Skip to content

Commit 476d2fc

Browse files
KumoLiuericspod
andauthored
Fix broken link for 2d GAN (#1916)
Fix broken link for 2d GAN ### Checks <!--- Put an `x` in all the boxes that apply, and remove the not applicable items --> - [ ] Avoid including large-size files in the PR. - [ ] Clean up long text outputs from code cells in the notebook. - [ ] For security purposes, please check the contents and remove any sensitive info such as user names and private key. - [ ] Ensure (1) hyperlinks and markdown anchors are working (2) use relative paths for tutorial repo files (3) put figure and graphs in the `./figure` folder - [ ] Notebook runs automatically `./runner.sh -t <path to .ipynb file>` Signed-off-by: YunLiu <55491388+KumoLiu@users.noreply.github.com> Co-authored-by: Eric Kerfoot <17726042+ericspod@users.noreply.github.com>
1 parent 48e5950 commit 476d2fc

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

generation/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -43,7 +43,7 @@ Example shows the use cases of using MONAI to evaluate the performance of a gene
4343
## [Training a 2D VQ-VAE + Autoregressive Transformers](./2d_vqvae_transformer/2d_vqvae_transformer_tutorial.ipynb):
4444
Example shows how to train a Vector-Quantized Variation Autoencoder + Transformers on the MedNIST dataset.
4545

46-
## Training VQ-VAEs and VQ-GANs: [2D VAE](./2d_vqvae/2d_vqvae_tutorial.ipynb), [3D VAE](./3d_vqvae/3d_vqvae_tutorial.ipynb) and [2D GAN](./3d_autoencoderkl/2d_vqgan_tutorial.ipynb)
46+
## Training VQ-VAEs and VQ-GANs: [2D VAE](./2d_vqvae/2d_vqvae_tutorial.ipynb), [3D VAE](./3d_vqvae/3d_vqvae_tutorial.ipynb) and [2D GAN](./2d_vqgan/2d_vqgan_tutorial.ipynb)
4747
Examples show how to train Vector Quantized Variation Autoencoder on [2D](./2d_vqvae/2d_vqvae_tutorial.ipynb) and [3D](./3d_vqvae/3d_vqvae_tutorial.ipynb), and how to use the PatchDiscriminator class to train a [VQ-GAN](./2d_vqgan/2d_vqgan_tutorial.ipynb) and improve the quality of the generated images.
4848

4949
## [Training a 2D Denoising Diffusion Probabilistic Model](./2d_ddpm/2d_ddpm_tutorial.ipynb):

0 commit comments

Comments
 (0)