|
| 1 | +""" |
| 2 | +Copyright 2025 Google LLC |
| 3 | +
|
| 4 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +you may not use this file except in compliance with the License. |
| 6 | +You may obtain a copy of the License at |
| 7 | +
|
| 8 | + https://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +
|
| 10 | +Unless required by applicable law or agreed to in writing, software |
| 11 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +See the License for the specific language governing permissions and |
| 14 | +limitations under the License. |
| 15 | +""" |
| 16 | + |
| 17 | +import math |
| 18 | +from typing import Sequence |
| 19 | + |
| 20 | +import jax |
| 21 | +import jax.numpy as jnp |
| 22 | +from flax import nnx |
| 23 | +from ... import common_types |
| 24 | + |
| 25 | +Array = common_types.Array |
| 26 | +DType = common_types.DType |
| 27 | + |
| 28 | +class ResBlock(nnx.Module): |
| 29 | + """ |
| 30 | + Residual Block for the LTX-2 Vocoder. |
| 31 | + """ |
| 32 | + def __init__( |
| 33 | + self, |
| 34 | + channels: int, |
| 35 | + kernel_size: int = 3, |
| 36 | + stride: int = 1, |
| 37 | + dilations: Sequence[int] = (1, 3, 5), |
| 38 | + leaky_relu_negative_slope: float = 0.1, |
| 39 | + *, |
| 40 | + rngs: nnx.Rngs, |
| 41 | + dtype: DType = jnp.float32, |
| 42 | + ): |
| 43 | + self.dilations = dilations |
| 44 | + self.negative_slope = leaky_relu_negative_slope |
| 45 | + |
| 46 | + self.convs1 = nnx.List( |
| 47 | + [ |
| 48 | + nnx.Conv( |
| 49 | + in_features=channels, |
| 50 | + out_features=channels, |
| 51 | + kernel_size=(kernel_size,), |
| 52 | + strides=(stride,), |
| 53 | + kernel_dilation=(dilation,), |
| 54 | + padding="SAME", |
| 55 | + rngs=rngs, |
| 56 | + dtype=dtype, |
| 57 | + ) |
| 58 | + for dilation in dilations |
| 59 | + ] |
| 60 | + ) |
| 61 | + |
| 62 | + self.convs2 = nnx.List( |
| 63 | + [ |
| 64 | + nnx.Conv( |
| 65 | + in_features=channels, |
| 66 | + out_features=channels, |
| 67 | + kernel_size=(kernel_size,), |
| 68 | + strides=(stride,), |
| 69 | + kernel_dilation=(1,), |
| 70 | + padding="SAME", |
| 71 | + rngs=rngs, |
| 72 | + dtype=dtype, |
| 73 | + ) |
| 74 | + for _ in range(len(dilations)) |
| 75 | + ] |
| 76 | + ) |
| 77 | + |
| 78 | + def __call__(self, x: Array) -> Array: |
| 79 | + for conv1, conv2 in zip(self.convs1, self.convs2): |
| 80 | + xt = jax.nn.leaky_relu(x, negative_slope=self.negative_slope) |
| 81 | + xt = conv1(xt) |
| 82 | + xt = jax.nn.leaky_relu(xt, negative_slope=self.negative_slope) |
| 83 | + xt = conv2(xt) |
| 84 | + x = x + xt |
| 85 | + return x |
| 86 | + |
| 87 | +class LTX2Vocoder(nnx.Module): |
| 88 | + """ |
| 89 | + LTX 2.0 vocoder for converting generated mel spectrograms back to audio waveforms. |
| 90 | + """ |
| 91 | + def __init__( |
| 92 | + self, |
| 93 | + in_channels: int = 128, |
| 94 | + hidden_channels: int = 1024, |
| 95 | + out_channels: int = 2, |
| 96 | + upsample_kernel_sizes: Sequence[int] = (16, 15, 8, 4, 4), |
| 97 | + upsample_factors: Sequence[int] = (6, 5, 2, 2, 2), |
| 98 | + resnet_kernel_sizes: Sequence[int] = (3, 7, 11), |
| 99 | + resnet_dilations: Sequence[Sequence[int]] = ((1, 3, 5), (1, 3, 5), (1, 3, 5)), |
| 100 | + leaky_relu_negative_slope: float = 0.1, |
| 101 | + # output_sampling_rate is unused in model structure but kept for config compat |
| 102 | + output_sampling_rate: int = 24000, |
| 103 | + *, |
| 104 | + rngs: nnx.Rngs, |
| 105 | + dtype: DType = jnp.float32, |
| 106 | + ): |
| 107 | + self.num_upsample_layers = len(upsample_kernel_sizes) |
| 108 | + self.resnets_per_upsample = len(resnet_kernel_sizes) |
| 109 | + self.out_channels = out_channels |
| 110 | + self.total_upsample_factor = math.prod(upsample_factors) |
| 111 | + self.negative_slope = leaky_relu_negative_slope |
| 112 | + self.dtype = dtype |
| 113 | + |
| 114 | + if self.num_upsample_layers != len(upsample_factors): |
| 115 | + raise ValueError( |
| 116 | + f"`upsample_kernel_sizes` and `upsample_factors` should be lists of the same length but are length" |
| 117 | + f" {self.num_upsample_layers} and {len(upsample_factors)}, respectively." |
| 118 | + ) |
| 119 | + |
| 120 | + if self.resnets_per_upsample != len(resnet_dilations): |
| 121 | + raise ValueError( |
| 122 | + f"`resnet_kernel_sizes` and `resnet_dilations` should be lists of the same length but are length" |
| 123 | + f" {self.resnets_per_upsample} and {len(resnet_dilations)}, respectively." |
