Skip to content

Commit 4707e84

Browse files
author
MFC Action
committed
Docs @ 24ea4af
1 parent 7d24e5e commit 4707e84

File tree

459 files changed

+26681
-21224
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

459 files changed

+26681
-21224
lines changed

documentation/doxygen_crawl.html

Lines changed: 16 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -23,10 +23,12 @@
2323
<a href="doxygen_crawl.html"/>
2424
<a href="pages.html"/>
2525
<a href="index.html"/>
26-
<a href="index.html#autotoc_md83"/>
27-
<a href="index.html#autotoc_md84"/>
26+
<a href="index.html#autotoc_md81"/>
27+
<a href="index.html#autotoc_md82"/>
2828
<a href="md_authors.html"/>
2929
<a href="md_case.html"/>
30+
<a href="md_case.html#acoustic-source"/>
31+
<a href="md_case.html#acoustic-supports"/>
3032
<a href="md_case.html#autotoc_md10"/>
3133
<a href="md_case.html#autotoc_md11"/>
3234
<a href="md_case.html#autotoc_md12"/>
@@ -45,8 +47,6 @@
4547
<a href="md_case.html#autotoc_md24"/>
4648
<a href="md_case.html#autotoc_md25"/>
4749
<a href="md_case.html#autotoc_md26"/>
48-
<a href="md_case.html#autotoc_md27"/>
49-
<a href="md_case.html#autotoc_md28"/>
5050
<a href="md_case.html#autotoc_md3"/>
5151
<a href="md_case.html#autotoc_md4"/>
5252
<a href="md_case.html#autotoc_md5"/>
@@ -55,6 +55,8 @@
5555
<a href="md_case.html#autotoc_md8"/>
5656
<a href="md_case.html#autotoc_md9"/>
5757
<a href="md_examples.html"/>
58+
<a href="md_examples.html#autotoc_md28"/>
59+
<a href="md_examples.html#autotoc_md29"/>
5860
<a href="md_examples.html#autotoc_md30"/>
5961
<a href="md_examples.html#autotoc_md31"/>
6062
<a href="md_examples.html#autotoc_md32"/>
@@ -87,9 +89,9 @@
8789
<a href="md_examples.html#autotoc_md59"/>
8890
<a href="md_examples.html#autotoc_md60"/>
8991
<a href="md_examples.html#autotoc_md61"/>
90-
<a href="md_examples.html#autotoc_md62"/>
91-
<a href="md_examples.html#autotoc_md63"/>
9292
<a href="md_expectedPerformance.html"/>
93+
<a href="md_expectedPerformance.html#autotoc_md63"/>
94+
<a href="md_expectedPerformance.html#autotoc_md64"/>
9395
<a href="md_expectedPerformance.html#autotoc_md65"/>
9496
<a href="md_expectedPerformance.html#autotoc_md66"/>
9597
<a href="md_expectedPerformance.html#autotoc_md67"/>
@@ -98,32 +100,30 @@
98100
<a href="md_expectedPerformance.html#autotoc_md70"/>
99101
<a href="md_expectedPerformance.html#autotoc_md71"/>
100102
<a href="md_expectedPerformance.html#autotoc_md72"/>
101-
<a href="md_expectedPerformance.html#autotoc_md73"/>
102-
<a href="md_expectedPerformance.html#autotoc_md74"/>
103103
<a href="md_getting-started.html"/>
104+
<a href="md_getting-started.html#autotoc_md74"/>
105+
<a href="md_getting-started.html#autotoc_md75"/>
104106
<a href="md_getting-started.html#autotoc_md76"/>
105107
<a href="md_getting-started.html#autotoc_md77"/>
106108
<a href="md_getting-started.html#autotoc_md78"/>
107-
<a href="md_getting-started.html#autotoc_md79"/>
108-
<a href="md_getting-started.html#autotoc_md80"/>
109109
<a href="md_papers.html"/>
110110
<a href="md_references.html"/>
111111
<a href="md_running.html"/>
112+
<a href="md_running.html#autotoc_md85"/>
113+
<a href="md_running.html#autotoc_md86"/>
112114
<a href="md_running.html#autotoc_md87"/>
113115
<a href="md_running.html#autotoc_md88"/>
114116
<a href="md_running.html#autotoc_md89"/>
115117
<a href="md_running.html#autotoc_md90"/>
116118
<a href="md_running.html#autotoc_md91"/>
117-
<a href="md_running.html#autotoc_md92"/>
118-
<a href="md_running.html#autotoc_md93"/>
119119
<a href="md_testing.html"/>
120-
<a href="md_testing.html#autotoc_md95"/>
121-
<a href="md_testing.html#autotoc_md96"/>
120+
<a href="md_testing.html#autotoc_md93"/>
121+
<a href="md_testing.html#autotoc_md94"/>
122122
<a href="md_visualization.html"/>
123123
<a href="md_visualization.html#autotoc_md100"/>
124124
<a href="md_visualization.html#autotoc_md101"/>
125-
<a href="md_visualization.html#autotoc_md102"/>
126-
<a href="md_visualization.html#autotoc_md103"/>
125+
<a href="md_visualization.html#autotoc_md96"/>
126+
<a href="md_visualization.html#autotoc_md97"/>
127127
<a href="md_visualization.html#autotoc_md98"/>
128128
<a href="md_visualization.html#autotoc_md99"/>
129129
</body>

