diff --git a/input/kinetics/families/Surface_Abstraction/training/dictionary.txt b/input/kinetics/families/Surface_Abstraction/training/dictionary.txt index 3cd99757ec..dd0024b1c5 100644 --- a/input/kinetics/families/Surface_Abstraction/training/dictionary.txt +++ b/input/kinetics/families/Surface_Abstraction/training/dictionary.txt @@ -1,48 +1,48 @@ CH2X_1 -1 *1 C u0 p0 {2,S} {3,S} {4,D} -2 H u0 p0 {1,S} -3 H u0 p0 {1,S} -4 *2 X u0 p0 {1,D} +1 *1 C u0 p0 c0 {2,S} {3,S} {4,D} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *2 X u0 p0 c0 {1,D} HOX_3 -1 *3 O u0 p2 {2,S} {3,S} -2 *4 H u0 p0 {1,S} -3 *5 X u0 p0 {1,S} +1 *3 O u0 p2 c0 {2,S} {3,S} +2 *4 H u0 p0 c0 {1,S} +3 *5 X u0 p0 c0 {1,S} CH3X_4 -1 *1 C u0 p0 {2,S} {3,S} {4,S} {5,S} -2 *4 H u0 p0 {1,S} -3 H u0 p0 {1,S} -4 H u0 p0 {1,S} -5 *2 X u0 p0 {1,S} +1 *1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 *4 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *2 X u0 p0 c0 {1,S} OX_5 -1 *5 X u0 p0 c0 {2,D} -2 *3 O u0 p2 c0 {1,D} +1 *3 O u0 p2 c0 {2,D} +2 *5 X u0 p0 c0 {1,D} CHX_1 -1 *1 C u0 p0 {2,S} {3,T} -2 H u0 p0 {1,S} -3 *2 X u0 p0 {1,T} +1 *1 C u0 p0 c0 {2,S} {3,T} +2 H u0 p0 c0 {1,S} +3 *2 X u0 p0 c0 {1,T} CH2X_4 -1 *1 C u0 p0 {2,S} {3,S} {4,D} -2 *4 H u0 p0 {1,S} -3 H u0 p0 {1,S} -4 *2 X u0 p0 {1,D} +1 *1 C u0 p0 c0 {2,S} {3,S} {4,D} +2 *4 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *2 X u0 p0 c0 {1,D} CX_1 -1 *1 C u0 p0 {2,Q} -2 *2 X u0 p0 {1,Q} +1 *1 C u0 p0 c0 {2,Q} +2 *2 X u0 p0 c0 {1,Q} CHX_4 -1 *1 C u0 p0 {2,S} {3,T} -2 *4 H u0 p0 {1,S} -3 *2 X u0 p0 {1,T} +1 *1 C u0 p0 c0 {2,S} {3,T} +2 *4 H u0 p0 c0 {1,S} +3 *2 X u0 p0 c0 {1,T} O* -1 *2 X u0 p0 c0 {2,D} -2 *1 O u0 p2 c0 {1,D} +1 *1 O u0 p2 c0 {2,D} +2 *2 X u0 p0 c0 {1,D} HCO* 1 O u0 p2 c0 {2,D} @@ -58,4 +58,49 @@ OH* CO* 1 O u0 p2 c0 {2,D} 2 *3 C u0 p0 c0 {1,D} {3,D} -3 *5 X u0 p0 c0 {2,D} \ No newline at end of file +3 *5 X u0 p0 c0 {2,D} + +H2NX +1 *3 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *4 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *5 X u0 p0 c0 {1,S} + +HNX +1 *3 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 *5 X u0 p0 c0 {1,D} + +HNX-2 +1 *3 N u0 p1 c0 {2,S} {3,D} +2 *4 H u0 p0 c0 {1,S} +3 *5 X u0 p0 c0 {1,D} + +NX +1 *3 N u0 p1 c0 {2,T} +2 *5 X u0 p0 c0 {1,T} + +CH3X +1 *3 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 *4 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *5 X u0 p0 c0 {1,S} + +CH2X +1 *3 C u0 p0 c0 {2,S} {3,S} {4,D} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *5 X u0 p0 c0 {1,D} + +COX +1 O u0 p2 c0 {2,D} +2 *1 C u0 p0 c0 {1,D} {3,D} +3 *2 X u0 p0 c0 {2,D} + +CHOX +1 O u0 p2 c0 {2,D} +2 *1 C u0 p0 c0 {1,D} {3,S} {4,S} +3 *4 H u0 p0 c0 {2,S} +4 *2 X u0 p0 c0 {2,S} + diff --git a/input/kinetics/families/Surface_Abstraction/training/reactions.py b/input/kinetics/families/Surface_Abstraction/training/reactions.py index da2f0f3774..65a014e760 100644 --- a/input/kinetics/families/Surface_Abstraction/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction/training/reactions.py @@ -9,11 +9,11 @@ """ entry( - index = 24, + index = 1, label = "CH2X_1 + HOX_3 <=> CH3X_4 + OX_5", degeneracy = 1, kinetics = SurfaceArrhenius( - A=(1.39E17, 'm^2/(mol*s)'), + A=(1.39e17, 'm^2/(mol*s)'), n = 0.101, Ea=(19000.0, 'J/mol'), Tmin = (298, 'K'), @@ -30,11 +30,11 @@ ) entry( - index = 26, + index = 2, label = "CHX_1 + HOX_3 <=> CH2X_4 + OX_5", degeneracy = 1, kinetics = SurfaceArrhenius( - A=(4.40E18, 'm^2/(mol*s)'), + A=(4.40e18, 'm^2/(mol*s)'), n = 0.101, Ea=(42400.0, 'J/mol'), Tmin = (298, 'K'), @@ -52,11 +52,11 @@ #Delgado has this reaction as exothermic. However, our own thermo has this reaction as endothermic. removing and replacing with reverse direction, R28. #entry( -# index = 27, +# index = 3, # label = "OX_5 + CHX_4 <=> HOX_3 + CX_1 ", # degeneracy = 1, # kinetics = SurfaceArrhenius( -# A=(2.47E17, 'm^2/(mol*s)'), +# A=(2.47e17, 'm^2/(mol*s)'), # n = 0.312, # Ea=(57700.0, 'J/mol'), # Tmin = (298, 'K'), @@ -73,11 +73,11 @@ #) entry( - index = 28, + index = 4, label = "HOX_3 + CX_1 <=> OX_5 + CHX_4 ", degeneracy = 1, kinetics = SurfaceArrhenius( - A=(2.43E17, 'm^2/(mol*s)'), + A=(2.43e17, 'm^2/(mol*s)'), n = -0.312, Ea=(118900.0, 'J/mol'), Tmin = (298, 'K'), @@ -94,7 +94,7 @@ ) entry( - index = 39, + index = 5, label = "O* + HCO* <=> OH* + CO*", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -111,7 +111,643 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -1.0e13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 3.298e17 m^2/(mol*s) +1.0e13 1/s / 2.943e‐5 mol/m^2 = 3.298e17 m^2/(mol*s) """, metal = "Cu", ) + +entry( + index = 6, + label = "H2NX + O* <=> OH* + HNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.22e21,'cm^2/(mol*s)'), n=0, Ea=(78156.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt111 +Original entry: NH2_X +O_X <=> NH_X + OH_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.5E12(1/s)/2.483E-9(mol/cm^2) = 2.22E21 cm^2/(mol*s) +Ea = 0.81eV = 78156.9J/mol + +This is R4 in Table S2 and S4""", + metal = "Pt", + facet = "111", +) + +entry( + index = 7, + label = "HNX-2 + O* <=> OH* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.14e21,'cm^2/(mol*s)'), n=0, Ea=(154384,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt111 +Original entry: NH_X + O_X <=> N_X + OH_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 7.8E12(1/s)/2.483E-9(mol/cm^2) = 3.14E21 cm^2/(mol*s) +Ea = 1.6eV = 154384J/mol + +This is R5 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 8, + label = "H2NX + O* <=> OH* + HNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.457e21,'cm^2/(mol*s)'), n=0, Ea=(87000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Offermans_Pt111 +Original entry: NH2_X +O_X <=> NH_X + OH_X +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 6.1E12(1/s)/2.483E-9(mol/cm^2) = 2.457E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 9, + label = "HNX-2 + O* <=> OH* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.061e21,'cm^2/(mol*s)'), n=0, Ea=(84000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Offermans_Pt111 +Original entry: NH_X + O_X <=> N_X + OH_X +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 7.6E12(1/s)/2.483E-9(mol/cm^2) = 3.061E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 10, + label = "H2NX + O* <=> OH* + HNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(106139,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: NH2_X +O_X <=> NH_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.1eV = 106139J/mol + +This is reaction (4) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 11, + label = "HNX-2 + O* <=> OH* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(142805,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: NH_X + O_X <=> N_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.48eV = 142805.2J/mol + +This is reaction (5) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 12, + label = "H2NX + O* <=> OH* + HNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.44e21,'cm^2/(mol*s)'), n=0, Ea=(104209,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: NH2_X +O_X <=> NH_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.08eV = 104209.2J/mol + +This is reaction (4) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 13, + label = "HNX-2 + O* <=> OH* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.44e21,'cm^2/(mol*s)'), n=0, Ea=(23157.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: NH_X + O_X <=> N_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.24eV = 23157.6J/mol + +This is reaction (5) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 14, + label = "H2NX + O* <=> OH* + HNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(85876.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: NH2_X +O_X <=> NH_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.89eV = 85876.1J/mol + +This is reaction (4) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 15, + label = "HNX-2 + O* <=> OH* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(133156,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: NH_X + O_X <=> N_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.38eV = 133156.2J/mol + +This is reaction (5) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 16, + label = "H2NX + O* <=> OH* + HNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(6.29e21,'cm^2/(mol*s)'), n=0, Ea=(71402.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Popa_Rh111 +Original entry: NH2_X +O_X <=> NH_X + OH_X +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 4a. in TABLE 4. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.67E13(1/s)/2.656E-9(mol/cm^2) = 6.29E21 cm^2/(mol*s) +Ea = 0.74eV = 71402.6J/mol +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 17, + label = "HNX-2 + O* <=> OH* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.832e22,'cm^2/(mol*s)'), n=0, Ea=(84911.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Popa_Rh111 +Original entry: NH_X +O_X <=> N_X + OH_X +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 2a. in TABLE 4. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 2.21E13(1/s)/2.656E-9(mol/cm^2) = 8.32E21 cm^2/(mol*s) +Ea = 0.88eV = 84911.2J/mol +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 18, + label = "HNX-2 + O* <=> OH* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.03e21,'cm^2/(mol*s)'), n=0, Ea=(58500,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Rebrov_Pt111 +Original entry: NH_X + O_X <=> N_X + OH_X +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is R7 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 19, + label = "H2NX + O* <=> OH* + HNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(1.78e21,'cm^2/(mol*s)'), n=0, Ea=(139910,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt211 +Original entry: NH2_X +O_X <=> NH_X + OH_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 4.7E12(1/s)/2.634E-9(mol/cm^2) = 1.78E21 cm^2/(mol*s) +Ea = 1.45eV = 139910.5J/mol + +This is R4 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 20, + label = "HNX-2 + O* <=> OH* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.29e21,'cm^2/(mol*s)'), n=0, Ea=(45350.3,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt211 +Original entry: NH_X + O_X <=> N_X + OH_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 3.4E12(1/s)/2.634E-9(mol/cm^2) = 1.29E21 cm^2/(mol*s) +Ea = 0.47eV = 45350.3J/mol + +This is R5 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 21, + label = "CH3X + O* <=> OH* + CH2X", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(7.93e19,'cm^2/(mol*s)'), n=-0.23, Ea=(10.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH3_X + O_X <=> CH2_X + OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.97E11(1/s)/2.483E-9(mol/cm^2) = 7.93E19 cm^2/(mol*s) + +This is R63 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 22, + label = "HOX_3 + CHX_1 <=> CH2X_4 + OX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.43e19,'cm^2/(mol*s)'), n=0.414, Ea=(44.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH_X + OH_X <=> CH2_X + O_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.10E11(1/s)/2.483E-9(mol/cm^2) = 4.43E19 cm^2/(mol*s) + +This is R65 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 23, + label = "CH3X + O* <=> OH* + CH2X", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(1.19e20,'cm^2/(mol*s)'), n=-0.1906, Ea=(6.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: CH3_X + O_X <=> CH2_X + OH_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 2.96E+11(1/s)/2.49E-9(mol/cm^2) = 1.19E+20 cm^2/(mol*s) + +This is R63 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 24, + label = "HOX_3 + CX_1 <=> CHX_4 + OX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.57e19,'cm^2/(mol*s)'), n=0.225, Ea=(27.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: C_X + OH_X <=> CH_X + O_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 6.37E10(1/s)/2.483E-9(mol/cm^2) = 2.57E19 cm^2/(mol*s) + +This is R67 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 25, + label = "H2NX + O* <=> OH* + HNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(8.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NH2_X + O_X <=> NH_X + OH_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R58 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 26, + label = "HNX-2 + O* <=> OH* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(15.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NH_X + O_X <=> N_X + OH_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R60 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 27, + label = "HOX_3 + COX <=> CHOX + OX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(49.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CO_X + OH_X <=> HCO_X + O_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R107 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 28, + label = "H2NX + O* <=> OH* + HNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.33e21,'cm^2/(mol*s)'), n=0, Ea=(143770,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: NH2_X +O_X <=> NH_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.49eV = 143770.1J/mol + +This is reaction (4) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 29, + label = "HNX-2 + O* <=> OH* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.33e21,'cm^2/(mol*s)'), n=0, Ea=(60788.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: NH_X + O_X <=> N_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.63eV = 60788.7J/mol + +This is reaction (5) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 30, + label = "H2NX + O* <=> OH* + HNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(4.03e21,'cm^2/(mol*s)'), n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction""", + longDesc = +""" +Training reaction from kinetics library: Surface/Rebrov_Pt111 +Original entry: NH2_X +O_X <=> NH_X + OH_X +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is R6 in Table 1 +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/dictionary.txt index 8b13789179..2eb8a73b56 100644 --- a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/dictionary.txt @@ -1 +1,102 @@ +HOX +1 *4 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 *5 X u0 p0 c0 {1,S} + +H3NX +1 *2 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *3 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *1 X u0 p0 c0 + +H2NX +1 *2 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *1 X u0 p0 c0 {1,S} + +H2OX +1 *4 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 *3 H u0 p0 c0 {1,S} +4 *5 X u0 p0 c0 + +H2NX-2 +1 *4 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *5 X u0 p0 c0 {1,S} + +H4N2X +1 *2 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,S} {6,S} +3 *3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {2,S} +7 *1 X u0 p0 c0 + +H3N2X +1 *2 N u0 p1 c0 {2,S} {3,S} {6,S} +2 N u0 p1 c0 {1,S} {4,S} {5,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 *1 X u0 p0 c0 {1,S} + +H3NX-2 +1 *4 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *3 H u0 p0 c0 {1,S} +5 *5 X u0 p0 c0 + +H2N2X +1 *2 N u0 p1 c0 {2,D} {3,S} +2 N u0 p1 c0 {1,D} {4,S} +3 *3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 *1 X u0 p0 c0 + +HN2X +1 *2 N u0 p1 c0 {2,D} {4,S} +2 N u0 p1 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} +4 *1 X u0 p0 c0 {1,S} + +CNX +1 N u0 p1 c0 {2,T} +2 *4 C u0 p0 c0 {1,T} {3,S} +3 *5 X u0 p0 c0 {2,S} + +H2OX-2 +1 *2 O u0 p2 c0 {2,S} {3,S} +2 *3 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *1 X u0 p0 c0 + +HOX-2 +1 *2 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 *1 X u0 p0 c0 {1,S} + +CHNX +1 N u0 p1 c0 {2,T} +2 *4 C u0 p0 c0 {1,T} {3,S} +3 *3 H u0 p0 c0 {2,S} +4 *5 X u0 p0 c0 + +CHOX +1 O u0 p2 c0 {2,D} +2 *4 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 *5 X u0 p0 c0 {2,S} + +CH2OX +1 O u0 p2 c0 {2,D} +2 *4 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 *3 H u0 p0 c0 {2,S} +5 *5 X u0 p0 c0 diff --git a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py index 5923ee141f..0212757711 100644 --- a/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction_Single_vdW/training/reactions.py @@ -8,3 +8,362 @@ training set for generating rate rules to populate this kinetics family. """ +entry( + index = 1, + label = "HOX + H3NX <=> H2NX + H2OX", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(1.97e22,'cm^2/(mol*s)'), n=0, Ea=(33771.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt111 +Original entry: NH3_X + OH_X <=> NH2_X + H2O_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 4.9E13(1/s)/2.483E-9(mol/cm^2) = 1.97E22 cm^2/(mol*s) +Ea = 0.35eV = 33771.5J/mol + +This is R6 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 2, + label = "HOX + H3NX <=> H2NX + H2OX", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(6.444e19,'cm^2/(mol*s)'), n=0, Ea=(73000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Offermans_Pt111 +Original entry: NH3_X + OH_X <=> NH2_X + H2O_X +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 1.6E11(1/s)/2.483E-9(mol/cm^2) = 6.444E19 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 3, + label = "HOX + H3NX <=> H2NX + H2OX", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(68507.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: NH3_X + OH_X <=> NH2_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.71eV = 68507.9J/mol + +This is reaction (6) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 4, + label = "HOX + H3NX <=> H2NX + H2OX", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.44e21,'cm^2/(mol*s)'), n=0, Ea=(70437.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: NH3_X + OH_X <=> NH2_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.73eV = 70437.7J/mol + +This is reaction (6) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 5, + label = "HOX + H3NX <=> H2NX + H2OX", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(44385.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: NH3_X + OH_X <=> NH2_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.46eV = 44385.4J/mol + +This is reaction (6) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 6, + label = "HOX + H3NX <=> H2NX + H2OX", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(1.727e21,'cm^2/(mol*s)'), n=0, Ea=(23157.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Popa_Rh111 +Original entry: NH3_X + OH_X <=> NH2_X + H2O_X +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 1a. in TABLE 5. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.93E12(1/s)/2.656E-9(mol/cm^2) = 7.27E20 cm^2/(mol*s) +Ea = 0.24eV = 23157.6J/mol +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 7, + label = "HOX + H3NX <=> H2NX + H2OX", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(3.11e21,'cm^2/(mol*s)'), n=0, Ea=(80086.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt211 +Original entry: NH3_X + OH_X <=> NH2_X + H2O_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 8.2E12(1/s)/2.634E-9(mol/cm^2) = 3.11E21 cm^2/(mol*s) +Ea = 0.83eV = 80086.7J/mol + +This is R6 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 8, + label = "H2NX-2 + H4N2X <=> H3N2X + H3NX-2", + degeneracy = 4.0, + kinetics = SurfaceArrhenius(A=(3.38e20,'cm^2/(mol*s)'), n=0.156, Ea=(40526,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: N2H4_X + NH2_X <=> N2H3_X + NH3_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R38 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 9, + label = "H2NX-2 + H4N2X <=> H3N2X + H3NX-2", + degeneracy = 4.0, + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(19298,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N2H4_X + NH2_X <=> N2H3_X + NH3_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.2eV = 19298J/mol + +This is R16 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 10, + label = "H2NX-2 + H2N2X <=> HN2X + H3NX-2", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(98419.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N2H2_X + NH2_X <=> N2H_X + NH3_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 1.02eV = 98419.8J/mol + +This is R20 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 11, + label = "HOX + H3NX <=> H2NX + H2OX", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(12,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NH3_X + OH_X <=> NH2_X + H2O_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R62 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 12, + label = "CNX + H2OX-2 <=> HOX-2 + CHNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(3.4,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CN_X + H2O_X <=> HCN_X + OH_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R90 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 13, + label = "CHOX + H2OX-2 <=> HOX-2 + CH2OX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(18.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: HCO_X + H2O_X <=> CH2O_X + OH_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R103 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 14, + label = "HOX + H3NX <=> H2NX + H2OX", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.33e21,'cm^2/(mol*s)'), n=0, Ea=(91665.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: NH3_X + OH_X <=> NH2_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.95eV = 91665.5J/mol + +This is reaction (6) in Table S2 +""", + metal = "Rh", + facet = "211", +) + diff --git a/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt index f9f7eb7c90..b167179f5d 100644 --- a/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Abstraction_vdW/training/dictionary.txt @@ -62,13 +62,13 @@ CH3OH* 7 *1 X u0 p0 c0 HCOOCH3* -1 O u0 p2 c0 {2,D} -2 *3 C u0 p0 c0 {1,D} {3,S} {5,S} -3 *2 O u0 p2 c0 {2,S} {4,S} -4 C u0 p0 c0 {3,S} {6,S} {7,S} {8,S} -5 H u0 p0 c0 {2,S} -6 H u0 p0 c0 {4,S} -7 H u0 p0 c0 {4,S} +1 *2 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {4,D} +3 C u0 p0 c0 {1,S} {5,S} {6,S} {7,S} +4 *3 C u0 p0 c0 {1,S} {2,D} {8,S} +5 H u0 p0 c0 {3,S} +6 H u0 p0 c0 {3,S} +7 H u0 p0 c0 {3,S} 8 H u0 p0 c0 {4,S} 9 *1 X u0 p0 c0 @@ -93,3 +93,165 @@ CH3* 3 H u0 p0 c0 {1,S} 4 H u0 p0 c0 {1,S} 5 *1 X u0 p0 c0 {1,S} + +H3NX +1 *2 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *3 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *1 X u0 p0 c0 + +H2NX +1 *2 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *1 X u0 p0 c0 {1,S} + +H2NX-2 +1 *4 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 *3 H u0 p0 c0 {1,S} +4 *5 X u0 p0 c0 {1,S} + +HNX +1 *4 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 *5 X u0 p0 c0 {1,D} + +HNX-2 +1 *4 N u0 p1 c0 {2,S} {3,D} +2 *3 H u0 p0 c0 {1,S} +3 *5 X u0 p0 c0 {1,D} + +NX +1 *4 N u0 p1 c0 {2,T} +2 *5 X u0 p0 c0 {1,T} + +HNOX +1 O u0 p2 c0 {2,D} +2 *2 N u0 p1 c0 {1,D} {3,S} +3 *3 H u0 p0 c0 {2,S} +4 *1 X u0 p0 c0 + +NOX +1 O u0 p2 c0 {2,D} +2 *2 N u0 p1 c0 {1,D} {3,S} +3 *1 X u0 p0 c0 {2,S} + +CH2X +1 *4 C u0 p0 c0 {2,S} {3,S} {4,D} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *5 X u0 p0 c0 {1,D} + +CH3X +1 *4 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *3 H u0 p0 c0 {1,S} +5 *5 X u0 p0 c0 {1,S} + +CHX +1 *4 C u0 p0 c0 {2,S} {3,T} +2 H u0 p0 c0 {1,S} +3 *5 X u0 p0 c0 {1,T} + +CH2X-2 +1 *4 C u0 p0 c0 {2,S} {3,S} {4,D} +2 H u0 p0 c0 {1,S} +3 *3 H u0 p0 c0 {1,S} +4 *5 X u0 p0 c0 {1,D} + +H3N2X +1 *4 N u0 p1 c0 {2,S} {3,S} {6,S} +2 N u0 p1 c0 {1,S} {4,S} {5,S} +3 *3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 *5 X u0 p0 c0 {1,S} + +H2N2X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *4 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *5 X u0 p0 c0 {2,D} + +H2N2X2 +1 *4 N u0 p1 c0 {2,S} {3,S} {5,S} +2 N u0 p1 c0 {1,S} {4,S} {6,S} +3 *3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 *5 X u0 p0 c0 {1,S} +6 X u0 p0 c0 {2,S} + +HN2X2 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *4 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} +5 *5 X u0 p0 c0 {2,D} + +HN2X2-2 +1 *4 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,D} +3 *3 H u0 p0 c0 {1,S} +4 *5 X u0 p0 c0 {1,S} +5 X u0 p0 c0 {2,D} + +N2X2 +1 *4 N u0 p1 c0 {2,S} {3,D} +2 N u0 p1 c0 {1,S} {4,D} +3 *5 X u0 p0 c0 {1,D} +4 X u0 p0 c0 {2,D} + +H2OX +1 *3 O u0 p2 c0 {2,S} {3,S} +2 *2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *1 X u0 p0 c0 + +HX +1 *2 H u0 p0 c0 {2,S} +2 *1 X u0 p0 c0 {1,S} + +CHO2X +1 *3 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 *4 C u0 p0 c0 {1,S} {2,D} {5,S} +4 H u0 p0 c0 {1,S} +5 *5 X u0 p0 c0 {3,S} + +CX +1 *4 C u0 p0 c0 {2,Q} +2 *5 X u0 p0 c0 {1,Q} + +CHX-2 +1 *4 C u0 p0 c0 {2,S} {3,T} +2 *3 H u0 p0 c0 {1,S} +3 *5 X u0 p0 c0 {1,T} + +CNX +1 N u0 p1 c0 {2,T} +2 *2 C u0 p0 c0 {1,T} {3,S} +3 *1 X u0 p0 c0 {2,S} + +CHNX +1 N u0 p1 c0 {2,T} +2 *2 C u0 p0 c0 {1,T} {3,S} +3 *3 H u0 p0 c0 {2,S} +4 *1 X u0 p0 c0 + +CHOX +1 O u0 p2 c0 {2,D} +2 *2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 *1 X u0 p0 c0 {2,S} + +CH2OX +1 O u0 p2 c0 {2,D} +2 *2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 *3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 *1 X u0 p0 c0 + diff --git a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py index c6606c7759..0eece64214 100644 --- a/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Abstraction_vdW/training/reactions.py @@ -8,13 +8,13 @@ training set for generating rate rules to populate this kinetics family. """ -# reverse of 16, below +# reverse of 2, below # entry( -# index = 34, +# index = 1, # label = "H2O* + O* <=> OH_2* + OH_4*", # degeneracy = 2, # kinetics = SurfaceArrhenius( -# A = (8.14E20, 'm^2/(mol*s)'), +# A = (8.14e20, 'm^2/(mol*s)'), # n = -0.274, # Ea = (218400, 'J/mol'), # Tmin = (200, 'K'), @@ -30,9 +30,9 @@ # metal = "Ni", # ) -# reverse of 34, above +# reverse of 1, above entry( - index = 16, + index = 2, label = "OH_2* + OH_4* <=> H2O* + O*", degeneracy = 2, kinetics = SurfaceArrhenius( @@ -49,17 +49,17 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -1.675e12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 5.691e16 m^2/(mol*s) +1.675e12 1/s / 2.943e‐5 mol/m^2 = 5.691e16 m^2/(mol*s) """, metal = "Cu", ) entry( - index = 21, + index = 3, label = "CH4* + O* <=> CH3* + OH_4*", degeneracy = 4, kinetics = SurfaceArrhenius( - A = (5.62E20, 'm^2/(mol*s)'), + A = (5.62e20, 'm^2/(mol*s)'), n = -0.101, Ea = (92700, 'J/mol'), Tmin = (200, 'K'), @@ -76,7 +76,7 @@ ) entry( - index = 40, + index = 4, label = "OH_2* + HCO* <=> H2O* + CO*", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -93,17 +93,17 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -9.597e12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 3.261e17 m^2/(mol*s) -""", +9.597e12 1/s / 2.943e‐5 mol/m^2 = 3.261e17 m^2/(mol*s) +""", metal = "Cu", ) entry( - index = 41, + index = 5, label = "HCOO_1* + HCO* <=> HCOOH* + CO*", degeneracy = 1, kinetics = SurfaceArrhenius( - A = (7.475e18, 'm^2/(mol*s)'), + A = (7.475E18, 'm^2/(mol*s)'), n = 0., Ea = (13.8363288, 'kcal/mol'), Tmin = (298, 'K'), @@ -116,13 +116,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -2.2e14 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 7.475e18 m^2/(mol*s) -""", +2.2e14 1/s / 2.943e‐5 mol/m^2 = 7.475e18 m^2/(mol*s) +""", metal = "Cu", ) entry( - index = 45, + index = 6, label = "CH3O* + HCO* <=> CH3OH* + CO*", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -139,13 +139,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -1.934e12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 6.572e16 m^2/(mol*s) -""", +1.934e12 1/s / 2.943e‐5 mol/m^2 = 6.572e16 m^2/(mol*s) +""", metal = "Cu", ) entry( - index = 46, + index = 7, label = "CH3O* + HCOO_5* <=> HCOOCH3* + O*", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -162,7 +162,1509 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -6.934e11 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 2.356e16 m^2/(mol*s) +6.934e11 1/s / 2.943e‐5 mol/m^2 = 2.356e16 m^2/(mol*s) +""", + metal = "Cu", +) + +entry( + index = 8, + label = "O* + H3NX <=> H2NX + OH_4*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(1.01e21,'cm^2/(mol*s)'), n=0, Ea=(67543,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt111 +Original entry: NH3_X +O_X <=> NH2_X + OH_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.2E12(1/s)/2.483E-9(mol/cm^2) = 1.01E21 cm^2/(mol*s) +Ea = 0.7eV = 67543J/mol + +This is R3 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 9, + label = "H2NX-2 + OH_2* <=> H2O* + HNX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(6.04e21,'cm^2/(mol*s)'), n=0, Ea=(964.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt111 +Original entry: NH2_X + OH_X <=> NH_X + H2O_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.5E13(1/s)/2.483E-9(mol/cm^2) = 6.04E21 cm^2/(mol*s) +Ea = 0.01eV = 964.9J/mol + +This is R7 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 10, + label = "HNX-2 + OH_2* <=> H2O* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.38e21,'cm^2/(mol*s)'), n=0, Ea=(39560.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt111 +Original entry: NH_X + OH_X <=> N_X + H2O_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.9E12(1/s)/2.483E-9(mol/cm^2) = 2.38E21 cm^2/(mol*s) +Ea = 0.41eV = 39560.9J/mol + +This is R8 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 11, + label = "OH_2* + OH_4* <=> H2O* + O*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.25e21,'cm^2/(mol*s)'), n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt111 +Original entry: OH_X + OH_X <=> O_X + H2O_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 3.1E12(1/s)/2.483E-9(mol/cm^2) = 1.25E21 cm^2/(mol*s) + +This is R9 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 12, + label = "O* + H3NX <=> H2NX + OH_4*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(4.833e20,'cm^2/(mol*s)'), n=0, Ea=(42000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Offermans_Pt111 +Original entry: NH3_X +O_X <=> NH2_X + OH_X +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 1.2E12(1/s)/2.483E-9(mol/cm^2) = 4.833E20 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 13, + label = "H2NX-2 + OH_2* <=> H2O* + HNX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.369e21,'cm^2/(mol*s)'), n=0, Ea=(22000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Offermans_Pt111 +Original entry: NH2_X + OH_X <=> NH_X + H2O_X +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 3.4E12(1/s)/2.483E-9(mol/cm^2) = 1.369E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 14, + label = "HNX-2 + OH_2* <=> H2O* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.054e20,'cm^2/(mol*s)'), n=0, Ea=(35000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Offermans_Pt111 +Original entry: NH_X + OH_X <=> N_X + H2O_X +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 5.1E11(1/s)/2.483E-9(mol/cm^2) = 2.054E20 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 15, + label = "O* + H3NX <=> H2NX + OH_4*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(86841,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: NH3_X +O_X <=> NH2_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.9eV = 86841J/mol + +This is reaction (3) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 16, + label = "H2NX-2 + OH_2* <=> H2O* + HNX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(25087.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: NH2_X + OH_X <=> NH_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.26eV = 25087.4J/mol + +This is reaction (7) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 17, + label = "HNX-2 + OH_2* <=> H2O* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(39561,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: NH_X + OH_X <=> N_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.66eV = 63683.4J/mol + +This is reaction (8) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 18, + label = "OH_2* + OH_4* <=> H2O* + O*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: OH_X + OH_X <=> O_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 + +This is reaction (9) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 19, + label = "O* + H3NX <=> H2NX + OH_4*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.44e21,'cm^2/(mol*s)'), n=0, Ea=(39560.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: NH3_X +O_X <=> NH2_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.41eV = 39560.9J/mol + +This is reaction (3) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 20, + label = "H2NX-2 + OH_2* <=> H2O* + HNX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.44e21,'cm^2/(mol*s)'), n=0, Ea=(73332.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: NH2_X + OH_X <=> NH_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.76eV = 73332.4J/mol + +This is reaction (7) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 21, + label = "HNX-2 + OH_2* <=> H2O* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.44e21,'cm^2/(mol*s)'), n=0, Ea=(41490.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: NH_X + OH_X <=> N_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.43eV = 41490.7J/mol + +This is reaction (8) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 22, + label = "OH_2* + OH_4* <=> H2O* + O*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.44e21,'cm^2/(mol*s)'), n=0, Ea=(71402.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: OH_X + OH_X <=> O_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.74eV = 71402.6J/mol + +This is reaction (9) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 23, + label = "O* + H3NX <=> H2NX + OH_4*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(69472.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: NH3_X +O_X <=> NH2_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.72eV = 69472.8J/mol + +This is reaction (3) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 24, + label = "H2NX-2 + OH_2* <=> H2O* + HNX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(7719.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: NH2_X + OH_X <=> NH_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.08eV = 7719.2J/mol + +This is reaction (7) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 25, + label = "HNX-2 + OH_2* <=> H2O* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(46315.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: NH_X + OH_X <=> N_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.48eV = 46315.2J/mol + +This is reaction (8) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 26, + label = "OH_2* + OH_4* <=> H2O* + O*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: OH_X + OH_X <=> O_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 + +This is reaction (9) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 27, + label = "O* + H3NX <=> H2NX + OH_4*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(6.4e20,'cm^2/(mol*s)'), n=0, Ea=(92630.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Popa_Rh111 +Original entry: NH3_X +O_X <=> NH2_X + OH_X +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 2a. in TABLE 4. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.7E12(1/s)/2.656E-9(mol/cm^2) = 6.40E20 cm^2/(mol*s) +Ea = 0.96eV = 92630.4J/mol +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 28, + label = "H2NX-2 + OH_2* <=> H2O* + HNX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.5e21,'cm^2/(mol*s)'), n=0, Ea=(13508.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Popa_Rh111 +Original entry: NH2_X + OH_X <=> NH_X + H2O_X +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 3a. in TABLE 5. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 3.98E12(1/s)/2.656E-9(mol/cm^2) = 1.50E21 cm^2/(mol*s) +Ea = 0.14eV = 13508.6J/mol +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 29, + label = "HNX-2 + OH_2* <=> H2O* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.52e20,'cm^2/(mol*s)'), n=0, Ea=(22192.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Popa_Rh111 +Original entry: NH_X + OH_X <=> N_X + H2O_X +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 6a. in TABLE 5. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.2E12(1/s)/2.656E-9(mol/cm^2) = 4.52E20 cm^2/(mol*s) +Ea = 0.23eV = 22192.7J/mol +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 30, + label = "O* + H3NX <=> H2NX + OH_4*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(6.85e23,'cm^2/(mol*s)'), n=0, Ea=(157000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Rebrov_Pt111 +Original entry: NH3_X +O_X <=> NH2_X + OH_X +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.7E15(1/s)/2.483E-9(mol/cm^2) = 6.85E23 cm^2/(mol*s) + +This is R5 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 31, + label = "O* + HNOX <=> NOX + OH_4*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(8.05e23,'cm^2/(mol*s)'), n=0, Ea=(118000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Rebrov_Pt111 +Original entry: NHO_X + O_X <=> NO_X + OH_X +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 2E15(1/s)/2.483E-9(mol/cm^2) = 8.05E23 cm^2/(mol*s) + +This is R10 in Table 1, it's from ref[52] where metal = Pt100. +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 32, + label = "HNX-2 + OH_2* <=> H2O* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.03e21,'cm^2/(mol*s)'), n=0, Ea=(46000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Rebrov_Pt111 +Original entry: NH_X + OH_X <=> N_X + H2O_X +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is R16 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 33, + label = "O* + H2O* <=> OH_2* + OH_4*", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(4.03e19,'cm^2/(mol*s)'), n=0, Ea=(52700,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Rebrov_Pt111 +Original entry: O_X + H2O_X <=> OH_X + OH_X +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E11(1/s)/2.483E-9(mol/cm^2) = 4.03E19 cm^2/(mol*s) + +This is R18 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 34, + label = "O* + H3NX <=> H2NX + OH_4*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(1.56e21,'cm^2/(mol*s)'), n=0, Ea=(55964.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt211 +Original entry: NH3_X +O_X <=> NH2_X + OH_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 4.1E12(1/s)/2.634E-9(mol/cm^2) = 1.56E21 cm^2/(mol*s) +Ea = 0.58eV = 55964.2J/mol + +This is R3 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 35, + label = "H2NX-2 + OH_2* <=> H2O* + HNX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.48e21,'cm^2/(mol*s)'), n=0, Ea=(76227.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt211 +Original entry: NH2_X + OH_X <=> NH_X + H2O_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 3.9E12(1/s)/2.634E-9(mol/cm^2) = 1.48E21 cm^2/(mol*s) +Ea = 0.79eV = 76227.1J/mol + +This is R7 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 36, + label = "HNX-2 + OH_2* <=> H2O* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.01e21,'cm^2/(mol*s)'), n=0, Ea=(81051.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt211 +Original entry: NH_X + OH_X <=> N_X + H2O_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 5.3E12(1/s)/2.634E-9(mol/cm^2) = 2.01E21 cm^2/(mol*s) +Ea = 0.84eV = 81051.6J/mol + +This is R8 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 37, + label = "OH_2* + OH_4* <=> H2O* + O*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.59e21,'cm^2/(mol*s)'), n=0, Ea=(81051.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt211 +Original entry: OH_X + OH_X <=> O_X + H2O_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 4.2E12(1/s)/2.634E-9(mol/cm^2) = 1.59E21 cm^2/(mol*s) +Ea = 0.84eV = 81051.6J/mol + +This is R9 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 38, + label = "O* + H2O* <=> OH_2* + OH_4*", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(1.74e19,'cm^2/(mol*s)'), n=0.082, Ea=(8.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: O_X + H2O_X <=> OH_X + OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 4.32E10(1/s)/2.483E-9(mol/cm^2) = 1.74E19 cm^2/(mol*s) + +This is R17 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 39, + label = "CH2X + H2O* <=> OH_2* + CH3X", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(3.3e19,'cm^2/(mol*s)'), n=0.099, Ea=(14.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH2_X + H2O_X <=> CH3_X + OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.19E10(1/s)/2.483E-9(mol/cm^2) = 3.30E19 cm^2/(mol*s) + +This is R69 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 40, + label = "CHX + H2O* <=> OH_2* + CH2X-2", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(7.29e19,'cm^2/(mol*s)'), n=0.269, Ea=(34,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH_X + H2O_X <=> CH2_X + OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.81E11(1/s)/2.483E-9(mol/cm^2) = 7.29E19 cm^2/(mol*s) + +This is R71 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 41, + label = "CH2X + H2O* <=> OH_2* + CH3X", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.3e19,'cm^2/(mol*s)'), n=-0.7208, Ea=(20.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: CH2_X + H2O_X <=> CH3_X + OH_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 5.73E+10(1/s)/2.49E-9(mol/cm^2) = 2.30E+19 cm^2/(mol*s) + +This is R69 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 42, + label = "H2NX + H2NX-2 <=> H3NX + HNX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.16e20,'cm^2/(mol*s)'), n=0.667, Ea=(43420,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: NH2_X + NH2_X <=> NH_X + NH3_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R36 in Table 1 """, metal = "Cu", + facet = "111", +) + +entry( + index = 43, + label = "H3N2X + H2NX <=> H3NX + H2N2X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.02e19,'cm^2/(mol*s)'), n=1.073, Ea=(51140,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: N2H3_X + NH2_X <=> NN=[Pt] + NH3_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R42 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 44, + label = "H2N2X2 + H2NX <=> H3NX + HN2X2", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.94e20,'cm^2/(mol*s)'), n=0.577, Ea=(24122,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: [Pt]NN[Pt] + NH2_X <=> [Pt]NN=[Pt] + NH3_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R44 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 45, + label = "HN2X2-2 + H2NX <=> H3NX + N2X2", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.04e19,'cm^2/(mol*s)'), n=0.86, Ea=(7719,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: [Pt]NN=[Pt] + NH2_X <=> [Pt]=NN=[Pt] + NH3_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R48 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 46, + label = "H2N2X2 + H2NX <=> H3NX + HN2X2", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(18333.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: [Pt]NN[Pt] + NH2_X <=> [Pt]NN=[Pt] + NH3_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.19eV = 18333.1J/mol + +This is R18 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 47, + label = "H3N2X + H2NX <=> H3NX + H2N2X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(35701.3,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N2H3_X + NH2_X <=> NN=[Pt] + NH3_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.37eV = 35701.3J/mol + +This is R19 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 48, + label = "HN2X2-2 + H2NX <=> H3NX + N2X2", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(53069.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: [Pt]NN=[Pt] + NH2_X <=> N2_X + NH3_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.55eV = 53069.5J/mol + +This is R21 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 49, + label = "H2NX + H2NX-2 <=> H3NX + HNX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(32806.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: NH2_X + NH2_X <=> NH_X + NH3_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.34eV = 32806.6J/mol + +This is R25 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 50, + label = "HNX-2 + H2NX <=> H3NX + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(94560.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: NH_X + NH2_X <=> N_X + NH3_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.98eV = 94560.2J/mol + +This is R26 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 51, + label = "CO* + H2OX <=> HX + CHO2X", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(1.34e20,'cm^2/(mol*s)'), n=-0.2222, Ea=(19.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: CO_X + H2O_X <=> COOH_X + H_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 3.34E+11(1/s)/2.49E-9(mol/cm^2) = 1.34E+20 cm^2/(mol*s) + +This is R35 in Table 4 +""", + metal = "Rh", ) + +entry( + index = 52, + label = "CX + H2O* <=> OH_2* + CHX-2", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(3.91e20,'cm^2/(mol*s)'), n=-0.3882, Ea=(17,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: C_X + H2O_X <=> CH_X + OH_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 9.74E+11(1/s)/2.49E-9(mol/cm^2) = 3.91E+20 cm^2/(mol*s) + +This is R73 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 53, + label = "CO* + H2OX <=> HX + CHO2X", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(4.43e19,'cm^2/(mol*s)'), n=0.492, Ea=(23.