionary.txt @@ -65,3 +65,38 @@ HN2X 3 H u0 p0 c0 {2,S} 4 *1 X u0 p0 c0 {1,S} +CNX +1 N u0 p1 c0 {2,T} +2 *4 C u0 p0 c0 {1,T} {3,S} +3 *5 X u0 p0 c0 {2,S} + +H2OX-2 +1 *2 O u0 p2 c0 {2,S} {3,S} +2 *3 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *1 X u0 p0 c0 + +HOX-2 +1 *2 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 *1 X u0 p0 c0 {1,S} + +CHNX +1 N u0 p1 c0 {2,T} +2 *4 C u0 p0 c0 {1,T} {3,S} +3 *3 H u0 p0 c0 {2,S} +4 *5 X u0 p0 c0 + +CHOX +1 O u0 p2 c0 {2,D} +2 *4 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 *5 X u0 p0 c0 {2,S} + +CH2OX +1 O u0 p2 c0 {2,D} +2 *4 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 *3 H u0 p0 c0 {2,S} +5 *5 X u0 p0 c0 + diff --git a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py index 89d72cbcdd..0b7c79614e 100644 --- a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py @@ -263,3 +263,81 @@ facet = "111", ) +entry( + index = 11, + label = "HOX + H3NX <=> H2NX + H2OX", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(12,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NH3_X + OH_X <=> NH2_X + H2O_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R62 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 12, + label = "CNX + H2OX-2 <=> HOX-2 + CHNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(3.4,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CN_X + H2O_X <=> HCN_X + OH_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R90 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 13, + label = "CHOX + H2OX-2 <=> HOX-2 + CH2OX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(18.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: HCO_X + H2O_X <=> CH2O_X + OH_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R103 in Appendix A +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt index 4ced559c71..b167179f5d 100644 --- a/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt @@ -231,3 +231,27 @@ CHX-2 2 *3 H u0 p0 c0 {1,S} 3 *5 X u0 p0 c0 {1,T} +CNX +1 N u0 p1 c0 {2,T} +2 *2 C u0 p0 c0 {1,T} {3,S} +3 *1 X u0 p0 c0 {2,S} + +CHNX +1 N u0 p1 c0 {2,T} +2 *2 C u0 p0 c0 {1,T} {3,S} +3 *3 H u0 p0 c0 {2,S} +4 *1 X u0 p0 c0 + +CHOX +1 O u0 p2 c0 {2,D} +2 *2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 *1 X u0 p0 c0 {2,S} + +CH2OX +1 O u0 p2 c0 {2,D} +2 *2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 *3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 *1 X u0 p0 c0 + diff --git a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py index c1e570e5a9..4b6bca31c3 100644 --- a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py @@ -1354,3 +1354,213 @@ facet = "111", ) +entry( + index = 55, + label = "OH_2* + OH_4* <=> H2O* + O*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(22.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: OH_X + OH_X <=> O_X + H2O_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R24 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 56, + label = "CHO2X + HX <=> H2OX + CO*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(5.4,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: COOH_X + H_X <=> CO_X + H2O_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R34 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 57, + label = "OH_4* + H2NX <=> H3NX + O*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(16.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NH2_X + OH_X <=> NH3_X + O_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R56 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 58, + label = "H2NX-2 + OH_2* <=> H2O* + HNX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(12.9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NH2_X + OH_X <=> NH_X + H2O_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R64 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 59, + label = "HNX-2 + OH_2* <=> H2O* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(22.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NH_X + OH_X <=> N_X + H2O_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R66 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 60, + label = "OH_4* + CNX <=> CHNX + O*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(27.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CN_X + OH_X <=> HCN_X + O_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R88 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 61, + label = "OH_4* + CHOX <=> CH2OX + O*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(30.9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: HCO_X + OH_X <=> CH2O_X + O_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R101 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 62, + label = "CO* + H2O* <=> OH_2* + HCO*", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(36.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CO_X + H2O_X <=> HCO_X + OH_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R109 in Appendix A +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py b/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py index 51503301dd..c7a7a773bc 100644 --- a/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py @@ -316,3 +316,29 @@ facet = "111", ) +entry( + index = 14, + label = "H* + CO2_2* <=> COOH* + X_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(1.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Addition_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CO2_X + H_X <=> COOH_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R32 in Appendix A +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/reactions.py index 0524b871b2..9c212a9b1f 100644 --- a/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/reactions.py @@ -78,3 +78,31 @@ facet = "111", ) +entry( + index = 4, + label = "OX + CHO2X <=> CO2X + HOX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(8.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: COOH_X + O_X <=> CO2_X + OH_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R36 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py index c5639b25c8..5f3f13d1a5 100644 --- a/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py @@ -207,3 +207,29 @@ facet = "111", ) +entry( + index = 10, + label = "HX_3 + HX_4 <=> H2 + X_3 + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+21,'cm^2/(mol*s)'), n=0, Ea=(17.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """H2 Surface_Adsorption_Dissociative""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: H_X + H_X <=> H2 + X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R14 in Appendix A +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt b/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt index c88f45241f..b69ac18a4e 100644 --- a/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt +++ b/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt @@ -123,3 +123,25 @@ CHO2X 4 H u0 p0 c0 {1,S} 5 *2 X u0 p0 c0 {3,S} +H2NX +1 *1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *2 X u0 p0 c0 {1,S} + +H2N +multiplicity 2 +1 *1 N u1 p1 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +CNX +1 N u0 p1 c0 {2,T} +2 *1 C u0 p0 c0 {1,T} {3,S} +3 *2 X u0 p0 c0 {2,S} + +CN +multiplicity 2 +1 N u0 p1 c0 {2,T} +2 *1 C u1 p0 c0 {1,T} + diff --git a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py index 6fa8e94855..2b53695403 100644 --- a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py @@ -403,3 +403,223 @@ facet = "111", ) +entry( + index = 18, + label = "HX <=> H + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(60.9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: H_X <=> H + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R12 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 19, + label = "HOX <=> HO + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(63,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: OH_X <=> OH + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R18 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 20, + label = "CHO2X <=> CHO2 + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(56.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: COOH_X <=> COOH + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R26 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 21, + label = "H2NX <=> H2N + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(54.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NH2_X <=> NH2 + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R46 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 22, + label = "NO_X <=> NO + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+24,'1/s'), n=0, Ea=(30.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NO_X <=> NO + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E16(1/s)/2.5E-9(mol/cm^2) = 4E24 cm^2/(mol*s) + +This is R68 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 23, + label = "NO2X <=> NO2 + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(23.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NO2_X <=> NO2 + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R70 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 24, + label = "CNX <=> CN + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(78.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CN_X <=> CN + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R84 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 25, + label = "CHOX <=> CHO + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(54.4,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: HCO_X <=> HCO + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R98 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt index 7ef022f5e6..aeee16c78e 100644 --- a/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt @@ -138,3 +138,27 @@ H2 1 *1 H u0 p0 c0 {2,S} 2 H u0 p0 c0 {1,S} +CHNX +1 *1 N u0 p1 c0 {2,T} +2 C u0 p0 c0 {1,T} {3,S} +3 H u0 p0 c0 {2,S} +4 *2 X u0 p0 c0 + +CHN +1 *1 N u0 p1 c0 {2,T} +2 C u0 p0 c0 {1,T} {3,S} +3 H u0 p0 c0 {2,S} + +C2N2X +1 *1 N u0 p1 c0 {3,T} +2 N u0 p1 c0 {4,T} +3 C u0 p0 c0 {1,T} {4,S} +4 C u0 p0 c0 {2,T} {3,S} +5 *2 X u0 p0 c0 + +C2N2 +1 *1 N u0 p1 c0 {3,T} +2 N u0 p1 c0 {4,T} +3 C u0 p0 c0 {1,T} {4,S} +4 C u0 p0 c0 {2,T} {3,S} + diff --git a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py index 5cc0447f97..3830f8d04b 100644 --- a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py @@ -634,3 +634,161 @@ facet = "0001", ) +entry( + index = 28, + label = "CO2X-2 <=> CO2-2 + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(3.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CO2_X <=> CO2 + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R8 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 29, + label = "H2OX <=> H2O + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(10.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: H2O_X <=> H2O + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R16 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 30, + label = "H3NX <=> H3N + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(20.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NH3_X <=> NH3 + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R44 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 31, + label = "CHNX <=> CHN + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(21.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: HCN_X <=> HCN + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R82 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 32, + label = "CH2OX <=> CH2O + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(14.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CH2O_X <=> CH2O + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R96 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 33, + label = "C2N2X <=> C2N2 + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(21,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: C2N2_X <=> C2N2 + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +This is R122 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Dissociation/training/dictionary.txt b/input/kinetics/families/Surface_Dissociation/training/dictionary.txt index 72b434630b..d8dc843c99 100644 --- a/input/kinetics/families/Surface_Dissociation/training/dictionary.txt +++ b/input/kinetics/families/Surface_Dissociation/training/dictionary.txt @@ -214,3 +214,9 @@ H2N2X-2 4 H u0 p0 c0 {1,S} 5 *3 X u0 p0 c0 {2,D} +N2OX +1 O u0 p2 c0 {3,D} +2 *1 N u0 p1 c0 {3,S} {4,D} +3 *2 N u0 p1 c0 {1,D} {2,S} +4 *3 X u0 p0 c0 {2,D} + diff --git a/input/kinetics/families/Surface_Dissociation/training/reactions.py b/input/kinetics/families/Surface_Dissociation/training/reactions.py index 98fb7a0ecd..8a3a83326e 100644 --- a/input/kinetics/families/Surface_Dissociation/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation/training/reactions.py @@ -1648,3 +1648,185 @@ facet = "111", ) +entry( + index = 67, + label = "HX_5 + OX <=> HOX_1 + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(8.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: H_X + O_X <=> OH_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R20 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 68, + label = "HOX_5 + OCX_3 <=> HOCXO_1 + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(18.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CO_X + OH_X <=> COOH_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R30 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 69, + label = "HX_5 + NHX_1 <=> NH2_X + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(16.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NH_X + H_X <=> NH2_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R52 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 70, + label = "HX_5 + NX <=> NHX_2 + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(24.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: N_X + H_X <=> NH_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R54 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 71, + label = "NOX + OX <=> NO2X + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.2e+21,'cm^2/(mol*s)'), n=0.93, Ea=(21.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NO_X + O_X <=> NO2_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 3E12(1/s)/2.5E-9(mol/cm^2) = 1.2E21 cm^2/(mol*s) + +This is R80 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 72, + label = "HX_5 + OCX_3 <=> CXHO_1 + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(30.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CO_X + H_X <=> HCO_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R106 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 73, + label = "NOX + NX <=> N2OX + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(19.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: N_X + NO_X <=> N2O_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R120 in Appendix A +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py index 545b9e1c1f..fe31e695a3 100644 --- a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py @@ -229,3 +229,29 @@ facet = "111", ) +entry( + index = 10, + label = "CO* + O* <=> CO2* + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+18,'cm^2/(mol*s)'), n=0, Ea=(18.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_Double_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CO_X + O_X <=> CO2_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E10(1/s)/2.5E-9(mol/cm^2) = 4E18 cm^2/(mol*s) + +This is R10 in Appendix A +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Dissociation_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Dissociation_vdW/training/dictionary.txt index fa7f595d10..5240bd9ef8 100644 --- a/input/kinetics/families/Surface_Dissociation_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Dissociation_vdW/training/dictionary.txt @@ -166,3 +166,26 @@ H2NX 3 H u0 p0 c0 {1,S} 4 *4 X u0 p0 c0 {1,S} +CNX +1 N u0 p1 c0 {2,T} +2 *1 C u0 p0 c0 {1,T} {3,S} +3 *3 X u0 p0 c0 {2,S} + +CHNX +1 N u0 p1 c0 {2,T} +2 *1 C u0 p0 c0 {1,T} {3,S} +3 *2 H u0 p0 c0 {2,S} +4 *3 X u0 p0 c0 + +CNX-2 +1 N u0 p1 c0 {2,T} +2 *2 C u0 p0 c0 {1,T} {3,S} +3 *4 X u0 p0 c0 {2,S} + +C2N2X +1 N u0 p1 c0 {3,T} +2 N u0 p1 c0 {4,T} +3 *1 C u0 p0 c0 {1,T} {4,S} +4 *2 C u0 p0 c0 {2,T} {3,S} +5 *3 X u0 p0 c0 + diff --git a/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py b/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py index 51c138f6e9..3ec9290a0d 100644 --- a/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py @@ -856,3 +856,135 @@ facet = "0001", ) +entry( + index = 35, + label = "H* + OH* <=> H2O* + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(12.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: H_X + OH_X <=> H2O_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R22 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 36, + label = "H* + NH2_X <=> NH3_X + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(7.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NH2_X + H_X <=> NH3_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R50 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 37, + label = "H* + CNX <=> CHNX + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(13.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CN_X + H_X <=> HCN_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R86 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 38, + label = "H* + HCO* <=> CH2O* + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(20.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: HCO_X + H_X <=> CH2O_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R100 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 39, + label = "CNX + CNX-2 <=> C2N2X + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(28.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CN_X + CN_X <=> C2N2_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R124 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/reactions.py b/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/reactions.py index 5a928ddfd2..92f4841a7d 100644 --- a/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/reactions.py @@ -107,3 +107,31 @@ facet = "111", ) +entry( + index = 5, + label = "OH* + COOH* <=> CO2* + H2O*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(12.4,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dual_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: COOH_X + OH_X <=> CO2_X + H2O_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R38 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + From 64e706484342db98430f54c0e2caa2183b45d94c Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Thu, 3 Jun 2021 19:24:49 -0400 Subject: [PATCH 23/27] Fixed the wrong value of A which have the unit of 1/s Removed the comments of correcting the long description --- .../Surface_Abstraction/training/reactions.py | 2 +- .../training/reactions.py | 10 +- .../training/dictionary.txt | 11 + .../training/reactions.py | 42 +++- .../training/reactions.py | 4 +- .../training/reactions.py | 26 --- .../training/reactions.py | 66 ++---- .../training/reactions.py | 103 ++++----- .../training/reactions.py | 15 +- .../training/reactions.py | 122 +++-------- .../training/reactions.py | 4 +- .../training/reactions.py | 4 +- .../training/reactions.py | 18 +- .../Surface/Mhadeshwar_Pt111/reactions.py | 95 ++------ .../Surface/Offermans_Pt111/reactions.py | 5 +- .../Surface/Rebrov_Pt111/reactions.py | 15 +- .../Surface/Roldan_Cu111/reactions.py | 18 +- .../Surface/Roldan_Ir111/dictionary.txt | 7 +- .../Surface/Roldan_Ir111/reactions.py | 36 ++-- .../Surface/Roldan_Ru0001/reactions.py | 12 +- .../libraries/Surface/Scheuer_Pt/reactions.py | 10 +- .../Surface/Schneider_Pt111/reactions.py | 13 +- .../Surface/Schneider_Pt211/reactions.py | 12 +- .../Surface/Vlachos_Pt111/reactions.py | 203 +++++++----------- .../libraries/Surface/Vlachos_Rh/reactions.py | 135 ++++++------ 25 files changed, 359 insertions(+), 629 deletions(-) diff --git a/input/kinetics/families/Surface_Abstraction/training/reactions.py b/input/kinetics/families/Surface_Abstraction/training/reactions.py index 5c5d082b1f..d0fe0b2c8a 100644 --- a/input/kinetics/families/Surface_Abstraction/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction/training/reactions.py @@ -112,7 +112,7 @@ A factor from paper / surface site density of Cu 1.0e13 1/s / 2.943e‐5 mol/m^2 = 3.298e17 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) diff --git a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py index 4b6bca31c3..60e0d0a8f1 100644 --- a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py @@ -50,7 +50,7 @@ A factor from paper / surface site density of Cu 1.675e12 1/s / 2.943e‐5 mol/m^2 = 5.691e16 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -94,7 +94,7 @@ A factor from paper / surface site density of Cu 9.597e12 1/s / 2.943e‐5 mol/m^2 = 3.261e17 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -117,7 +117,7 @@ A factor from paper / surface site density of Cu 2.2e14 1/s / 2.943e‐5 mol/m^2 = 7.475e18 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -140,7 +140,7 @@ A factor from paper / surface site density of Cu 1.934e12 1/s / 2.943e‐5 mol/m^2 = 6.572e16 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -163,7 +163,7 @@ A factor from paper / surface site density of Cu 6.934e11 1/s / 2.943e‐5 mol/m^2 = 2.356e16 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) diff --git a/input/kinetics/families/Surface_Addition_Single_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Addition_Single_vdW/training/dictionary.txt index 33fb37c9ce..f2cdad2fa5 100644 --- a/input/kinetics/families/Surface_Addition_Single_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Addition_Single_vdW/training/dictionary.txt @@ -135,3 +135,14 @@ H2COOCH3_2* 9 H u0 p0 c0 {4,S} 10 *1 X u0 p0 c0 {2,S} +HN2X +1 *2 N u0 p1 c0 {2,D} {4,S} +2 *3 N u0 p1 c0 {1,D} {3,S} +3 *4 H u0 p0 c0 {2,S} +4 *1 X u0 p0 c0 {1,S} + +N2X +1 *2 N u0 p1 c0 {2,T} +2 *3 N u0 p1 c0 {1,T} +3 *1 X u0 p0 c0 + diff --git a/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py b/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py index c7a7a773bc..66a7bc8240 100644 --- a/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py @@ -27,7 +27,7 @@ A factor from paper / surface site density of Cu 2.3626e13 1/s / 2.943e‐5 mol/m^2 = 8.028e17 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -72,7 +72,7 @@ A factor from paper / surface site density of Cu 3.658e13 1/s / 2.943e‐5 mol/m^2 = 1.243e18 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -95,7 +95,7 @@ A factor from paper / surface site density of Cu 6.244e14 1/s / 2.943e‐5 mol/m^2 = 2.122e19 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -118,7 +118,7 @@ A factor from paper / surface site density of Cu 1.001e13 1/s / 2.943e‐5 mol/m^2 = 3.401e17 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -141,7 +141,7 @@ A factor from paper / surface site density of Cu 1.815e13 1/s / 2.943e‐5 mol/m^2 = 6.167e17 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -164,7 +164,7 @@ A factor from paper / surface site density of Cu 9.518e14 1/s / 2.943e‐5 mol/m^2 = 3.234e19 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -187,7 +187,7 @@ A factor from paper / surface site density of Cu 6.405e13 1/s / 2.943e‐5 mol/m^2 = 2.176e18 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -210,7 +210,7 @@ A factor from paper / surface site density of Cu 1.536e12 1/s / 2.943e‐5 mol/m^2 = 5.219e16 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -342,3 +342,29 @@ facet = "111", ) +entry( + index = 15, + label = "X_5 + HN2X <=> N2X + H*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(126402,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Addition_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N2H_X + X <=> N2_X + H_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 1.31eV = 126401.9J/mol + +This is R10 in Table 3 +""", + metal = "Ir", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/reactions.py index 9c212a9b1f..57a404783e 100644 --- a/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/reactions.py @@ -26,7 +26,7 @@ A factor from paper / surface site density of Cu 5.34e11 1/s / 2.943e‐5 mol/m^2 = 1.814e16 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -48,7 +48,7 @@ A factor from paper / surface site density of Cu 1.0e13 1/s / 2.943e‐5 mol/m^2 = 3.398e17 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) diff --git a/input/kinetics/families/Surface_Adsorption_Bidentate/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Bidentate/training/reactions.py index fba7f6e8b9..4a30daf063 100644 --- a/input/kinetics/families/Surface_Adsorption_Bidentate/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Bidentate/training/reactions.py @@ -30,29 +30,3 @@ facet = "111", ) -entry( - index = 2, - label = "N2X2 <=> N2 + X + X-2", - degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.68e16,'1/s'), n=0, Ea=(10807,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), - rank = 3, - shortDesc = """Surface_Adsorption_Bidentate""", - longDesc = -""" -Training reaction from kinetics library: Surface/Roldan_Ir111 -Original entry: N2_X <=> N2 + X + X -"Kinetic and mechanistic analysis of NH3 decomposition -on Ru(0001), Ru(111) and Ir(111) surfaces" -Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 -DOI: 10.1039/d1na00015b - -This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. -A = 9.52E7(mol/cm^2/s)/2.587E-9(mol/cm^2) = 3.68E16 (1/s) -Ea was calculated from A factor and k rate constant in Table 3 - -This is D2 in Table 3 -""", - metal = "Ir", - facet = "111", -) - diff --git a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py index 2b53695403..587d5ec333 100644 --- a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py @@ -103,7 +103,7 @@ index = 5, label = "NO_X <=> NO + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.03e24,'1/s'), n=0, Ea=(140000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1e16,'1/s'), n=0, Ea=(140000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = @@ -114,9 +114,6 @@ Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. https://doi.org/10.1016/S1385-8947(02)00068-2 -This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 1E16(1/s)/2.483E-9(mol/cm^2) = 4.03E24 cm^2/(mol*s) - This is R15 in Table 1 """, metal = "Pt", @@ -150,7 +147,7 @@ index = 7, label = "NO2X <=> NO2 + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(5.24e22,'1/s'), n=0, Ea=(100000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.3e14,'1/s'), n=0, Ea=(100000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = @@ -161,9 +158,6 @@ Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 https://doi.org/10.1016/j.apcatb.2011.10.032 -This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 1.3E14(mol/cm^2/s)/2.483E-9(mol/cm^2) = 5.24E22 (1/s) - This is R13 in Table 1 """, metal = "Pt", @@ -173,7 +167,7 @@ index = 8, label = "NO_X <=> NO + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.05e26,'1/s'), n=0, Ea=(184296,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.6e17,'1/s'), n=0, Ea=(184296,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = @@ -184,8 +178,6 @@ DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 -This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 2.6E17(1/s)/2.483E-9(mol/cm^2) = 1.05E26 cm^2/(mol*s) Ea = 1.91eV = 184295.9J/mol This is R13 in Table S2 and S4 @@ -198,7 +190,7 @@ index = 9, label = "NO_X <=> NO + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.94e25,'1/s'), n=0, Ea=(224822,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.3e17,'1/s'), n=0, Ea=(224822,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = @@ -209,8 +201,6 @@ DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 -This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. -A = 1.3E17(1/s)/2.634E-9(mol/cm^2) = 4.94E25 cm^2/(mol*s) Ea = 2.33eV = 224821.7J/mol This is R13 in Table S2 and S4 @@ -221,22 +211,22 @@ entry( index = 10, - label = "X + HO <=> HOX", + label = "HOX <=> X + HO", degeneracy = 1.0, - kinetics = StickingCoefficient(A=0.999, n=2, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.44e14,'1/s'), n=2.00, Ea=(63.0, 'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = """ Training reaction from kinetics library: Surface/Vlachos_Pt111 -Original entry: OH + X <=> OH_X +Original entry: OH_X <=> OH + X "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" D.G. Vlachos et al. (2007) Industrial & Engineering Chemistry Research, 46(16), 5310-5324. DOI: 10.1021/ie070322c -This is R19 in Table 1 +This is R20 in Table 1 """, metal = "Pt", facet = "111", @@ -407,7 +397,7 @@ index = 18, label = "HX <=> H + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(60.9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(60.9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = @@ -420,9 +410,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R12 in Appendix A This reaction is the least important ones for typical DOC conditions. @@ -435,7 +422,7 @@ index = 19, label = "HOX <=> HO + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(63,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(63,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = @@ -448,9 +435,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R18 in Appendix A This reaction is the least important ones for typical DOC conditions. @@ -463,7 +447,7 @@ index = 20, label = "CHO2X <=> CHO2 + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(56.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(56.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = @@ -476,9 +460,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R26 in Appendix A This reaction is the least important ones for typical DOC conditions. @@ -491,7 +472,7 @@ index = 21, label = "H2NX <=> H2N + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(54.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(54.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = @@ -504,9 +485,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R46 in Appendix A This reaction is the least important ones for typical DOC conditions. @@ -519,7 +497,7 @@ index = 22, label = "NO_X <=> NO + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+24,'1/s'), n=0, Ea=(30.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1e16,'1/s'), n=0, Ea=(30.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = @@ -532,9 +510,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E16(1/s)/2.5E-9(mol/cm^2) = 4E24 cm^2/(mol*s) - This is R68 in Appendix A """, metal = "Pt", @@ -545,7 +520,7 @@ index = 23, label = "NO2X <=> NO2 + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(23.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(23.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = @@ -558,9 +533,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R70 in Appendix A """, metal = "Pt", @@ -571,7 +543,7 @@ index = 24, label = "CNX <=> CN + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(78.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(78.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = @@ -584,9 +556,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R84 in Appendix A This reaction is the least important ones for typical DOC conditions. @@ -599,7 +568,7 @@ index = 25, label = "CHOX <=> CHO + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(54.4,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(54.4,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = @@ -612,9 +581,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R98 in Appendix A This reaction is the least important ones for typical DOC conditions. diff --git a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py index 3830f8d04b..b43317fadc 100644 --- a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py @@ -94,7 +94,7 @@ index = 5, label = "X + N2 <=> N2X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.464e21,'cm^3/(mol*s)'), n=0, Ea=(4000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(8.6e12,'cm^3/(mol*s)'), n=0, Ea=(4000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """N2 Surface_Adsorption_vdW""", longDesc = @@ -104,9 +104,6 @@ "Ammonia oxidation on platinum : a density functional theory study of surface reactivity." Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 - -This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A (at 300K from p.62)= 8.6E12(cm/s)/2.483E-9(mol/cm^2) = 3.464E21 cm^3/(mol*s) """, metal = "Pt", facet = "111", @@ -116,7 +113,7 @@ index = 6, label = "H3NX <=> H3N + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.03e17,'1/s'), n=0, Ea=(75200,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1e9,'1/s'), n=0, Ea=(75200,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = @@ -127,9 +124,6 @@ Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. https://doi.org/10.1016/S1385-8947(02)00068-2 -This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 1E9(mol/cm^2/s)/2.483E-9(mol/cm^2) = 4.03E17 (1/s) - This is R2 in Table 1 """, metal = "Pt", @@ -140,7 +134,7 @@ index = 7, label = "H2OX <=> H2O + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.03e21,'1/s'), n=0, Ea=(40300,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(40300,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = @@ -151,9 +145,6 @@ Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. https://doi.org/10.1016/S1385-8947(02)00068-2 -This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 1E13(mol/cm^2/s)/2.483E-9(mol/cm^2) = 4.03E21 (1/s) - This is R19 in Table 1 """, metal = "Pt", @@ -187,7 +178,7 @@ index = 9, label = "H2OX <=> H2O + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.38e24,'1/s'), n=0, Ea=(18333.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(5.9e15,'1/s'), n=0, Ea=(18333.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = @@ -198,8 +189,6 @@ DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 -This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 5.9E15(1/s)/2.483E-9(mol/cm^2) = 2.38E24 cm^2/(mol*s) Ea = 0.19eV = 18333.1J/mol This is R10 in Table S2 and S4 @@ -212,7 +201,7 @@ index = 10, label = "N2OX <=> N2O + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(5.64e24,'1/s'), n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.4e16,'1/s'), n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = @@ -236,7 +225,7 @@ index = 11, label = "H2OX <=> H2O + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.4e24,'1/s'), n=0, Ea=(24122.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(3.7e15,'1/s'), n=0, Ea=(24122.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = @@ -247,8 +236,6 @@ DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 -This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. -A = 3.7E15(1/s)/2.634E-9(mol/cm^2) = 1.40E24 cm^2/(mol*s) Ea = 0.25eV = 24122.5J/mol This is R10 in Table S2 and S4 @@ -261,7 +248,7 @@ index = 12, label = "N2OX <=> N2O + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(5.69e25,'1/s'), n=0, Ea=(9649,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.5e17,'1/s'), n=0, Ea=(9649,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = @@ -272,8 +259,6 @@ DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 -This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. -A = 1.5E17(1/s)/2.634E-9(mol/cm^2) = 5.69E25 cm^2/(mol*s) Ea = 0.1eV = 9649J/mol This is R15 in Table S2 and S4 @@ -508,7 +493,7 @@ index = 23, label = "H3NX <=> H3N + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.68e16,'1/s'), n=0, Ea=(88574.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(9.53e7,'1/s'), n=0, Ea=(88574.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = @@ -520,8 +505,6 @@ Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 DOI: 10.1039/d1na00015b -This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. -A = 9.53E7(mol/cm^2/s)/2.587E-9(mol/cm^2) = 3.68E16 (1/s) Ea was calculated from A factor and k rate constant in Table 3 This is D1 in Table 3 @@ -534,7 +517,7 @@ index = 24, label = "H2X <=> H2 + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.69e16,'1/s'), n=0, Ea=(30972.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(9.54e7,'1/s'), n=0, Ea=(30972.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """H2 Surface_Adsorption_vdW""", longDesc = @@ -546,8 +529,6 @@ Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 DOI: 10.1039/d1na00015b -This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. -A = 9.54E7(mol/cm^2/s)/2.587E-9(mol/cm^2) = 3.69E16 (1/s) Ea was calculated from A factor and k rate constant in Table 3 This is D3 in Table 3 @@ -560,7 +541,7 @@ index = 25, label = "H3NX <=> H3N + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.9e16,'1/s'), n=0, Ea=(72149.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.29e8,'1/s'), n=0, Ea=(72149.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = @@ -572,8 +553,6 @@ Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 DOI: 10.1039/d1na00015b -This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. -A = 1.29E8(mol/cm^2/s)/2.630E-9(mol/cm^2) = 4.90E16 (1/s) Ea was calculated from A factor and k rate constant in Table 3 This is D1 in Table 3 @@ -586,7 +565,7 @@ index = 26, label = "X + N2 <=> N2X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.9e16,'cm^3/(mol*s)'), n=0, Ea=(24483,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.29e8,'cm^3/(mol*s)'), n=0, Ea=(24483,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = @@ -598,8 +577,6 @@ Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 DOI: 10.1039/d1na00015b -This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. -A = 1.29E8(cm/s)/2.630E-9(mol/cm^2) = 4.90E16 (cm^3/(mol*s)) Ea was calculated from A factor and k rate constant in Table 3 This is A2 in Table 3 @@ -612,7 +589,7 @@ index = 27, label = "H2X <=> H2 + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.9e16,'1/s'), n=0, Ea=(24483,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.29e8,'1/s'), n=0, Ea=(24483,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """H2 Surface_Adsorption_vdW""", longDesc = @@ -624,8 +601,6 @@ Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 DOI: 10.1039/d1na00015b -This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. -A = 1.29E8(mol/cm^2/s)/2.630E-9(mol/cm^2) = 4.90E16 (1/s) Ea was calculated from A factor and k rate constant in Table 3 This is D3 in Table 3 @@ -638,7 +613,7 @@ index = 28, label = "CO2X-2 <=> CO2-2 + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(3.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(3.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = @@ -651,9 +626,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R8 in Appendix A """, metal = "Pt", @@ -664,7 +636,7 @@ index = 29, label = "H2OX <=> H2O + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(10.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(10.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption""", longDesc = @@ -677,9 +649,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R16 in Appendix A """, metal = "Pt", @@ -690,7 +659,7 @@ index = 30, label = "H3NX <=> H3N + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(20.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(20.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = @@ -703,9 +672,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R44 in Appendix A """, metal = "Pt", @@ -716,7 +682,7 @@ index = 31, label = "CHNX <=> CHN + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(21.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(21.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = @@ -729,9 +695,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R82 in Appendix A """, metal = "Pt", @@ -742,7 +705,7 @@ index = 32, label = "CH2OX <=> CH2O + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(14.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(14.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = @@ -755,9 +718,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R96 in Appendix A """, metal = "Pt", @@ -768,7 +728,7 @@ index = 33, label = "C2N2X <=> C2N2 + X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+21,'1/s'), n=0, Ea=(21,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(21,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = @@ -781,9 +741,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R122 in Appendix A This reaction is the least important ones for typical DOC conditions. @@ -792,3 +749,27 @@ facet = "111", ) +entry( + index = 34, + label = "N2X <=> N2 + X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(9.52e7,'1/s'), n=0, Ea=(10807,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N2_X <=> N2 + X +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +Ea was calculated from A factor and k rate constant in Table 3 + +This is D2 in Table 3 +""", + metal = "Ir", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Bidentate_Dissociation/training/reactions.py b/input/kinetics/families/Surface_Bidentate_Dissociation/training/reactions.py index 5d4ac602a7..3baa76951e 100644 --- a/input/kinetics/families/Surface_Bidentate_Dissociation/training/reactions.py +++ b/input/kinetics/families/Surface_Bidentate_Dissociation/training/reactions.py @@ -7,11 +7,12 @@ Put kinetic parameters for specific reactions in this file to use as a training set for generating rate rules to populate this kinetics family. """ + entry( index = 1, label = "H2N2X2 <=> HNX + HNX-2", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.49e20,'1/s'), n=0.299, Ea=(76227,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.39e11,'1/s'), n=0.299, Ea=(76227,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Bidentate_Dissociation""", longDesc = @@ -23,7 +24,6 @@ Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. DOI:10.1039/C6FD00186F -This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. A and n was calculated by numpy.linalg.lstsq from Table 1 This is R26 in Table 1 @@ -36,7 +36,7 @@ index = 2, label = "HN2X2 <=> HNX + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(8.81e19,'1/s'), n=0.619, Ea=(137016,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(2.59e11,'1/s'), n=0.619, Ea=(137016,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Bidentate_Dissociation""", longDesc = @@ -48,7 +48,6 @@ Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. DOI:10.1039/C6FD00186F -This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. A and n was calculated by numpy.linalg.lstsq from Table 1 This is R28 in Table 1 @@ -61,7 +60,7 @@ index = 3, label = "N2X2 <=> NX-2 + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.62e20,'1/s'), n=0.06, Ea=(452538,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.77e11,'1/s'), n=0.06, Ea=(452538,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Bidentate_Dissociation""", longDesc = @@ -73,7 +72,6 @@ Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. DOI:10.1039/C6FD00186F -This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. A and n was calculated by numpy.linalg.lstsq from Table 1 This is R50 in Table 1 @@ -86,7 +84,7 @@ index = 4, label = "HN2X2 <=> HNX + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.87e21,'1/s'), n=0, Ea=(137981,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(137981,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Bidentate_Dissociation""", longDesc = @@ -97,9 +95,6 @@ Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 DOI: 10.1039/c9cp06525c -This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) -to estimate a default(1E13) A factor. -A = 1E13(mol/cm^2/s)/2.587E-9(mol/cm^2) = 3.87E21 (1/s) Ea = 1.43eV = 137980.7J/mol This is R15 in Table 3 diff --git a/input/kinetics/families/Surface_Dissociation/training/reactions.py b/input/kinetics/families/Surface_Dissociation/training/reactions.py index 8a3a83326e..33ef554861 100644 --- a/input/kinetics/families/Surface_Dissociation/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation/training/reactions.py @@ -46,7 +46,7 @@ "Surface Reaction Kinetics of Steam- and CO2-Reforming as well as Oxidation of Methane over Nickel-Based Catalysts" Delgado et al Catalysts, 2015, 5, 871-904. Reaction R44 -""", #This is Reaction R44 +""", metal = 'Ni', ) @@ -69,7 +69,7 @@ A factor from paper / surface site density of Cu 4.667E11 1/s / 2.943e‐5 mol/m^2 = 1.586e16 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -223,7 +223,7 @@ A factor from paper / surface site density of Cu 2.570E12 1/s / 2.943e‐5 mol/m^2 = 8.733e16 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -246,7 +246,7 @@ A factor from paper / surface site density of Cu 3.698E12 1/s / 2.943e‐5 mol/m^2 = 1.257e17 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -290,7 +290,7 @@ A factor from paper / surface site density of Cu 2.193E13 1/s / 2.943e‐5 mol/m^2 = 7.452e17 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -313,7 +313,7 @@ A factor from paper / surface site density of Cu 5.485E13 1/s / 2.943e‐5 mol/m^2 = 1.864e18 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -334,7 +334,7 @@ "Surface Reaction Kinetics of Steam- and CO2-Reforming as well as Oxidation of Methane over Nickel-Based Catalysts" Delgado et al Catalysts, 2015, 5, 871-904. Reaction R48 -""", #This is Reaction R48 not R8 +""", metal = "Ni", ) @@ -357,7 +357,7 @@ A factor from paper / surface site density of Cu 9.240E12 1/s / 2.943e‐5 mol/m^2 = 3.140e17 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -1392,53 +1392,53 @@ entry( index = 57, - label = "X_4 + H2N2X2 <=> HN2X2 + HX_5", - degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(67543,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + label = "HX_5 + OCX_3 <=> CXHO_1 + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(30.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = """ -Training reaction from kinetics library: Surface/Roldan_Ir111 -Original entry: [Pt]NN[Pt] + X <=> [Pt]NN=[Pt] + H_X -"Mechanistic study of hydrazine decomposition on Ir(111)" -Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 -DOI: 10.1039/c9cp06525c +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CO_X + H_X <=> HCO_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 -This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) -to estimate a default(1E13) A factor. -A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) -Ea = 0.7eV = 67543J/mol +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) -This is R8 in Table 3 +This is R106 in Appendix A """, - metal = "Ir", + metal = "Pt", facet = "111", ) entry( index = 58, - label = "X_4 + HN2X2-2 <=> N2X2 + HX_5", + label = "NOX + NX <=> N2OX + X_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(126402,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(19.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = """ -Training reaction from kinetics library: Surface/Roldan_Ir111 -Original entry: [Pt]NN=[Pt] + X <=> N2_X + H_X -"Mechanistic study of hydrazine decomposition on Ir(111)" -Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 -DOI: 10.1039/c9cp06525c +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: N_X + NO_X <=> N2O_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 -This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) -to estimate a default(1E13) A factor. -A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) -Ea = 1.31eV = 126401.9J/mol +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) -This is R10 in Table 3 +This is R120 in Appendix A """, - metal = "Ir", + metal = "Pt", facet = "111", ) @@ -1778,55 +1778,3 @@ facet = "111", ) -entry( - index = 72, - label = "HX_5 + OCX_3 <=> CXHO_1 + X_4", - degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(30.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), - rank = 3, - shortDesc = """Surface_Dissociation""", - longDesc = -""" -Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 -Original entry: CO_X + H_X <=> HCO_X + X -"A detailed microkinetic model for diesel engine emissions oxidation -on platinum based diesel oxidation catalysts (DOC)" -Hom Sharma & Ashish Mhadeshwar. (2012). -Applied Catalysis B: Environmental, 127, 190-204 -DOI: 10.1016/j.apcatb.2012.08.021 - -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) - -This is R106 in Appendix A -""", - metal = "Pt", - facet = "111", -) - -entry( - index = 73, - label = "NOX + NX <=> N2OX + X_4", - degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(19.