|
150 | 150 | <tr class="heading"><td colspan="2"><h2 class="groupheader"><a id="func-members" name="func-members"></a> |
151 | 151 | Functions/Subroutines</h2></td></tr> |
152 | 152 | <tr class="memitem:ae98c4a659de6724591ff45c1c72080b6" id="r_ae98c4a659de6724591ff45c1c72080b6"><td class="memItemLeft" align="right" valign="top">subroutine, public </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacem__eigen__solver.html#ae98c4a659de6724591ff45c1c72080b6">m_eigen_solver::cg</a> (nm, nl, ar, ai, wr, wi, zr, zi, fv1, fv2, fv3, ierr)</td></tr> |
| 153 | +<tr class="memdesc:ae98c4a659de6724591ff45c1c72080b6"><td class="mdescLeft"> </td><td class="mdescRight">This subroutine calls the recommended sequence of subroutines from the eigensystem subroutine package (eispack) to find the eigenvalues and eigenvectors (if desired) of a complex general matrix. <br /></td></tr> |
153 | 154 | <tr class="separator:ae98c4a659de6724591ff45c1c72080b6"><td class="memSeparator" colspan="2"> </td></tr> |
154 | 155 | <tr class="memitem:a79d1a338e00b679ba5fcf166c529d77c" id="r_a79d1a338e00b679ba5fcf166c529d77c"><td class="memItemLeft" align="right" valign="top">subroutine, public </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacem__eigen__solver.html#a79d1a338e00b679ba5fcf166c529d77c">m_eigen_solver::cbal</a> (nm, nl, ar, ai, low, igh, scale)</td></tr> |
| 156 | +<tr class="memdesc:a79d1a338e00b679ba5fcf166c529d77c"><td class="mdescLeft"> </td><td class="mdescRight">This subroutine is a translation of the algol procedure cbalance, which is a complex version of balance, num. math. 13, 293-304(1969) by parlett and reinsch. handbook for auto. comp., vol.ii-linear algebra, 315-326(1971). This subroutine balances a complex matrix and isolates eigenvalues whenever possible. <br /></td></tr> |
155 | 157 | <tr class="separator:a79d1a338e00b679ba5fcf166c529d77c"><td class="memSeparator" colspan="2"> </td></tr> |
156 | 158 | <tr class="memitem:ab54bfcf38d40c65fcd0887727d3b00f0" id="r_ab54bfcf38d40c65fcd0887727d3b00f0"><td class="memItemLeft" align="right" valign="top">subroutine, public </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacem__eigen__solver.html#ab54bfcf38d40c65fcd0887727d3b00f0">m_eigen_solver::corth</a> (nm, nl, low, igh, ar, ai, ortr, orti)</td></tr> |
| 159 | +<tr class="memdesc:ab54bfcf38d40c65fcd0887727d3b00f0"><td class="mdescLeft"> </td><td class="mdescRight">This subroutine is a translation of a complex analogue of the algol procedure orthes, num. math. 12, 349-368(1968) by martin and wilkinson. handbook for auto. comp., vol.ii-linear algebra, 339-358(1971). Given a complex general matrix, this subroutine reduces a submatrix situated in rows and columns low through igh to upper hessenberg form by unitary similarity transformations. <br /></td></tr> |
157 | 160 | <tr class="separator:ab54bfcf38d40c65fcd0887727d3b00f0"><td class="memSeparator" colspan="2"> </td></tr> |
158 | 161 | <tr class="memitem:a41c2d326d4ab6e1c50656217cbc84b51" id="r_a41c2d326d4ab6e1c50656217cbc84b51"><td class="memItemLeft" align="right" valign="top">subroutine, public </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacem__eigen__solver.html#a41c2d326d4ab6e1c50656217cbc84b51">m_eigen_solver::comqr2</a> (nm, nl, low, igh, ortr, orti, hr, hi, wr, wi, zr, zi, ierr)</td></tr> |
| 162 | +<tr class="memdesc:a41c2d326d4ab6e1c50656217cbc84b51"><td class="mdescLeft"> </td><td class="mdescRight">This subroutine is a translation of a unitary analogue of the algol procedure comlr2, num. math. 16, 181-204(1970) by peters and wilkinson. handbook for auto. comp., vol.ii-linear algebra, 372-395(1971). The unitary analogue substitutes the qr algorithm of francis (comp. jour. 4, 332-345(1962)) for the lr algorithm. This subroutine finds the eigenvalues and eigenvectors of a complex upper hessenberg matrix by the qr method. The eigenvectors of a complex general matrix can also be found if corth has been used to reduce this general matrix to hessenberg form. <br /></td></tr> |
159 | 163 | <tr class="separator:a41c2d326d4ab6e1c50656217cbc84b51"><td class="memSeparator" colspan="2"> </td></tr> |
160 | 164 | <tr class="memitem:a6d35cffb5e64987dbbb6211356e9136f" id="r_a6d35cffb5e64987dbbb6211356e9136f"><td class="memItemLeft" align="right" valign="top">subroutine </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacem__eigen__solver.html#a6d35cffb5e64987dbbb6211356e9136f">m_eigen_solver::cbabk2</a> (nm, nl, low, igh, scale, ml, zr, zi)</td></tr> |
| 165 | +<tr class="memdesc:a6d35cffb5e64987dbbb6211356e9136f"><td class="mdescLeft"> </td><td class="mdescRight">This subroutine is a translation of the algol procedure cbabk2, which is a complex version of balbak, num. math. 13, 293-304(1969) by parlett and reinsch. handbook for auto. comp., vol.ii-linear algebra, 315-326(1971). This subroutine forms the eigenvectors of a complex general matrix by back transforming those of the correspondingbalanced matrix determined by cbal. <br /></td></tr> |
161 | 166 | <tr class="separator:a6d35cffb5e64987dbbb6211356e9136f"><td class="memSeparator" colspan="2"> </td></tr> |
162 | 167 | <tr class="memitem:a26981f13d48d92b739dfb0c30189417f" id="r_a26981f13d48d92b739dfb0c30189417f"><td class="memItemLeft" align="right" valign="top">subroutine, public </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacem__eigen__solver.html#a26981f13d48d92b739dfb0c30189417f">m_eigen_solver::csroot</a> (xr, xi, yr, yi)</td></tr> |
163 | 168 | <tr class="separator:a26981f13d48d92b739dfb0c30189417f"><td class="memSeparator" colspan="2"> </td></tr> |
|
0 commit comments