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CO_X + H2O_X <=> COOH_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.10E11(1/s)/2.483E-9(mol/cm^2) = 4.43E19 cm^2/(mol*s) + +This is R33 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 54, + label = "CX + H2O* <=> OH_2* + CHX-2", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(4.19e19,'cm^2/(mol*s)'), n=0.09, Ea=(15.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: C_X + H2O_X <=> CH_X + OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.04E11(1/s)/2.483E-9(mol/cm^2) = 4.19E19 cm^2/(mol*s) + +This is R73 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 55, + label = "OH_2* + OH_4* <=> H2O* + O*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(22.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: OH_X + OH_X <=> O_X + H2O_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R24 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 56, + label = "CHO2X + HX <=> H2OX + CO*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(5.4,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: COOH_X + H_X <=> CO_X + H2O_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R34 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 57, + label = "OH_4* + H2NX <=> H3NX + O*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(16.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NH2_X + OH_X <=> NH3_X + O_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R56 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 58, + label = "H2NX-2 + OH_2* <=> H2O* + HNX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(12.9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NH2_X + OH_X <=> NH_X + H2O_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R64 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 59, + label = "HNX-2 + OH_2* <=> H2O* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(22.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NH_X + OH_X <=> N_X + H2O_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R66 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 60, + label = "OH_4* + CNX <=> CHNX + O*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(27.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CN_X + OH_X <=> HCN_X + O_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R88 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 61, + label = "OH_4* + CHOX <=> CH2OX + O*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(30.9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: HCO_X + OH_X <=> CH2O_X + O_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R101 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 62, + label = "CO* + H2O* <=> OH_2* + HCO*", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(36.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CO_X + H2O_X <=> HCO_X + OH_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R109 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 63, + label = "O* + H3NX <=> H2NX + OH_4*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.33e21,'cm^2/(mol*s)'), n=0, Ea=(62718.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: NH3_X +O_X <=> NH2_X + OH_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.65eV = 62718.5J/mol + +This is reaction (3) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 64, + label = "H2NX-2 + OH_2* <=> H2O* + HNX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.33e21,'cm^2/(mol*s)'), n=0, Ea=(97454.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: NH2_X + OH_X <=> NH_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.01eV = 97454.9J/mol + +This is reaction (7) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 65, + label = "HNX-2 + OH_2* <=> H2O* + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.33e21,'cm^2/(mol*s)'), n=0, Ea=(85876.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: NH_X + OH_X <=> N_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.89eV = 85876.1J/mol + +This is reaction (8) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 66, + label = "OH_2* + OH_4* <=> H2O* + O*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.33e21,'cm^2/(mol*s)'), n=0, Ea=(92630.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: OH_X + OH_X <=> O_X + H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.96eV = 92630.4J/mol + +This is reaction (9) in Table S2 +""", + metal = "Rh", + facet = "211", +) + diff --git a/input/kinetics/families/Surface_Addition_Single_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Addition_Single_vdW/training/dictionary.txt index 98dff0f0d5..f2cdad2fa5 100644 --- a/input/kinetics/families/Surface_Addition_Single_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Addition_Single_vdW/training/dictionary.txt @@ -1,6 +1,6 @@ H* -1 *5 X u0 p0 c0 {2,S} -2 *4 H u0 p0 c0 {1,S} +1 *4 H u0 p0 c0 {2,S} +2 *5 X u0 p0 c0 {1,S} CO2* 1 O u0 p2 c0 {3,D} @@ -101,36 +101,48 @@ CH3O_5* 6 *5 X u0 p0 c0 {1,S} H2COOCH3* -1 *2 O u0 p2 c0 {2,S} {9,S} -2 *3 C u0 p0 c0 {1,S} {3,S} {5,S} {10,S} -3 *4 O u0 p2 c0 {2,S} {4,S} -4 C u0 p0 c0 {3,S} {6,S} {7,S} {8,S} -5 H u0 p0 c0 {2,S} -6 H u0 p0 c0 {4,S} -7 H u0 p0 c0 {4,S} -8 H u0 p0 c0 {4,S} -9 *1 X u0 p0 c0 {1,S} -10 H u0 p0 c0 {2,S} +1 *4 O u0 p2 c0 {3,S} {4,S} +2 *2 O u0 p2 c0 {3,S} {10,S} +3 *3 C u0 p0 c0 {1,S} {2,S} {5,S} {6,S} +4 C u0 p0 c0 {1,S} {7,S} {8,S} {9,S} +5 H u0 p0 c0 {3,S} +6 H u0 p0 c0 {3,S} +7 H u0 p0 c0 {4,S} +8 H u0 p0 c0 {4,S} +9 H u0 p0 c0 {4,S} +10 *1 X u0 p0 c0 {2,S} HCOOCH3* -1 *2 O u0 p2 c0 {2,D} -2 *3 C u0 p0 c0 {1,D} {3,S} {5,S} -3 O u0 p2 c0 {2,S} {4,S} -4 C u0 p0 c0 {3,S} {6,S} {7,S} {8,S} -5 H u0 p0 c0 {2,S} -6 H u0 p0 c0 {4,S} -7 H u0 p0 c0 {4,S} +1 O u0 p2 c0 {3,S} {4,S} +2 *2 O u0 p2 c0 {4,D} +3 C u0 p0 c0 {1,S} {5,S} {6,S} {7,S} +4 *3 C u0 p0 c0 {1,S} {2,D} {8,S} +5 H u0 p0 c0 {3,S} +6 H u0 p0 c0 {3,S} +7 H u0 p0 c0 {3,S} 8 H u0 p0 c0 {4,S} 9 *1 X u0 p0 c0 H2COOCH3_2* -1 *2 O u0 p2 c0 {2,S} {9,S} -2 *3 C u0 p0 c0 {1,S} {3,S} {5,S} {10,S} -3 O u0 p2 c0 {2,S} {4,S} -4 C u0 p0 c0 {3,S} {6,S} {7,S} {8,S} -5 *4 H u0 p0 c0 {2,S} -6 H u0 p0 c0 {4,S} -7 H u0 p0 c0 {4,S} -8 H u0 p0 c0 {4,S} -9 *1 X u0 p0 c0 {1,S} -10 H u0 p0 c0 {2,S} +1 O u0 p2 c0 {3,S} {4,S} +2 *2 O u0 p2 c0 {3,S} {10,S} +3 *3 C u0 p0 c0 {1,S} {2,S} {5,S} {6,S} +4 C u0 p0 c0 {1,S} {7,S} {8,S} {9,S} +5 *4 H u0 p0 c0 {3,S} +6 H u0 p0 c0 {3,S} +7 H u0 p0 c0 {4,S} +8 H u0 p0 c0 {4,S} +9 H u0 p0 c0 {4,S} +10 *1 X u0 p0 c0 {2,S} + +HN2X +1 *2 N u0 p1 c0 {2,D} {4,S} +2 *3 N u0 p1 c0 {1,D} {3,S} +3 *4 H u0 p0 c0 {2,S} +4 *1 X u0 p0 c0 {1,S} + +N2X +1 *2 N u0 p1 c0 {2,T} +2 *3 N u0 p1 c0 {1,T} +3 *1 X u0 p0 c0 + diff --git a/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py b/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py index 52e152207d..66a7bc8240 100644 --- a/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Addition_Single_vdW/training/reactions.py @@ -9,7 +9,7 @@ """ entry( - index = 11, + index = 1, label = "COOH* + X_5 <=> CO2_2* + H*", degeneracy = 2, kinetics = SurfaceArrhenius( @@ -26,18 +26,18 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -2.3626e13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 8.028e17 m^2/(mol*s) +2.3626e13 1/s / 2.943e‐5 mol/m^2 = 8.028e17 m^2/(mol*s) """, metal = "Cu", ) -#reverse of 11 +#reverse of 1 # entry( -# index = 45, +# index = 2, # label = "CO2_2* + H* <=> COOH* + X_5", # degeneracy = 2, # kinetics = SurfaceArrhenius( -# A = (6.25E20, 'm^2/(mol*s)'), +# A = (6.25e20, 'm^2/(mol*s)'), # n = -0.475, # Ea = (117200, 'J/mol'), # Tmin = (200, 'K'), @@ -54,7 +54,7 @@ # ) entry( - index = 17, + index = 3, label = "CO2* + H* <=> HCOO* + X_5", degeneracy = 2, kinetics = SurfaceArrhenius( @@ -71,13 +71,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -3.658e13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 1.243e18 m^2/(mol*s) -""", +3.658e13 1/s / 2.943e‐5 mol/m^2 = 1.243e18 m^2/(mol*s) +""", metal = "Cu", ) entry( - index = 20, + index = 4, label = "HCOOH* + H* <=> CH3O2_2* + X_5", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -94,13 +94,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -6.244e14 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 2.122e19 m^2/(mol*s) -""", +6.244e14 1/s / 2.943e‐5 mol/m^2 = 2.122e19 m^2/(mol*s) +""", metal = "Cu", ) entry( - index = 23, + index = 5, label = "CH3O2* + X_5 <=> CH2O* + OH*", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -117,13 +117,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -1.001e13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 3.401e17 m^2/(mol*s) -""", +1.001e13 1/s / 2.943e‐5 mol/m^2 = 3.401e17 m^2/(mol*s) +""", metal = "Cu", ) entry( - index = 24, + index = 6, label = "CH2O* + H* <=> CH3O_1* + X_5", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -140,13 +140,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -1.815e13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 6.167e17 m^2/(mol*s) -""", +1.815e13 1/s / 2.943e‐5 mol/m^2 = 6.167e17 m^2/(mol*s) +""", metal = "Cu", ) entry( - index = 31, + index = 7, label = "CH2O_2* + H* <=> CH2OH* + X_5", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -163,13 +163,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -9.518e14 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 3.234e19 m^2/(mol*s) -""", +9.518e14 1/s / 2.943e‐5 mol/m^2 = 3.234e19 m^2/(mol*s) +""", metal = "Cu", ) entry( - index = 47, + index = 8, label = "CH3O_5* + CH2O* <=> H2COOCH3* + X_5", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -186,13 +186,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -6.405e13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 2.176e18 m^2/(mol*s) -""", +6.405e13 1/s / 2.943e‐5 mol/m^2 = 2.176e18 m^2/(mol*s) +""", metal = "Cu", ) entry( - index = 48, + index = 9, label = "HCOOCH3* + H* <=> H2COOCH3_2* + X_5", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -209,7 +209,162 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -1.536e12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 5.219e16 m^2/(mol*s) -""", +1.536e12 1/s / 2.943e‐5 mol/m^2 = 5.219e16 m^2/(mol*s) +""", metal = "Cu", ) + +entry( + index = 10, + label = "X_5 + CH3O_1* <=> CH2O* + H*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(5.03e19,'cm^2/(mol*s)'), n=0.192, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Addition_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH3O_X + X <=> CH2O_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.25E11(1/s)/2.483E-9(mol/cm^2) = 5.03E19 cm^2/(mol*s) + +This is R95 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 11, + label = "X_5 + CH2OH* <=> CH2O_2* + H*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.59e19,'cm^2/(mol*s)'), n=-0.104, Ea=(7.9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Addition_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH2OH_X + X <=> CH2O_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.14E11(1/s)/2.483E-9(mol/cm^2) = 4.59E19 cm^2/(mol*s) + +This is R103 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 12, + label = "X_5 + COOH* <=> CO2_2* + H*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.02e18,'cm^2/(mol*s)'), n=-0.4424, Ea=(7.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Addition_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: COOH_X + X <=> CO2_X + H_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 1.00E+10(1/s)/2.49E-9(mol/cm^2) = 4.02E+18 cm^2/(mol*s) + +This is R33 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 13, + label = "X_5 + COOH* <=> CO2_2* + H*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.27e19,'cm^2/(mol*s)'), n=0.549, Ea=(1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Addition_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: COOH_X + X <=> CO2_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.06E11(1/s)/2.483E-9(mol/cm^2) = 4.27E19 cm^2/(mol*s) + +This is R31 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 14, + label = "H* + CO2_2* <=> COOH* + X_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(1.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Addition_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CO2_X + H_X <=> COOH_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R32 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 15, + label = "X_5 + HN2X <=> N2X + H*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(126402,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Addition_Single_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N2H_X + X <=> N2_X + H_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 1.31eV = 126401.9J/mol + +This is R10 in Table 3 +""", + metal = "Ir", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/dictionary.txt index b28f9b51d2..5975b5f4a4 100644 --- a/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/dictionary.txt @@ -21,22 +21,45 @@ CH3O2* 6 H u0 p0 c0 {1,S} 7 *1 X u0 p0 c0 {2,S} +CH3O* +1 *2 O u0 p2 c0 {2,S} {6,S} +2 *3 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 *5 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 *1 X u0 p0 c0 {1,S} + CO* 1 O u0 p2 c0 {2,D} 2 *4 C u0 p0 c0 {1,D} {3,D} 3 *6 X u0 p0 c0 {2,D} CH2O* -1 *3 C u0 p0 c0 {2,D} {3,S} {4,S} -2 *2 O u0 p2 c0 {1,D} -3 H u0 p0 c0 {1,S} -4 H u0 p0 c0 {1,S} +1 *2 O u0 p2 c0 {2,D} +2 *3 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} 5 *1 X u0 p0 c0 -CH3O* -1 *3 C u0 p0 c0 {2,S} {4,S} {5,S} {6,S} -2 *2 O u0 p2 c0 {1,S} {3,S} -3 *1 X u0 p0 c0 {2,S} +OX +1 *4 O u0 p2 c0 {2,D} +2 *6 X u0 p0 c0 {1,D} + +HOX +1 *4 O u0 p2 c0 {2,S} {3,S} +2 *5 H u0 p0 c0 {1,S} +3 *6 X u0 p0 c0 {1,S} + +CO2X +1 *3 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 *2 C u0 p0 c0 {1,D} {2,D} +4 *1 X u0 p0 c0 + +CHO2X +1 *3 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 *2 C u0 p0 c0 {1,S} {2,D} {5,S} 4 *5 H u0 p0 c0 {1,S} -5 H u0 p0 c0 {1,S} -6 H u0 p0 c0 {1,S} +5 *1 X u0 p0 c0 {3,S} + diff --git a/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/reactions.py index fd9ad8a6cd..57a404783e 100644 --- a/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Abstraction_vdW/training/reactions.py @@ -9,7 +9,7 @@ """ entry( - index = 43, + index = 1, label = "HCOOH* + HCO* <=> CH3O2* + CO*", kinetics = SurfaceArrhenius( A = (1.814e16, 'm^2/(mol*s)'), @@ -25,13 +25,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -5.34e11 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 1.814e16 m^2/(mol*s) -""", +5.34e11 1/s / 2.943e‐5 mol/m^2 = 1.814e16 m^2/(mol*s) +""", metal = "Cu", ) entry( - index = 44, + index = 2, label = "CH2O* + HCO* <=> CH3O* + CO*", kinetics = SurfaceArrhenius( A = (3.398e17, 'm^2/(mol*s)'), @@ -47,7 +47,62 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -1.0e13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 3.398e17 m^2/(mol*s) -""", +1.0e13 1/s / 2.943e‐5 mol/m^2 = 3.398e17 m^2/(mol*s) +""", metal = "Cu", ) + +entry( + index = 3, + label = "HOX + CO2X <=> CHO2X + OX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.15e19,'cm^2/(mol*s)'), n=0.097, Ea=(26.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CO2_X + OH_X <=> COOH_X + O_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.35E10(1/s)/2.483E-9(mol/cm^2) = 2.15E19 cm^2/(mol*s) + +This is R35 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 4, + label = "OX + CHO2X <=> CO2X + HOX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(8.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Abstraction_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: COOH_X + O_X <=> CO2_X + OH_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R36 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Adsorption_Bidentate/training/dictionary.txt b/input/kinetics/families/Surface_Adsorption_Bidentate/training/dictionary.txt index e69de29bb2..ee69093092 100644 --- a/input/kinetics/families/Surface_Adsorption_Bidentate/training/dictionary.txt +++ b/input/kinetics/families/Surface_Adsorption_Bidentate/training/dictionary.txt @@ -0,0 +1,32 @@ +X +1 *3 X u0 p0 c0 + +X-2 +1 *4 X u0 p0 c0 + +CHO2 +multiplicity 2 +1 O u1 p2 c0 {3,S} +2 *1 O u0 p2 c0 {3,D} +3 *2 C u0 p0 c0 {1,S} {2,D} {4,S} +4 H u0 p0 c0 {3,S} + +CHO2X2 +multiplicity 2 +1 *1 O u0 p2 c0 {3,S} {6,S} +2 O u1 p2 c0 {3,S} +3 *2 C u0 p0 c0 {1,S} {2,S} {4,S} {5,S} +4 H u0 p0 c0 {3,S} +5 *4 X u0 p0 c0 {3,S} +6 *3 X u0 p0 c0 {1,S} + +N2X2 +1 *1 N u0 p1 c0 {2,D} {3,S} +2 *2 N u0 p1 c0 {1,D} {4,S} +3 *3 X u0 p0 c0 {1,S} +4 *4 X u0 p0 c0 {2,S} + +N2 +1 *1 N u0 p1 c0 {2,T} +2 *2 N u0 p1 c0 {1,T} + diff --git a/input/kinetics/families/Surface_Adsorption_Bidentate/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Bidentate/training/reactions.py index 566c66deca..4a30daf063 100644 --- a/input/kinetics/families/Surface_Adsorption_Bidentate/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Bidentate/training/reactions.py @@ -7,3 +7,26 @@ Put kinetic parameters for specific reactions in this file to use as a training set for generating rate rules to populate this kinetics family. """ +entry( + index = 1, + label = "X + X-2 + CHO2 <=> CHO2X2", + degeneracy = 2.0, + kinetics = StickingCoefficient(A=0.146, n=0.201, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Bidentate""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: HCOO + X + X <=> HCOO_XX +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R39 in Table 1 +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Adsorption_Dissociative/training/dictionary.txt b/input/kinetics/families/Surface_Adsorption_Dissociative/training/dictionary.txt index 2f4945a83c..5a49b2df51 100644 --- a/input/kinetics/families/Surface_Adsorption_Dissociative/training/dictionary.txt +++ b/input/kinetics/families/Surface_Adsorption_Dissociative/training/dictionary.txt @@ -1,7 +1,7 @@ -Ni_3 +X_3 1 *3 X u0 p0 c0 -Ni_4 +X_4 1 *4 X u0 p0 c0 H2 @@ -9,19 +9,34 @@ H2 2 *2 H u0 p0 c0 {1,S} HX_3 -1 *1 H u0 p0 {2,S} -2 *3 X u0 p0 {1,S} +1 *1 H u0 p0 c0 {2,S} +2 *3 X u0 p0 c0 {1,S} HX_4 -1 *2 H u0 p0 {2,S} -2 *4 X u0 p0 {1,S} +1 *2 H u0 p0 c0 {2,S} +2 *4 X u0 p0 c0 {1,S} HOX_1 1 *1 O u0 p2 c0 {2,S} {3,S} -2 *3 X u0 p0 c0 {1,S} -3 H u0 p0 c0 {1,S} +2 H u0 p0 c0 {1,S} +3 *3 X u0 p0 c0 {1,S} H2O 1 *1 O u0 p2 c0 {2,S} {3,S} 2 *2 H u0 p0 c0 {1,S} 3 H u0 p0 c0 {1,S} + +CH4 +1 *1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 *2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {1,S} + +CH3X +1 *1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *3 X u0 p0 c0 {1,S} + diff --git a/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py index 6eb76f14ee..7118e524ad 100644 --- a/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Dissociative/training/reactions.py @@ -10,7 +10,7 @@ entry( index = 1, - label = "H2 + Ni_3 + Ni_4 <=> HX_3 + HX_4", + label = "H2 + X_3 + X_4 <=> HX_3 + HX_4", degeneracy = 2, kinetics = StickingCoefficient( A = 3.2E-2, @@ -31,7 +31,7 @@ entry( index = 2, - label = "H2 + Ni_3 + Ni_4 <=> HX_3 + HX_4", + label = "H2 + X_3 + X_4 <=> HX_3 + HX_4", degeneracy = 2, kinetics = StickingCoefficient( A = 0.046, @@ -53,8 +53,8 @@ ) # entry( -# index = 6, -# label = "HX_4 + HOX_1 <=> H2O + Ni_3 + Ni_4", +# index = 3, +# label = "HX_4 + HOX_1 <=> H2O + X_3 + Ni_4", # degeneracy = 1, # kinetics = SurfaceArrhenius( # A = (4.02e14, 'm^2/(mol*s)'), @@ -74,3 +74,159 @@ # """, # metal = "Pt" # ) + +entry( + index = 4, + label = "X_3 + X_4 + H2 <=> HX_3 + HX_4", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.129, n=0.858, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """H2 Surface_Adsorption_Dissociative""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: H2 + X + X <=> H_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R11 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 5, + label = "X_3 + X_4 + CH4 <=> CH3X + HX_4", + degeneracy = 2.0, + kinetics = StickingCoefficient(A=0.116, n=0.154, Ea=(9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Dissociative""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH4 + X + X <=> CH3_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R55 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 6, + label = "X_3 + X_4 + H2 <=> HX_3 + HX_4", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.87, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """H2 Surface_Adsorption_Dissociative""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Ru0001 +Original entry: H2 + X + X <=> H_X + H_X +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This is R1 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +entry( + index = 7, + label = "X_3 + X_4 + H2 <=> HX_3 + HX_4", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.773, n=0.9387, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """H2 Surface_Adsorption_Dissociative""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: H2 + X + X <=> H_X + H_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +This is R1 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 8, + label = "X_3 + X_4 + CH4 <=> CH3X + HX_4", + degeneracy = 2.0, + kinetics = StickingCoefficient(A=0.572, n=0.7883, Ea=(14.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Dissociative""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: CH4 + X + X <=> CH3_X + H_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +This is R55 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 9, + label = "X_3 + X_4 + H2 <=> HX_3 + HX_4", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.0236, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """H2 Surface_Adsorption_Dissociative""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: H2 + X + X <=> H_X + H_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This is R7 in Table 2 at T=300K +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 10, + label = "X_3 + X_4 + H2 <=> HX_3 + HX_4", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """H2 Surface_Adsorption_Dissociative""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: H2 + X + X <=> H_X + H_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R13 in Appendix A +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Adsorption_Double/groups.py b/input/kinetics/families/Surface_Adsorption_Double/groups.py index 39af2dc4d5..f4a64c8e3f 100644 --- a/input/kinetics/families/Surface_Adsorption_Double/groups.py +++ b/input/kinetics/families/Surface_Adsorption_Double/groups.py @@ -48,11 +48,125 @@ kinetics = None, ) +entry( + index = 3, + label = "C", + group = +""" +1 *1 C u2 +""", + kinetics = None, +) + +entry( + index = 4, + label = "CH2", + group = +""" +multiplicity [3] +1 *1 C u2 p0 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +""", + kinetics = None, +) + +entry( + index = 5, + label = "CO", + group = +""" +multiplicity [3] +1 O u0 p2 c0 {2,D} +2 *1 C u2 p0 c0 {1,D} +""", + kinetics = None, +) + +entry( + index = 6, + label = "C2O", + group = +""" +multiplicity [3] +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,D} +3 *1 C u2 p0 c0 {2,D} +""", + kinetics = None, +) + +entry( + index = 7, + label = "N", + group = +""" +1 *1 N u2 +""", + kinetics = None, +) + +entry( + index = 8, + label = "NH", + group = +""" +multiplicity [3] +1 *1 N u2 p1 c0 {2,S} +2 H u0 p0 c0 {1,S} +""", + kinetics = None, +) +entry( + index = 9, + label = "NN", + group = +""" +multiplicity [3] +1 N u0 {2,S} +2 *1 N u2 {1,S} +""", + kinetics = None, +) + +entry( + index = 10, + label = "N2H2", + group = +""" +multiplicity [3] +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *1 N u2 p1 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +""", + kinetics = None, +) + +entry( + index = 11, + label = "O", + group = +""" +1 *1 O u2 +""", + kinetics = None, +) tree( """ L1: Adsorbate + L2: C + L3: CH2 + L3: CO + L3: C2O + L2: N + L3: NH + L3: NN + L4: N2H2 + L2: O + L1: VacantSite """ diff --git a/input/kinetics/families/Surface_Adsorption_Single/groups.py b/input/kinetics/families/Surface_Adsorption_Single/groups.py index 6cff78bd7d..1dfa19329c 100644 --- a/input/kinetics/families/Surface_Adsorption_Single/groups.py +++ b/input/kinetics/families/Surface_Adsorption_Single/groups.py @@ -50,6 +50,67 @@ entry( index = 3, + label = "H", + group = +""" +multiplicity [2] +1 *1 H u1 p0 c0 +""", + kinetics = None, +) + +entry( + index = 4, + label = "C", + group = +""" +multiplicity [2] +1 *1 C u1 +""", + kinetics = None, +) + +entry( + index = 5, + label = "C-H", + group = +""" +multiplicity [2] +1 *1 C u1 p1 cx {2,S} +2 H u0 p0 c0 {1,S} +""", + kinetics = None, +) + +entry( + index = 6, + label = "CH=O", + group = +""" +multiplicity [2] +1 O u0 p2 cx {2,D} +2 *1 C u1 p0 cx {1,D} {3,S} +3 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 7, + label = "CH2-H", + group = +""" +multiplicity [2] +1 *1 C u1 p0 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +""", + kinetics = None, +) + +entry( + index = 8, label = "N", group = """ @@ -60,7 +121,7 @@ ) entry( - index = 4, + index = 9, label = "N=O", group = """ @@ -71,11 +132,97 @@ kinetics = None, ) +entry( + index = 10, + label = "O", + group = +""" +multiplicity [2] +1 *1 O u1 +""", + kinetics = None, +) + +entry( + index = 11, + label = "O-H", + group = +""" +multiplicity [2] +1 *1 O u1 p2 c0 {2,S} +2 H u0 p0 c0 {1,S} +""", + kinetics = None, +) + +entry( + index = 12, + label = "O-C", + group = +""" +multiplicity [2] +1 *1 O u1 p2 cx {2,S} +2 C u0 p0 cx {1,S} +""", + kinetics = None, +) + +entry( + index = 13, + label = "O-CH3", + group = +""" +multiplicity [2] +1 *1 O u1 p2 c0 {2,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 14, + label = "O-N", + group = +""" +multiplicity [2] +1 *1 O u1 p2 cx {2,S} +2 N u0 p1 cx {1,S} +""", + kinetics = None, +) + +entry( + index = 15, + label = "O-N=O", + group = +""" +multiplicity [2] +1 *1 O u1 p2 cx {3,S} +2 O u0 p2 cx {3,D} +3 N u0 p1 cx {1,S} {2,D} +""", + kinetics = None, +) + tree( """ L1: Adsorbate + L2: H + L2: C + L3: C-H + L3: CH=O + L3: CH2-H L2: N L3: N=O + L2: O + L3: O-H + L3: O-C + L4: O-CH3 + L3: O-N + L4: O-N=O L1: VacantSite """ diff --git a/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt b/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt index 65450d01ae..b69ac18a4e 100644 --- a/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt +++ b/input/kinetics/families/Surface_Adsorption_Single/training/dictionary.txt @@ -1,11 +1,147 @@ NO -1 *1 N u1 p1 c0 {2,D} -2 O u0 p2 c0 {1,D} +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 *1 N u1 p1 c0 {1,D} -Pt +X 1 *2 X u0 p0 c0 NO_X 1 O u0 p2 c0 {2,D} 2 *1 N u0 p1 c0 {1,D} {3,S} 3 *2 X u0 p0 c0 {2,S} + +NO2 +multiplicity 2 +1 *1 O u1 p2 c0 {3,S} +2 O u0 p2 c0 {3,D} +3 N u0 p1 c0 {1,S} {2,D} + +NO2X +1 *1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 N u0 p1 c0 {1,S} {2,D} +4 *2 X u0 p0 c0 {1,S} + +HO +multiplicity 2 +1 *1 O u1 p2 c0 {2,S} +2 H u0 p0 c0 {1,S} + +HOX +1 *1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 *2 X u0 p0 c0 {1,S} + +H +multiplicity 2 +1 *1 H u1 p0 c0 + +HX +1 *1 H u0 p0 c0 {2,S} +2 *2 X u0 p0 c0 {1,S} + +CH +multiplicity 2 +1 *1 C u1 p1 c0 {2,S} +2 H u0 p0 c0 {1,S} + +CHX +1 *1 C u0 p1 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 *2 X u0 p0 c0 {1,S} + +CH3 +multiplicity 2 +1 *1 C u1 p0 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +CH3X +1 *1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *2 X u0 p0 c0 {1,S} + +CH3O +multiplicity 2 +1 *1 O u1 p2 c0 {2,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} + +CH3OX +1 *1 O u0 p2 c0 {2,S} {6,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 *2 X u0 p0 c0 {1,S} + +CHO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 *1 C u1 p0 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} + +CHOX +1 O u0 p2 c0 {2,D} +2 *1 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 *2 X u0 p0 c0 {2,S} + +CH3O-2 +multiplicity 2 +1 O u0 p2 c0 {2,S} {5,S} +2 *1 C u1 p0 c0 {1,S} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {1,S} + +CH3OX-2 +1 O u0 p2 c0 {2,S} {5,S} +2 *1 C u0 p0 c0 {1,S} {3,S} {4,S} {6,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {1,S} +6 *2 X u0 p0 c0 {2,S} + +CHO2 +multiplicity 2 +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 *1 C u1 p0 c0 {1,S} {2,D} +4 H u0 p0 c0 {1,S} + +CHO2X +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 *1 C u0 p0 c0 {1,S} {2,D} {5,S} +4 H u0 p0 c0 {1,S} +5 *2 X u0 p0 c0 {3,S} + +H2NX +1 *1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *2 X u0 p0 c0 {1,S} + +H2N +multiplicity 2 +1 *1 N u1 p1 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +CNX +1 N u0 p1 c0 {2,T} +2 *1 C u0 p0 c0 {1,T} {3,S} +3 *2 X u0 p0 c0 {2,S} + +CN +multiplicity 2 +1 N u0 p1 c0 {2,T} +2 *1 C u1 p0 c0 {1,T} + diff --git a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py index 4743daadbb..9abd3ee8e2 100644 --- a/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_Single/training/reactions.py @@ -7,9 +7,10 @@ Put kinetic parameters for specific reactions in this file to use as a training set for generating rate rules to populate this kinetics family. """ + entry( - index = 48, - label = "NO + Pt <=> NO_X", + index = 1, + label = "NO + X <=> NO_X", degeneracy = 1, kinetics = StickingCoefficient( A = 0.85, @@ -28,3 +29,479 @@ This is R48""", metal = "Pt", ) + +entry( + index = 2, + label = "X + HO <=> HOX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.999, n=2, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: OH + X <=> OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R19 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 3, + label = "X + NO <=> NO_X", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1.4917e-06, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Arevalo_Pt111 +Original entry: NO + X <=> NO_X +"First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" +Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) +https://doi.org/10.1116/1.4903225 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((2.78E2 /bar) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 30 g/mol * molar gas constant * 298 kelvin) + +This is R3 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 4, + label = "X + NO2 <=> NO2X", + degeneracy = 2.0, + kinetics = StickingCoefficient(A=1.4884e-06, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Arevalo_Pt111 +Original entry: NO2 + X <=> NO2_X +"First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" +Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) +https://doi.org/10.1116/1.4903225 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((2.24E2 /bar) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 46 g/mol * molar gas constant * 298 kelvin) + +This is R7 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 5, + label = "X + NO <=> NO_X", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(241225,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: NO + X <=> NO_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 2.5eV = 241225J/mol + +This is reaction (13) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 6, + label = "X + NO <=> NO_X", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.1556, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Scheuer_Pt +Original entry: NO + X <=> NO_X +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((290/Pa)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(30(g/mol))*the molar gas constant*(298 kelvin)) = 0.1556 + +This is R7 in Table 1 +""", + metal = "Pt", +) + +entry( + index = 7, + label = "X + NO <=> NO_X", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.88, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NO + X <=> NO_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R67 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 8, + label = "X + NO2 <=> NO2X", + degeneracy = 2.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NO2 + X <=> NO2_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R69 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 9, + label = "X + CN <=> CNX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CN + X <=> CN_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R83 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 10, + label = "X + CHO <=> CHOX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: HCO + X <=> HCO_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R97 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 11, + label = "X + H <=> HX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.384, n=1.832, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: H + X <=> H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R23 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 12, + label = "X + CH <=> CHX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.0135, n=0.051, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH + X <=> CH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R49 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 13, + label = "X + CH3 <=> CH3X", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.16, n=-0.099, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH3 + X <=> CH3_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R53 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 14, + label = "X + CH3O <=> CH3OX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.149, n=0.054, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH3O + X <=> CH3O_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R85 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 15, + label = "X + CHO <=> CHOX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.0114, n=0.096, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: HCO + X <=> HCO_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R89 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 16, + label = "X + CH3O-2 <=> CH3OX-2", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.0526, n=0.233, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH2OH + X <=> CH2OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R91 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 17, + label = "X + CHO2 <=> CHO2X", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.0634, n=-0.089, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: COOH + X <=> COOH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R27 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 18, + label = "X + H <=> HX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: H + X <=> H_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R11 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 19, + label = "X + HO <=> HOX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: OH + X <=> OH_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R17 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 20, + label = "X + CHO2 <=> CHO2X", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: COOH + X <=> COOH_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R25 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 21, + label = "X + H2N <=> H2NX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Single""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NH2 + X <=> NH2_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R45 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Adsorption_vdW/groups.py b/input/kinetics/families/Surface_Adsorption_vdW/groups.py index 4043d59abc..4f3eda0f7d 100644 --- a/input/kinetics/families/Surface_Adsorption_vdW/groups.py +++ b/input/kinetics/families/Surface_Adsorption_vdW/groups.py @@ -47,11 +47,586 @@ kinetics = None, ) +entry( + index = 3, + label = "H", + group = +""" +multiplicity [1] +1 *1 H u0 p0 c0 +""", + kinetics = None, +) + +entry( + index = 4, + label = "H2", + group = +""" +multiplicity [1] +1 *1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} +""", + kinetics = None, +) + +entry( + index = 5, + label = "CH4", + group = +""" +multiplicity [1] +1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 *1 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {1,S} +""", + kinetics = None, +) + +entry( + index = 6, + label = "NH3", + group = +""" +multiplicity [1] +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *1 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +""", + kinetics = None, +) + +entry( + index = 7, + label = "C", + group = +""" +multiplicity [1] +1 *1 C u0 px c0 {2,[S,D,T,Q]} +2 R!H u0 px cx {1,[S,D,T,Q]} +""", + kinetics = None, +) + +entry( + index = 8, + label = "CC", + group = +""" +multiplicity [1] +1 *1 C u0 px c0 {2,[S,D,T,Q]} +2 C u0 px cx {1,[S,D,T,Q]} +""", + kinetics = None, +) + +entry( + index = 9, + label = "C-C", + group = +""" +multiplicity [1] +1 *1 C u0 px c0 {2,S} +2 C u0 px cx {1,S} +""", + kinetics = None, +) + +entry( + index = 10, + label = "C2H6", + group = +""" +multiplicity [1] +1 *1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 C u0 p0 c0 {1,S} {6,S} {7,S} {8,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {1,S} +6 H u0 p0 c0 {2,S} +7 H u0 p0 c0 {2,S} +8 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 11, + label = "C=C", + group = +""" +multiplicity [1] +1 *1 C u0 px c0 {2,D} +2 C u0 px cx {1,D} +""", + kinetics = None, +) + +entry( + index = 12, + label = "C2H4", + group = +""" +multiplicity [1] +1 *1 C u0 p0 c0 {2,D} {3,S} {5,S} +2 C u0 p0 c0 {1,D} {4,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {1,S} +6 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 13, + label = "C#C", + group = +""" +multiplicity [1] +1 *1 C u0 px c0 {2,T} +2 C u0 px cx {1,T} +""", + kinetics = None, +) + +entry( + index = 14, + label = "C2H2", + group = +""" +multiplicity [1] +1 *1 C u0 p0 c0 {2,T} {3,S} +2 C u0 p0 c0 {1,T} {4,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 15, + label = "CN", + group = +""" +multiplicity [1] +1 *1 C u0 px c0 {2,[S,D,T]} +2 N u0 px cx {1,[S,D,T]} +""", + kinetics = None, +) + +entry( + index = 16, + label = "C-N", + group = +""" +multiplicity [1] +1 *1 C u0 px c0 {2,S} +2 N u0 px cx {1,S} +""", + kinetics = None, +) + +entry( + index = 17, + label = "CH3NH2", + group = +""" +multiplicity [1] +1 *1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 N u0 p1 c0 {1,S} {6,S} {7,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {1,S} +6 H u0 p0 c0 {2,S} +7 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 18, + label = "C#N", + group = +""" +multiplicity [1] +1 *1 C u0 px c0 {2,T} +2 N u0 px cx {1,T} +""", + kinetics = None, +) + +entry( + index = 19, + label = "CHN", + group = +""" +multiplicity [1] +1 N u0 p1 c0 {2,T} +2 *1 C u0 p0 c0 {1,T} {3,S} +3 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 20, + label = "CO", + group = +""" +multiplicity [1] +1 *1 C u0 px c0 {2,[S,D]} +2 O u0 px cx {1,[S,D]} +""", + kinetics = None, +) + +entry( + index = 21, + label = "C-O", + group = +""" +multiplicity [1] +1 *1 C u0 px c0 {2,S} +2 O u0 px cx {1,S} +""", + kinetics = None, +) + +entry( + index = 22, + label = "CH3OH", + group = +""" +multiplicity [1] +1 *1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 O u0 p2 c0 {1,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {1,S} +6 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 23, + label = "C=O", + group = +""" +multiplicity [1] +1 *1 C u0 px c0 {2,D} +2 O u0 px cx {1,D} +""", + kinetics = None, +) + +entry( + index = 24, + label = "CH2O", + group = +""" +multiplicity [1] +1 O u0 p2 c0 {2,D} +2 *1 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 25, + label = "CO2", + group = +""" +multiplicity [1] +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 *1 C u0 p0 c0 {1,D} {2,D} +""", + kinetics = None, +) + +entry( + index = 26, + label = "N", + group = +""" +multiplicity [1] +1 *1 N u0 px c0 {2,[S,D,T]} +2 R!H u0 px cx {1,[S,D,T]} +""", + kinetics = None, +) + +entry( + index = 27, + label = "NO", + group = +""" +multiplicity [1] +1 *1 N u0 px c0 {2,[S,D]} +2 O u0 px cx {1,[S,D]} +""", + kinetics = None, +) + +entry( + index = 28, + label = "N-O", + group = +""" +multiplicity [1] +1 *1 N u0 px c0 {2,S} +2 O u0 px cx {1,S} +""", + kinetics = None, +) + +entry( + index = 29, + label = "H3NO", + group = +""" +multiplicity [1] +1 O u0 p2 c0 {2,S} {5,S} +2 *1 N u0 p1 c0 {1,S} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {1,S} +""", + kinetics = None, +) + +entry( + index = 30, + label = "N=O", + group = +""" +multiplicity [1] +1 *1 N u0 px c0 {2,D} +2 O u0 px cx {1,D} +""", + kinetics = None, +) + +entry( + index = 31, + label = "HNO", + group = +""" +multiplicity [1] + 1 O u0 p2 c0 {2,D} + 2 *1 N u0 p1 c0 {1,D} {3,S} + 3 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 32, + label = "NN", + group = +""" +multiplicity [1] +1 *1 N u0 px c0 {2,[S,D,T]} +2 N u0 px cx {1,[S,D,T]} +""", + kinetics = None, +) + +entry( + index = 33, + label = "N-N", + group = +""" +multiplicity [1] +1 *1 N u0 px c0 {2,S} +2 N u0 px cx {1,S} +""", + kinetics = None, +) + +entry( + index = 34, + label = "N2H4", + group = +""" +multiplicity [1] +1 *1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 35, + label = "N=N", + group = +""" +multiplicity [1] +1 *1 N u0 px c0 {2,D} +2 N u0 px cx {1,D} +""", + kinetics = None, +) + +entry( + index = 36, + label = "N2H2", + group = +""" +multiplicity [1] +1 *1 N u0 p1 c0 {2,D} {3,S} +2 N u0 p1 c0 {1,D} {4,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 37, + label = "N#N", + group = +""" +multiplicity [1] +1 *1 N u0 px c0 {2,T} +2 N u0 px c0 {1,T} +""", + kinetics = None, +) + +entry( + index = 38, + label = "O", + group = +""" +multiplicity [1] +1 *1 O u0 px c0 +""", + kinetics = None, +) + +entry( + index = 39, + label = "O-H", + group = +""" +multiplicity [1] +1 *1 O u0 px c0 {2,S} +2 H u0 p0 c0 {1,S} +""", + kinetics = None, +) + +entry( + index = 40, + label = "H2O", + group = +""" +multiplicity [1] +1 *1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +""", + kinetics = None, +) + +entry( + index = 41, + label = "H2O2", + group = +""" +multiplicity [1] +1 *1 O u0 p2 c0 {2,S} {3,S} +2 O u0 p2 c0 {1,S} {4,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +""", + kinetics = None, +) + +entry( + index = 42, + label = "O=N", + group = +""" +multiplicity [1] +1 *1 O u0 px c0 {2,D} +2 N u0 px cx {1,D} +""", + kinetics = None, +) + +entry( + index = 43, + label = "N2O", + group = +""" +multiplicity [1] +1 *1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +""", + kinetics = None, +) + tree( """ L1: Adsorbate + L2: H + L3: H2 + L3: CH4 + L3: NH3 + L2: C + L3: CC + L4: C-C + L5: C2H6 + L4: C=C + L5: C2H4 + L4: C#C + L5: C2H2 + L3: CN + L4: C-N + L5: CH3NH2 + L4: C#N + L5: CHN + L3: CO + L4: C-O + L5: CH3OH + L4: C=O + L5: CH2O + L5: CO2 + L2: N + L3: NO + L4: N-O + L5: H3NO + L4: N=O + L5: HNO + L3: NN + L4: N-N + L5: N2H4 + L4: N=N + L5: N2H2 + L4: N#N + L2: O + L3: O-H + L4: H2O + L4: H2O2 + L3: O=N + L4: N2O L1: VacantSite """ diff --git a/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt index 3d5c247450..60f173cc04 100644 --- a/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Adsorption_vdW/training/dictionary.txt @@ -13,14 +13,14 @@ H2OX 4 *2 X u0 p0 c0 CO2 -1 *1 C u0 p0 c0 {2,D} {3,D} -2 O u0 p2 c0 {1,D} -3 O u0 p2 c0 {1,D} +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 *1 C u0 p0 c0 {1,D} {2,D} CO2X -1 *1 C u0 p0 c0 {2,D} {3,D} -2 O u0 p2 c0 {1,D} -3 O u0 p2 c0 {1,D} +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 *1 C u0 p0 c0 {1,D} {2,D} 4 *2 X u0 p0 c0 CH4 @@ -37,3 +37,119 @@ CH4X 4 H u0 p0 c0 {1,S} 5 H u0 p0 c0 {1,S} 6 *2 X u0 p0 c0 + +H3NX +1 *1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *2 X u0 p0 c0 + +H3N +1 *1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +N2 +1 *1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +N2X +1 *1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 *2 X u0 p0 c0 + +N2OX +1 *1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +4 *2 X u0 p0 c0 + +N2O +1 *1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +CO2-2 +1 *1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} + +CO2X-2 +1 *1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} +4 *2 X u0 p0 c0 + +CH4O +1 *1 O u0 p2 c0 {2,S} {6,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {1,S} + +CH4OX +1 *1 O u0 p2 c0 {2,S} {6,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {1,S} +7 *2 X u0 p0 c0 + +CH2O +1 *1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} + +CH2OX +1 *1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 *2 X u0 p0 c0 + +H4N2 +1 *1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {2,S} + +H4N2X +1 *1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {2,S} +7 *2 X u0 p0 c0 + +CHNX +1 *1 N u0 p1 c0 {2,T} +2 C u0 p0 c0 {1,T} {3,S} +3 H u0 p0 c0 {2,S} +4 *2 X u0 p0 c0 + +CHN +1 *1 N u0 p1 c0 {2,T} +2 C u0 p0 c0 {1,T} {3,S} +3 H u0 p0 c0 {2,S} + +C2N2X +1 *1 N u0 p1 c0 {3,T} +2 N u0 p1 c0 {4,T} +3 C u0 p0 c0 {1,T} {4,S} +4 C u0 p0 c0 {2,T} {3,S} +5 *2 X u0 p0 c0 + +C2N2 +1 *1 N u0 p1 c0 {3,T} +2 N u0 p1 c0 {4,T} +3 C u0 p0 c0 {1,T} {4,S} +4 C u0 p0 c0 {2,T} {3,S} + diff --git a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py index b505bf30e9..8574ba9501 100644 --- a/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Adsorption_vdW/training/reactions.py @@ -9,10 +9,10 @@ """ entry( - index = 5, + index = 1, label = "H2O + X <=> H2OX", kinetics = StickingCoefficient( - A = 1.0E-1, + A = 1.0e-1, n = 0, Ea = (0, 'J/mol'), Tmin = (200, 'K'), @@ -29,10 +29,10 @@ ) entry( - index = 7, + index = 2, label = "CO2 + X <=> CO2X", kinetics = StickingCoefficient( - A = 7.0E-6, + A = 7.0e-6, n = 0, Ea = (0, 'J/mol'), Tmin = (200, 'K'), @@ -49,10 +49,10 @@ ) entry( - index = 11, + index = 3, label = "CH4 + X <=> CH4X", kinetics = StickingCoefficient( - A = 8.0E-3, + A = 8.0e-3, n = 0, Ea = (0, 'J/mol'), Tmin = (200, 'K'), @@ -67,3 +67,642 @@ Catalysts, 2015, 5, 871-904""", metal = "Ni", ) + +entry( + index = 4, + label = "X + H3N <=> H3NX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: NH3 + X <=> NH3_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This is reaction (2) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 5, + label = "X + H2O <=> H2OX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(27017.