documentation/index.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -135,7 +135,7 @@
135135
</div><!--header-->
136136
<div class="contents">
137137
<div class="textblock"><p><a class="anchor" id="md_readme"></a></p>
138-
<h1><a class="anchor" id="autotoc_md83"></a>
138+
<h1><a class="anchor" id="autotoc_md81"></a>
139139
User Documentation</h1>
140140
<ul>
141141
<li><a class="el" href="md_getting-started.html">Getting Started</a></li>
@@ -148,7 +148,7 @@ <h1><a class="anchor" id="autotoc_md83"></a>
148148
<li><a class="el" href="md_authors.html">MFC's Authors</a></li>
149149
<li><a class="el" href="md_references.html">References</a></li>
150150
</ul>
151-
<h1><a class="anchor" id="autotoc_md84"></a>
151+
<h1><a class="anchor" id="autotoc_md82"></a>
152152
Code/API Documentation</h1>
153153
<p>MFC's three codes have their own documentation:</p>
154154
<ul>

documentation/index.js

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
var index =
22
[
3-
[ "User Documentation", "index.html#autotoc_md83", null ],
4-
[ "Code/API Documentation", "index.html#autotoc_md84", null ]
3+
[ "User Documentation", "index.html#autotoc_md81", null ],
4+
[ "Code/API Documentation", "index.html#autotoc_md82", null ]
55
];

documentation/md_case.html

Lines changed: 105 additions & 46 deletions
Large diffs are not rendered by default.

