You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{% include figure.liquid loading="eager" path="/assets/img/phishnet/request_process_thread.png" class="img-fluid rounded z-depth-1" %}
81
+
{% include figure.liquid loading="eager" path="/assets/img/phishnet/request_creation.png" class="img-fluid rounded z-depth-1" %}
82
+
{% include figure.liquid loading="eager" path="/assets/img/phishnet/celery_loop_flow.png" class="img-fluid rounded z-depth-1" %}
83
+
</center>
80
84
81
85
---
82
86
@@ -93,7 +97,9 @@ Our AI models were trained on a substantial, custom-built dataset of **58 lakh U
93
97
|**Actual Phishing**| 677 | 3,489 |
94
98
***Key Feature Importances**: `entropyURL` (0.184), `averageSubdomainLength` (0.137), and `entropyDomain` (0.122).
95
99
96
-

100
+
<center>
101
+
{% include figure.liquid loading="eager" path="/assets/img/phishnet/without_url_repeatedDigitsInURL_repeatedDigitsInSubdomain_cse_confusion_matrix.png" class="img-fluid rounded z-depth-1" %}
102
+
</center>
97
103
98
104
#### Model 2 (Raw URL + Structural Features)
99
105
***Accuracy**: 95%
@@ -104,7 +110,9 @@ Our AI models were trained on a substantial, custom-built dataset of **58 lakh U
104
110
|**Actual Phishing**| 313 | 5,098 |
105
111
***Key Feature Importances**: Character n-grams from the URL string, such as `s:/` (0.0196) and `tp:/` (0.0172).
106
112
107
-

113
+
<center>
114
+
{% include figure.liquid loading="eager" path="/assets/img/phishnet/without_repeatedDigitsInURL_repeatedDigitsInSubdomain_cse_confusion_matrix.png" class="img-fluid rounded z-depth-1" %}
115
+
</center>
108
116
109
117
---
110
118
@@ -116,57 +124,3 @@ Our findings show that the dual-model approach significantly enhances detection
116
124
***Model Complexity**: Due to initial resource constraints, we used a Random Forest model, and we plan to explore more advanced models like **LSTMs**.
117
125
118
126
Our roadmap includes plans to address these limitations by integrating the `subfinder` module for subdomain discovery and `cdx_toolkit` for historical analysis.
119
-
120
-
---
121
-
122
-
### Getting Started
123
-
124
-
Instructions on how to set up and run the solution can be found in the project's documentation.
125
-
126
-
#### Prerequisites
127
-
128
-
You'll need to have the following software installed on your system:
129
-
130
-
* Python 3.12 or a later version.
131
-
* PostgreSQL 17.
132
-
* Redis.
133
-
134
-
#### Setup and Configuration
135
-
136
-
1.**Install project dependencies**:
137
-
```bash
138
-
pip install pipenv
139
-
pipenv install
140
-
```
141
-
2. **Download data and models**:
142
-
```bash
143
-
pipenv run python "Al Models/load.py" download-data
144
-
pipenv run python "Al Models/load.py" download-models
145
-
```
146
-
3. **Configure the application**:
147
-
* Rename `phishnet/example.conf` to `phishnet/.conf`.
148
-
* Open `phishnet/.conf` and update the settings with your specific configurations.
149
-
4. **Run database migrations and load models**:
150
-
```bash
151
-
pipenv run python phishnet/manage.py migrate
152
-
pipenv run python phishnet/manage.py load Models
153
-
```
154
-
5. **Create a superuser for the admin panel**:
155
-
```bash
156
-
pipenv run python phishnet/manage.py createsuperuser
157
-
```
158
-
6. **Set up the cache table and static files**:
159
-
```bash
160
-
pipenv run python phishnet/manage.py createcachetable
161
-
pipenv run python phishnet/manage.py generate_thumbnails
162
-
pipenv run python phishnet/manage.py collectstatic
163
-
```
164
-
165
-
#### Running the Servers
166
-
167
-
You'll need two separate terminals to run the application's web and background processes.
0 commit comments