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: H2O + X <=> H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 0.28eV = 27017.2J/mol + +This is reaction (10) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 6, + label = "X + N2O <=> N2OX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(32806.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_Double/Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: N2O + X <=> N2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 0.34eV = 32806.6J/mol + +This is reaction (15) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 7, + label = "X + H3N <=> H3NX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pt211 +Original entry: NH3 + X <=> NH3_X +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = ((2.5E3 /pa) / s) * (2.634E-9 mol/cm2) * sqrt(2 * pi * 17 g/mol * molar gas constant * 298 kelvin) + +This is R2 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 8, + label = "X + H3N <=> H3NX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.00768, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Scheuer_Pt +Original entry: NH3 + X <=> NH3_X +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((19/Pa)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(17(g/mol))*the molar gas constant*(298 kelvin))= 0.00768 + +This is R1 in Table 1 +""", + metal = "Pt", +) + +entry( + index = 9, + label = "X + H3N <=> H3NX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: NH3 + X <=> NH3_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This is reaction (2) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 10, + label = "X + H2O <=> H2OX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(30876.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: H2O + X <=> H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 +Ea = 0.32eV = 30876.8J/mol + +This is reaction (10) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 11, + label = "X + H3N <=> H3NX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: NH3 + X <=> NH3_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This is reaction (2) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 12, + label = "X + H2O <=> H2OX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(43420.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: H2O + X <=> H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 0.45eV = 43420.5J/mol + +This is reaction (10) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 13, + label = "X + CO2-2 <=> CO2X-2", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.195, n=0.25, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CO2 + X <=> CO2_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R7 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 14, + label = "X + H2O <=> H2OX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.108, n=1.162, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: H2O + X <=> H2O_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R21 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 15, + label = "X + CH4O <=> CH4OX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.334, n=0.258, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH3OH + X <=> CH3OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R83 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 16, + label = "X + CH2O <=> CH2OX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.0877, n=0.098, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH2O + X <=> CH2O_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R87 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 17, + label = "X + H3N <=> H3NX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.00015, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Ru0001 +Original entry: NH3 + X <=> NH3_X +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This is R11 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +entry( + index = 18, + label = "X + H2O <=> H2OX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.0772, n=1.4067, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: H2O + X <=> H2O_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +This is R13 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 19, + label = "X + CO2-2 <=> CO2X-2", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.367, n=-2.3294, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: CO2 + X <=> CO2_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +This is R21 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 20, + label = "X + H4N2 <=> H4N2X", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1.17e-06, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: N2H4 + X <=> N2H4_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This is R0 in Table 2 at T=300K +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 21, + label = "X + H3N <=> H3NX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.000188, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: NH3 + X <=> NH3_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This is R3 in Table 2 at T=300K +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 22, + label = "X + N2 <=> N2X", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=5.5e-05, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: N2 + X <=> N2_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This is R5 in Table 2 at T=300K +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 23, + label = "X + CO2-2 <=> CO2X-2", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CO2 + X <=> CO2_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R7 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 24, + label = "X + H2O <=> H2OX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: H2O + X <=> H2O_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R15 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 25, + label = "X + H3N <=> H3NX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NH3 + X <=> NH3_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R43 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 26, + label = "X + CHN <=> CHNX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: HCN + X <=> HCN_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R81 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 27, + label = "X + CH2O <=> CH2OX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CH2O + X <=> CH2O_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R95 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 28, + label = "X + C2N2 <=> C2N2X", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: C2N2 + X <=> C2N2_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R121 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 29, + label = "X + H3N <=> H3NX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: NH3 + X <=> NH3_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This is reaction (2) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 30, + label = "X + H2O <=> H2OX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=1, n=0, Ea=(20262.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: H2O + X <=> H2O_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 +Ea = 0.21eV = 20262.9J/mol + +This is reaction (10) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 31, + label = "X + H3N <=> H3NX", + degeneracy = 1.0, + kinetics = StickingCoefficient(A=0.79731, n=0, Ea=(0,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Rebrov_Pt111 +Original entry: NH3 + X <=> NH3_X +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((2e8 /atm)/(101325 Pa/atm)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(17(g/mol))*the molar gas constant*(298 kelvin)) + +This is R1 in Table 1 +""", + metal = "Pt", + facet = "111", +) \ No newline at end of file diff --git a/input/kinetics/families/Surface_Bidentate_Dissociation/training/dictionary.txt b/input/kinetics/families/Surface_Bidentate_Dissociation/training/dictionary.txt index e69de29bb2..59a04e7bfe 100644 --- a/input/kinetics/families/Surface_Bidentate_Dissociation/training/dictionary.txt +++ b/input/kinetics/families/Surface_Bidentate_Dissociation/training/dictionary.txt @@ -0,0 +1,39 @@ +H2N2X2 +1 *1 N u0 p1 c0 {2,S} {3,S} {5,S} +2 *2 N u0 p1 c0 {1,S} {4,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 *3 X u0 p0 c0 {1,S} +6 *4 X u0 p0 c0 {2,S} + +HNX +1 *1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 *3 X u0 p0 c0 {1,D} + +HNX-2 +1 *2 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 *4 X u0 p0 c0 {1,D} + +HN2X2 +1 *1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *2 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 *3 X u0 p0 c0 {1,S} +5 *4 X u0 p0 c0 {2,D} + +NX +1 *2 N u0 p1 c0 {2,T} +2 *4 X u0 p0 c0 {1,T} + +N2X2 +1 *1 N u0 p1 c0 {2,S} {3,D} +2 *2 N u0 p1 c0 {1,S} {4,D} +3 *3 X u0 p0 c0 {1,D} +4 *4 X u0 p0 c0 {2,D} + +NX-2 +1 *1 N u0 p1 c0 {2,T} +2 *3 X u0 p0 c0 {1,T} + diff --git a/input/kinetics/families/Surface_Bidentate_Dissociation/training/reactions.py b/input/kinetics/families/Surface_Bidentate_Dissociation/training/reactions.py index 858ae6b15f..3baa76951e 100644 --- a/input/kinetics/families/Surface_Bidentate_Dissociation/training/reactions.py +++ b/input/kinetics/families/Surface_Bidentate_Dissociation/training/reactions.py @@ -7,3 +7,125 @@ Put kinetic parameters for specific reactions in this file to use as a training set for generating rate rules to populate this kinetics family. """ + +entry( + index = 1, + label = "H2N2X2 <=> HNX + HNX-2", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.39e11,'1/s'), n=0.299, Ea=(76227,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Bidentate_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: [Pt]NN[Pt] <=> NH_X + NH_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R26 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 2, + label = "HN2X2 <=> HNX + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.59e11,'1/s'), n=0.619, Ea=(137016,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Bidentate_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: [Pt]NN=[Pt] <=> NH_X + N_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R28 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 3, + label = "N2X2 <=> NX-2 + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.77e11,'1/s'), n=0.06, Ea=(452538,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Bidentate_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: [Pt]=NN=[Pt] <=> N_X + N_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R50 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 4, + label = "HN2X2 <=> HNX + NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1e13,'1/s'), n=0, Ea=(137981,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Bidentate_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: [Pt]NN=[Pt] <=> NH_X + N_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +Ea = 1.43eV = 137980.7J/mol + +This is R15 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 5, + label = "NX-2 + NX <=> N2X2", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.55e21,'cm^2/(mol*s)'), n=0, Ea=(187423,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Bidentate_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N_X + N_X <=> [Pt]=NN=[Pt] +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to estimate A factor. +A = 9.18E12(1/s)/2.587E-9(mol/cm^2) = 3.55E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R7 in Table 3 +""", + metal = "Ir", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Dissociation/groups.py b/input/kinetics/families/Surface_Dissociation/groups.py index e270cab438..0e45366245 100644 --- a/input/kinetics/families/Surface_Dissociation/groups.py +++ b/input/kinetics/families/Surface_Dissociation/groups.py @@ -161,18 +161,129 @@ kinetics = None, ) +entry( + index = 12, + label = "CH", + group = +""" +1 *1 C u0 {2,S} {3,T} +2 *2 H u0 {1,S} +3 *3 Xo u0 {1,T} +""", + kinetics = None, +) + +entry( + index = 13, + label = "CH2", + group = +""" +1 *1 C u0 {2,S} {3,D} {4,S} +2 *2 H u0 {1,S} +3 *3 Xo u0 {1,D} +4 H u0 {1,S} +""", + kinetics = None, +) + +entry( + index = 14, + label = "CH3", + group = +""" +1 *1 C u0 {2,S} {3,S} {4,S} {5,S} +2 *2 H u0 {1,S} +3 *3 Xo u0 {1,S} +4 H u0 {1,S} +5 H u0 {1,S} +""", + kinetics = None, +) + +entry( + index = 15, + label = "C-OH", + group = +""" +1 *1 C u0 {2,S} {3,S} +2 *2 O u0 {1,S} {4,S} +3 *3 Xo u0 {1,S} +4 H u0 {2,S} +""", + kinetics = None, +) + +entry( + index = 16, + label = "O-C=O", + group = +""" +1 *1 O u0 {2,S} {3,S} +2 *2 C u0 {1,S} {4,D} +3 *3 Xo u0 {1,S} +4 O u0 {2,D} +""", + kinetics = None, +) + +entry( + index = 17, + label = "O-N", + group = +""" +1 *1 O u0 {2,S} {3,S} +2 *2 N u0 {1,S} +3 *3 Xo u0 {1,S} +""", + kinetics = None, +) + +entry( + index = 18, + label = "O-N=O", + group = +""" +1 *1 O u0 {2,S} {3,S} +2 *2 N u0 {1,S} {4,D} +3 *3 Xo u0 {1,S} +4 O u0 {2,D} +""", + kinetics = None, +) + +entry( + index = 19, + label = "N-N", + group = +""" +1 *1 N u0 {2,S} {3,D} +2 *2 N u0 {1,S} +3 *3 Xo u0 {1,D} +""", + kinetics = None, +) + + tree( """ L1: Combined L2: C L3: C-H + L4: CH + L4: CH2 + L4: CH3 L3: C-O + L4: C-OH L2: O L3: O-H L3: O-C + L4: O-C=O + L3: O-N + L4: O-N=O L2: N L3: N-H2 L3: N-H + L3: N-N L1: VacantSite """ ) diff --git a/input/kinetics/families/Surface_Dissociation/training/dictionary.txt b/input/kinetics/families/Surface_Dissociation/training/dictionary.txt index bcff6e36ae..d8dc843c99 100644 --- a/input/kinetics/families/Surface_Dissociation/training/dictionary.txt +++ b/input/kinetics/families/Surface_Dissociation/training/dictionary.txt @@ -1,74 +1,74 @@ CH2X_3 -1 *1 C u0 p0 {2,S} {3,S} {4,D} -2 H u0 p0 {1,S} -3 H u0 p0 {1,S} -4 *3 X u0 p0 {1,D} +1 *1 C u0 p0 c0 {2,S} {3,S} {4,D} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *3 X u0 p0 c0 {1,D} -Ni_4 +X_4 1 *4 X u0 p0 c0 CH3X_1 -1 *1 C u0 p0 {2,S} {3,S} {4,S} {5,S} -2 *2 H u0 p0 {1,S} -3 H u0 p0 {1,S} -4 H u0 p0 {1,S} -5 *3 X u0 p0 {1,S} +1 *1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 *2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *3 X u0 p0 c0 {1,S} HX_5 -1 *2 H u0 p0 {2,S} -2 *4 X u0 p0 {1,S} +1 *2 H u0 p0 c0 {2,S} +2 *4 X u0 p0 c0 {1,S} CHX_3 -1 *1 C u0 p0 {2,S} {3,T} -2 H u0 p0 {1,S} -3 *3 X u0 p0 {1,T} +1 *1 C u0 p0 c0 {2,S} {3,T} +2 H u0 p0 c0 {1,S} +3 *3 X u0 p0 c0 {1,T} CH2X_1 -1 *1 C u0 p0 {2,S} {3,S} {4,D} -2 *2 H u0 p0 {1,S} -3 H u0 p0 {1,S} -4 *3 X u0 p0 {1,D} +1 *1 C u0 p0 c0 {2,S} {3,S} {4,D} +2 *2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *3 X u0 p0 c0 {1,D} HOX_1 -1 *1 O u0 p2 {2,S} {3,S} -2 *2 H u0 p0 {1,S} -3 *3 X u0 p0 {1,S} +1 *1 O u0 p2 c0 {2,S} {3,S} +2 *2 H u0 p0 c0 {1,S} +3 *3 X u0 p0 c0 {1,S} OX_3 -1 *1 X u0 p0 c0 {2,D} -2 *3 O u0 p2 c0 {1,D} +1 *3 O u0 p2 c0 {2,D} +2 *1 X u0 p0 c0 {1,D} HOCXO_1 -1 *1 C u0 p0 {2,D} {3,S} {5,S} -2 O u0 p2 {1,D} -3 *2 O u0 p2 {1,S} {4,S} -4 H u0 p0 {3,S} -5 *3 X u0 p0 {1,S} +1 *2 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 *1 C u0 p0 c0 {1,S} {2,D} {5,S} +4 H u0 p0 c0 {1,S} +5 *3 X u0 p0 c0 {3,S} OCX_3 -1 *1 C u0 p0 {2,D} {3,D} -2 O u0 p2 {1,D} -3 *3 X u0 p0 {1,D} +1 O u0 p2 c0 {2,D} +2 *1 C u0 p0 c0 {1,D} {3,D} +3 *3 X u0 p0 c0 {2,D} HOX_5 -1 *2 O u0 p2 {2,S} {3,S} -2 H u0 p0 {1,S} -3 *4 X u0 p0 {1,S} +1 *2 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 *4 X u0 p0 c0 {1,S} CXHO_1 -1 *1 C u0 p0 {2,D} {3,S} {4,S} -2 O u0 p2 {1,D} -3 *2 H u0 p0 {1,S} -4 *3 X u0 p0 {1,S} +1 O u0 p2 c0 {2,D} +2 *1 C u0 p0 c0 {1,D} {3,S} {4,S} +3 *2 H u0 p0 c0 {2,S} +4 *3 X u0 p0 c0 {2,S} CHX_1 -1 *1 C u0 p0 {2,S} {3,T} -2 *2 H u0 p0 {1,S} -3 *3 X u0 p0 {1,T} +1 *1 C u0 p0 c0 {2,S} {3,T} +2 *2 H u0 p0 c0 {1,S} +3 *3 X u0 p0 c0 {1,T} CX_3 -1 *1 C u0 p0 {2,Q} -2 *3 X u0 p0 {1,Q} +1 *1 C u0 p0 c0 {2,Q} +2 *3 X u0 p0 c0 {1,Q} HCO* 1 O u0 p2 c0 {2,D} @@ -122,15 +122,101 @@ NH2_X 4 *3 X u0 p0 c0 {1,S} NHX_1 -1 *1 N u0 p1 c0 {2,D} {3,S} -2 *3 X u0 p0 c0 {1,D} -3 H u0 p0 c0 {1,S} +1 *1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 *3 X u0 p0 c0 {1,D} NHX_2 -1 *1 N u0 p1 c0 {2,D} {3,S} -2 *3 X u0 p0 c0 {1,D} -3 *2 H u0 p0 c0 {1,S} +1 *1 N u0 p1 c0 {2,S} {3,D} +2 *2 H u0 p0 c0 {1,S} +3 *3 X u0 p0 c0 {1,D} NX 1 *1 N u0 p1 c0 {2,T} 2 *3 X u0 p0 c0 {1,T} + +NOX +1 O u0 p2 c0 {2,D} +2 *2 N u0 p1 c0 {1,D} {3,S} +3 *4 X u0 p0 c0 {2,S} + +OX +1 *1 O u0 p2 c0 {2,D} +2 *3 X u0 p0 c0 {1,D} + +NO2X +1 *1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 *2 N u0 p1 c0 {1,S} {2,D} +4 *3 X u0 p0 c0 {1,S} + +H3N2X +1 *1 N u0 p1 c0 {2,S} {3,S} {6,S} +2 N u0 p1 c0 {1,S} {4,S} {5,S} +3 *2 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 *3 X u0 p0 c0 {1,S} + +H2N2X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *1 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *3 X u0 p0 c0 {2,D} + +H2N2X2 +1 *1 N u0 p1 c0 {2,S} {3,S} {5,S} +2 N u0 p1 c0 {1,S} {4,S} {6,S} +3 *2 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 *3 X u0 p0 c0 {1,S} +6 X u0 p0 c0 {2,S} + +HN2X2 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *1 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} +5 *3 X u0 p0 c0 {2,D} + +HN2X2-2 +1 *1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,D} +3 *2 H u0 p0 c0 {1,S} +4 *3 X u0 p0 c0 {1,S} +5 X u0 p0 c0 {2,D} + +N2X2 +1 N u0 p1 c0 {2,S} {3,D} +2 *1 N u0 p1 c0 {1,S} {4,D} +3 X u0 p0 c0 {1,D} +4 *3 X u0 p0 c0 {2,D} + +H3N2X-2 +1 *1 N u0 p1 c0 {2,S} {3,S} {6,S} +2 *2 N u0 p1 c0 {1,S} {4,S} {5,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 *3 X u0 p0 c0 {1,S} + +H2NX +1 *2 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *4 X u0 p0 c0 {1,S} + +H2N2X-2 +1 *2 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *1 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *3 X u0 p0 c0 {2,D} + +N2OX +1 O u0 p2 c0 {3,D} +2 *1 N u0 p1 c0 {3,S} {4,D} +3 *2 N u0 p1 c0 {1,D} {2,S} +4 *3 X u0 p0 c0 {2,D} + diff --git a/input/kinetics/families/Surface_Dissociation/training/reactions.py b/input/kinetics/families/Surface_Dissociation/training/reactions.py index c5b0d9bee9..c2adfb04de 100644 --- a/input/kinetics/families/Surface_Dissociation/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation/training/reactions.py @@ -10,10 +10,10 @@ entry( index = 1, - label = "OCX_3 + HOX_5 <=> HOCXO_1 + Ni_4", + label = "OCX_3 + HOX_5 <=> HOCXO_1 + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( - A=(4.02E14, 'm^2/(mol*s)'), + A=(4.02e14, 'm^2/(mol*s)'), n = 0.0, Ea=(11.5, 'kJ/mol'), Tmin = (298, 'K'), @@ -30,11 +30,11 @@ ) entry( - index = 4, - label = "HOCXO_1 + Ni_4 <=> OCX_3 + HOX_5", + index = 2, + label = "HOCXO_1 + X_4 <=> OCX_3 + HOX_5", degeneracy = 1, kinetics = SurfaceArrhenius( - A=(1.46E20, 'm^2/(mol*s)'), + A=(1.46e20, 'm^2/(mol*s)'), n = -0.213, Ea=(54300.0, 'J/mol'), Tmin = (298, 'K'), @@ -45,14 +45,14 @@ longDesc = u""" "Surface Reaction Kinetics of Steam- and CO2-Reforming as well as Oxidation of Methane over Nickel-Based Catalysts" Delgado et al -Catalysts, 2015, 5, 871-904. Reaction R4 -""", +Catalysts, 2015, 5, 871-904. Reaction R44 +""", metal = 'Ni', ) entry( - index = 10, - label = "OCX_3 + HOX_5 <=> HOCXO_1 + Ni_4", + index = 3, + label = "OCX_3 + HOX_5 <=> HOCXO_1 + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( A=(1.586e16, 'm^2/(mol*s)'), @@ -68,14 +68,14 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -4.667E11 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 1.586e16 m^2/(mol*s) +4.667E11 1/s / 2.943e‐5 mol/m^2 = 1.586e16 m^2/(mol*s) """, metal = "Cu", ) entry( - index = 9, - label = "NH2_X + Ni_4 <=> NHX_1 + HX_5", + index = 4, + label = "NH2_X + X_4 <=> NHX_1 + HX_5", degeneracy = 2, kinetics = SurfaceArrhenius( A = (2.718e22, 'cm^2/(mol*s)'), @@ -97,8 +97,8 @@ ) entry( - index = 11, - label = "NHX_2 + Ni_4 <=> NX + HX_5", + index = 5, + label = "NHX_2 + X_4 <=> NX + HX_5", kinetics = SurfaceArrhenius( A = (6.213e19, 'cm^2/(mol*s)'), n = 0, @@ -119,11 +119,11 @@ ) entry( - index = 16, - label = "CH2X_3 + HX_5 <=> CH3X_1 + Ni_4", + index = 6, + label = "CH2X_3 + HX_5 <=> CH3X_1 + X_4", degeneracy = 3, kinetics = SurfaceArrhenius( - A=(3.09E19, 'm^2/(mol*s)'), + A=(3.09e19, 'm^2/(mol*s)'), n = -0.087, Ea=(57200.0, 'J/mol'), Tmin = (298, 'K'), @@ -141,11 +141,11 @@ entry( - index = 18, - label = "CHX_3 + HX_5 <=> CH2X_1 + Ni_4", + index = 7, + label = "CHX_3 + HX_5 <=> CH2X_1 + X_4", degeneracy = 2, kinetics = SurfaceArrhenius( - A=(9.77E20, 'm^2/(mol*s)'), + A=(9.77e20, 'm^2/(mol*s)'), n = -0.087, Ea=(81000.0, 'J/mol'), Tmin = (298, 'K'), @@ -161,10 +161,10 @@ metal = "Ni", ) -#Delgado has this reaction as exothermic. However, our own thermo has this reaction as endothermic. removing and replacing with reverse direction, R20. +#Delgado has this reaction as exothermic. However, our own thermo has this reaction as endothermic. removing and replacing with reverse direction, R9. #entry( -# index = 19, -# label = "CHX_1 + Ni_4 <=> CX_3 + HX_5", +# index = 8, +# label = "CHX_1 + X_4 <=> CX_3 + HX_5", # degeneracy = 1, # kinetics = SurfaceArrhenius( # A=(9.88E16, 'm^2/(mol*s)'), @@ -184,8 +184,8 @@ #) entry( - index = 20, - label = "CX_3 + HX_5 <=> CHX_1 + Ni_4", + index = 9, + label = "CX_3 + HX_5 <=> CHX_1 + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( A=(1.70E20, 'm^2/(mol*s)'), @@ -205,8 +205,8 @@ ) entry( - index = 28, - label = "HCOO* + Ni_4 <=> HCO* + OX_3", + index = 10, + label = "HCOO* + X_4 <=> HCO* + OX_3", degeneracy = 1, kinetics = SurfaceArrhenius( A=(8.733e16, 'm^2/(mol*s)'), @@ -222,14 +222,14 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -2.570E12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 8.733e16 m^2/(mol*s) -""", +2.570E12 1/s / 2.943e‐5 mol/m^2 = 8.733e16 m^2/(mol*s) +""", metal = "Cu", ) entry( - index = 31, - label = "HCOH* + HX_5 <=> CH2OH* + Ni_4", + index = 11, + label = "HCOH* + HX_5 <=> CH2OH* + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( A=(1.257e17, 'm^2/(mol*s)'), @@ -245,14 +245,14 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -3.698E12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 1.257e17 m^2/(mol*s) -""", +3.698E12 1/s / 2.943e‐5 mol/m^2 = 1.257e17 m^2/(mol*s) +""", metal = "Cu", ) entry( - index = 32, - label = "HOX_1 + Ni_4 <=> OX_3 + HX_5", + index = 12, + label = "HOX_1 + X_4 <=> OX_3 + HX_5", degeneracy = 1, kinetics = SurfaceArrhenius( A=(2.25E16, 'm^2/(mol*s)'), @@ -272,8 +272,8 @@ ) entry( - index = 15, - label = "HOX_1 + Ni_4 <=> OX_3 + HX_5", + index = 13, + label = "HOX_1 + X_4 <=> OX_3 + HX_5", degeneracy = 1, kinetics = SurfaceArrhenius( A=(7.452e17, 'm^2/(mol*s)'), @@ -289,14 +289,14 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -2.193E13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 7.452e17 m^2/(mol*s) -""", +2.193E13 1/s / 2.943e‐5 mol/m^2 = 7.452e17 m^2/(mol*s) +""", metal = "Cu", ) entry( - index = 36, - label = "CH3O2* + Ni_4 <=> CH2OH*_2 + OX_3", + index = 14, + label = "CH3O2* + X_4 <=> CH2OH*_2 + OX_3", degeneracy = 1, kinetics = SurfaceArrhenius( A=(1.864e18, 'm^2/(mol*s)'), @@ -312,14 +312,14 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -5.485E13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 1.864e18 m^2/(mol*s) -""", +5.485E13 1/s / 2.943e‐5 mol/m^2 = 1.864e18 m^2/(mol*s) +""", metal = "Cu", ) entry( - index = 48, - label = "CXHO_1 + Ni_4 <=> OCX_3 + HX_5", + index = 15, + label = "CXHO_1 + X_4 <=> OCX_3 + HX_5", degeneracy = 1, kinetics = SurfaceArrhenius( A=(3.71E17, 'm^2/(mol*s)'), @@ -333,14 +333,14 @@ longDesc = u""" "Surface Reaction Kinetics of Steam- and CO2-Reforming as well as Oxidation of Methane over Nickel-Based Catalysts" Delgado et al -Catalysts, 2015, 5, 871-904. Reaction R8 -""", +Catalysts, 2015, 5, 871-904. Reaction R48 +""", metal = "Ni", ) entry( - index = 26, - label = "OCX_3 + HX_5 <=> CXHO_1 + Ni_4", + index = 16, + label = "OCX_3 + HX_5 <=> CXHO_1 + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( A=(3.140e17, 'm^2/(mol*s)'), @@ -356,7 +356,1503 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -9.240E12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 3.140e17 m^2/(mol*s) +9.240E12 1/s / 2.943e‐5 mol/m^2 = 3.140e17 m^2/(mol*s) +""", + metal = "Cu", +) + +entry( + index = 17, + label = "NOX + OX <=> NO2X + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.776e22,'cm^2/(mol*s)'), n=0, Ea=(115788,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Arevalo_Pt111 +Original entry: NO_X + O_X <=> NO2_X + X +"First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" +Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) +https://doi.org/10.1116/1.4903225 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 4.41E13(1/s)/2.483E-9(mol/cm^2) = 1.776E22 cm^2/(mol*s) +Ea = 1.2eV * 96490J/eV mol = 115788J/mol + +This is R5 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 18, + label = "X_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.014e21,'cm^2/(mol*s)'), n=0, Ea=(110000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Offermans_Pt111 +Original entry: NH2_X + X <=> NH_X + H_X +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 5.0E12(1/s)/2.483E-9(mol/cm^2) = 2.014E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 19, + label = "X_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.08997e21,'cm^2/(mol*s)'), n=0, Ea=(118000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Offermans_Pt111 +Original entry: NH_X + X <=> N_X + H_X +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 7.2E12(1/s)/2.483E-9(mol/cm^2) = 2.8997E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 20, + label = "X_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(4.43e21,'cm^2/(mol*s)'), n=0, Ea=(101000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Novell_Pt111 +Original entry: NH2_X + X <=> NH_X + H_X +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 500K) = 1.1E13(1/s)/2.483E-9(mol/cm^2) = 4.430E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 21, + label = "X_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(5.236e21,'cm^2/(mol*s)'), n=0, Ea=(116000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Novell_Pt111 +Original entry: NH_X + X <=> N_X + H_X +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 500K) = 1.3E13(1/s)/2.483E-9(mol/cm^2) = 5.236E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 22, + label = "X_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.33e23,'cm^2/(mol*s)'), n=0, Ea=(83946.3,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: NH2_X + X <=> NH_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 0.87eV = 83946.3J/mol + +This is reaction (2) in Table S5 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 23, + label = "X_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.33e23,'cm^2/(mol*s)'), n=0, Ea=(98419.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: NH_X + X <=> N_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.02eV = 98419.8J/mol + +This is reaction (3) in Table S5 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 24, + label = "HX_5 + OX <=> HOX_1 + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(61753.6,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: H_X + O_X <=> OH_X + X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.64eV = 61753.6J/mol + +This is reaction (4) in Table S5 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 25, + label = "X_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.23e23,'cm^2/(mol*s)'), n=0, Ea=(152454,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: NH2_X + X <=> NH_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.58eV = 152454.2J/mol + +This is reaction (2) in Table S4 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 26, + label = "X_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.23e23,'cm^2/(mol*s)'), n=0, Ea=(118683,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: NH_X + X <=> N_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.23eV = 118682.7J/mol + +This is reaction (3) in Table S4 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 27, + label = "HX_5 + OX <=> HOX_1 + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.44e21,'cm^2/(mol*s)'), n=0, Ea=(123507,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: H_X + O_X <=> OH_X + X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.28eV = 123507.2J/mol + +This is reaction (4) in Table S4 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 28, + label = "X_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.44e23,'cm^2/(mol*s)'), n=0, Ea=(85876.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: NH2_X + X <=> NH_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 0.89eV = 85876.1J/mol + +This is reaction (2) in Table S5 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 29, + label = "X_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.44e23,'cm^2/(mol*s)'), n=0, Ea=(113858,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: NH_X + X <=> N_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.18eV = 113858.2J/mol + +This is reaction (3) in Table S5 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 30, + label = "HX_5 + OX <=> HOX_1 + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(97454.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: H_X + O_X <=> OH_X + X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.01eV = 97454.9J/mol + +This is reaction (4) in Table S5 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 31, + label = "X_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(6.33e21,'cm^2/(mol*s)'), n=0, Ea=(92630.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Popa_Rh111 +Original entry: NH2_X + X <=> NH_X + H_X +Based primarily on "Ab initio density-functional theory study of +NHx dehydrogenation and reverse reactions on the Rh(111) surface" +C. Popa, W. K. Offermans, R. A. van Santen, and A. P. J. Jansen +American Physical Society Vol. 74, Iss. 15—15, 2006 +https://doi.org/10.1103/PhysRevB.74.155428 + +This is reaction 3 in TABLE VI. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.68E13(1/s)/2.656E-9(mol/cm^2) = 6.33E21 cm^2/(mol*s) +Ea = 0.86eV = 92630.4J/mol +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 32, + label = "X_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(7.94e21,'cm^2/(mol*s)'), n=0, Ea=(97454.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Popa_Rh111 +Original entry: NH_X + X <=> N_X + H_X +Based primarily on "Ab initio density-functional theory study of +NHx dehydrogenation and reverse reactions on the Rh(111) surface" +C. Popa, W. K. Offermans, R. A. van Santen, and A. P. J. Jansen +American Physical Society Vol. 74, Iss. 15—15, 2006 +https://doi.org/10.1103/PhysRevB.74.155428 + +This is reaction 7 in TABLE VI. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 2.11E13(1/s)/2.656E-9(mol/cm^2) = 7.94E21 cm^2/(mol*s) +Ea = 1.91eV = 97454.9J/mol +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 33, + label = "NOX + OX <=> NO2X + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(6.52e19,'cm^2/(mol*s)'), n=1.015, Ea=(155285,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Ishikawa_Rh111 +Original entry: NO_X + O_X <=> NO2_X + X +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameters is calculed from +Table 2. Activation Energy (Ea) +and +Table S3. Reaction rate constant at different temperatures +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 34, + label = "X_4 + NO2X <=> OX + NOX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.29e20,'cm^2/(mol*s)'), n=0, Ea=(83000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Scheuer_Pt +Original entry: NO2_X + X <=> NO_X + O_X +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 3.2E11(1/s)/2.483E-9(mol/cm^2) = 1.29E20 cm^2/(mol*s) + +This is R12 in Table 1 +""", + metal = "Pt", +) + +entry( + index = 35, + label = "X_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(8.34e19,'cm^2/(mol*s)'), n=0, Ea=(56929.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Duan_Ni111 +Original entry: NH2_X + X <=> NH_X + H_X +"Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and +Ni(1 1 1) surfaces: A density functional theory study" +Duan et al. Journal of Molecular Catalysis A: Chemical 357 (2012) 81–86 +https://doi.org/10.1016/j.molcata.2012.01.023 + +and + +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni111 = 3.148E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 1.03E8(1/s)/exp(56929.1JJ/mol / 8.314J/molK/873K) = 2.63E11/s + = (2.63E11/s)/3.148E-9(mol/cm^2) = 8.34E19cm^2/mol/s + +Ea = 0.59eV = 56929.1J/mol + +This is reaction 2 from Table 2 +""", + metal = "Ni", + facet = "111", +) + +entry( + index = 36, + label = "X_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.46e19,'cm^2/(mol*s)'), n=0, Ea=(107104,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Duan_Ni111 +Original entry: NH_X + X <=> N_X + H_X +"Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and +Ni(1 1 1) surfaces: A density functional theory study" +Duan et al. Journal of Molecular Catalysis A: Chemical 357 (2012) 81–86 +https://doi.org/10.1016/j.molcata.2012.01.023 + +and + +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni111 = 3.148E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 3.02E4(1/s)/exp(107103.9J/mol / 8.314J/molK/873K) = 7.74E10/s + = (7.74E10/s)/3.148E-9(mol/cm^2) = 2.46E19 cm^2/mol/s + +Ea = 1.11eV = 107103.9J/mol + +This is reaction 3 from Table 2 +""", + metal = "Ni", + facet = "111", +) + +entry( + index = 37, + label = "X_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.31e20,'cm^2/(mol*s)'), n=0, Ea=(86841,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Duan_Ni211 +Original entry: NH2_X + X <=> NH_X + H_X +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni211 = 3.339E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 4.91E6(1/s)/exp(86841J/mol / 8.314J/molK/873K) = 7.71E11/s + = (7.71E11/s)/3.339E-9(mol/cm^2) = 2.31E20 cm^2/mol/s + +Ea = 0.9eV = 86841J/mol + +This is reaction 2 from Table 2 +""", + metal = "Ni", + facet = "211", +) + +entry( + index = 38, + label = "X_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.36e21,'cm^2/(mol*s)'), n=0, Ea=(100350,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Duan_Ni211 +Original entry: NH_X + X <=> N_X + H_X +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni211 = 3.339E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 1.11E7(1/s)/exp(100349.6J/mol / 8.314J/molK/873K) = 1.12E13/s + = (1.12E13/s)/3.339E-9(mol/cm^2) = 3.36E21 cm^2/mol/s + +Ea = 1.04eV = 100349.6J/mol + +This is reaction 3 from Table 2 +""", + metal = "Ni", + facet = "211", +) + +entry( + index = 39, + label = "X_4 + HOX_1 <=> OX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(7.85e20,'cm^2/(mol*s)'), n=1.872, Ea=(27.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: OH_X + X <=> H_X + O_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.95E12(1/s)/2.483E-9(mol/cm^2) = 7.85E20 cm^2/(mol*s) + +This is R13 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 40, + label = "X_4 + CH3X_1 <=> CH2X_3 + HX_5", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(4.47e19,'cm^2/(mol*s)'), n=0.419, Ea=(15.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH3_X + X <=> CH2_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.11E11(1/s)/2.483E-9(mol/cm^2) = 4.47E19 cm^2/(mol*s) + +This is R57 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 41, + label = "X_4 + CH2X_1 <=> CHX_3 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.1e19,'cm^2/(mol*s)'), n=0.222, Ea=(9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH2_X + X <=> CH_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.22E10(1/s)/2.483E-9(mol/cm^2) = 2.10E19 cm^2/(mol*s) + +This is R59 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 42, + label = "X_4 + CHX_1 <=> CX_3 + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.67e19,'cm^2/(mol*s)'), n=0.398, Ea=(31.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH_X + X <=> C_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 9.11E10(1/s)/2.483E-9(mol/cm^2) = 3.67E19 cm^2/(mol*s) + +This is R61 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 43, + label = "X_4 + CXHO_1 <=> OCX_3 + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.86e19,'cm^2/(mol*s)'), n=0.33, Ea=(0,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: HCO_X + X <=> CO_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 7.11E10(1/s)/2.483E-9(mol/cm^2) = 2.86E19 cm^2/(mol*s) + +This is R99 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 44, + label = "X_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(7.22e20,'cm^2/(mol*s)'), n=0, Ea=(5.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Ru0001 +Original entry: NH_X + X <=> N_X + H_X +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 1.9E12(1/s)/2.630E-9(mol/cm^2) = 7.22E20 cm^2/(mol*s) + +This is R5 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +entry( + index = 45, + label = "X_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(7.6e20,'cm^2/(mol*s)'), n=0, Ea=(20.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Ru0001 +Original entry: NH2_X + X <=> NH_X + H_X +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 2E12(1/s)/2.630E-9(mol/cm^2) = 7.60E20 cm^2/(mol*s) + +This is R7 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +entry( + index = 46, + label = "X_4 + CH3X_1 <=> CH2X_3 + HX_5", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(1e19,'cm^2/(mol*s)'), n=0.0862, Ea=(12.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: CH3_X + X <=> CH2_X + H_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 2.49E+10(1/s)/2.49E-9(mol/cm^2) = 1.00E+19 cm^2/(mol*s) + +This is R57 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 47, + label = "X_4 + CH2X_1 <=> CHX_3 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.21e19,'cm^2/(mol*s)'), n=-0.1312, Ea=(21.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: CH2_X + X <=> CH_X + H_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 5.50E+10(1/s)/2.49E-9(mol/cm^2) = 2.21E+19 cm^2/(mol*s) + +This is R59 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 48, + label = "X_4 + CHX_1 <=> CX_3 + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.84e21,'cm^2/(mol*s)'), n=-0.2464, Ea=(28.9,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: CH_X + X <=> C_X + H_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 4.58E+12(1/s)/2.49E-9(mol/cm^2) = 1.84E+21 cm^2/(mol*s) + +This is R61 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 49, + label = "X_4 + H3N2X <=> H2N2X + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.34e17,'cm^2/(mol*s)'), n=1.942, Ea=(121577,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: N2H3_X + X <=> NN=[Pt] + H_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R10 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 50, + label = "X_4 + H2N2X2 <=> HN2X2 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(1.07e19,'cm^2/(mol*s)'), n=1.134, Ea=(141840,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: [Pt]NN[Pt] + X <=> [Pt]NN=[Pt] + H_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R16 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 51, + label = "X_4 + HN2X2-2 <=> N2X2 + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.43e18,'cm^2/(mol*s)'), n=1.285, Ea=(16403,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: [Pt]NN=[Pt] + X <=> [Pt]=NN=[Pt] + H_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R18 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 52, + label = "X_4 + H3N2X-2 <=> NHX_1 + H2NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.87e16,'cm^2/(mol*s)'), n=2.065, Ea=(86841,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: N2H3_X + X <=> NH2_X + NH_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R22 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 53, + label = "X_4 + H2N2X-2 <=> NX + H2NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.03e19,'cm^2/(mol*s)'), n=0.559, Ea=(130262,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: NN=[Pt] + X <=> NH2_X + N_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R24 in Table 1 """, metal = "Cu", + facet = "111", +) + +entry( + index = 54, + label = "X_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(5.67e19,'cm^2/(mol*s)'), n=0.513, Ea=(135086,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: NH2_X + X <=> NH_X + H_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R32 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 55, + label = "X_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.66e19,'cm^2/(mol*s)'), n=0.853, Ea=(172717,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: NH_X + X <=> N_X + H_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R34 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 56, + label = "X_4 + H3N2X <=> H2N2X + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(98419.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N2H3_X + X <=> NN=[Pt] + H_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 1.02eV = 98419.8J/mol + +This is R6 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 57, + label = "HX_5 + OCX_3 <=> CXHO_1 + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(30.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CO_X + H_X <=> HCO_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R106 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 58, + label = "NOX + NX <=> N2OX + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(19.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: N_X + NO_X <=> N2O_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R120 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 59, + label = "X_4 + H3N2X-2 <=> NHX_1 + H2NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(75262.2,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N2H3_X + X <=> NH2_X + NH_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.78eV = 75262.2J/mol + +This is R12 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 60, + label = "X_4 + H2N2X-2 <=> NX + H2NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(70437.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: NN=[Pt] + X <=> NH2_X + N_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.73eV = 70437.7J/mol + +This is R13 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 61, + label = "X_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(1.43e21,'cm^2/(mol*s)'), n=0, Ea=(151613,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: NH2_X + X <=> NH_X + H_X +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. +A = 3.71E12(1/s)/2.587E-9(mol/cm^2) = 1.43E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R3 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 62, + label = "X_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.68e21,'cm^2/(mol*s)'), n=0, Ea=(88354.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: NH_X + X <=> N_X + H_X +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. +A = 6.93E12(1/s)/2.587E-9(mol/cm^2) = 2.68E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R5 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 63, + label = "X_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(1.52e21,'cm^2/(mol*s)'), n=0, Ea=(62155,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ru0001 +Original entry: NH2_X + X <=> NH_X + H_X +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 4.01E12(1/s)/2.630E-9(mol/cm^2) = 1.52E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R3 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +entry( + index = 64, + label = "X_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.71e21,'cm^2/(mol*s)'), n=0, Ea=(99817.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ru0001 +Original entry: NH_X + X <=> N_X + H_X +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 7.13E12(1/s)/2.630E-9(mol/cm^2) = 2.71E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R5 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +entry( + index = 65, + label = "X_4 + HOCXO_1 <=> OCX_3 + HOX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.3e20,'cm^2/(mol*s)'), n=-0.4123, Ea=(7.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: COOH_X + X <=> CO_X + OH_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 1.07E+12(1/s)/2.49E-9(mol/cm^2) = 4.30E+20 cm^2/(mol*s) + +This is R31 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 66, + label = "X_4 + HOCXO_1 <=> OCX_3 + HOX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.4e17,'cm^2/(mol*s)'), n=0.024, Ea=(5.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: COOH_X + X <=> CO_X + OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.43E08(1/s)/2.483E-9(mol/cm^2) = 3.40E17 cm^2/(mol*s) + +This is R29 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 67, + label = "HX_5 + OX <=> HOX_1 + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(8.