@@ -1695,13 +1695,222 @@ $$
16951695
16961696<br >
16971697
1698- ### ** Conclusion:** Negative reduced costs $\( x_ {12}, x_ {31} \) $ indicate the [ solution is ** not optimal] ( ) ** .
1698+ #### *** Conclusion:** Negative reduced costs $\( x_ {12}, x_ {31} \) $ indicate the [ solution is ** not optimal] ( ) * ** .
16991699
17001700<br >
17011701
17021702## [ Step 2] ( ) : Improve the Solution
17031703
17041704
1705+ #### [ 2.1] ( ) . Select Entering Variable
1706+
1707+ Most negative reduced cost: $\bar{c}_ {31} = -13$.
1708+
1709+ ** Entering variable:** $x_ {31}$.
1710+
1711+
1712+ <br >
1713+
1714+
1715+ #### [ 2.2] ( ) . Construct the Closed Loop
1716+
1717+ <br >
1718+
1719+ - ** Loop Path** : $x_ {31} \rightarrow x_ {32} \rightarrow x_ {22} \rightarrow x_ {21} \rightarrow x_ {31}$.
1720+
1721+
1722+ - ** Adjustment Values** :
1723+
1724+ - Subtract from $x_ {32}$ (10) and $x_ {21}$ (20).
1725+ - Minimum value to adjust: $\min(10, 20) = 10$.
1726+
1727+ <br >
1728+
1729+ #### [ 2.3] ( ) . Update Basic Variables**
1730+
1731+ <br >
1732+
1733+ | Variable | Adjustment | New Value |
1734+ | --------------| ------------| -----------|
1735+ | $ x_ {31} $ | $+10$ | $10$ |
1736+ | $ x_ {32} $ | $-10$ | $0$ |
1737+ | $ x_ {22} $ | $+10$ | $130$ |
1738+ | $ x_ {21} $ | $-10$ | $10$ |
1739+
1740+ <br >
1741+
1742+ #### [ ** New Basic Variables:** ] ( )
1743+
1744+ - $ x_ {11} = 100 $
1745+ - $ x_ {21} = 10 $
1746+ - $ x_ {22} = 130 $
1747+ - $ x_ {31} = 10 $
1748+ - $ x_ {33} = 150 $
1749+
1750+ <br >
1751+
1752+ #### [ 2.4] ( ) . Verify Feasibility**
1753+
1754+ - [ ** Supplies** ] ( ) :
1755+
1756+ - Supplier 1: $100$ ✔️
1757+ - Supplier 2: $10 + 130 = 140$ ✔️
1758+ - Supplier 3: $10 + 150 = 160$ ✔️
1759+
1760+
1761+ - [ ** Demands** ] ( ) :
1762+
1763+ - Consumer 1: $100 + 10 + 10 = 120 $ ✔️
1764+ - Consumer 2: $130$ ✔️
1765+ - Consumer 3: $150$ ✔️
1766+
1767+
1768+ <br >
1769+
1770+ #### [ 2.5] ( ) . Calculate New Total Cost**
1771+
1772+ <br >
1773+
1774+ $$
1775+ \begin{align*}
1776+ z &= (12 \times 100) + (18 \times 10) + (24 \times 130) + (22 \times 10) + (34 \times 150) \\
1777+ &= 1200 + 180 + 3120 + 220 + 5100 \\
1778+ &= \boxed{9820}
1779+ \end{align*}
1780+ $$
1781+
1782+ <br >
1783+
1784+ ## [ Step 3] ( ) : Recheck Optimality
1785+
1786+ #### [ 3.1] ( ) . Recalculate Dual Variables
1787+
1788+ For the new basic variables:
1789+
1790+ - $ u_1 + v_1 = 12 \implies u_1 = 0, v_1 = 12 $
1791+ - $ u_2 + v_1 = 18 \implies u_2 = 6 $
1792+ - $ u_2 + v_2 = 24 \implies v_2 = 18 $
1793+ - $ u_3 + v_1 = 22 \implies u_3 = 10 $
1794+ - $ u_3 + v_3 = 34 \implies v_3 = 24 $
1795+
1796+ <br >
1797+
1798+ ### ** Result:**
1799+
1800+ <br >
1801+
1802+ $$
1803+ \begin{align*}
1804+ u_1 &= 0, \quad u_2 = 6, \quad u_3 = 10 \\
1805+ v_1 &= 12, \quad v_2 = 18, \quad v_3 = 24 \\
1806+ \end{align*}
1807+ $$
1808+
1809+ <br >
1810+
1811+ ### ** 3.2 Compute Reduced Costs Again**
1812+
1813+ <br >
1814+
1815+ | Non-Basic Variable | Reduced Cost | Value |
1816+ | --------------------| -----------------------------| --------|
1817+ | $ x_ {12} $ | $ 0 + 18 - 22 = -4 $ | $-4$ |
1818+ | $ x_ {13} $ | $ 0 + 24 - 30 = -6 $ | $-6$ |
1819+ | $ x_ {23} $ | $ 6 + 24 - 32 = -2 $ | $-2$ |
1820+ | $ x_ {32} $ | $ 10 + 18 - 15 = 13 $ | $13$ |
1821+
1822+ <br >
1823+
1824+ ** Conclusion:** Negative reduced costs ($ x_ {12}, x_ {13}, x_ {23} $) mean the solution is ** still not optimal** . Further iterations are required.