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), - rank = 3, - shortDesc = """Surface_Dissociation""", - longDesc = -""" -Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 -Original entry: N_X + NO_X <=> N2O_X + X -"A detailed microkinetic model for diesel engine emissions oxidation -on platinum based diesel oxidation catalysts (DOC)" -Hom Sharma & Ashish Mhadeshwar. (2012). -Applied Catalysis B: Environmental, 127, 190-204 -DOI: 10.1016/j.apcatb.2012.08.021 - -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) - -This is R120 in Appendix A -""", - metal = "Pt", - facet = "111", -) - diff --git a/input/kinetics/families/Surface_Dissociation_Beta/training/reactions.py b/input/kinetics/families/Surface_Dissociation_Beta/training/reactions.py index fe8cc3636a..1b1a16284d 100644 --- a/input/kinetics/families/Surface_Dissociation_Beta/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_Beta/training/reactions.py @@ -27,7 +27,7 @@ A factor from paper / surface site density of Cu 1.118e13 1/s / 2.943e‐5 mol/m^2 = 3.799e17 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -50,7 +50,7 @@ A factor from paper / surface site density of Cu 8.971e12 1/s / 2.943e‐5 mol/m^2 = 3.048e17 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) diff --git a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py index fe31e695a3..ce8bc74d4b 100644 --- a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py @@ -27,7 +27,7 @@ A factor from paper / surface site density of Cu 1.195e12 1/s / 2.943e‐5 mol/m^2 = 4.060e16 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -71,7 +71,7 @@ A factor from paper / surface site density of Cu 4.828e11 1/s / 2.943e‐5 mol/m^2 = 1.641e16 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) diff --git a/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py b/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py index 3ec9290a0d..ef413a765e 100644 --- a/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py @@ -71,7 +71,7 @@ A factor from paper / surface site density of Cu 6.793e13 1/s / 2.943e‐5 mol/m^2 = 2.308e18 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -94,7 +94,7 @@ A factor from paper / surface site density of Cu 1.436e11 1/s / 2.943e‐5 mol/m^2 = 4.879e15 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -138,7 +138,7 @@ A factor from paper / surface site density of Cu 1.302e14 1/s / 2.943e‐5 mol/m^2 = 4.424e18 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -147,7 +147,7 @@ label = "CH3O* + H* <=> CH3OH_2* + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( - A = (4.349e22, 'm^2/(mol*s)'), + A = (4.349e17, 'm^2/(mol*s)'), n = 0., Ea = (10.8384576, 'kcal/mol'), Tmin = (298, 'K'), @@ -160,8 +160,8 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -1.28e18 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 4.349e22 m^2/(mol*s) -""", #Ting-Chen: A in the paper is 1.28e13; so 1.28e13 1/s / 2.943e‐5 mol/m^2 = 4.349e17 m^2/(mol*s) +1.28e13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 4.349e17 m^2/(mol*s) +""", metal = "Cu", ) @@ -184,7 +184,7 @@ A factor from paper / surface site density of Cu 5.685e12 1/s / 2.943e‐5 mol/m^2 = 1.932e17 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -207,7 +207,7 @@ A factor from paper / surface site density of Cu 8.189e12 1/s / 2.943e‐5 mol/m^2 = 2.783e17 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) @@ -230,7 +230,7 @@ A factor from paper / surface site density of Cu 5.242e12 1/s / 2.943e‐5 mol/m^2 = 1.781e17 m^2/(mol*s) -""", #Ting-Chen: I think the unit of the A factor in the paper is 1/s rather than m^4/(mol^2 * s) +""", metal = "Cu", ) diff --git a/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/reactions.py b/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/reactions.py index 39bd0b8d6e..f16c0d8f32 100644 --- a/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/reactions.py @@ -45,7 +45,7 @@ index = 2, label = "O_X <=> O + X", kinetics = SurfaceArrhenius( - A = (4E21, '1/s'), + A = (1E13, '1/s'), n = 0.0, Ea = (86, 'kcal/mol'), Tmin = (200, 'K'), @@ -59,9 +59,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R2 in Appendix A This reaction is the least important ones for typical DOC conditions. @@ -205,7 +202,7 @@ index = 8, label = "CO2_X <=> CO2 + X", kinetics = SurfaceArrhenius( - A = (4E21, '1/s'), + A = (1E13, '1/s'), n = 0.0, Ea = (3.6, 'kcal/mol'), Tmin = (200, 'K'), @@ -219,9 +216,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R8 in Appendix A """, metal = "Pt", @@ -316,7 +310,7 @@ index = 12, label = "H_X <=> H + X", kinetics = SurfaceArrhenius( - A = (4E21, '1/s'), + A = (1E13, '1/s'), n = 0.0, Ea = (60.9, 'kcal/mol'), Tmin = (200, 'K'), @@ -330,9 +324,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R12 in Appendix A This reaction is the least important ones for typical DOC conditions. @@ -422,7 +413,7 @@ index = 16, label = "H2O_X <=> H2O + X", kinetics = SurfaceArrhenius( - A = (4E21, '1/s'), + A = (1E13, '1/s'), n = 0.0, Ea = (10.3, 'kcal/mol'), Tmin = (200, 'K'), @@ -436,9 +427,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R16 in Appendix A """, metal = "Pt", @@ -476,7 +464,7 @@ index = 18, label = "OH_X <=> OH + X", kinetics = SurfaceArrhenius( - A = (4E21, '1/s'), + A = (1E13, '1/s'), n = 0.0, Ea = (63, 'kcal/mol'), Tmin = (200, 'K'), @@ -490,9 +478,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R18 in Appendix A This reaction is the least important ones for typical DOC conditions. @@ -699,7 +684,7 @@ index = 26, label = "COOH_X <=> COOH + X", kinetics = SurfaceArrhenius( - A = (4E21, '1/s'), + A = (1E13, '1/s'), n = 0.0, Ea = (56.3, 'kcal/mol'), Tmin = (200, 'K'), @@ -713,9 +698,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R26 in Appendix A This reaction is the least important ones for typical DOC conditions. @@ -1099,7 +1081,7 @@ index = 40, label = "N_X <=> N + X", kinetics = SurfaceArrhenius( - A = (4E21, '1/s'), + A = (1E13, '1/s'), n = 0.0, Ea = (107.4, 'kcal/mol'), Tmin = (200, 'K'), @@ -1113,9 +1095,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R40 in Appendix A This reaction is the least important ones for typical DOC conditions. @@ -1205,7 +1184,7 @@ index = 44, label = "NH3_X <=> NH3 + X", kinetics = SurfaceArrhenius( - A = (4E21, '1/s'), + A = (1E13, '1/s'), n = 0.0, Ea = (20.7, 'kcal/mol'), Tmin = (200, 'K'), @@ -1219,9 +1198,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R44 in Appendix A """, metal = "Pt", @@ -1259,7 +1235,7 @@ index = 46, label = "NH2_X <=> NH2 + X", kinetics = SurfaceArrhenius( - A = (4E21, '1/s'), + A = (1E13, '1/s'), n = 0.0, Ea = (54.6, 'kcal/mol'), Tmin = (200, 'K'), @@ -1273,9 +1249,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R46 in Appendix A This reaction is the least important ones for typical DOC conditions. @@ -1315,7 +1288,7 @@ index = 48, label = "NH_X <=> NH + X", kinetics = SurfaceArrhenius( - A = (4E21, '1/s'), + A = (1E13, '1/s'), n = 0.0, Ea = (83, 'kcal/mol'), Tmin = (200, 'K'), @@ -1329,9 +1302,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R48 in Appendix A This reaction is the least important ones for typical DOC conditions. @@ -1866,7 +1836,7 @@ index = 68, label = "NO_X <=> NO + X", kinetics = SurfaceArrhenius( - A = (4E24, '1/s'), + A = (1E16, '1/s'), n = 0.0, Ea = (30.5, 'kcal/mol'), Tmin = (200, 'K'), @@ -1880,9 +1850,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E16(1/s)/2.5E-9(mol/cm^2) = 4E24 cm^2/(mol*s) - This is R68 in Appendix A """, metal = "Pt", @@ -1918,7 +1885,7 @@ index = 70, label = "NO2_X <=> NO2 + X", kinetics = SurfaceArrhenius( - A = (4E21, '1/s'), + A = (1E13, '1/s'), n = 0.0, Ea = (23.5, 'kcal/mol'), Tmin = (200, 'K'), @@ -1932,9 +1899,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R70 in Appendix A """, metal = "Pt", @@ -2247,7 +2211,7 @@ index = 82, label = "HCN_X <=> HCN + X", kinetics = SurfaceArrhenius( - A = (4E21, '1/s'), + A = (1E13, '1/s'), n = 0.0, Ea = (21.3, 'kcal/mol'), Tmin = (200, 'K'), @@ -2261,9 +2225,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R82 in Appendix A """, metal = "Pt", @@ -2301,7 +2262,7 @@ index = 84, label = "CN_X <=> CN + X", kinetics = SurfaceArrhenius( - A = (4E21, '1/s'), + A = (1E13, '1/s'), n = 0.0, Ea = (78.2, 'kcal/mol'), Tmin = (200, 'K'), @@ -2315,9 +2276,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R84 in Appendix A This reaction is the least important ones for typical DOC conditions. @@ -2632,7 +2590,7 @@ index = 96, label = "CH2O_X <=> CH2O + X", kinetics = SurfaceArrhenius( - A = (4E21, '1/s'), + A = (1E13, '1/s'), n = 0.0, Ea = (14.7, 'kcal/mol'), Tmin = (200, 'K'), @@ -2646,9 +2604,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R96 in Appendix A """, metal = "Pt", @@ -2686,7 +2641,7 @@ index = 98, label = "HCO_X <=> HCO + X", kinetics = SurfaceArrhenius( - A = (4E21, '1/s'), + A = (1E13, '1/s'), n = 0.0, Ea = (54.4, 'kcal/mol'), Tmin = (200, 'K'), @@ -2700,9 +2655,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R98 in Appendix A This reaction is the least important ones for typical DOC conditions. @@ -3074,7 +3026,7 @@ index = 112, label = "C_X <=> C + X", kinetics = SurfaceArrhenius( - A = (4E21, '1/s'), + A = (1E13, '1/s'), n = 0.0, Ea = (158.2, 'kcal/mol'), Tmin = (200, 'K'), @@ -3088,9 +3040,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R112 in Appendix A This reaction is the least important ones for typical DOC conditions. @@ -3240,7 +3189,7 @@ index = 118, label = "N2O_X <=> N2O + X", kinetics = SurfaceArrhenius( - A = (4E21, '1/s'), + A = (1E13, '1/s'), n = 0.0, Ea = (6.7, 'kcal/mol'), Tmin = (200, 'K'), @@ -3254,9 +3203,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R118 in Appendix A """, metal = "Pt", @@ -3349,7 +3295,7 @@ index = 122, label = "C2N2_X <=> C2N2 + X", kinetics = SurfaceArrhenius( - A = (4E21, '1/s'), + A = (1E13, '1/s'), n = 0.0, Ea = (21, 'kcal/mol'), Tmin = (200, 'K'), @@ -3363,9 +3309,6 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - This is R122 in Appendix A This reaction is the least important ones for typical DOC conditions. diff --git a/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py b/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py index 14df83e88c..98a0b7c110 100644 --- a/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py @@ -14,7 +14,7 @@ index = 1, label = "N2 + X <=> N2_X", kinetics = SurfaceArrhenius( - A = (3.464E21, 'cm^3/(mol*s)'), + A = (8.6E12, 'cm^3/(mol*s)'), n = 0, Ea = (4000, 'J/mol'), Tmin = (200, 'K'), @@ -26,8 +26,7 @@ Offermans, W. K. (2007). Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630067 -This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A (at 300K from p.62)= 8.6E12(cm/s)/2.483E-9(mol/cm^2) = 3.464E21 cm^3/(mol*s) +A (at 300K from p.62)= 8.6E12 """, metal = "Pt", facet = "111", diff --git a/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py b/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py index 8e74bc649d..c8add28105 100644 --- a/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py @@ -14,7 +14,7 @@ index = 2, label = "NH3_X <=> NH3 + X", kinetics = SurfaceArrhenius( - A = (4.03E17, '1/s'), + A = (1E9, '1/s'), n = 0.0, Ea = (75200, 'J/mol'), Tmin = (200, 'K'), @@ -26,9 +26,6 @@ Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. https://doi.org/10.1016/S1385-8947(02)00068-2 -This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 1E9(mol/cm^2/s)/2.483E-9(mol/cm^2) = 4.03E17 (1/s) - This is R2 in Table 1 """, metal = "Pt", @@ -263,7 +260,7 @@ index = 15, label = "NO_X <=> NO + X", kinetics = SurfaceArrhenius( - A = (4.03E24, '1/s'), + A = (1E16, '1/s'), n = 0.0, Ea = (140000, 'J/mol'), Tmin = (200, 'K'), @@ -275,9 +272,6 @@ Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. https://doi.org/10.1016/S1385-8947(02)00068-2 -This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 1E16(1/s)/2.483E-9(mol/cm^2) = 4.03E24 cm^2/(mol*s) - This is R15 in Table 1 """, metal = "Pt", @@ -338,7 +332,7 @@ index = 19, label = "H2O_X <=> H2O + X", kinetics = SurfaceArrhenius( - A = (4.03E21, '1/s'), + A = (1E13, '1/s'), n = 0.0, Ea = (40300, 'J/mol'), Tmin = (200, 'K'), @@ -350,9 +344,6 @@ Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. https://doi.org/10.1016/S1385-8947(02)00068-2 -This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 1E13(mol/cm^2/s)/2.483E-9(mol/cm^2) = 4.03E21 (1/s) - This is R19 in Table 1 """, metal = "Pt", diff --git a/input/kinetics/libraries/Surface/Roldan_Cu111/reactions.py b/input/kinetics/libraries/Surface/Roldan_Cu111/reactions.py index 6f69eb6316..a2f524a7a9 100644 --- a/input/kinetics/libraries/Surface/Roldan_Cu111/reactions.py +++ b/input/kinetics/libraries/Surface/Roldan_Cu111/reactions.py @@ -39,7 +39,7 @@ # index = 2, # label = "N2H4_X <=> N2H4 + X", # kinetics = SurfaceArrhenius( -# A = (1.45e28, '1/s'), +# A = (4.27e19, '1/s'), # n = -3.337, # Ea = (0, 'J/mol'), # Tmin = (200, 'K'), @@ -52,7 +52,6 @@ # Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. # DOI:10.1039/C6FD00186F -# This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to calculate the A factor. # A and n was calculated by numpy.linalg.lstsq from Table 1 # This is R1 in Table 1 @@ -66,7 +65,7 @@ # index = 3, # label = "NH3_X <=> NH3 + X", # kinetics = SurfaceArrhenius( -# A = (4.39E25, '1/s'), +# A = (1.29E15, '1/s'), # n = -2.186, # Ea = (0, 'J/mol'), # Tmin = (200, 'K'), @@ -79,7 +78,6 @@ # Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. # DOI:10.1039/C6FD00186F -# This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to calculate the A factor. # A and n was calculated by numpy.linalg.lstsq from Table 1 # This is R2 in Table 1 @@ -116,7 +114,7 @@ # index = 5, # label = "N2_X <=> N2 + X", # kinetics = SurfaceArrhenius( -# A = (4.33E26, '1/s'), +# A = (1.27E18, '1/s'), # n = -2.938, # Ea = (0, 'J/mol'), # Tmin = (200, 'K'), @@ -129,7 +127,6 @@ # Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. # DOI:10.1039/C6FD00186F -# This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to calculate the A factor. # A and n was calculated by numpy.linalg.lstsq from Table 1 # This is R4 in Table 1 @@ -467,7 +464,7 @@ index = 18, label = "[Pt]NN[Pt] <=> NH_X + NH_X", kinetics = SurfaceArrhenius( - A = (1.49E20, '1/s'), + A = (4.39E11, '1/s'), n = 0.299, Ea = (76227, 'J/mol'), Tmin = (200, 'K'), @@ -480,7 +477,6 @@ Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. DOI:10.1039/C6FD00186F -This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. A and n was calculated by numpy.linalg.lstsq from Table 1 This is R26 in Table 1 @@ -495,7 +491,7 @@ index = 19, label = "[Pt]NN=[Pt] <=> NH_X + N_X", kinetics = SurfaceArrhenius( - A = (8.81E19, '1/s'), + A = (2.59E11, '1/s'), n = 0.619, Ea = (137016, 'J/mol'), Tmin = (200, 'K'), @@ -508,7 +504,6 @@ Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. DOI:10.1039/C6FD00186F -This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. A and n was calculated by numpy.linalg.lstsq from Table 1 This is R28 in Table 1 @@ -803,7 +798,7 @@ index = 30, label = "[Pt]=NN=[Pt] <=> N_X + N_X", kinetics = SurfaceArrhenius( - A = (1.62E20, '1/s'), + A = (4.77E11, '1/s'), n = 0.06, Ea = (452538, 'J/mol'), Tmin = (200, 'K'), @@ -816,7 +811,6 @@ Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. DOI:10.1039/C6FD00186F -This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. A and n was calculated by numpy.linalg.lstsq from Table 1 This is R50 in Table 1 diff --git a/input/kinetics/libraries/Surface/Roldan_Ir111/dictionary.txt b/input/kinetics/libraries/Surface/Roldan_Ir111/dictionary.txt index 27c896a7ac..a8a6d8d7e8 100644 --- a/input/kinetics/libraries/Surface/Roldan_Ir111/dictionary.txt +++ b/input/kinetics/libraries/Surface/Roldan_Ir111/dictionary.txt @@ -6,10 +6,9 @@ N_X 2 X u0 p0 c0 {1,T} N2_X -1 N u0 p1 c0 {2,D} {3,S} -2 N u0 p1 c0 {1,D} {4,S} -3 X u0 p0 c0 {1,S} -4 X u0 p0 c0 {2,S} +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p0 c0 N2 1 N u0 p1 c0 {2,T} diff --git a/input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py b/input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py index 29471c95f9..4c5adaf73d 100644 --- a/input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py +++ b/input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py @@ -22,7 +22,7 @@ index = 2, label = "NH3_X <=> NH3 + X", kinetics = SurfaceArrhenius( - A = (3.68E16, '1/s'), + A = (9.53E7, '1/s'), n = 0.0, Ea = (88574.75, 'J/mol'), Tmin = (200, 'K'), @@ -35,8 +35,6 @@ Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 DOI: 10.1039/d1na00015b -This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. -A = 9.53E7(mol/cm^2/s)/2.587E-9(mol/cm^2) = 3.68E16 (1/s) Ea was calculated from A factor and k rate constant in Table 3 This is D1 in Table 3 @@ -47,23 +45,21 @@ entry( index = 3, - label = "N2_X <=> N2 + X + X", + label = "N2_X <=> N2 + X", kinetics = SurfaceArrhenius( - A = (3.68E16, '1/s'), + A = (9.52E7, '1/s'), n = 0.0, Ea = (10806.96, 'J/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Adsorption_Bidentate""", + shortDesc = u"""Surface_Adsorption_vdW""", longDesc = u""" "Kinetic and mechanistic analysis of NH3 decomposition on Ru(0001), Ru(111) and Ir(111) surfaces" Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 DOI: 10.1039/d1na00015b -This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. -A = 9.52E7(mol/cm^2/s)/2.587E-9(mol/cm^2) = 3.68E16 (1/s) Ea was calculated from A factor and k rate constant in Table 3 This is D2 in Table 3 @@ -76,7 +72,7 @@ index = 4, label = "H2_X <=> H2 + X", kinetics = SurfaceArrhenius( - A = (3.69E16, '1/s'), + A = (9.53E7, '1/s'), n = 0.0, Ea = (30972.36, 'J/mol'), Tmin = (200, 'K'), @@ -89,8 +85,6 @@ Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 DOI: 10.1039/d1na00015b -This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. -A = 9.54E7(mol/cm^2/s)/2.587E-9(mol/cm^2) = 3.69E16 (1/s) Ea was calculated from A factor and k rate constant in Table 3 This is D3 in Table 3 @@ -157,23 +151,20 @@ entry( index = 8, - label = "[Pt]NN[Pt] + X <=> [Pt]NN=[Pt] + H_X", + label = "[Pt]NN[Pt] <=> N2H_X + H_X", kinetics = SurfaceArrhenius( - A = (3.87E21, 'cm^2/(mol*s)'), + A = (1E13, '1/s'), n = 0.0, Ea = (67543, 'J/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Dissociation""", + shortDesc = u"""""", longDesc = u""" "Mechanistic study of hydrazine decomposition on Ir(111)" Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 DOI: 10.1039/c9cp06525c -This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) -to estimate a default(1E13) A factor. -A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) Ea = 0.7eV = 67543J/mol This is R8 in Table 3 @@ -186,7 +177,7 @@ entry( index = 10, - label = "[Pt]NN=[Pt] + X <=> N2_X + H_X", + label = "N2H_X + X <=> N2_X + H_X", kinetics = SurfaceArrhenius( A = (3.87E21, 'cm^2/(mol*s)'), n = 0.0, @@ -194,7 +185,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Dissociation""", + shortDesc = u"""Surface_Addition_Single_vdW""", longDesc = u""" "Mechanistic study of hydrazine decomposition on Ir(111)" Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 @@ -323,7 +314,7 @@ index = 15, label = "[Pt]NN=[Pt] <=> NH_X + N_X", kinetics = SurfaceArrhenius( - A = (3.87E21, '1/s'), + A = (1E13, '1/s'), n = 0.0, Ea = (137980.7, 'J/mol'), Tmin = (200, 'K'), @@ -335,9 +326,6 @@ Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 DOI: 10.1039/c9cp06525c -This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) -to estimate a default(1E13) A factor. -A = 1E13(mol/cm^2/s)/2.587E-9(mol/cm^2) = 3.87E21 (1/s) Ea = 1.43eV = 137980.7J/mol This is R15 in Table 3 @@ -483,7 +471,7 @@ entry( index = 21, - label = "[Pt]NN=[Pt] + NH2_X <=> N2_X + NH3_X", + label = "[Pt]NN=[Pt] + NH2_X <=> [Pt]=NN=[Pt] + NH3_X", kinetics = SurfaceArrhenius( A = (3.87E21, 'cm^2/(mol*s)'), n = 0.0, diff --git a/input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py b/input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py index 1dd2d83afd..29612e12a6 100644 --- a/input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py +++ b/input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py @@ -16,7 +16,7 @@ index = 1, label = "NH3_X <=> NH3 + X", kinetics = SurfaceArrhenius( - A = (4.90E16, '1/s'), + A = (1.29E8, '1/s'), n = 0.0, Ea = (72149.60, 'J/mol'), Tmin = (200, 'K'), @@ -29,8 +29,6 @@ Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 DOI: 10.1039/d1na00015b -This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. -A = 1.29E8(mol/cm^2/s)/2.630E-9(mol/cm^2) = 4.90E16 (1/s) Ea was calculated from A factor and k rate constant in Table 3 This is D1 in Table 3 @@ -160,7 +158,7 @@ index = 6, label = "N2 + X <=> N2_X", kinetics = SurfaceArrhenius( - A = (4.90E16, 'cm^3/(mol*s)'), + A = (1.29E8, 'cm^3/(mol*s)'), n = 0.0, Ea = (24482.97, 'J/mol'), Tmin = (200, 'K'), @@ -173,8 +171,6 @@ Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 DOI: 10.1039/d1na00015b -This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. -A = 1.29E8(cm/s)/2.630E-9(mol/cm^2) = 4.90E16 (cm^3/(mol*s)) Ea was calculated from A factor and k rate constant in Table 3 This is A2 in Table 3 @@ -217,7 +213,7 @@ index = 8, label = "H2_X <=> H2 + X", kinetics = SurfaceArrhenius( - A = (4.90E16, '1/s'), + A = (1.29E8, '1/s'), n = 0.0, Ea = (24482.97, 'J/mol'), Tmin = (200, 'K'), @@ -230,8 +226,6 @@ Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 DOI: 10.1039/d1na00015b -This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. -A = 1.29E8(mol/cm^2/s)/2.630E-9(mol/cm^2) = 4.90E16 (1/s) Ea was calculated from A factor and k rate constant in Table 3 This is D3 in Table 3 diff --git a/input/kinetics/libraries/Surface/Scheuer_Pt/reactions.py b/input/kinetics/libraries/Surface/Scheuer_Pt/reactions.py index c5f6319224..10294f2077 100644 --- a/input/kinetics/libraries/Surface/Scheuer_Pt/reactions.py +++ b/input/kinetics/libraries/Surface/Scheuer_Pt/reactions.py @@ -115,7 +115,7 @@ # index = 6, # label = "NO_X <=> NO + X", # kinetics = SurfaceArrhenius( -# A = (1.13E25, '1/s'), +# A = (6E17, '1/s'), # n = 0.0, # Ea = (126000, 'J/mol'), # Tmin = (200, 'K'), @@ -127,9 +127,6 @@ # Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 # https://doi.org/10.1016/j.apcatb.2011.10.032 -# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 6E17(mol/cm^2/s)/2.483E-9(mol/cm^2) = 1.13E25 (1/s) - # This is R6 in Table 1 # """, # metal = "Pt", @@ -284,7 +281,7 @@ index = 13, label = "NO2_X <=> NO2 + X", kinetics = SurfaceArrhenius( - A = (5.24E22, '1/s'), + A = (1.3E14, '1/s'), n = 0.0, Ea = (100000, 'J/mol'), Tmin = (200, 'K'), @@ -296,9 +293,6 @@ Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 https://doi.org/10.1016/j.apcatb.2011.10.032 -This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 1.3E14(mol/cm^2/s)/2.483E-9(mol/cm^2) = 5.24E22 (1/s) - This is R13 in Table 1 """, metal = "Pt", diff --git a/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py index 358807a69a..be1c9c4500 100644 --- a/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py @@ -247,7 +247,7 @@ index = 10, label = "H2O_X <=> H2O + X", kinetics = SurfaceArrhenius( - A = (2.38E24, '1/s'), + A = (5.9E15, '1/s'), n = 0.0, Ea = (18333.1, 'J/mol'), Tmin = (200, 'K'), @@ -259,8 +259,6 @@ DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 -This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 5.9E15(1/s)/2.483E-9(mol/cm^2) = 2.38E24 cm^2/(mol*s) Ea = 0.19eV = 18333.1J/mol This is R10 in Table S2 and S4 @@ -325,7 +323,7 @@ index = 13, label = "NO_X <=> NO + X", kinetics = SurfaceArrhenius( - A = (1.05E26, '1/s'), + A = (2.6E17, '1/s'), n = 0.0, Ea = (184295.9, 'J/mol'), Tmin = (200, 'K'), @@ -337,8 +335,6 @@ DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 -This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 2.6E17(1/s)/2.483E-9(mol/cm^2) = 1.05E26 cm^2/(mol*s) Ea = 1.91eV = 184295.9J/mol This is R13 in Table S2 and S4 @@ -377,7 +373,7 @@ index = 15, label = "N2O_X <=> N2O + X", kinetics = SurfaceArrhenius( - A = (5.64E24, '1/s'), + A = (1.4E16, '1/s'), n = 0.0, Ea = (0, 'J/mol'), Tmin = (200, 'K'), @@ -389,9 +385,6 @@ DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 -This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 1.4E16(1/s)/2.483E-9(mol/cm^2) = 5.64E24 cm^2/(mol*s) - This is R15 in Table S2 and S4 """, metal = "Pt", diff --git a/input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py index 0a4b574cb9..46b6ea8489 100644 --- a/input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py +++ b/input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py @@ -248,7 +248,7 @@ index = 10, label = "H2O_X <=> H2O + X", kinetics = SurfaceArrhenius( - A = (1.40E24, '1/s'), + A = (3.7E15, '1/s'), n = 0.0, Ea = (24122.5, 'J/mol'), Tmin = (200, 'K'), @@ -260,8 +260,6 @@ DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 -This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. -A = 3.7E15(1/s)/2.634E-9(mol/cm^2) = 1.40E24 cm^2/(mol*s) Ea = 0.25eV = 24122.5J/mol This is R10 in Table S2 and S4 @@ -326,7 +324,7 @@ index = 13, label = "NO_X <=> NO + X", kinetics = SurfaceArrhenius( - A = (4.94E25, '1/s'), + A = (1.3E17, '1/s'), n = 0.0, Ea = (224821.7, 'J/mol'), Tmin = (200, 'K'), @@ -338,8 +336,6 @@ DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 -This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. -A = 1.3E17(1/s)/2.634E-9(mol/cm^2) = 4.94E25 cm^2/(mol*s) Ea = 2.33eV = 224821.7J/mol This is R13 in Table S2 and S4 @@ -378,7 +374,7 @@ index = 15, label = "N2O_X <=> N2O + X", kinetics = SurfaceArrhenius( - A = (5.69E25, '1/s'), + A = (1.5E17, '1/s'), n = 0.0, Ea = (9649, 'J/mol'), Tmin = (200, 'K'), @@ -390,8 +386,6 @@ DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. https://doi.org/10.1021/acscatal.8b04251 -This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. -A = 1.5E17(1/s)/2.634E-9(mol/cm^2) = 5.69E25 cm^2/(mol*s) Ea = 0.1eV = 9649J/mol This is R15 in Table S2 and S4 diff --git a/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py b/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py index 1138e1c720..784777574c 100644 --- a/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py @@ -91,7 +91,7 @@ # index = 4, # label = "O_X <=> O + X", # kinetics = SurfaceArrhenius( -# A = (5.80E21, '1/s'), +# A = (1.44E13, '1/s'), # n = -0.250, # Ea = (85.0, 'kcal/mol'), # Tmin = (200, 'K'), @@ -105,46 +105,19 @@ # Industrial & Engineering Chemistry Research, 46(16), 5310-5324. # DOI: 10.1021/ie070322c -# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 1.44E13(mol/cm^2/s)/2.483E-9(mol/cm^2) = 5.80E21 (1/s) - # This is R4 in Table 1 # """, # metal = "Pt", # facet = "111", # ) -entry( - index = 5, - label = "CO + X <=> CO_X", - kinetics = StickingCoefficient( - A = 1, - n = 0, - Ea = (0, 'kcal/mol'), - Tmin = (200, 'K'), - Tmax = (3000, 'K'), - ), - shortDesc = u"""Surface_Adsorption_Double""", - longDesc = u""" -"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, -Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" -D.G. Vlachos et al. (2007) -Industrial & Engineering Chemistry Research, 46(16), 5310-5324. -DOI: 10.1021/ie070322c - -This is R5 in Table 1 -""", - metal = "Pt", - facet = "111", -) - # entry( -# index = 6, -# label = "CO_X <=> CO + X", -# kinetics = SurfaceArrhenius( -# A = (2.28E24, '1/s'), -# n = -0.500, -# Ea = (40, 'kcal/mol'), +# index = 5, +# label = "CO + X <=> CO_X", +# kinetics = StickingCoefficient( +# A = 1, +# n = 0, +# Ea = (0, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), # ), @@ -156,15 +129,36 @@ # Industrial & Engineering Chemistry Research, 46(16), 5310-5324. # DOI: 10.1021/ie070322c -# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 5.66E15(mol/cm^2/s)/2.483E-9(mol/cm^2) = 2.28E24 (1/s) - -# This is R6 in Table 1 +# This is R5 in Table 1 # """, # metal = "Pt", # facet = "111", # ) +entry( + index = 6, + label = "CO_X <=> CO + X", + kinetics = SurfaceArrhenius( + A = (5.66E15, '1/s'), + n = -0.500, + Ea = (40, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R6 in Table 1 +""", + metal = "Pt", + facet = "111", +) + entry( index = 7, label = "CO2 + X <=> CO2_X", @@ -193,7 +187,7 @@ # index = 8, # label = "CO2_X <=> CO2 + X", # kinetics = SurfaceArrhenius( -# A = (1.46E21, '1/s'), +# A = (3.63E12, '1/s'), # n = -0.250, # Ea = (3.6, 'kcal/mol'), # Tmin = (200, 'K'), @@ -207,9 +201,6 @@ # Industrial & Engineering Chemistry