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: H_X + O_X <=> OH_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R20 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 68, + label = "HOX_5 + OCX_3 <=> HOCXO_1 + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(18.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CO_X + OH_X <=> COOH_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R30 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 69, + label = "HX_5 + NHX_1 <=> NH2_X + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(16.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NH_X + H_X <=> NH2_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R52 in Appendix A +""", + metal = "Pt", + facet = "111", ) + +entry( + index = 70, + label = "HX_5 + NX <=> NHX_2 + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(24.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: N_X + H_X <=> NH_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R54 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 71, + label = "NOX + OX <=> NO2X + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.2e21,'cm^2/(mol*s)'), n=0.93, Ea=(21.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NO_X + O_X <=> NO2_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 3E12(1/s)/2.5E-9(mol/cm^2) = 1.2E21 cm^2/(mol*s) + +This is R80 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 72, + label = "X_4 + NH2_X <=> NHX_1 + HX_5", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.19e23,'cm^2/(mol*s)'), n=0, Ea=(117718,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: NH2_X + X <=> NH_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.22eV = 117717.8J/mol + +This is reaction (2) in Table S4 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 73, + label = "X_4 + NHX_2 <=> NX + HX_5", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.19e23,'cm^2/(mol*s)'), n=0, Ea=(88770.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: NH_X + X <=> N_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 0.92eV = 88770.8J/mol + +This is reaction (3) in Table S4 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 74, + label = "HX_5 + OX <=> HOX_1 + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.33e21,'cm^2/(mol*s)'), n=0, Ea=(85876.1,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: H_X + O_X <=> OH_X + X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.89eV = 85876.1J/mol + +This is reaction (4) in Table S4 +""", + metal = "Rh", + facet = "211", +) + diff --git a/input/kinetics/families/Surface_Dissociation_Beta/groups.py b/input/kinetics/families/Surface_Dissociation_Beta/groups.py index 6e9ee38b98..d583e0e12b 100644 --- a/input/kinetics/families/Surface_Dissociation_Beta/groups.py +++ b/input/kinetics/families/Surface_Dissociation_Beta/groups.py @@ -35,7 +35,7 @@ label = "Adsorbate1", group = """ -1 *1 Xo ux p0 c0 {2,[S,D]} +1 *1 Xo ux p0 c0 {2,[S,D]} 2 *2 R!H ux px cx {1,[S,D]} {3,[D,T]} 3 *3 R!H ux px cx {2,[D,T]} """, @@ -48,7 +48,7 @@ group = """ 1 *5 Xo ux px cx {2,S} -2 *4 R ux px cx {1,S} +2 *4 R ux px cx {1,S} """, kinetics = None, ) @@ -58,7 +58,7 @@ label = "*C", group = """ -1 *1 Xo ux p0 c0 {2,[S,D]} +1 *1 Xo ux p0 c0 {2,[S,D]} 2 *2 C ux px cx {1,[S,D]} {3,[D,T]} 3 *3 R!H ux px cx {2,[D,T]} """, @@ -70,7 +70,7 @@ label = "*-C=", group = """ -1 *1 Xo ux p0 c0 {2,S} +1 *1 Xo ux p0 c0 {2,S} 2 *2 C u0 p0 c0 {1,S} {3,D} 3 *3 R!H ux px cx {2,D} """, @@ -84,8 +84,8 @@ group = """ 1 *1 Xo ux p0 c0 {2,S} -2 *2 C u0 p0 c0 {1,S} {3,D} -3 *3 O ux px cx {2,D} +2 *2 C u0 p0 c0 {1,S} {3,D} +3 *3 O ux px cx {2,D} """, kinetics = None, ) @@ -96,8 +96,8 @@ group = """ 1 *1 Xo ux p0 c0 {2,S} -2 *2 C u0 p0 c0 {1,S} {3,D} -3 *3 C u0 p0 c0 {2,D} +2 *2 C u0 p0 c0 {1,S} {3,D} +3 *3 C u0 p0 c0 {2,D} """, kinetics = None, ) @@ -108,8 +108,8 @@ group = """ 1 *1 Xo ux p0 c0 {2,S} -2 *2 C u0 p0 c0 {1,S} {3,T} -3 *3 C ux px cx {2,T} +2 *2 C u0 p0 c0 {1,S} {3,T} +3 *3 C ux px cx {2,T} """, kinetics = None, ) @@ -120,7 +120,7 @@ group = """ 1 *5 Xo u0 p0 c0 {2,S} -2 *4 H u0 p0 c0 {1,S} +2 *4 H u0 p0 c0 {1,S} """, kinetics = None, ) @@ -131,7 +131,7 @@ group = """ 1 *5 Xo u0 p0 c0 {2,S} -2 *4 O u0 p2 c0 {1,S} +2 *4 O u0 p2 c0 {1,S} """, kinetics = None, ) @@ -142,7 +142,7 @@ group = """ 1 *5 Xo u0 p0 c0 {2,S} -2 *4 C u0 p0 c0 {1,S} +2 *4 C u0 p0 c0 {1,S} """, kinetics = None, ) @@ -195,6 +195,44 @@ kinetics = None, ) +entry( + index = 15, + label = "*N", + group = +""" +1 *1 Xo ux p0 c0 {2,S} +2 *2 N ux px cx {1,S} {3,D} +3 *3 R!H ux px cx {2,D} +""", + kinetics = None, +) + +entry( + index = 16, + label = "*-N=N", + group = +""" +1 *1 Xo ux p0 c0 {2,S} +2 *2 N ux px cx {1,S} {3,D} +3 *3 N ux px cx {2,D} +""", + kinetics = None, +) + +entry( + index = 17, + label = "*-N=NH", + group = +""" +1 *1 Xo u0 p0 c0 {2,S} +2 *2 N u0 p1 c0 {1,S} {3,D} +3 *3 N u0 p1 c0 {2,D} {4,S} +4 H u0 p0 c0 {3,S} +""", + kinetics = None, +) + + tree( """ L1: Adsorbate1 @@ -207,6 +245,9 @@ L3: *=C L4: *=C=C L4: *=C=O + L2: *N + L3: *-N=N + L4: *-N=NH L1: Adsorbate2 L2: H-* L2: O-* diff --git a/input/kinetics/families/Surface_Dissociation_Beta/training/dictionary.txt b/input/kinetics/families/Surface_Dissociation_Beta/training/dictionary.txt index 77cfd85114..fe43801d33 100644 --- a/input/kinetics/families/Surface_Dissociation_Beta/training/dictionary.txt +++ b/input/kinetics/families/Surface_Dissociation_Beta/training/dictionary.txt @@ -15,16 +15,30 @@ HCOH* 4 *4 H u0 p0 c0 {1,S} 5 *1 X u0 p0 c0 {2,D} -Cu +X 1 *5 X u0 p0 c0 CO* -1 *1 X u0 p0 c0 {2,D} +1 *3 O u0 p2 c0 {2,D} 2 *2 C u0 p0 c0 {1,D} {3,D} -3 *3 O u0 p2 c0 {2,D} +3 *1 X u0 p0 c0 {2,D} COH* -1 *1 X u0 p0 c0 {2,T} -2 *2 C u0 p0 c0 {1,T} {3,S} -3 *3 O u0 p2 c0 {2,S} {4,S} -4 *4 H u0 p0 c0 {3,S} +1 *3 O u0 p2 c0 {2,S} {3,S} +2 *2 C u0 p0 c0 {1,S} {4,T} +3 *4 H u0 p0 c0 {1,S} +4 *1 X u0 p0 c0 {2,T} + +H2N2X +1 *3 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *2 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 *4 H u0 p0 c0 {1,S} +5 *1 X u0 p0 c0 {2,D} + +HN2X +1 *2 N u0 p1 c0 {2,D} {4,S} +2 *3 N u0 p1 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} +4 *1 X u0 p0 c0 {1,S} + diff --git a/input/kinetics/families/Surface_Dissociation_Beta/training/reactions.py b/input/kinetics/families/Surface_Dissociation_Beta/training/reactions.py index 8ad1ebdf42..1b1a16284d 100644 --- a/input/kinetics/families/Surface_Dissociation_Beta/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_Beta/training/reactions.py @@ -9,8 +9,8 @@ """ entry( - index = 27, - label = "CO* + H* <=> COH* + Cu", + index = 1, + label = "CO* + H* <=> COH* + X", degeneracy = 1, kinetics = SurfaceArrhenius( A = (3.799e17, 'm^2/(mol*s)'), @@ -26,14 +26,14 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/c s200055d A factor from paper / surface site density of Cu -1.118e13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 3.799e17 m^2/(mol*s) -""", +1.118e13 1/s / 2.943e‐5 mol/m^2 = 3.799e17 m^2/(mol*s) +""", metal = "Cu", ) entry( - index = 29, - label = "HCO* + H* <=> HCOH* + Cu", + index = 2, + label = "HCO* + H* <=> HCOH* + X", degeneracy = 4, kinetics = SurfaceArrhenius( A = (3.048e17, 'm^2/(mol*s)'), @@ -49,7 +49,33 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/c s200055d A factor from paper / surface site density of Cu -8.971e12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 3.048e17 m^2/(mol*s) +8.971e12 1/s / 2.943e‐5 mol/m^2 = 3.048e17 m^2/(mol*s) +""", + metal = "Cu", +) + +entry( + index = 3, + label = "X + H2N2X <=> HN2X + H*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.09e19,'cm^2/(mol*s)'), n=1.002, Ea=(108069,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_Beta""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: NN=[Pt] + X <=> [Pt]N=N + H_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R14 in Table 1 """, metal = "Cu", + facet = "111", ) + diff --git a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/dictionary.txt index eaa2d32cc7..f6a18a0654 100644 --- a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/dictionary.txt @@ -30,3 +30,38 @@ HCOH* 3 H u0 p0 c0 {2,S} 4 H u0 p0 c0 {1,S} 5 *4 X u0 p0 c0 {2,D} + +N2OX +1 *2 O u0 p2 c0 {2,D} +2 *3 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +4 *1 X u0 p0 c0 + +N2X +1 *3 N u0 p0 c+1 {2,D} {3,D} +2 N u0 p2 c-1 {1,D} +3 *4 X u0 p0 c0 {1,D} + +HNX +1 *3 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 *4 X u0 p0 c0 {1,D} + +HNOX +1 *2 O u0 p2 c0 {2,D} +2 *3 N u0 p1 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} +4 *1 X u0 p0 c0 + +H2N2X +1 *2 N u0 p1 c0 {2,D} {3,S} +2 *3 N u0 p1 c0 {1,D} {4,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 *1 X u0 p0 c0 + +HNX-2 +1 *2 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 *1 X u0 p0 c0 {1,D} + diff --git a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py index b005431279..ce8bc74d4b 100644 --- a/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_Double_vdW/training/reactions.py @@ -9,7 +9,7 @@ """ entry( - index = 9, + index = 1, label = "CO* + O* <=> CO2* + X_4", degeneracy = 2, kinetics = SurfaceArrhenius( @@ -26,14 +26,14 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -1.195e12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 4.060e16 m^2/(mol*s) -""", +1.195e12 1/s / 2.943e‐5 mol/m^2 = 4.060e16 m^2/(mol*s) +""", metal = "Cu", ) -# duplicate of 9 +# duplicate of 1 # entry( -# index = 42, +# index = 2, # label = "CO2* + X_4 <=> CO* + O*", # kinetics = SurfaceArrhenius( # A = (4.64E19, 'm^2/(mol*s)'), @@ -53,7 +53,7 @@ # ) entry( - index = 35, + index = 3, label = "HCOOH* + X_4 <=> HCOH* + O*", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -70,7 +70,188 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -4.828e11 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 1.641e16 m^2/(mol*s) -""", +4.828e11 1/s / 2.943e‐5 mol/m^2 = 1.641e16 m^2/(mol*s) +""", metal = "Cu", ) + +entry( + index = 4, + label = "X_4 + N2OX <=> O* + N2X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(9.12e19,'cm^2/(mol*s)'), n=1.004, Ea=(63657,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_Double_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Ishikawa_Rh111 +Original entry: N2O_X + X <=> N2_X + O_X +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameters is calculed from +Table 2. Activation Energy (Ea) +and +Table S3. Reaction rate constant at different temperatures +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 5, + label = "CO* + O* <=> CO2* + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.73e20,'cm^2/(mol*s)'), n=1.001, Ea=(119598,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_Double_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Ishikawa_Rh111 +Original entry: CO_X + O_X <=> CO2_X + X +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameters is calculed from +Table 2. Activation Energy (Ea) +and +Table S3. Reaction rate constant at different temperatures +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 6, + label = "HNX + O* <=> HNOX + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4.03e21,'cm^2/(mol*s)'), n=0, Ea=(73000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_Double_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Rebrov_Pt111 +Original entry: NH_X + O_X <=> NHO_X + X +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is R9 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 7, + label = "X_4 + N2OX <=> O* + N2X", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(1.01e17,'cm^2/(mol*s)'), n=0, Ea=(72200,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_Double_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Rebrov_Pt111 +Original entry: N2O_X + X <=> N2_X + O_X +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 2.5E8(1/s)/2.483E-9(mol/cm^2) = 1.01E17 cm^2/(mol*s) + +This is R14 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 8, + label = "X_4 + CO2* <=> O* + CO*", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(1.68e19,'cm^2/(mol*s)'), n=0.177, Ea=(26.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_Double_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CO2_X + X <=> CO_X + O_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 4.18E10(1/s)/2.483E-9(mol/cm^2) = 1.68E19 cm^2/(mol*s) + +This is R9 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 9, + label = "X_4 + H2N2X <=> HNX-2 + HNX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(70437.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_Double_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N2H2_X + X <=> NH_X + NH_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.73eV = 70437.7J/mol + +This is R14 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 10, + label = "CO* + O* <=> CO2* + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+18,'cm^2/(mol*s)'), n=0, Ea=(18.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_Double_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CO_X + O_X <=> CO2_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E10(1/s)/2.5E-9(mol/cm^2) = 4E18 cm^2/(mol*s) + +This is R10 in Appendix A +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_Dissociation_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Dissociation_vdW/training/dictionary.txt index 6bd8f5d6b5..5240bd9ef8 100644 --- a/input/kinetics/families/Surface_Dissociation_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Dissociation_vdW/training/dictionary.txt @@ -44,7 +44,6 @@ HCOOH* 5 H u0 p0 c0 {1,S} 6 *3 X u0 p0 c0 - HCOO* 1 *1 O u0 p2 c0 {3,S} {5,S} 2 O u0 p2 c0 {3,D} @@ -104,12 +103,12 @@ NH2_X 4 *3 X u0 p0 c0 {1,S} CH3O* -1 C u0 p0 c0 {2,S} {4,S} {5,S} {6,S} -2 *1 O u0 p2 c0 {1,S} {3,S} -3 *3 X u0 p0 c0 {2,S} -4 H u0 p0 c0 {1,S} -5 H u0 p0 c0 {1,S} -6 H u0 p0 c0 {1,S} +1 *1 O u0 p2 c0 {2,S} {6,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 *3 X u0 p0 c0 {1,S} CH3OH_2* 1 *1 O u0 p2 c0 {2,S} {6,S} @@ -134,3 +133,59 @@ CH3* 3 H u0 p0 c0 {1,S} 4 H u0 p0 c0 {1,S} 5 *3 X u0 p0 c0 {1,S} + +H4N2X +1 *1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,S} {6,S} +3 *2 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {2,S} +7 *3 X u0 p0 c0 + +H3N2X +1 *1 N u0 p1 c0 {2,S} {3,S} {6,S} +2 N u0 p1 c0 {1,S} {4,S} {5,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 *3 X u0 p0 c0 {1,S} + +H4N2X-2 +1 *1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *2 N u0 p1 c0 {1,S} {5,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {2,S} +7 *3 X u0 p0 c0 + +H2NX +1 *2 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *4 X u0 p0 c0 {1,S} + +CNX +1 N u0 p1 c0 {2,T} +2 *1 C u0 p0 c0 {1,T} {3,S} +3 *3 X u0 p0 c0 {2,S} + +CHNX +1 N u0 p1 c0 {2,T} +2 *1 C u0 p0 c0 {1,T} {3,S} +3 *2 H u0 p0 c0 {2,S} +4 *3 X u0 p0 c0 + +CNX-2 +1 N u0 p1 c0 {2,T} +2 *2 C u0 p0 c0 {1,T} {3,S} +3 *4 X u0 p0 c0 {2,S} + +C2N2X +1 N u0 p1 c0 {3,T} +2 N u0 p1 c0 {4,T} +3 *1 C u0 p0 c0 {1,T} {4,S} +4 *2 C u0 p0 c0 {2,T} {3,S} +5 *3 X u0 p0 c0 + diff --git a/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py b/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py index 7c4aa0f281..5141090c05 100644 --- a/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Dissociation_vdW/training/reactions.py @@ -9,7 +9,7 @@ """ entry( - index = 7, + index = 1, label = "NH3_X + X_4 <=> NH2_X + H*", degeneracy = 3, kinetics = SurfaceArrhenius( @@ -32,7 +32,7 @@ ) entry( - index = 12, + index = 2, label = "CH4* + X_4 <=> CH3* + H*", degeneracy = 4, kinetics = SurfaceArrhenius( @@ -53,7 +53,7 @@ ) entry( - index = 13, + index = 3, label = "COOH* + H* <=> HCOOH* + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -70,13 +70,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -6.793e13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 2.308e18 m^2/(mol*s) -""", +6.793e13 1/s / 2.943e‐5 mol/m^2 = 2.308e18 m^2/(mol*s) +""", metal = "Cu", ) entry( - index = 14, + index = 4, label = "H2O* + X_4 <=> OH* + H*", degeneracy = 2, kinetics = SurfaceArrhenius( @@ -93,14 +93,14 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -1.436e11 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 4.879e15 m^2/(mol*s) -""", +1.436e11 1/s / 2.943e‐5 mol/m^2 = 4.879e15 m^2/(mol*s) +""", metal = "Cu", ) -#duplicate of 14 +#duplicate of 4 # entry( -# index = 29, +# index = 5, # label = "H2O* + X_4 <=> OH* + H*", # kinetics = SurfaceArrhenius( # A = (3.67E17, 'm^2/(mol*s)'), @@ -120,7 +120,7 @@ # ) entry( - index = 19, + index = 6, label = "HCOO* + H* <=> HCOOH_1* + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -137,17 +137,17 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -1.302e14 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 4.424e18 m^2/(mol*s) -""", +1.302e14 1/s / 2.943e‐5 mol/m^2 = 4.424e18 m^2/(mol*s) +""", metal = "Cu", ) entry( - index = 25, + index = 7, label = "CH3O* + H* <=> CH3OH_2* + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( - A = (4.349e22, 'm^2/(mol*s)'), + A = (4.349e17, 'm^2/(mol*s)'), n = 0., Ea = (10.8384576, 'kcal/mol'), Tmin = (298, 'K'), @@ -160,13 +160,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -1.28e18 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 4.349e22 m^2/(mol*s) -""", +1.28e13 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 4.349e17 m^2/(mol*s) +""", metal = "Cu", ) entry( - index = 30, + index = 8, label = "HCO* + H* <=> CH2O* + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -183,13 +183,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -5.685e12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 1.932e17 m^2/(mol*s) -""", +5.685e12 1/s / 2.943e‐5 mol/m^2 = 1.932e17 m^2/(mol*s) +""", metal = "Cu", ) entry( - index = 33, + index = 9, label = "CH2OH* + H* <=> CH3OH_1* + X_4", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -206,13 +206,13 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -8.189e12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 2.783e17 m^2/(mol*s) +8.189e12 1/s / 2.943e‐5 mol/m^2 = 2.783e17 m^2/(mol*s) """, metal = "Cu", ) entry( - index = 34, + index = 10, label = "HCOOH_2* + X_4 <=> HCO* + OH_2*", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -229,7 +229,814 @@ and CO Hydrogenation", Grabow and Mavrikakis. doi:10.1021/cs200055d A factor from paper / surface site density of Cu -5.242e12 m^4/(mol^2 * s) / 2.943e‐5 mol/m^2 = 1.781e17 m^2/(mol*s) +5.242e12 1/s / 2.943e‐5 mol/m^2 = 1.781e17 m^2/(mol*s) +""", + metal = "Cu", +) + +entry( + index = 11, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.255e20,'cm^2/(mol*s)'), n=0, Ea=(93000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Offermans_Pt111 +Original entry: NH3_X + X <=> NH2_X + H_X +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K)= 5.6E11(1/s)/2.483E-9(mol/cm^2) = 2.255E20 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 12, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.859e20,'cm^2/(mol*s)'), n=0, Ea=(91000,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Novell_Pt111 +Original entry: NH3_X + X <=> NH2_X + H_X +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 500K) = 7.1E11(1/s)/2.483E-9(mol/cm^2) = 2.859E20 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 13, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.08e23,'cm^2/(mol*s)'), n=0, Ea=(100350,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: NH3_X + X <=> NH2_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.04eV = 100349.6J/mol + +This is reaction (1) in Table S5 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 14, + label = "H* + OH* <=> H2O* + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(63683.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh111 +Original entry: H_X + OH_X <=> H2O_X + X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.66eV = 63683.4J/mol + +This is reaction (5) in Table S5 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 15, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.06e23,'cm^2/(mol*s)'), n=0, Ea=(97454.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: NH3_X + X <=> NH2_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.01eV = 97454.9/mol + +This is reaction (1) in Table S4 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 16, + label = "H* + OH* <=> H2O* + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.44e21,'cm^2/(mol*s)'), n=0, Ea=(91665.5,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd211 +Original entry: H_X + OH_X <=> H2O_X + X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.95eV = 91665.5J/mol + +This is reaction (5) in Table S4 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 17, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(2.18e23,'cm^2/(mol*s)'), n=0, Ea=(104209,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: NH3_X + X <=> NH2_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.08eV = 104209.2J/mol + +This is reaction (1) in Table S5 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 18, + label = "H* + OH* <=> H2O* + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.47e21,'cm^2/(mol*s)'), n=0, Ea=(64648.3,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Pd111 +Original entry: H_X + OH_X <=> H2O_X + X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.67eV = 64648.3J/mol + +This is reaction (5) in Table S5 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 19, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(8.21e21,'cm^2/(mol*s)'), n=0, Ea=(109034,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Popa_Rh111 +Original entry: NH3_X + X <=> NH2_X + H_X +Based primarily on "Ab initio density-functional theory study of +NHx dehydrogenation and reverse reactions on the Rh(111) surface" +C. Popa, W. K. Offermans, R. A. van Santen, and A. P. J. Jansen +American Physical Society Vol. 74, Iss. 15—15, 2006 +https://doi.org/10.1103/PhysRevB.74.155428 + +This is reaction 1 in TABLE VI. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 2.18E13(1/s)/2.656E-9(mol/cm^2) = 8.21E21 cm^2/(mol*s) +Ea = 1.13eV = 109033.7J/mol +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 20, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(4.35e15,'cm^2/(mol*s)'), n=0, Ea=(107104,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Duan_Ni111 +Original entry: NH3_X + X <=> NH2_X + H_X +"Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and +Ni(1 1 1) surfaces: A density functional theory study" +Duan et al. Journal of Molecular Catalysis A: Chemical 357 (2012) 81–86 +https://doi.org/10.1016/j.molcata.2012.01.023 + +and + +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni111 = 3.148E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 5.35(1/s)/exp(107103.9J/mol / 8.314J/molK/873K) = 1.37E7/s + = (1.37E7/s)/3.148E-9(mol/cm^2) = 4.35E15 cm^2/mol/s + +Ea = 1.11eV = 107103.9J/mol + +This is reaction 1 from Table 2 +""", + metal = "Ni", + facet = "111", +) + +entry( + index = 21, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(5.52e19,'cm^2/(mol*s)'), n=0, Ea=(63683.4,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Duan_Ni211 +Original entry: NH3_X + X <=> NH2_X + H_X +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni211 = 3.339E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 2.85E7(1/s)/exp(63683.4J/mol / 8.314J/molK/873K) = 1.84E11/s + = (1.84E11/s)/3.339E-9(mol/cm^2) = 5.52E19 cm^2/mol/s + +Ea = 0.66eV = 63683.4J/mol + +This is reaction 1 from Table 2 +""", + metal = "Ni", + facet = "211", +) + +entry( + index = 22, + label = "X_4 + H2O* <=> OH* + H*", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(3.77e21,'cm^2/(mol*s)'), n=-0.118, Ea=(17.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: H2O_X + X <=> H_X + OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 9.36E12(1/s)/2.483E-9(mol/cm^2) = 3.77E21 cm^2/(mol*s) + +This is R15 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 23, + label = "X_4 + CH3OH_2* <=> CH3O* + H*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.15e19,'cm^2/(mol*s)'), n=0.102, Ea=(18.8,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH3OH_X + X <=> CH3O_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 7.82E10(1/s)/2.483E-9(mol/cm^2) = 3.15E19 cm^2/(mol*s) + +This is R93 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 24, + label = "X_4 + CH2O* <=> HCO* + H*", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.88e19,'cm^2/(mol*s)'), n=0.27, Ea=(3.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH2O_X + X <=> HCO_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 7.14E10(1/s)/2.483E-9(mol/cm^2) = 2.88E19 cm^2/(mol*s) + +This is R97 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 25, + label = "X_4 + CH3OH_1* <=> CH2OH* + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(3.42e19,'cm^2/(mol*s)'), n=0.403, Ea=(8.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CH3OH_X + X <=> CH2OH_X + H_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.48E10(1/s)/2.483E-9(mol/cm^2) = 3.42E19 cm^2/(mol*s) + +This is R101 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 26, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(7.6e20,'cm^2/(mol*s)'), n=0, Ea=(18.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Ru0001 +Original entry: NH3_X + X <=> NH2_X + H_X +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 2E12(1/s)/2.630E-9(mol/cm^2) = 7.60E20 cm^2/(mol*s) + +This is R9 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +entry( + index = 27, + label = "X_4 + H2O* <=> OH* + H*", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(2.31e20,'cm^2/(mol*s)'), n=0.0281, Ea=(18.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: H2O_X + X <=> H_X + OH_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 5.74E+11(1/s)/2.49E-9(mol/cm^2) = 2.31E+20 cm^2/(mol*s) + +This is R7 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 28, + label = "X_4 + H4N2X <=> H3N2X + H*", + degeneracy = 4.0, + kinetics = SurfaceArrhenius(A=(2.69e18,'cm^2/(mol*s)'), n=1.22, Ea=(125437,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: N2H4_X + X <=> N2H3_X + H_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R8 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 29, + label = "X_4 + H4N2X-2 <=> NH2_X + H2NX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(6.61e17,'cm^2/(mol*s)'), n=1.589, Ea=(66578,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: N2H4_X + X <=> NH2_X + NH2_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R20 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 30, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(5.93e17,'cm^2/(mol*s)'), n=1.321, Ea=(136051,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Cu111 +Original entry: NH3_X + X <=> NH2_X + H_X +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R30 in Table 1 """, metal = "Cu", + facet = "111", +) + +entry( + index = 31, + label = "X_4 + H4N2X <=> H3N2X + H*", + degeneracy = 4.0, + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(104209,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N2H4_X + X <=> N2H3_X + H_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 1.08eV = 104209.2J/mol + +This is R5 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 32, + label = "X_4 + H4N2X-2 <=> NH2_X + H2NX", + degeneracy = 2.0, + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(68507.9,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N2H4_X + X <=> NH2_X + NH2_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.71eV = 68507.9J/mol + +This is R11 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 33, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(1.22e21,'cm^2/(mol*s)'), n=0, Ea=(147114,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: NH3_X + X <=> NH2_X + H_X +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. +A = 3.15E12(1/s)/2.587E-9(mol/cm^2) = 1.22E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R1 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 34, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(4.14e21,'cm^2/(mol*s)'), n=0, Ea=(117241,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ru0001 +Original entry: NH3_X + X <=> NH2_X + H_X +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 1.09E13(1/s)/2.630E-9(mol/cm^2) = 4.14E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R1 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +entry( + index = 35, + label = "H* + OH* <=> H2O* + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(12.6,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: H_X + OH_X <=> H2O_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R22 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 36, + label = "H* + NH2_X <=> NH3_X + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(7.3,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: NH2_X + H_X <=> NH3_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R50 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 37, + label = "H* + CNX <=> CHNX + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(13.2,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CN_X + H_X <=> HCN_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R86 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 38, + label = "H* + HCO* <=> CH2O* + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(20.7,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: HCO_X + H_X <=> CH2O_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R100 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 39, + label = "CNX + CNX-2 <=> C2N2X + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e19,'cm^2/(mol*s)'), n=0, Ea=(28.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: CN_X + CN_X <=> C2N2_X + X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R124 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", ) + +entry( + index = 40, + label = "X_4 + NH3_X <=> NH2_X + H*", + degeneracy = 3.0, + kinetics = SurfaceArrhenius(A=(1.96e23,'cm^2/(mol*s)'), n=0, Ea=(88770.8,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: NH3_X + X <=> NH2_X + H_X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 0.92eV = 88770.8J/mol + +This is reaction (1) in Table S4 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 41, + label = "H* + OH* <=> H2O* + X_4", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(2.33e21,'cm^2/(mol*s)'), n=0, Ea=(96490,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dissociation_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Schneider_Rh211 +Original entry: H_X + OH_X <=> H2O_X + X +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1eV = 96490J/mol + +This is reaction (5) in Table S4 +""", + metal = "Rh", + facet = "211", +) + diff --git a/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/dictionary.txt b/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/dictionary.txt index cc44785f46..506d778a07 100644 --- a/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/dictionary.txt +++ b/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/dictionary.txt @@ -21,3 +21,38 @@ H2O* 2 *4 H u0 p0 c0 {1,S} 3 H u0 p0 c0 {1,S} 4 *5 X u0 p0 c0 + +CO2X +1 *2 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 *3 C u0 p0 c0 {1,D} {2,D} +4 *1 X u0 p0 c0 + +H2NX +1 *6 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 *5 X u0 p0 c0 {1,S} + +H3N2X +1 *2 N u0 p1 c0 {2,S} {3,S} {6,S} +2 *3 N u0 p1 c0 {1,S} {4,S} {5,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 *4 H u0 p0 c0 {2,S} +6 *1 X u0 p0 c0 {1,S} + +H2N2X +1 *2 N u0 p1 c0 {2,D} {3,S} +2 *3 N u0 p1 c0 {1,D} {4,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 *1 X u0 p0 c0 + +H3NX +1 *6 N u0 p1 c0 {2,S} {3,S} {4,S} +2 *4 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 *5 X u0 p0 c0 + diff --git a/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/reactions.py b/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/reactions.py index 3f21cb2f4c..92f4841a7d 100644 --- a/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/reactions.py +++ b/input/kinetics/families/Surface_Dual_Adsorption_vdW/training/reactions.py @@ -9,7 +9,7 @@ """ entry( - index = 12, + index = 1, label = "COOH* + OH* <=> CO2* + H2O*", degeneracy = 1, kinetics = SurfaceArrhenius( @@ -30,3 +30,108 @@ """, metal = "Cu", ) + +entry( + index = 2, + label = "H2NX + H3N2X <=> H2N2X + H3NX", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(3.87e21,'cm^2/(mol*s)'), n=0, Ea=(22192.7,'J/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dual_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Roldan_Ir111 +Original entry: N2H3_X + NH2_X <=> N2H2_X + NH3_X +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.23eV = 22192.7J/mol + +This is R17 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 3, + label = "H2O* + CO2* <=> COOH* + OH*", + degeneracy = 4.0, + kinetics = SurfaceArrhenius(A=(7.15e20,'cm^2/(mol*s)'), n=-0.1992, Ea=(13.1,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dual_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Rh +Original entry: CO2_X + H2O_X <=> COOH_X + OH_X +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 1.78E+12(1/s)/2.49E-9(mol/cm^2) = 7.15E+20 cm^2/(mol*s) + +This is R39 in Table 4 +""", + metal = "Rh", +) + +entry( + index = 4, + label = "H2O* + CO2* <=> COOH* + OH*", + degeneracy = 4.0, + kinetics = SurfaceArrhenius(A=(3.48e19,'cm^2/(mol*s)'), n=-0.031, Ea=(17.5,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dual_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Vlachos_Pt111 +Original entry: CO2_X + H2O_X <=> COOH_X + OH_X +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.64E10(1/s)/2.483E-9(mol/cm^2) = 3.48E19 cm^2/(mol*s) + +This is R37 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 5, + label = "OH* + COOH* <=> CO2* + H2O*", + degeneracy = 1.0, + kinetics = SurfaceArrhenius(A=(4e+19,'cm^2/(mol*s)'), n=0, Ea=(12.4,'kcal/mol'), T0=(1,'K'), Tmin=(200,'K'), Tmax=(3000,'K')), + rank = 3, + shortDesc = """Surface_Dual_Adsorption_vdW""", + longDesc = +""" +Training reaction from kinetics library: Surface/Mhadeshwar_Pt111 +Original entry: COOH_X + OH_X <=> CO2_X + H2O_X +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R38 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + diff --git a/input/kinetics/families/Surface_vdW_to_Bidentate/training/dictionary.txt b/input/kinetics/families/Surface_vdW_to_Bidentate/training/dictionary.txt index 8b13789179..e69de29bb2 100644 --- a/input/kinetics/families/Surface_vdW_to_Bidentate/training/dictionary.txt +++ b/input/kinetics/families/Surface_vdW_to_Bidentate/training/dictionary.txt @@ -1 +0,0 @@ - diff --git a/input/kinetics/libraries/Surface/Arevalo_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Arevalo_Pt111/dictionary.txt new file mode 100644 index 0000000000..87b07faca9 --- /dev/null +++ b/input/kinetics/libraries/Surface/Arevalo_Pt111/dictionary.txt @@ -0,0 +1,34 @@ +X +1 X u0 p0 c0 + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + + +NO2_X +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 N u0 p1 c0 {1,S} {2,D} +4 X u0 p0 c0 {1,S} + +NO2 +multiplicity 2 +1 N u0 p1 c0 {2,D} {3,S} +2 O u0 p2 c0 {1,D} +3 O u1 p2 c0 {1,S} diff --git a/input/kinetics/libraries/Surface/Arevalo_Pt111/reactions.py b/input/kinetics/libraries/Surface/Arevalo_Pt111/reactions.py new file mode 100644 index 0000000000..a7402a7215 --- /dev/null +++ b/input/kinetics/libraries/Surface/Arevalo_Pt111/reactions.py @@ -0,0 +1,112 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Arevalo_Pt111" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" +Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) +https://doi.org/10.1116/1.4903225 +""" + +entry( + index = 1, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.1768, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" +Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) +https://doi.org/10.1116/1.4903225 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((3.19E7 /bar) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 32 g/mol * molar gas constant * 298 kelvin) + +This is R1 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 2, + label = "NO + X <=> NO_X", + kinetics = StickingCoefficient( + A = 1.4917E-6, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" +Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) +https://doi.org/10.1116/1.4903225 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((2.78E2 /bar) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 30 g/mol * molar gas constant * 298 kelvin) + +This is R3 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 3, + label = "NO_X + O_X <=> NO2_X + X", + kinetics = SurfaceArrhenius( + A = (1.776E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (115788, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" +Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) +https://doi.org/10.1116/1.4903225 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 4.41E13(1/s)/2.483E-9(mol/cm^2) = 1.776E22 cm^2/(mol*s) +Ea = 1.2eV * 96490J/eV mol = 115788J/mol + +This is R5 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 4, + label = "NO2 + X <=> NO2_X", + kinetics = StickingCoefficient( + A = 1.4884E-6, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals" +Ryan Lacdao Arevalo, Mary Clare Sison Escaño, and Hideaki Kasai. J. Vac. Sci. Technol. A 33, 021402 (2015) +https://doi.org/10.1116/1.4903225 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((2.24E2 /bar) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 46 g/mol * molar gas constant * 298 kelvin) + +This is R7 in Table 1 +""", + metal = "Pt", + facet = "111", +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Duan_Ni111/dictionary.txt b/input/kinetics/libraries/Surface/Duan_Ni111/dictionary.txt new file mode 100644 index 0000000000..e12230fdec --- /dev/null +++ b/input/kinetics/libraries/Surface/Duan_Ni111/dictionary.txt @@ -0,0 +1,32 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Duan_Ni111/reactions.py b/input/kinetics/libraries/Surface/Duan_Ni111/reactions.py new file mode 100644 index 0000000000..d9fc9b1382 --- /dev/null +++ b/input/kinetics/libraries/Surface/Duan_Ni111/reactions.py @@ -0,0 +1,163 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Duan_Ni111" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and +Ni(1 1 1) surfaces: A density functional theory study" +Duan et al. Journal of Molecular Catalysis A: Chemical 357 (2012) 81–86 +https://doi.org/10.1016/j.molcata.2012.01.023 + +and + +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 +""" + +entry( + index = 1, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.35E15, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (107103.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and +Ni(1 1 1) surfaces: A density functional theory study" +Duan et al. Journal of Molecular Catalysis A: Chemical 357 (2012) 81–86 +https://doi.org/10.1016/j.molcata.2012.01.023 + +and + +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni111 = 3.148E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 5.35(1/s)/exp(107103.9J/mol / 8.314J/molK/873K) = 1.37E7/s + = (1.37E7/s)/3.148E-9(mol/cm^2) = 4.35E15 cm^2/mol/s + +Ea = 1.11eV = 107103.9J/mol + +This is reaction 1 from Table 2 +""", + metal = "Ni", + facet = "111", +) + +entry( + index = 2, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (8.34E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (56929.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and +Ni(1 1 1) surfaces: A density functional theory study" +Duan et al. Journal of Molecular Catalysis A: Chemical 357 (2012) 81–86 +https://doi.org/10.1016/j.molcata.2012.01.023 + +and + +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni111 = 3.148E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 1.03E8(1/s)/exp(56929.1JJ/mol / 8.314J/molK/873K) = 2.63E11/s + = (2.63E11/s)/3.148E-9(mol/cm^2) = 8.34E19cm^2/mol/s + +Ea = 0.59eV = 56929.1J/mol + +This is reaction 2 from Table 2 +""", + metal = "Ni", + facet = "111", +) + +entry( + index = 3, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.46E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (107103.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and +Ni(1 1 1) surfaces: A density functional theory study" +Duan et al. Journal of Molecular Catalysis A: Chemical 357 (2012) 81–86 +https://doi.org/10.1016/j.molcata.2012.01.023 + +and + +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni111 = 3.148E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 3.02E4(1/s)/exp(107103.9J/mol / 8.314J/molK/873K) = 7.74E10/s + = (7.74E10/s)/3.148E-9(mol/cm^2) = 2.46E19 cm^2/mol/s + +Ea = 1.11eV = 107103.9J/mol + +This is reaction 3 from Table 2 +""", + metal = "Ni", + facet = "111", +) + +entry( + index = 4, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (3.62E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (179471.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and +Ni(1 1 1) surfaces: A density functional theory study" +Duan et al. Journal of Molecular Catalysis A: Chemical 357 (2012) 81–86 +https://doi.org/10.1016/j.molcata.2012.01.023 + +and + +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni111 = 3.148E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 2.08E1(1/s)/exp(179471.4J/mol / 8.314J/molK/873K) = 1.14E12/s + = (1.14E12/s)/3.148E-9(mol/cm^2) = 3.62E20 cm^2/mol/s + +Ea = 1.86eV = 179471.4J/mol + +This is reaction 4 from Table 2 +""", + metal = "Ni", + facet = "111", +) diff --git a/input/kinetics/libraries/Surface/Duan_Ni211/dictionary.txt b/input/kinetics/libraries/Surface/Duan_Ni211/dictionary.txt new file mode 100644 index 0000000000..e12230fdec --- /dev/null +++ b/input/kinetics/libraries/Surface/Duan_Ni211/dictionary.txt @@ -0,0 +1,32 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Duan_Ni211/reactions.py b/input/kinetics/libraries/Surface/Duan_Ni211/reactions.py new file mode 100644 index 0000000000..9909644e36 --- /dev/null +++ b/input/kinetics/libraries/Surface/Duan_Ni211/reactions.py @@ -0,0 +1,128 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Duan_Ni211" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 +""" + +entry( + index = 1, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (5.52E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (63683.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni211 = 3.339E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 2.85E7(1/s)/exp(63683.4J/mol / 8.314J/molK/873K) = 1.84E11/s + = (1.84E11/s)/3.339E-9(mol/cm^2) = 5.52E19 cm^2/mol/s + +Ea = 0.66eV = 63683.4J/mol + +This is reaction 1 from Table 2 +""", + metal = "Ni", + facet = "211", +) + +entry( + index = 2, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.31E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (86841, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni211 = 3.339E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 4.91E6(1/s)/exp(86841J/mol / 8.314J/molK/873K) = 7.71E11/s + = (7.71E11/s)/3.339E-9(mol/cm^2) = 2.31E20 cm^2/mol/s + +Ea = 0.9eV = 86841J/mol + +This is reaction 2 from Table 2 +""", + metal = "Ni", + facet = "211", +) + +entry( + index = 3, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.36E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (100349.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni211 = 3.339E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 1.11E7(1/s)/exp(100349.6J/mol / 8.314J/molK/873K) = 1.12E13/s + = (1.12E13/s)/3.339E-9(mol/cm^2) = 3.36E21 cm^2/mol/s + +Ea = 1.04eV = 100349.6J/mol + +This is reaction 3 from Table 2 +""", + metal = "Ni", + facet = "211", +) + +entry( + index = 4, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (4.90E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (285610.