documentation/md_examples.html

Lines changed: 35 additions & 35 deletions
Original file line numberDiff line numberDiff line change
@@ -134,155 +134,155 @@
134134
<div class="headertitle"><div class="title">Example Cases</div></div>
135135
</div><!--header-->
136136
<div class="contents">
137-
<div class="textblock"><p><a class="anchor" id="autotoc_md29"></a></p>
138-
<h1><a class="anchor" id="autotoc_md30"></a>
137+
<div class="textblock"><p><a class="anchor" id="autotoc_md27"></a></p>
138+
<h1><a class="anchor" id="autotoc_md28"></a>
139139
Shu-Osher problem (1D)</h1>
140140
<p>Reference: C. W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics 77 (2) (1988) 439–471. doi:10.1016/0021-9991(88)90177-5.</p>
141-
<h2><a class="anchor" id="autotoc_md31"></a>
141+
<h2><a class="anchor" id="autotoc_md29"></a>
142142
Initial Condition</h2>
143143
<div class="image">
144144
<img src="initial-1D_shuosher_old-example.png" alt=""/>
145145
<div class="caption">
146146
Initial Condition</div></div>
147-
<h2><a class="anchor" id="autotoc_md32"></a>
147+
<h2><a class="anchor" id="autotoc_md30"></a>
148148
Result</h2>
149149
<div class="image">
150150
<img src="result-1D_shuosher_old-example.png" alt=""/>
151151
<div class="caption">
152152
Result</div></div>
153-
<h1><a class="anchor" id="autotoc_md33"></a>
153+
<h1><a class="anchor" id="autotoc_md31"></a>
154154
Isentropic vortex problem (2D)</h1>
155155
<p>Reference: Coralic, V., &amp; Colonius, T. (2014). Finite-volume Weno scheme for viscous compressible multicomponent flows. Journal of Computational Physics, 274, 95–121. <a href="https://doi.org/10.1016/j.jcp.2014.06.003">https://doi.org/10.1016/j.jcp.2014.06.003</a></p>
156-
<h2><a class="anchor" id="autotoc_md34"></a>
156+
<h2><a class="anchor" id="autotoc_md32"></a>
157157
Density</h2>
158158
<div class="image">
159159
<img src="alpha_rho1-2D_isentropicvortex-example.png" alt=""/>
160160
<div class="caption">
161161
Density</div></div>
162-
<h2><a class="anchor" id="autotoc_md35"></a>
162+
<h2><a class="anchor" id="autotoc_md33"></a>
163163
Density Norms</h2>
164164
<div class="image">
165165
<img src="density_norms-2D_isentropicvortex-example.png" alt=""/>
166166
<div class="caption">
167167
Density Norms</div></div>
168-
<h1><a class="anchor" id="autotoc_md36"></a>
168+
<h1><a class="anchor" id="autotoc_md34"></a>
169169
Rayleigh-Taylor Instability (3D)</h1>
170-
<h2><a class="anchor" id="autotoc_md37"></a>
170+
<h2><a class="anchor" id="autotoc_md35"></a>
171171
Final Condition</h2>
172172
<div class="image">
173173
<img src="final_condition-3D_rayleigh_taylor-example.png" alt=""/>
174174
<div class="caption">
175175
Final Condition</div></div>
176-
<h2><a class="anchor" id="autotoc_md38"></a>
176+
<h2><a class="anchor" id="autotoc_md36"></a>
177177
Centerline Velocities</h2>
178178
<p><img src="linear_theory.jpg" alt="Linear Theory Comparison" class="inline"/></p>
179-
<h1><a class="anchor" id="autotoc_md39"></a>
179+
<h1><a class="anchor" id="autotoc_md37"></a>
180180
Titarev-Toro problem (1D)</h1>
181181
<p>Reference: V. A. Titarev, E. F. Toro, Finite-volume WENO schemes for three-dimensional conservation laws, Journal of Computational Physics 201 (1) (2004) 238–260.</p>
182-
<h2><a class="anchor" id="autotoc_md40"></a>
182+
<h2><a class="anchor" id="autotoc_md38"></a>
183183
Initial Condition</h2>
184184
<div class="image">
185185
<img src="initial-1D_titarevtorro-example.png" alt=""/>
186186
<div class="caption">
187187
Initial Condition</div></div>
188-
<h2><a class="anchor" id="autotoc_md41"></a>
188+
