-
Notifications
You must be signed in to change notification settings - Fork 328
Open
Description
Visual input leads to unobservable and invalid videos.
When I train the model with BC, the generated video is unwatchable when using RGB-form input.
Here is my bc.json.
{
"algo_name": "bc",
"experiment": {
"name": "test",
"validate": false,
"logging": {
"terminal_output_to_txt": true,
"log_tb": true,
"log_wandb": false,
"wandb_proj_name": "debug"
},
"save": {
"enabled": true,
"every_n_seconds": null,
"every_n_epochs": 50,
"epochs": [],
"on_best_validation": false,
"on_best_rollout_return": false,
"on_best_rollout_success_rate": true
},
"epoch_every_n_steps": 100,
"validation_epoch_every_n_steps": 10,
"env": null,
"additional_envs": null,
"render": false,
"render_video": true,
"keep_all_videos": false,
"video_skip": 1,
"rollout": {
"enabled": true,
"n": 50,
"horizon": 400,
"rate": 50,
"warmstart": 0,
"terminate_on_success": true
}
},
"train": {
"data": null,
"output_dir": "../bc_trained_models",
"num_data_workers": 0,
"hdf5_cache_mode": "all",
"hdf5_use_swmr": true,
"hdf5_load_next_obs": false,
"hdf5_normalize_obs": false,
"hdf5_filter_key": null,
"hdf5_validation_filter_key": null,
"seq_length": 1,
"pad_seq_length": true,
"frame_stack": 1,
"pad_frame_stack": true,
"dataset_keys": [
"actions",
"rewards",
"dones"
],
"goal_mode": null,
"cuda": true,
"batch_size": 100,
"num_epochs": 4000,
"seed": 1
},
"algo": {
"optim_params": {
"policy": {
"optimizer_type": "adam",
"learning_rate": {
"initial": 0.0001,
"decay_factor": 0.1,
"epoch_schedule": [],
"scheduler_type": "multistep"
},
"regularization": {
"L2": 0.0
}
}
},
"loss": {
"l2_weight": 1.0,
"l1_weight": 0.0,
"cos_weight": 0.0
},
"actor_layer_dims": [
1024,
1024
],
"gaussian": {
"enabled": false,
"fixed_std": false,
"init_std": 0.1,
"min_std": 0.01,
"std_activation": "softplus",
"low_noise_eval": true
},
"gmm": {
"enabled": false,
"num_modes": 5,
"min_std": 0.0001,
"std_activation": "softplus",
"low_noise_eval": true
},
"vae": {
"enabled": false,
"latent_dim": 14,
"latent_clip": null,
"kl_weight": 1.0,
"decoder": {
"is_conditioned": true,
"reconstruction_sum_across_elements": false
},
"prior": {
"learn": false,
"is_conditioned": false,
"use_gmm": false,
"gmm_num_modes": 10,
"gmm_learn_weights": false,
"use_categorical": false,
"categorical_dim": 10,
"categorical_gumbel_softmax_hard": false,
"categorical_init_temp": 1.0,
"categorical_temp_anneal_step": 0.001,
"categorical_min_temp": 0.3
},
"encoder_layer_dims": [
300,
400
],
"decoder_layer_dims": [
300,
400
],
"prior_layer_dims": [
300,
400
]
},
"rnn": {
"enabled": false,
"horizon": 10,
"hidden_dim": 400,
"rnn_type": "LSTM",
"num_layers": 2,
"open_loop": false,
"kwargs": {
"bidirectional": false
}
},
"transformer": {
"enabled": false,
"context_length": 10,
"embed_dim": 512,
"num_layers": 6,
"num_heads": 8,
"emb_dropout": 0.1,
"attn_dropout": 0.1,
"block_output_dropout": 0.1,
"sinusoidal_embedding": false,
"activation": "gelu",
"supervise_all_steps": false,
"nn_parameter_for_timesteps": true
}
},
"observation": {
"modalities": {
"obs": {
"low_dim": [
],
"rgb": [
"frontview_image"
],
"depth": [
"frontview_depth"
],
"scan": []
},
"goal": {
"low_dim": [],
"rgb": [],
"depth": [],
"scan": []
}
},
"encoder": {
"low_dim": {
"core_class": null,
"core_kwargs": {},
"obs_randomizer_class": null,
"obs_randomizer_kwargs": {}
},
"rgb": {
"core_class": "VisualCore",
"core_kwargs": {},
"obs_randomizer_class": null,
"obs_randomizer_kwargs": {}
},
"depth": {
"core_class": "VisualCore",
"core_kwargs": {},
"obs_randomizer_class": null,
"obs_randomizer_kwargs": {}
},
"scan": {
"core_class": "ScanCore",
"core_kwargs": {},
"obs_randomizer_class": null,
"obs_randomizer_kwargs": {}
}
}
},
"meta": {
"hp_base_config_file": null,
"hp_keys": [],
"hp_values": []
}
}My train script is:
CUDA_VISIBLE_DEVICES=0 python robomimic/scripts/train.py --config robomimic/exps/templates/bc1_img.json --dataset ${my hdf5 data path}And using rgb as input will result in the following Warning:
WARNING:imageio_ffmpeg:IMAGEIO FFMPEG_WRITER WARNING: input image is not divisible by macro_block_size=16, resizing from (3, 512) to (16, 512) to ensure video compatibility with most codecs and players. To prevent resizing, make your input image divisible by the macro_block_size or set the macro_block_size to 1 (risking incompatibility).
[swscaler @ 0x70c3880] Warning: data is not aligned! This can lead to a speed lossWhen I set macro_block_size=1 or macro_block_size=None in imageio.get_writer(video_paths[k], fps=20, macro_block_size=xxx), there will be an error:
[swscaler @ 0x715ba00] Warning: data is not aligned! This can lead to a speed loss
[libx264 @ 0x713d640] width not divisible by 2 (3x512)
Error initializing output stream 0:0 -- Error while opening encoder for output stream #0:0 - maybe incorrect parameters such as bit_rate, rate, width or heightIt is worth mentioning that when I use low_dim observation form as input, the generated video is observable and there is no such WARNING:imageio_ffmpeg.
Is this a bug? Or is it just me who has this issue?
Thanks!
Metadata
Metadata
Assignees
Labels
No labels