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Structure sensitivity of ammonia decomposition +over Ni catalysts: A computational and experimental study" +Duan et al. Fuel Processing Technology 108 (2013) 112–117 +https://doi.org/10.1016/j.fuproc.2012.05.030 + +This reaction used RMG's surface site density of Ni211 = 3.339E-9(mol/cm^2) to calculate the A factor. +A = k/exp(Ea/RT) = 1.33E-5(1/s)/exp(285610.4J/mol / 8.314J/molK/873K) = 1.64E12/s + = (1.64E12/s)/3.339E-9(mol/cm^2) = 4.90E20 cm^2/mol/s + +Ea = 2.96eV = 285610.4J/mol + +This is reaction 4 from Table 2 +""", + metal = "Ni", + facet = "211", +) diff --git a/input/kinetics/libraries/Surface/Ishikawa_Rh111/dictionary.txt b/input/kinetics/libraries/Surface/Ishikawa_Rh111/dictionary.txt new file mode 100644 index 0000000000..e2c5df5897 --- /dev/null +++ b/input/kinetics/libraries/Surface/Ishikawa_Rh111/dictionary.txt @@ -0,0 +1,47 @@ +X +1 X u0 p0 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +N2_X +1 N u0 p0 c+1 {2,D} {3,D} +2 N u0 p2 c-1 {1,D} +3 X u0 p0 c0 {1,D} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +NO2_X +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 N u0 p1 c0 {1,S} {2,D} +4 X u0 p0 c0 {1,S} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +4 X u0 p0 c0 + +CO_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,D} +3 X u0 p0 c0 {2,D} + +CO2_X +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} +4 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Ishikawa_Rh111/reactions.py b/input/kinetics/libraries/Surface/Ishikawa_Rh111/reactions.py new file mode 100644 index 0000000000..3b9a633892 --- /dev/null +++ b/input/kinetics/libraries/Surface/Ishikawa_Rh111/reactions.py @@ -0,0 +1,153 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Ishikawa_Rh111" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 +""" + +entry( + index = 1, + label = "NO_X + X <=> N_X + O_X", + kinetics = SurfaceArrhenius( + A = (8.19E19, 'cm^2/(mol*s)'), + n = 1.009, + Ea = (76196, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""NO Dissociation""", + longDesc = u""" +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameters is calculed from +Table 2. Activation Energy (Ea) +and +Table S3. Reaction rate constant at different temperatures +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 2, + label = "NO_X + O_X <=> NO2_X + X", + kinetics = SurfaceArrhenius( + A = (6.52E19, 'cm^2/(mol*s)'), + n = 1.015, + Ea = (155285, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameters is calculed from +Table 2. Activation Energy (Ea) +and +Table S3. Reaction rate constant at different temperatures +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 3, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (1.43E20, 'cm^2/(mol*s)'), + n = 1.012, + Ea = (171681, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameters is calculed from +Table 2. Activation Energy (Ea) +and +Table S3. Reaction rate constant at different temperatures +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 4, + label = "N2O_X + X <=> N2_X + O_X", + kinetics = SurfaceArrhenius( + A = (9.12E19, 'cm^2/(mol*s)'), + n = 1.004, + Ea = (63657, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_Double_vdW""", + longDesc = u""" +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameters is calculed from +Table 2. Activation Energy (Ea) +and +Table S3. Reaction rate constant at different temperatures +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 5, + label = "CO_X + O_X <=> CO2_X + X", + kinetics = SurfaceArrhenius( + A = (1.73E20, 'cm^2/(mol*s)'), + n = 1.001, + Ea = (119598, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_Double_vdW""", + longDesc = u""" +"First-Principles Microkinetic Analysis of NO + CO Reactions on +Rh(111) Surface toward Understanding NOx Reduction Pathways" +Atsushi Ishikawa and Yoshitaka Tateyama +J. Phys. Chem. C 2018, 122, 30, 17378–17388 +https://doi.org/10.1021/acs.jpcc.8b05906 + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +The modified Arrhenius parameters is calculed from +Table 2. Activation Energy (Ea) +and +Table S3. Reaction rate constant at different temperatures +""", + metal = "Rh", + facet = "111", +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Kraehnert_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Kraehnert_Pt111/dictionary.txt new file mode 100644 index 0000000000..101bc55f31 --- /dev/null +++ b/input/kinetics/libraries/Surface/Kraehnert_Pt111/dictionary.txt @@ -0,0 +1,53 @@ +X +1 X u0 p0 c0 + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} diff --git a/input/kinetics/libraries/Surface/Kraehnert_Pt111/reactions.py b/input/kinetics/libraries/Surface/Kraehnert_Pt111/reactions.py new file mode 100644 index 0000000000..09c5b9a73c --- /dev/null +++ b/input/kinetics/libraries/Surface/Kraehnert_Pt111/reactions.py @@ -0,0 +1,150 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Kraehnert_Pt111" +shortDesc = u"" +longDesc = u""" +Based primarily on +"Ammonia Oxidation over Polycrystalline Platinum: +Surface Morphology and Kinetics at Atmospheric Pressure." +Krähnert, Ralph(2005) A Doctoral Thesis. +http://dx.doi.org/10.14279/depositonce-1270 +""" + +entry( + index = 1, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (5.14E15, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (135300, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"Ammonia Oxidation over Polycrystalline Platinum: +Surface Morphology and Kinetics at Atmospheric Pressure." +Krähnert, Ralph(2005) A Doctoral Thesis. +http://dx.doi.org/10.14279/depositonce-1270 + +A = k/exp(Ea/RT) = 9.34(cm^2/mol/s)/exp(135300J/mol / 8.314J/molK / 658K) = 5.14E15 cm^2/mol/s +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 2, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (6.96E16, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (139000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Ammonia Oxidation over Polycrystalline Platinum: +Surface Morphology and Kinetics at Atmospheric Pressure." +Krähnert, Ralph(2005) A Doctoral Thesis. +http://dx.doi.org/10.14279/depositonce-1270 + +A = k/exp(Ea/RT) = 64.2(m^2/mol/s)/exp(139000J/mol / 8.314J/molK / 658K) = 6.96E16 cm^2/mol/s +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 3, + label = "O_X + O_X <=> O2 + X + X", + kinetics = SurfaceArrhenius( + A = (2.55E08, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (181000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Ammonia Oxidation over Polycrystalline Platinum: +Surface Morphology and Kinetics at Atmospheric Pressure." +Krähnert, Ralph(2005) A Doctoral Thesis. +http://dx.doi.org/10.14279/depositonce-1270 + +A = k/exp(Ea/RT) = 1.09E-10(m^2/mol/s)/exp(181000J/mol / 8.314J/molK / 658K) = 2.55E08 (cm^2/mol/s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 4, + label = "NH3_X <=> NH3 + X", + kinetics = SurfaceArrhenius( + A = (1.48E09, '1/s'), + n = 0.0, + Ea = (60900, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Ammonia Oxidation over Polycrystalline Platinum: +Surface Morphology and Kinetics at Atmospheric Pressure." +Krähnert, Ralph(2005) A Doctoral Thesis. +http://dx.doi.org/10.14279/depositonce-1270 + +A = k/exp(Ea/RT) = 2.17(1/s)/exp(60900J/mol / 8.314J/molK / 658K) = 1.48E09 (1/s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 5, + label = "NO_X <=> NO + X", + kinetics = SurfaceArrhenius( + A = (2.41E16, '1/s'), + n = 0.0, + Ea = (154800, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"Ammonia Oxidation over Polycrystalline Platinum: +Surface Morphology and Kinetics at Atmospheric Pressure." +Krähnert, Ralph(2005) A Doctoral Thesis. +http://dx.doi.org/10.14279/depositonce-1270 + +A = k/exp(Ea/RT) = 1.24(1/s)/exp(154800J/mol / 8.314J/molK / 658K) = 2.41E16 (1/s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 6, + label = "N_X + NO_X <=> N2O + X + X", + kinetics = SurfaceArrhenius( + A = (1.09E17, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (155200, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Default""", + longDesc = u""" +"Ammonia Oxidation over Polycrystalline Platinum: +Surface Morphology and Kinetics at Atmospheric Pressure." +Krähnert, Ralph(2005) A Doctoral Thesis. +http://dx.doi.org/10.14279/depositonce-1270 + +A = k/exp(Ea/RT) = 5.2(m^2/mol/s)/exp(155200J/mol / 8.314J/molK / 658K) = 1.09E17 (cm^2/mol/s) +""", + metal = "Pt", + facet = "111", +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/dictionary.txt new file mode 100644 index 0000000000..c0b6adead3 --- /dev/null +++ b/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/dictionary.txt @@ -0,0 +1,229 @@ +X +1 X u0 p0 c0 + +O +multiplicity 3 +1 O u2 p2 c0 + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +CO +multiplicity 3 +1 O u0 p2 c0 {2,D} +2 C u2 p0 c0 {1,D} + +CO_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,D} +3 X u0 p0 c0 {2,D} + +CO2 +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} + +CO2_X +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} +4 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +H +multiplicity 2 +1 H u1 p0 c0 + +H2 +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} + +OH +multiplicity 2 +1 O u1 p2 c0 {2,S} +2 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +COOH_X +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,S} {2,D} {5,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 {3,S} + +COOH +multiplicity 2 +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 C u1 p0 c0 {1,S} {2,D} +4 H u0 p0 c0 {1,S} + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH2 +multiplicity 2 +1 N u1 p1 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH +multiplicity 3 +1 N u2 p1 c0 {2,S} +2 H u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N +multiplicity 4 +1 N u3 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NO +multiplicity 2 +1 N u1 p1 c0 {2,D} +2 O u0 p2 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +NO2 +multiplicity 2 +1 N u0 p1 c0 {2,D} {3,S} +2 O u0 p2 c0 {1,D} +3 O u1 p2 c0 {1,S} + +NO2_X +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 N u0 p1 c0 {1,S} {2,D} +4 X u0 p0 c0 {1,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 N u0 p1 c0 {2,S} {4,D} +4 X u0 p0 c0 {3,D} + +HCN +1 N u0 p1 c0 {2,T} +2 C u0 p0 c0 {1,T} {3,S} +3 H u0 p0 c0 {2,S} + +HCN_X +1 N u0 p1 c0 {2,T} +2 C u0 p0 c0 {1,T} {3,S} +3 H u0 p0 c0 {2,S} +4 X u0 p0 c0 + +CN +multiplicity 2 +1 N u0 p1 c0 {2,T} +2 C u1 p0 c0 {1,T} + +CN_X +1 N u0 p1 c0 {2,T} +2 C u0 p0 c0 {1,T} {3,S} +3 X u0 p0 c0 {2,S} + +C +1 C u2 p1 c0 + +C_X +1 C u0 p0 c0 {2,Q} +2 X u0 p0 c0 {1,Q} + +CH2O +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} + +CH2O_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 X u0 p0 c0 + +HCO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 C u1 p0 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} + +HCO_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 X u0 p0 c0 {2,S} + +C2N2 +1 N u0 p1 c0 {3,T} +2 N u0 p1 c0 {4,T} +3 C u0 p0 c0 {1,T} {4,S} +4 C u0 p0 c0 {2,T} {3,S} + +C2N2_X +1 N u0 p1 c0 {3,T} +2 N u0 p1 c0 {4,T} +3 C u0 p0 c0 {1,T} {4,S} +4 C u0 p0 c0 {2,T} {3,S} +5 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/reactions.py b/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/reactions.py new file mode 100644 index 0000000000..b21c765908 --- /dev/null +++ b/input/kinetics/libraries/Surface/Mhadeshwar_Pt111/reactions.py @@ -0,0 +1,3379 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Mhadeshwar_Pt111" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 +""" + +#---------------------O2 adsorption/desorption------------------------ + +entry( + index = 1, + label = "O + X <=> O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R1 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +#Reverse reaction of R1 +# entry( +# index = 2, +# label = "O_X <=> O + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (86, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R2 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 3, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.05, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R3 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R3 +# entry( +# index = 4, +# label = "O_X + O_X <=> O2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (52.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +# This is R4 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +#---------------------CO oxidation----------------------------------- + +entry( + index = 5, + label = "CO + X <=> CO_X", + kinetics = StickingCoefficient( + A = 0.5, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R5 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R5 +# entry( +# index = 6, +# label = "CO_X <=> CO + X", +# kinetics = SurfaceArrhenius( +# A = (2.28E25, '1/s'), +# n = 0.0, +# Ea = (40, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 5.7E16(1/s)/2.5E-9(mol/cm^2) = 2.28E25 cm^2/(mol*s) + +# This is R6 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + + +entry( + index = 7, + label = "CO2 + X <=> CO2_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R7 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R7 +# entry( +# index = 8, +# label = "CO2_X <=> CO2 + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (3.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R8 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R9 +# entry( +# index = 9, +# label = "CO2_X + X <=> CO_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (23.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_Double_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R9 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 10, + label = "CO_X + O_X <=> CO2_X + X", + kinetics = SurfaceArrhenius( + A = (4E18, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (18.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_Double_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E10(1/s)/2.5E-9(mol/cm^2) = 4E18 cm^2/(mol*s) + +This is R10 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +#---------------------H2 oxidation----------------------------------- + +entry( + index = 11, + label = "H + X <=> H_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R11 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R11 +# entry( +# index = 12, +# label = "H_X <=> H + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (60.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R12 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 13, + label = "H2 + X + X <=> H_X + H_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""H2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R13 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R13 +# entry( +# index = 14, +# label = "H_X + H_X <=> H2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (4E21, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (17.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""H2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +# This is R14 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 15, + label = "H2O + X <=> H2O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R15 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R15 +# entry( +# index = 16, +# label = "H2O_X <=> H2O + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (10.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R16 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 17, + label = "OH + X <=> OH_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R17 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R17 +# entry( +# index = 18, +# label = "OH_X <=> OH + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (63, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R18 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R20 +# entry( +# index = 19, +# label = "OH_X + X <=> H_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (27, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R19 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 20, + label = "H_X + O_X <=> OH_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (8.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R20 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R22 +# entry( +# index = 21, +# label = "H2O_X + X <=> H_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (18.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R21 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 22, + label = "H_X + OH_X <=> H2O_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (12.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R22 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R24 +# entry( +# index = 23, +# label = "O_X + H2O_X <=> OH_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (9.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R23 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 24, + label = "OH_X + OH_X <=> O_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (22.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R24 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +#-----------------Water promoted CO oxidation------------------------ + +entry( + index = 25, + label = "COOH + X <=> COOH_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R25 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R25 +# entry( +# index = 26, +# label = "COOH_X <=> COOH + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (56.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R26 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R28 +# entry( +# index = 27, +# label = "CO2_X + H_X <=> CO_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (5.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann_Pt/19""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R27 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 28, + label = "CO_X + OH_X <=> CO2_X + H_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (19, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann_Pt/19""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R28 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R30 +# entry( +# index = 29, +# label = "COOH_X + X <=> CO_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (5.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R29 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 30, + label = "CO_X + OH_X <=> COOH_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (18.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R30 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R32 +# entry( +# index = 31, +# label = "COOH_X + X <=> CO2_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (2.1, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Addition_Single_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R31 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 32, + label = "CO2_X + H_X <=> COOH_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (1.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Addition_Single_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R32 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R34 +# entry( +# index = 33, +# label = "CO_X + H2O_X <=> COOH_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (23.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R33 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 34, + label = "COOH_X + H_X <=> CO_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (5.4, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R34 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R36 +# entry( +# index = 35, +# label = "CO2_X + OH_X <=> COOH_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (25.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R35 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 36, + label = "COOH_X + O_X <=> CO2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (8.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R36 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R38 +# entry( +# index = 37, +# label = "CO2_X + H2O_X <=> COOH_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (17.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dual_Adsorption_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R37 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 38, + label = "COOH_X + OH_X <=> CO2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (12.4, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dual_Adsorption_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R38 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +#---------------------NH3 oxidation---------------------------------- + +entry( + index = 39, + label = "N + X <=> N_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Triple""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R39 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R39 +# entry( +# index = 40, +# label = "N_X <=> N + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (107.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Triple""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R40 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 41, + label = "N2 + X + X <=> N_X + N_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (27.9, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R41 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R41 +# entry( +# index = 42, +# label = "N_X + N_X <=> N2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (4E21, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (16.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""N2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E13(1/s)/2.5E-9(mol/cm^2) = 4E21 cm^2/(mol*s) + +# This is R42 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 43, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R43 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R43 +# entry( +# index = 44, +# label = "NH3_X <=> NH3 + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (20.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R44 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 45, + label = "NH2 + X <=> NH2_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R45 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R45 +# entry( +# index = 46, +# label = "NH2_X <=> NH2 + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (54.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R46 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 47, + label = "NH + X <=> NH_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R47 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R47 +# entry( +# index = 48, +# label = "NH_X <=> NH + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (83, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R48 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R50 +# entry( +# index = 49, +# label = "NH3_X + X <=> NH2_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (21.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R49 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 50, + label = "NH2_X + H_X <=> NH3_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (7.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R50 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R52 +# entry( +# index = 51, +# label = "NH2_X + X <=> NH_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (18.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R51 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 52, + label = "NH_X + H_X <=> NH2_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (16.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R52 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R54 +# entry( +# index = 53, +# label = "NH_X + X <=> N_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (19, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R53 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 54, + label = "N_X + H_X <=> NH_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (24.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R54 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R56 +# entry( +# index = 55, +# label = "NH3_X + O_X <=> NH2_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (12.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R55 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 56, + label = "NH2_X + OH_X <=> NH3_X + O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (16.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R56 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R58 +# entry( +# index = 57, +# label = "NH_X + OH_X <=> NH2_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (24.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R57 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 58, + label = "NH2_X + O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (8.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R58 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R60 +# entry( +# index = 59, +# label = "N_X + OH_X <=> NH_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (39.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R59 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 60, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (15.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R60 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R62 +# entry( +# index = 61, +# label = "NH2_X + H2O_X <=> NH3_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (3.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_Single_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R61 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 62, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (12, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R62 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R64 +# entry( +# index = 63, +# label = "NH_X + H2O_X <=> NH2_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (16.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R63 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 64, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (12.9, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R64 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R66 +# entry( +# index = 65, +# label = "N_X + H2O_X <=> NH_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (33.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R65 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 66, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (22.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R66 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +#---------------------NO oxidation---------------------------------- + +entry( + index = 67, + label = "NO + X <=> NO_X", + kinetics = StickingCoefficient( + A = 0.88, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R67 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R67 +# entry( +# index = 68, +# label = "NO_X <=> NO + X", +# kinetics = SurfaceArrhenius( +# A = (1E16, '1/s'), +# n = 0.0, +# Ea = (30.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R68 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 69, + label = "NO2 + X <=> NO2_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R69 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R69 +# entry( +# index = 70, +# label = "NO2_X <=> NO2 + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (23.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R70 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R72 +# entry( +# index = 71, +# label = "NO_X + X <=> N_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (31.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Nitrogen/51""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R71 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 72, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (43.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R72 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R74 +# entry( +# index = 73, +# label = "NO_X + H_X <=> N_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (4.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R73 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 74, + label = "N_X + OH_X <=> NO_X + H_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (35.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R74 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R76 +# entry( +# index = 75, +# label = "NO_X + H_X <=> NH_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (8.2, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R75 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 76, + label = "NH_X + O_X <=> NO_X + H_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (14.9, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R76 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 77, + label = "NO_X + OH_X <=> NO2_X + H_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (38.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R77 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R77 +# entry( +# index = 78, +# label = "NO2_X + H_X <=> NO_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R78 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R80 +# entry( +# index = 79, +# label = "NO2_X + X <=> NO_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = -0.93, +# Ea = (1.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R79 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 80, + label = "NO_X + O_X <=> NO2_X + X", + kinetics = SurfaceArrhenius( + A = (1.2E21, 'cm^2/(mol*s)'), + n = 0.93, + Ea = (21.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 3E12(1/s)/2.5E-9(mol/cm^2) = 1.2E21 cm^2/(mol*s) + +This is R80 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +#---------------------HCN oxidation---------------------------------- + + +entry( + index = 81, + label = "HCN + X <=> HCN_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R81 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R81 +# entry( +# index = 82, +# label = "HCN_X <=> HCN + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (21.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R82 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 83, + label = "CN + X <=> CN_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R83 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R83 +# entry( +# index = 84, +# label = "CN_X <=> CN + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (78.2, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R84 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R86 +# entry( +# index = 85, +# label = "HCN_X + X <=> CN_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (21.1, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R85 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 86, + label = "CN_X + H_X <=> HCN_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (13.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R86 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R88 +# entry( +# index = 87, +# label = "HCN_X + O_X <=> CN_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (17.1, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R87 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 88, + label = "CN_X + OH_X <=> HCN_X + O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (27.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R88 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R90 +# entry( +# index = 89, +# label = "HCN_X + OH_X <=> CN_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (5.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_Single_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R89 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 90, + label = "CN_X + H2O_X <=> HCN_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (3.4, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R90 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R92 +# entry( +# index = 91, +# label = "CN_X + O_X <=> C_X + NO_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (8.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R91 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 92, + label = "C_X + NO_X <=> CN_X + O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (4.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R92 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R94 +# entry( +# index = 93, +# label = "CO_X + N_X <=> CN_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (76.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R93 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 94, + label = "CN_X + O_X <=> CO_X + N_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (15.4, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R94 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +#---------------------CH2O oxidation--------------------------------- + +entry( + index = 95, + label = "CH2O + X <=> CH2O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R95 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R95 +# entry( +# index = 96, +# label = "CH2O_X <=> CH2O + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (14.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R96 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 97, + label = "HCO + X <=> HCO_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R97 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R97 +# entry( +# index = 98, +# label = "HCO_X <=> HCO + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (54.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R98 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R100 +# entry( +# index = 99, +# label = "CH2O_X + X <=> HCO_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (8.1, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R99 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 100, + label = "HCO_X + H_X <=> CH2O_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (20.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R100 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 101, + label = "HCO_X + OH_X <=> CH2O_X + O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (30.9, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R101 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R101 +# entry( +# index = 102, +# label = "CH2O_X + O_X <=> HCO_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R102 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 103, + label = "HCO_X + H2O_X <=> CH2O_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (18.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R103 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R103 +# entry( +# index = 104, +# label = "CH2O_X + OH_X <=> HCO_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_Single_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R104 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R106 +# entry( +# index = 105, +# label = "HCO_X + X <=> CO_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R105 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 106, + label = "CO_X + H_X <=> HCO_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (30.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R106 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 107, + label = "CO_X + OH_X <=> HCO_X + O_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (49.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R107 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R107 +# entry( +# index = 108, +# label = "HCO_X + O_X <=> CO_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (6E20, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1.5E12(1/s)/2.5E-9(mol/cm^2) = 6E20 cm^2/(mol*s) + +# This is R108 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 109, + label = "CO_X + H2O_X <=> HCO_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (36.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R109 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R109 +# entry( +# index = 110, +# label = "HCO_X + OH_X <=> CO_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R110 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +#---------------------C foramtion and oxidation---------------------- + +entry( + index = 111, + label = "C + X <=> C_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Quadruple bonds""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R111 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R111 +# entry( +# index = 112, +# label = "C_X <=> C + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (158.2, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Quadruple bonds""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R112 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R114 +# entry( +# index = 113, +# label = "CO_X + X <=> C_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (54.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann libraries""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R113 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 114, + label = "C_X + O_X <=> CO_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (1.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann libraries""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R114 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 115, + label = "CO_X + CO_X <=> C_X + CO2_X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (48.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann libraries""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R115 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R115 +# entry( +# index = 116, +# label = "C_X + CO2_X <=> CO_X + CO_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann libraries""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R116 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +#---------------------N2O and C2N2 formation/decomposition----------- + +entry( + index = 117, + label = "N2O + X <=> N2O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R117 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R117 +# entry( +# index = 118, +# label = "N2O_X <=> N2O + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (6.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R118 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R120 +# entry( +# index = 119, +# label = "N2O_X + X <=> N_X + NO_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (3.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R119 in Appendix A +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 120, + label = "N_X + NO_X <=> N2O_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (19.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R120 in Appendix A +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 121, + label = "C2N2 + X <=> C2N2_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +This is R121 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) + +# Reverse reaction of R121 +# entry( +# index = 122, +# label = "C2N2_X <=> C2N2 + X", +# kinetics = SurfaceArrhenius( +# A = (1E13, '1/s'), +# n = 0.0, +# Ea = (21, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# This is R122 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +# Reverse reaction of R124 +# entry( +# index = 123, +# label = "C2N2_X + X <=> CN_X + CN_X", +# kinetics = SurfaceArrhenius( +# A = (4E19, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (29.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A detailed microkinetic model for diesel engine emissions oxidation +# on platinum based diesel oxidation catalysts (DOC)" +# Hom Sharma & Ashish Mhadeshwar. (2012). +# Applied Catalysis B: Environmental, 127, 190-204 +# DOI: 10.1016/j.apcatb.2012.08.021 + +# Surface site density used in this paper is 2.5E-9 mol/cm^2 +# A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +# This is R123 in Appendix A + +# This reaction is the least important ones for typical DOC conditions. +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 124, + label = "CN_X + CN_X <=> C2N2_X + X", + kinetics = SurfaceArrhenius( + A = (4E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (28.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A detailed microkinetic model for diesel engine emissions oxidation +on platinum based diesel oxidation catalysts (DOC)" +Hom Sharma & Ashish Mhadeshwar. (2012). +Applied Catalysis B: Environmental, 127, 190-204 +DOI: 10.1016/j.apcatb.2012.08.021 + +Surface site density used in this paper is 2.5E-9 mol/cm^2 +A = 1E11(1/s)/2.5E-9(mol/cm^2) = 4E19 cm^2/(mol*s) + +This is R124 in Appendix A + +This reaction is the least important ones for typical DOC conditions. +""", + metal = "Pt", + facet = "111", +) diff --git a/input/kinetics/libraries/Surface/Novell_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Novell_Pt111/dictionary.txt new file mode 100644 index 0000000000..63125a26da --- /dev/null +++ b/input/kinetics/libraries/Surface/Novell_Pt111/dictionary.txt @@ -0,0 +1,34 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Novell_Pt111/reactions.py b/input/kinetics/libraries/Surface/Novell_Pt111/reactions.py new file mode 100644 index 0000000000..49807ee1b7 --- /dev/null +++ b/input/kinetics/libraries/Surface/Novell_Pt111/reactions.py @@ -0,0 +1,80 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Novell_Pt111" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b +""" + +entry( + index = 1, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.859E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (91000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 500K) = 7.1E11(1/s)/2.483E-9(mol/cm^2) = 2.859E20 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 2, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.430E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (101000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 500K) = 1.1E13(1/s)/2.483E-9(mol/cm^2) = 4.430E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 3, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (5.236E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (116000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species" +Gerard Novell-Leruth et al. J. Phys. Chem. C 2007, 111, 2, 860–868 +https://doi.org/10.1021/jp064742b + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 500K) = 1.3E13(1/s)/2.483E-9(mol/cm^2) = 5.236E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Offermans_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Offermans_Pt111/dictionary.txt new file mode 100644 index 0000000000..7a21bf47c5 --- /dev/null +++ b/input/kinetics/libraries/Surface/Offermans_Pt111/dictionary.txt @@ -0,0 +1,68 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py b/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py new file mode 100644 index 0000000000..98a0b7c110 --- /dev/null +++ b/input/kinetics/libraries/Surface/Offermans_Pt111/reactions.py @@ -0,0 +1,263 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Offermans_Pt111" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 +""" + +entry( + index = 1, + label = "N2 + X <=> N2_X", + kinetics = SurfaceArrhenius( + A = (8.6E12, 'cm^3/(mol*s)'), + n = 0, + Ea = (4000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_vdW""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +A (at 300K from p.62)= 8.6E12 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 2, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.255E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (93000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K)= 5.6E11(1/s)/2.483E-9(mol/cm^2) = 2.255E20 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 3, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.014E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (110000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 5.0E12(1/s)/2.483E-9(mol/cm^2) = 2.014E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 4, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.08997E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (118000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 7.2E12(1/s)/2.483E-9(mol/cm^2) = 2.8997E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 5, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4.833E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (42000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 1.2E12(1/s)/2.483E-9(mol/cm^2) = 4.833E20 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 6, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.457E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (87000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 6.1E12(1/s)/2.483E-9(mol/cm^2) = 2.457E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 7, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.061E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (84000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 7.6E12(1/s)/2.483E-9(mol/cm^2) = 3.061E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 8, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (6.444E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (73000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 1.6E11(1/s)/2.483E-9(mol/cm^2) = 6.444E19 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 9, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (1.369E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (22000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 3.4E12(1/s)/2.483E-9(mol/cm^2) = 1.369E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 10, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.054E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (35000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_AbstractionvdW""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 5.1E11(1/s)/2.483E-9(mol/cm^2) = 2.054E20 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 11, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (2.859E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (1000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"Ammonia oxidation on platinum : a density functional theory study of surface reactivity." +Offermans, W. K. (2007). Technische Universiteit Eindhoven. +https://doi.org/10.6100/IR630067 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (at 300K) = 7.1E12(1/s)/2.483E-9(mol/cm^2) = 2.859E21 cm^2/(mol*s) +""", + metal = "Pt", + facet = "111", +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Popa_Rh111/dictionary.txt b/input/kinetics/libraries/Surface/Popa_Rh111/dictionary.txt new file mode 100644 index 0000000000..910ab0b5d9 --- /dev/null +++ b/input/kinetics/libraries/Surface/Popa_Rh111/dictionary.txt @@ -0,0 +1,48 @@ +X +1 X u0 p0 c0 + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Popa_Rh111/reactions.py b/input/kinetics/libraries/Surface/Popa_Rh111/reactions.py new file mode 100644 index 0000000000..ede4cc645e --- /dev/null +++ b/input/kinetics/libraries/Surface/Popa_Rh111/reactions.py @@ -0,0 +1,317 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Popa_Rh111" +shortDesc = u"" +longDesc = u""" +Based primarily on +"Ab initio density-functional theory study of +NHx dehydrogenation and reverse reactions on the Rh(111) surface" +C. Popa, W. K. Offermans, R. A. van Santen, and A. P. J. Jansen +American Physical Society 2006, Vol. 74, Iss. 15—15 +https://doi.org/10.1103/PhysRevB.74.155428 + +and + +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g +""" + +#top <=> bridge + hcp +entry( + index = 1, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (8.21E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (109033.