Research, 46(16), 5310-5324. # DOI: 10.1021/ie070322c -# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 3.63E12(mol/cm^2/s)/2.483E-9(mol/cm^2) = 1.46E21 (1/s) - # This is R8 in Table 1 # """, # metal = "Pt", @@ -483,37 +474,13 @@ # facet = "111", # ) -entry( - index = 19, - label = "OH + X <=> OH_X", - kinetics = StickingCoefficient( - A = 0.999, - n = 2.000, - Ea = (0, 'kcal/mol'), - Tmin = (200, 'K'), - Tmax = (3000, 'K'), - ), - shortDesc = u"""Surface_Adsorption_Single""", - longDesc = u""" -"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, -Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" -D.G. Vlachos et al. (2007) -Industrial & Engineering Chemistry Research, 46(16), 5310-5324. -DOI: 10.1021/ie070322c - -This is R19 in Table 1 -""", - metal = "Pt", - facet = "111", -) - # entry( -# index = 20, -# label = "OH_X <=> OH + X", -# kinetics = SurfaceArrhenius( -# A = (5.80E22, '1/s'), +# index = 19, +# label = "OH + X <=> OH_X", +# kinetics = StickingCoefficient( +# A = 0.999, # n = 2.000, -# Ea = (63.0, 'kcal/mol'), +# Ea = (0, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), # ), @@ -525,15 +492,36 @@ # Industrial & Engineering Chemistry Research, 46(16), 5310-5324. # DOI: 10.1021/ie070322c -# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 1.44E14(mol/cm^2/s)/2.483E-9(mol/cm^2) = 5.80E22 (1/s) - -# This is R20 in Table 1 +# This is R19 in Table 1 # """, # metal = "Pt", # facet = "111", # ) +entry( + index = 20, + label = "OH_X <=> OH + X", + kinetics = SurfaceArrhenius( + A = (1.44E14, '1/s'), + n = 2.000, + Ea = (63.0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R20 in Table 1 +""", + metal = "Pt", + facet = "111", +) + entry( index = 21, label = "H2O + X <=> H2O_X", @@ -562,7 +550,7 @@ # index = 22, # label = "H2O_X <=> H2O + X", # kinetics = SurfaceArrhenius( -# A = (8.18E20, '1/s'), +# A = (2.03E12, '1/s'), # n = 1.372, # Ea = (10, 'kcal/mol'), # Tmin = (200, 'K'), @@ -576,9 +564,6 @@ # Industrial & Engineering Chemistry Research, 46(16), 5310-5324. # DOI: 10.1021/ie070322c -# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 2.03E12(mol/cm^2/s)/2.483E-9(mol/cm^2) = 8.18E20 (1/s) - # This is R22 in Table 1 # """, # metal = "Pt", @@ -613,7 +598,7 @@ # index = 24, # label = "H_X <=> H + X", # kinetics = SurfaceArrhenius( -# A = (1.76E22, '1/s'), +# A = (4.37E13, '1/s'), # n = 1.890, # Ea = (62.0, 'kcal/mol'), # Tmin = (200, 'K'), @@ -627,9 +612,6 @@ # Industrial & Engineering Chemistry Research, 46(16), 5310-5324. # DOI: 10.1021/ie070322c -# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 4.37E13(mol/cm^2/s)/2.483E-9(mol/cm^2) = 1.76E22 (1/s) - # This is R24 in Table 1 # """, # metal = "Pt", @@ -718,7 +700,7 @@ # index = 28, # label = "COOH_X <=> COOH + X", # kinetics = SurfaceArrhenius( -# A = (4.51E21, '1/s'), +# A = (1.12E13, '1/s'), # n = 0.089, # Ea = (55.3, 'kcal/mol'), # Tmin = (200, 'K'), @@ -732,9 +714,6 @@ # Industrial & Engineering Chemistry Research, 46(16), 5310-5324. # DOI: 10.1021/ie070322c -# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 1.12E13(mol/cm^2/s)/2.483E-9(mol/cm^2) = 4.51E21 (1/s) - # This is R28 in Table 1 # """, # metal = "Pt", @@ -1039,7 +1018,7 @@ # index = 40, # label = "HCOO_XX <=> HCOO + X + X", # kinetics = SurfaceArrhenius( -# A = (1.95E21, '1/s'), +# A = (4.83E12, '1/s'), # n = -0.201, # Ea = (53.0, 'kcal/mol'), # Tmin = (200, 'K'), @@ -1053,9 +1032,6 @@ # Industrial & Engineering Chemistry Research, 46(16), 5310-5324. # DOI: 10.1021/ie070322c -# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 4.83E12(mol/cm^2/s)/2.483E-9(mol/cm^2) = 1.95E21 (1/s) - # This is R40 in Table 1 # """, # metal = "Pt", @@ -1207,7 +1183,7 @@ # index = 48, # label = "C_X <=> C + X", # kinetics = SurfaceArrhenius( -# A = (1.73E22, '1/s'), +# A = (4.30E13, '1/s'), # n = -0.156, # Ea = (157.7, 'kcal/mol'), # Tmin = (200, 'K'), @@ -1221,9 +1197,6 @@ # Industrial & Engineering Chemistry Research, 46(16), 5310-5324. # DOI: 10.1021/ie070322c -# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 4.30E13(mol/cm^2/s)/2.483E-9(mol/cm^2) = 1.73E22 (1/s) - # This is R48 in Table 2 # """, # metal = "Pt", @@ -1258,7 +1231,7 @@ # index = 50, # label = "CH_X <=> CH + X", # kinetics = SurfaceArrhenius( -# A = (2.10E22, '1/s'), +# A = (5.22E13, '1/s'), # n = -0.051, # Ea = (157.1, 'kcal/mol'), # Tmin = (200, 'K'), @@ -1272,9 +1245,6 @@ # Industrial & Engineering Chemistry Research, 46(16), 5310-5324. # DOI: 10.1021/ie070322c -# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 5.22E13(mol/cm^2/s)/2.483E-9(mol/cm^2) = 2.10E22 (1/s) - # This is R50 in Table 2 # """, # metal = "Pt", @@ -1309,7 +1279,7 @@ # index = 52, # label = "CH2_X <=> CH2 + X", # kinetics = SurfaceArrhenius( -# A = (6.32E21, '1/s'), +# A = (1.57E13, '1/s'), # n = -0.118, # Ea = (91.6, 'kcal/mol'), # Tmin = (200, 'K'), @@ -1323,9 +1293,6 @@ # Industrial & Engineering Chemistry Research, 46(16), 5310-5324. # DOI: 10.1021/ie070322c -# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 1.57E13(mol/cm^2/s)/2.483E-9(mol/cm^2) = 6.32E21 (1/s) - # This is R52 in Table 2 # """, # metal = "Pt", @@ -1360,7 +1327,7 @@ # index = 54, # label = "CH3_X <=> CH3 + X", # kinetics = SurfaceArrhenius( -# A = (1.78E21, '1/s'), +# A = (4.42E12, '1/s'), # n = 0.099, # Ea = (45.3, 'kcal/mol'), # Tmin = (200, 'K'), @@ -1374,9 +1341,6 @@ # Industrial & Engineering Chemistry Research, 46(16), 5310-5324. # DOI: 10.1021/ie070322c -# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 4.42E12(mol/cm^2/s)/2.483E-9(mol/cm^2) = 1.78E21 (1/s) - # This is R54 in Table 2 # """, # metal = "Pt", @@ -2164,7 +2128,7 @@ # index = 84, # label = "CH3OH_X <=> CH3OH + X", # kinetics = SurfaceArrhenius( -# A = (8.50E20, '1/s'), +# A = (2.11E12, '1/s'), # n = -0.258, # Ea = (9.5, 'kcal/mol'), # Tmin = (200, 'K'), @@ -2178,9 +2142,6 @@ # Industrial & Engineering Chemistry Research, 46(16), 5310-5324. # DOI: 10.1021/ie070322c -# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 2.11E12(mol/cm^2/s)/2.483E-9(mol/cm^2) = 8.50E20 (1/s) - # This is R84 in Table 2 # """, # metal = "Pt", @@ -2215,7 +2176,7 @@ # index = 86, # label = "CH3O_X <=> CH3O + X", # kinetics = SurfaceArrhenius( -# A = (1.90E21, '1/s'), +# A = (4.73E12, '1/s'), # n = -0.054, # Ea = (37.0, 'kcal/mol'), # Tmin = (200, 'K'), @@ -2229,9 +2190,6 @@ # Industrial & Engineering Chemistry Research, 46(16), 5310-5324. # DOI: 10.1021/ie070322c -# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 4.73E12(mol/cm^2/s)/2.483E-9(mol/cm^2) = 1.90E21 (1/s) - # This is R86 in Table 2 # """, # metal = "Pt", @@ -2266,7 +2224,7 @@ # index = 88, # label = "CH2O_X <=> CH2O + X", # kinetics = SurfaceArrhenius( -# A = (3.25E21, '1/s'), +# A = (8.06E12, '1/s'), # n = -0.098, # Ea = (12.0, 'kcal/mol'), # Tmin = (200, 'K'), @@ -2280,9 +2238,6 @@ # Industrial & Engineering Chemistry Research, 46(16), 5310-5324. # DOI: 10.1021/ie070322c -# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 8.06E12(mol/cm^2/s)/2.483E-9(mol/cm^2) = 3.25E21 (1/s) - # This is R88 in Table 2 # """, # metal = "Pt", @@ -2317,7 +2272,7 @@ # index = 90, # label = "HCO_X <=> HCO + X", # kinetics = SurfaceArrhenius( -# A = (2.50E22, '1/s'), +# A = (6.21E13, '1/s'), # n = -0.096, # Ea = (55.5, 'kcal/mol'), # Tmin = (200, 'K'), @@ -2331,9 +2286,6 @@ # Industrial & Engineering Chemistry Research, 46(16), 5310-5324. # DOI: 10.1021/ie070322c -# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 6.21E13(mol/cm^2/s)/2.483E-9(mol/cm^2) = 2.50E22 (1/s) - # This is R90 in Table 2 # """, # metal = "Pt", @@ -2368,7 +2320,7 @@ # index = 92, # label = "CH2OH_X <=> CH2OH + X", # kinetics = SurfaceArrhenius( -# A = (5.44E21, '1/s'), +# A = (1.35E13, '1/s'), # n = -0.233, # Ea = (50.0, 'kcal/mol'), # Tmin = (200, 'K'), @@ -2382,9 +2334,6 @@ # Industrial & Engineering Chemistry Research, 46(16), 5310-5324. # DOI: 10.1021/ie070322c -# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = 1.35E13(mol/cm^2/s)/2.483E-9(mol/cm^2) = 5.44E21 (1/s) - # This is R92 in Table 2 # """, # metal = "Pt", diff --git a/input/kinetics/libraries/Surface/Vlachos_Rh/reactions.py b/input/kinetics/libraries/Surface/Vlachos_Rh/reactions.py index 3ab7bd6d5f..74228aa99d 100644 --- a/input/kinetics/libraries/Surface/Vlachos_Rh/reactions.py +++ b/input/kinetics/libraries/Surface/Vlachos_Rh/reactions.py @@ -37,7 +37,7 @@ # index = 2, # label = "H_X + H_X <=> H2 + X + X", # kinetics = SurfaceArrhenius( -# A = (2.23E+20, 'cm^2/(mol*s)'), +# A = (2.23E20, 'cm^2/(mol*s)'), # n = -0.4347, # Ea = (12.3, 'kcal/mol'), # Tmin = (200, 'K'), @@ -51,7 +51,7 @@ # DOI: 10.1016/j.jcat.2008.08.008.D.G. # Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -# A = 5.56E+11(1/s)/2.49E-9(mol/cm^2) = 2.23E+20cm^2/(mol*s) +# A = 5.56E11(1/s)/2.49E-9(mol/cm^2) = 2.23E20cm^2/(mol*s) # This is R2 in Table 4 # """, @@ -62,7 +62,7 @@ index = 3, label = "H2O_X + X <=> H_X + OH_X", kinetics = SurfaceArrhenius( - A = (2.31E+20, 'cm^2/(mol*s)'), + A = (2.31E20, 'cm^2/(mol*s)'), n = 0.0281, Ea = (18.6, 'kcal/mol'), Tmin = (200, 'K'), @@ -76,7 +76,7 @@ DOI: 10.1016/j.jcat.2008.08.008.D.G. Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -A = 5.74E+11(1/s)/2.49E-9(mol/cm^2) = 2.31E+20 cm^2/(mol*s) +A = 5.74E11(1/s)/2.49E-9(mol/cm^2) = 2.31E20 cm^2/(mol*s) This is R7 in Table 4 """, @@ -87,7 +87,7 @@ # index = 4, # label = "H_X + OH_X <=> H2O_X + X", # kinetics = SurfaceArrhenius( -# A = (7.23E+17, 'cm^2/(mol*s)'), +# A = (7.23E17, 'cm^2/(mol*s)'), # n = 1.2972, # Ea = (16.3, 'kcal/mol'), # Tmin = (200, 'K'), @@ -101,7 +101,7 @@ # DOI: 10.1016/j.jcat.2008.08.008.D.G. # Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -# A = 1.80E+09(1/s)/2.49E-9(mol/cm^2) = 7.23E+17 cm^2/(mol*s) +# A = 1.80E09(1/s)/2.49E-9(mol/cm^2) = 7.23E17 cm^2/(mol*s) # This is R8 in Table 4 # """, @@ -134,7 +134,7 @@ # index = 6, # label = "H2O_X <=> H2O + X", # kinetics = SurfaceArrhenius( -# A = (8.27E+21, '1/s'), +# A = (2.06E13, '1/s'), # n = -1.8613, # Ea = (7.5, 'kcal/mol'), # Tmin = (200, 'K'), @@ -147,9 +147,6 @@ # Journal of Catalysis,259(2), 211-222, 0021-9517 # DOI: 10.1016/j.jcat.2008.08.008.D.G. -# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -# A = 2.06E+13(mol/cm^2/s)/2.49E-9(mol/cm^2) = 8.27E+21 (1/s) - # This is R14 in Table 4 # """, # metal = "Rh", @@ -181,7 +178,7 @@ # index = 8, # label = "CO_X <=> CO + X", # kinetics = SurfaceArrhenius( -# A = (2.27E+21, '1/s'), +# A = (5.65E12, '1/s'), # n = 1.9879, # Ea = (32.8, 'kcal/mol'), # Tmin = (200, 'K'), @@ -194,9 +191,6 @@ # Journal of Catalysis,259(2), 211-222, 0021-9517 # DOI: 10.1016/j.jcat.2008.08.008.D.G. -# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -# A = 5.65E+12(mol/cm^2/s)/2.49E-9(mol/cm^2) = 2.27E+21 (1/s) - # This is R20 in Table 4 # """, # metal = "Rh", @@ -228,7 +222,7 @@ # index = 10, # label = "CO2_X <=> CO2 + X", # kinetics = SurfaceArrhenius( -# A = (3.03E+19, '1/s'), +# A = (7.54E10, '1/s'), # n = 2.1831, # Ea = (2.8, 'kcal/mol'), # Tmin = (200, 'K'), @@ -241,9 +235,6 @@ # Journal of Catalysis,259(2), 211-222, 0021-9517 # DOI: 10.1016/j.jcat.2008.08.008.D.G. -# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -# A = 7.54E+10(mol/cm^2/s)/2.49E-9(mol/cm^2) = 3.03E+19 (1/s) - # This is R22 in Table 4 # """, # metal = "Rh", @@ -253,7 +244,7 @@ index = 11, label = "CO2_X + H_X <=> CO_X + OH_X", kinetics = SurfaceArrhenius( - A = (1.61E+23, 'cm^2/(mol*s)'), + A = (1.61E23, 'cm^2/(mol*s)'), n = 0.0301, Ea = (5.2, 'kcal/mol'), Tmin = (200, 'K'), @@ -267,7 +258,7 @@ DOI: 10.1016/j.jcat.2008.08.008.D.G. Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -A = 4.00E+14(1/s)/2.49E-9(mol/cm^2) = 1.61E+23 cm^2/(mol*s) +A = 4.00E14(1/s)/2.49E-9(mol/cm^2) = 1.61E23 cm^2/(mol*s) This is R29 in Table 4 """, @@ -278,7 +269,7 @@ # index = 12, # label = "CO_X + OH_X <=> CO2_X + H_X", # kinetics = SurfaceArrhenius( -# A = (1.41E+23, 'cm^2/(mol*s)'), +# A = (1.41E23, 'cm^2/(mol*s)'), # n = -0.0301, # Ea = (19.9, 'kcal/mol'), # Tmin = (200, 'K'), @@ -292,7 +283,7 @@ # DOI: 10.1016/j.jcat.2008.08.008.D.G. # Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -# A = 3.51E+14(1/s)/2.49E-9(mol/cm^2) = 1.41E+23 cm^2/(mol*s) +# A = 3.51E14(1/s)/2.49E-9(mol/cm^2) = 1.41E23 cm^2/(mol*s) # This is R30 in Table 4 # """, @@ -303,7 +294,7 @@ index = 13, label = "COOH_X + X <=> CO_X + OH_X", kinetics = SurfaceArrhenius( - A = (4.30E+20, 'cm^2/(mol*s)'), + A = (4.30E20, 'cm^2/(mol*s)'), n = -0.4123, Ea = (7.5, 'kcal/mol'), Tmin = (200, 'K'), @@ -317,7 +308,7 @@ DOI: 10.1016/j.jcat.2008.08.008.D.G. Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -A = 1.07E+12(1/s)/2.49E-9(mol/cm^2) = 4.30E+20 cm^2/(mol*s) +A = 1.07E12(1/s)/2.49E-9(mol/cm^2) = 4.30E20 cm^2/(mol*s) This is R31 in Table 4 """, @@ -328,7 +319,7 @@ # index = 14, # label = "CO_X + OH_X <=> COOH_X + X", # kinetics = SurfaceArrhenius( -# A = (3.76E+20, 'cm^2/(mol*s)'), +# A = (3.76E20, 'cm^2/(mol*s)'), # n = 0.4123, # Ea = (14.6, 'kcal/mol'), # Tmin = (200, 'K'), @@ -342,7 +333,7 @@ # DOI: 10.1016/j.jcat.2008.08.008.D.G. # Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -# A = 9.37E+11(1/s)/2.49E-9(mol/cm^2) = 3.76E+20 cm^2/(mol*s) +# A = 9.37E11(1/s)/2.49E-9(mol/cm^2) = 3.76E20 cm^2/(mol*s) # This is R32 in Table 4 # """, @@ -353,7 +344,7 @@ index = 15, label = "COOH_X + X <=> CO2_X + H_X", kinetics = SurfaceArrhenius( - A = (4.02E+18, 'cm^2/(mol*s)'), + A = (4.02E18, 'cm^2/(mol*s)'), n = -0.4424, Ea = (7.6, 'kcal/mol'), Tmin = (200, 'K'), @@ -367,7 +358,7 @@ DOI: 10.1016/j.jcat.2008.08.008.D.G. Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -A = 1.00E+10(1/s)/2.49E-9(mol/cm^2) = 4.02E+18 cm^2/(mol*s) +A = 1.00E10(1/s)/2.49E-9(mol/cm^2) = 4.02E18 cm^2/(mol*s) This is R33 in Table 4 """, @@ -378,7 +369,7 @@ # index = 16, # label = "CO2_X + H_X <=> COOH_X + X", # kinetics = SurfaceArrhenius( -# A = (4.01E+18, 'cm^2/(mol*s)'), +# A = (4.01E18, 'cm^2/(mol*s)'), # n = 0.4424, # Ea = (0, 'kcal/mol'), # Tmin = (200, 'K'), @@ -392,7 +383,7 @@ # DOI: 10.1016/j.jcat.2008.08.008.D.G. # Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -# A = 9.99E+09(1/s)/2.49E-9(mol/cm^2) = 4.01E+18 cm^2/(mol*s) +# A = 9.99E09(1/s)/2.49E-9(mol/cm^2) = 4.01E18 cm^2/(mol*s) # This is R34 in Table 4 # """, @@ -403,7 +394,7 @@ index = 17, label = "CO_X + H2O_X <=> COOH_X + H_X", kinetics = SurfaceArrhenius( - A = (1.34E+20, 'cm^2/(mol*s)'), + A = (1.34E20, 'cm^2/(mol*s)'), n = -0.2222, Ea = (19.5, 'kcal/mol'), Tmin = (200, 'K'), @@ -417,7 +408,7 @@ DOI: 10.1016/j.jcat.2008.08.008.D.G. Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -A = 3.34E+11(1/s)/2.49E-9(mol/cm^2) = 1.34E+20 cm^2/(mol*s) +A = 3.34E11(1/s)/2.49E-9(mol/cm^2) = 1.34E20 cm^2/(mol*s) This is R35 in Table 4 """, @@ -429,7 +420,7 @@ # index = 18, # label = "COOH_X + H_X <=> CO_X + H2O_X", # kinetics = SurfaceArrhenius( -# A = (4.82E+17, 'cm^2/(mol*s)'), +# A = (4.82E17, 'cm^2/(mol*s)'), # n = 0.2223, # Ea = (0, 'kcal/mol'), # Tmin = (200, 'K'), @@ -443,7 +434,7 @@ # DOI: 10.1016/j.jcat.2008.08.008.D.G. # Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -# A = 1.20E+09(1/s)/2.49E-9(mol/cm^2) = 4.82E+17 cm^2/(mol*s) +# A = 1.20E09(1/s)/2.49E-9(mol/cm^2) = 4.82E17 cm^2/(mol*s) # This is R36 in Table 4 # """, @@ -454,7 +445,7 @@ index = 19, label = "CO2_X + H2O_X <=> COOH_X + OH_X", kinetics = SurfaceArrhenius( - A = (7.15E+20, 'cm^2/(mol*s)'), + A = (7.15E20, 'cm^2/(mol*s)'), n = -0.1992, Ea = (13.1, 'kcal/mol'), Tmin = (200, 'K'), @@ -468,7 +459,7 @@ DOI: 10.1016/j.jcat.2008.08.008.D.G. Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -A = 1.78E+12(1/s)/2.49E-9(mol/cm^2) = 7.15E+20 cm^2/(mol*s) +A = 1.78E12(1/s)/2.49E-9(mol/cm^2) = 7.15E20 cm^2/(mol*s) This is R39 in Table 4 """, @@ -479,7 +470,7 @@ # index = 20, # label = "COOH_X + OH_X <=> CO2_X + H2O_X", # kinetics = SurfaceArrhenius( -# A = (2.25E+18, 'cm^2/(mol*s)'), +# A = (2.25E18, 'cm^2/(mol*s)'), # n = 0.1922, # Ea = (18.3, 'kcal/mol'), # Tmin = (200, 'K'), @@ -493,7 +484,7 @@ # DOI: 10.1016/j.jcat.2008.08.008.D.G. # Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -# A = 5.60E+09(1/s)/2.49E-9(mol/cm^2) = 2.25E+18 cm^2/(mol*s) +# A = 5.60E09(1/s)/2.49E-9(mol/cm^2) = 2.25E18 cm^2/(mol*s) # This is R40 in Table 4 # """, @@ -526,7 +517,7 @@ # index = 22, # label = "CH3_X + H_X <=> CH4 + X + X", # kinetics = SurfaceArrhenius( -# A = (3.10E+19, 'cm^2/(mol*s)'), +# A = (3.10E19, 'cm^2/(mol*s)'), # n = -0.7883, # Ea = (5.5, 'kcal/mol'), # Tmin = (200, 'K'), @@ -540,7 +531,7 @@ # DOI: 10.1016/j.jcat.2008.08.008.D.G. # Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -# A = 7.72E+10(1/s)/2.49E-9(mol/cm^2) = 3.10E+19 cm^2/(mol*s) +# A = 7.72E10(1/s)/2.49E-9(mol/cm^2) = 3.10E19 cm^2/(mol*s) # This is R56 in Table 4 # """, @@ -551,7 +542,7 @@ index = 23, label = "CH3_X + X <=> CH2_X + H_X", kinetics = SurfaceArrhenius( - A = (1.00E+19, 'cm^2/(mol*s)'), + A = (1.00E19, 'cm^2/(mol*s)'), n = 0.0862, Ea = (12.2, 'kcal/mol'), Tmin = (200, 'K'), @@ -565,7 +556,7 @@ DOI: 10.1016/j.jcat.2008.08.008.D.G. Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -A = 2.49E+10(1/s)/2.49E-9(mol/cm^2) = 1.00E+19 cm^2/(mol*s) +A = 2.49E10(1/s)/2.49E-9(mol/cm^2) = 1.00E19 cm^2/(mol*s) This is R57 in Table 4 """, @@ -576,7 +567,7 @@ # index = 24, # label = "CH2_X + H_X <=> CH3_X + X", # kinetics = SurfaceArrhenius( -# A = (1.03E+18, 'cm^2/(mol*s)'), +# A = (1.03E18, 'cm^2/(mol*s)'), # n = -0.0862, # Ea = (25.7, 'kcal/mol'), # Tmin = (200, 'K'), @@ -590,7 +581,7 @@ # DOI: 10.1016/j.jcat.2008.08.008.D.G. # Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -# A = 2.57E+09(1/s)/2.49E-9(mol/cm^2) = 1.03E+18 cm^2/(mol*s) +# A = 2.57E09(1/s)/2.49E-9(mol/cm^2) = 1.03E18 cm^2/(mol*s) # This is R58 in Table 4 # """, @@ -601,7 +592,7 @@ index = 25, label = "CH2_X + X <=> CH_X + H_X", kinetics = SurfaceArrhenius( - A = (2.21E+19, 'cm^2/(mol*s)'), + A = (2.21E19, 'cm^2/(mol*s)'), n = -0.1312, Ea = (21.7, 'kcal/mol'), Tmin = (200, 'K'), @@ -615,7 +606,7 @@ DOI: 10.1016/j.jcat.2008.08.008.D.G. Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -A = 5.50E+10(1/s)/2.49E-9(mol/cm^2) = 2.21E+19 cm^2/(mol*s) +A = 5.50E10(1/s)/2.49E-9(mol/cm^2) = 2.21E19 cm^2/(mol*s) This is R59 in Table 4 """, @@ -626,7 +617,7 @@ # index = 26, # label = "CH_X + H_X <=> CH2_X + X", # kinetics = SurfaceArrhenius( -# A = (2.92E+18, 'cm^2/(mol*s)'), +# A = (2.92E18, 'cm^2/(mol*s)'), # n = 0.1312, # Ea = (20.6, 'kcal/mol'), # Tmin = (200, 'K'), @@ -640,7 +631,7 @@ # DOI: 10.1016/j.jcat.2008.08.008.D.G. # Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -# A = 7.27E+09(1/s)/2.49E-9(mol/cm^2) = 2.92E+18 cm^2/(mol*s) +# A = 7.27E09(1/s)/2.49E-9(mol/cm^2) = 2.92E18 cm^2/(mol*s) # This is R60 in Table 4 # """, @@ -651,7 +642,7 @@ index = 27, label = "CH_X + X <=> C_X + H_X", kinetics = SurfaceArrhenius( - A = (1.84E+21, 'cm^2/(mol*s)'), + A = (1.84E21, 'cm^2/(mol*s)'), n = -0.2464, Ea = (28.9, 'kcal/mol'), Tmin = (200, 'K'), @@ -665,7 +656,7 @@ DOI: 10.1016/j.jcat.2008.08.008.D.G. Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -A = 4.58E+12(1/s)/2.49E-9(mol/cm^2) = 1.84E+21 cm^2/(mol*s) +A = 4.58E12(1/s)/2.49E-9(mol/cm^2) = 1.84E21 cm^2/(mol*s) This is R61 in Table 4 """, @@ -676,7 +667,7 @@ # index = 28, # label = "C_X + H_X <=> CH_X + X", # kinetics = SurfaceArrhenius( -# A = (8.76E+19, 'cm^2/(mol*s)'), +# A = (8.76E19, 'cm^2/(mol*s)'), # n = 0.2464, # Ea = (14.1, 'kcal/mol'), # Tmin = (200, 'K'), @@ -690,7 +681,7 @@ # DOI: 10.1016/j.jcat.2008.08.008.D.G. # Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -# A = 2.18E+11(1/s)/2.49E-9(mol/cm^2) = 8.76E+19 cm^2/(mol*s) +# A = 2.18E11(1/s)/2.49E-9(mol/cm^2) = 8.76E19 cm^2/(mol*s) # This is R62 in Table 4 # """, @@ -701,7 +692,7 @@ index = 29, label = "CH3_X + O_X <=> CH2_X + OH_X", kinetics = SurfaceArrhenius( - A = (1.19E+20, 'cm^2/(mol*s)'), + A = (1.19E20, 'cm^2/(mol*s)'), n = -0.1906, Ea = (6.7, 'kcal/mol'), Tmin = (200, 'K'), @@ -715,7 +706,7 @@ DOI: 10.1016/j.jcat.2008.08.008.D.G. Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -A = 2.96E+11(1/s)/2.49E-9(mol/cm^2) = 1.19E+20 cm^2/(mol*s) +A = 2.96E11(1/s)/2.49E-9(mol/cm^2) = 1.19E20 cm^2/(mol*s) This is R63 in Table 4 """, @@ -726,7 +717,7 @@ # index = 30, # label = "CH2_X + OH_X <=> CH3_X + O_X", # kinetics = SurfaceArrhenius( -# A = (1.36E+19, 'cm^2/(mol*s)'), +# A = (1.36E19, 'cm^2/(mol*s)'), # n = 0.1906, # Ea = (34.5, 'kcal/mol'), # Tmin = (200, 'K'), @@ -740,7 +731,7 @@ # DOI: 10.1016/j.jcat.2008.08.008.D.G. # Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -# A = 3.38E+10(1/s)/2.49E-9(mol/cm^2) = 1.36E+19 cm^2/(mol*s) +# A = 3.38E10(1/s)/2.49E-9(mol/cm^2) = 1.36E19 cm^2/(mol*s) # This is R64 in Table 4 # """, @@ -751,7 +742,7 @@ index = 31, label = "CH2_X + H2O_X <=> CH3_X + OH_X", kinetics = SurfaceArrhenius( - A = (2.30E+19, 'cm^2/(mol*s)'), + A = (2.30E19, 'cm^2/(mol*s)'), n = -0.7208, Ea = (20.3, 'kcal/mol'), Tmin = (200, 'K'), @@ -765,7 +756,7 @@ DOI: 10.1016/j.jcat.2008.08.008.D.G. Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -A = 5.73E+10(1/s)/2.49E-9(mol/cm^2) = 2.30E+19 cm^2/(mol*s) +A = 5.73E10(1/s)/2.49E-9(mol/cm^2) = 2.30E19 cm^2/(mol*s) This is R69 in Table 4 """, @@ -776,7 +767,7 @@ # index = 32, # label = "CH3_X + OH_X <=> CH2_X + H2O_X", # kinetics = SurfaceArrhenius( -# A = (6.99E+17, 'cm^2/(mol*s)'), +# A = (6.99E17, 'cm^2/(mol*s)'), # n = 0.7208, # Ea = (4.4, 'kcal/mol'), # Tmin = (200, 'K'), @@ -790,7 +781,7 @@ # DOI: 10.1016/j.jcat.2008.08.008.D.G. # Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -# A = 1.74E+09(1/s)/2.49E-9(mol/cm^2) = 6.99E+17 cm^2/(mol*s) +# A = 1.74E09(1/s)/2.49E-9(mol/cm^2) = 6.99E17 cm^2/(mol*s) # This is R70 in Table 4 # """, @@ -801,7 +792,7 @@ index = 33, label = "CH_X + H2O_X <=> CH2_X + OH_X", kinetics = SurfaceArrhenius( - A = (2.61E+20, 'cm^2/(mol*s)'), + A = (2.61E20, 'cm^2/(mol*s)'), n = -0.5033, Ea = (21.2, 'kcal/mol'), Tmin = (200, 'K'), @@ -815,7 +806,7 @@ DOI: 10.1016/j.jcat.2008.08.008.D.G. Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -A = 6.49E+11(1/s)/2.49E-9(mol/cm^2) = 2.61E+20 cm^2/(mol*s) +A = 6.49E11(1/s)/2.49E-9(mol/cm^2) = 2.61E20 cm^2/(mol*s) This is R71 in Table 4 """, @@ -826,7 +817,7 @@ # index = 34, # label = "CH2_X + OH_X <=> CH_X + H2O_X", # kinetics = SurfaceArrhenius( -# A = (6.18E+18, 'cm^2/(mol*s)'), +# A = (6.18E18, 'cm^2/(mol*s)'), # n = 0.5033, # Ea = (19.9, 'kcal/mol'), # Tmin = (200, 'K'), @@ -840,7 +831,7 @@ # DOI: 10.1016/j.jcat.2008.08.008.D.G. # Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -# A = 1.54E+10(1/s)/2.49E-9(mol/cm^2) = 6.18E+18 cm^2/(mol*s) +# A = 1.54E10(1/s)/2.49E-9(mol/cm^2) = 6.18E18 cm^2/(mol*s) # This is R72 in Table 4 # """, @@ -851,7 +842,7 @@ index = 35, label = "C_X + H2O_X <=> CH_X + OH_X", kinetics = SurfaceArrhenius( - A = (3.91E+20, 'cm^2/(mol*s)'), + A = (3.91E20, 'cm^2/(mol*s)'), n = -0.3882, Ea = (17.0, 'kcal/mol'), Tmin = (200, 'K'), @@ -865,7 +856,7 @@ DOI: 10.1016/j.jcat.2008.08.008.D.G. Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -A = 9.74E+11(1/s)/2.49E-9(mol/cm^2) = 3.91E+20 cm^2/(mol*s) +A = 9.74E11(1/s)/2.49E-9(mol/cm^2) = 3.91E20 cm^2/(mol*s) This is R73 in Table 4 """, @@ -876,7 +867,7 @@ # index = 36, # label = "CH_X + OH_X <=> C_X + H2O_X", # kinetics = SurfaceArrhenius( -# A = (2.57E+19, 'cm^2/(mol*s)'), +# A = (2.57E19, 'cm^2/(mol*s)'), # n = 0.3882, # Ea = (29.3, 'kcal/mol'), # Tmin = (200, 'K'), @@ -890,7 +881,7 @@ # DOI: 10.1016/j.jcat.2008.08.008.D.G. # Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -# A = 6.41E+10(1/s)/2.49E-9(mol/cm^2) = 2.57E+19 cm^2/(mol*s) +# A = 6.41E10(1/s)/2.49E-9(mol/cm^2) = 2.57E19 cm^2/(mol*s) # This is R74 in Table 4 # """, @@ -901,7 +892,7 @@ index = 37, label = "CO_X + H_X <=> C_X + OH_X", kinetics = SurfaceArrhenius( - A = (4.74E+20, 'cm^2/(mol*s)'), + A = (4.74E20, 'cm^2/(mol*s)'), n = 0.2944, Ea = (22.6, 'kcal/mol'), Tmin = (200, 'K'), @@ -915,7 +906,7 @@ DOI: 10.1016/j.jcat.2008.08.008.D.G. Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -A = 1.18E+12(1/s)/2.49E-9(mol/cm^2) = 4.74E+20 cm^2/(mol*s) +A = 1.18E12(1/s)/2.49E-9(mol/cm^2) = 4.74E20 cm^2/(mol*s) This is R79 in Table 4 """, @@ -926,7 +917,7 @@ # index = 38, # label = "C_X + OH_X <=> CO_X + H_X", # kinetics = SurfaceArrhenius( -# A = (3.05E+21, 'cm^2/(mol*s)'), +# A = (3.05E21, 'cm^2/(mol*s)'), # n = -0.2944, # Ea = (0, 'kcal/mol'), # Tmin = (200, 'K'), @@ -940,7 +931,7 @@ # DOI: 10.1016/j.jcat.2008.08.008.D.G. # Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). -# A = 7.60E+12(1/s)/2.49E-9(mol/cm^2) = 3.05E+21 cm^2/(mol*s) +# A = 7.60E12(1/s)/2.49E-9(mol/cm^2) = 3.0521 cm^2/(mol*s) # This is R80 in Table 4 # """, From d42dae69e83692361dff1414d7d53f096436fef9 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Fri, 4 Jun 2021 17:25:54 -0400 Subject: [PATCH 24/27] Revised the reactions in some new kinetics libraries We used the reactions that have the form of StickingCoefficient --- .../Surface/Mhadeshwar_Pt111/reactions.py | 1020 +++++++++-------- .../Surface/Schneider_Pd111/reactions.py | 288 +++-- .../Surface/Schneider_Pd211/reactions.py | 290 +++-- .../Surface/Schneider_Pt111/reactions.py | 100 +- .../Surface/Schneider_Pt211/reactions.py | 100 +- .../Surface/Schneider_Rh111/reactions.py | 292 +++-- .../Surface/Schneider_Rh211/reactions.py | 295 +++-- .../Surface/Vlachos_Pt111/reactions.py | 122 +- 8 files changed, 1240 insertions(+), 1267 deletions(-) diff --git a/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/reactions.py b/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/reactions.py index f16c0d8f32..b21c765908 100644 --- a/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/reactions.py @@ -14,40 +14,13 @@ #---------------------O2 adsorption/desorption------------------------ -# Reverse reaction of R2 -# entry( -# index = 1, -# label = "O + X <=> O_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (0, 'kcal/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_Double""", -# longDesc = u""" -# "A detailed microkinetic model for diesel engine emissions oxidation -# on platinum based diesel oxidation catalysts (DOC)" -# Hom Sharma & Ashish Mhadeshwar. (2012). -# Applied Catalysis B: Environmental, 127, 190-204 -# DOI: 10.1016/j.apcatb.2012.08.021 - -# This is R1 in Appendix A - -# This reaction is the least important ones for typical DOC conditions. -# """, -# metal = "Pt", -# facet = "111", -# ) - entry( - index = 2, - label = "O_X <=> O + X", - kinetics = SurfaceArrhenius( - A = (1E13, '1/s'), + index = 1, + label = "O + X <=> O_X", + kinetics = StickingCoefficient( + A = 1, n = 0.0, - Ea = (86, 'kcal/mol'), + Ea = (0, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -59,7 +32,7 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R2 in Appendix A +This is R1 in Appendix A This reaction is the least important ones for typical DOC conditions. """, @@ -67,6 +40,33 @@ facet = "111", ) +#Reverse reaction of R1 +# entry( +# index = 2, +# label = "O_X <=> O + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (86, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R2 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + entry( index = 3, label = "O2 + X + X <=> O_X + O_X", @@ -173,38 +173,14 @@ # facet = "111", # ) -# Reverse reaction of R8 -# entry( -# index = 7, -# label = "CO2 + X <=> CO2_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (0, 'kcal/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_vdW""", -# longDesc = u""" -# "A detailed microkinetic model for diesel engine emissions oxidation -# on platinum based diesel oxidation catalysts (DOC)" -# Hom Sharma & Ashish Mhadeshwar. (2012). -# Applied Catalysis B: Environmental, 127, 190-204 -# DOI: 10.1016/j.apcatb.2012.08.021 - -# This is R7 in Appendix A -# """, -# metal = "Pt", -# facet = "111", -# ) entry( - index = 8, - label = "CO2_X <=> CO2 + X", - kinetics = SurfaceArrhenius( - A = (1E13, '1/s'), + index = 7, + label = "CO2 + X <=> CO2_X", + kinetics = StickingCoefficient( + A = 1, n = 0.0, - Ea = (3.6, 'kcal/mol'), + Ea = (0, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -216,12 +192,37 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R8 in Appendix A +This is R7 in Appendix A """, metal = "Pt", facet = "111", ) +# Reverse reaction of R7 +# entry( +# index = 8, +# label = "CO2_X <=> CO2 + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (3.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R8 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + # Reverse reaction of R9 # entry( # index = 9, @@ -279,40 +280,13 @@ #---------------------H2 oxidation----------------------------------- -# Reverse reaction of R12 -# entry( -# index = 11, -# label = "H + X <=> H_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (0, 'kcal/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_Single""", -# longDesc = u""" -# "A detailed microkinetic model for diesel engine emissions oxidation -# on platinum based diesel oxidation catalysts (DOC)" -# Hom Sharma & Ashish Mhadeshwar. (2012). -# Applied Catalysis B: Environmental, 127, 190-204 -# DOI: 10.1016/j.apcatb.2012.08.021 - -# This is R11 in Appendix A - -# This reaction is the least important ones for typical DOC conditions. -# """, -# metal = "Pt", -# facet = "111", -# ) - entry( - index = 12, - label = "H_X <=> H + X", - kinetics = SurfaceArrhenius( - A = (1E13, '1/s'), + index = 11, + label = "H + X <=> H_X", + kinetics = StickingCoefficient( + A = 1, n = 0.0, - Ea = (60.9, 'kcal/mol'), + Ea = (0, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -324,7 +298,7 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R12 in Appendix A +This is R11 in Appendix A This reaction is the least important ones for typical DOC conditions. """, @@ -332,18 +306,18 @@ facet = "111", ) -# Reverse reaction of R14 +# Reverse reaction of R11 # entry( -# index = 13, -# label = "H2 + X + X <=> H_X + H_X", -# kinetics = StickingCoefficient( -# A = 1, +# index = 12, +# label = "H_X <=> H + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), # n = 0.0, -# Ea = (0, 'kcal/mol'), +# Ea = (60.9, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), # ), -# shortDesc = u"""H2 Surface_Adsorption_Dissociative""", +# shortDesc = u"""Surface_Adsorption_Single""", # longDesc = u""" # "A detailed microkinetic model for diesel engine emissions oxidation # on platinum based diesel oxidation catalysts (DOC)" @@ -351,19 +325,21 @@ # Applied Catalysis B: Environmental, 127, 190-204 # DOI: 10.1016/j.apcatb.2012.08.021 -# This is R13 in Appendix A +# This is R12 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. # """, -# metal = "Pt", +# metal = "Pt", # facet = "111", # ) entry( - index = 14, - label = "H_X + H_X <=> H2 + X + X", - kinetics = SurfaceArrhenius( - A = (4E21, 'cm^2/(mol*s)'), + index = 13, + label = "H2 + X + X <=> H_X + H_X", + kinetics = StickingCoefficient( + A = 1, n = 0.0, - Ea = (17.6, 'kcal/mol'), + Ea = (0, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -375,27 +351,24 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - -This is R14 in Appendix A +This is R13 in Appendix A """, metal = "Pt", facet = "111", ) -# Reverse reaction of R16 +# Reverse reaction of R13 # entry( -# index = 15, -# label = "H2O + X <=> H2O_X", -# kinetics = StickingCoefficient( -# A = 1, +# index = 14, +# label = "H_X + H_X <=> H2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (4E21, 'cm^2/(mol*s)'), # n = 0.0, -# Ea = (0, 'kcal/mol'), +# Ea = (17.6, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), # ), -# shortDesc = u"""Surface_Adsorption""", +# shortDesc = u"""H2 Surface_Adsorption_Dissociative""", # longDesc = u""" # "A detailed microkinetic model for diesel engine emissions oxidation # on platinum based diesel oxidation catalysts (DOC)" @@ -403,19 +376,22 @@ # Applied Catalysis B: Environmental, 127, 190-204 # DOI: 10.1016/j.apcatb.2012.08.021 -# This is R15 in Appendix A +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +# This is R14 in Appendix A # """, -# metal = "Pt", +# metal = "Pt", # facet = "111", # ) entry( - index = 16, - label = "H2O_X <=> H2O + X", - kinetics = SurfaceArrhenius( - A = (1E13, '1/s'), + index = 15, + label = "H2O + X <=> H2O_X", + kinetics = StickingCoefficient( + A = 1, n = 0.0, - Ea = (10.3, 'kcal/mol'), + Ea = (0, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -427,24 +403,24 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R16 in Appendix A +This is R15 in Appendix A """, metal = "Pt", facet = "111", ) -# Reverse reaction of R18 +# Reverse reaction of R15 # entry( -# index = 17, -# label = "OH + X <=> OH_X", -# kinetics = StickingCoefficient( -# A = 1, +# index = 16, +# label = "H2O_X <=> H2O + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), # n = 0.0, -# Ea = (0, 'kcal/mol'), +# Ea = (10.3, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), # ), -# shortDesc = u"""Surface_Adsorption_Single""", +# shortDesc = u"""Surface_Adsorption""", # longDesc = u""" # "A detailed microkinetic model for diesel engine emissions oxidation # on platinum based diesel oxidation catalysts (DOC)" @@ -452,21 +428,19 @@ # Applied Catalysis B: Environmental, 127, 190-204 # DOI: 10.1016/j.apcatb.2012.08.021 -# This is R17 in Appendix A - -# This reaction is the least important ones for typical DOC conditions. +# This is R16 in Appendix A # """, # metal = "Pt", # facet = "111", # ) entry( - index = 18, - label = "OH_X <=> OH + X", - kinetics = SurfaceArrhenius( - A = (1E13, '1/s'), + index = 17, + label = "OH + X <=> OH_X", + kinetics = StickingCoefficient( + A = 1, n = 0.0, - Ea = (63, 'kcal/mol'), + Ea = (0, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -478,7 +452,7 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R18 in Appendix A +This is R17 in Appendix A This reaction is the least important ones for typical DOC conditions. """, @@ -486,6 +460,33 @@ facet = "111", ) +# Reverse reaction of R17 +# entry( +# index = 18, +# label = "OH_X <=> OH + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (63, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R18 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + # Reverse reaction of R20 # entry( # index = 19, @@ -653,40 +654,13 @@ #-----------------Water promoted CO oxidation------------------------ -# Reverse reaction of R26 -# entry( -# index = 25, -# label = "COOH + X <=> COOH_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (0, 'kcal/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_Single""", -# longDesc = u""" -# "A detailed microkinetic model for diesel engine emissions oxidation -# on platinum based diesel oxidation catalysts (DOC)" -# Hom Sharma & Ashish Mhadeshwar. (2012). -# Applied Catalysis B: Environmental, 127, 190-204 -# DOI: 10.1016/j.apcatb.2012.08.021 - -# This is R25 in Appendix A - -# This reaction is the least important ones for typical DOC conditions. -# """, -# metal = "Pt", -# facet = "111", -# ) - entry( - index = 26, - label = "COOH_X <=> COOH + X", - kinetics = SurfaceArrhenius( - A = (1E13, '1/s'), + index = 25, + label = "COOH + X <=> COOH_X", + kinetics = StickingCoefficient( + A = 1, n = 0.0, - Ea = (56.3, 'kcal/mol'), + Ea = (0, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -698,7 +672,7 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R26 in Appendix A +This is R25 in Appendix A This reaction is the least important ones for typical DOC conditions. """, @@ -706,6 +680,33 @@ facet = "111", ) +# Reverse reaction of R25 +# entry( +# index = 26, +# label = "COOH_X <=> COOH + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (56.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R26 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + # Reverse reaction of R28 # entry( # index = 27, @@ -1050,40 +1051,13 @@ #---------------------NH3 oxidation---------------------------------- -# Reverse reaction of R40 -# entry( -# index = 39, -# label = "N + X <=> N_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (0, 'kcal/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_Triple""", -# longDesc = u""" -# "A detailed microkinetic model for diesel engine emissions oxidation -# on platinum based diesel oxidation catalysts (DOC)" -# Hom Sharma & Ashish Mhadeshwar. (2012). -# Applied Catalysis B: Environmental, 127, 190-204 -# DOI: 10.1016/j.apcatb.2012.08.021 - -# This is R39 in Appendix A - -# This reaction is the least important ones for typical DOC conditions. -# """, -# metal = "Pt", -# facet = "111", -# ) - entry( - index = 40, - label = "N_X <=> N + X", - kinetics = SurfaceArrhenius( - A = (1E13, '1/s'), + index = 39, + label = "N + X <=> N_X", + kinetics = StickingCoefficient( + A = 1, n = 0.0, - Ea = (107.4, 'kcal/mol'), + Ea = (0, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -1095,7 +1069,7 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R40 in Appendix A +This is R39 in Appendix A This reaction is the least important ones for typical DOC conditions. """, @@ -1103,18 +1077,18 @@ facet = "111", ) -# Reverse reaction of R42 +# Reverse reaction of R39 # entry( -# index = 41, -# label = "N2 + X + X <=> N_X + N_X", -# kinetics = StickingCoefficient( -# A = 1, +# index = 40, +# label = "N_X <=> N + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), # n = 0.0, -# Ea = (27.9, 'kcal/mol'), +# Ea = (107.4, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), # ), -# shortDesc = u"""N2 Surface_Adsorption_Dissociative""", +# shortDesc = u"""Surface_Adsorption_Triple""", # longDesc = u""" # "A detailed microkinetic model for diesel engine emissions oxidation # on platinum based diesel oxidation catalysts (DOC)" @@ -1122,19 +1096,21 @@ # Applied Catalysis B: Environmental, 127, 190-204 # DOI: 10.1016/j.apcatb.2012.08.021 -# This is R41 in Appendix A +# This is R40 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. # """, # metal = "Pt", # facet = "111", # ) entry( - index = 42, - label = "N_X + N_X <=> N2 + X + X", - kinetics = SurfaceArrhenius( - A = (4E21, 'cm^2/(mol*s)'), + index = 41, + label = "N2 + X + X <=> N_X + N_X", + kinetics = StickingCoefficient( + A = 1, n = 0.0, - Ea = (16.7, 'kcal/mol'), + Ea = (27.9, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -1146,27 +1122,24 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - -This is R42 in Appendix A +This is R41 in Appendix A """, metal = "Pt", facet = "111", ) -# Reverse reaction of R44 +# Reverse reaction of R41 # entry( -# index = 43, -# label = "NH3 + X <=> NH3_X", -# kinetics = StickingCoefficient( -# A = 1, +# index = 42, +# label = "N_X + N_X <=> N2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (4E21, 'cm^2/(mol*s)'), # n = 0.0, -# Ea = (0, 'kcal/mol'), +# Ea = (16.7, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), # ), -# shortDesc = u"""Surface_Adsorption_vdW""", +# shortDesc = u"""N2 Surface_Adsorption_Dissociative""", # longDesc = u""" # "A detailed microkinetic model for diesel engine emissions oxidation # on platinum based diesel oxidation catalysts (DOC)" @@ -1174,19 +1147,22 @@ # Applied Catalysis B: Environmental, 127, 190-204 # DOI: 10.1016/j.apcatb.2012.08.021 -# This is R43 in Appendix A +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +# This is R42 in Appendix A # """, # metal = "Pt", # facet = "111", # ) entry( - index = 44, - label = "NH3_X <=> NH3 + X", - kinetics = SurfaceArrhenius( - A = (1E13, '1/s'), + index = 43, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1, n = 0.0, - Ea = (20.7, 'kcal/mol'), + Ea = (0, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -1198,24 +1174,24 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R44 in Appendix A +This is R43 in Appendix A """, metal = "Pt", facet = "111", ) -# Reverse reaction of R46 +# Reverse reaction of R43 # entry( -# index = 45, -# label = "NH2 + X <=> NH2_X", -# kinetics = StickingCoefficient( -# A = 1, +# index = 44, +# label = "NH3_X <=> NH3 + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), # n = 0.0, -# Ea = (0, 'kcal/mol'), +# Ea = (20.7, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), # ), -# shortDesc = u"""Surface_Adsorption_Single""", +# shortDesc = u"""Surface_Adsorption_vdW""", # longDesc = u""" # "A detailed microkinetic model for diesel engine emissions oxidation # on platinum based diesel oxidation catalysts (DOC)" @@ -1223,21 +1199,19 @@ # Applied Catalysis B: Environmental, 127, 190-204 # DOI: 10.1016/j.apcatb.2012.08.021 -# This is R45 in Appendix A - -# This reaction is the least important ones for typical DOC conditions. +# This is R44 in Appendix A # """, # metal = "Pt", # facet = "111", # ) entry( - index = 46, - label = "NH2_X <=> NH2 + X", - kinetics = SurfaceArrhenius( - A = (1E13, '1/s'), + index = 45, + label = "NH2 + X <=> NH2_X", + kinetics = StickingCoefficient( + A = 1, n = 0.0, - Ea = (54.6, 'kcal/mol'), + Ea = (0, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -1249,7 +1223,7 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R46 in Appendix A +This is R45 in Appendix A This reaction is the least important ones for typical DOC conditions. """, @@ -1257,18 +1231,18 @@ facet = "111", ) -# Reverse reaction of R48 +# Reverse reaction of R45 # entry( -# index = 47, -# label = "NH + X <=> NH_X", -# kinetics = StickingCoefficient( -# A = 1, +# index = 46, +# label = "NH2_X <=> NH2 + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), # n = 0.0, -# Ea = (0, 'kcal/mol'), +# Ea = (54.6, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), # ), -# shortDesc = u"""Surface_Adsorption_Double""", +# shortDesc = u"""Surface_Adsorption_Single""", # longDesc = u""" # "A detailed microkinetic model for diesel engine emissions oxidation # on platinum based diesel oxidation catalysts (DOC)" @@ -1276,7 +1250,7 @@ # Applied Catalysis B: Environmental, 127, 190-204 # DOI: 10.1016/j.apcatb.2012.08.021 -# This is R47 in Appendix A +# This is R46 in Appendix A # This reaction is the least important ones for typical DOC conditions. # """, @@ -1285,12 +1259,12 @@ # ) entry( - index = 48, - label = "NH_X <=> NH + X", - kinetics = SurfaceArrhenius( - A = (1E13, '1/s'), + index = 47, + label = "NH + X <=> NH_X", + kinetics = StickingCoefficient( + A = 1, n = 0.0, - Ea = (83, 'kcal/mol'), + Ea = (0, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -1302,7 +1276,7 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R48 in Appendix A +This is R47 in Appendix A This reaction is the least important ones for typical DOC conditions. """, @@ -1310,6 +1284,33 @@ facet = "111", ) +# Reverse reaction of R47 +# entry( +# index = 48, +# label = "NH_X <=> NH + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (83, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R48 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + # Reverse reaction of R50 # entry( # index = 49, @@ -1799,22 +1800,46 @@ Surface site density used in this paper is 2.5E-9 mol/cm^2 A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) -This is R66 in Appendix A +This is R66 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +#---------------------NO oxidation---------------------------------- + +entry( + index = 67, + label = "NO + X <=> NO_X", + kinetics = StickingCoefficient( + A = 0.88, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R67 in Appendix A """, metal = "Pt", facet = "111", ) -#---------------------NO oxidation---------------------------------- - -# Reverse reaction of R68 +# Reverse reaction of R67 # entry( -# index = 67, -# label = "NO + X <=> NO_X", -# kinetics = StickingCoefficient( -# A = 0.88, +# index = 68, +# label = "NO_X <=> NO + X", +# kinetics = SurfaceArrhenius( +# A = (1E16, '1/s'), # n = 0.0, -# Ea = (0, 'kcal/mol'), +# Ea = (30.5, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), # ), @@ -1826,19 +1851,19 @@ # Applied Catalysis B: Environmental, 127, 190-204 # DOI: 10.1016/j.apcatb.2012.08.021 -# This is R67 in Appendix A +# This is R68 in Appendix A # """, # metal = "Pt", # facet = "111", # ) entry( - index = 68, - label = "NO_X <=> NO + X", - kinetics = SurfaceArrhenius( - A = (1E16, '1/s'), + index = 69, + label = "NO2 + X <=> NO2_X", + kinetics = StickingCoefficient( + A = 1, n = 0.0, - Ea = (30.5, 'kcal/mol'), + Ea = (0, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -1850,20 +1875,20 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R68 in Appendix A +This is R69 in Appendix A """, metal = "Pt", facet = "111", ) -# Reverse reaction of R70 +# Reverse reaction of R69 # entry( -# index = 69, -# label = "NO2 + X <=> NO2_X", -# kinetics = StickingCoefficient( -# A = 1, +# index = 70, +# label = "NO2_X <=> NO2 + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), # n = 0.0, -# Ea = (0, 'kcal/mol'), +# Ea = (23.5, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), # ), @@ -1875,36 +1900,12 @@ # Applied Catalysis B: Environmental, 127, 190-204 # DOI: 10.1016/j.apcatb.2012.08.021 -# This is R69 in Appendix A +# This is R70 in Appendix A # """, # metal = "Pt", # facet = "111", # ) -entry( - index = 70, - label = "NO2_X <=> NO2 + X", - kinetics = SurfaceArrhenius( - A = (1E13, '1/s'), - n = 0.0, - Ea = (23.5, 'kcal/mol'), - Tmin = (200, 'K'), - Tmax = (3000, 'K'), - ), - shortDesc = u"""Surface_Adsorption_Single""", - longDesc = u""" -"A detailed microkinetic model for diesel engine emissions oxidation -on platinum based diesel oxidation catalysts (DOC)" -Hom Sharma & Ashish Mhadeshwar. (2012). -Applied Catalysis B: Environmental, 127, 190-204 -DOI: 10.1016/j.apcatb.2012.08.021 - -This is R70 in Appendix A -""", - metal = "Pt", - facet = "111", -) - # Reverse reaction of R72 # entry( # index = 71, @@ -2182,38 +2183,14 @@ #---------------------HCN oxidation---------------------------------- -# Reverse reaction of R82 -# entry( -# index = 81, -# label = "HCN + X <=> HCN_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (0, 'kcal/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_vdW""", -# longDesc = u""" -# "A detailed microkinetic model for diesel engine emissions oxidation -# on platinum based diesel oxidation catalysts (DOC)" -# Hom Sharma & Ashish Mhadeshwar. (2012). -# Applied Catalysis B: Environmental, 127, 190-204 -# DOI: 10.1016/j.apcatb.2012.08.021 - -# This is R81 in Appendix A -# """, -# metal = "Pt", -# facet = "111", -# ) entry( - index = 82, - label = "HCN_X <=> HCN + X", - kinetics = SurfaceArrhenius( - A = (1E13, '1/s'), + index = 81, + label = "HCN + X <=> HCN_X", + kinetics = StickingCoefficient( + A = 1, n = 0.0, - Ea = (21.3, 'kcal/mol'), + Ea = (0, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -2225,24 +2202,24 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R82 in Appendix A +This is R81 in Appendix A """, metal = "Pt", facet = "111", ) -# Reverse reaction of R84 +# Reverse reaction of R81 # entry( -# index = 83, -# label = "CN + X <=> CN_X", -# kinetics = StickingCoefficient( -# A = 1, +# index = 82, +# label = "HCN_X <=> HCN + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), # n = 0.0, -# Ea = (0, 'kcal/mol'), +# Ea = (21.3, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), # ), -# shortDesc = u"""Surface_Adsorption_Single""", +# shortDesc = u"""Surface_Adsorption_vdW""", # longDesc = u""" # "A detailed microkinetic model for diesel engine emissions oxidation # on platinum based diesel oxidation catalysts (DOC)" @@ -2250,21 +2227,19 @@ # Applied Catalysis B: Environmental, 127, 190-204 # DOI: 10.1016/j.apcatb.2012.08.021 -# This is R83 in Appendix A - -# This reaction is the least important ones for typical DOC conditions. +# This is R82 in Appendix A # """, # metal = "Pt", # facet = "111", # ) entry( - index = 84, - label = "CN_X <=> CN + X", - kinetics = SurfaceArrhenius( - A = (1E13, '1/s'), + index = 83, + label = "CN + X <=> CN_X", + kinetics = StickingCoefficient( + A = 1, n = 0.0, - Ea = (78.2, 'kcal/mol'), + Ea = (0, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -2276,7 +2251,7 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R84 in Appendix A +This is R83 in Appendix A This reaction is the least important ones for typical DOC conditions. """, @@ -2284,6 +2259,33 @@ facet = "111", ) +# Reverse reaction of R83 +# entry( +# index = 84, +# label = "CN_X <=> CN + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (78.2, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R84 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + # Reverse reaction of R86 # entry( # index = 85, @@ -2561,38 +2563,13 @@ #---------------------CH2O oxidation--------------------------------- -# Reverse reaction of R96 -# entry( -# index = 95, -# label = "CH2O + X <=> CH2O_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (0, 'kcal/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_vdW""", -# longDesc = u""" -# "A detailed microkinetic model for diesel engine emissions oxidation -# on platinum based diesel oxidation catalysts (DOC)" -# Hom Sharma & Ashish Mhadeshwar. (2012). -# Applied Catalysis B: Environmental, 127, 190-204 -# DOI: 10.1016/j.apcatb.2012.08.021 - -# This is R95 in Appendix A -# """, -# metal = "Pt", -# facet = "111", -# ) - entry( - index = 96, - label = "CH2O_X <=> CH2O + X", - kinetics = SurfaceArrhenius( - A = (1E13, '1/s'), + index = 95, + label = "CH2O + X <=> CH2O_X", + kinetics = StickingCoefficient( + A = 1, n = 0.0, - Ea = (14.7, 'kcal/mol'), + Ea = (0, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -2604,24 +2581,24 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R96 in Appendix A +This is R95 in Appendix A """, metal = "Pt", facet = "111", ) -# Reverse reaction of R98 +# Reverse reaction of R95 # entry( -# index = 97, -# label = "HCO + X <=> HCO_X", -# kinetics = StickingCoefficient( -# A = 1, +# index = 96, +# label = "CH2O_X <=> CH2O + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), # n = 0.0, -# Ea = (0, 'kcal/mol'), +# Ea = (14.7, 'kcal/mol'), # Tmin = (200, 'K'), # Tmax = (3000, 'K'), # ), -# shortDesc = u"""Surface_Adsorption_Single""", +# shortDesc = u"""Surface_Adsorption_vdW""", # longDesc = u""" # "A detailed microkinetic model for diesel engine emissions oxidation # on platinum based diesel oxidation catalysts (DOC)" @@ -2629,21 +2606,19 @@ # Applied Catalysis B: Environmental, 127, 190-204 # DOI: 10.1016/j.apcatb.2012.08.021 -# This is R97 in Appendix A - -# This reaction is the least important ones for typical DOC conditions. +# This is R96 in Appendix A # """, # metal = "Pt", # facet = "111", # ) entry( - index = 98, - label = "HCO_X <=> HCO + X", - kinetics = SurfaceArrhenius( - A = (1E13, '1/s'), + index = 97, + label = "HCO + X <=> HCO_X", + kinetics = StickingCoefficient( + A = 1, n = 0.0, - Ea = (54.4, 'kcal/mol'), + Ea = (0, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -2655,7 +2630,7 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R98 in Appendix A +This is R97 in Appendix A This reaction is the least important ones for typical DOC conditions. """, @@ -2663,6 +2638,33 @@ facet = "111", ) +# Reverse reaction of R97 +# entry( +# index = 98, +# label = "HCO_X <=> HCO + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (54.