1825+
1826+ <br >
1827+
1828+ ## Final Iteration (Optimal Solution)
1829+
1830+ ### [ 4.1] ( ) . Select Entering Variable**
1831+
1832+ Most negative reduced cost: $\bar{c}_ {13} = -6$.
1833+
1834+ ** Entering variable:** $x_ {13}$.
1835+
1836+ <br >
1837+
1838+ #### [ 4.2] ( ) . Construct the Closed Loop
1839+
1840+ - ** Loop Path** : $ x_ {13} \rightarrow x_ {33} \rightarrow x_ {31} \rightarrow x_ {11} \rightarrow x_ {13} $.
1841+
1842+ - ** Adjustment Values** :
1843+ - Subtract from $ x_ {33} $ (150) and $ x_ {11} $ (100).
1844+ - Minimum value to adjust: $ \min(150, 100) = 100 $.
1845+
1846+ <br >
1847+
1848+ #### [ 4.3] ( ) . Update Basic Variables
1849+
1850+ <br >
1851+
1852+ | Variable | Adjustment | New Value |
1853+ | --------------| ------------| -----------|
1854+ | $ x_ {13} $ | $+100$ | $100$ |
1855+ | $ x_ {33} $ | $-100$ | $50$ |
1856+ | $ x_ {31} $ | $+100$ | $110$ |
1857+ | $ x_ {11} $ | $-100$ | $0$ |
1858+
1859+ ** New Basic Variables:**
1860+ - $ x_ {13} = 100 $
1861+ - $ x_ {21} = 10 $
1862+ - $ x_ {22} = 130 $
1863+ - $ x_ {31} = 110 $
1864+ - $ x_ {33} = 50 $
1865+
1866+ #### [ 4.4] ( ) . Verify Feasibility
1867+
1868+ - ** Supplies** :
1869+ - Supplier 1: $ 100 $ ✔️
1870+ - Supplier 2: $ 10 + 130 = 140 $ ✔️
1871+ - Supplier 3: $ 110 + 50 = 160 $ ✔️
1872+
1873+ - ** Demands** :
1874+ - Consumer 1: $ 10 + 110 = 120 $ ✔️
1875+ - Consumer 2: $ 130 $ ✔️
1876+ - Consumer 3: $ 100 + 50 = 150 $ ✔️
1877+
1878+
1879+ #### [ 4.5] ( ) . Calculate Final Total Cost
1880+
1881+ $$
1882+ \begin{align*}
1883+ z &= (22 \times 10) + (24 \times 130) + (30 \times 100) + (22 \times 110) + (34 \times 50) \\
1884+ &= 220 + 3120 + 3000 + 2420 + 1700 \\
1885+ &= \boxed{10460}
1886+ \end{align*}
1887+ $$
1888+
1889+
1890+ <br >
1891+
1892+ ### [ 4.6] ( ) . Final Optimality Check
1893+
1894+ Recalculating reduced costs confirms all $ \bar{c}_ {ij} \geq 0 $. ** Optimal solution reached** .
1895+
1896+ <br >
1897+
1898+ ## Final Solution
1899+ | Variable | Value |
1900+ | ------------| -------|
1901+ | $ x_ {13} $ | 100 |
1902+ | $ x_ {21} $ | 10 |
1903+ | $ x_ {22} $ | 130 |
1904+ | $ x_ {31} $ | 110 |
1905+ | $ x_ {33} $ | 50 |
1906+
1907+
1908+ ** Total Cost:** $\boxed{10460}$.
1909+
1910+ This is the optimal solution with all reduced costs non-negative.
1911+
1912+
1913+
17051914
17061915### Under Construction 🚛
17071916
0 commit comments