<h2><a class="anchor" id="autotoc_md39"></a>
189189
Result</h2>
190190
<div class="image">
191191
<img src="result-1D_titarevtorro-example.png" alt=""/>
192192
<div class="caption">
193193
Result</div></div>
194-
<h1><a class="anchor" id="autotoc_md42"></a>
194+
<h1><a class="anchor" id="autotoc_md40"></a>
195195
2D Hardcodied IC Example</h1>
196-
<h2><a class="anchor" id="autotoc_md43"></a>
196+
<h2><a class="anchor" id="autotoc_md41"></a>
197197
Initial Condition</h2>
198198
<div class="image">
199199
<img src="initial-2D_hardcodied_ic-example.png" alt=""/>
200200
<div class="caption">
201201
Initial Condition</div></div>
202-
<h2><a class="anchor" id="autotoc_md44"></a>
202+
<h2><a class="anchor" id="autotoc_md42"></a>
203203
Result</h2>
204204
<p><img src="result-2D_hardcodied_ic-example.png" alt="" class="inline" title="Result"/> </p>
205-
<h1><a class="anchor" id="autotoc_md45"></a>
205+
<h1><a class="anchor" id="autotoc_md43"></a>
206206
Rayleigh-Taylor Instability (2D)</h1>
207-
<h2><a class="anchor" id="autotoc_md46"></a>
207+
<h2><a class="anchor" id="autotoc_md44"></a>
208208
Final Condition</h2>
209209
<div class="image">
210210
<img src="final_condition-2D_rayleigh_taylor-example.png" alt=""/>
211211
<div class="caption">
212212
Final Condition</div></div>
213-
<h2><a class="anchor" id="autotoc_md47"></a>
213+
<h2><a class="anchor" id="autotoc_md45"></a>
214214
Centerline Velocities</h2>
215215
<p><img src="linear_theory.jpg" alt="Linear Theory Comparison" class="inline"/></p>
216-
<h1><a class="anchor" id="autotoc_md48"></a>
216+
<h1><a class="anchor" id="autotoc_md46"></a>
217217
Lid-Driven Cavity Problem (2D)</h1>
218218
<p>Reference: Bezgin, D. A., &amp; Buhendwa A. B., &amp; Adams N. A. (2022). JAX-FLUIDS: A fully-differentiable high-order computational fluid dynamics solver for compressible two-phase flows. arXiv:2203.13760</p>
219219
<p>Reference: Ghia, U., &amp; Ghia, K. N., &amp; Shin, C. T. (1982). High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387-411</p>
220220
<p>Video: <a href="https://youtube.com/shorts/JEP28scZrBM?feature=share">https://youtube.com/shorts/JEP28scZrBM?feature=share</a></p>
221-
<h2><a class="anchor" id="autotoc_md49"></a>
221+
<h2><a class="anchor" id="autotoc_md47"></a>
222222
Final Condition</h2>
223223
<div class="image">
224224
<img src="final_condition-2D_lid_driven_cavity-example.png" alt=""/>
225225
<div class="caption">
226226
Final Condition</div></div>
227-
<h2><a class="anchor" id="autotoc_md50"></a>
227+
<h2><a class="anchor" id="autotoc_md48"></a>
228228
Centerline Velocities</h2>
229229
<div class="image">
230230
<img src="centerline_velocities-2D_lid_driven_cavity-example.png" alt=""/>
231231
<div class="caption">
232232
Centerline Velocities</div></div>
233-
<h1><a class="anchor" id="autotoc_md51"></a>
233+
<h1><a class="anchor" id="autotoc_md49"></a>
234234
Shock Droplet (2D)</h1>
235235
<p>Reference: Panchal et. al., A Seven-Equation Diffused Interface Method for Resolved Multiphase Flows, JCP, 475 (2023)</p>
236-
<h2><a class="anchor" id="autotoc_md52"></a>
236+
<h2><a class="anchor" id="autotoc_md50"></a>
237237
Initial Condition</h2>
238238
<div class="image">
239239
<img src="initial-2D_shockdroplet-example.png" alt=""/>
240240
<div class="caption">
241241
Initial Condition</div></div>
242-
<h2><a class="anchor" id="autotoc_md53"></a>
242+
<h2><a class="anchor" id="autotoc_md51"></a>
243243
Result</h2>
244244
<p><img src="result-2D_shockdroplet-example.png" alt="" class="inline" title="Result"/> </p>
245-
<h1><a class="anchor" id="autotoc_md54"></a>