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R98 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + # Reverse reaction of R100 # entry( # index = 99, @@ -2995,40 +2997,13 @@ #---------------------C foramtion and oxidation---------------------- -# Reverse reaction of R112 -# entry( -# index = 111, -# label = "C + X <=> C_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (0, 'kcal/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_Quadruple bonds""", -# longDesc = u""" -# "A detailed microkinetic model for diesel engine emissions oxidation -# on platinum based diesel oxidation catalysts (DOC)" -# Hom Sharma & Ashish Mhadeshwar. (2012). -# Applied Catalysis B: Environmental, 127, 190-204 -# DOI: 10.1016/j.apcatb.2012.08.021 - -# This is R111 in Appendix A - -# This reaction is the least important ones for typical DOC conditions. -# """, -# metal = "Pt", -# facet = "111", -# ) - entry( - index = 112, - label = "C_X <=> C + X", - kinetics = SurfaceArrhenius( - A = (1E13, '1/s'), + index = 111, + label = "C + X <=> C_X", + kinetics = StickingCoefficient( + A = 1, n = 0.0, - Ea = (158.2, 'kcal/mol'), + Ea = (0, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -3040,7 +3015,7 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R112 in Appendix A +This is R111 in Appendix A This reaction is the least important ones for typical DOC conditions. """, @@ -3048,6 +3023,33 @@ facet = "111", ) +# Reverse reaction of R111 +# entry( +# index = 112, +# label = "C_X <=> C + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (158.2, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Quadruple bonds""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R112 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + # Reverse reaction of R114 # entry( # index = 113, @@ -3160,38 +3162,13 @@ #---------------------N2O and C2N2 formation/decomposition----------- -# Reverse reaction of R118 -# entry( -# index = 117, -# label = "N2O + X <=> N2O_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (0, 'kcal/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_Double""", -# longDesc = u""" -# "A detailed microkinetic model for diesel engine emissions oxidation -# on platinum based diesel oxidation catalysts (DOC)" -# Hom Sharma & Ashish Mhadeshwar. (2012). -# Applied Catalysis B: Environmental, 127, 190-204 -# DOI: 10.1016/j.apcatb.2012.08.021 - -# This is R117 in Appendix A -# """, -# metal = "Pt", -# facet = "111", -# ) - entry( - index = 118, - label = "N2O_X <=> N2O + X", - kinetics = SurfaceArrhenius( - A = (1E13, '1/s'), + index = 117, + label = "N2O + X <=> N2O_X", + kinetics = StickingCoefficient( + A = 1, n = 0.0, - Ea = (6.7, 'kcal/mol'), + Ea = (0, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -3203,12 +3180,37 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R118 in Appendix A +This is R117 in Appendix A """, metal = "Pt", facet = "111", ) +# Reverse reaction of R117 +# entry( +# index = 118, +# label = "N2O_X <=> N2O + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (6.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R118 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + # Reverse reaction of R120 # entry( # index = 119, @@ -3264,40 +3266,13 @@ facet = "111", ) -# Reverse reaction of R122 -# entry( -# index = 121, -# label = "C2N2 + X <=> C2N2_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (,0 'kcal/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_vdW""", -# longDesc = u""" -# "A detailed microkinetic model for diesel engine emissions oxidation -# on platinum based diesel oxidation catalysts (DOC)" -# Hom Sharma & Ashish Mhadeshwar. (2012). -# Applied Catalysis B: Environmental, 127, 190-204 -# DOI: 10.1016/j.apcatb.2012.08.021 - -# This is R121 in Appendix A - -# This reaction is the least important ones for typical DOC conditions. -# """, -# metal = "Pt", -# facet = "111", -# ) - entry( - index = 122, - label = "C2N2_X <=> C2N2 + X", - kinetics = SurfaceArrhenius( - A = (1E13, '1/s'), + index = 121, + label = "C2N2 + X <=> C2N2_X", + kinetics = StickingCoefficient( + A = 1, n = 0.0, - Ea = (21, 'kcal/mol'), + Ea = (0, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -3309,7 +3284,7 @@ Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R122 in Appendix A +This is R121 in Appendix A This reaction is the least important ones for typical DOC conditions. """, @@ -3317,6 +3292,33 @@ facet = "111", ) +# Reverse reaction of R121 +# entry( +# index = 122, +# label = "C2N2_X <=> C2N2 + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (21, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R122 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + # Reverse reaction of R124 # entry( # index = 123, diff --git a/input/kinetics/libraries/Surface/Schneider_Pd111/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pd111/reactions.py index 1c513863da..1eb43386ac 100644 --- a/input/kinetics/libraries/Surface/Schneider_Pd111/reactions.py +++ b/input/kinetics/libraries/Surface/Schneider_Pd111/reactions.py @@ -11,53 +11,51 @@ https://doi.org/10.1016/j.jcat.2020.01.029 """ -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 1, -# label = "O2 + X + X <=> O_X + O_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0, -# Ea = (0, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 - -# This is reaction (1) in Table S3 -# """, -# metal = "Pd", -# facet = "111", -# ) - -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 2, -# label = "NH3 + X <=> NH3_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0, -# Ea = (0, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_vdW""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 - -# This is reaction (2) in Table S3 -# """, -# metal = "Pd", -# facet = "111", -# ) +entry( + index = 1, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This is reaction (1) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 2, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This is reaction (2) in Table S3 +""", + metal = "Pd", + facet = "111", +) entry( index = 3, @@ -247,56 +245,54 @@ facet = "111", ) -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 10, -# label = "H2O + X <=> H2O_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (20262.9, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 -# Ea = 0.21eV = 20262.9J/mol -# -# This is reaction (10) in Table S3 -# """, -# metal = "Pd", -# facet = "111", -# ) - -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 11, -# label = "N2 + X + X <=> N_X + N_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (208418.4, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""N2 Surface_Adsorption_Dissociative""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 - -# Ea = 2.16eV = 208418.4J/mol - -# This is reaction (11) in Table S3 -# """, -# metal = "Pd", -# facet = "111", -# ) +entry( + index = 10, + label = "H2O + X <=> H2O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (20262.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 +Ea = 0.21eV = 20262.9J/mol + +This is reaction (10) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 11, + label = "N2 + X + X <=> N_X + N_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (208418.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 2.16eV = 208418.4J/mol + +This is reaction (11) in Table S3 +""", + metal = "Pd", + facet = "111", +) entry( index = 12, @@ -325,31 +321,30 @@ facet = "111", ) -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 13, -# label = "NO + X <=> NO_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (221927, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_Single""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 - -# Ea = 2.3eV = 221927J/mol - -# This is reaction (13) in Table S3 -# """, -# metal = "Pd", -# facet = "111", -# ) +entry( + index = 13, + label = "NO_X <=> NO + X", + kinetics = SurfaceArrhenius( + A = (6.55E14, '1/s'), + n = 0.0, + Ea = (221927, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 2.3eV = 221927J/mol + +This is reaction (13) in Table S3 +""", + metal = "Pd", + facet = "111", +) entry( index = 14, @@ -378,31 +373,30 @@ facet = "111", ) -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 15, -# label = "N2O + X <=> N2O_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (11578.8, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 - -# Ea = 0.12eV = 11578.8J/mol - -# This is reaction (15) in Table S3 -# """, -# metal = "Pd", -# facet = "111", -# ) +entry( + index = 15, + label = "N2O_X <=> N2O + X", + kinetics = SurfaceArrhenius( + A = (1.69E13, '1/s'), + n = 0.0, + Ea = (11578.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 0.12eV = 11578.8J/mol + +This is reaction (15) in Table S3 +""", + metal = "Pd", + facet = "111", +) entry( index = 16, diff --git a/input/kinetics/libraries/Surface/Schneider_Pd211/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pd211/reactions.py index 31a3f79404..831d271eb8 100644 --- a/input/kinetics/libraries/Surface/Schneider_Pd211/reactions.py +++ b/input/kinetics/libraries/Surface/Schneider_Pd211/reactions.py @@ -11,54 +11,52 @@ https://doi.org/10.1016/j.jcat.2020.01.029 """ -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 1, -# label = "O2 + X + X <=> O_X + O_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0, -# Ea = (28947, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 - -#Ea = 0.3eV = 28947J/mol -# This is reaction (1) in Table S2 -# """, -# metal = "Pd", -# facet = "211", -# ) - -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 2, -# label = "NH3 + X <=> NH3_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0, -# Ea = (0, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_vdW""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 - -# This is reaction (2) in Table S2 -# """, -# metal = "Pd", -# facet = "211", -# ) +entry( + index = 1, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (28947, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 0.3eV = 28947J/mol +This is reaction (1) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 2, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This is reaction (2) in Table S2 +""", + metal = "Pd", + facet = "211", +) entry( index = 3, @@ -249,56 +247,54 @@ facet = "211", ) -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 10, -# label = "H2O + X <=> H2O_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (30876.8, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 -# Ea = 0.32eV = 30876.8J/mol -# -# This is reaction (10) in Table S2 -# """, -# metal = "Pd", -# facet = "211", -# ) - -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 11, -# label = "N2 + X + X <=> N_X + N_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (119647.6, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""N2 Surface_Adsorption_Dissociative""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 - -# Ea = 1.24eV = 119647.6J/mol - -# This is reaction (11) in Table S2 -# """, -# metal = "Pd", -# facet = "211", -# ) +entry( + index = 10, + label = "H2O + X <=> H2O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (30876.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 +Ea = 0.32eV = 30876.8J/mol + +This is reaction (10) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 11, + label = "N2 + X + X <=> N_X + N_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (119647.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 1.24eV = 119647.6J/mol + +This is reaction (11) in Table S2 +""", + metal = "Pd", + facet = "211", +) entry( index = 12, @@ -327,31 +323,30 @@ facet = "211", ) -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 13, -# label = "NO + X <=> NO_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (225786.6, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_Single""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 - -# Ea = 2.34eV = 225786.6J/mol - -# This is reaction (13) in Table S2 -# """, -# metal = "Pd", -# facet = "211", -# ) +entry( + index = 13, + label = "NO_X <=> NO + X", + kinetics = SurfaceArrhenius( + A = (6.55E14, '1/s'), + n = 0.0, + Ea = (225786.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 2.34eV = 225786.6J/mol + +This is reaction (13) in Table S2 +""", + metal = "Pd", + facet = "211", +) entry( index = 14, @@ -380,31 +375,30 @@ facet = "211", ) -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 15, -# label = "N2O + X <=> N2O_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (36666.2, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 - -# Ea = 0.38eV = 36666.2J/mol - -# This is reaction (15) in Table S2 -# """, -# metal = "Pd", -# facet = "211", -# ) +entry( + index = 15, + label = "N2O_X <=> N2O + X", + kinetics = SurfaceArrhenius( + A = (1.69E13, '1/s'), + n = 0.0, + Ea = (36666.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 0.38eV = 36666.2J/mol + +This is reaction (15) in Table S2 +""", + metal = "Pd", + facet = "211", +) entry( index = 16, diff --git a/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py index be1c9c4500..a433002751 100644 --- a/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py @@ -10,57 +10,55 @@ https://doi.org/10.1021/acscatal.8b04251 """ -#Commet out since sitcking coefficient ≈ 1 -# entry( -# index = 1, -# label = "O2 + X + X <=> O_X + O_X", -# kinetics = StickingCoefficient( -# A = 0.9975, -# n = 0, -# Ea = (0, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", -# longDesc = u""" -# "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." -# DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. -# https://doi.org/10.1021/acscatal.8b04251 - -# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = ((1.8E3 /pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 32 g/mol * molar gas constant * 298 kelvin) -# -# This is R1 in Table S2 and S4 -# """, -# metal = "Pt", -# facet = "111", -# ) - -#Commet out since sitcking coefficient = 1 -# entry( -# index = 2, -# label = "NH3 + X <=> NH3_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0, -# Ea = (0, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_vdW""", -# longDesc = u""" -# "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." -# DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. -# https://doi.org/10.1021/acscatal.8b04251 -# -# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -# A = ((2.5E3 /pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 17 g/mol * molar gas constant * 298 kelvin) -# -# This is R2 in Table S2 and S4 -# """, -# metal = "Pt", -# facet = "111", -# ) +entry( + index = 1, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.9975, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((1.8E3 /pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 32 g/mol * molar gas constant * 298 kelvin) + +This is R1 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 2, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((2.5E3 /pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 17 g/mol * molar gas constant * 298 kelvin) + +This is R2 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) entry( index = 3, diff --git a/input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py index 46b6ea8489..880a3edabc 100644 --- a/input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py +++ b/input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py @@ -10,57 +10,55 @@ https://doi.org/10.1021/acscatal.8b04251 """ -#Commet out since sitcking coefficient ≈ 1 -# entry( -# index = 1, -# label = "O2 + X + X <=> O_X + O_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0, -# Ea = (0, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", -# longDesc = u""" -# "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." -# DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. -# https://doi.org/10.1021/acscatal.8b04251 - -# This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. -# A = ((1.8E3 /pa) / s) * (2.634E-9 mol/cm2) * sqrt(2 * pi * 32 g/mol * molar gas constant * 298 kelvin) -# -# This is R1 in Table S2 and S4 -# """, -# metal = "Pt", -# facet = "211", -# ) - -#Commet out since sitcking coefficient = 1 -# entry( -# index = 2, -# label = "NH3 + X <=> NH3_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0, -# Ea = (0, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_vdW""", -# longDesc = u""" -# "Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." -# DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. -# https://doi.org/10.1021/acscatal.8b04251 -# -# This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. -# A = ((2.5E3 /pa) / s) * (2.634E-9 mol/cm2) * sqrt(2 * pi * 17 g/mol * molar gas constant * 298 kelvin) -# -# This is R2 in Table S2 and S4 -# """, -# metal = "Pt", -# facet = "211", -# ) +entry( + index = 1, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = ((1.8E3 /pa) / s) * (2.634E-9 mol/cm2) * sqrt(2 * pi * 32 g/mol * molar gas constant * 298 kelvin) + +This is R1 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 2, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = ((2.5E3 /pa) / s) * (2.634E-9 mol/cm2) * sqrt(2 * pi * 17 g/mol * molar gas constant * 298 kelvin) + +This is R2 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) entry( index = 3, diff --git a/input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py b/input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py index 8255dbc109..d45ff3b6ce 100644 --- a/input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py +++ b/input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py @@ -11,53 +11,51 @@ https://doi.org/10.1016/j.jcat.2020.01.029 """ -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 1, -# label = "O2 + X + X <=> O_X + O_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0, -# Ea = (0, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 - -# This is reaction (1) in Table S3 -# """, -# metal = "Rh", -# facet = "111", -# ) - -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 2, -# label = "NH3 + X <=> NH3_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0, -# Ea = (0, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_vdW""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 - -# This is reaction (2) in Table S3 -# """, -# metal = "Rh", -# facet = "111", -# ) +entry( + index = 1, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This is reaction (1) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 2, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This is reaction (2) in Table S3 +""", + metal = "Rh", + facet = "111", +) entry( index = 3, @@ -247,59 +245,55 @@ facet = "111", ) -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 10, -# label = "H2O + X <=> H2O_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (27017.2, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 - -# Ea = 0.28eV = 27017.2J/mol - -# This is reaction (10) in Table S3 -# """, -# metal = "Rh", -# facet = "111", -# ) - -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 11, -# label = "N2 + X + X <=> N_X + N_X", -# kinetics = SurfaceArrhenius( -# A = (1.56E23, 'cm^2/(mol*s)'), -# n = 0.0, -# Ea = (246049.5, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""N2 Surface_Adsorption_Dissociative""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 - -# This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. -# Using the method proposed by Campbell et al. to calculate A actor. -# Ea = 2.55eV = 246049.5J/mol - -# This is reaction (11) in Table S3 -# """, -# metal = "Rh", -# facet = "111", -# ) +entry( + index = 10, + label = "H2O + X <=> H2O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (27017.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 0.28eV = 27017.2J/mol + +This is reaction (10) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 11, + label = "N2 + X + X <=> N_X + N_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (246049.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 2.55eV = 246049.5J/mol + +This is reaction (11) in Table S3 +""", + metal = "Rh", + facet = "111", +) entry( index = 12, @@ -328,31 +322,30 @@ facet = "111", ) -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 13, -# label = "NO + X <=> NO_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (241225, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_Single""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 - -# Ea = 2.5eV = 241225J/mol - -# This is reaction (13) in Table S3 -# """, -# metal = "Rh", -# facet = "111", -# ) +entry( + index = 13, + label = "NO + X <=> NO_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (241225, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 2.5eV = 241225J/mol + +This is reaction (13) in Table S3 +""", + metal = "Rh", + facet = "111", +) entry( index = 14, @@ -381,31 +374,30 @@ facet = "111", ) -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 15, -# label = "N2O + X <=> N2O_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (32806.6, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 - -# Ea = 0.34eV = 32806.6J/mol - -# This is reaction (15) in Table S3 -# """, -# metal = "Rh", -# facet = "111", -# ) +entry( + index = 15, + label = "N2O + X <=> N2O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (32806.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 0.34eV = 32806.6J/mol + +This is reaction (15) in Table S3 +""", + metal = "Rh", + facet = "111", +) entry( index = 16, diff --git a/input/kinetics/libraries/Surface/Schneider_Rh211/reactions.py b/input/kinetics/libraries/Surface/Schneider_Rh211/reactions.py index 75cad6d41a..7d8cb74a45 100644 --- a/input/kinetics/libraries/Surface/Schneider_Rh211/reactions.py +++ b/input/kinetics/libraries/Surface/Schneider_Rh211/reactions.py @@ -11,53 +11,51 @@ https://doi.org/10.1016/j.jcat.2020.01.029 """ -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 1, -# label = "O2 + X + X <=> O_X + O_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0, -# Ea = (0, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 - -# This is reaction (1) in Table S2 -# """, -# metal = "Rh", -# facet = "211", -# ) - -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 2, -# label = "NH3 + X <=> NH3_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0, -# Ea = (0, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_vdW""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 - -# This is reaction (2) in Table S2 -# """, -# metal = "Rh", -# facet = "211", -# ) +entry( + index = 1.0, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This is reaction (1) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 2, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1.0, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This is reaction (2) in Table S2 +""", + metal = "Rh", + facet = "211", +) entry( index = 3, @@ -248,57 +246,55 @@ facet = "211", ) -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 10, -# label = "H2O + X <=> H2O_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (43420.5, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 - -# Ea = 0.45eV = 43420.5J/mol - -# This is reaction (10) in Table S2 -# """, -# metal = "Rh", -# facet = "211", -# ) - -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 11, -# label = "N2 + X + X <=> N_X + N_X", -# kinetics = StickingCoefficient( -# A = 1. -# n = 0.0, -# Ea = (169822.4, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""N2 Surface_Adsorption_Dissociative""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 - -# Ea = 1.76eV = 169822.4J/mol - -# This is reaction (11) in Table S2 -# """, -# metal = "Rh", -# facet = "211", -# ) +entry( + index = 10, + label = "H2O + X <=> H2O_X", + kinetics = StickingCoefficient( + A = 1.0, + n = 0.0, + Ea = (43420.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 0.45eV = 43420.5J/mol + +This is reaction (10) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 11, + label = "N2 + X + X <=> N_X + N_X", + kinetics = StickingCoefficient( + A = 1.0, + n = 0.0, + Ea = (169822.