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +Based primarily on "Ab initio density-functional theory study of +NHx dehydrogenation and reverse reactions on the Rh(111) surface" +C. Popa, W. K. Offermans, R. A. van Santen, and A. P. J. Jansen +American Physical Society Vol. 74, Iss. 15—15, 2006 +https://doi.org/10.1103/PhysRevB.74.155428 + +This is reaction 1 in TABLE VI. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 2.18E13(1/s)/2.656E-9(mol/cm^2) = 8.21E21 cm^2/(mol*s) +Ea = 1.13eV = 109033.7J/mol +""", + metal = "Rh", + facet = "111", +) + +#bridge <=> fcc + fcc +entry( + index = 2, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (6.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (92630.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +Based primarily on "Ab initio density-functional theory study of +NHx dehydrogenation and reverse reactions on the Rh(111) surface" +C. Popa, W. K. Offermans, R. A. van Santen, and A. P. J. Jansen +American Physical Society Vol. 74, Iss. 15—15, 2006 +https://doi.org/10.1103/PhysRevB.74.155428 + +This is reaction 3 in TABLE VI. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.68E13(1/s)/2.656E-9(mol/cm^2) = 6.33E21 cm^2/(mol*s) +Ea = 0.86eV = 92630.4J/mol +""", + metal = "Rh", + facet = "111", +) +#hcp <=> hcp + hcp +entry( + index = 3, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (7.94E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (97454.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +Based primarily on "Ab initio density-functional theory study of +NHx dehydrogenation and reverse reactions on the Rh(111) surface" +C. Popa, W. K. Offermans, R. A. van Santen, and A. P. J. Jansen +American Physical Society Vol. 74, Iss. 15—15, 2006 +https://doi.org/10.1103/PhysRevB.74.155428 + +This is reaction 7 in TABLE VI. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 2.11E13(1/s)/2.656E-9(mol/cm^2) = 7.94E21 cm^2/(mol*s) +Ea = 1.91eV = 97454.9J/mol +""", + metal = "Rh", + facet = "111", +) + +# top + hcp <=> bridge + top +entry( + index = 4, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A=(6.40E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (92630.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 2a. in TABLE 4. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.7E12(1/s)/2.656E-9(mol/cm^2) = 6.40E20 cm^2/(mol*s) +Ea = 0.96eV = 92630.4J/mol +""", + metal = "Rh", + facet = "111", +) + +# brigde + fcc <=> hcp + top +entry( + index = 5, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A=(6.29E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (71402.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 4a. in TABLE 4. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.67E13(1/s)/2.656E-9(mol/cm^2) = 6.29E21 cm^2/(mol*s) +Ea = 0.74eV = 71402.6J/mol +""", + metal = "Rh", + facet = "111", +) + +# hcp + hcp <=> hcp + top +entry( + index = 6, + label = "NH_X +O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A=(28.32E21 , 'cm^2/(mol*s)'), + n = 0.0, + Ea = (84911.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 2a. in TABLE 4. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 2.21E13(1/s)/2.656E-9(mol/cm^2) = 8.32E21 cm^2/(mol*s) +Ea = 0.88eV = 84911.2J/mol +""", + metal = "Rh", + facet = "111", +) + +# top + top <=> bridge + top +entry( + index = 7, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A=(17.27E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (23157.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 1a. in TABLE 5. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.93E12(1/s)/2.656E-9(mol/cm^2) = 7.27E20 cm^2/(mol*s) +Ea = 0.24eV = 23157.6J/mol +""", + metal = "Rh", + facet = "111", +) + +# bridge + top + hcp + top +entry( + index = 8, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A=(1.50E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (13508.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 3a. in TABLE 5. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 3.98E12(1/s)/2.656E-9(mol/cm^2) = 1.50E21 cm^2/(mol*s) +Ea = 0.14eV = 13508.6J/mol +""", + metal = "Rh", + facet = "111", +) + +# hcp + top <=> hcp + top +entry( + index = 9, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A=(4.52E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (22192.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 6a. in TABLE 5. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 1.2E12(1/s)/2.656E-9(mol/cm^2) = 4.52E20 cm^2/(mol*s) +Ea = 0.23eV = 22192.7J/mol +""", + metal = "Rh", + facet = "111", +) + +# hcp + fcc <=> top +entry( + index = 10, + label = "N_X + N_X <=> N2_X + X", + kinetics = SurfaceArrhenius( + A=(1.69E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (1147629.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Default""", + longDesc = u""" +Based primarily on +"Density-functional theory study of NHx oxidation +and reverse reactions on the Rh (111) surface." +C. Popa, R. A. van Santen, and A. P. J. JansenJ. +Phys. Chem. C 2007, 111, 9839– 9852. +https://doi.org/10.1021/jp071072g + +This is reaction 3a. in TABLE 6. + +This reaction used RMG's surface site density of Rh111 = 2.656E-09(mol/cm^2) to calculate the A factor. +A (at 300K)= 4.48E13(1/s)/2.656E-9(mol/cm^2) = 1.69E22 cm^2/(mol*s) +Ea = 1.53eV = 147629.7J/mol +""", + metal = "Rh", + facet = "111", +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Rebrov_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Rebrov_Pt111/dictionary.txt new file mode 100644 index 0000000000..608257ab17 --- /dev/null +++ b/input/kinetics/libraries/Surface/Rebrov_Pt111/dictionary.txt @@ -0,0 +1,91 @@ +X +1 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +NO +multiplicity 2 +1 N u1 p1 c0 {2,D} +2 O u0 p2 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +NHO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +4 X u0 p0 c0 + +N2_X +1 N u0 p0 c+1 {2,D} {3,D} +2 N u0 p2 c-1 {1,D} +3 X u0 p0 c0 {1,D} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py b/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py new file mode 100644 index 0000000000..cd84f45eaf --- /dev/null +++ b/input/kinetics/libraries/Surface/Rebrov_Pt111/reactions.py @@ -0,0 +1,478 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Rebrov_Pt111" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 +""" + +entry( + index = 1, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 0.79731, + n = 0.0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((2e8 /atm)/(101325 Pa/atm)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(17(g/mol))*the molar gas constant*(298 kelvin)) + +This is R1 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 2, +# label = "NH3_X <=> NH3 + X", +# kinetics = SurfaceArrhenius( +# A = (1E9, '1/s'), +# n = 0.0, +# Ea = (75200, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +# Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +# https://doi.org/10.1016/S1385-8947(02)00068-2 + +# This is R2 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 3, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.01094, + n = 0.0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((2e6 /atm)/(101325 Pa/atm)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(32(g/mol))*the molar gas constant*(298 kelvin)) + +This is R4 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 4, +# label = "O_X + O_X <=> O2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (4.03E21, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (213200, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +# Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +# https://doi.org/10.1016/S1385-8947(02)00068-2 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +# This is R4 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 5, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (6.85E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (157000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.7E15(1/s)/2.483E-9(mol/cm^2) = 6.85E23 cm^2/(mol*s) + +This is R5 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 6, + label = "NH2_X + O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4.03E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is R6 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 7, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4.03E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (58500, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is R7 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 8, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (4.03E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (121200, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A (298K) = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is R8 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 9, + label = "NH_X + O_X <=> NHO_X + X", + kinetics = SurfaceArrhenius( + A = (4.03E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (73000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_Double_vdW""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is R9 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 10, + label = "NHO_X + O_X <=> NO_X + OH_X", + kinetics = SurfaceArrhenius( + A = (8.05E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (118000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 2E15(1/s)/2.483E-9(mol/cm^2) = 8.05E23 cm^2/(mol*s) + +This is R10 in Table 1, it's from ref[52] where metal = Pt100. +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 11, +# label = "NO_X + X <=> N_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (6.44E21, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (116800, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Nitrogen/51""", +# longDesc = u""" +# "Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +# Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +# https://doi.org/10.1016/S1385-8947(02)00068-2 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A (298K) = 1.6E13(1/s)/2.483E-9(mol/cm^2) = 6.44E21 cm^2/(mol*s) + +# This is R11 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 12, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (4.03E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (79100, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E11(1/s)/2.483E-9(mol/cm^2) = 4.03E19 cm^2/(mol*s) + +This is R12 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 13, + label = "N_X + NO_X <=> N2O + X + X", + kinetics = SurfaceArrhenius( + A = (4.03E19, 'cm^2/(mol*s)'), + n = 0, + Ea = (92900, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""R13 in Table 1, doesn't match a family""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E11(1/s)/2.483E-9(mol/cm^2) = 4.03E19 cm^2/(mol*s) + +This is R13 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 14, + label = "N2O_X + X <=> N2_X + O_X", + kinetics = SurfaceArrhenius( + A = (1.01E17, 'cm^2/(mol*s)'), + n = 0, + Ea = (72200, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_Double_vdW""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 2.5E8(1/s)/2.483E-9(mol/cm^2) = 1.01E17 cm^2/(mol*s) + +This is R14 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 15, + label = "NO_X <=> NO + X", + kinetics = SurfaceArrhenius( + A = (1E16, '1/s'), + n = 0.0, + Ea = (140000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This is R15 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 16, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (4.03E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (46000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +This is R16 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +#reverse reaction of R18 +# entry( +# index = 17, +# label = "OH_X + OH_X <=> O_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (4.03E21, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (75300, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +# Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +# https://doi.org/10.1016/S1385-8947(02)00068-2 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1E13(1/s)/2.483E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) + +# This is R17 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 18, + label = "O_X + H2O_X <=> OH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4.03E19, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (52700, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E11(1/s)/2.483E-9(mol/cm^2) = 4.03E19 cm^2/(mol*s) + +This is R18 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 19, + label = "H2O_X <=> H2O + X", + kinetics = SurfaceArrhenius( + A = (1E13, '1/s'), + n = 0.0, + Ea = (40300, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor" +Rebrov et al. (2002). Chemical Engineering Journal, 90, 61–76. +https://doi.org/10.1016/S1385-8947(02)00068-2 + +This is R19 in Table 1 +""", + metal = "Pt", + facet = "111", +) diff --git a/input/kinetics/libraries/Surface/Roldan_Cu111/dictionary.txt b/input/kinetics/libraries/Surface/Roldan_Cu111/dictionary.txt new file mode 100644 index 0000000000..f5209edee7 --- /dev/null +++ b/input/kinetics/libraries/Surface/Roldan_Cu111/dictionary.txt @@ -0,0 +1,111 @@ +X +1 X u0 c0 + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p0 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +H2_X +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 + +H2 +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +N2H4 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {2,S} + +N2H4_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {2,S} +7 X u0 p0 c0 + +N2H3_X +1 N u0 p1 c0 {2,S} {3,S} {6,S} +2 N u0 p1 c0 {1,S} {4,S} {5,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 X u0 p0 c0 {1,S} + +[Pt]NN[Pt] +1 N u0 p1 c0 {2,S} {3,S} {5,S} +2 N u0 p1 c0 {1,S} {4,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 X u0 p0 c0 {1,S} +6 X u0 p0 c0 {2,S} + +NN=[Pt] +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 {2,D} + +[Pt]NN=[Pt] +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} +5 X u0 p0 c0 {2,D} + +[Pt]N=N +1 N u0 p1 c0 {2,D} {4,S} +2 N u0 p1 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} +4 X u0 p0 c0 {1,S} + +[Pt]=NN=[Pt] +1 N u0 p1 c0 {2,S} {3,D} +2 N u0 p1 c0 {1,S} {4,D} +3 X u0 p0 c0 {1,D} +4 X u0 p0 c0 {2,D} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Roldan_Cu111/reactions.py b/input/kinetics/libraries/Surface/Roldan_Cu111/reactions.py new file mode 100644 index 0000000000..a2f524a7a9 --- /dev/null +++ b/input/kinetics/libraries/Surface/Roldan_Cu111/reactions.py @@ -0,0 +1,822 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Roldan_Cu111" +shortDesc = u"" +longDesc = u""" +Based primarily on +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F +""" + +entry( + index = 1, + label = "N2H4 + X <=> N2H4_X", + kinetics = StickingCoefficient( + A = 1.17E-6, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This is R0 in Table 2 at T=300K +""", + metal = "Cu", + facet = "111", +) + +#Skip R1 (reverse of R0) +# entry( +# index = 2, +# label = "N2H4_X <=> N2H4 + X", +# kinetics = SurfaceArrhenius( +# A = (4.27e19, '1/s'), +# n = -3.337, +# Ea = (0, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Micro-kinetic simulations of the catalytic decomposition +# of hydrazine on the Cu(111) surface" +# Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +# DOI:10.1039/C6FD00186F + +# A and n was calculated by numpy.linalg.lstsq from Table 1 + +# This is R1 in Table 1 +# """, +# metal = "Cu", +# facet = "111", +# ) + +#Skip R2 (reverse of R3) +# entry( +# index = 3, +# label = "NH3_X <=> NH3 + X", +# kinetics = SurfaceArrhenius( +# A = (1.29E15, '1/s'), +# n = -2.186, +# Ea = (0, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Micro-kinetic simulations of the catalytic decomposition +# of hydrazine on the Cu(111) surface" +# Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +# DOI:10.1039/C6FD00186F + +# A and n was calculated by numpy.linalg.lstsq from Table 1 + +# This is R2 in Table 1 +# """, +# metal = "Cu", +# facet = "111", +# ) + +entry( + index = 4, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1.88E-4, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This is R3 in Table 2 at T=300K +""", + metal = "Cu", + facet = "111", +) + +#Skip R4 (reverse of R5) +# entry( +# index = 5, +# label = "N2_X <=> N2 + X", +# kinetics = SurfaceArrhenius( +# A = (1.27E18, '1/s'), +# n = -2.938, +# Ea = (0, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Micro-kinetic simulations of the catalytic decomposition +# of hydrazine on the Cu(111) surface" +# Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +# DOI:10.1039/C6FD00186F + +# A and n was calculated by numpy.linalg.lstsq from Table 1 + +# This is R4 in Table 1 +# """, +# metal = "Cu", +# facet = "111", +# ) + +entry( + index = 6, + label = "N2 + X <=> N2_X", + kinetics = StickingCoefficient( + A = 5.5E-5, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This is R5 in Table 2 at T=300K +""", + metal = "Cu", + facet = "111", +) + +#Skip R6 (reverse of R7) +# entry( +# index = 7, +# label = "H_X + H_X <=> H2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (1.54E21, 'cm^2/(mol*s)'), +# n = 0.044, +# Ea = (104209, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""H2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "Micro-kinetic simulations of the catalytic decomposition +# of hydrazine on the Cu(111) surface" +# Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +# DOI:10.1039/C6FD00186F + +# This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to calculate the A factor. +# A and n was calculated by numpy.linalg.lstsq from Table 1 + +# This is R6 in Table 1 +# """, +# metal = "Cu", +# facet = "111", +# ) + +entry( + index = 8, + label = "H2 + X + X <=> H_X + H_X", + kinetics = StickingCoefficient( + A = 2.36E-2, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""H2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This is R7 in Table 2 at T=300K +""", + metal = "Cu", + facet = "111", +) + +entry( + index = 9, + label = "N2H4_X + X <=> N2H3_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.69E18, 'cm^2/(mol*s)'), + n = 1.22, + Ea = (125437, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R8 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R9 (reverse of R10) + +entry( + index = 10, + label = "N2H3_X + X <=> NN=[Pt] + H_X", + kinetics = SurfaceArrhenius( + A = (1.34E17, 'cm^2/(mol*s)'), + n = 1.942, + Ea = (121577, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R10 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R11 (reverse of R12) + +entry( + index = 11, + label = "N2H3_X + X + X <=> [Pt]NN[Pt] + H_X", + kinetics = SurfaceArrhenius( + A = (1.95E18, 'cm^4/(mol^2*s)'), + n = 1.376, + Ea = (130262, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R12 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R13 (reverse of R12) + +entry( + index = 12, + label = "NN=[Pt] + X <=> [Pt]N=N + H_X", + kinetics = SurfaceArrhenius( + A = (1.09E19, 'cm^2/(mol*s)'), + n = 1.002, + Ea = (108069, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_Beta""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R14 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R15 (reverse of R14) + +entry( + index = 13, + label = "[Pt]NN[Pt] + X <=> [Pt]NN=[Pt] + H_X", + kinetics = SurfaceArrhenius( + A = (1.07E19, 'cm^2/(mol*s)'), + n = 1.134, + Ea = (141840, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R16 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R17 (reverse of R16) + +entry( + index = 14, + label = "[Pt]NN=[Pt] + X <=> [Pt]=NN=[Pt] + H_X", + kinetics = SurfaceArrhenius( + A = (3.43E18, 'cm^2/(mol*s)'), + n = 1.285, + Ea = (16403, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R18 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R19 (reverse of R18) + +entry( + index = 15, + label = "N2H4_X + X <=> NH2_X + NH2_X", + kinetics = SurfaceArrhenius( + A = (6.61E17, 'cm^2/(mol*s)'), + n = 1.589, + Ea = (66578, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R20 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R21 (reverse of R20) + +entry( + index = 16, + label = "N2H3_X + X <=> NH2_X + NH_X", + kinetics = SurfaceArrhenius( + A = (2.87E16, 'cm^2/(mol*s)'), + n = 2.065, + Ea = (86841, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R22 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R23 (reverse of R22) + +entry( + index = 17, + label = "NN=[Pt] + X <=> NH2_X + N_X", + kinetics = SurfaceArrhenius( + A = (4.03E19, 'cm^2/(mol*s)'), + n = 0.559, + Ea = (130262, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R24 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R25 (reverse of R24) + +entry( + index = 18, + label = "[Pt]NN[Pt] <=> NH_X + NH_X", + kinetics = SurfaceArrhenius( + A = (4.39E11, '1/s'), + n = 0.299, + Ea = (76227, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = """Surface_Bidentate_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R26 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R27 (reverse of R26) + +entry( + index = 19, + label = "[Pt]NN=[Pt] <=> NH_X + N_X", + kinetics = SurfaceArrhenius( + A = (2.59E11, '1/s'), + n = 0.619, + Ea = (137016, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Bidentate_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R28 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R29 (reverse of R28) + +entry( + index = 20, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (5.93E17, 'cm^2/(mol*s)'), + n = 1.321, + Ea = (136051, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R30 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R31 (reverse of R30) + +entry( + index = 21, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (5.67E19, 'cm^2/(mol*s)'), + n = 0.513, + Ea = (135086, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R32 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R33 (reverse of R32) + +entry( + index = 22, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.66E19, 'cm^2/(mol*s)'), + n = 0.853, + Ea = (172717, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R34 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R35 (reverse of R34) + +entry( + index = 23, + label = "NH2_X + NH2_X <=> NH_X + NH3_X", + kinetics = SurfaceArrhenius( + A = (1.16E20, 'cm^2/(mol*s)'), + n = 0.667, + Ea = (43420, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R36 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R37 (reverse of R36) + +entry( + index = 24, + label = "N2H4_X + NH2_X <=> N2H3_X + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.38E20, 'cm^2/(mol*s)'), + n = 0.156, + Ea = (40526, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R38 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R39 (reverse of R38) + +entry( + index = 25, + label = "N2H3_X + NH2_X + X <=> [Pt]NN[Pt] + NH3_X", + kinetics = SurfaceArrhenius( + A = (4.46E19, 'cm^4/(mol^2*s)'), + n = 0.659, + Ea = (61754, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R40 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R41 (reverse of R40) + +entry( + index = 26, + label = "N2H3_X + NH2_X <=> NN=[Pt] + NH3_X", + kinetics = SurfaceArrhenius( + A = (1.02E19, 'cm^2/(mol*s)'), + n = 1.073, + Ea = (51140, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R42 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R43 (reverse of R42) + +entry( + index = 27, + label = "[Pt]NN[Pt] + NH2_X <=> [Pt]NN=[Pt] + NH3_X", + kinetics = SurfaceArrhenius( + A = (1.94E20, 'cm^2/(mol*s)'), + n = 0.577, + Ea = (24122, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R44 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R45 (reverse of R44) + +entry( + index = 28, + label = "NN=[Pt] + NH2_X <=> [Pt]N=N + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.51E19, 'cm^2/(mol*s)'), + n = 0.966, + Ea = (28947, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R46 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R47 (reverse of R46) + +entry( + index = 29, + label = "[Pt]NN=[Pt] + NH2_X <=> [Pt]=NN=[Pt] + NH3_X", + kinetics = SurfaceArrhenius( + A = (4.04E19, 'cm^2/(mol*s)'), + n = 0.86, + Ea = (7719, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +This reaction used RMG's surface site density of Cu111 = 2.943E-9(mol/cm^2) to estimate A factor. +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R48 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R49 (reverse of R48) + +entry( + index = 30, + label = "[Pt]=NN=[Pt] <=> N_X + N_X", + kinetics = SurfaceArrhenius( + A = (4.77E11, '1/s'), + n = 0.06, + Ea = (452538, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Bidentate_Dissociation""", + longDesc = u""" +"Micro-kinetic simulations of the catalytic decomposition +of hydrazine on the Cu(111) surface" +Tafreshi, S. S., Roldan, A. & de Leeuw, N. H. (2017). Faraday Discussions, 197, 41-57. +DOI:10.1039/C6FD00186F + +A and n was calculated by numpy.linalg.lstsq from Table 1 + +This is R50 in Table 1 +""", + metal = "Cu", + facet = "111", +) + +#Skip R51 (reverse of R50) diff --git a/input/kinetics/libraries/Surface/Roldan_Ir111/dictionary.txt b/input/kinetics/libraries/Surface/Roldan_Ir111/dictionary.txt new file mode 100644 index 0000000000..a8a6d8d7e8 --- /dev/null +++ b/input/kinetics/libraries/Surface/Roldan_Ir111/dictionary.txt @@ -0,0 +1,116 @@ +X +1 X u0 c0 + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p0 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +H2_X +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 + +H2 +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +N2H4_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {2,S} +7 X u0 c0 + +N2H3_X +1 N u0 p1 c0 {2,S} {3,S} {6,S} +2 N u0 p1 c0 {1,S} {4,S} {5,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 X u0 p0 c0 {1,S} + +N2H2_X +1 N u0 p1 c0 {2,D} {3,S} +2 N u0 p1 c0 {1,D} {4,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 X u0 p0 c0 + +[Pt]NN=[Pt] +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} +5 X u0 p0 c0 {2,D} + +[Pt]N=N[Pt] +1 N u0 p1 c0 {2,D} {4,S} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} +4 X u0 p0 c0 {1,S} + +NN=[Pt] +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 N u0 p1 c0 {1,S} {5,D} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 {2,D} + +[Pt]=NN=[Pt] +1 N u0 p1 c0 {2,S} {3,D} +2 N u0 p1 c0 {1,S} {4,D} +3 X u0 p0 c0 {1,D} +4 X u0 p0 c0 {2,D} + +[Pt]NN[Pt] +1 N u0 p1 c0 {2,S} {3,S} {5,S} +2 N u0 p1 c0 {1,S} {4,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {2,S} +5 X u0 p0 c0 {1,S} +6 X u0 p0 c0 {2,S} + +N2H_X +1 N u0 p1 c0 {2,D} {4,S} +2 N u0 p1 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} +4 X u0 p0 c0 {1,S} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py b/input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py new file mode 100644 index 0000000000..4c5adaf73d --- /dev/null +++ b/input/kinetics/libraries/Surface/Roldan_Ir111/reactions.py @@ -0,0 +1,686 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Roldan_Ir111" +shortDesc = u"" +longDesc = u""" +Based primarily on +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +and + +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b +""" +#skip R1 + +entry( + index = 2, + label = "NH3_X <=> NH3 + X", + kinetics = SurfaceArrhenius( + A = (9.53E7, '1/s'), + n = 0.0, + Ea = (88574.75, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +Ea was calculated from A factor and k rate constant in Table 3 + +This is D1 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 3, + label = "N2_X <=> N2 + X", + kinetics = SurfaceArrhenius( + A = (9.52E7, '1/s'), + n = 0.0, + Ea = (10806.96, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +Ea was calculated from A factor and k rate constant in Table 3 + +This is D2 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 4, + label = "H2_X <=> H2 + X", + kinetics = SurfaceArrhenius( + A = (9.53E7, '1/s'), + n = 0.0, + Ea = (30972.36, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""H2 Surface_Adsorption_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +Ea was calculated from A factor and k rate constant in Table 3 + +This is D3 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 5, + label = "N2H4_X + X <=> N2H3_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (104209.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 1.08eV = 104209.2J/mol + +This is R5 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 6, + label = "N2H3_X + X <=> NN=[Pt] + H_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (98419.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 1.02eV = 98419.8J/mol + +This is R6 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +#Skip 7 + +entry( + index = 8, + label = "[Pt]NN[Pt] <=> N2H_X + H_X", + kinetics = SurfaceArrhenius( + A = (1E13, '1/s'), + n = 0.0, + Ea = (67543, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +Ea = 0.7eV = 67543J/mol + +This is R8 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +#skip R9 + +entry( + index = 10, + label = "N2H_X + X <=> N2_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (126401.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Addition_Single_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 1.31eV = 126401.9J/mol + +This is R10 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 11, + label = "N2H4_X + X <=> NH2_X + NH2_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (68507.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.71eV = 68507.9J/mol + +This is R11 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 12, + label = "N2H3_X + X <=> NH2_X + NH_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (75262.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.78eV = 75262.2J/mol + +This is R12 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 13, + label = "NN=[Pt] + X <=> NH2_X + N_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (70437.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.73eV = 70437.7J/mol + +This is R13 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 14, + label = "N2H2_X + X <=> NH_X + NH_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (70437.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_Double_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.73eV = 70437.7J/mol + +This is R14 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 15, + label = "[Pt]NN=[Pt] <=> NH_X + N_X", + kinetics = SurfaceArrhenius( + A = (1E13, '1/s'), + n = 0.0, + Ea = (137980.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Bidentate_Dissociation""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +Ea = 1.43eV = 137980.7J/mol + +This is R15 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 16, + label = "N2H4_X + NH2_X <=> N2H3_X + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (19298, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.2eV = 19298J/mol + +This is R16 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 17, + label = "N2H3_X + NH2_X <=> N2H2_X + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (22192.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.23eV = 22192.7J/mol + +This is R17 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 18, + label = "[Pt]NN[Pt] + NH2_X <=> [Pt]NN=[Pt] + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (18333.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.19eV = 18333.1J/mol + +This is R18 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 19, + label = "N2H3_X + NH2_X <=> NN=[Pt] + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (35701.3, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.37eV = 35701.3J/mol + +This is R19 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 20, + label = "N2H2_X + NH2_X <=> N2H_X + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (98419.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 1.02eV = 98419.8J/mol + +This is R20 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 21, + label = "[Pt]NN=[Pt] + NH2_X <=> [Pt]=NN=[Pt] + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (53069.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.55eV = 53069.5J/mol + +This is R21 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 22, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.22E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (147114.22, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. +A = 3.15E12(1/s)/2.587E-9(mol/cm^2) = 1.22E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R1 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 23, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.43E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (151612.95, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. +A = 3.71E12(1/s)/2.587E-9(mol/cm^2) = 1.43E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R3 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 24, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.68E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (88354.08, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to calculate the A factor. +A = 6.93E12(1/s)/2.587E-9(mol/cm^2) = 2.68E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R5 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 25, + label = "NH2_X + NH2_X <=> NH_X + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (32806.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.34eV = 32806.6J/mol + +This is R25 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 26, + label = "NH_X + NH2_X <=> N_X + NH3_X", + kinetics = SurfaceArrhenius( + A = (3.87E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (94560.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Mechanistic study of hydrazine decomposition on Ir(111)" +Alberto Roldan et al. Phys.Chem.Chem.Phys., 2020, 22, 3883 +DOI: 10.1039/c9cp06525c + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) +to estimate a default(1E13) A factor. +A = 1E13(1/s)/2.587E-9(mol/cm^2) = 3.87E21 cm^2/(mol*s) +Ea = 0.98eV = 94560.2J/mol + +This is R26 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 27, + label = "N_X + N_X <=> [Pt]=NN=[Pt]", + kinetics = SurfaceArrhenius( + A = (3.55E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (187423.24, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Bidentate_Dissociation""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to estimate A factor. +A = 9.18E12(1/s)/2.587E-9(mol/cm^2) = 3.55E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R7 in Table 3 +""", + metal = "Ir", + facet = "111", +) + +entry( + index = 28, + label = "H_X + H_X <=> H2_X + X", + kinetics = SurfaceArrhenius( + A = (2.42E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (60127.72, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ir111 = 2.587E-9(mol/cm^2) to estimate A factor. +A = 6.25E12(1/s)/2.587E-9(mol/cm^2) = 2.42E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R9 in Table 3 +""", + metal = "Ir", + facet = "111", +) diff --git a/input/kinetics/libraries/Surface/Roldan_Ru0001/dictionary.txt b/input/kinetics/libraries/Surface/Roldan_Ru0001/dictionary.txt new file mode 100644 index 0000000000..332db2fa48 --- /dev/null +++ b/input/kinetics/libraries/Surface/Roldan_Ru0001/dictionary.txt @@ -0,0 +1,52 @@ +X +1 X u0 c0 + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p0 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +H2_X +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 + +H2 +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py b/input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py new file mode 100644 index 0000000000..29612e12a6 --- /dev/null +++ b/input/kinetics/libraries/Surface/Roldan_Ru0001/reactions.py @@ -0,0 +1,235 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Roldan_Ru0001" +shortDesc = u"" +longDesc = u""" +Based primarily on +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b +""" +#skip R1 + +entry( + index = 1, + label = "NH3_X <=> NH3 + X", + kinetics = SurfaceArrhenius( + A = (1.29E8, '1/s'), + n = 0.0, + Ea = (72149.60, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +Ea was calculated from A factor and k rate constant in Table 3 + +This is D1 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +entry( + index = 2, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.14E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (117240.82, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 1.09E13(1/s)/2.630E-9(mol/cm^2) = 4.14E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R1 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +#skip R2 (reverse reaction of R1) + +entry( + index = 3, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.52E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (62155.01, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 4.01E12(1/s)/2.630E-9(mol/cm^2) = 1.52E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R3 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +#skip R4 (reverse reaction of R3) + +entry( + index = 4, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.71E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (99817.13, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 7.13E12(1/s)/2.630E-9(mol/cm^2) = 2.71E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R5 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +#skip R6 (reverse reaction of R5) + +entry( + index = 5, + label = "N_X + N_X <=> N2_X + X", + kinetics = SurfaceArrhenius( + A = (4.03E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (233750.36, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u""" Surface_Adsorption_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to estimate A factor. +A = 1.06E13(1/s)/2.630E-9(mol/cm^2) = 4.03E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R7 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +#skip R8 (reverse reaction of R7) +#skip D2 (reverse reaction of A2) + +entry( + index = 6, + label = "N2 + X <=> N2_X", + kinetics = SurfaceArrhenius( + A = (1.29E8, 'cm^3/(mol*s)'), + n = 0.0, + Ea = (24482.97, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +Ea was calculated from A factor and k rate constant in Table 3 + +This is A2 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +entry( + index = 7, + label = "H_X + H_X <=> H2_X + X", + kinetics = SurfaceArrhenius( + A = (5.48E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (52021.02, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to estimate A factor. +A = 1.33E13(1/s)/2.630E-9(mol/cm^2) = 5.48E21 cm^2/(mol*s) +Ea was calculated from A factor and k rate constant in Table 3 + +This is R9 in Table 3 +""", + metal = "Ru", + facet = "0001", +) + +#skip R10 (reverse reaction of R9) +#skip A3 (reverse reaction of D3) + +entry( + index = 8, + label = "H2_X <=> H2 + X", + kinetics = SurfaceArrhenius( + A = (1.29E8, '1/s'), + n = 0.0, + Ea = (24482.97, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""H2 Surface_Adsorption_vdW""", + longDesc = u""" +"Kinetic and mechanistic analysis of NH3 decomposition +on Ru(0001), Ru(111) and Ir(111) surfaces" +Alberto Roldan et al. Nanoscale Adv., 2021, 3, 1624 +DOI: 10.1039/d1na00015b + +Ea was calculated from A factor and k rate constant in Table 3 + +This is D3 in Table 3 +""", + metal = "Ru", + facet = "0001", +) diff --git a/input/kinetics/libraries/Surface/Scheuer_Pt/dictionary.txt b/input/kinetics/libraries/Surface/Scheuer_Pt/dictionary.txt new file mode 100644 index 0000000000..b3a20ae8b0 --- /dev/null +++ b/input/kinetics/libraries/Surface/Scheuer_Pt/dictionary.txt @@ -0,0 +1,92 @@ +X +1 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +NHO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +NO2 +multiplicity 2 +1 N u0 p1 c0 {2,D} {3,S} +2 O u0 p2 c0 {1,D} +3 O u1 p2 c0 {1,S} + +NO2_X +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 N u0 p1 c0 {1,S} {2,D} +4 X u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Scheuer_Pt/reactions.py b/input/kinetics/libraries/Surface/Scheuer_Pt/reactions.py new file mode 100644 index 0000000000..10294f2077 --- /dev/null +++ b/input/kinetics/libraries/Surface/Scheuer_Pt/reactions.py @@ -0,0 +1,325 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Scheuer_Pt" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 +""" + +entry( + index = 1, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 0.00768, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((19/Pa)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(17(g/mol))*the molar gas constant*(298 kelvin))= 0.00768 + +This is R1 in Table 1 +""", + metal = "Pt", +) + +#Reverse reaction of R1 +# entry( +# index = 2, +# label = "NH3_X <=> NH3 + X", +# kinetics = SurfaceArrhenius( +# A = (2.66E13, '1/s'), +# n = 0.0, +# Ea = (116000, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +# Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +# https://doi.org/10.1016/j.apcatb.2011.10.032 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 6.6E4(mol/cm^2/s)/2.483E-9(mol/cm^2) = 2.66E13 (1/s) + +# This is R2 in Table 1 +# """, +# metal = "Pt", +# ) + +entry( + index = 3, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.1441, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((260/Pa)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(32(g/mol))*the molar gas constant*(298 kelvin)) = 0.1441 + +This is R3 in Table 1 +""", + metal = "Pt", +) + +#Reverse reaction of R3 +# entry( +# index = 4, +# label = "O_X + O_X <=> O2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (4.83E20, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (128000, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +# Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +# https://doi.org/10.1016/j.apcatb.2011.10.032 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.2E12(1/s)/2.483E-9(mol/cm^2) = 4.83E20 cm^2/(mol*s) + +# This is R4 in Table 1 +# """, +# metal = "Pt", +# ) + +#skip R5 + +#Reverse reaction of R7 +# entry( +# index = 6, +# label = "NO_X <=> NO + X", +# kinetics = SurfaceArrhenius( +# A = (6E17, '1/s'), +# n = 0.0, +# Ea = (126000, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +# Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +# https://doi.org/10.1016/j.apcatb.2011.10.032 + +# This is R6 in Table 1 +# """, +# metal = "Pt", +# ) + +entry( + index = 7, + label = "NO + X <=> NO_X", + kinetics = StickingCoefficient( + A = 0.1556, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((290/Pa)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(30(g/mol))*the molar gas constant*(298 kelvin)) = 0.1556 + +This is R7 in Table 1 +""", + metal = "Pt", +) + +entry( + index = 8, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (4.83E27, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (181000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.2E19(1/s)/2.483E-9(mol/cm^2) = 4.83E27 cm^2/(mol*s) + +This is R8 in Table 1 +""", + metal = "Pt", +) + +entry( + index = 9, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (1.13E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (126000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 2.8E13(1/s)/2.483E-9(mol/cm^2) = 1.13E22 cm^2/(mol*s) + +This is R9 in Table 1 +""", + metal = "Pt", +) + +entry( + index = 10, + label = "N_X + NO_X <=> N2O + X + X", + kinetics = SurfaceArrhenius( + A = (4.03E28, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (139000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N and NO Association""", + longDesc = u""" +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1E20(1/s)/2.483E-9(mol/cm^2) = 4.03E28 cm^2/(mol*s) + +This is R10 in Table 1 +""", + metal = "Pt", +) + +#Reverse reaction of R12 +# entry( +# index = 11, +# label = "NO_X + O_X <=> NO2_X + X", +# kinetics = SurfaceArrhenius( +# A = (2.74E23, 'cm^2/(mol*s)'), +# n = 0.0, +# Ea = (11500, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +# Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +# https://doi.org/10.1016/j.apcatb.2011.10.032 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 6.8E14(1/s)/2.483E-9(mol/cm^2) = 2.74E23 cm^2/(mol*s) + +# This is R11 in Table 1 +# """, +# metal = "Pt", +# ) + +entry( + index = 12, + label = "NO2_X + X <=> NO_X + O_X", + kinetics = SurfaceArrhenius( + A = (1.29E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (83000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 3.2E11(1/s)/2.483E-9(mol/cm^2) = 1.29E20 cm^2/(mol*s) + +This is R12 in Table 1 +""", + metal = "Pt", +) + +entry( + index = 13, + label = "NO2_X <=> NO2 + X", + kinetics = SurfaceArrhenius( + A = (1.3E14, '1/s'), + n = 0.0, + Ea = (100000, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +https://doi.org/10.1016/j.apcatb.2011.10.032 + +This is R13 in Table 1 +""", + metal = "Pt", +) + +#skip R14 since sticking coefficient is larger than 1. +# entry( +# index = 14, +# label = "NO2 + X <=> NO2_X", +# kinetics = StickingCoefficient( +# A = , +# n = 0, +# Ea = (, 'J/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation" +# Scheuer et al. Applied Catalysis B: Environmental 111–112 (2012) 445–455 +# https://doi.org/10.1016/j.apcatb.2011.10.032 + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = ((48000/Pa)/s)*(2.483e-9(mol/cm^2))*sqrt(2*pi*(46(g/mol))*the molar gas constant*(298 kelvin)) = 31.894218 +# Sticking coefficient is larger than 1, skip this reaction. + +# This is R14 in Table 1 +# """, +# metal = "Pt", +# ) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Pd111/dictionary.txt b/input/kinetics/libraries/Surface/Schneider_Pd111/dictionary.txt new file mode 100644 index 0000000000..d027b065aa --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pd111/dictionary.txt @@ -0,0 +1,89 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +4 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Pd111/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pd111/reactions.py new file mode 100644 index 0000000000..1eb43386ac --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pd111/reactions.py @@ -0,0 +1,533 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Schneider_Pd111" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 +""" + +entry( + index = 1, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This is reaction (1) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 2, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This is reaction (2) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 3, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (69472.