You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<p><imgsrc="linear_theory.jpg" alt="Linear Theory Comparison" class="inline"/></p>
179
-
<h1><aclass="anchor" id="autotoc_md37"></a>
180
-
Titarev-Toro problem (1D)</h1>
181
-
<p>Reference: V. A. Titarev, E. F. Toro, Finite-volume WENO schemes for three-dimensional conservation laws, Journal of Computational Physics 201 (1) (2004) 238–260.</p>
<p><imgsrc="linear_theory.jpg" alt="Linear Theory Comparison" class="inline"/></p>
216
-
<h1><aclass="anchor" id="autotoc_md46"></a>
164
+
<h1><aclass="anchor" id="autotoc_md34"></a>
217
165
Lid-Driven Cavity Problem (2D)</h1>
218
166
<p>Reference: Bezgin, D. A., & Buhendwa A. B., & Adams N. A. (2022). JAX-FLUIDS: A fully-differentiable high-order computational fluid dynamics solver for compressible two-phase flows. arXiv:2203.13760</p>
219
167
<p>Reference: Ghia, U., & Ghia, K. N., & Shin, C. T. (1982). High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387-411</p>
<p>Reference: P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Communications on pure and applied mathematics 7 (1) (1954) 159–193.</p>
<p>Reference: Chamarthi, A., & Hoffmann, N., & Nishikawa, H., & Frankel S. (2023). Implicit gradients based conservative numerical scheme for compressible flows. arXiv:2110.05461</p>
<p>The <ahref="case.py"><b>Scaling</b></a> case can exercise both weak- and strong-scaling. It adjusts itself depending on the number of requested ranks.</p>
278
237
<p>This directory also contains a collection of scripts used to test strong-scaling on OLCF Frontier. They required modifying MFC to collect some metrics but are meant to serve as a reference to users wishing to run similar experiments.</p>
279
-
<h2><aclass="anchor" id="autotoc_md59"></a>
238
+
<h2><aclass="anchor" id="autotoc_md50"></a>
280
239
Weak Scaling</h2>
281
240
<p>Pass <code>--scaling weak</code>. The <code>--memory</code> option controls (approximately) how much memory each rank should use, in Gigabytes. The number of cells in each dimension is then adjusted according to the number of requested ranks and an approximation for the relation between cell count and memory usage. The problem size increases linearly with the number of ranks.</p>
282
-
<h2><aclass="anchor" id="autotoc_md60"></a>
241
+
<h2><aclass="anchor" id="autotoc_md51"></a>
283
242
Strong Scaling</h2>
284
243
<p>Pass <code>--scaling strong</code>. The <code>--memory</code> option controls (approximately) how much memory should be used in total during simulation, across all ranks, in Gigabytes. The problem size remains constant as the number of ranks increases.</p>
285
-
<h2><aclass="anchor" id="autotoc_md61"></a>
244
+
<h2><aclass="anchor" id="autotoc_md52"></a>
286
245
Example</h2>
287
246
<p>For example, to run a weak-scaling test that uses ~4GB of GPU memory per rank on 8 2-rank nodes with case optimization, one could:</p>
288
247
<divclass="fragment"><divclass="line">./mfc.sh run examples/scaling/case.py -t pre_process simulation \</div>
</div><!-- fragment --></div></div><!-- contents -->
250
+
</div><!-- fragment --><h1><aclass="anchor" id="autotoc_md53"></a>
251
+
2D Riemann Test (2D)</h1>
252
+
<p>Reference: Chamarthi, A., & Hoffmann, N., & Nishikawa, H., & Frankel S. (2023). Implicit gradients based conservative numerical scheme for compressible flows. arXiv:2110.05461</p>
<p>Reference: V. A. Titarev, E. F. Toro, Finite-volume WENO schemes for three-dimensional conservation laws, Journal of Computational Physics 201 (1) (2004) 238–260.</p>
['1_3a_20setting_20up_20your_20environment_6',['Step 1: Setting up your Environment',['../md_visualization.html#autotoc_md99',1,'']]],
10
-
['1d_7',['1D',['../md_examples.html#autotoc_md52',1,'Lax shock tube problem (1D)'],['../md_examples.html#autotoc_md28',1,'Shu-Osher problem (1D)'],['../md_examples.html#autotoc_md37',1,'Titarev-Toro problem (1D)']]]
10
+
['1d_7',['1D',['../md_examples.html#autotoc_md40',1,'Lax shock tube problem (1D)'],['../md_examples.html#autotoc_md28',1,'Shu-Osher problem (1D)'],['../md_examples.html#autotoc_md56',1,'Titarev-Toro problem (1D)']]]
['2_3a_20customizing_20the_20script_1',['Step 2: Customizing the script',['../md_visualization.html#autotoc_md100',1,'']]],
5
-
['2d_2',['2D',['../md_examples.html#autotoc_md55',1,'2D Riemann Test (2D)'],['../md_examples.html#autotoc_md31',1,'Isentropic vortex problem (2D)'],['../md_examples.html#autotoc_md46',1,'Lid-Driven Cavity Problem (2D)'],['../md_examples.html#autotoc_md43',1,'Rayleigh-Taylor Instability (2D)'],['../md_examples.html#autotoc_md49',1,'Shock Droplet (2D)']]],
6
-
['2d_20hardcodied_20ic_20example_3',['2D Hardcodied IC Example',['../md_examples.html#autotoc_md40',1,'']]],
7
-
['2d_20riemann_20test_202d_4',['2D Riemann Test (2D)',['../md_examples.html#autotoc_md55',1,'']]]
5
+
['2d_2',['2D',['../md_examples.html#autotoc_md53',1,'2D Riemann Test (2D)'],['../md_examples.html#autotoc_md37',1,'Isentropic vortex problem (2D)'],['../md_examples.html#autotoc_md34',1,'Lid-Driven Cavity Problem (2D)'],['../md_examples.html#autotoc_md59',1,'Rayleigh-Taylor Instability (2D)'],['../md_examples.html#autotoc_md46',1,'Shock Droplet (2D)']]],
6
+
['2d_20hardcodied_20ic_20example_3',['2D Hardcodied IC Example',['../md_examples.html#autotoc_md43',1,'']]],
7
+
['2d_20riemann_20test_202d_4',['2D Riemann Test (2D)',['../md_examples.html#autotoc_md53',1,'']]]
0 commit comments