| 124 | + ) |
| 125 | + |
| 126 | + # PyTorch Conv1d expects (Batch, Channels, Length), we use (Batch, Length, Channels) |
| 127 | + # So in_channels/out_channels args are standard, but data layout is transposed in __call__ |
| 128 | + self.conv_in = nnx.Conv( |
| 129 | + in_features=in_channels, |
| 130 | + out_features=hidden_channels, |
| 131 | + kernel_size=(7,), |
| 132 | + strides=(1,), |
| 133 | + padding="SAME", |
| 134 | + rngs=rngs, |
| 135 | + dtype=self.dtype, |
| 136 | + ) |
| 137 | + |
| 138 | + self.upsamplers = nnx.List() |
| 139 | + self.resnets = nnx.List() |
| 140 | + input_channels = hidden_channels |
| 141 | + |
| 142 | + for i, (stride, kernel_size) in enumerate(zip(upsample_factors, upsample_kernel_sizes)): |
| 143 | + output_channels = input_channels // 2 |
| 144 | + |
| 145 | + # ConvTranspose with padding='SAME' matches PyTorch's specific padding logic |
| 146 | + # for these standard HiFi-GAN upsampling configurations. |
| 147 | + self.upsamplers.append( |
| 148 | + nnx.ConvTranspose( |
| 149 | + in_features=input_channels, |
| 150 | + out_features=output_channels, |
| 151 | + kernel_size=(kernel_size,), |
| 152 | + strides=(stride,), |
| 153 | + padding="SAME", |
| 154 | + rngs=rngs, |
| 155 | + dtype=self.dtype, |
| 156 | + ) |
| 157 | + ) |
| 158 | + |
| 159 | + for res_kernel_size, dilations in zip(resnet_kernel_sizes, resnet_dilations): |
| 160 | + self.resnets.append( |
| 161 | + ResBlock( |
| 162 | + channels=output_channels, |
| 163 | + kernel_size=res_kernel_size, |
| 164 | + dilations=dilations, |
| 165 | + leaky_relu_negative_slope=leaky_relu_negative_slope, |
| 166 | + rngs=rngs, |
| 167 | + dtype=self.dtype, |
| 168 | + ) |
| 169 | + ) |
| 170 | + input_channels = output_channels |
| 171 | + |
| 172 | + self.conv_out = nnx.Conv( |
| 173 | + in_features=input_channels, |
| 174 | + out_features=out_channels, |
| 175 | + kernel_size=(7,), |
| 176 | + strides=(1,), |
| 177 | + padding="SAME", |
| 178 | + rngs=rngs, |
| 179 | + dtype=self.dtype |
| 180 | + ) |
| 181 | + |
| 182 | + def __call__(self, hidden_states: Array, time_last: bool = False) -> Array: |
| 183 | + """ |
| 184 | + Forward pass of the vocoder. |
| 185 | +
|
| 186 | + Args: |
| 187 | + hidden_states: Input Mel spectrogram tensor. |
| 188 | + Shape: `(B, C, T, F)` or `(B, C, F, T)` |
| 189 | + time_last: Legacy flag for input layout. |
| 190 | +
|
| 191 | + Returns: |
| 192 | + Audio waveform: `(B, OutChannels, AudioLength)` |
| 193 | + """ |
| 194 | + # Ensure layout: (Batch, Channels, MelBins, Time) |
| 195 | + if not time_last: |
| 196 | + hidden_states = jnp.transpose(hidden_states, (0, 1, 3, 2)) |
| 197 | + |
| 198 | + # Flatten Channels and MelBins -> (Batch, Features, Time) |
| 199 | + batch, channels, mel_bins, time = hidden_states.shape |
| 200 | + hidden_states = hidden_states.reshape(batch, channels * mel_bins, time) |
| 201 | + |
| 202 | + # Transpose to (Batch, Time, Features) for Flax NWC Convolutions |
| 203 | + hidden_states = jnp.transpose(hidden_states, (0, 2, 1)) |
| 204 | + |
| 205 | + hidden_states = self.conv_in(hidden_states) |
| 206 | + |
| 207 | + for i in range(self.num_upsample_layers): |
| 208 | + hidden_states = jax.nn.leaky_relu(hidden_states, negative_slope=self.negative_slope) |
| 209 | + hidden_states = self.upsamplers[i](hidden_states) |
| 210 | + |
| 211 | + # Accumulate ResNet outputs (Memory Optimization) |
| 212 | + start = i * self.resnets_per_upsample |
| 213 | + end = (i + 1) * self.resnets_per_upsample |
| 214 | + |
| 215 | + res_sum = 0.0 |
| 216 | + for j in range(start, end): |
| 217 | + res_sum = res_sum + self.resnets[j](hidden_states) |
| 218 | + |
| 219 | + # Average the outputs (matches PyTorch mean(stack)) |
| 220 | + hidden_states = res_sum / self.resnets_per_upsample |
| 221 | + |
| 222 | + # Final Post-Processing |
| 223 | + # Note: using 0.01 slope here specifically (matches Diffusers implementation quirk) |
| 224 | + hidden_states = jax.nn.leaky_relu(hidden_states, negative_slope=0.01) |
| 225 | + hidden_states = self.conv_out(hidden_states) |
| 226 | + hidden_states = jnp.tanh(hidden_states) |
| 227 | + |
| 228 | + # Transpose back to (Batch, Channels, Time) to match PyTorch/Diffusers output format |
| 229 | + hidden_states = jnp.transpose(hidden_states, (0, 2, 1)) |
| 230 | + |
| 231 | + return hidden_states |
0 commit comments