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 1.76eV = 169822.4J/mol + +This is reaction (11) in Table S2 +""", + metal = "Rh", + facet = "211", +) entry( index = 12, @@ -327,31 +323,31 @@ facet = "211", ) -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 13, -# label = "NO + X <=> NO_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (270172, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_Single""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 - -# Ea = 2.8eV = 270172J/mol - -# This is reaction (13) in Table S2 -# """, -# metal = "Rh", -# facet = "211", -# ) + +entry( + index = 13, + label = "NO_X <=> NO + X", + kinetics = SurfaceArrhenius( + A = (6.55E14, '1/s'), + n = 0.0, + Ea = (270172, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 2.8eV = 270172J/mol + +This is reaction (13) in Table S2 +""", + metal = "Rh", + facet = "211", +) entry( index = 14, @@ -380,31 +376,30 @@ facet = "211", ) -# Commet out since the authors assumed sitcking coefficient ≈ 1 -# entry( -# index = 15, -# label = "N2O + X <=> N2O_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0.0, -# Ea = (54999.3, 'J/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", -# longDesc = u""" -# "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" -# Hanyu Ma, and William F.Schneider -# Journal of Catalysis 383 (2020) 322–330 -# https://doi.org/10.1016/j.jcat.2020.01.029 - -# Ea = 0.57eV = 54999.3J/mol - -# This is reaction (15) in Table S2 -# """, -# metal = "Rh", -# facet = "211", -# ) +entry( + index = 15, + label = "N2O_X <=> N2O + X", + kinetics = SurfaceArrhenius( + A = (1.69E13, '1/s'), + n = 0.0, + Ea = (54999.3, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 0.57eV = 54999.3J/mol + +This is reaction (15) in Table S2 +""", + metal = "Rh", + facet = "211", +) entry( index = 16, @@ -524,7 +519,7 @@ Tmin = (200, 'K'), Tmax = (3000, 'K'), ), - shortDesc = u"""Surface_Dissociation""", + shortDesc = u"""Surface_Dissociation_vdW""", longDesc = u""" "DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" Hanyu Ma, and William F.Schneider @@ -539,4 +534,4 @@ """, metal = "Rh", facet = "211", -) \ No newline at end of file +) diff --git a/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py b/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py index 784777574c..37d03ba05f 100644 --- a/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py @@ -111,37 +111,13 @@ # facet = "111", # ) -# entry( -# index = 5, -# label = "CO + X <=> CO_X", -# kinetics = StickingCoefficient( -# A = 1, -# n = 0, -# Ea = (0, 'kcal/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_Double""", -# longDesc = u""" -# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, -# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" -# D.G. Vlachos et al. (2007) -# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. -# DOI: 10.1021/ie070322c - -# This is R5 in Table 1 -# """, -# metal = "Pt", -# facet = "111", -# ) - entry( - index = 6, - label = "CO_X <=> CO + X", - kinetics = SurfaceArrhenius( - A = (5.66E15, '1/s'), - n = -0.500, - Ea = (40, 'kcal/mol'), + index = 5, + label = "CO + X <=> CO_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -153,12 +129,36 @@ Industrial & Engineering Chemistry Research, 46(16), 5310-5324. DOI: 10.1021/ie070322c -This is R6 in Table 1 +This is R5 in Table 1 """, metal = "Pt", facet = "111", ) +# entry( +# index = 6, +# label = "CO_X <=> CO + X", +# kinetics = SurfaceArrhenius( +# A = (5.66E15, '1/s'), +# n = -0.500, +# Ea = (40, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R6 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + entry( index = 7, label = "CO2 + X <=> CO2_X", @@ -474,37 +474,13 @@ # facet = "111", # ) -# entry( -# index = 19, -# label = "OH + X <=> OH_X", -# kinetics = StickingCoefficient( -# A = 0.999, -# n = 2.000, -# Ea = (0, 'kcal/mol'), -# Tmin = (200, 'K'), -# Tmax = (3000, 'K'), -# ), -# shortDesc = u"""Surface_Adsorption_Single""", -# longDesc = u""" -# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, -# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" -# D.G. Vlachos et al. (2007) -# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. -# DOI: 10.1021/ie070322c - -# This is R19 in Table 1 -# """, -# metal = "Pt", -# facet = "111", -# ) - entry( - index = 20, - label = "OH_X <=> OH + X", - kinetics = SurfaceArrhenius( - A = (1.44E14, '1/s'), + index = 19, + label = "OH + X <=> OH_X", + kinetics = StickingCoefficient( + A = 0.999, n = 2.000, - Ea = (63.0, 'kcal/mol'), + Ea = (0, 'kcal/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -516,12 +492,36 @@ Industrial & Engineering Chemistry Research, 46(16), 5310-5324. DOI: 10.1021/ie070322c -This is R20 in Table 1 +This is R19 in Table 1 """, metal = "Pt", facet = "111", ) +# entry( +# index = 20, +# label = "OH_X <=> OH + X", +# kinetics = SurfaceArrhenius( +# A = (1.44E14, '1/s'), +# n = 2.000, +# Ea = (63.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R20 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + entry( index = 21, label = "H2O + X <=> H2O_X", From d60216707bf699caafa9e8210bef6741a91c8277 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Fri, 4 Jun 2021 17:32:41 -0400 Subject: [PATCH 25/27] removed SurfaceArrhenius reactions then imported StickingCoefficient reactions in Surface_Adsorption_vdW, Surface_Adsorption_Single, and Surface_Adsorption_Dissociative training --- .../training/reactions.py | 11 +- .../training/reactions.py | 256 ++++------- .../training/reactions.py | 406 +++++++----------- 3 files changed, 248 insertions(+), 425 deletions(-) diff --git a/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py index 5f3f13d1a5..7118e524ad 100644 --- a/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py @@ -209,25 +209,22 @@ entry( index = 10, - label = "HX_3 + HX_4 <=> H2 + X_3 + X_4", + label = "X_3 + X_4 + H2 <=> HX_3 + HX_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+21,'cm^2/(mol*s)'), n=0, Ea=(17.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """H2 Surface_Adsorption_Dissociative""", longDesc = """ Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 -Original entry: H_X + H_X <=> H2 + X + X +Original entry: H2 + X + X <=> H_X + H_X "A detailed microkinetic model for diesel engine emissions oxidation on platinum based diesel oxidation catalysts (DOC)" Hom Sharma & Ashish Mhadeshwar. (2012). Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -Surface site density used in this paper is 2.5E-9 mol/cm^2 -A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) - -This is R14 in Appendix A +This is R13 in Appendix A """, metal = "Pt", facet = "111", diff --git a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py index 587d5ec333..9abd3ee8e2 100644 --- a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py @@ -7,6 +7,7 @@ Put kinetic parameters for specific reactions in this file to use as a training set for generating rate rules to populate this kinetics family. """ + entry( index = 1, label = "NO + X <=> NO_X", @@ -31,21 +32,22 @@ entry( index = 2, - label = "NO_X <=> NO + X", + label = "X + HO <=> HOX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.41e16,'1/s'), n=0, Ea=(154800,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=0.999, n=2, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = """ -Training reaction from kinetics library: Surface/Krahnert_Pt111 -Original entry: NO_X <=> NO + X -"Ammonia Oxidation over Polycrystalline Platinum: -Surface Morphology and Kinetics at Atmospheric Pressure." -Krähnert, Ralph(2005) A Doctoral Thesis. -http://dx.doi.org/10.14279/depositonce-1270 - -A = k/exp(Ea/RT) = 1.24(1/s)/exp(154800J/mol / 8.314J/molK / 658K) = 2.41E16 (1/s) +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: OH + X <=> OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R19 in Table 1 """, metal = "Pt", facet = "111", @@ -101,22 +103,25 @@ entry( index = 5, - label = "NO_X <=> NO + X", + label = "X + NO <=> NO_X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1e16,'1/s'), n=0, Ea=(140000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=1, n=0, Ea=(241225,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = """ -Training reaction from kinetics library: Surface/Rebrov_Pt111 -Original entry: NO_X <=> NO + X -"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" -Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. -https://doi.org/10.1016/S1385-8947(02)00068-2 +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: NO + X <=> NO_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 2.5eV = 241225J/mol -This is R15 in Table 1 +This is reaction (13) in Table S3 """, - metal = "Pt", + metal = "Rh", facet = "111", ) @@ -145,42 +150,45 @@ entry( index = 7, - label = "NO2X <=> NO2 + X", + label = "X + NO <=> NO_X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.3e14,'1/s'), n=0, Ea=(100000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=0.88, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = """ -Training reaction from kinetics library: Surface/Scheuer_Pt -Original entry: NO2_X <=> NO2 + X -"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" -Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 -https://doi.org/10.1016/j.apcatb.2011.10.032 +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NO + X <=> NO_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 -This is R13 in Table 1 +This is R67 in Appendix A """, metal = "Pt", + facet = "111", ) entry( index = 8, - label = "NO_X <=> NO + X", - degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(2.6e17,'1/s'), n=0, Ea=(184296,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + label = "X + NO2 <=> NO2X", + degeneracy = 2.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = """ -Training reaction from kinetics library: Surface/Schneider_Pt111 -Original entry: NO_X <=> NO + X -"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." -DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. -https://doi.org/10.1021/acscatal.8b04251 - -Ea = 1.91eV = 184295.9J/mol +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NO2 + X <=> NO2_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 -This is R13 in Table S2 and S4 +This is R69 in Appendix A """, metal = "Pt", facet = "111", @@ -188,45 +196,49 @@ entry( index = 9, - label = "NO_X <=> NO + X", + label = "X + CN <=> CNX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.3e17,'1/s'), n=0, Ea=(224822,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = """ -Training reaction from kinetics library: Surface/Schneider_Pt211 -Original entry: NO_X <=> NO + X -"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." -DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. -https://doi.org/10.1021/acscatal.8b04251 +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CN + X <=> CN_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 -Ea = 2.33eV = 224821.7J/mol +This is R83 in Appendix A -This is R13 in Table S2 and S4 +This reaction is the least important ones for typical DOC conditions. """, metal = "Pt", - facet = "211", + facet = "111", ) entry( index = 10, - label = "HOX <=> X + HO", + label = "X + CHO <=> CHOX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.44e14,'1/s'), n=2.00, Ea=(63.0, 'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = """ -Training reaction from kinetics library: Surface/Vlachos_Pt111 -Original entry: OH_X <=> OH + X -"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, -Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" -D.G. Vlachos et al. (2007) -Industrial & Engineering Chemistry Research, 46(16), 5310-5324. -DOI: 10.1021/ie070322c +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: HCO + X <=> HCO_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R97 in Appendix A -This is R20 in Table 1 +This reaction is the least important ones for typical DOC conditions. """, metal = "Pt", facet = "111", @@ -395,22 +407,22 @@ entry( index = 18, - label = "HX <=> H + X", + label = "X + H <=> HX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(60.9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = """ Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 -Original entry: H_X <=> H + X +Original entry: H + X <=> H_X "A detailed microkinetic model for diesel engine emissions oxidation on platinum based diesel oxidation catalysts (DOC)" Hom Sharma & Ashish Mhadeshwar. (2012). Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R12 in Appendix A +This is R11 in Appendix A This reaction is the least important ones for typical DOC conditions. """, @@ -420,22 +432,22 @@ entry( index = 19, - label = "HOX <=> HO + X", + label = "X + HO <=> HOX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(63,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = """ Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 -Original entry: OH_X <=> OH + X +Original entry: OH + X <=> OH_X "A detailed microkinetic model for diesel engine emissions oxidation on platinum based diesel oxidation catalysts (DOC)" Hom Sharma & Ashish Mhadeshwar. (2012). Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R18 in Appendix A +This is R17 in Appendix A This reaction is the least important ones for typical DOC conditions. """, @@ -445,22 +457,22 @@ entry( index = 20, - label = "CHO2X <=> CHO2 + X", + label = "X + CHO2 <=> CHO2X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(56.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = """ Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 -Original entry: COOH_X <=> COOH + X +Original entry: COOH + X <=> COOH_X "A detailed microkinetic model for diesel engine emissions oxidation on platinum based diesel oxidation catalysts (DOC)" Hom Sharma & Ashish Mhadeshwar. (2012). Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R26 in Appendix A +This is R25 in Appendix A This reaction is the least important ones for typical DOC conditions. """, @@ -470,118 +482,22 @@ entry( index = 21, - label = "H2NX <=> H2N + X", - degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(54.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), - rank = 3, - shortDesc = """Surface_Adsorption_Single""", - longDesc = -""" -Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 -Original entry: NH2_X <=> NH2 + X -"A detailed microkinetic model for diesel engine emissions oxidation -on platinum based diesel oxidation catalysts (DOC)" -Hom Sharma & Ashish Mhadeshwar. (2012). -Applied Catalysis B: Environmental, 127, 190-204 -DOI: 10.1016/j.apcatb.2012.08.021 - -This is R46 in Appendix A - -This reaction is the least important ones for typical DOC conditions. -""", - metal = "Pt", - facet = "111", -) - -entry( - index = 22, - label = "NO_X <=> NO + X", - degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1e16,'1/s'), n=0, Ea=(30.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), - rank = 3, - shortDesc = """Surface_Adsorption_Single""", - longDesc = -""" -Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 -Original entry: NO_X <=> NO + X -"A detailed microkinetic model for diesel engine emissions oxidation -on platinum based diesel oxidation catalysts (DOC)" -Hom Sharma & Ashish Mhadeshwar. (2012). -Applied Catalysis B: Environmental, 127, 190-204 -DOI: 10.1016/j.apcatb.2012.08.021 - -This is R68 in Appendix A -""", - metal = "Pt", - facet = "111", -) - -entry( - index = 23, - label = "NO2X <=> NO2 + X", - degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(23.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), - rank = 3, - shortDesc = """Surface_Adsorption_Single""", - longDesc = -""" -Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 -Original entry: NO2_X <=> NO2 + X -"A detailed microkinetic model for diesel engine emissions oxidation -on platinum based diesel oxidation catalysts (DOC)" -Hom Sharma & Ashish Mhadeshwar. (2012). -Applied Catalysis B: Environmental, 127, 190-204 -DOI: 10.1016/j.apcatb.2012.08.021 - -This is R70 in Appendix A -""", - metal = "Pt", - facet = "111", -) - -entry( - index = 24, - label = "CNX <=> CN + X", - degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(78.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), - rank = 3, - shortDesc = """Surface_Adsorption_Single""", - longDesc = -""" -Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 -Original entry: CN_X <=> CN + X -"A detailed microkinetic model for diesel engine emissions oxidation -on platinum based diesel oxidation catalysts (DOC)" -Hom Sharma & Ashish Mhadeshwar. (2012). -Applied Catalysis B: Environmental, 127, 190-204 -DOI: 10.1016/j.apcatb.2012.08.021 - -This is R84 in Appendix A - -This reaction is the least important ones for typical DOC conditions. -""", - metal = "Pt", - facet = "111", -) - -entry( - index = 25, - label = "CHOX <=> CHO + X", + label = "X + H2N <=> H2NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(54.4,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_Single""", longDesc = """ Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 -Original entry: HCO_X <=> HCO + X +Original entry: NH2 + X <=> NH2_X "A detailed microkinetic model for diesel engine emissions oxidation on platinum based diesel oxidation catalysts (DOC)" Hom Sharma & Ashish Mhadeshwar. (2012). Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R98 in Appendix A +This is R45 in Appendix A This reaction is the least important ones for typical DOC conditions. """, diff --git a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py index b43317fadc..405878ec91 100644 --- a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py @@ -70,85 +70,96 @@ entry( index = 4, - label = "H3NX <=> H3N + X", + label = "X + H3N <=> H3NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.48e09,'1/s'), n=0, Ea=(60900,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = """ -Training reaction from kinetics library: Surface/Krahnert_Pt111 -Original entry: NH3_X <=> NH3 + X -"Ammonia Oxidation over Polycrystalline Platinum: -Surface Morphology and Kinetics at Atmospheric Pressure." -Krähnert, Ralph(2005) A Doctoral Thesis. -http://dx.doi.org/10.14279/depositonce-1270 - -A = k/exp(Ea/RT) = 2.17(1/s)/exp(60900J/mol / 8.314J/molK / 658K) = 1.48E09 (1/s) +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: NH3 + X <=> NH3_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This is reaction (2) in Table S3 """, - metal = "Pt", + metal = "Rh", facet = "111", ) entry( index = 5, - label = "X + N2 <=> N2X", + label = "X + H2O <=> H2OX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(8.6e12,'cm^3/(mol*s)'), n=0, Ea=(4000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=1, n=0, Ea=(27017.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """N2 Surface_Adsorption_vdW""", + shortDesc = """Surface_Adsorption""", longDesc = """ -Training reaction from kinetics library: Surface/Offermans_Pt111 -Original entry: N2 + X <=> N2_X -"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." -Offermans, W. K. (2007). Technische Universiteit Eindhoven. -https://doi.org/10.6100/IR630067 +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: H2O + X <=> H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 0.28eV = 27017.2J/mol + +This is reaction (10) in Table S3 """, - metal = "Pt", + metal = "Rh", facet = "111", ) entry( index = 6, - label = "H3NX <=> H3N + X", + label = "X + N2O <=> N2OX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1e9,'1/s'), n=0, Ea=(75200,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=1, n=0, Ea=(32806.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Adsorption_vdW""", + shortDesc = """Surface_Adsorption_Double/Surface_Adsorption_vdW""", longDesc = """ -Training reaction from kinetics library: Surface/Rebrov_Pt111 -Original entry: NH3_X <=> NH3 + X -"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" -Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. -https://doi.org/10.1016/S1385-8947(02)00068-2 +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: N2O + X <=> N2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 0.34eV = 32806.6J/mol -This is R2 in Table 1 +This is reaction (15) in Table S3 """, - metal = "Pt", + metal = "Rh", facet = "111", ) entry( index = 7, - label = "H2OX <=> H2O + X", + label = "X + H3N <=> H3NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(40300,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = """ -Training reaction from kinetics library: Surface/Rebrov_Pt111 -Original entry: H2O_X <=> H2O + X -"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" -Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. -https://doi.org/10.1016/S1385-8947(02)00068-2 +Training reaction from kinetics library: Surface/Schneider_Pt211 +Original entry: NH3 + X <=> NH3_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 -This is R19 in Table 1 +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = ((2.5E3 /pa) / s) * (2.634E-9 mol/cm2) * sqrt(2 * pi * 17 g/mol * molar gas constant * 298 kelvin) + +This is R2 in Table S2 and S4 """, metal = "Pt", - facet = "111", + facet = "211", ) entry( @@ -176,94 +187,92 @@ entry( index = 9, - label = "H2OX <=> H2O + X", + label = "X + H3N <=> H3NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(5.9e15,'1/s'), n=0, Ea=(18333.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = """ -Training reaction from kinetics library: Surface/Schneider_Pt111 -Original entry: H2O_X <=> H2O + X -"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." -DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. -https://doi.org/10.1021/acscatal.8b04251 - -Ea = 0.19eV = 18333.1J/mol +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: NH3 + X <=> NH3_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 -This is R10 in Table S2 and S4 +This is reaction (2) in Table S2 """, - metal = "Pt", - facet = "111", + metal = "Pd", + facet = "211", ) entry( index = 10, - label = "N2OX <=> N2O + X", + label = "X + H2O <=> H2OX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.4e16,'1/s'), n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=1, n=0, Ea=(30876.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Adsorption_vdW""", + shortDesc = """Surface_Adsorption""", longDesc = """ -Training reaction from kinetics library: Surface/Schneider_Pt111 -Original entry: N2O_X <=> N2O + X -"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." -DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. -https://doi.org/10.1021/acscatal.8b04251 - -This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 1.4E16(1/s)/2.483E-9(mol/cm^2) = 5.64E24 cm^2/(mol*s) +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: H2O + X <=> H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 +Ea = 0.32eV = 30876.8J/mol -This is R15 in Table S2 and S4 +This is reaction (10) in Table S2 """, - metal = "Pt", - facet = "111", + metal = "Pd", + facet = "211", ) entry( index = 11, - label = "H2OX <=> H2O + X", + label = "X + H3N <=> H3NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(3.7e15,'1/s'), n=0, Ea=(24122.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = """ -Training reaction from kinetics library: Surface/Schneider_Pt211 -Original entry: H2O_X <=> H2O + X -"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." -DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. -https://doi.org/10.1021/acscatal.8b04251 - -Ea = 0.25eV = 24122.5J/mol +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: NH3 + X <=> NH3_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 -This is R10 in Table S2 and S4 +This is reaction (2) in Table S2 """, - metal = "Pt", + metal = "Rh", facet = "211", ) entry( index = 12, - label = "N2OX <=> N2O + X", + label = "X + H2O <=> H2OX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.5e17,'1/s'), n=0, Ea=(9649,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=1, n=0, Ea=(43420.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, - shortDesc = """Surface_Adsorption_vdW""", + shortDesc = """Surface_Adsorption""", longDesc = """ -Training reaction from kinetics library: Surface/Schneider_Pt211 -Original entry: N2O_X <=> N2O + X -"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." -DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. -https://doi.org/10.1021/acscatal.8b04251 +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: H2O + X <=> H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 -Ea = 0.1eV = 9649J/mol +Ea = 0.45eV = 43420.5J/mol -This is R15 in Table S2 and S4 +This is reaction (10) in Table S2 """, - metal = "Pt", + metal = "Rh", facet = "211", ) @@ -491,257 +500,137 @@ entry( index = 23, - label = "H3NX <=> H3N + X", - degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(9.53e7,'1/s'), n=0, Ea=(88574.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), - rank = 3, - shortDesc = """Surface_Adsorption_vdW""", - longDesc = -""" -Training reaction from kinetics library: Surface/Roldan_Ir111 -Original entry: NH3_X <=> NH3 + X -"Kinetic and mechanistic analysis of NH3 decomposition -on Ru(0001), Ru(111) and Ir(111) surfaces" -Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 -DOI: 10.1039/d1na00015b - -Ea was calculated from A factor and k rate constant in Table 3 - -This is D1 in Table 3 -""", - metal = "Ir", - facet = "111", -) - -entry( - index = 24, - label = "H2X <=> H2 + X", - degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(9.54e7,'1/s'), n=0, Ea=(30972.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), - rank = 3, - shortDesc = """H2 Surface_Adsorption_vdW""", - longDesc = -""" -Training reaction from kinetics library: Surface/Roldan_Ir111 -Original entry: H2_X <=> H2 + X -"Kinetic and mechanistic analysis of NH3 decomposition -on Ru(0001), Ru(111) and Ir(111) surfaces" -Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 -DOI: 10.1039/d1na00015b - -Ea was calculated from A factor and k rate constant in Table 3 - -This is D3 in Table 3 -""", - metal = "Ir", - facet = "111", -) - -entry( - index = 25, - label = "H3NX <=> H3N + X", - degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.29e8,'1/s'), n=0, Ea=(72149.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), - rank = 3, - shortDesc = """Surface_Adsorption_vdW""", - longDesc = -""" -Training reaction from kinetics library: Surface/Roldan_Ru0001 -Original entry: NH3_X <=> NH3 + X -"Kinetic and mechanistic analysis of NH3 decomposition -on Ru(0001), Ru(111) and Ir(111) surfaces" -Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 -DOI: 10.1039/d1na00015b - -Ea was calculated from A factor and k rate constant in Table 3 - -This is D1 in Table 3 -""", - metal = "Ru", - facet = "0001", -) - -entry( - index = 26, - label = "X + N2 <=> N2X", - degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.29e8,'cm^3/(mol*s)'), n=0, Ea=(24483,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), - rank = 3, - shortDesc = """Surface_Adsorption_vdW""", - longDesc = -""" -Training reaction from kinetics library: Surface/Roldan_Ru0001 -Original entry: N2 + X <=> N2_X -"Kinetic and mechanistic analysis of NH3 decomposition -on Ru(0001), Ru(111) and Ir(111) surfaces" -Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 -DOI: 10.1039/d1na00015b - -Ea was calculated from A factor and k rate constant in Table 3 - -This is A2 in Table 3 -""", - metal = "Ru", - facet = "0001", -) - -entry( - index = 27, - label = "H2X <=> H2 + X", - degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.29e8,'1/s'), n=0, Ea=(24483,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), - rank = 3, - shortDesc = """H2 Surface_Adsorption_vdW""", - longDesc = -""" -Training reaction from kinetics library: Surface/Roldan_Ru0001 -Original entry: H2_X <=> H2 + X -"Kinetic and mechanistic analysis of NH3 decomposition -on Ru(0001), Ru(111) and Ir(111) surfaces" -Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 -DOI: 10.1039/d1na00015b - -Ea was calculated from A factor and k rate constant in Table 3 - -This is D3 in Table 3 -""", - metal = "Ru", - facet = "0001", -) - -entry( - index = 28, - label = "CO2X-2 <=> CO2-2 + X", + label = "X + CO2-2 <=> CO2X-2", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(3.