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.72eV = 69472.8J/mol + +This is reaction (3) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 4, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (85876.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.89eV = 85876.1J/mol + +This is reaction (4) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 5, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (133156.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.38eV = 133156.2J/mol + +This is reaction (5) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 6, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (44385.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.46eV = 44385.4J/mol + +This is reaction (6) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 7, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (7719.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.08eV = 7719.2J/mol + +This is reaction (7) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 8, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (46315.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.48eV = 46315.2J/mol + +This is reaction (8) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 9, + label = "OH_X + OH_X <=> O_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 + +This is reaction (9) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 10, + label = "H2O + X <=> H2O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (20262.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 +Ea = 0.21eV = 20262.9J/mol + +This is reaction (10) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 11, + label = "N2 + X + X <=> N_X + N_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (208418.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 2.16eV = 208418.4J/mol + +This is reaction (11) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 12, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (187190.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.94eV = 187190.6J/mol + +This is reaction (12) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 13, + label = "NO_X <=> NO + X", + kinetics = SurfaceArrhenius( + A = (6.55E14, '1/s'), + n = 0.0, + Ea = (221927, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 2.3eV = 221927J/mol + +This is reaction (13) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 14, + label = "N_X + NO_X <=> N2O_X + X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (186225.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.93eV = 186225.7J/mol + +This is reaction (14) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 15, + label = "N2O_X <=> N2O + X", + kinetics = SurfaceArrhenius( + A = (1.69E13, '1/s'), + n = 0.0, + Ea = (11578.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 0.12eV = 11578.8J/mol + +This is reaction (15) in Table S3 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 16, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.18E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (104209.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.08eV = 104209.2J/mol +This is reaction (1) in Table S5 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 17, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.44E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (85876.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 0.89eV = 85876.1J/mol + +This is reaction (2) in Table S5 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 18, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.44E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (113858.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.18eV = 113858.2J/mol + +This is reaction (3) in Table S5 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 19, + label = "H_X + O_X <=> OH_X + X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (97454.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.01eV = 97454.9J/mol + +This is reaction (4) in Table S5 +""", + metal = "Pd", + facet = "111", +) + +entry( + index = 20, + label = "H_X + OH_X <=> H2O_X + X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (64648.3, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd111 = 2.534E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.67eV = 64648.3J/mol + +This is reaction (5) in Table S5 +""", + metal = "Pd", + facet = "111", +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Pd211/dictionary.txt b/input/kinetics/libraries/Surface/Schneider_Pd211/dictionary.txt new file mode 100644 index 0000000000..d027b065aa --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pd211/dictionary.txt @@ -0,0 +1,89 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +4 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Pd211/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pd211/reactions.py new file mode 100644 index 0000000000..831d271eb8 --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pd211/reactions.py @@ -0,0 +1,535 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Schneider_Pd211" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 +""" + +entry( + index = 1, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (28947, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 0.3eV = 28947J/mol +This is reaction (1) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 2, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This is reaction (2) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 3, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (39560.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.41eV = 39560.9J/mol + +This is reaction (3) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 4, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (104209.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.08eV = 104209.2J/mol + +This is reaction (4) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 5, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (23157.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.24eV = 23157.6J/mol + +This is reaction (5) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 6, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (70437.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.73eV = 70437.7J/mol + +This is reaction (6) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 7, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (73332.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.76eV = 73332.4J/mol + +This is reaction (7) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 8, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (41490.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.43eV = 41490.7J/mol + +This is reaction (8) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 9, + label = "OH_X + OH_X <=> O_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (71402.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.74eV = 71402.6J/mol + +This is reaction (9) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 10, + label = "H2O + X <=> H2O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (30876.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 +Ea = 0.32eV = 30876.8J/mol + +This is reaction (10) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 11, + label = "N2 + X + X <=> N_X + N_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (119647.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 1.24eV = 119647.6J/mol + +This is reaction (11) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 12, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (2.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (82981.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.86eV = 82981.4J/mol + +This is reaction (12) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 13, + label = "NO_X <=> NO + X", + kinetics = SurfaceArrhenius( + A = (6.55E14, '1/s'), + n = 0.0, + Ea = (225786.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 2.34eV = 225786.6J/mol + +This is reaction (13) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 14, + label = "N_X + NO_X <=> N2O_X + X", + kinetics = SurfaceArrhenius( + A = (2.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (191050.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.98eV = 191050.2J/mol + +This is reaction (14) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 15, + label = "N2O_X <=> N2O + X", + kinetics = SurfaceArrhenius( + A = (1.69E13, '1/s'), + n = 0.0, + Ea = (36666.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 0.38eV = 36666.2J/mol + +This is reaction (15) in Table S2 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 16, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.06E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (97454.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.01eV = 97454.9/mol +This is reaction (1) in Table S4 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 17, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.23E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (152454.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.58eV = 152454.2J/mol + +This is reaction (2) in Table S4 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 18, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.23E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (118682.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.23eV = 118682.7J/mol + +This is reaction (3) in Table S4 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 19, + label = "H_X + O_X <=> OH_X + X", + kinetics = SurfaceArrhenius( + A = (2.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (123507.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.28eV = 123507.2J/mol + +This is reaction (4) in Table S4 +""", + metal = "Pd", + facet = "211", +) + +entry( + index = 20, + label = "H_X + OH_X <=> H2O_X + X", + kinetics = SurfaceArrhenius( + A = (2.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (91665.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Pd211 = 2.688E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.95eV = 91665.5J/mol + +This is reaction (5) in Table S4 +""", + metal = "Pd", + facet = "211", +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Schneider_Pt111/dictionary.txt new file mode 100644 index 0000000000..d027b065aa --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pt111/dictionary.txt @@ -0,0 +1,89 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +4 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py new file mode 100644 index 0000000000..a433002751 --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pt111/reactions.py @@ -0,0 +1,390 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Schneider_Pt111" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 +""" + +entry( + index = 1, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.9975, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((1.8E3 /pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 32 g/mol * molar gas constant * 298 kelvin) + +This is R1 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 2, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = ((2.5E3 /pa) / s) * (2.483E-9 mol/cm2) * sqrt(2 * pi * 17 g/mol * molar gas constant * 298 kelvin) + +This is R2 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 3, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.01E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (67543, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.2E12(1/s)/2.483E-9(mol/cm^2) = 1.01E21 cm^2/(mol*s) +Ea = 0.7eV = 67543J/mol + +This is R3 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 4, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.22E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (78156.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.5E12(1/s)/2.483E-9(mol/cm^2) = 2.22E21 cm^2/(mol*s) +Ea = 0.81eV = 78156.9J/mol + +This is R4 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 5, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.14E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (154384, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 7.8E12(1/s)/2.483E-9(mol/cm^2) = 3.14E21 cm^2/(mol*s) +Ea = 1.6eV = 154384J/mol + +This is R5 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 6, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (1.97E22, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (33771.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 4.9E13(1/s)/2.483E-9(mol/cm^2) = 1.97E22 cm^2/(mol*s) +Ea = 0.35eV = 33771.5J/mol + +This is R6 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 7, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (6.04E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (964.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.5E13(1/s)/2.483E-9(mol/cm^2) = 6.04E21 cm^2/(mol*s) +Ea = 0.01eV = 964.9J/mol + +This is R7 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 8, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.38E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (39560.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.9E12(1/s)/2.483E-9(mol/cm^2) = 2.38E21 cm^2/(mol*s) +Ea = 0.41eV = 39560.9J/mol + +This is R8 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 9, + label = "OH_X + OH_X <=> O_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (1.25E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 3.1E12(1/s)/2.483E-9(mol/cm^2) = 1.25E21 cm^2/(mol*s) + +This is R9 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 10, + label = "H2O_X <=> H2O + X", + kinetics = SurfaceArrhenius( + A = (5.9E15, '1/s'), + n = 0.0, + Ea = (18333.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +Ea = 0.19eV = 18333.1J/mol + +This is R10 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 11, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (3.71E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (244119.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 9.2E12(1/s)/2.483E-9(mol/cm^2) = 3.71E21 cm^2/(mol*s) +Ea = 2.53eV = 244119.7J/mol + +This is R11 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 12, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (3.34E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (213242.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.3E12(1/s)/2.483E-9(mol/cm^2) = 3.34E21 cm^2/(mol*s) +Ea = 2.21eV = 213242.9J/mol + +This is R12 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 13, + label = "NO_X <=> NO + X", + kinetics = SurfaceArrhenius( + A = (2.6E17, '1/s'), + n = 0.0, + Ea = (184295.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +Ea = 1.91eV = 184295.9J/mol + +This is R13 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 14, + label = "N_X + NO_X <=> N2O_X + X", + kinetics = SurfaceArrhenius( + A = (1.73E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (164997.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 4.3E12(1/s)/2.483E-9(mol/cm^2) = 1.73E21 cm^2/(mol*s) +Ea = 1.71eV = 164997.9J/mol + +This is R14 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) + +entry( + index = 15, + label = "N2O_X <=> N2O + X", + kinetics = SurfaceArrhenius( + A = (1.4E16, '1/s'), + n = 0.0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This is R15 in Table S2 and S4 +""", + metal = "Pt", + facet = "111", +) diff --git a/input/kinetics/libraries/Surface/Schneider_Pt211/dictionary.txt b/input/kinetics/libraries/Surface/Schneider_Pt211/dictionary.txt new file mode 100644 index 0000000000..d027b065aa --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pt211/dictionary.txt @@ -0,0 +1,89 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +4 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py b/input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py new file mode 100644 index 0000000000..880a3edabc --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Pt211/reactions.py @@ -0,0 +1,393 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Schneider_Pt211" +shortDesc = u"" +longDesc = u""" +This library is built to import training reactions, based on: +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 +""" + +entry( + index = 1, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = ((1.8E3 /pa) / s) * (2.634E-9 mol/cm2) * sqrt(2 * pi * 32 g/mol * molar gas constant * 298 kelvin) + +This is R1 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 2, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = ((2.5E3 /pa) / s) * (2.634E-9 mol/cm2) * sqrt(2 * pi * 17 g/mol * molar gas constant * 298 kelvin) + +This is R2 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 3, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.56E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (55964.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 4.1E12(1/s)/2.634E-9(mol/cm^2) = 1.56E21 cm^2/(mol*s) +Ea = 0.58eV = 55964.2J/mol + +This is R3 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 4, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.78E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (139910.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 4.7E12(1/s)/2.634E-9(mol/cm^2) = 1.78E21 cm^2/(mol*s) +Ea = 1.45eV = 139910.5J/mol + +This is R4 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 5, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.29E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (45350.3, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 3.4E12(1/s)/2.634E-9(mol/cm^2) = 1.29E21 cm^2/(mol*s) +Ea = 0.47eV = 45350.3J/mol + +This is R5 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 6, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (3.11E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (80086.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 8.2E12(1/s)/2.634E-9(mol/cm^2) = 3.11E21 cm^2/(mol*s) +Ea = 0.83eV = 80086.7J/mol + +This is R6 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 7, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (1.48E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (76227.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 3.9E12(1/s)/2.634E-9(mol/cm^2) = 1.48E21 cm^2/(mol*s) +Ea = 0.79eV = 76227.1J/mol + +This is R7 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 8, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.01E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (81051.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 5.3E12(1/s)/2.634E-9(mol/cm^2) = 2.01E21 cm^2/(mol*s) +Ea = 0.84eV = 81051.6J/mol + +This is R8 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 9, + label = "OH_X + OH_X <=> O_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (1.59E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (81051.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 4.2E12(1/s)/2.634E-9(mol/cm^2) = 1.59E21 cm^2/(mol*s) +Ea = 0.84eV = 81051.6J/mol + +This is R9 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 10, + label = "H2O_X <=> H2O + X", + kinetics = SurfaceArrhenius( + A = (3.7E15, '1/s'), + n = 0.0, + Ea = (24122.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +Ea = 0.25eV = 24122.5J/mol + +This is R10 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 11, + label = "N_X + N_X <=> N2 + X + X", + kinetics = SurfaceArrhenius( + A = (2.01E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (113858.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 5.3E12(1/s)/2.634E-9(mol/cm^2) = 2.01E21 cm^2/(mol*s) +Ea = 1.18eV = 113858.2J/mol + +This is R11 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 12, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (1.44E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (140875.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 3.8E12(1/s)/2.634E-9(mol/cm^2) = 1.44E21 cm^2/(mol*s) +Ea = 1.46eV = 140875.4J/mol + +This is R12 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 13, + label = "NO_X <=> NO + X", + kinetics = SurfaceArrhenius( + A = (1.3E17, '1/s'), + n = 0.0, + Ea = (224821.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +Ea = 2.33eV = 224821.7J/mol + +This is R13 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 14, + label = "N_X + NO_X <=> N2O_X + X", + kinetics = SurfaceArrhenius( + A = (2.32E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (156313.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +This reaction used RMG's surface site density of Pt211 = 2.634E-9(mol/cm^2) to calculate the A factor. +A = 6.1E12(1/s)/2.634E-9(mol/cm^2) = 2.32E21 cm^2/(mol*s) +Ea = 1.62eV = 156313.8J/mol + +This is R14 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) + +entry( + index = 15, + label = "N2O_X <=> N2O + X", + kinetics = SurfaceArrhenius( + A = (1.5E17, '1/s'), + n = 0.0, + Ea = (9649, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", + longDesc = u""" +"Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities." +DMa, Hanyu; Schneider, William F.(2019). ACS Catalysis, 9(3), 2407-2414. +https://doi.org/10.1021/acscatal.8b04251 + +Ea = 0.1eV = 9649J/mol + +This is R15 in Table S2 and S4 +""", + metal = "Pt", + facet = "211", +) diff --git a/input/kinetics/libraries/Surface/Schneider_Rh111/dictionary.txt b/input/kinetics/libraries/Surface/Schneider_Rh111/dictionary.txt new file mode 100644 index 0000000000..d027b065aa --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Rh111/dictionary.txt @@ -0,0 +1,89 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +4 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py b/input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py new file mode 100644 index 0000000000..d45ff3b6ce --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Rh111/reactions.py @@ -0,0 +1,535 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Schneider_Rh111" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 +""" + +entry( + index = 1, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This is reaction (1) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 2, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This is reaction (2) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 3, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (86841, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.9eV = 86841J/mol + +This is reaction (3) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 4, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (106139, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.1eV = 106139J/mol + +This is reaction (4) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 5, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (142805.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.48eV = 142805.2J/mol + +This is reaction (5) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 6, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (68507.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.71eV = 68507.9J/mol + +This is reaction (6) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 7, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (25087.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.26eV = 25087.4J/mol + +This is reaction (7) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 8, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (39561, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.66eV = 63683.4J/mol + +This is reaction (8) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 9, + label = "OH_X + OH_X <=> O_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 + +This is reaction (9) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 10, + label = "H2O + X <=> H2O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (27017.2, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 0.28eV = 27017.2J/mol + +This is reaction (10) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 11, + label = "N2 + X + X <=> N_X + N_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (246049.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 2.55eV = 246049.5J/mol + +This is reaction (11) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 12, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (226751.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 2.35eV = 226751.5J/mol + +This is reaction (12) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 13, + label = "NO + X <=> NO_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (241225, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 2.5eV = 241225J/mol + +This is reaction (13) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 14, + label = "N_X + NO_X <=> N2O_X + X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (206488.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 2.14eV = 206488.6J/mol + +This is reaction (14) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 15, + label = "N2O + X <=> N2O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0.0, + Ea = (32806.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 0.34eV = 32806.6J/mol + +This is reaction (15) in Table S3 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 16, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.08E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (100349.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.04eV = 100349.6J/mol + +This is reaction (1) in Table S5 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 17, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.33E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (83946.3, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 0.87eV = 83946.3J/mol + +This is reaction (2) in Table S5 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 18, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.33E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (98419.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.02eV = 98419.8J/mol + +This is reaction (3) in Table S5 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 19, + label = "H_X + O_X <=> OH_X + X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (61753.6, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.64eV = 61753.6J/mol + +This is reaction (4) in Table S5 +""", + metal = "Rh", + facet = "111", +) + +entry( + index = 20, + label = "H_X + OH_X <=> H2O_X + X", + kinetics = SurfaceArrhenius( + A = (2.47E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (63683.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh111 = 2.656E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.66eV = 63683.4J/mol + +This is reaction (5) in Table S5 +""", + metal = "Rh", + facet = "111", +) \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Rh211/dictionary.txt b/input/kinetics/libraries/Surface/Schneider_Rh211/dictionary.txt new file mode 100644 index 0000000000..d027b065aa --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Rh211/dictionary.txt @@ -0,0 +1,89 @@ +X +1 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2_X +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} +3 X u0 p1 c0 + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +NO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 N u1 p1 c0 {1,D} + +NO_X +1 O u0 p2 c0 {2,D} +2 N u0 p1 c0 {1,D} {3,S} +3 X u0 p0 c0 {2,S} + +N2O +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} + +N2O_X +1 O u0 p2 c0 {2,D} +2 N u0 p0 c+1 {1,D} {3,D} +3 N u0 p2 c-1 {2,D} +4 X u0 p0 c0 \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Schneider_Rh211/reactions.py b/input/kinetics/libraries/Surface/Schneider_Rh211/reactions.py new file mode 100644 index 0000000000..7d8cb74a45 --- /dev/null +++ b/input/kinetics/libraries/Surface/Schneider_Rh211/reactions.py @@ -0,0 +1,537 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Schneider_Rh211" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 +""" + +entry( + index = 1.0, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This is reaction (1) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 2, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 1.0, + n = 0, + Ea = (0, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This is reaction (2) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 3, + label = "NH3_X +O_X <=> NH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (62718.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.65eV = 62718.5J/mol + +This is reaction (3) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 4, + label = "NH2_X +O_X <=> NH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (143770.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.49eV = 143770.1J/mol + +This is reaction (4) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 5, + label = "NH_X + O_X <=> N_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (60788.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.63eV = 60788.7J/mol + +This is reaction (5) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 6, + label = "NH3_X + OH_X <=> NH2_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (91665.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_Single_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.95eV = 91665.5J/mol + +This is reaction (6) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 7, + label = "NH2_X + OH_X <=> NH_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (97454.9, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.01eV = 97454.9J/mol + +This is reaction (7) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 8, + label = "NH_X + OH_X <=> N_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (85876.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.89eV = 85876.1J/mol + +This is reaction (8) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 9, + label = "OH_X + OH_X <=> O_X + H2O_X", + kinetics = SurfaceArrhenius( + A = (2.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (92630.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.96eV = 92630.4J/mol + +This is reaction (9) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 10, + label = "H2O + X <=> H2O_X", + kinetics = StickingCoefficient( + A = 1.0, + n = 0.0, + Ea = (43420.5, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 0.45eV = 43420.5J/mol + +This is reaction (10) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 11, + label = "N2 + X + X <=> N_X + N_X", + kinetics = StickingCoefficient( + A = 1.0, + n = 0.0, + Ea = (169822.4, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 1.76eV = 169822.4J/mol + +This is reaction (11) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 12, + label = "N_X + O_X <=> NO_X + X", + kinetics = SurfaceArrhenius( + A = (2.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (166927.7, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Nitrogen/51""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1.73eV = 166927.7J/mol + +This is reaction (12) in Table S2 +""", + metal = "Rh", + facet = "211", +) + + +entry( + index = 13, + label = "NO_X <=> NO + X", + kinetics = SurfaceArrhenius( + A = (6.55E14, '1/s'), + n = 0.0, + Ea = (270172, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 2.8eV = 270172J/mol + +This is reaction (13) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 14, + label = "N_X + NO_X <=> N2O_X + X", + kinetics = SurfaceArrhenius( + A = (2.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (211313.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 2.19eV = 211313.1J/mol + +This is reaction (14) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 15, + label = "N2O_X <=> N2O + X", + kinetics = SurfaceArrhenius( + A = (1.69E13, '1/s'), + n = 0.0, + Ea = (54999.3, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double/Surface_Adsorption_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +Ea = 0.57eV = 54999.3J/mol + +This is reaction (15) in Table S2 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 16, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.96E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (88770.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 0.92eV = 88770.8J/mol + +This is reaction (1) in Table S4 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 17, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.19E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (117717.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 1.22eV = 117717.8J/mol + +This is reaction (2) in Table S4 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 18, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.19E23, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (88770.8, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +Using the method proposed by Campbell et al. to calculate A actor. +Ea = 0.92eV = 88770.8J/mol + +This is reaction (3) in Table S4 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 19, + label = "H_X + O_X <=> OH_X + X", + kinetics = SurfaceArrhenius( + A = (2.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (85876.1, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 0.89eV = 85876.1J/mol + +This is reaction (4) in Table S4 +""", + metal = "Rh", + facet = "211", +) + +entry( + index = 20, + label = "H_X + OH_X <=> H2O_X + X", + kinetics = SurfaceArrhenius( + A = (2.33E21, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (96490, 'J/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation" +Hanyu Ma, and William F.Schneider +Journal of Catalysis 383 (2020) 322–330 +https://doi.org/10.1016/j.jcat.2020.01.029 + +This reaction used RMG's surface site density of Rh211 = 2.817E-9(mol/cm^2) to calculate the A factor. +The A factor is calculated by equation (5) which assumed qTS/qIS = 1 +Ea = 1eV = 96490J/mol + +This is reaction (5) in Table S4 +""", + metal = "Rh", + facet = "211", +) diff --git a/input/kinetics/libraries/Surface/Vlachos_Pt111/dictionary.txt b/input/kinetics/libraries/Surface/Vlachos_Pt111/dictionary.txt new file mode 100644 index 0000000000..5fa63e71b5 --- /dev/null +++ b/input/kinetics/libraries/Surface/Vlachos_Pt111/dictionary.txt @@ -0,0 +1,230 @@ +X +1 X u0 p0 c0 + +O +multiplicity 3 +1 O u2 p2 c0 + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +CO +multiplicity 3 +1 O u0 p2 c0 {2,D} +2 C u2 p0 c0 {1,D} + +CO_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,D} +3 X u0 p0 c0 {2,D} + +CO2 +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} + +CO2_X +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} +4 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +H +multiplicity 2 +1 H u1 p0 c0 + +H2 +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} + +OH +multiplicity 2 +1 O u1 p2 c0 {2,S} +2 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +COOH_X +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,S} {2,D} {5,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 {3,S} + +COOH +multiplicity 2 +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 C u1 p0 c0 {1,S} {2,D} +4 H u0 p0 c0 {1,S} + +HCOO_XX +multiplicity 2 +1 O u0 p2 c0 {3,S} {6,S} +2 O u1 p2 c0 {3,S} +3 C u0 p0 c0 {1,S} {2,S} {4,S} {5,S} +4 H u0 p0 c0 {3,S} +5 X u0 p0 c0 {3,S} +6 X u0 p0 c0 {1,S} + +HCOO_X +1 O u0 p2 c0 {3,S} {5,S} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,S} {2,D} {4,S} +4 H u0 p0 c0 {3,S} +5 X u0 p0 c0 {1,S} + +HCOO +multiplicity 2 +1 O u1 p2 c0 {3,S} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,S} {2,D} {4,S} +4 H u0 p0 c0 {3,S} + +C +1 C u2 p1 c0 + +C_X +1 C u0 p0 c0 {2,Q} +2 X u0 p0 c0 {1,Q} + +CH +multiplicity 2 +1 C u1 p1 c0 {2,S} +2 H u0 p0 c0 {1,S} + +CH_X +1 C u0 p0 c0 {2,S} {3,T} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,T} + +CH2 +multiplicity 3 +1 C u2 p0 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +CH2_X +1 C u0 p0 c0 {2,S} {3,S} {4,D} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,D} + +CH3 +multiplicity 2 +1 C u1 p0 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +CH3_X +1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 {1,S} + +CH4 +1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {1,S} + +CH3OH +1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 O u0 p2 c0 {1,S} {6,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {1,S} +6 H u0 p0 c0 {2,S} + +CH3OH_X +1 O u0 p2 c0 {2,S} {6,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 H u0 p0 c0 {1,S} +7 X u0 p0 c0 + +CH3O +multiplicity 2 +1 O u1 p2 c0 {2,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} + +CH3O_X +1 O u0 p2 c0 {2,S} {6,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {5,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {2,S} +6 X u0 p0 c0 {1,S} + +CH2O +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} + +CH2O_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 X u0 p0 c0 + +HCO +multiplicity 2 +1 O u0 p2 c0 {2,D} +2 C u1 p0 c0 {1,D} {3,S} +3 H u0 p0 c0 {2,S} + +HCO_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 X u0 p0 c0 {2,S} + +CH2OH +multiplicity 2 +1 O u0 p2 c0 {2,S} {5,S} +2 C u1 p0 c0 {1,S} {3,S} {4,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {1,S} + +CH2OH_X +1 O u0 p2 c0 {2,S} {5,S} +2 C u0 p0 c0 {1,S} {3,S} {4,S} {6,S} +3 H u0 p0 c0 {2,S} +4 H u0 p0 c0 {2,S} +5 H u0 p0 c0 {1,S} +6 X u0 p0 c0 {2,S} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py b/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py new file mode 100644 index 0000000000..37d03ba05f --- /dev/null +++ b/input/kinetics/libraries/Surface/Vlachos_Pt111/reactions.py @@ -0,0 +1,2665 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Vlachos_Pt111" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c +""" + +entry( + index = 1, + label = "O2 + X + X <=> O_X + O_X", + kinetics = StickingCoefficient( + A = 0.0542, + n = 0.766, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""O2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R1 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 2, +# label = "O_X + O_X <=> O2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (3.39E21, 'cm^2/(mol*s)'), +# n = -0.796, +# Ea = (50.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""O2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 8.41E12(1/s)/2.483E-9(mol/cm^2) = 3.39E21 cm^2/(mol*s) + +# This is R2 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 3, + label = "O + X <=> O_X", + kinetics = StickingCoefficient( + A = 0.0491, + n = 0.250, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R3 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 4, +# label = "O_X <=> O + X", +# kinetics = SurfaceArrhenius( +# A = (1.44E13, '1/s'), +# n = -0.250, +# Ea = (85.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R4 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 5, + label = "CO + X <=> CO_X", + kinetics = StickingCoefficient( + A = 1, + n = 0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R5 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 6, +# label = "CO_X <=> CO + X", +# kinetics = SurfaceArrhenius( +# A = (5.66E15, '1/s'), +# n = -0.500, +# Ea = (40, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R6 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 7, + label = "CO2 + X <=> CO2_X", + kinetics = StickingCoefficient( + A = 0.195, + n = 0.250, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R7 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 8, +# label = "CO2_X <=> CO2 + X", +# kinetics = SurfaceArrhenius( +# A = (3.63E12, '1/s'), +# n = -0.250, +# Ea = (3.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R8 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 9, + label = "CO2_X + X <=> CO_X + O_X", + kinetics = SurfaceArrhenius( + A = (1.68E19, 'cm^2/(mol*s)'), + n = 0.177, + Ea = (26.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_Double_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 4.18E10(1/s)/2.483E-9(mol/cm^2) = 1.68E19 cm^2/(mol*s) + +This is R9 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 10, +# label = "CO_X + O_X <=> CO2_X + X", +# kinetics = SurfaceArrhenius( +# A = (9.63E19, 'cm^2/(mol*s)'), +# n = -0.177, +# Ea = (20.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_Double_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 2.39E11(1/s)/2.483E-9(mol/cm^2) = 9.63E19 cm^2/(mol*s) + +# This is R10 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 11, + label = "H2 + X + X <=> H_X + H_X", + kinetics = StickingCoefficient( + A = 0.129, + n = 0.858, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""H2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R11 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 12, +# label = "H_X + H_X <=> H2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (3.20E21, 'cm^2/(mol*s)'), +# n = -0.001, +# Ea = (19.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""H2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 7.95E12(1/s)/2.483E-9(mol/cm^2) = 3.20E21 cm^2/(mol*s) + +# This is R12 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 13, + label = "OH_X + X <=> H_X + O_X", + kinetics = SurfaceArrhenius( + A = (7.85E20, 'cm^2/(mol*s)'), + n = 1.872, + Ea = (27.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.95E12(1/s)/2.483E-9(mol/cm^2) = 7.85E20 cm^2/(mol*s) + +This is R13 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 14, +# label = "H_X + O_X <=> OH_X + X", +# kinetics = SurfaceArrhenius( +# A = (2.55E21, 'cm^2/(mol*s)'), +# n = 0.624, +# Ea = (8.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 6.33E12(1/s)/2.483E-9(mol/cm^2) = 2.55E21 cm^2/(mol*s) + +# This is R14 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 15, + label = "H2O_X + X <=> H_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.77E21, 'cm^2/(mol*s)'), + n = -0.118, + Ea = (17.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 9.36E12(1/s)/2.483E-9(mol/cm^2) = 3.77E21 cm^2/(mol*s) + +This is R15 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 16, +# label = "H_X + OH_X <=> H2O_X + X", +# kinetics = SurfaceArrhenius( +# A = (4.02E21, 'cm^2/(mol*s)'), +# n = -1.049, +# Ea = (13.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 9.99E12(1/s)/2.483E-9(mol/cm^2) = 4.02E21 cm^2/(mol*s) + +# This is R16 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 17, + label = "O_X + H2O_X <=> OH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.74E19, 'cm^2/(mol*s)'), + n = 0.082, + Ea = (8.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 4.32E10(1/s)/2.483E-9(mol/cm^2) = 1.74E19 cm^2/(mol*s) + +This is R17 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 18, +# label = "OH_X + OH_X <=> O_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (6.85E18, 'cm^2/(mol*s)'), +# n = 0.325, +# Ea = (22.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.70E10(1/s)/2.483E-9(mol/cm^2) = 6.85E18 cm^2/(mol*s) + +# This is R18 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 19, + label = "OH + X <=> OH_X", + kinetics = StickingCoefficient( + A = 0.999, + n = 2.000, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R19 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 20, +# label = "OH_X <=> OH + X", +# kinetics = SurfaceArrhenius( +# A = (1.44E14, '1/s'), +# n = 2.000, +# Ea = (63.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R20 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 21, + label = "H2O + X <=> H2O_X", + kinetics = StickingCoefficient( + A = 0.108, + n = 1.162, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R21 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 22, +# label = "H2O_X <=> H2O + X", +# kinetics = SurfaceArrhenius( +# A = (2.03E12, '1/s'), +# n = 1.372, +# Ea = (10, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R22 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 23, + label = "H + X <=> H_X", + kinetics = StickingCoefficient( + A = 0.384, + n = 1.832, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R23 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 24, +# label = "H_X <=> H + X", +# kinetics = SurfaceArrhenius( +# A = (4.37E13, '1/s'), +# n = 1.890, +# Ea = (62.