Skip to content

Commit 5268ec0

Browse files
Update README.md
Signed-off-by: Fabiana 🚀 Campanari <113218619+FabianaCampanari@users.noreply.github.com>
1 parent 42b100d commit 5268ec0

File tree

1 file changed

+15
-59
lines changed

1 file changed

+15
-59
lines changed

README.md

Lines changed: 15 additions & 59 deletions
Original file line numberDiff line numberDiff line change
@@ -564,79 +564,35 @@ After running Solver:
564564
<br>
565565

566566
## Extras Excercise:
567+
### 📊 Linear Programming Mathematical Model — Production Optimization
567568

568-
### 1. [Develop a Mathematical Model – Linear Programming (LP)]():
569+
### ✅ Problem Statement
569570

570-
📘 Problem Statement in English
571+
A company, after going through a production streamlining process, ended up with the availability of 3 productive resources: **R1**, **R2**, and **R3**.
571572

572-
A company, after a production rationalization process, has 3 available productive resources: R1, R2, and R3. A study indicated the feasibility of manufacturing two products: P1 and P2. After analyzing costs and consulting the sales department, it was found that P1 yields a profit of 120 u.m. per unit and P2 yields 150 u.m. per unit. The production department provided the following resource usage table:
573+
A study on resource usage showed the possibility of producing two products: **P1** and **P2**. After evaluating costs and consulting the sales department, it was found that:
573574

574-
### [Mathematically model the LP (only the mathematical model)]()
575+
- **P1 yields a profit of 120 monetary units per unit**
576+
- **P2 yields a profit of 150 monetary units per unit**
575577

578+
The production department provided the following **resource usage** table:
576579

577580
| Product | R1/unit | R2/unit | R3/unit |
578581
|---------|---------|---------|---------|
579-
| P1 | 2 | 3 | 5 |
580-
| P2 | 4 | 0 | 3 |
582+
| **P1** | 2 | 3 | 5 |
583+
| **P2** | 4 | 0 | 3 |
581584

582-
| Resource Availability per month | R1 = 100 | R2 = 90 | R3 = 120 |
585+
And the **monthly resource availability**:
583586

584-
<br>
585-
586-
Summary of the problem:
587-
• Two products: P1 and P2
588-
• Profit per unit:
589-
• P1: 120 monetary units
590-
• P2: 150 monetary units
591-
• Available resources: R1, R2, R3
592-
• Resource consumption per unit:
593-
594-
595-
➢ Product
596-
R1/unit; R2/unit; R3/unit
587+
| Resource | Monthly Availability |
588+
|----------|----------------------|
589+
| **R1** | 100 |
590+
| **R2** | 90 |
591+
| **R3** | 120 |
597592

598-
P1 2 3 5
599-
600-
P2 4 0 3
601-
602-
---
603593

604-
➢ Monthly resource availability:
605594

606-
Resource Availability
607-
R1 100
608-
R2 90
609-
R3 120
610-
611-
----
612-
613-
### [Goal]():
614-
615-
### ***Mathematically model the Linear Programming (LP) problem***
616-
617-
### [Modeling step-by-step]():
618-
619-
<br>
620595

621-
#### 1. [Define the decision variables]():
622-
623-
• Let:
624-
625-
$x_1 = quantity produced of product P1$
626-
627-
$x_2 = quantity produced of product P2$
628-
629-
<br>
630-
631-
#### 2. [Objective Function]():
632-
633-
Maximize total profit, which is the sum of the profit from each product multiplied by the quantity produced:
634-
635-
$$
636-
\text{Maximize } Z = 120x_1 + 150x_2
637-
$$
638-
639-
<br>
640596

641597

642598

0 commit comments

Comments
 (0)