Skip to content

Commit 5f02dad

Browse files
author
Dhruva Shaw
committed
updates
1 parent 97e6d38 commit 5f02dad

File tree

2 files changed

+15
-61
lines changed

2 files changed

+15
-61
lines changed

_projects/adverse.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ _styles: >
2929
---
3030

3131
<center>
32-
{% include figure.liquid loading="eager" path="{{page.img}}" class="img-fluid rounded z-depth-1" %}
32+
{% include figure.liquid loading="eager" path="assets/img/adverse.png" class="img-fluid rounded z-depth-1" %}
3333
</center>
3434

3535
# Adverse

_projects/phishnet.md

Lines changed: 14 additions & 60 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,9 @@ date: 2025-09-06
99
pretty_table: true
1010
---
1111

12-
![PhishNet Logo](/assets/img/phishnet/phishnet.png "PhishNet Logo")
12+
<center>
13+
{% include figure.liquid loading="eager" path="assets/img/phishnet/phishnet.png" class="img-fluid rounded z-depth-1" %}
14+
</center>
1315

1416
### Project Overview
1517

@@ -74,9 +76,11 @@ The system pipeline is designed for efficiency and scalability:
7476
* **Task Processing**: Celery workers pick up tasks from the queue to perform domain identification and AI classification.
7577
* **Reporting**: A separate Celery task generates zipped reports with domain details and screenshots, which are then emailed to the user.
7678

77-
![Figure 3: Single Request Process Thread](/assets/img/phishnet/request_process_thread.png)
78-
![Figure 4: Request Creation](/assets/img/phishnet/request_creation.png)
79-
![Figure 5: Celery Loop Flow](/assets/img/phishnet/celery_loop_flow.png)
79+
<center>
80+
{% include figure.liquid loading="eager" path="/assets/img/phishnet/request_process_thread.png" class="img-fluid rounded z-depth-1" %}
81+
{% include figure.liquid loading="eager" path="/assets/img/phishnet/request_creation.png" class="img-fluid rounded z-depth-1" %}
82+
{% include figure.liquid loading="eager" path="/assets/img/phishnet/celery_loop_flow.png" class="img-fluid rounded z-depth-1" %}
83+
</center>
8084

8185
---
8286

@@ -93,7 +97,9 @@ Our AI models were trained on a substantial, custom-built dataset of **58 lakh U
9397
| **Actual Phishing** | 677 | 3,489 |
9498
* **Key Feature Importances**: `entropyURL` (0.184), `averageSubdomainLength` (0.137), and `entropyDomain` (0.122).
9599

96-
![Figure 6: Confusion Matrix of Model 1](/assets/img/phishnet/without_url_repeatedDigitsInURL_repeatedDigitsInSubdomain_cse_confusion_matrix.png)
100+
<center>
101+
{% include figure.liquid loading="eager" path="/assets/img/phishnet/without_url_repeatedDigitsInURL_repeatedDigitsInSubdomain_cse_confusion_matrix.png" class="img-fluid rounded z-depth-1" %}
102+
</center>
97103

98104
#### Model 2 (Raw URL + Structural Features)
99105
* **Accuracy**: 95%
@@ -104,7 +110,9 @@ Our AI models were trained on a substantial, custom-built dataset of **58 lakh U
104110
| **Actual Phishing** | 313 | 5,098 |
105111
* **Key Feature Importances**: Character n-grams from the URL string, such as `s:/` (0.0196) and `tp:/` (0.0172).
106112

107-
![Figure 7: Confusion Matrix of Model 2](/assets/img/phishnet/without_repeatedDigitsInURL_repeatedDigitsInSubdomain_cse_confusion_matrix.png)
113+
<center>
114+
{% include figure.liquid loading="eager" path="/assets/img/phishnet/without_repeatedDigitsInURL_repeatedDigitsInSubdomain_cse_confusion_matrix.png" class="img-fluid rounded z-depth-1" %}
115+
</center>
108116

109117
---
110118

@@ -116,57 +124,3 @@ Our findings show that the dual-model approach significantly enhances detection
116124
* **Model Complexity**: Due to initial resource constraints, we used a Random Forest model, and we plan to explore more advanced models like **LSTMs**.
117125

118126
Our roadmap includes plans to address these limitations by integrating the `subfinder` module for subdomain discovery and `cdx_toolkit` for historical analysis.
119-
120-
---
121-
122-
### Getting Started
123-
124-
Instructions on how to set up and run the solution can be found in the project's documentation.
125-
126-
#### Prerequisites
127-
128-
You'll need to have the following software installed on your system:
129-
130-
* Python 3.12 or a later version.
131-
* PostgreSQL 17.
132-
* Redis.
133-
134-
#### Setup and Configuration
135-
136-
1. **Install project dependencies**:
137-
```bash
138-
pip install pipenv
139-
pipenv install
140-
```
141-
2. **Download data and models**:
142-
```bash
143-
pipenv run python "Al Models/load.py" download-data
144-
pipenv run python "Al Models/load.py" download-models
145-
```
146-
3. **Configure the application**:
147-
* Rename `phishnet/example.conf` to `phishnet/.conf`.
148-
* Open `phishnet/.conf` and update the settings with your specific configurations.
149-
4. **Run database migrations and load models**:
150-
```bash
151-
pipenv run python phishnet/manage.py migrate
152-
pipenv run python phishnet/manage.py load Models
153-
```
154-
5. **Create a superuser for the admin panel**:
155-
```bash
156-
pipenv run python phishnet/manage.py createsuperuser
157-
```
158-
6. **Set up the cache table and static files**:
159-
```bash
160-
pipenv run python phishnet/manage.py createcachetable
161-
pipenv run python phishnet/manage.py generate_thumbnails
162-
pipenv run python phishnet/manage.py collectstatic
163-
```
164-
165-
#### Running the Servers
166-
167-
You'll need two separate terminals to run the application's web and background processes.
168-
169-
**Terminal 1: Start the Web Server**
170-
```bash
171-
pipenv run python phishnet/manage.py runserver
172-
```

0 commit comments

Comments
 (0)