3737
3838"""
3939
40+ import math
41+
4042import dpctl .tensor as dpt
4143import dpctl .utils as dpu
4244import numpy
6466 dpnp_cov ,
6567)
6668
69+ min_ = min # pylint: disable=used-before-assignment
70+
6771__all__ = [
6872 "amax" ,
6973 "amin" ,
@@ -482,17 +486,57 @@ def _get_padding(a_size, v_size, mode):
482486 return l_pad , r_pad
483487
484488
485- def _run_native_sliding_dot_product1d (a , v , l_pad , r_pad ):
489+ def _choose_conv_method (a , v , rdtype ):
490+ assert a .size >= v .size
491+ if rdtype == dpnp .bool :
492+ return "direct"
493+
494+ if v .size < 10 ** 4 or a .size < 10 ** 4 :
495+ return "direct"
496+
497+ if dpnp .issubdtype (rdtype , dpnp .integer ):
498+ max_a = int (dpnp .max (dpnp .abs (a )))
499+ sum_v = int (dpnp .sum (dpnp .abs (v )))
500+ max_value = int (max_a * sum_v )
501+
502+ default_float = dpnp .default_float_type (a .sycl_device )
503+ if max_value > 2 ** numpy .finfo (default_float ).nmant - 1 :
504+ return "direct"
505+
506+ if dpnp .issubdtype (rdtype , dpnp .number ):
507+ return "fft"
508+
509+ raise ValueError (f"Unsupported dtype: { rdtype } " )
510+
511+
512+ def _run_native_sliding_dot_product1d (a , v , l_pad , r_pad , rdtype ):
486513 queue = a .sycl_queue
514+ device = a .sycl_device
515+
516+ supported_types = statistics_ext .sliding_dot_product1d_dtypes ()
517+ supported_dtype = to_supported_dtypes (rdtype , supported_types , device )
487518
488- usm_type = dpu .get_coerced_usm_type ([a .usm_type , v .usm_type ])
489- out_size = l_pad + r_pad + a .size - v .size + 1
519+ if supported_dtype is None :
520+ raise ValueError (
521+ f"Unsupported input types ({ a .dtype } , { v .dtype } ), "
522+ "and the inputs could not be coerced to any "
523+ f"supported types. List of supported types: { supported_types } "
524+ )
525+
526+ a_casted = dpnp .asarray (a , dtype = supported_dtype , order = "C" )
527+ v_casted = dpnp .asarray (v , dtype = supported_dtype , order = "C" )
528+
529+ usm_type = dpu .get_coerced_usm_type ([a_casted .usm_type , v_casted .usm_type ])
530+ out_size = l_pad + r_pad + a_casted .size - v_casted .size + 1
490531 out = dpnp .empty (
491- shape = out_size , sycl_queue = queue , dtype = a .dtype , usm_type = usm_type
532+ shape = out_size ,
533+ sycl_queue = queue ,
534+ dtype = supported_dtype ,
535+ usm_type = usm_type ,
492536 )
493537
494- a_usm = dpnp .get_usm_ndarray (a )
495- v_usm = dpnp .get_usm_ndarray (v )
538+ a_usm = dpnp .get_usm_ndarray (a_casted )
539+ v_usm = dpnp .get_usm_ndarray (v_casted )
496540 out_usm = dpnp .get_usm_ndarray (out )
497541
498542 _manager = dpu .SequentialOrderManager [queue ]
@@ -510,7 +554,30 @@ def _run_native_sliding_dot_product1d(a, v, l_pad, r_pad):
510554 return out
511555
512556
513- def correlate (a , v , mode = "valid" ):
557+ def _convolve_fft (a , v , l_pad , r_pad , rtype ):
558+ assert a .size >= v .size
559+ assert l_pad < v .size
560+
561+ # +1 is needed to avoid circular convolution
562+ padded_size = a .size + r_pad + 1
563+ fft_size = 2 ** math .ceil (math .log2 (padded_size ))
564+
565+ af = dpnp .fft .fft (a , fft_size ) # pylint: disable=no-member
566+ vf = dpnp .fft .fft (v , fft_size ) # pylint: disable=no-member
567+
568+ r = dpnp .fft .ifft (af * vf ) # pylint: disable=no-member
569+ if dpnp .issubdtype (rtype , dpnp .floating ):
570+ r = r .real
571+ elif dpnp .issubdtype (rtype , dpnp .integer ) or rtype == dpnp .bool :
572+ r = r .real .round ()
573+
574+ start = v .size - 1 - l_pad
575+ end = padded_size - 1
576+
577+ return r [start :end ]
578+
579+
580+ def correlate (a , v , mode = "valid" , method = "auto" ):
514581 r"""