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 -Original entry: CO2_X <=> CO2 + X +Original entry: CO2 + X <=> CO2_X "A detailed microkinetic model for diesel engine emissions oxidation on platinum based diesel oxidation catalysts (DOC)" Hom Sharma & Ashish Mhadeshwar. (2012). Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R8 in Appendix A +This is R7 in Appendix A """, metal = "Pt", facet = "111", ) entry( - index = 29, - label = "H2OX <=> H2O + X", + index = 24, + label = "X + H2O <=> H2OX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(10.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption""", longDesc = """ Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 -Original entry: H2O_X <=> H2O + X +Original entry: H2O + X <=> H2O_X "A detailed microkinetic model for diesel engine emissions oxidation on platinum based diesel oxidation catalysts (DOC)" Hom Sharma & Ashish Mhadeshwar. (2012). Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R16 in Appendix A +This is R15 in Appendix A """, metal = "Pt", facet = "111", ) entry( - index = 30, - label = "H3NX <=> H3N + X", + index = 25, + label = "X + H3N <=> H3NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(20.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 -Original entry: NH3_X <=> NH3 + X +Original entry: NH3 + X <=> NH3_X "A detailed microkinetic model for diesel engine emissions oxidation on platinum based diesel oxidation catalysts (DOC)" Hom Sharma & Ashish Mhadeshwar. (2012). Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R44 in Appendix A +This is R43 in Appendix A """, metal = "Pt", facet = "111", ) entry( - index = 31, - label = "CHNX <=> CHN + X", + index = 26, + label = "X + CHN <=> CHNX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(21.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 -Original entry: HCN_X <=> HCN + X +Original entry: HCN + X <=> HCN_X "A detailed microkinetic model for diesel engine emissions oxidation on platinum based diesel oxidation catalysts (DOC)" Hom Sharma & Ashish Mhadeshwar. (2012). Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R82 in Appendix A +This is R81 in Appendix A """, metal = "Pt", facet = "111", ) entry( - index = 32, - label = "CH2OX <=> CH2O + X", + index = 27, + label = "X + CH2O <=> CH2OX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(14.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 -Original entry: CH2O_X <=> CH2O + X +Original entry: CH2O + X <=> CH2O_X "A detailed microkinetic model for diesel engine emissions oxidation on platinum based diesel oxidation catalysts (DOC)" Hom Sharma & Ashish Mhadeshwar. (2012). Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R96 in Appendix A +This is R95 in Appendix A """, metal = "Pt", facet = "111", ) entry( - index = 33, - label = "C2N2X <=> C2N2 + X", + index = 28, + label = "X + C2N2 <=> C2N2X", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(21,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = """ Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 -Original entry: C2N2_X <=> C2N2 + X +Original entry: C2N2 + X <=> C2N2_X "A detailed microkinetic model for diesel engine emissions oxidation on platinum based diesel oxidation catalysts (DOC)" Hom Sharma & Ashish Mhadeshwar. (2012). Applied Catalysis B: Environmental, 127, 190-204 DOI: 10.1016/j.apcatb.2012.08.021 -This is R122 in Appendix A +This is R121 in Appendix A This reaction is the least important ones for typical DOC conditions. """, @@ -750,26 +639,47 @@ ) entry( - index = 34, - label = "N2X <=> N2 + X", + index = 29, + label = "X + H3N <=> H3NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(9.52e7,'1/s'), n=0, Ea=(10807,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Adsorption_vdW""", longDesc = """ -Training reaction from kinetics library: Surface/Roldan_Ir111 -Original entry: N2_X <=> N2 + X -"Kinetic and mechanistic analysis of NH3 decomposition -on Ru(0001), Ru(111) and Ir(111) surfaces" -Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 -DOI: 10.1039/d1na00015b +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: NH3 + X <=> NH3_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This is reaction (2) in Table S3 +""", + metal = "Pd", + facet = "111", +) -Ea was calculated from A factor and k rate constant in Table 3 +entry( + index = 30, + label = "X + H2O <=> H2OX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(20262.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: H2O + X <=> H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 +Ea = 0.21eV = 20262.9J/mol -This is D2 in Table 3 +This is reaction (10) in Table S3 """, - metal = "Ir", + metal = "Pd", facet = "111", ) From c5238fb32de9cdf0acfb3c08d8e9baddc06d14c5 Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Fri, 4 Jun 2021 17:33:36 -0400 Subject: [PATCH 26/27] added Schneider_Rh211 libraries into training data --- .../Surface_Abstraction/training/reactions.py | 52 ++++++++ .../training/reactions.py | 26 ++++ .../training/reactions.py | 120 ++++++++++++++++-- .../training/dictionary.txt | 9 -- .../training/reactions.py | 92 +++++++++++++- .../training/reactions.py | 62 ++++++++- 6 files changed, 332 insertions(+), 29 deletions(-) diff --git a/input/kinetics/families/Surface_Abstraction/training/reactions.py b/input/kinetics/families/Surface_Abstraction/training/reactions.py index d0fe0b2c8a..a5ed2fdc0f 100644 --- a/input/kinetics/families/Surface_Abstraction/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction/training/reactions.py @@ -675,3 +675,55 @@ facet = "111", ) +entry( + index = 28, + label = "H2NX + O* <=> OH* + HNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.33e21,'cm^2/(mol*s)'), n=0, Ea=(143770,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: NH2_X +O_X <=> NH_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.49eV = 143770.1J/mol + +This is reaction (4) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 29, + label = "HNX-2 + O* <=> OH* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.33e21,'cm^2/(mol*s)'), n=0, Ea=(60788.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: NH_X + O_X <=> N_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.63eV = 60788.7J/mol + +This is reaction (5) in Table S2 +""", + metal = "Rh", + facet = "211", +) + diff --git a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py index 0b7c79614e..0212757711 100644 --- a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py @@ -341,3 +341,29 @@ facet = "111", ) +entry( + index = 14, + label = "HOX + H3NX <=> H2NX + H2OX", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.33e21,'cm^2/(mol*s)'), n=0, Ea=(91665.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: NH3_X + OH_X <=> NH2_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.95eV = 91665.5J/mol + +This is reaction (6) in Table S2 +""", + metal = "Rh", + facet = "211", +) + diff --git a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py index 60e0d0a8f1..149c4a02a0 100644 --- a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py @@ -1358,7 +1358,7 @@ index = 55, label = "OH_2* + OH_4* <=> H2O* + O*", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(22.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(22.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -1384,7 +1384,7 @@ index = 56, label = "CHO2X + HX <=> H2OX + CO*", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(5.4,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(5.4,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -1412,7 +1412,7 @@ index = 57, label = "OH_4* + H2NX <=> H3NX + O*", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(16.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(16.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -1438,7 +1438,7 @@ index = 58, label = "H2NX-2 + OH_2* <=> H2O* + HNX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(12.9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(12.9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -1464,7 +1464,7 @@ index = 59, label = "HNX-2 + OH_2* <=> H2O* + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(22.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(22.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -1490,7 +1490,7 @@ index = 60, label = "OH_4* + CNX <=> CHNX + O*", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(27.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(27.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -1516,7 +1516,7 @@ index = 61, label = "OH_4* + CHOX <=> CH2OX + O*", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(30.9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(30.9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -1542,7 +1542,7 @@ index = 62, label = "CO* + H2O* <=> OH_2* + HCO*", degeneracy = 2.0, - kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(36.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(36.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -1564,3 +1564,107 @@ facet = "111", ) +entry( + index = 63, + label = "O* + H3NX <=> H2NX + OH_4*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.33e21,'cm^2/(mol*s)'), n=0, Ea=(62718.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: NH3_X +O_X <=> NH2_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.65eV = 62718.5J/mol + +This is reaction (3) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 64, + label = "H2NX-2 + OH_2* <=> H2O* + HNX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.33e21,'cm^2/(mol*s)'), n=0, Ea=(97454.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: NH2_X + OH_X <=> NH_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.01eV = 97454.9J/mol + +This is reaction (7) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 65, + label = "HNX-2 + OH_2* <=> H2O* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.33e21,'cm^2/(mol*s)'), n=0, Ea=(85876.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: NH_X + OH_X <=> N_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.89eV = 85876.1J/mol + +This is reaction (8) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 66, + label = "OH_2* + OH_4* <=> H2O* + O*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.33e21,'cm^2/(mol*s)'), n=0, Ea=(92630.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: OH_X + OH_X <=> O_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.96eV = 92630.4J/mol + +This is reaction (9) in Table S2 +""", + metal = "Rh", + facet = "211", +) + diff --git a/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt index aeee16c78e..60f173cc04 100644 --- a/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt @@ -129,15 +129,6 @@ H4N2X 6 H u0 p0 c0 {2,S} 7 *2 X u0 p0 c0 -H2X -1 *1 H u0 p0 c0 {2,S} -2 H u0 p0 c0 {1,S} -3 *2 X u0 p0 c0 - -H2 -1 *1 H u0 p0 c0 {2,S} -2 H u0 p0 c0 {1,S} - CHNX 1 *1 N u0 p1 c0 {2,T} 2 C u0 p0 c0 {1,T} {3,S} diff --git a/input/kinetics/families/Surface_Dissociation/training/reactions.py b/input/kinetics/families/Surface_Dissociation/training/reactions.py index 33ef554861..c2adfb04de 100644 --- a/input/kinetics/families/Surface_Dissociation/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation/training/reactions.py @@ -1394,7 +1394,7 @@ index = 57, label = "HX_5 + OCX_3 <=> CXHO_1 + X_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(30.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(30.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1420,7 +1420,7 @@ index = 58, label = "NOX + NX <=> N2OX + X_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(19.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(19.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1652,7 +1652,7 @@ index = 67, label = "HX_5 + OX <=> HOX_1 + X_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(8.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(8.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1678,7 +1678,7 @@ index = 68, label = "HOX_5 + OCX_3 <=> HOCXO_1 + X_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(18.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(18.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1704,7 +1704,7 @@ index = 69, label = "HX_5 + NHX_1 <=> NH2_X + X_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(16.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(16.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1730,7 +1730,7 @@ index = 70, label = "HX_5 + NX <=> NHX_2 + X_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(24.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(24.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1756,7 +1756,7 @@ index = 71, label = "NOX + OX <=> NO2X + X_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(1.2e+21,'cm^2/(mol*s)'), n=0.93, Ea=(21.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(1.2e21,'cm^2/(mol*s)'), n=0.93, Ea=(21.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -1778,3 +1778,81 @@ facet = "111", ) +entry( + index = 72, + label = "X_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.19e23,'cm^2/(mol*s)'), n=0, Ea=(117718,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: NH2_X + X <=> NH_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.22eV = 117717.8J/mol + +This is reaction (2) in Table S4 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 73, + label = "X_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.19e23,'cm^2/(mol*s)'), n=0, Ea=(88770.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: NH_X + X <=> N_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 0.92eV = 88770.8J/mol + +This is reaction (3) in Table S4 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 74, + label = "HX_5 + OX <=> HOX_1 + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.33e21,'cm^2/(mol*s)'), n=0, Ea=(85876.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: H_X + O_X <=> OH_X + X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.89eV = 85876.1J/mol + +This is reaction (4) in Table S4 +""", + metal = "Rh", + facet = "211", +) + diff --git a/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py b/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py index ef413a765e..5141090c05 100644 --- a/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py @@ -860,7 +860,7 @@ index = 35, label = "H* + OH* <=> H2O* + X_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(12.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(12.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation""", longDesc = @@ -886,7 +886,7 @@ index = 36, label = "H* + NH2_X <=> NH3_X + X_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(7.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(7.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_vdW""", longDesc = @@ -912,7 +912,7 @@ index = 37, label = "H* + CNX <=> CHNX + X_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(13.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(13.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_vdW""", longDesc = @@ -938,7 +938,7 @@ index = 38, label = "H* + HCO* <=> CH2O* + X_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(20.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(20.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_vdW""", longDesc = @@ -964,7 +964,7 @@ index = 39, label = "CNX + CNX-2 <=> C2N2X + X_4", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(28.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(28.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Dissociation_vdW""", longDesc = @@ -988,3 +988,55 @@ facet = "111", ) +entry( + index = 40, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(1.96e23,'cm^2/(mol*s)'), n=0, Ea=(88770.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: NH3_X + X <=> NH2_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 0.92eV = 88770.8J/mol + +This is reaction (1) in Table S4 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 41, + label = "H* + OH* <=> H2O* + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.33e21,'cm^2/(mol*s)'), n=0, Ea=(96490,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: H_X + OH_X <=> H2O_X + X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1eV = 96490J/mol + +This is reaction (5) in Table S4 +""", + metal = "Rh", + facet = "211", +) + From c0dc23be8ce3ea834a0dedc31961d347f1dee95a Mon Sep 17 00:00:00 2001 From: Tingchenlee Date: Tue, 8 Jun 2021 21:42:55 -0400 Subject: [PATCH 27/27] Revised Rebrov_Pt111 library and the related reactions in kinetic families 1.added NH3 and O2 surface adsorption reactions with sticking coefficients, and revised the value of two Ea (R5 and R10) 2. added R6, R11, and R17 from table 1 --- .../Surface_Abstraction/training/reactions.py | 24 +++ .../training/reactions.py | 10 +- .../training/reactions.py | 23 +++ .../Surface/Rebrov_Pt111/reactions.py | 167 +++++++++++++++--- 4 files changed, 199 insertions(+), 25 deletions(-) diff --git a/input/kinetics/families/Surface_Abstraction/training/reactions.py b/input/kinetics/families/Surface_Abstraction/training/reactions.py index a5ed2fdc0f..65a014e760 100644 --- a/input/kinetics/families/Surface_Abstraction/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction/training/reactions.py @@ -727,3 +727,27 @@ facet = "211", ) +entry( + index = 30, + label = "H2NX + O* <=> OH* + HNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(4.03e21,'cm^2/(mol*s)'), n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Rebrov_Pt111 +Original entry: NH2_X +O_X <=> NH_X + OH_X +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is R6 in Table 1 +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py index 149c4a02a0..0eece64214 100644 --- a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py @@ -730,7 +730,7 @@ index = 30, label = "O* + H3NX <=> H2NX + OH_4*", degeneracy = 3.0, - kinetics = SurfaceArrhenius(A=(6.85e23,'cm^2/(mol*s)'), n=0, Ea=(157,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(6.85e23,'cm^2/(mol*s)'), n=0, Ea=(157000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -754,7 +754,7 @@ index = 31, label = "O* + HNOX <=> NOX + OH_4*", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(8.05e23,'cm^2/(mol*s)'), n=0, Ea=(11800,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(8.05e23,'cm^2/(mol*s)'), n=0, Ea=(118000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -778,7 +778,7 @@ index = 32, label = "HNX-2 + OH_2* <=> H2O* + NX", degeneracy = 1.0, - kinetics = SurfaceArrhenius(A=(4.03e19,'cm^2/(mol*s)'), n=0, Ea=(79000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + kinetics = SurfaceArrhenius(A=(4.03e21,'cm^2/(mol*s)'), n=0, Ea=(46000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), rank = 3, shortDesc = """Surface_Abstraction_vdW""", longDesc = @@ -790,9 +790,9 @@ https://doi.org/10.1016/S1385-8947(02)00068-2 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 1E11(1/s)/2.483E-9(mol/cm^2) = 4.03E19 cm^2/(mol*s) +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) -This is R2 in Table 1 +This is R16 in Table 1 """, metal = "Pt", facet = "111", diff --git a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py index 405878ec91..8574ba9501 100644 --- a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py @@ -683,3 +683,26 @@ facet = "111", ) +entry( + index = 31, + label = "X + H3N <=> H3NX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.79731, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Rebrov_Pt111 +Original entry: NH3 + X <=> NH3_X +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((2e8 /atm)/(101325 Pa/atm)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(17(g/mol))*the molar gas constant*(298 kelvin)) + +This is R1 in Table 1 +""", + metal = "Pt", + facet = "111", +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py b/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py index c8add28105..cd84f45eaf 100644 --- a/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py +++ b/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py @@ -11,12 +11,12 @@ """ entry( - index = 2, - label = "NH3_X <=> NH3 + X", - kinetics = SurfaceArrhenius( - A = (1E9, '1/s'), + index = 1, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 0.79731, n = 0.0, - Ea = (75200, 'J/mol'), + Ea = (0, 'J/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -26,19 +26,44 @@ Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. https://doi.org/10.1016/S1385-8947(02)00068-2 -This is R2 in Table 1 +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((2e8 /atm)/(101325 Pa/atm)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(17(g/mol))*the molar gas constant*(298 kelvin)) + +This is R1 in Table 1 """, metal = "Pt", facet = "111", ) +# entry( +# index = 2, +# label = "NH3_X <=> NH3 + X", +# kinetics = SurfaceArrhenius( +# A = (1E9, '1/s'), +# n = 0.0, +# Ea = (75200, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +# Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +# https://doi.org/10.1016/S1385-8947(02)00068-2 + +# This is R2 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + entry( - index = 4, - label = "O_X + O_X <=> O2 + X + X", - kinetics = SurfaceArrhenius( - A = (4.03E21, 'cm^2/(mol*s)'), + index = 3, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.01094, n = 0.0, - Ea = (213200, 'J/mol'), + Ea = (0, 'J/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -49,7 +74,7 @@ https://doi.org/10.1016/S1385-8947(02)00068-2 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) +A = ((2e6 /atm)/(101325 Pa/atm)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(32(g/mol))*the molar gas constant*(298 kelvin)) This is R4 in Table 1 """, @@ -57,13 +82,38 @@ facet = "111", ) +# entry( +# index = 4, +# label = "O_X + O_X <=> O2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (4.03E21, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (213200, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +# Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +# https://doi.org/10.1016/S1385-8947(02)00068-2 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +# This is R4 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + entry( index = 5, label = "NH3_X +O_X <=> NH2_X + OH_X", kinetics = SurfaceArrhenius( A = (6.85E23, 'cm^2/(mol*s)'), n = 0.0, - Ea = (157, 'J/mol'), + Ea = (157000, 'J/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -82,6 +132,31 @@ facet = "111", ) +entry( + index = 6, + label = "NH2_X + O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4.03E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is R6 in Table 1 +""", + metal = "Pt", + facet = "111", +) + entry( index = 7, label = "NH_X + O_X <=> N_X + OH_X", @@ -124,7 +199,7 @@ https://doi.org/10.1016/S1385-8947(02)00068-2 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) +A (298K) = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) This is R8 in Table 1 """, @@ -163,7 +238,7 @@ kinetics = SurfaceArrhenius( A = (8.05E23, 'cm^2/(mol*s)'), n = 0.0, - Ea = (11800, 'J/mol'), + Ea = (118000, 'J/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -182,6 +257,31 @@ facet = "111", ) +# entry( +# index = 11, +# label = "NO_X + X <=> N_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (6.44E21, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (116800, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Nitrogen/51""", +# longDesc = u""" +# "Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +# Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +# https://doi.org/10.1016/S1385-8947(02)00068-2 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A (298K) = 1.6E13(1/s)/2.483E-9(mol/cm^2) = 6.44E21 cm^2/(mol*s) + +# This is R11 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + entry( index = 12, label = "N_X + N_X <=> N2 + X + X", @@ -231,6 +331,7 @@ metal = "Pt", facet = "111", ) + entry( index = 14, label = "N2O_X + X <=> N2_X + O_X", @@ -282,9 +383,9 @@ index = 16, label = "NH_X + OH_X <=> N_X + H2O_X", kinetics = SurfaceArrhenius( - A = (4.03E19, 'cm^2/(mol*s)'), + A = (4.03E21, 'cm^2/(mol*s)'), n = 0.0, - Ea = (79000, 'J/mol'), + Ea = (46000, 'J/mol'), Tmin = (200, 'K'), Tmax = (3000, 'K'), ), @@ -295,14 +396,40 @@ https://doi.org/10.1016/S1385-8947(02)00068-2 This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. -A = 1E11(1/s)/2.483E-9(mol/cm^2) = 4.03E19 cm^2/(mol*s) +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) -This is R2 in Table 1 +This is R16 in Table 1 """, metal = "Pt", facet = "111", ) +#reverse reaction of R18 +# entry( +# index = 17, +# label = "OH_X + OH_X <=> O_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (4.03E21, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (75300, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +# Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +# https://doi.org/10.1016/S1385-8947(02)00068-2 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +# This is R17 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + entry( index = 18, label = "O_X + H2O_X <=> OH_X + OH_X", @@ -348,4 +475,4 @@ """, metal = "Pt", facet = "111", -) \ No newline at end of file +)