245+
<h1><a class="anchor" id="autotoc_md52"></a>
246246
Lax shock tube problem (1D)</h1>
247247
<p>Reference: P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Communications on pure and applied mathematics 7 (1) (1954) 159–193.</p>
248-
<h2><a class="anchor" id="autotoc_md55"></a>
248+
<h2><a class="anchor" id="autotoc_md53"></a>
249249
Initial Condition</h2>
250250
<div class="image">
251251
<img src="initial-1D_laxshocktube-example.png" alt=""/>
252252
<div class="caption">
253253
Initial Condition</div></div>
254-
<h2><a class="anchor" id="autotoc_md56"></a>
254+
<h2><a class="anchor" id="autotoc_md54"></a>
255255
Result</h2>
256256
<div class="image">
257257
<img src="result-1D_laxshocktube-example.png" alt=""/>
258258
<div class="caption">
259259
Result</div></div>
260-
<h1><a class="anchor" id="autotoc_md57"></a>
260+
<h1><a class="anchor" id="autotoc_md55"></a>
261261
2D Riemann Test (2D)</h1>
262262
<p>Reference: Chamarthi, A., &amp; Hoffmann, N., &amp; Nishikawa, H., &amp; Frankel S. (2023). Implicit gradients based conservative numerical scheme for compressible flows. arXiv:2110.05461</p>
263-
<h2><a class="anchor" id="autotoc_md58"></a>
263+
<h2><a class="anchor" id="autotoc_md56"></a>
264264
Density Initial Condition</h2>
265265
<div class="image">
266266
<img src="alpha_rho1_initial-2D_riemann_test-example.png" alt=""/>
267267
<div class="caption">
268268
Density</div></div>
269-
<h2><a class="anchor" id="autotoc_md59"></a>
269+
<h2><a class="anchor" id="autotoc_md57"></a>
270270
Density Final Condition</h2>
271271
<div class="image">
272272
<img src="alpha_rho1_final-2D_riemann_test-example.png" alt=""/>
273273
<div class="caption">
274274
Density Norms</div></div>
275-
<h1><a class="anchor" id="autotoc_md60"></a>
275+
<h1><a class="anchor" id="autotoc_md58"></a>
276276
Strong- &amp; Weak-scaling</h1>
277277
<p>The <a href="case.py"><b>Scaling</b></a> case can exercise both weak- and strong-scaling. It adjusts itself depending on the number of requested ranks.</p>
278278
<p>This directory also contains a collection of scripts used to test strong-scaling on OLCF Frontier. They required modifying MFC to collect some metrics but are meant to serve as a reference to users wishing to run similar experiments.</p>
279-
<h2><a class="anchor" id="autotoc_md61"></a>
279+
<h2><a class="anchor" id="autotoc_md59"></a>
280280
Weak Scaling</h2>
281281
<p>Pass <code>--scaling weak</code>. The <code>--memory</code> option controls (approximately) how much memory each rank should use, in Gigabytes. The number of cells in each dimension is then adjusted according to the number of requested ranks and an approximation for the relation between cell count and memory usage. The problem size increases linearly with the number of ranks.</p>
282-
<h2><a class="anchor" id="autotoc_md62"></a>
282+
<h2><a class="anchor" id="autotoc_md60"></a>
283283
Strong Scaling</h2>
284284
<p>Pass <code>--scaling strong</code>. The <code>--memory</code> option controls (approximately) how much memory should be used in total during simulation, across all ranks, in Gigabytes. The problem size remains constant as the number of ranks increases.</p>
285-
<h2><a class="anchor" id="autotoc_md63"></a>
285+
<h2><a class="anchor" id="autotoc_md61"></a>
286286
Example</h2>
287287
<p>For example, to run a weak-scaling test that uses ~4GB of GPU memory per rank on 8 2-rank nodes with case optimization, one could:</p>
288288
<div class="fragment"><div class="line">./mfc.sh run examples/scaling/case.py -t pre_process simulation \</div>