515582 Cross-correlation of two 1-dimensional sequences.
516583
@@ -535,6 +602,20 @@ def correlate(a, v, mode="valid"):
535602 is ``'valid'``, unlike :obj:`dpnp.convolve`, which uses ``'full'``.
536603
537604 Default: ``'valid'``.
605+ method : {'auto', 'direct', 'fft'}, optional
606+ `'direct'`: The correlation is determined directly from sums.
607+
608+ `'fft'`: The Fourier Transform is used to perform the calculations.
609+ This method is faster for long sequences but can have accuracy issues.
610+
611+ `'auto'`: Automatically chooses direct or Fourier method based on
612+ an estimate of which is faster.
613+
614+ Note: Use of the FFT convolution on input containing NAN or INF
615+ will lead to the entire output being NAN or INF.
616+ Use method='direct' when your input contains NAN or INF values.
617+
618+ Default: ``'auto'``.
538619
539620 Notes
540621 -----
@@ -560,7 +641,6 @@ def correlate(a, v, mode="valid"):
560641 :obj:`dpnp.convolve` : Discrete, linear convolution of two
561642 one-dimensional sequences.
562643
563-
564644 Examples
565645 --------
566646 >>> import dpnp as np
@@ -602,19 +682,14 @@ def correlate(a, v, mode="valid"):
602682 f"Received shapes: a.shape={ a .shape } , v.shape={ v .shape } "
603683 )
604684
605- supported_types = statistics_ext .sliding_dot_product1d_dtypes ()
685+ supported_methods = ["auto" , "direct" , "fft" ]
686+ if method not in supported_methods :
687+ raise ValueError (
688+ f"Unknown method: { method } . Supported methods: { supported_methods } "
689+ )
606690
607691 device = a .sycl_device
608692 rdtype = result_type_for_device ([a .dtype , v .dtype ], device )
609- supported_dtype = to_supported_dtypes (rdtype , supported_types , device )
610-
611- if supported_dtype is None :
612- raise ValueError (
613- f"function '{ correlate } ' does not support input types "
614- f"({ a .dtype } , { v .dtype } ), "
615- "and the inputs could not be coerced to any "
616- f"supported types. List of supported types: { supported_types } "
617- )
618693
619694 if dpnp .issubdtype (v .dtype , dpnp .complexfloating ):
620695 v = dpnp .conj (v )
@@ -626,13 +701,15 @@ def correlate(a, v, mode="valid"):
626701
627702 l_pad , r_pad = _get_padding (a .size , v .size , mode )
628703
629- a_casted = dpnp .asarray (a , dtype = supported_dtype , order = "C" )
630- v_casted = dpnp .asarray (v , dtype = supported_dtype , order = "C" )
631-
632- if v .size > a .size :
633- a_casted , v_casted = v_casted , a_casted
704+ if method == "auto" :
705+ method = _choose_conv_method (a , v , rdtype )
634706
635- r = _run_native_sliding_dot_product1d (a_casted , v_casted , l_pad , r_pad )
707+ if method == "direct" :
708+ r = _run_native_sliding_dot_product1d (a , v , l_pad , r_pad , rdtype )
709+ elif method == "fft" :
710+ r = _convolve_fft (a , v [::- 1 ], l_pad , r_pad , rdtype )
711+ else :
712+ raise ValueError (f"Unknown method: { method } " )
636713
637714 if revert :
638715 r = r [::- 1 ]
0 commit comments