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R24 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 25, + label = "CO2_X + H_X <=> CO_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.23E17, 'cm^2/(mol*s)'), + n = -0.531, + Ea = (6.0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann_Pt/19""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.03E08(1/s)/2.483E-9(mol/cm^2) = 3.23E17 cm^2/(mol*s) + +This is R25 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 26, +# label = "CO_X + OH_X <=> CO2_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (5.03E17, 'cm^2/(mol*s)'), +# n = 0.531, +# Ea = (18.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann_Pt/19""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.25E09(1/s)/2.483E-9(mol/cm^2) = 5.03E17 cm^2/(mol*s) + +# This is R26 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 27, + label = "COOH + X <=> COOH_X", + kinetics = StickingCoefficient( + A = 0.0634, + n = -0.089, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R27 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 28, +# label = "COOH_X <=> COOH + X", +# kinetics = SurfaceArrhenius( +# A = (1.12E13, '1/s'), +# n = 0.089, +# Ea = (55.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R28 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 29, + label = "COOH_X + X <=> CO_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.40E17, 'cm^2/(mol*s)'), + n = 0.024, + Ea = (5.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.43E08(1/s)/2.483E-9(mol/cm^2) = 3.40E17 cm^2/(mol*s) + +This is R29 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 30, +# label = "CO_X + OH_X <=> COOH_X + X", +# kinetics = SurfaceArrhenius( +# A = (4.79E17, 'cm^2/(mol*s)'), +# n = -0.024, +# Ea = (19.1, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.19E09(1/s)/2.483E-9(mol/cm^2) = 4.79E17 cm^2/(mol*s) + +# This is R30 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 31, + label = "COOH_X + X <=> CO2_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.27E19, 'cm^2/(mol*s)'), + n = 0.549, + Ea = (1.0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Addition_Single_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.06E11(1/s)/2.483E-9(mol/cm^2) = 4.27E19 cm^2/(mol*s) + +This is R31 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 32, +# label = "CO2_X + H_X <=> COOH_X + X", +# kinetics = SurfaceArrhenius( +# A = (3.81E19, 'cm^2/(mol*s)'), +# n = -0.549, +# Ea = (2.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Addition_Single_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 9.45E10(1/s)/2.483E-9(mol/cm^2) = 3.81E19 cm^2/(mol*s) + +# This is R32 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 33, + label = "CO_X + H2O_X <=> COOH_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.43E19, 'cm^2/(mol*s)'), + n = 0.492, + Ea = (23.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.10E11(1/s)/2.483E-9(mol/cm^2) = 4.43E19 cm^2/(mol*s) + +This is R33 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 34, +# label = "COOH_X + H_X <=> CO_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (3.65E19, 'cm^2/(mol*s)'), +# n = -0.492, +# Ea = (5.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 9.07E10(1/s)/2.483E-9(mol/cm^2) = 3.65E19 cm^2/(mol*s) + +# This is R34 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 35, + label = "CO2_X + OH_X <=> COOH_X + O_X", + kinetics = SurfaceArrhenius( + A = (2.15E19, 'cm^2/(mol*s)'), + n = 0.097, + Ea = (26.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Abstraction_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.35E10(1/s)/2.483E-9(mol/cm^2) = 2.15E19 cm^2/(mol*s) + +This is R35 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 36, +# label = "COOH_X + O_X <=> CO2_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (7.53E19, 'cm^2/(mol*s)'), +# n = -0.097, +# Ea = (7.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Abstraction_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.87E11(1/s)/2.483E-9(mol/cm^2) = 7.53E19 cm^2/(mol*s) + +# This is R36 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 37, + label = "CO2_X + H2O_X <=> COOH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.48E19, 'cm^2/(mol*s)'), + n = -0.031, + Ea = (17.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dual_Adsorption_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.64E10(1/s)/2.483E-9(mol/cm^2) = 3.48E19 cm^2/(mol*s) + +This is R37 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 38, +# label = "COOH_X + OH_X <=> CO2_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (4.67E19, 'cm^2/(mol*s)'), +# n = 0.031, +# Ea = (11.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dual_Adsorption_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.16E11(1/s)/2.483E-9(mol/cm^2) = 4.67E19 cm^2/(mol*s) + +# This is R38 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 39, + label = "HCOO + X + X <=> HCOO_XX", + kinetics = StickingCoefficient( + A = 0.146, + n = 0.201, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Bidentate""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R39 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 40, +# label = "HCOO_XX <=> HCOO + X + X", +# kinetics = SurfaceArrhenius( +# A = (4.83E12, '1/s'), +# n = -0.201, +# Ea = (53.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Bidentate""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R40 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +#R41 in the paper was a bidentate HCOO_XX, which might cause the issue of an adsorbate vdW species. +#This might cause an UndeterminableKineticsError, maybe we don't want to include this reaction. +entry( + index = 41, + label = "CO2_X + H_X <=> HCOO_XX", + kinetics = SurfaceArrhenius( + A = (4.51E19, 'cm^2/(mol*s)'), + n = -0.422, + Ea = (18.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.12E11(1/s)/2.483E-9(mol/cm^2) = 4.51E19 cm^2/(mol*s) + +This is R41 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +#Same issue as R41 +# entry( +# index = 42, +# label = "HCOO_XX <=> CO2_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (3.61E19, 'cm^2/(mol*s)'), +# n = 0.422, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 8.96E10(1/s)/2.483E-9(mol/cm^2) = 3.61E19 cm^2/(mol*s) + +# This is R42 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +#R43 in the paper was a bidentate HCOO_XX, which might cause the issue of an adsorbate vdW species. +#This might cause an UndeterminableKineticsError, maybe we don't want to include this reaction. +entry( + index = 43, + label = "CO2_X + OH_X + X <=> HCOO_XX + O_X", + kinetics = SurfaceArrhenius( + A = (2.48E19, 'cm^4/(mol^2*s)'), + n = 0.236, + Ea = (36.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 6.17E10(cm^2/mol/s)/2.483E-9(mol/cm^2) = 2.48E19 cm^4/(mol^2*s) + +This is R43 in Table 1 +""", + metal = "Pt", + facet = "111", +) + +#Same issue as R43 +# entry( +# index = 44, +# label = "HCOO_XX + O_X <=> CO2_X + OH_X + X", +# kinetics = SurfaceArrhenius( +# A = (6.52E19, 'cm^2/(mol*s)'), +# n = -0.236, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.62E11(1/s)/2.483E-9(mol/cm^2) = 6.52E19 cm^2/(mol*s) + +# This is R44 in Table 1 +# """, +# metal = "Pt", +# facet = "111", +# ) + +#Skip R45 and R46, which might cause a bidentate CO2 with a radical +# on surface site.(if match Surface_Dissociation family) + +entry( + index = 47, + label = "C + X <=> C_X", + kinetics = StickingCoefficient( + A = 0.0164, + n = 0.156, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Quadruple bonds""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R47 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 48, +# label = "C_X <=> C + X", +# kinetics = SurfaceArrhenius( +# A = (4.30E13, '1/s'), +# n = -0.156, +# Ea = (157.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Quadruple bonds""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R48 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 49, + label = "CH + X <=> CH_X", + kinetics = StickingCoefficient( + A = 0.0135, + n = 0.051, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R49 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 50, +# label = "CH_X <=> CH + X", +# kinetics = SurfaceArrhenius( +# A = (5.22E13, '1/s'), +# n = -0.051, +# Ea = (157.1, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R50 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 51, + label = "CH2 + X <=> CH2_X", + kinetics = StickingCoefficient( + A = 0.045, + n = 0.118, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R51 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 52, +# label = "CH2_X <=> CH2 + X", +# kinetics = SurfaceArrhenius( +# A = (1.57E13, '1/s'), +# n = -0.118, +# Ea = (91.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R52 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 53, + label = "CH3 + X <=> CH3_X", + kinetics = StickingCoefficient( + A = 0.16, + n = -0.099, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R53 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 54, +# label = "CH3_X <=> CH3 + X", +# kinetics = SurfaceArrhenius( +# A = (4.42E12, '1/s'), +# n = 0.099, +# Ea = (45.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R54 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 55, + label = "CH4 + X + X <=> CH3_X + H_X", + kinetics = StickingCoefficient( + A = 0.116, + n = 0.154, + Ea = (9, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Dissociative""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R55 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 56, +# label = "CH3_X + H_X <=> CH4 + X + X", +# kinetics = SurfaceArrhenius( +# A = (2.46E19, 'cm^2/(mol*s)'), +# n = -0.154, +# Ea = (11.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 6.12E10(1/s)/2.483E-9(mol/cm^2) = 2.46E19 cm^2/(mol*s) + +# This is R56 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 57, + label = "CH3_X + X <=> CH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.47E19, 'cm^2/(mol*s)'), + n = 0.419, + Ea = (15.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.11E11(1/s)/2.483E-9(mol/cm^2) = 4.47E19 cm^2/(mol*s) + +This is R57 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 58, +# label = "CH2_X + H_X <=> CH3_X + X", +# kinetics = SurfaceArrhenius( +# A = (3.62E19, 'cm^2/(mol*s)'), +# n = -0.419, +# Ea = (13.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 8.99E10(1/s)/2.483E-9(mol/cm^2) = 3.62E19 cm^2/(mol*s) + +# This is R58 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 59, + label = "CH2_X + X <=> CH_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.10E19, 'cm^2/(mol*s)'), + n = 0.222, + Ea = (9.0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.22E10(1/s)/2.483E-9(mol/cm^2) = 2.10E19 cm^2/(mol*s) + +This is R59 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 60, +# label = "CH_X + H_X <=> CH2_X + X", +# kinetics = SurfaceArrhenius( +# A = (7.73E19, 'cm^2/(mol*s)'), +# n = -0.222, +# Ea = (35.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.92E11(1/s)/2.483E-9(mol/cm^2) = 7.73E19 cm^2/(mol*s) + +# This is R60 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 61, + label = "CH_X + X <=> C_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.67E19, 'cm^2/(mol*s)'), + n = 0.398, + Ea = (31.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 9.11E10(1/s)/2.483E-9(mol/cm^2) = 3.67E19 cm^2/(mol*s) + +This is R61 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 62, +# label = "C_X + H_X <=> CH_X + X", +# kinetics = SurfaceArrhenius( +# A = (4.43E19, 'cm^2/(mol*s)'), +# n = 0.414, +# Ea = (44.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.10E11(1/s)/2.483E-9(mol/cm^2) = 4.43E19 cm^2/(mol*s) + +# This is R62 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 63, + label = "CH3_X + O_X <=> CH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (7.93E19, 'cm^2/(mol*s)'), + n = -0.230, + Ea = (10.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.97E11(1/s)/2.483E-9(mol/cm^2) = 7.93E19 cm^2/(mol*s) + +This is R63 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 64, +# label = "CH2_X + OH_X <=> CH3_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (2.05E19, 'cm^2/(mol*s)'), +# n = 0.230, +# Ea = (26.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 5.08E10(1/s)/2.483E-9(mol/cm^2) = 2.05E19 cm^2/(mol*s) + +# This is R64 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 65, + label = "CH_X + OH_X <=> CH2_X + O_X", + kinetics = SurfaceArrhenius( + A = (4.43E19, 'cm^2/(mol*s)'), + n = 0.414, + Ea = (44.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.10E11(1/s)/2.483E-9(mol/cm^2) = 4.43E19 cm^2/(mol*s) + +This is R65 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 66, +# label = "CH2_X + O_X <=> CH_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (3.66E19, 'cm^2/(mol*s)'), +# n = -0.414, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 9.10E10(1/s)/2.483E-9(mol/cm^2) = 3.66E19 cm^2/(mol*s) + +# This is R66 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 67, + label = "C_X + OH_X <=> CH_X + O_X", + kinetics = SurfaceArrhenius( + A = (2.57E19, 'cm^2/(mol*s)'), + n = 0.225, + Ea = (27.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 6.37E10(1/s)/2.483E-9(mol/cm^2) = 2.57E19 cm^2/(mol*s) + +This is R67 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 68, +# label = "CH_X + O_X <=> C_X + OH_X", +# kinetics = SurfaceArrhenius( +# A = (6.32E19, 'cm^2/(mol*s)'), +# n = -0.225, +# Ea = (27.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.57E11(1/s)/2.483E-9(mol/cm^2) = 6.32E19 cm^2/(mol*s) + +# This is R68 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 69, + label = "CH2_X + H2O_X <=> CH3_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.30E19, 'cm^2/(mol*s)'), + n = 0.099, + Ea = (14.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.19E10(1/s)/2.483E-9(mol/cm^2) = 3.30E19 cm^2/(mol*s) + +This is R69 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 70, +# label = "CH3_X + OH_X <=> CH2_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (4.91E19, 'cm^2/(mol*s)'), +# n = -0.099, +# Ea = (12.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.22E11(1/s)/2.483E-9(mol/cm^2) = 4.91E19 cm^2/(mol*s) + +# This is R70 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 71, + label = "CH_X + H2O_X <=> CH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (7.29E19, 'cm^2/(mol*s)'), + n = 0.269, + Ea = (34.0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.81E11(1/s)/2.483E-9(mol/cm^2) = 7.29E19 cm^2/(mol*s) + +This is R71 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 72, +# label = "CH2_X + OH_X <=> CH_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (2.23E19, 'cm^2/(mol*s)'), +# n = -0.269, +# Ea = (3.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 5.53E10(1/s)/2.483E-9(mol/cm^2) = 2.23E19 cm^2/(mol*s) + +# This is R72 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 73, + label = "C_X + H2O_X <=> CH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4.19E19, 'cm^2/(mol*s)'), + n = 0.090, + Ea = (15.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.04E11(1/s)/2.483E-9(mol/cm^2) = 4.19E19 cm^2/(mol*s) + +This is R73 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 74, +# label = "CH_X + OH_X <=> C_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (3.87E19, 'cm^2/(mol*s)'), +# n = -0.090, +# Ea = (29.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 9.61E10(1/s)/2.483E-9(mol/cm^2) = 3.87E19 cm^2/(mol*s) + +# This is R74 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 75, + label = "CO_X + X <=> C_X + O_X", + kinetics = SurfaceArrhenius( + A = (1.15E20, 'cm^2/(mol*s)'), + n = 0.468, + Ea = (76.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann libraries""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 2.85E11(1/s)/2.483E-9(mol/cm^2) = 1.15E20 cm^2/(mol*s) + +This is R75 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 76, +# label = "C_X + O_X <=> CO_X + X", +# kinetics = SurfaceArrhenius( +# A = (1.41E19, 'cm^2/(mol*s)'), +# n = -0.468, +# Ea = (22.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann libraries""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 3.51E10(1/s)/2.483E-9(mol/cm^2) = 1.41E19 cm^2/(mol*s) + +# This is R76 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 77, + label = "CO_X + H_X <=> CH_X + O_X", + kinetics = SurfaceArrhenius( + A = (1.26E20, 'cm^2/(mol*s)'), + n = 0.073, + Ea = (45.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 3.12E11(1/s)/2.483E-9(mol/cm^2) = 1.26E20 cm^2/(mol*s) + +This is R77 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 78, +# label = "CH_X + O_X <=> CO_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (1.29E19, 'cm^2/(mol*s)'), +# n = -0.073, +# Ea = (9.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 3.21E10(1/s)/2.483E-9(mol/cm^2) = 1.29E19 cm^2/(mol*s) + +# This is R78 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 79, + label = "CO_X + H_X <=> C_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.00E20, 'cm^2/(mol*s)'), + n = -0.168, + Ea = (40.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann libraries""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 4.97E11(1/s)/2.483E-9(mol/cm^2) = 2.00E20 cm^2/(mol*s) + +This is R79 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 80, +# label = "C_X + OH_X <=> CO_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (8.10E18, 'cm^2/(mol*s)'), +# n = 0.168, +# Ea = (4.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann libraries""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 2.01E10(1/s)/2.483E-9(mol/cm^2) = 8.10E18 cm^2/(mol*s) + +# This is R80 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 81, + label = "CO_X + CO_X <=> C_X + CO2_X", + kinetics = SurfaceArrhenius( + A = (2.39E20, 'cm^2/(mol*s)'), + n = 0.393, + Ea = (48.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann libraries""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 5.94E11(1/s)/2.483E-9(mol/cm^2) = 2.39E20 cm^2/(mol*s) + +This is R81 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 82, +# label = "C_X + CO2_X <=> CO_X + CO_X", +# kinetics = SurfaceArrhenius( +# A = (6.77E18, 'cm^2/(mol*s)'), +# n = -0.393, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann libraries""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.68E10(1/s)/2.483E-9(mol/cm^2) = 6.77E18 cm^2/(mol*s) + +# This is R82 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 83, + label = "CH3OH + X <=> CH3OH_X", + kinetics = StickingCoefficient( + A = 0.334, + n = 0.258, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R83 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 84, +# label = "CH3OH_X <=> CH3OH + X", +# kinetics = SurfaceArrhenius( +# A = (2.11E12, '1/s'), +# n = -0.258, +# Ea = (9.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R84 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 85, + label = "CH3O + X <=> CH3O_X", + kinetics = StickingCoefficient( + A = 0.149, + n = 0.054, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R85 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 86, +# label = "CH3O_X <=> CH3O + X", +# kinetics = SurfaceArrhenius( +# A = (4.73E12, '1/s'), +# n = -0.054, +# Ea = (37.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R86 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 87, + label = "CH2O + X <=> CH2O_X", + kinetics = StickingCoefficient( + A = 0.0877, + n = 0.098, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R87 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 88, +# label = "CH2O_X <=> CH2O + X", +# kinetics = SurfaceArrhenius( +# A = (8.06E12, '1/s'), +# n = -0.098, +# Ea = (12.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R88 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 89, + label = "HCO + X <=> HCO_X", + kinetics = StickingCoefficient( + A = 0.0114, + n = 0.096, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R89 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 90, +# label = "HCO_X <=> HCO + X", +# kinetics = SurfaceArrhenius( +# A = (6.21E13, '1/s'), +# n = -0.096, +# Ea = (55.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R90 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 91, + label = "CH2OH + X <=> CH2OH_X", + kinetics = StickingCoefficient( + A = 0.0526, + n = 0.233, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Single""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This is R91 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 92, +# label = "CH2OH_X <=> CH2OH + X", +# kinetics = SurfaceArrhenius( +# A = (1.35E13, '1/s'), +# n = -0.233, +# Ea = (50.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Single""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This is R92 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 93, + label = "CH3OH_X + X <=> CH3O_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.15E19, 'cm^2/(mol*s)'), + n = 0.102, + Ea = (18.8, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 7.82E10(1/s)/2.483E-9(mol/cm^2) = 3.15E19 cm^2/(mol*s) + +This is R93 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 94, +# label = "CH3O_X + H_X <=> CH3OH_X + X", +# kinetics = SurfaceArrhenius( +# A = (5.16E19, 'cm^2/(mol*s)'), +# n = -0.102, +# Ea = (4.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.28E11(1/s)/2.483E-9(mol/cm^2) = 5.16E19 cm^2/(mol*s) + +# This is R94 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 95, + label = "CH3O_X + X <=> CH2O_X + H_X", + kinetics = SurfaceArrhenius( + A = (5.03E19, 'cm^2/(mol*s)'), + n = 0.192, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Addition_Single_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.25E11(1/s)/2.483E-9(mol/cm^2) = 5.03E19 cm^2/(mol*s) + +This is R95 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 96, +# label = "CH2O_X + H_X <=> CH3O_X + X", +# kinetics = SurfaceArrhenius( +# A = (3.23E19, 'cm^2/(mol*s)'), +# n = -0.192, +# Ea = (14.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Addition_Single_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 8.03E10(1/s)/2.483E-9(mol/cm^2) = 3.23E19 cm^2/(mol*s) + +# This is R96 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 97, + label = "CH2O_X + X <=> HCO_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.88E19, 'cm^2/(mol*s)'), + n = 0.270, + Ea = (3.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 7.14E10(1/s)/2.483E-9(mol/cm^2) = 2.88E19 cm^2/(mol*s) + +This is R97 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 98, +# label = "HCO_X + H_X <=> CH2O_X + X", +# kinetics = SurfaceArrhenius( +# A = (5.64E19, 'cm^2/(mol*s)'), +# n = -0.270, +# Ea = (21.0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.40E11(1/s)/2.483E-9(mol/cm^2) = 5.64E19 cm^2/(mol*s) + +# This is R98 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 99, + label = "HCO_X + X <=> CO_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.86E19, 'cm^2/(mol*s)'), + n = 0.330, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 7.11E10(1/s)/2.483E-9(mol/cm^2) = 2.86E19 cm^2/(mol*s) + +This is R99 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 100, +# label = "CO_X + H_X <=> HCO_X + X", +# kinetics = SurfaceArrhenius( +# A = (5.68E19, 'cm^2/(mol*s)'), +# n = -0.330, +# Ea = (30.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.41E11(1/s)/2.483E-9(mol/cm^2) = 5.68E19 cm^2/(mol*s) + +# This is R100 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 101, + label = "CH3OH_X + X <=> CH2OH_X + H_X", + kinetics = SurfaceArrhenius( + A = (3.42E19, 'cm^2/(mol*s)'), + n = 0.403, + Ea = (8.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 8.48E10(1/s)/2.483E-9(mol/cm^2) = 3.42E19 cm^2/(mol*s) + +This is R101 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 102, +# label = "CH2OH_X + H_X <=> CH3OH_X + X", +# kinetics = SurfaceArrhenius( +# A = (4.75E19, 'cm^2/(mol*s)'), +# n = -0.403, +# Ea = (14.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 1.18E11(1/s)/2.483E-9(mol/cm^2) = 4.75E19 cm^2/(mol*s) + +# This is R102 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) + +entry( + index = 103, + label = "CH2OH_X + X <=> CH2O_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.59E19, 'cm^2/(mol*s)'), + n = -0.104, + Ea = (7.9, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Addition_Single_vdW""", + longDesc = u""" +"A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +D.G. Vlachos et al. (2007) +Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +DOI: 10.1021/ie070322c + +This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +A = 1.14E11(1/s)/2.483E-9(mol/cm^2) = 4.59E19 cm^2/(mol*s) + +This is R103 in Table 2 +""", + metal = "Pt", + facet = "111", +) + +# entry( +# index = 104, +# label = "CH2O_X + H_X <=> CH2OH_X + X", +# kinetics = SurfaceArrhenius( +# A = (3.53E19, 'cm^2/(mol*s)'), +# n = 0.104, +# Ea = (2.2, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Addition_Single_vdW""", +# longDesc = u""" +# "A Catalytic Reaction Mechanism for Methane Partial Oxidation at Short Contact Times, +# Reforming, and Combustion, and for Oxygenate Decomposition and Oxidation on Platinum" +# D.G. Vlachos et al. (2007) +# Industrial & Engineering Chemistry Research, 46(16), 5310-5324. +# DOI: 10.1021/ie070322c + +# This reaction used RMG's surface site density of Pt111 = 2.483E-9(mol/cm^2) to calculate the A factor. +# A = 8.77E10(1/s)/2.483E-9(mol/cm^2) = 3.53E19 cm^2/(mol*s) + +# This is R104 in Table 2 +# """, +# metal = "Pt", +# facet = "111", +# ) diff --git a/input/kinetics/libraries/Surface/Vlachos_Rh/dictionary.txt b/input/kinetics/libraries/Surface/Vlachos_Rh/dictionary.txt new file mode 100644 index 0000000000..2e5d4a5db6 --- /dev/null +++ b/input/kinetics/libraries/Surface/Vlachos_Rh/dictionary.txt @@ -0,0 +1,105 @@ +X +1 X u0 p0 c0 + +O +multiplicity 3 +1 O u2 p2 c0 + +O_X +1 O u0 p2 c0 {2,D} +2 X u0 p0 c0 {1,D} + +O2 +multiplicity 3 +1 O u1 p2 c0 {2,S} +2 O u1 p2 c0 {1,S} + +CO +multiplicity 3 +1 O u0 p2 c0 {2,D} +2 C u2 p0 c0 {1,D} + +CO_X +1 O u0 p2 c0 {2,D} +2 C u0 p0 c0 {1,D} {3,D} +3 X u0 p0 c0 {2,D} + +CO2 +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} + +CO2_X +1 O u0 p2 c0 {3,D} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,D} {2,D} +4 X u0 p0 c0 + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} + +H +multiplicity 2 +1 H u1 p0 c0 + +H2 +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} + +OH +multiplicity 2 +1 O u1 p2 c0 {2,S} +2 H u0 p0 c0 {1,S} + +OH_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,S} + +H2O +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} + +H2O_X +1 O u0 p2 c0 {2,S} {3,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 + +COOH_X +1 O u0 p2 c0 {3,S} {4,S} +2 O u0 p2 c0 {3,D} +3 C u0 p0 c0 {1,S} {2,D} {5,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 {3,S} + +C_X +1 C u0 p0 c0 {2,Q} +2 X u0 p0 c0 {1,Q} + +CH_X +1 C u0 p0 c0 {2,S} {3,T} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,T} + +CH2_X +1 C u0 p0 c0 {2,S} {3,S} {4,D} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,D} + +CH3_X +1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 {1,S} + +CH4 +1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 H u0 p0 c0 {1,S} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Vlachos_Rh/reactions.py b/input/kinetics/libraries/Surface/Vlachos_Rh/reactions.py new file mode 100644 index 0000000000..74228aa99d --- /dev/null +++ b/input/kinetics/libraries/Surface/Vlachos_Rh/reactions.py @@ -0,0 +1,939 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Vlachos_Rh" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. +""" + +entry( + index = 1, + label = "H2 + X + X <=> H_X + H_X", + kinetics = StickingCoefficient( + A = 0.773, + n = 0.9387, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""H2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +This is R1 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 2, +# label = "H_X + H_X <=> H2 + X + X", +# kinetics = SurfaceArrhenius( +# A = (2.23E20, 'cm^2/(mol*s)'), +# n = -0.4347, +# Ea = (12.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""H2 Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 5.56E11(1/s)/2.49E-9(mol/cm^2) = 2.23E20cm^2/(mol*s) + +# This is R2 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 3, + label = "H2O_X + X <=> H_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.31E20, 'cm^2/(mol*s)'), + n = 0.0281, + Ea = (18.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 5.74E11(1/s)/2.49E-9(mol/cm^2) = 2.31E20 cm^2/(mol*s) + +This is R7 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 4, +# label = "H_X + OH_X <=> H2O_X + X", +# kinetics = SurfaceArrhenius( +# A = (7.23E17, 'cm^2/(mol*s)'), +# n = 1.2972, +# Ea = (16.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 1.80E09(1/s)/2.49E-9(mol/cm^2) = 7.23E17 cm^2/(mol*s) + +# This is R8 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 5, + label = "H2O + X <=> H2O_X", + kinetics = StickingCoefficient( + A = 0.0772, + n = 1.4067, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +This is R13 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 6, +# label = "H2O_X <=> H2O + X", +# kinetics = SurfaceArrhenius( +# A = (2.06E13, '1/s'), +# n = -1.8613, +# Ea = (7.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# This is R14 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 7, + label = "CO + X <=> CO_X", + kinetics = StickingCoefficient( + A = 0.5, + n = -2.00, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Double""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +This is R19 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 8, +# label = "CO_X <=> CO + X", +# kinetics = SurfaceArrhenius( +# A = (5.65E12, '1/s'), +# n = 1.9879, +# Ea = (32.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Double""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# This is R20 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 9, + label = "CO2 + X <=> CO2_X", + kinetics = StickingCoefficient( + A = 0.367, + n = -2.3294, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +This is R21 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 10, +# label = "CO2_X <=> CO2 + X", +# kinetics = SurfaceArrhenius( +# A = (7.54E10, '1/s'), +# n = 2.1831, +# Ea = (2.8, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# This is R22 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 11, + label = "CO2_X + H_X <=> CO_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.61E23, 'cm^2/(mol*s)'), + n = 0.0301, + Ea = (5.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann_Pt/19""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 4.00E14(1/s)/2.49E-9(mol/cm^2) = 1.61E23 cm^2/(mol*s) + +This is R29 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 12, +# label = "CO_X + OH_X <=> CO2_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (1.41E23, 'cm^2/(mol*s)'), +# n = -0.0301, +# Ea = (19.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann_Pt/19""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 3.51E14(1/s)/2.49E-9(mol/cm^2) = 1.41E23 cm^2/(mol*s) + +# This is R30 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 13, + label = "COOH_X + X <=> CO_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4.30E20, 'cm^2/(mol*s)'), + n = -0.4123, + Ea = (7.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 1.07E12(1/s)/2.49E-9(mol/cm^2) = 4.30E20 cm^2/(mol*s) + +This is R31 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 14, +# label = "CO_X + OH_X <=> COOH_X + X", +# kinetics = SurfaceArrhenius( +# A = (3.76E20, 'cm^2/(mol*s)'), +# n = 0.4123, +# Ea = (14.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 9.37E11(1/s)/2.49E-9(mol/cm^2) = 3.76E20 cm^2/(mol*s) + +# This is R32 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 15, + label = "COOH_X + X <=> CO2_X + H_X", + kinetics = SurfaceArrhenius( + A = (4.02E18, 'cm^2/(mol*s)'), + n = -0.4424, + Ea = (7.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Addition_Single_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 1.00E10(1/s)/2.49E-9(mol/cm^2) = 4.02E18 cm^2/(mol*s) + +This is R33 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 16, +# label = "CO2_X + H_X <=> COOH_X + X", +# kinetics = SurfaceArrhenius( +# A = (4.01E18, 'cm^2/(mol*s)'), +# n = 0.4424, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Addition_Single_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 9.99E09(1/s)/2.49E-9(mol/cm^2) = 4.01E18 cm^2/(mol*s) + +# This is R34 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 17, + label = "CO_X + H2O_X <=> COOH_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.34E20, 'cm^2/(mol*s)'), + n = -0.2222, + Ea = (19.5, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 3.34E11(1/s)/2.49E-9(mol/cm^2) = 1.34E20 cm^2/(mol*s) + +This is R35 in Table 4 +""", + metal = "Rh", +) + +#R36 in the table 4 has a typo of the reactant H_X +# entry( +# index = 18, +# label = "COOH_X + H_X <=> CO_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (4.82E17, 'cm^2/(mol*s)'), +# n = 0.2223, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 1.20E09(1/s)/2.49E-9(mol/cm^2) = 4.82E17 cm^2/(mol*s) + +# This is R36 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 19, + label = "CO2_X + H2O_X <=> COOH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (7.15E20, 'cm^2/(mol*s)'), + n = -0.1992, + Ea = (13.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dual_Adsorption_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 1.78E12(1/s)/2.49E-9(mol/cm^2) = 7.15E20 cm^2/(mol*s) + +This is R39 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 20, +# label = "COOH_X + OH_X <=> CO2_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (2.25E18, 'cm^2/(mol*s)'), +# n = 0.1922, +# Ea = (18.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dual_Adsorption_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 5.60E09(1/s)/2.49E-9(mol/cm^2) = 2.25E18 cm^2/(mol*s) + +# This is R40 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 21, + label = "CH4 + X + X <=> CH3_X + H_X", + kinetics = StickingCoefficient( + A = 0.572, + n = 0.7883, + Ea = (14.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +This is R55 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 22, +# label = "CH3_X + H_X <=> CH4 + X + X", +# kinetics = SurfaceArrhenius( +# A = (3.10E19, 'cm^2/(mol*s)'), +# n = -0.7883, +# Ea = (5.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 7.72E10(1/s)/2.49E-9(mol/cm^2) = 3.10E19 cm^2/(mol*s) + +# This is R56 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 23, + label = "CH3_X + X <=> CH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.00E19, 'cm^2/(mol*s)'), + n = 0.0862, + Ea = (12.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_Dissociative""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 2.49E10(1/s)/2.49E-9(mol/cm^2) = 1.00E19 cm^2/(mol*s) + +This is R57 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 24, +# label = "CH2_X + H_X <=> CH3_X + X", +# kinetics = SurfaceArrhenius( +# A = (1.03E18, 'cm^2/(mol*s)'), +# n = -0.0862, +# Ea = (25.7, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Adsorption_Dissociative""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 2.57E09(1/s)/2.49E-9(mol/cm^2) = 1.03E18 cm^2/(mol*s) + +# This is R58 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 25, + label = "CH2_X + X <=> CH_X + H_X", + kinetics = SurfaceArrhenius( + A = (2.21E19, 'cm^2/(mol*s)'), + n = -0.1312, + Ea = (21.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 5.50E10(1/s)/2.49E-9(mol/cm^2) = 2.21E19 cm^2/(mol*s) + +This is R59 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 26, +# label = "CH_X + H_X <=> CH2_X + X", +# kinetics = SurfaceArrhenius( +# A = (2.92E18, 'cm^2/(mol*s)'), +# n = 0.1312, +# Ea = (20.6, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 7.27E09(1/s)/2.49E-9(mol/cm^2) = 2.92E18 cm^2/(mol*s) + +# This is R60 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 27, + label = "CH_X + X <=> C_X + H_X", + kinetics = SurfaceArrhenius( + A = (1.84E21, 'cm^2/(mol*s)'), + n = -0.2464, + Ea = (28.9, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 4.58E12(1/s)/2.49E-9(mol/cm^2) = 1.84E21 cm^2/(mol*s) + +This is R61 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 28, +# label = "C_X + H_X <=> CH_X + X", +# kinetics = SurfaceArrhenius( +# A = (8.76E19, 'cm^2/(mol*s)'), +# n = 0.2464, +# Ea = (14.1, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Dissociation""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 2.18E11(1/s)/2.49E-9(mol/cm^2) = 8.76E19 cm^2/(mol*s) + +# This is R62 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 29, + label = "CH3_X + O_X <=> CH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (1.19E20, 'cm^2/(mol*s)'), + n = -0.1906, + Ea = (6.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 2.96E11(1/s)/2.49E-9(mol/cm^2) = 1.19E20 cm^2/(mol*s) + +This is R63 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 30, +# label = "CH2_X + OH_X <=> CH3_X + O_X", +# kinetics = SurfaceArrhenius( +# A = (1.36E19, 'cm^2/(mol*s)'), +# n = 0.1906, +# Ea = (34.5, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 3.38E10(1/s)/2.49E-9(mol/cm^2) = 1.36E19 cm^2/(mol*s) + +# This is R64 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 31, + label = "CH2_X + H2O_X <=> CH3_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.30E19, 'cm^2/(mol*s)'), + n = -0.7208, + Ea = (20.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 5.73E10(1/s)/2.49E-9(mol/cm^2) = 2.30E19 cm^2/(mol*s) + +This is R69 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 32, +# label = "CH3_X + OH_X <=> CH2_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (6.99E17, 'cm^2/(mol*s)'), +# n = 0.7208, +# Ea = (4.4, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 1.74E09(1/s)/2.49E-9(mol/cm^2) = 6.99E17 cm^2/(mol*s) + +# This is R70 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 33, + label = "CH_X + H2O_X <=> CH2_X + OH_X", + kinetics = SurfaceArrhenius( + A = (2.61E20, 'cm^2/(mol*s)'), + n = -0.5033, + Ea = (21.2, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 6.49E11(1/s)/2.49E-9(mol/cm^2) = 2.61E20 cm^2/(mol*s) + +This is R71 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 34, +# label = "CH2_X + OH_X <=> CH_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (6.18E18, 'cm^2/(mol*s)'), +# n = 0.5033, +# Ea = (19.9, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 1.54E10(1/s)/2.49E-9(mol/cm^2) = 6.18E18 cm^2/(mol*s) + +# This is R72 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 35, + label = "C_X + H2O_X <=> CH_X + OH_X", + kinetics = SurfaceArrhenius( + A = (3.91E20, 'cm^2/(mol*s)'), + n = -0.3882, + Ea = (17.0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Abstraction_vdW""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 9.74E11(1/s)/2.49E-9(mol/cm^2) = 3.91E20 cm^2/(mol*s) + +This is R73 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 36, +# label = "CH_X + OH_X <=> C_X + H2O_X", +# kinetics = SurfaceArrhenius( +# A = (2.57E19, 'cm^2/(mol*s)'), +# n = 0.3882, +# Ea = (29.3, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Surface_Abstraction_vdW""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 6.41E10(1/s)/2.49E-9(mol/cm^2) = 2.57E19 cm^2/(mol*s) + +# This is R74 in Table 4 +# """, +# metal = "Rh", +# ) + +entry( + index = 37, + label = "CO_X + H_X <=> C_X + OH_X", + kinetics = SurfaceArrhenius( + A = (4.74E20, 'cm^2/(mol*s)'), + n = 0.2944, + Ea = (22.6, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Deutschmann libraries""", + longDesc = u""" +"Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +Vlachos et al. (2008) +Journal of Catalysis,259(2), 211-222, 0021-9517 +DOI: 10.1016/j.jcat.2008.08.008.D.G. + +Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +A = 1.18E12(1/s)/2.49E-9(mol/cm^2) = 4.74E20 cm^2/(mol*s) + +This is R79 in Table 4 +""", + metal = "Rh", +) + +# entry( +# index = 38, +# label = "C_X + OH_X <=> CO_X + H_X", +# kinetics = SurfaceArrhenius( +# A = (3.05E21, 'cm^2/(mol*s)'), +# n = -0.2944, +# Ea = (0, 'kcal/mol'), +# Tmin = (200, 'K'), +# Tmax = (3000, 'K'), +# ), +# shortDesc = u"""Deutschmann libraries""", +# longDesc = u""" +# "Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models" +# Vlachos et al. (2008) +# Journal of Catalysis,259(2), 211-222, 0021-9517 +# DOI: 10.1016/j.jcat.2008.08.008.D.G. + +# Surface site density of Rh from the paper = 2.49E-9(mol/cm^2). +# A = 7.60E12(1/s)/2.49E-9(mol/cm^2) = 3.0521 cm^2/(mol*s) + +# This is R80 in Table 4 +# """, +# metal = "Rh", +# ) diff --git a/input/kinetics/libraries/Surface/Vlachos_Ru0001/dictionary.txt b/input/kinetics/libraries/Surface/Vlachos_Ru0001/dictionary.txt new file mode 100644 index 0000000000..e944f9a415 --- /dev/null +++ b/input/kinetics/libraries/Surface/Vlachos_Ru0001/dictionary.txt @@ -0,0 +1,42 @@ +X +1 X u0 p0 c0 + +NH3 +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} + +NH3_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 H u0 p0 c0 {1,S} +5 X u0 p0 c0 + +NH2_X +1 N u0 p1 c0 {2,S} {3,S} {4,S} +2 H u0 p0 c0 {1,S} +3 H u0 p0 c0 {1,S} +4 X u0 p0 c0 {1,S} + +NH_X +1 N u0 p1 c0 {2,S} {3,D} +2 H u0 p0 c0 {1,S} +3 X u0 p0 c0 {1,D} + +N_X +1 N u0 p1 c0 {2,T} +2 X u0 p0 c0 {1,T} + +N2 +1 N u0 p1 c0 {2,T} +2 N u0 p1 c0 {1,T} + +H2 +1 H u0 p0 c0 {2,S} +2 H u0 p0 c0 {1,S} + +H_X +1 H u0 p0 c0 {2,S} +2 X u0 p0 c0 {1,S} \ No newline at end of file diff --git a/input/kinetics/libraries/Surface/Vlachos_Ru0001/reactions.py b/input/kinetics/libraries/Surface/Vlachos_Ru0001/reactions.py new file mode 100644 index 0000000000..53aa5541af --- /dev/null +++ b/input/kinetics/libraries/Surface/Vlachos_Ru0001/reactions.py @@ -0,0 +1,176 @@ +#!/usr/bin/env python +# encoding: utf-8 + +name = "Vlachos_Ru0001" +shortDesc = u"" +longDesc = u""" +Primarily based on: +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 +""" + +entry( + index = 1, + label = "H2 + X + X <=> H_X + H_X", + kinetics = StickingCoefficient( + A = 0.87, + n = 0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""H2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This is R1 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +#skip R2 (reverse reaction of R1) + +entry( + index = 2, + label = "N2 + X + X <=> N_X + N_X", + kinetics = StickingCoefficient( + A = 0.2, + n = 0, + Ea = (7.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + # coverage_dependence = {'N_X': {'E': (26.3, 'kacl/mol'), 'm':0.0, 'a':0.0},}, + ), + shortDesc = u"""N2 Surface_Adsorption_Dissociative""", + longDesc = u""" +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This is R3 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +#skip R4 (reverse reaction of R3) + +entry( + index = 3, + label = "NH_X + X <=> N_X + H_X", + kinetics = SurfaceArrhenius( + A = (7.22E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (5.3, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + # coverage_dependence = {'N_X': {'E': (15.5, 'kacl/mol'), 'm':0.0, 'a':0.0},}, + # coverage_dependence = {'H_X': {'E': (1, 'kacl/mol'), 'm':0.0, 'a':0.0},}, + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 1.9E12(1/s)/2.630E-9(mol/cm^2) = 7.22E20 cm^2/(mol*s) + +This is R5 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +#skip R6 (reverse reaction of R5) + +entry( + index = 4, + label = "NH2_X + X <=> NH_X + H_X", + kinetics = SurfaceArrhenius( + A = (7.60E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (20.1, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + # coverage_dependence = {'H_X': {'E': (1.2, 'kacl/mol'), 'm':0.0, 'a':0.0},}, + ), + shortDesc = u"""Surface_Dissociation""", + longDesc = u""" +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 2E12(1/s)/2.630E-9(mol/cm^2) = 7.60E20 cm^2/(mol*s) + +This is R7 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +#skip R9 (reverse reaction of R7) + +entry( + index = 5, + label = "NH3_X + X <=> NH2_X + H_X", + kinetics = SurfaceArrhenius( + A = (7.60E20, 'cm^2/(mol*s)'), + n = 0.0, + Ea = (18.7, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + # coverage_dependence = {'H_X': {'E': (1.3, 'kacl/mol'), 'm':0.0, 'a':0.0},}, + ), + shortDesc = u"""Surface_Dissociation_vdW""", + longDesc = u""" +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This reaction used RMG's surface site density of Ru0001 = 2.630E-9(mol/cm^2) to calculate the A factor. +A = 2E12(1/s)/2.630E-9(mol/cm^2) = 7.60E20 cm^2/(mol*s) + +This is R9 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +#skip R10 (reverse reaction of R9) + +entry( + index = 6, + label = "NH3 + X <=> NH3_X", + kinetics = StickingCoefficient( + A = 0.00015, + n = 0, + Ea = (0, 'kcal/mol'), + Tmin = (200, 'K'), + Tmax = (3000, 'K'), + ), + shortDesc = u"""Surface_Adsorption_vdW""", + longDesc = u""" +"The role of adsorbate–adsorbate interactions in the rate controlling step +and the most abundant reaction intermediate of NH3 decomposition on Ru" +D.G. Vlachos et al. (2004). Catalysis Letters 96, 13–22. +https://doi.org/10.1023/B:CATL.0000029523.22277.e1 + +This is R11 in Table 2 (set A) +""", + metal = "Ru", + facet = "0001", +) + +#skip R12 (reverse reaction of R11) \ No newline at end of file