documentation/md_expectedPerformance.html

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -134,9 +134,9 @@
134134
<div class="headertitle"><div class="title">Performance Results</div></div>
135135
</div><!--header-->
136136
<div class="contents">
137-
<div class="textblock"><p><a class="anchor" id="autotoc_md64"></a></p>
137+
<div class="textblock"><p><a class="anchor" id="autotoc_md62"></a></p>
138138
<p>MFC has been benchmarked on several CPUs and GPU devices. This page shows a summary of these results.</p>
139-
<h1><a class="anchor" id="autotoc_md65"></a>
139+
<h1><a class="anchor" id="autotoc_md63"></a>
140140
Expected time-steps/hour</h1>
141141
<p>The following table outlines observed performance as nanoseconds per grid point (ns/GP) per equation (eq) per right-hand side (rhs) evaluation (lower is better). We solve an example 3D, inviscid, 5-equation model problem with two advected species (a total of 8 PDEs). The numerics are WENO5 and the HLLC approximate Riemann solver. This case is located in <code>examples/3D_performance_test</code>. We report results for various numbers of grid points per CPU die (or GPU device) and hardware.</p>
142142
<table class="markdownTable">
@@ -156,34 +156,34 @@ <h1><a class="anchor" id="autotoc_md65"></a>
156156
<td class="markdownTableBodyRight">Apple M2 </td><td class="markdownTableBodyCenter">6 cores </td><td class="markdownTableBodyCenter">365 </td><td class="markdownTableBodyCenter">306 </td><td class="markdownTableBodyCenter">563 </td><td class="markdownTableBodyCenter">GNU 13.2.0 </td><td class="markdownTableBodyLeft">N/A </td></tr>
157157
</table>
158158
<p><b>All results are in nanoseconds (ns) per grid point (gp) per equation (eq) per right-hand side (rhs) evaluation, so X ns/gp/eq/rhs. Lower is better.</b></p>
159-
<h1><a class="anchor" id="autotoc_md66"></a>
159+
<h1><a class="anchor" id="autotoc_md64"></a>
160160
Weak scaling</h1>
161161
<p>Weak scaling results are obtained by increasing the problem size with the number of processes so that work per process remains constant.</p>
162-
<h2><a class="anchor" id="autotoc_md67"></a>
162+
<h2><a class="anchor" id="autotoc_md65"></a>
163163
AMD MI250X GPU</h2>
164164
<p>MFC weask scales to (at least) 65,536 AMD MI250X GPUs on OLCF Frontier with 96% efficiency. This corresponds to 87% of the entire machine.</p>
165165
<p><img src="../res/weakScaling/frontier.svg" alt="" style="pointer-events: none; height: 50%; width:50%; border-radius: 10pt" class="inline"/></p>
166-
<h2><a class="anchor" id="autotoc_md68"></a>
166+
<h2><a class="anchor" id="autotoc_md66"></a>
167167
NVIDIA V100 GPU</h2>
168168
<p>MFC weak scales to (at least) 13,824 V100 NVIDIA V100 GPUs on OLCF Summit with 97% efficiency. This corresponds to 50% of the entire machine.</p>
169169
<p><img src="../res/weakScaling/summit.svg" alt="" style="pointer-events: none; height: 50%; width:50%; border-radius: 10pt" class="inline"/></p>
170-
<h2><a class="anchor" id="autotoc_md69"></a>
170+
<h2><a class="anchor" id="autotoc_md67"></a>
171171
IBM Power9 CPU</h2>
172172
<p>MFC Weak scales to 13,824 Power9 CPU cores on OLCF Summit to within 1% of ideal scaling.</p>
173173
<p><img src="../res/weakScaling/cpuScaling.svg" alt="" style="pointer-events: none; height: 50%; width:50%; border-radius: 10pt" class="inline"/></p>
174-
<h1><a class="anchor" id="autotoc_md70"></a>
174+
<h1><a class="anchor" id="autotoc_md68"></a>
175175
Strong scaling</h1>
176176
<p>Strong scaling results are obtained by keeping the problem size constant and increasing the number of processes so that work per process decreases.</p>
177-
<h2><a class="anchor" id="autotoc_md71"></a>
177+
<h2><a class="anchor" id="autotoc_md69"></a>
178178
NVIDIA V100 GPU</h2>
179179
<p>For these tests, the base case utilizes 8 GPUs with one MPI process per GPU. The performance is analyzed at two different problem sizes of 16M and 64M grid points, with the base case using 2M and 8M grid points per process.</p>
180-
<h3><a class="anchor" id="autotoc_md72"></a>
180+
<h3><a class="anchor" id="autotoc_md70"></a>
181181
16M Grid Points</h3>
182182
<p><img src="../res/strongScaling/strongScaling16.svg" alt="" style="pointer-events: none; width: 50%; border-radius: 10pt" class="inline"/></p>
183-
<h3><a class="anchor" id="autotoc_md73"></a>
183+
<h3><a class="anchor" id="autotoc_md71"></a>
184184
64M Grid Points</h3>
185185
<p><img src="../res/strongScaling/strongScaling64.svg" alt="" style="pointer-events: none; width: 50%; border-radius: 10pt" class="inline"/></p>
186-
<h2><a class="anchor" id="autotoc_md74"></a>
186+
<h2><a class="anchor" id="autotoc_md72"></a>
187187
IBM Power9 CPU</h2>
188188
<p>CPU strong scaling tests are done with problem sizes of 16, 32, and 64M grid points, with the base case using 2, 4, and 8M cells per process.</p>
189189
<p><img src="../res/strongScaling/cpuStrongScaling.svg" alt="" style="pointer-events: none; width: 50%; border-radius: 10pt" class="inline"/> </p>

0 commit comments

Comments
 (0)